Science.gov

Sample records for 3-d mantle convection

  1. Towards implementing plate tectonics in 3D mantle convection simulations

    NASA Astrophysics Data System (ADS)

    Bollada, Peter; Davies, Huw

    2010-05-01

    One of the great challenges in numerical mantle convection simulations is to achieve models that naturally develop plate tectonic like behaviour at the surface. In this work we are looking to achieve such models by investigating the set of models where a single consistent rheology is used for the whole model. We have started by investigating a viscoelastic rheology, related to the Oldroyd-B model from the field of polymers. The goal will be to have the parameter that controls the relaxation between elastic and viscous behaviour to depend upon temperature, pressure and strain-rate. With an appropriate choice of this dependence we have, on the near surface, high viscous/elastic regions interfaced with lower, pure viscous, regions of high strain-rate; while it also becomes more viscous at depth in the interior. In this way we hope to obtain plate like behaviour at the surface which naturally progresses to viscous convective behaviour in the interior. We have started to implement this model in the established mantle 3D finite element spherical mantle convection code TERRA (Baumgardner, 1984). Some parts of the model have been implemented as a force (to be combined with the gravitational body force) on the right hand side. The work has required us to develop and code in TERRA: (i) methods to overcome the continuity problem of the stress field stemming from the fact that the velocity field is represented by linear finite elements; (ii) new operators to handle stress and its gradients; (iii) methods to analyse plate-like behaviour at the surface (iv) the necessary functional dependence of viscosity and elastic relaxation time on temperature, strain-rate and pressure We will present the background to the work, its implementation and results.

  2. 3-D Spherical Mantle Convection with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Flyer, N.; Wright, G. B.; Yuen, D.

    2008-12-01

    In the past 25 years a wide variety of numerical methods, such as finite-difference, finite-volume , finite- elements, and pseudospectral methods have been employed to study the problem of 3-D mantle convection. All have specialized strengths but also serious weaknesses. The first three methods are generally considered low-order and can involve high algorithmic complexity (as in triangular elements). Spectrally accurate methods do not practically allow for local mesh refinement and often involve cumbersome algebra. Here, we introduce a new grid/mesh-free approach using radial basis functions (RBFs). It has the advantage of being spectrally accurate for arbitrary node layouts in multi-dimensions with extreme algorithmic simplicity, and naturally permits local node refinement. It has been shown for shallow-water equations and vortex flows that RBFs outperform other numerical methods in the sense that they obtain a much higher accuracy for the same spatial resolution while being able to take unusually large time steps. One virtue of the RBF scheme is the ability to use a simple Cartesian geometry while implementing the required boundary conditions for the temperature, velocity and stresses on a spherical surface of both the outer( planetary surface ) and inner shell ( core-mantle boundary ). The velocity and stress components are expressed in terms of the scalar potential approach (Zebib and Schubert, 1982) and the other remaining variable is the perturbed temperature field. We have studied the problem from the onset of convection to a modest nonlinear regime.

  3. Influence of Chemical Piles on Convective Structure and the Geoid from 3D Spherical Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhong, S.

    2013-12-01

    Classic mantle dynamic models for the Earth's geoid are mostly based on whole mantle convection and constrain that the upper mantle is significantly weaker than the lower mantle. Whole mantle convection models with such mantle viscosity structure have successfully explained the long-wavelength structure in the mantle. However, with increasing consensus on the existence of chemically distinct piles above the core mantle boundary (CMB) (also known as large low shear velocity provinces or LLSVPs), questions arise as to what extent the chemical piles influence the Earth's geoid and long-wavelength mantle convection. Some recent studies suggested that the chemical piles have a controlling effect on the Earth's degree two mantle structure, geoid, and true polar wander, although the chemical piles are estimated to be of small volume (~2% of the whole mantle) by seismic studies. We have formulated dynamically consistent 3D mantle convection models using CitcomS and studied how the chemical piles above CMB influence the long-wavelength convective structure and geoid. The models have free slip boundary conditions and temperature dependent viscosity. By comparing with purely thermal convection models, we found that the long wavelength convective structure is not sensitive to the presence of the chemical piles. By determining the geoid from the buoyance of a certain layer of the mantle, we found that for both purely thermal and thermochemical convection, the geoid is mostly contributed by the upper part of the mantle, with ~80% geoid explained by the buoyancy in the upper half of the mantle. In purely thermal convection, the contribution to the geoid from the bottom layer of the mantle always has the same sign with the total geoid (a bottom ~ 600 km thick layer gives ~3.5% of the total geoid). However, in the thermochemical convection, the bottom layer with overall negatively buoyant chemical piles gives rise to the geoid that has opposite sign with the total geoid and has a

  4. Interactive Visualization of 3-D Mantle Convection Extended Through AJAX Applications

    NASA Astrophysics Data System (ADS)

    McLane, J. C.; Czech, W.; Yuen, D.; Greensky, J.; Knox, M. R.

    2008-12-01

    We have designed a new software system for real-time interactive visualization of results taken directly from large-scale simulations of 3-D mantle convection and other large-scale simulations. This approach allows for intense visualization sessions for a couple of hours as opposed to storing massive amounts of data in a storage system. Our data sets consist of 3-D data for volume rendering with over 10 million unknowns at each timestep. Large scale visualization on a display wall holding around 13 million pixels has already been accomplished with extension to hand-held devices, such as the OQO and Nokia N800 and recently the iPHONE. We are developing web-based software in Java to extend the use of this system across long distances. The software is aimed at creating an interactive and functional application capable of running on multiple browsers by taking advantage of two AJAX-enabled web frameworks: Echo2 and Google Web Toolkit. The software runs in two modes allowing for a user to control an interactive session or observe a session controlled by another user. Modular build of the system allows for components to be swapped out for new components so that other forms of visualization could be accommodated such as Molecular Dynamics in mineral physics or 2-D data sets from lithospheric regional models.

  5. High Rayleigh Number 3-D Spherical Mantle Convection with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Flyer, N.; Yuen (3), G. Wright, D.

    2009-04-01

    In the last quarter of a century many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and pseudo-spectral methods have been used to study the problem of 3-D spherical convection. All have their respective strengths but also serious weaknesses, such as low-order and can involve high algorithmic complexity, as in triangular elements. Spectrally accurate methods do not practically allow for local mesh refinement and often involve cumbersome algebra. We have recently introduced a new grid/mesh-free approach, using radial basis functions ( RBFs) . It has the advantage of being spectrally accurate for arbitrary node layouts in multi-dimensions with extreme algorithmic simplicity, and allows naturally node-refinement. One virtue of the RBF scheme is the ability to use a simple Cartesian geometry while implementing the required boundary conditions for the temperature, velocity and stresses on a spherical surface of both the outer( planetary surface ) and inner shell ( core-mantle boundary ). The velocity and stress components are expressed in terms of the scalar potential approach and the other remaining variable is the perturbed temperature field. We have studied the problem from the weakly nonlinear to a moderately nonlinear regime involving a Rayleigh number, about 1000 times super-critical. Both purely basal and partially internal -heating cases have been considered

  6. High Rayleigh Number 3-D Spherical Mantle Convection with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Flyer, N.; Wright, G.; Yuen, D. A.

    2009-04-01

    In the last quarter of a century many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and pseudo-spectral methods have been used to study the problem of 3-D spherical convection. All have their respective strengths but also serious weaknesses, such as low-order and can involve high algorithmic complexity, as in triangular elements. Spectrally accurate methods do not practically allow for local mesh refinement and often involve cumbersome algebra. We have recently introduced a new grid/mesh-free approach, using radial basis functions (RBFs). It has the advantage of being spectrally accurate for arbitrary node layouts in multi-dimensions with extreme algorithmic simplicity, and allows naturally node-refinement. One virtue of the RBF scheme is the ability to use a simple Cartesian geometry while implementing the required boundary conditions for the temperature, velocity and stresses on a spherical surface of both the outer(planetary surface) and inner shell (core-mantle boundary). The velocity and stress components are expressed in terms of the scalar potential approach and the other remaining variable is the perturbed temperature field. We have studied the problem from the weakly onlinear to a moderately nonlinear regime involving a Rayleigh number, about 1000 times super-critical. Both purely basal and partially internal-heating cases have been considered.

  7. Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Stegman, Dave R.; Suetsugu, Daisuke; Bina, Craig; Inoue, Toru; Wiens, Douglas; Jellinek, Mark

    2010-11-01

    Seismic tomography reveals the natural mode of convection in the Earth is whole mantle with subducted slabs clearly seen as continuous features into the lower mantle. However, simultaneously existing alongside these deep slabs are stagnant slabs which are, if only temporarily, trapped in the upper mantle. Previous numerical models of mantle convection have observed a range of behavior for slabs in the transition zone depending on viscosity stratification and mineral phase transitions, but typically only exhibit flat-lying slabs when mantle convection is layered or trench migration is imposed. We use 3-D spherical models of mantle convection which range up to Earth-like conditions in Rayleigh number to systematically investigate three effects on mantle dynamics: (1) the mineral phase transitions, (2) a strongly temperature-dependent viscosity with plastic yielding at shallow depth, and (3) a viscosity increase in the lower mantle. First a regime diagram is constructed for isoviscous models over a wide range of Rayleigh number and Clapeyron slope for which the convective mode is determined. It agrees very well with previous results from 2-D simulations by Christensen and Yuen (1985), suggesting present-day Earth is in the intermittent convection mode rather than layered or strictly whole mantle. Two calculations at Earth-like conditions (Ra and RaH = 2 í 107 and 5 í 108, respectively) which include effects (2) and (3) are produced with and without the effect of the mineral phase transitions. The first calculation (without the phase transition) successfully produces plate-like behavior with a long wavelength structure and surface heat flow similar to Earth's value. While the observed convective flow pattern in the lower mantle is broader compared to isoviscous models, it basically shows the behavior of whole mantle convection, and does not exhibit any slab flattening at the viscosity increase at 660 km depth. The second calculation which includes the phase

  8. Interactive Visualization and Monitoring of Large-Scale 3-D Mantle Convection Runs

    NASA Astrophysics Data System (ADS)

    Damon, M.; Yuen, D.; Kameyama, M.; Knox, M.; Porter, D.; Sevre, E. O.; Woodward, P.

    2007-12-01

    With the imminent arrival of petascale computing in the United States by 2011, new strategies for visualizing and monitoring high-resolution numerical simulations on massively parallel computers are needed to overcome the extreme data and resource requirements. We have employed a visualization system consisting of 14 powerful Dell workstations, each with a multi-terabyte disk, connected via a high-speed network with a bandwidth on the order of a few gigabits per second to a locally situated massively parallel system with approximately 2,000 processing elements. This system has been constructed at the Laboratory of Computational Sciences and Engineering at the University of Minnesota. Near real-time interactive analysis of 3-D mantle convection using around 10 million grid points has been carried out using a client-server application capable of streaming gigabytes of simulated data to a remote Powerwall with 13 million pixels. Concurrently, we have constructed a web-portal that allows a user to monitor the same run at home or in a hotel room, using a laptop. In our case, interactive computing takes on the meaning of performing such runs for a limited duration of time, say 1 to 2 hours. This calls for a balance between grid resolution and the number of processing elements required to provide the level of interactivity needed to achieve one to a few frames per second. Our mode of operation represents a new paradigm in numerical modeling that supports a trend toward both real-time visualization and monitoring of high-resolution models and a consequent reduction in storage of raw output data, since the interactive periods are by definition short. Using this interactive strategy periodically we can facilitate long heroic runs extending over a few days.

  9. An efficient compact fourth order FD method for simulating 3-D mantle convection at high Rayleigh number

    NASA Astrophysics Data System (ADS)

    Wright, G. B.; Barnett, G. A.; Yuen, D. A.

    2009-12-01

    , 533, 1984. Isosurfaces of the temperature field from a 3-D mantle convection simulation at Rayleigh number 10**7 during the transition from a purely conductive state to a double-layer convection state. Simulation was performed using the compact fourth order finite difference scheme at a resolution of 200-by-200-by-100 (length-by-width-by-height).

  10. Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface

    NASA Astrophysics Data System (ADS)

    Crameri, Fabio; Tackley, Paul J.

    2014-07-01

    We present temporally evolving 3-D global mantle convection models with single-sided subduction and a free surface in both 3-D Cartesian and fully spherical geometry. Special focus is given to the spontaneous development of three-dimensional structures at the surface and in the upper mantle. We find that an arcuate shape is the natural form for trenches and slabs. Cartesian models are used first to study the dynamic evolution of subduction zones, spreading ridges, and interconnected transform features. These experiments highlight the strong variation of spontaneously developing, arcuate slab curvature and subduction polarity along the trench strike. The spontaneous development of spreading ridges leads to lateral offsets between separated segments that are characterized by normal transform motion. Spherical models then allow insights into the evolution of plate tectonics on a sphere. Investigated are the spontaneous evolution of slab geometry, trench motion, and subduction-induced mantle flow. Two new dynamical features are discovered: "back-slab spiral flow" and "slab tunneling." 2014. American Geophysical Union. All Rights Reserved.

  11. A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.

    2016-06-01

    The 3-D distribution of buoyancy in the convecting mantle drives a suite of convection-related manifestations. Although seismic tomography is providing increasingly resolved images of the present-day mantle heterogeneity, the distribution of mantle density variations in the geological past is unknown, and, by implication, this is true for the convection-related observables. The one major exception is tectonic plate motions, since geologic data are available to estimate their history and they currently provide the only available constraints on the evolution of 3-D mantle buoyancy in the past. We developed a new back-and-forth iterative method for time-reversed convection modeling with a procedure for matching plate velocity data at different instants in the past. The crucial aspect of this reconstruction methodology is to ensure that at all times plates are driven by buoyancy forces in the mantle and not vice versa. Employing tomography-based retrodictions over the Cenozoic, we estimate the global amplitude of the following observables: dynamic surface topography, the core-mantle boundary ellipticity, the free-air gravity anomalies, and the global divergence rates of tectonic plates. One of the major benefits of the new data assimilation method is the stable recovery of much shorter wavelength changes in heterogeneity than was possible in our previous work. We now resolve what appears to be two-stage subduction of the Farallon plate under the western U.S. and a deeply rooted East African Plume that is active under the Ethiopian volcanic fields during the Early Eocene.

  12. Impact of grain size evolution on the localization of deformation: 3D numerical simulations of mantle convection

    NASA Astrophysics Data System (ADS)

    Rozel, Antoine; Golabek, Gregor; Tackley, Paul

    2014-05-01

    Thermodynamically consistent models of single phase grain size evolution have been proposed in the past years [Austin and Evans (2007), Ricard and Bercovici (2009), Rozel et al. (2011), Rozel (2012)]. In a recently updated version [Bercovici and Ricard (2012), PEPI], the mechanics of two-phase grain aggregates has been formulated following the same physical approach. Several non-linear mechanisms such as dynamic recrystallization or Zener pinning are now available in a single non-equilibrium formulation of grain size distributions evolution. The self-consistent generation of localized plate boundaries is predicted in [Bercovici and Ricard (2012), EPSL] using this model, but it has not been tested in a dynamically consistent way. We propose the first set of three-dimensional numerical simulations of mantle convection incorporating this formalism using the finite volume code StagYY [Tackley (2008)]. First, we detail how the model is numerically implemented. Pressure and velocity fields are solved on a staggered grid using a SIMPLER-like method. Multigrid W-cycles and extra coarse-grid relaxations are employed to enhance the convergence of Stokes and continuity equations. The grain size is stored on a large number of tracers advected through the computational domain, which prevent numerical diffusion and allows a high resolution in the shear zones developing in the lithosphere. We also describe the physical formalism itself and propose the set of free parameters of the model. Normal growth, dynamic recrystallization and phase transitions all have a strong effect on the average grain size. We use a visco-plastic rheology in which the viscous strain rate is obtained by summation of dislocation, diffusion and grain boundary sliding creep. Second, we describe the 3D grain size distribution in the mantle and in the lithosphere. We characterize in which conditions plate margins can form, mainly investigating grain growth, recrystallization and rheology related parameters

  13. Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface

    NASA Astrophysics Data System (ADS)

    Crameri, Fabio; Tackley, Paul

    2014-05-01

    The work presented aims at a better understanding of plate tectonics, a crucial dynamical feature within the global framework of mantle convection. Special focus is given to the interaction of subduction-related mantle flow and surface topography. Thereby, the application of a numerical model with two key functional requirements is essential: an evolution over a long time period to naturally model mantle flow and a physically correct topography calculation. The global mantle convection model presented in Crameri et al. (2012a) satisfies both of these requirements. First, it is efficiently calculated by the finite-volume code Stag-YY (e.g., Tackley 2008) using a multi-grid method on a fully staggered grid. Second, it applies the sticky-air method (Matsumoto and Tomoda 1983; Schmeling et al, 2008) and thus approximates a free surface when the sticky-air parameters are chosen carefully (Crameri et al., 2012b). This leads to dynamically self-consistent mantle convection with realistic, single-sided subduction. New insights are thus gained into the interplay of obliquely sinking plates, toroidal mantle flow and the arcuate shape of slabs and trenches. Numerous two-dimensional experiments provide optimal parameter setups that are applied to three-dimensional models in Cartesian and fully spherical geometries. Features observed and characterised in the latter experiments give important insight into the strongly variable behaviour of subduction zones along their strike. This includes (i) the spontaneous development of arcuate trench geometry, (ii) regional subduction polarity reversals and slab tearing, and the newly discovered features (iii) 'slab tunnelling' and (iv) 'back-slab spiral flow'. Overall, this study demonstrates the strong interaction between surface topography and mantle currents and highlights the variability of subduction zones and their individual segments. REFERENCES Crameri, F., P. J. Tackley, I. Meilick, T. V. Gerya, and B. J. P. Kaus (2012a), A free

  14. 3D high resolution mineral phase distribution and seismic velocity structure of the transition zone: predicted by a full spherical-shell compressible mantle convection model

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Heister, T.; Van Den Berg, A. P.; Jacobs, M.; Bangerth, W.

    2011-12-01

    We present high resolution 3D results of the complex mineral phase distribution in the transition zone obtained by numerical modelling of mantle convection. We extend the work by [Jacobs and van den Berg, 2011] to 3D and illustrate the efficiency of adaptive mesh refinement for capturing the complex spatial distribution and sharp phase transitions as predicted by their model. The underlying thermodynamical model is based on lattice dynamics which allows to predict thermophysical properties and seismic wave speeds for the applied magnesium-endmember olivine-pyroxene mineralogical model. The use of 3D geometry allows more realistic prediction of phase distribution and seismic wave speeds resulting from 3D flow processes involving the Earth's transition zone and more significant comparisons with interpretations from seismic tomography and seismic reflectivity studies aimed at the transition zone. Model results are generated with a recently developed geodynamics modeling application based on dealII (www.dealii.org). We extended this model to incorporate both a general thermodynamic model, represented by P,T space tabulated thermophysical properties, and a solution strategy that allows for compressible flow. When modeling compressible flow in the so called truncated anelastic approximation framework we have to adapt the solver strategy that has been proven by several authors to be highly efficient for incompressible flow to incorporate an extra term in the continuity equation. We present several possible solution strategies and discuss their implication in terms of robustness and computational efficiency.

  15. 3-D Spherical Mantle Convection Simulations with Billions of Unknowns on the Yin-Yang Grid Using StagYY: Parallelization and Scaling (Invited)

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.

    2013-12-01

    StagYY is a well-established code for modelling mantle convection in 3D spherical geometry (Tackley, PEPI 2008), incorporating several physical complexities such as compressibility, phase transitions, compositional variations, strongly temperature-dependent, non-linear rheology, tracers to track composition, continents, partial melting and melt migration. It uses a finite volume discretization (primitive variables on a staggered grid) on the yin-yang spherical grid (minimum overlap version). Geometric multigrid is used for simultaneous solution of the Stokes and mass conservation equations. Here, parallelization using MPI is discussed, and performance and scaling of the current StagYY version on up to 4096 cores on grids of up to 768x2304x512x2 cells (1.8 billion, corresponding to 7.2 billion unknowns) is demonstrated. Complexities related to scaling further to 100,000s to millions of cores are discussed together with possible solutions and performance projections.

  16. Zoned mantle convection.

    PubMed

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  17. Mantle convection, topography and geoid

    NASA Astrophysics Data System (ADS)

    Golle, Olivia; Dumoulin, Caroline; Choblet, Gaël.; Cadek, Ondrej

    2010-05-01

    The internal evolution of planetary bodies often include solid-state convection. This phenomenon may have a large impact on the various interfaces of these bodies (dynamic topography occurs). It also affects their gravity field (and the geoid). Since both geoid and topography can be measured by a spacecraft, and are therefore available for several planetary bodies (while seismological measurements are still lacking for all of them but the Moon and the Earth), these are of the first interest for the study of internal structures and processes. While a classical approach now is to combine gravity and altimetry measurements to infer the internal structure of a planet [1], we propose to complement it by the reverse problem, i.e., producing synthetic geoid and dynamic topography from numerical models of convection as proposed by recent studies (e.g. for the CMB topography of the Earth,[2]). This procedure first include a simple evaluation of the surface topography and geoid from the viscous flow obtained by the 3D numerical tool OEDIPUS [3] modeling convection in a spherical shell. An elastic layer will then be considered and coupled to the viscous model - one question being whether the elastic shell shall be included 'on top' of the convective domain or within it, in the cold 'lithospheric' outer region. What we will present here corresponds to the first steps of this work: the comparison between the response functions of the topography and the geoid obtained from the 3D convection program to the results evaluated by a spectral method handling radial variations of viscosity [4]. We consider the effect of the elastic layer whether included in the convective domain or not. The scale setting in the context of a full thermal convection model overlaid by an elastic shell will be discussed (thickness of the shell, temperature at its base...). References [1] A.M. Wieczorek, (2007), The gravity and topography of the terrestrial planets, Treatise on Geophysics, 10, 165-206. [2

  18. Venusian Applications of 3D Convection Modeling

    NASA Technical Reports Server (NTRS)

    Bonaccorso, Timary Annie

    2011-01-01

    This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.

  19. Onset of Time-Dependent 3-D spherical Mantle Convection using a Radial Basis Function-Pseudospectral Method ; Spectral-Finite Volume ; Spectral Higher-Order Finite- Difference Methods

    NASA Astrophysics Data System (ADS)

    Wright, G.; Flyer, N.; Yuen, D. A.; Monnereau, M.; Zhang, S.; Wang, S. M.

    2009-05-01

    Many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and spectral methods have been employed to study 3-D mantle convection. All have their own strengths, but also serious weaknesses. Spectrally accurate methods do not practically allow for node refinement and often involve cumbersome algebra while finite difference, volume, or element methods are generally low-order, adding excessive numerical diffusion to the model. For the 3-D mantle convection problem, we have introduced a new mesh-free approach, using radial basis functions (RBF). This method has the advantage of being algorithmic simple, spectrally accurate for arbitrary node layouts in multi-dimensions and naturally allows for node-refinement. One virtue of the RBF scheme allows the user to use a simple Cartesian geometry, while implementing the required boundary conditions for the temperature, velocities and stress components on a spherical surface at both the planetary surface and the core-mantle boundary. We have studied time- dependent mantle convection, using both a RBF-pseudospectral code and a code which uses spherical- harmonics in the angular direction and second-order finite volume in the radial direction. We have employed a third code , which uses spherical harmonics and higher-order finite-difference method a la Fornberg in the radial coordinate.We first focus on the onset of time-dependence at Rayleigh number Ra of 70,000. We follow the development of stronger time-dependence to a Ra of one million, using high enough resolution with 120 to 200 points in the radial direction and 128 to 256 spherical harmonics.

  20. Mantle Convection on Modern Supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  1. Mantle convection on modern supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter

    2015-04-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.

  2. Limit of Predictability in Mantle Convection

    NASA Astrophysics Data System (ADS)

    Bello, L.; Coltice, N.; Rolf, T.; Tackley, P. J.

    2013-12-01

    Linking mantle convection models with Earth's tectonic history has received considerable attention in recent years: modeling the evolution of supercontinent cycles, predicting present-day mantle structure or improving plate reconstructions. Predictions of future supercontinents are currently being made based on seismic tomography images, plate motion history and mantle convection models, and methods of data assimilation for mantle flow are developing. However, so far there are no studies of the limit of predictability these models are facing. Indeed, given the chaotic nature of mantle convection, we can expect forecasts and hindcasts to have a limited range of predictability. We propose here to use an approach similar to those used in dynamic meteorology, and more recently for the geodynamo, to evaluate the predictability limit of mantle dynamics forecasts. Following the pioneering works in weather forecast (Lorenz 1965), we study the time evolution of twin experiments, started from two very close initial temperature fields and monitor the error growth. We extract a characteristic time of the system, known as the e-folding timescale, which will be used to estimate the predictability limit. The final predictability time will depend on the imposed initial error and the error tolerance in our model. We compute 3D spherical convection solutions using StagYY (Tackley, 2008). We first evaluate the influence of the Rayleigh number on the limit of predictability of isoviscous convection. Then, we investigate the effects of various rheologies, from the simplest (isoviscous mantle) to more complex ones (plate-like behavior and floating continents). We show that the e-folding time increases with the wavelength of the flow and reaches 10Myrs with plate-like behavior and continents. Such an e-folding time together with the uncertainties in mantle temperature distribution suggests prediction of mantle structure from an initial given state is limited to <50 Myrs. References: 1

  3. Towards high-resolution mantle convection simulations

    NASA Astrophysics Data System (ADS)

    Höink, T.; Richards, M. A.; Lenardic, A.

    2009-12-01

    The motion of tectonic plates at the Earth’s surface, earthquakes, most forms of volcanism, the growth and evolution of continents, and the volatile fluxes that govern the composition and evolution of the oceans and atmosphere are all controlled by the process of solid-state thermal convection in the Earth’s rocky mantle, with perhaps a minor contribution from convection in the iron core. Similar processes govern the evolution of other planetary objects such as Mars, Venus, Titan, and Europa, all of which might conceivably shed light on the origin and evolution of life on Earth. Modeling and understanding this complicated dynamical system is one of the true “grand challenges” of Earth and planetary science. In the past three decades much progress towards understanding the dynamics of mantle convection has been made, with the increasing aid of computational modeling. Numerical sophistication has evolved significantly, and a small number of independent codes have been successfully employed. Computational power continues to increase dramatically, and with it the ability to resolve increasingly finer fluid mechanical structures. Yet, the perhaps most often cited limitation in numerical modeling based publications is still the limitation of computing power, because the ability to resolve thermal boundary layers within the convecting mantle (e.g., lithospheric plates), requires a spatial resolution of ~ 10 km. At present, the largest supercomputing facilities still barely approach the power to resolve this length scale in mantle convection simulations that include the physics necessary to model plate-like behavior. Our goal is to use supercomputing facilities to perform 3D spherical mantle convection simulations that include the ingredients for plate-like behavior, i.e. strongly temperature- and stress-dependent viscosity, at Earth-like convective vigor with a global resolution of order 10 km. In order to qualify to use such facilities, it is also necessary to

  4. Physics of Multi-scale Convection In The Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Korenaga, J.; Jordan, T. H.

    We investigate the physics of multi-scale convection in the Earth's mantle, character- ized by the coexistence of large-scale mantle circulation associated plate tectonics and small-scale sublithospheric convection. Several basic scaling laws are derived, using a series of 2-D numerical modeling and 3-D linear stability analyses, for the following three distinct phases of sublithospheric convection: (1) onset of convection, (2) lay- ered convection in the upper mantle, and (3) breakdown of layered convection. First, the onset of convection with temperature-dependent viscosity is studied with 2-D con- vection models. A robust scaling law for onset time is derived by a nonlinear scaling analysis based on the concept of the differential Rayleigh number. Next, the planform of sublithospheric convection is studied by a 3-D linear stability analysis of longitu- dinal rolls in the presence of vertical shear. Finally, the temporal and spatial evolu- tion of sublithospheric convection is studied by 2-D whole-mantle convection models with temperature- and depth-dependent viscosity and an endothermic phase transition. Scaling laws for the breakdown of layered convection as well as the strength of con- vection are derived as a function of viscosity layering, the phase buoyancy parameter, and the thermal Rayleigh number. All of these scaling laws are combined to delineate possible dynamic regimes beneath evolving lithosphere.

  5. How stratified is mantle convection?

    NASA Astrophysics Data System (ADS)

    Puster, Peter; Jordan, Thomas H.

    1997-04-01

    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (Sƒ<0.2), where it rises with stratification strength much more rapidly than Sƒ. Assuming that the shear-speed variations δβ(z, Ω) imaged by seismic tomography are primarily due to convective temperature fluctuations, we can approximate ST by Sβ, the analogous index for the radial correlation length of δβ, and thereby construct bounds on Sƒ. We discuss several key issues regarding the implementation of this strategy, including finite resolution of the seismic data, biases due to the parameterization of the tomographic models, and the bias and variance due to noise. From the comparison of the numerical simulations with recent tomographic structures, we conclude that it is unlikely that convection in the Earth's mantle has Sƒ≳0.15. We consider the possibility that this estimate is biased because mantle convection is intermittent and therefore that the present-day tomographic snapshot may differ from its time average. Although this possibility cannot be dismissed completely, we argue that values of Sƒ≳0.2 can be discounted under a weak version of the Uniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that

  6. Global tectonics from mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, N.

    2015-12-01

    The motions of the surface of the Earth are described using the theory of Plate Tectonics. Despite the fact that this theory has shaped modern geosciences it has some limitations, and among them the impossibility to evaluate the forces at the origin of the surface displacements and deformations. Hence important questions remain difficult to solve like the origin of the sizes of plates, forces driving mountain building or supercontinent dispersal... Tremendous progresses have been made in the past 15 years in mantle convection modelling. Especially, modern convection codes can solve for motion equations with complex material properties. Since the early 2000's, the development of pseudo-plastic rheologies contributed to produce convection models with plate-like behaviour: plates naturally emerge and interact with the flow in a self-organized manner. Using such models in 3D spherical geometry (computed with StagYY - Tackley, 2008), I will show that important questions on the global tectonics of the planet can be addressed now: the distribution of seafloor ages, the distribution of plate area, the lifetime of small and large plates or modes of plate reorganizations. Tackley, P.J., Modellng compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter, 171, 7-18 (2008).

  7. Scales of mantle heterogeneity emerging from 3-D models of advective stretching

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Conjeepuram, N.

    2009-12-01

    Heterogeneities are continually introduced into the mantle by subduction, and then are homogenized by stretching, folding, and finally diffusion. The stretching and folding components control the timescale of mixing in the mantle. Mixing has been studied in 2-D and to a lesser extent in 3-D models, often by using statistical analysis of separation of passive tracers. It has been proposed that mixing in 3-D time dependent convection may differ substantially from mixing in 2-D due to the different structure of the flow. To investigate the processes that determine the scales of heterogeneity in the mantle, we use a complementary method, computing the stretching experienced by passive, infinitesimal, ellipsoidal strain markers in 3-D models of mantle convection. This approach has an advantage over more commonly used methods of calculating separation of particles, because we obtain information about deformation (a mechanism to develop different scales of heterogeneity in the mantle) and about orientation of strain ellipsoids (which can result in fabrics that may lead to anisotropy). We investigate both kinematic and dynamic flows. In plate-driven kinematic flows, the toroidal component of the velocity field emerges as an important factor in mixing. Increasing the toroidal energy in the flow increases the complexity of the stretching patterns that develop and persist through time and homogenizes the stretching distribution. By computing the frequency size distribution of the strain ellipsoids we find that a marble cake upper mantle is a natural consequence of plate-driven flow. We also apply this method to evaluate the role of viscosity contrast in development of heterogeneity convection at different Rayleigh numbers. These models yield complex patterns in which tracers can separate or remain isolated, again leading to a marble-cake upper mantle. We use an innovative method of visualizing the distribution of stretching in 3-D to illustrate these results.

  8. The Effect of an Early Dichotomy on Mars Mantle Convection

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2006-12-01

    Several attempts have been made to produce a crustal dichotomy followed by a single, stationary mantle plume, giving rise to the Tharsis volcanic province using 3D mantle convection models. If Mars evolved in such a scenario, two degree-1 (i.e., hemispherical) patterns would be required to develop at 90° to each other in the span of a few hundred million years. This has not yet been accomplished although recent numerical models (e.g. Roberts and Zhong, 2006) have made significant strides towards a solution including the use of both a lower mantle phase change and a layered viscosity mantle. Our goal is not to determine how the crustal dichotomy formed, but to assume it was already in place within the first 0.5 Ga of Mars' evolution. The presence of an early dichotomy boundary likely affected the planform of mantle convection and may have played a role in the formation of the Tharsis Rise based on the proximity of Tharsis to the dichotomy boundary. We model Martian mantle convection using the 3D finite element code CitComS (Zhong et al., 2000). Previous laboratory experiments have shown that an insulating lid overlying part of a temperature-dependent mantle will generate a large, stationary upwelling beneath the center of the lid. Thus, we incorporate a dry, Newtonian rheology with E*=300 kJ/mol and simulate a dichotomy boundary by integrating a high viscosity lid over the "southern hemisphere" of our model. Redmond and King (2004) illustrate that the effect of a strongly temperature-dependent rheology is the development of a stiff, rheological lithosphere. Thus, for small Rayleigh numbers, the initially imposed dichotomy boundary does not have an effect on the location of mantle upwellings because of the global lid that forms as a result of the temperature-dependent rheology. Our results suggest that an initially larger Rayleigh number, on the order of 107, will produce stationary upwellings beneath the imposed southern hemisphere lid before a global lid develops

  9. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  10. Predictability limit of convection models of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Bello, Léa; Coltice, Nicolas; Rolf, Tobias; Tackley, Paul J.

    2014-05-01

    The reconstruction of the convective flow in the Earth's mantle is a crucial issue for a diversity of disciplines, from seismology to sedimentology. In the past 15 years, several types of reconstructions have been proposed using convection models forward and backward in time. However, so far there are no studies of the limit of predictability these models are facing. Indeed, given the chaotic nature of convection in the Earth's mantle, uncertainties on initial conditions grow exponentially with time and limit forecasting and hindcasting abilities. We use here an approach similar to those used in dynamic meteorology, and more recently for the geodynamo, to evaluate the predictability limit of mantle dynamics forecasts. Following the pioneering works in weather forecast [1], we study the time evolution of twin experiments, started from two very close initial temperature fields and monitor the error growth. We extract a characteristic time of the system, called Lyapunov time, which is used to estimate the predictability limit. The range of predictability depends on the initial error and the error tolerance in our model. We compute 3D spherical convection solutions using StagYY [2] and first evaluate the influence of the Rayleigh number on the limit of predictability. Then, we investigate the effects of various rheologies, from the simplest (isoviscous mantle) to more complex ones (plate-like behavior and floating continents). We show that the Lyapunov time increases with the wavelength of the flow and reaches 130 My in the fully chaotic regime of mantle convection with plate-like behavior and floating contients. Such a Lyapunov time, together with the uncertainties in mantle temperature distribution, suggests prediction of the Earth's mantle structure from an initial given state is limited to

  11. Can mantle convection be self-regulated?

    PubMed Central

    Korenaga, Jun

    2016-01-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth. PMID:27551689

  12. Can mantle convection be self-regulated?

    PubMed

    Korenaga, Jun

    2016-08-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth. PMID:27551689

  13. Influence of the Geometry on Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Noack, L.; Tosi, N.

    2012-04-01

    Modelling of geodynamic processes like mantle or core convection has strongly improved over the last two decades thanks to the steady development of numerical codes that tend to incorporate a more and more realistic physics. High-performance parallel computations allow the simulation of complex problems, such as the self-consistent generation of tectonic plates or the formation of planetary magnetic fields. However, the need to perform broad explorations of the parameter space and the large computational demands imposed by the non-linear, multi-scale nature of convection require several simplifications, in the domain geometry as well as in the physical complexity of the problem. A straightforward approach to limit the computational complexity of the simulations is to decrease the total number of degrees of freedom of the problem by reducing either the number of dimensions or the size of the model domain. On the one hand, for a given resolution, a 3D spherical shell clearly needs a much larger number of grid points than a 2D cylindrical shell or a 2D Cartesian box. At the resolutions typically employed to solve mantle convection problems, this difference amounts to at least a factor of a few hundreds. On the other hand, for certain problems, only a relatively small part of the mantle may be of interest, as in the case of the modelling of subduction [1], mid-ocean ridges or transform faults [2]. We adapted the code GAIA [3] to solve the Stokes problem in several different geometries (Cartesian box, cylindrical, spherical and regional-spherical) and dimensions (2D and 3D) and started a benchmark along the lines of [4] to assess the loss of accuracy when using reduced domains instead of a 3D spherical shell [5]. In general, upwellings in Cartesian geometry are rather flat, whereas the spherical geometry changes their shape to more mushroom-like structures. Furthermore, the number of plumes, which is representative of the characteristic wavelength of convection, varies

  14. Thermal and chemical convection in planetary mantles

    NASA Technical Reports Server (NTRS)

    Dupeyrat, L.; Sotin, C.; Parmentier, E. M.

    1995-01-01

    Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.

  15. Towards an Anisotropic Whole Mantle 3D Elastic Velocity Model

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Romanowicz, B.; Gung, Y.

    2001-12-01

    Many studies have documented the existence of anisotropy in the earth's upper mantle, concentrated in the top 200 km. This evidence comes from the study of surface waves as well as shear wave splitting. There is also evidence for shear wave splitting in D", at least in well sampled regions. There are some hints of anisotropy at the base of the transition zone. Tomographic models of the upper mantle have been developed with simplifying assumptions about the nature of the anisotropy, in order to minimize the number of free parameters in the inversions. Some assume transverse isotropy (e.g Ekström and Dziewonski, 1997), others include additional degrees of freedom with some realistic constraints on mineralogy (e.g. Montagner and Tanimoto, 1991). Our goal is to investigate anisotropy in the whole mantle, using the framework of waveform inversion, and the nonlinear asymptotic mode coupling theory (NACT), previously developed and applied to the construction of whole-mantle SH velocity models (Li and Romanowicz, 1996; Mégnin and Romanowicz, 2000). For this we require a 3 component dataset, and we have extended our automatic transverse (T) component wavepicking procedures to the vertical (Z) and longitudinal (L) component - a non-trivial task given the large number of phases present in the coupled P-SV system. A useful initial assumption, for which the theory has been readily adapted, is that of transverse isotropy. As a first step towards this, we have been investigating inversions using T component and Z,L component data separately. In particular, this allows us to explore the sampling that can be achieved with Z,L component data alone in the deepest part of the mantle. Indeed, D" is in general much better sampled in SH than in SV, owing to the availability of SHdiff at large distances, while SVdiff decays more rapidly due to mantle-core coupling. We present the results of our resolution experiments and discuss the differences between the 3D SV model obtained in well

  16. Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection

    NASA Astrophysics Data System (ADS)

    Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.

    2015-12-01

    The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.

  17. Melt migration through Io's convecting mantle

    NASA Astrophysics Data System (ADS)

    Elder, C. M.; Showman, A. P.

    2013-12-01

    The extensive volcanism occurring on the surface of Io suggests that its interior must contain at least some partial melt. Unlike Earth, Io cannot lose its internal heat through convection alone [1]. Instead, melt moving through the solid mantle helps remove heat from Io's interior by carrying its latent heat towards the surface as it buoyantly ascends through the mantle. We investigate this process by considering melt migration in a column of rock rising through the mantle between downwelling plumes. Convective scaling laws provide the upwelling velocity and the temperature of the rising mantle. Properties of melt migration in this rising mantle are calculated using porous flow equations and an equation for the conservation of energy which includes latent heat consumption, heat advection and heat conduction [2]. This combination of convective scaling laws and porous flow laws allows us to self-consistently determine the radial melt fraction profile in Io's interior, the average melt fraction in Io's interior and the heat flux due to advection of melt. The average melt fraction can be compared to the melt fraction constraints calculated by [3] from Galileo magnetometer measurements. The surface heat flux calculations can be compared to the value of Io's observed surface heat flux which ranges with observation from 1.5-4 W m-2 [4]. [1] Moore W. B. (2003) J. Geophys. Res., 108, E8, 15-1. [2] Hewitt I. J. and Fowler A. C. (2008) Proc. R. Soc. A., 464, 2467-2491. [3] Khurana K. K. et al. (2011) Science, 332, 1186-1189. [4] Moore, W. B. et al. (2007) In: Io After Galileo, Springer-Praxis, 89-108.

  18. 3-D Spherical modelling of the thermo-chemical evolution of Venus' mantle and crust

    NASA Astrophysics Data System (ADS)

    Armann, M.; Tackley, P. J.

    2008-09-01

    Background Several first-order aspects of the dynamics of Venus' mantle remain poorly understood. These include (i) how Venus' mantle loses its radiogenic heat, which is expected to be about the same as Earth's, despite the presence of stagnant lid convection. Hypotheses that have been advanced (summarised in [1]) are conduction through a thin lithosphere, episodic overturn of the lithosphere, magmatic heat transport, and concentration of almost all heat-producing elements into the crust, but there are problems with all of these taken individually. A thick lithosphere may not be consistent with admittance ratios, magmatic heat transport would require a too-large resurfacing rate, and a large concentration of heat-producing elements in the crust would cause weakness and possibly melting in the deep crust. (ii) The relatively long-wavelength distribution of surface features, which is surprising because numerical models and analogue laboratory experiments of stagnant-lid convection produce relatively short-wavelength convective cells. (iii) The inferred (from crater distributions [2]) relatively uniform surface age of 500-700 Ma. (iv) Whether the highlands are above mantle downwellings as on Earth or above mantle upwellings [3]. (v) How the mantle can have outgassing only 25% of 40Ar [4] but supposedly most of its water [5]. (vi) The cause of coronae and relationship to mantle processes [6]. Model To study some of these questions, we take advantage of advances in computational capabilities to perform integrated thermo-chemical convection models of Venus' evolution over 4.5 billion years, in 3-D spherical geometry as well as 2-D spherical annulus geometry [7]. These models include realistic ("laboratory") rheological parameters for diffusion creep and dislocation creep based on [8][9], which are also composition-dependent, and plastic yielding based on Byerlee's law, which might cause changes in tectonic regime (e.g., episodic plate tectonics). Crustal formation and

  19. Eclogites, pyroxene geotherm, and layered mantle convection.

    PubMed

    Basu, A R; Ongley, J S; Macgregor, I D

    1986-09-19

    Temperatures of equilibration for the majority (81 percent) of the eclogite xenoliths of the Roberts Victor kimberlite pipe in South Africa range between 1000 degrees and 1250 degrees C, falling essentially on the gap of the lower limb of the subcontinental inflected geotherm derived from garnet peridotite xenoliths. In view of the Archean age (>2.6 x 10(9) years) of these eclogites and their stratigraphic position on the geotherm, it is proposed that the inflected part of the geotherm represents the convective boundary layer beneath the conductive lid of the lithospheric plate. The gradient of 8 Celsius degrees per kilometer for the inflection is characteristic of a double thermal boundary layer and suggests layered convection rather than whole mantle convection for the earth. PMID:17843357

  20. Seafloor dynamics in mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, N.; Rolf, T.; Tackley, P. J.; Labrosse, S.

    2012-12-01

    The distribution of seafloor ages determines fundamental characteristics of our planet: sea-level, ocean chemistry,tectonic forces and heat loss. The present-day distribution suggests that subduction affects lithosphere of all ageswith the same probability (B. Parsons, J. Geophys. Res 87, 289-302, 1982). This is at odds with the theory of thermal convection which predicts that subduction should happen once a critical age has been reached. So far, the area-age distribution remains a primary constraint, which convection models have failed to satisfy (S. Labrosse and C. Jaupart, Earth Planet. Sci. Lett. 260, 465-481, 2007). We will show that combined action of plate-like behavior and continents causes the seafloor area-age distribution in spherical models of mantle convection to be Earth-like (Coltice et al., Science 336, 335-338, 2012). Our simulations suggest that the seafloor age distribution on Earth evolves over a time-scale of several 100Myrs. Depending on the parameters of the convective flow, strong variations of the production rate of new ocean floor and of the length of ridges are obtained.

  1. Free surface calculations in mantle convection

    NASA Astrophysics Data System (ADS)

    Rose, I.; Buffett, B. A.; Heister, T.

    2015-12-01

    Geodynamic simulations increasingly rely on simulations with a true free surface to investigate questions of dynamic topography, tectonic deformation, gravity perturbations, and global mantle convection. However, implementations of free surface boundary conditions have proven challenging from a standpoint of accuracy, robustness, and stability. In particular, free surfaces tend to suffer from sloshing instabilities, also known as the "drunken sailor" instability, which severely limit time step sizes. Several schemes have been proposed in the literature to deal with these instabilities. Here we analyze the problem of creeping viscous flow with a free surface and discuss the origin of these instabilities. We demonstrate their cause and how existing stabilization schemes work to damp them out. Our analysis is based on formulating a generalized eigenvalue problem for the relaxation spectra of the linearized free surface problem. We also propose a new scheme for removing instabilites from free surface calculations. It does not require modifications to the system matrix, nor additional variables, but is instead an explicit scheme based on nonstandard finite differences. It relies on a single stabilization parameter which may be identified with the smallest relaxation timescale of the free surface. We analyze the stability and accuracy of the nonstandard finite difference scheme, and describe its implementation in the open source mantle convection software Aspect. We also provide comparisons between the nonstandard finite difference scheme and the quasi-implicit scheme proposed by Kaus, Muhlhaus, and May (2010).

  2. Probing Seismically Melting Induced Mantle Heterogeneities in Thermal-chemical Convection Models

    NASA Astrophysics Data System (ADS)

    Heck, H. V.; Davies, H.; Nowacki, A.; Wookey, J. M.

    2015-12-01

    Two regions at the base of the Earth's mantle (the Large Low-Shear Velocity Provinces) pose a fundamental problem in understanding large-scale mantle dynamics and history. Are they dense piles of (possibly primordial) material separated from mantle circulation, or large-scale thermal features which are part of global mantle convection? Or some combination of the two? We use our numerical 3D spherical mantle convection code to perform simulations of the Earths mantle dynamical evolution. We drive the surface velocity of the model according to 200 Ma plate motion reconstructions, to arrive at Earth-like structures in the mantle at present day. Variations in bulk chemistry will be tracked in two ways: 1) by starting the calculations with a (primordial) dense layer at the base of the mantle, and 2) by tracking basalt fraction which is fractionated upon melting close to the surface. The resulting distribution of chemical heterogeneity and temperature will be converted to seismic velocities. This will be done with a thermodynamical database (Stixrude & Lithgow-Bertelloni, GJI, 2005, 2011), allowing us to compare the model with previous observations of triplications and waveform complexity near the margins of the LLSVPs. These observations have been taken as proof that strong chemical variations are present; our simulations can be used to show whether this is true, or if purely thermal convection can also cause these features. We simulate finite-frequency, 3D seismograms at ~5 s period and compare these with previous studies.

  3. Mantle convection and the state of the earth's interior

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Gurnis, Michael

    1987-01-01

    During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.

  4. Mantle convection and the state of the Earth's interior

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1987-01-01

    During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.

  5. Convective instability in sedimentation: 3-D numerical study

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2014-11-01

    To provide a probable explanation on the field observed rapid sedimentation process near river mouths, we investigate the convective sedimentation in stably stratified saltwater using 3-D numerical simulations. Guided by the linear stability analysis, this study focuses on the nonlinear interactions of several mechanisms, which lead to various sediment finger patterns, and the effective settling velocity for sediment ranging from clay (single-particle settling velocity V0 = 0.0036 and 0.0144 mm/s, or particle diameter d = 2 and 4 μm) to silt (V0 = 0.36 mm/s, or d = 20 μm). For very fine sediment with V0 = 0.0036 mm/s, the convective instability is dominated by double diffusion, characterized by millimeter-scale fingers. Gravitational settling slightly increases the growth rate; however, it has notable effect on the downward development of vertical mixing shortly after the sediment interface migrates below the salt interface. For sediment with V0 = 0.0144 mm/s, Rayleigh-Taylor instabilities become dominant before double-diffusive modes grow sufficiently large. Centimeter-scale and highly asymmetric sediment fingers are obtained due to nonlinear interactions between different modes. For sediment with V0 = 0.36 mm/s, Rayleigh-Taylor mechanism dominates and the resulting centimeter-scale sediment fingers show a plume-like structure. The flow pattern is similar to that without ambient salt stratification. Rapid sedimentation with effective settling velocity on the order of 1 cm/s is likely driven by convective sedimentation for sediment with V0 greater than 0.1 mm/s at concentration greater than 10-20 g/L.

  6. 3-D Spherical modelling of the thermo-chemical evolution of Venus' mantle and crust

    NASA Astrophysics Data System (ADS)

    Armann, M.; Tackley, P. J.

    2008-09-01

    Background Several first-order aspects of the dynamics of Venus' mantle remain poorly understood. These include (i) how Venus' mantle loses its radiogenic heat, which is expected to be about the same as Earth's, despite the presence of stagnant lid convection. Hypotheses that have been advanced (summarised in [1]) are conduction through a thin lithosphere, episodic overturn of the lithosphere, magmatic heat transport, and concentration of almost all heat-producing elements into the crust, but there are problems with all of these taken individually. A thick lithosphere may not be consistent with admittance ratios, magmatic heat transport would require a too-large resurfacing rate, and a large concentration of heat-producing elements in the crust would cause weakness and possibly melting in the deep crust. (ii) The relatively long-wavelength distribution of surface features, which is surprising because numerical models and analogue laboratory experiments of stagnant-lid convection produce relatively short-wavelength convective cells. (iii) The inferred (from crater distributions [2]) relatively uniform surface age of 500-700 Ma. (iv) Whether the highlands are above mantle downwellings as on Earth or above mantle upwellings [3]. (v) How the mantle can have outgassing only 25% of 40Ar [4] but supposedly most of its water [5]. (vi) The cause of coronae and relationship to mantle processes [6]. Model To study some of these questions, we take advantage of advances in computational capabilities to perform integrated thermo-chemical convection models of Venus' evolution over 4.5 billion years, in 3-D spherical geometry as well as 2-D spherical annulus geometry [7]. These models include realistic ("laboratory") rheological parameters for diffusion creep and dislocation creep based on [8][9], which are also composition-dependent, and plastic yielding based on Byerlee's law, which might cause changes in tectonic regime (e.g., episodic plate tectonics). Crustal formation and

  7. Subsolidus convection in the mantles of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Schubert, G.

    1979-01-01

    The role of heat transport by solid state mantle convection in determining the past and present thermal states of terrestrial planets is examined. Mantle convection models have relied on two-dimensional and axisymmetric three-dimensional numerical calculations incorporating the temperature and pressure dependence of mantle rheology and its non-Newtonian nature. Convection at high Rayleigh numbers has been investigated through theoretical scaling arguments and boundary layer theories; nevertheless, computational limits prevent modeling of the fully three-dimensional, time-dependent, very high Rayleigh number convection which probably prevails in terrestrial planets. Radar measurements of Venus, as well as Voyager exploration of the Galilean satellites, should also provide information on mantle convection.

  8. 3D Simulations of methane convective storms on Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.

    2005-08-01

    The arrival of the Cassini/Huygens mission to Titan has opened an unprecedented opportunity to study the atmosphere of this satellite. Under the pressure-temperature conditions on Titan, methane, a large atmospheric component amounting perhaps to a 3-5% of the atmosphere, is close to its triple point, potentially playing a similar role as water on Earth. The Huygens probe has shown a terrain shaped by erosion of probably liquid origin, suggestive of past rain. On the other hand, Voyager IRIS spectroscopic observations of Titan imply a saturated atmosphere of methane (amounting perhaps to 150 covered by methane clouds, if we think on Earth meteorology. However, observations from Earth and Cassini have shown that clouds are localized, transient and fast evolving, in particular in the South Pole (currently in its summer season). This might imply a lack of widespread presence on Titan of nuclei where methane could initiate condensation and particle growth with subsequent precipitation. We investigate different scenarios of moist convective storms on Titan using a complete 3D atmospheric model that incorporates a full microphysics treatment required to study cloud formation processes under a saturated atmosphere with low concentration of condensation nuclei. We study local convective development under a variety of atmospheric conditions: sub-saturation, super-saturation, abundances of condensation nuclei fall, condensation nuclei lifted from the ground or gently falling from the stratosphere. We show that under the appropriate circumstances, precipitation rates comparable to typical tropical storms on Earth can be found. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  9. The mantle wedge's transient 3-D flow regime and thermal structure

    NASA Astrophysics Data System (ADS)

    Davies, D. R.; Le Voci, G.; Goes, S.; Kramer, S. C.; Wilson, C. R.

    2016-01-01

    Arc volcanism, volatile cycling, mineralization, and continental crust formation are likely regulated by the mantle wedge's flow regime and thermal structure. Wedge flow is often assumed to follow a regular corner-flow pattern. However, studies that incorporate a hydrated rheology and thermal buoyancy predict internal small-scale-convection (SSC). Here, we systematically explore mantle-wedge dynamics in 3-D simulations. We find that longitudinal "Richter-rolls" of SSC (with trench-perpendicular axes) commonly occur if wedge hydration reduces viscosities to Pa s, although transient transverse rolls (with trench-parallel axes) can dominate at viscosities of Pa s. Rolls below the arc and back arc differ. Subarc rolls have similar trench-parallel and trench-perpendicular dimensions of 100-150 km and evolve on a 1-5 Myr time-scale. Subback-arc instabilities, on the other hand, coalesce into elongated sheets, usually with a preferential trench-perpendicular alignment, display a wavelength of 150-400 km and vary on a 5-10 Myr time scale. The modulating influence of subback-arc ridges on the subarc system increases with stronger wedge hydration, higher subduction velocity, and thicker upper plates. We find that trench-parallel averages of wedge velocities and temperature are consistent with those predicted in 2-D models. However, lithospheric thinning through SSC is somewhat enhanced in 3-D, thus expanding hydrous melting regions and shifting dehydration boundaries. Subarc Richter-rolls generate time-dependent trench-parallel temperature variations of up to K, which exceed the transient 50-100 K variations predicted in 2-D and may contribute to arc-volcano spacing and the variable seismic velocity structures imaged beneath some arcs.

  10. 3d Modelling of Convective Flow In The Rhine Graben

    NASA Astrophysics Data System (ADS)

    Bächler, D.; Kohl, T.; Rybach, L.

    Detailed investigations of the temperature distribution in the Rhine Graben indi- cate regular pattern of thermal anomalies following major north-south striking faults. These anomalies remain unexplained by conventional Rhine Graben studies based on 2D east-west striking sections. First analytical solutions for convective flow in vertical faults are applied for a clearly observable anomalous temperature pattern along ma- jor Rhine Graben faults. By these calculations the fault height, fault aperture, minimal fault permeability and time to convective onset is derived from the observed distances. Since analytical solutions are limited to simple model geometries further improvement was achieved by numerical model simulations, which allow to assume more com- plex initial and boundary conditions. Using the finite volume code TOUGH2 series of anomalies following the same fault were simulated by a 3D numerical model. Fo- cussing on the predominant north-south permeability structure the model consists of a vertical north-south striking fault and surrounding matrix. The fault geometries are based on the analytically predicted fault geometries (aperture=200m, height=3500m) and on the observed temperatures. Comparison of simulation results with observed temperatures shows that the fault is situated between 500 to 600m and 4200m. The fault permeability is taken as 5*10-13m2 and the fluid velocity in the fault is calcu- lated as 10-9 to 10-10 m/s. These results indicate the importance of our considerations since mass flux is much higher in the faults than across them. The minimal age of the anomaly is considered to be 77'000 years, since steady state is reached after this time span. The study proves that the observed temperature anomaly pattern along the gamma fault at Landau can be explained by north-south striking convection systems within fault zones. Similar situations have been found at Soultz. This may be a hint on a general feature of the major north-south striking

  11. Congruence of 3-D Whole Mantle Models of Shear Velocity

    NASA Astrophysics Data System (ADS)

    Dziewonski, A. M.; Lekic, V.; Romanowicz, B. A.

    2012-12-01

    The range of shear velocity anomalies in published whole mantle models is considerable. This impedes drawing conclusions of importance for geodynamic modeling and for interpretation of mineral physics results. However, if one considers only the models that were built using data that are sensitive to mantle structure at all depths, these models show robust features in their power spectra as a function of depth. On this basis we propose that there are five depth intervals with distinct spectral characteristics. 1. Heterosphere (Moho - 300 km) is characterized by strong power spectrum relatively flat up to degree 6. With lateral shear wavespeed variations as large as 15%, this zone accounts for more than 50% of the entire heterogeneity in the mantle. Differences among models for different tectonic regions decrease rapidly below 300 km depth. 2. Upper mantle buffer zone (300- 500 km) has a flat spectrum and the overall power of heterogeneity drops by an order of magnitude compared to the region above. There may be still weak difference between continents and oceans, but the oceanic regions lose their age dependence. The spectral characteristics do not change across the 410 km discontinuity. 3. Transition zone (500 - 650 km) The degree 2 anomaly becomes dominant. There are long wavelength anomalies in regions of the fastest plate subduction during the last 15-20 Ma, suggesting slab ponding above the 650 km discontinuity. Several slower-than-average anomalies of unknown origin are present in this depth range. 4. Lower mantle buffer zone (650 - 2300 km) has a weak, flat spectrum without long wavelength velocity anomalies that could be interpreted as unfragmented subducted slabs. However, there are three relatively narrow and short high velocity anomalies under Peru, Tonga and Indonesia that may indicate limited slab penetration. 5 Abyssal layer (2300 - CMB) Strong spectrum dominated by degrees 2 and 3. The amplitude is the largest at the CMB and decreases rapidly up to

  12. Thermochemical differentiation and intermittent convection of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Kotelkin, Vycheslav; Lobkovsky, Leopold

    2010-05-01

    The numerical experiments are based on the thermochemical model of mantle convection. The model includes the description of the endothermic phase transition at the upper/lower mantle boundary. The aim of this work is the influence of thermochemical processes on mantle convection. As regards the thermochemical differentiation takes place near the mantle boundaries. The differentiation in the D" layer is due to melting with the rise in temperature and the descent of molten iron-bearing components of mantle material into the core. This process generates the lighter fraction, particularly produces the lower mantle plums. It takes place only if the current temperature exceeds the melting temperature. The differentiation near the outer mantle boundary is due to extracting the lighter mantle components into the crust. These thermochemical processes take place when the hot substance is lifting and the pressure falls. The growth of the continental crust on the outer surface is modeling. The oceanic crust returns into mantle throw the subducting zones. The modeling includes the "gabbro-eclogite" transition of oceanic crust. As regards the generation of heavy eclogitic material is located at the depths 80-100 km. Seismic tomography of deep mantle layers showed that the mantle really contains large inclusions of heavy, supposedly eclogitic material. The numerical experiments give a strong nonlinear interaction (either accelerating or slowing down) between the thermochemical processes and mantle convection. It leads to an impulsive character of geodynamics and promotes the formation of different cycles in the evolutionary process. Periods of gradual evolution are interrupted by the geodynamic activity outbursts. These peaks of geodynamic activity play a key role in the geological history of the Earth. Analogous oscillations of geodynamic process produce interaction heavy and light density inhomogeneities with the endothermic phase transition. When convection is layered then the

  13. What Does the Mantle Remember of Its Convection History?

    NASA Astrophysics Data System (ADS)

    Atkins, S.; Tackley, P. J.; Valentine, A. P.; Trampert, J.

    2014-12-01

    Mantle convection is a non-linear system. Convection patterns are therefore not directly proportional to initialization parameters. We investigate which parameters affect convection evolution, and the timescales over which these effects are observable. To do this, we run thousands of mantle convection simulations, each model having different, randomly selected, thermal, rheological, and compositional starting parameters. Our convection program is StagYY, run in 2D spherical-annulus geometry with self-consistent mineral physics properties calculated in Perple_X. StagYY allows melting and basaltic crust production and includes decaying radiogenic heat production in both core and mantle. At various timesteps after initiation, the temperature, density, and composition fields can be extracted. We train neural networks to find the most likely initial parameters responsible for any convection pattern. The networks produce probability density functions, so that the relative likelihood of any value of the inputs parameters can be calculated, allowing inversion of the non-linear convection systems. This means that the uncertainty of the result is also provided. After two billion years, we can find initial mantle potential temperature, initial CMB temperature, approximated initial mantle composition, reference viscosity, depth dependent viscosity, yield stress and the existence and thickness of any initial layer of primordial material. Our results suggest that the signal from these initialisation parameters is retained in the pattern of convection for much longer than 2 Gy. Our ultimate goal is to use tomographic models of the real mantle to investigate the 'initialisation' parameters of the Earth. We can also apply the same methodology to back-step convection, allowing us to build up a history of Earth's mantle convection.

  14. The effect of water to mantle rheology and convection

    NASA Astrophysics Data System (ADS)

    Brändli, Stefan

    2016-04-01

    Water has a significant influence to mantle rheology and therefore also to the convection of the mantle and the plate tectonics. The viscosity of the mantle can be decreased by up to two orders of magnitude when water is present. Another effect of the water is the change in the solidus of the mantle and therefore the melting regime. These two effects of water in the mantle have a significant influence on mantle convection and plate tectonics. The influx of water to the mantle is driven by plate tectonics as wet oceanic lithosphere is subducted into the mantle, then water is brought back to the lithosphere and the surface by MOR-, arc- and hotspot volcanism. Studies show that the amount of water in the mantle is about three times bigger than the water in the oceans. To model this water cycle multiple additions to our simulation code StagYY are necessary. A water diffusion to complement the water transport due to advection, and water dependent viscosity law are implemented. This additions to StagYY will be followed by implementations of a pressure-temperature law for maximum water content, additional transport mechanisms for water, water dependent solidus functions and the implementation of recent values for plate velocities and water capacities in subducting slabs. This will allow us to research the influence of water to the mantle convection and rheology over the past 200Ma.

  15. On the predictability limit of convection models of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Bello, Léa.; Coltice, Nicolas; Rolf, Tobias; Tackley, Paul J.

    2014-06-01

    convective flow in the Earth's mantle is a crucial issue for a diversity of disciplines, from seismology to sedimentology. The common and fundamental limitation of these reconstructions based on geodynamic modeling is the unknown initial conditions. Because of the chaotic nature of convection in the Earth's mantle, errors in initial conditions grow exponentially with time and limit forecasting and hindcasting abilities. In this work, we estimate for the first time the limit of predictability of Earth's mantle convection. Following the twin experiment method, we compute the Lyapunov time (i.e., e-folding time) for state of the art 3-D spherical convection models, varying rheology, and Rayleigh number. Our most Earth-like and optimistic solution gives a Lyapunov time of 136 ± 13 Myr. Rough estimates of the uncertainties in best guessed initial conditions are around 5%, leading to a limit of predictability for mantle convection of 95 Myr. Our results suggest that error growth could produce unrealistic convective structures over time scales shorter than that of Pangea dispersal.

  16. A hybrid radial basis function-pseudospectral method for thermal convection in a 3-D spherical shell

    NASA Astrophysics Data System (ADS)

    Wright, G. B.; Flyer, N.; Yuen, D. A.

    2010-07-01

    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a "2 + 1" approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3-D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface-based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be "scattered" over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth's mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature.

  17. Role of viscoelasticity in mantle convection models

    NASA Astrophysics Data System (ADS)

    Patocka, Vojtech; Cadek, Ondrej; Tackley, Paul

    2015-04-01

    constitutive equations in a way more suitable for global studies, which is different from the method refered to earlier. The computational domain is expected to be composed of two parts: One in which elastic effects are important and where material does not move significantly within one elastic time step and one where elastic effects are not important, where material is allowed to move across many cells within one elastic time step. Local accumulation of stress in viscoelastic simulations is observed, suggesting elasticity could e.g. trigger plasticity in realistic cases. References Moresi L., Dufour F., Mühlhaus H.-B., 2003: A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, Journal of Computational Physics, 184 (2003), 476 - 497 Tackley P., 2008: Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Physics of the Earth and Planetary Interiors, 171 (2008), 7-18

  18. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    SciTech Connect

    Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori; Ogawa, Masaki E-mail: ctchnm.geo@gmail.com E-mail: cmaogawa@mail.ecc.u-tokyo.ac.jp

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and the efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.

  19. Short-lived chemical heterogeneities in the archean mantle with implications for mantle convection.

    PubMed

    Blichert-Toft, J; Albarede, F

    1994-03-18

    The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust. PMID:17744788

  20. Mantle convection with plates and mobile, faulted plate margins.

    PubMed

    Zhong, S; Gurnis, M

    1995-02-10

    A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates. PMID:17813909

  1. New observational and experimental evidence for a plume-fed asthenosphere boundary layer in mantle convection

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Hasenclever, J.; Shi, C.

    2013-03-01

    The textbook view is that the asthenosphere is the place beneath the tectonic plates where competing temperature and pressure effects on mantle rheology result in the lowest viscosity region of Earth's mantle. We think the sub-oceanic asthenosphere exists for a different reason, that instead it is where rising plumes of hot mantle stall and spread out beneath the strong tectonic plates. Below this plume-fed asthenosphere is a thermal and density inversion with cooler underlying average-temperature mantle. Here we show several recent seismic studies that are consistent with a plume-fed asthenosphere. These include the seismic inferences that asthenosphere appears to resist being dragged down at subduction zones, that a sub-oceanic thermal inversion ∼250-350 km deep is needed to explain the seismic velocity gradient there for an isochemical mantle, that a fast 'halo' of shear-wave travel-times surrounds the Hawaiian plume conduit, and that an apparent seismic reflector is found ∼300 km beneath Pacific seafloor near Hawaii. We also present 2D axisymmetric and 3D numerical experiments that demonstrate these effects in internally consistent models with a plume-fed asthenosphere. If confirmed, the existence of a plume-fed asthenosphere will change our understanding of the dynamics of mantle convection and melting, and the links between surface plate motions and mantle convection.

  2. Geographic Variations in Hotspot Geochemistry Caused by 3D Dynamics and Melting of a Heterogeneous Mantle Plume

    NASA Astrophysics Data System (ADS)

    Bianco, T. A.; Ito, G.; van Hunen, J.; Ballmer, M.; Mahoney, J. J.

    2006-12-01

    Spatial variations in magma geochemistry among hotspot volcanoes hold clues to the dynamics and composition of the mantle feeding hotspot volcanism. We use a 3D geodynamic model of plume-lithosphere interaction to explore the causes of spatial patterns of magmatic volumes and compositions at intraplate hotspots. This study focuses on coupling between upper mantle flow, heat transfer, and melting of a heterogeneous (veined) plume. We assume multiple lithologies have different solidi, trace-element, and isotope composition. We use the Cartesian finite-element code, CITCOM, (Zhong and Watts, 2002) to simulate mantle convection with the extended Boussinesq approximation in a volume of upper mantle 400 km in thickness. A parameterized melting model is used to simulate melting of materials with different water contents (Katz et al., 2003). Melt depletion (F) for each lithology is calculated at finite element nodes as a function of temperature, pressure, and water content and is advected using particle tracers. We quantify the response of the geographic pattern of the volume and composition of magmas to different lithospheric thicknesses, and plume temperatures and viscosities, which together control the melting rates and sizes of the melting zones for the different lithologies. In the case of two-lithologies, preliminary results of a sluggishly convecting plume rising beneath thick lithosphere (60-100 km) predict that the melting zone of the least refractory "lithology 1" is wider than that of the more refractory "lithology 2". This leads to the prediction that on the surface, the isotope signature of lithology 1 is most prominent at the leading edge (i.e., upwind edge of plate motion) of the hotspot, whereas the isotope signature of lithology 2 is strongest at the hotspot center. This pattern will likely change for plumes convecting more vigorously or thinner lithosphere.

  3. Blending geological observations and convection models to reconstruct mantle dynamics

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Bocher, Marie; Fournier, Alexandre; Tackley, Paul

    2015-04-01

    Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes. Such breakthrough opens the opportunity to retrieve the recent dynamics of the Earth's mantle by blending convection models together with advanced geological datasets. A proof of concept will be presented, consisting in a synthetic test based on a sequential data assimilation methodology.

  4. Using pattern recognition to infer parameters governing mantle convection

    NASA Astrophysics Data System (ADS)

    Atkins, Suzanne; Valentine, Andrew P.; Tackley, Paul J.; Trampert, Jeannot

    2016-08-01

    The results of mantle convection simulations are fully determined by the input parameters and boundary conditions used. These input parameters can be for initialisation, such as initial mantle temperature, or can be constant values, such as viscosity exponents. However, knowledge of Earth-like values for many input parameters are very poorly constrained, introducing large uncertainties into the simulation of mantle flow. Convection is highly non-linear, therefore linearised inversion methods cannot be used to recover past configurations over more than very short periods of time, which makes finding both initial and constant simulation input parameters very difficult. In this paper, we demonstrate a new method for making inferences about simulation input parameters from observations of the mantle temperature field after billions of years of convection. The method is fully probabilistic. We use prior sampling to construct probability density functions for convection simulation input parameters, which are represented using neural networks. Assuming smoothness, we need relatively few samples to make inferences, making this approach much more computationally tractable than other probabilistic inversion methods. As a proof of concept, we show that our method can invert the amplitude spectra of temperature fields from 2D convection simulations, to constrain yield stress, surface reference viscosity and the initial thickness of primordial material at the CMB, for our synthetic test cases. The best constrained parameter is yield stress. The reference viscosity and initial thickness of primordial material can also be inferred reasonably well after several billion years of convection.

  5. New Insights into the Basin and Swell Dynamics of Africa Driven by Whole-Mantle Convection (Invited)

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Simmons, N. A.; Grand, S. P.; Rowley, D. B.; Mitrovica, J.

    2010-12-01

    Over the past decade, a number of geodynamic studies have attempted to relate different surface manifestations of mantle convection under the African plate, such as plate velocity, gravity and topography anomalies, to the underlying mantle flow. To date, these studies have not been successful in simultaneously reconciling the ensemble of these geodynamic data with the 3-D pattern of convection below Africa. This difficulty has hampered efforts to elucidate the detailed relationship between mantle convection and surface dynamics, in particular the unique basin and swell physiography of the African continent. We present a recent tomography-based mantle convection model derived from the joint inversion of seismic, geodynamic and mineral physical data sets that successfully reproduces the totality of the convection-related data outlined above [Forte et al., EPSL 2010]. The resolution of 3-D mantle structure provided by this new convection model also yields detailed regional maps of shallow mantle flow which clearly connect late-Cenozoic volcanic structures and adjacent basins to asthenospheric upwellings and downwellings, respectively. We find strong asthenospheric upwellings under the African swells such as the Hoggar massif, Main Ethiopian Rift, Kenya domes, Cameroon volcanic line, Canary and Cape Verde Islands. These upwellings of hot mantle material are driven by active, positive buoyancy forces that extend deep into the mantle. The convection model also reveals a distinct pattern of downwellings below the main African basins, in particular the Congo in central Africa and the offshore Somali basin. The subcontinental downwellings below these basins appear to provide a heretofore unrecognised mechanism for accommodating the opening of the East African Rift system. Such 'rift-accommodating' downwellings are similar to that predicted under the eastern margin of the Arabian plate, in the Persian Gulf, in response to the opening of the Red Sea.

  6. On global gravity anomalies and two-scale mantle convection

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.

    1976-01-01

    The two-scale model of mantle convection developed by Richter and Parsons (1975) predicts that if the depth of the convective layer is about 600 km, then for a plate moving at 10 cm/yr, longitudinal convective rolls will be produced in about 50 million years, and the strike of these rolls indicates the direction of motion of the plate relative to the upper mantle. The paper tests these predictions by examining a new global free air gravity model complete to the 30th degree and order. The free air gravity map developed shows a series of linear positive and negative anomalies (with transverse wavelengths of about 2000 km) spanning the Pacific Ocean, crossing the Pacific rise and striking parallel to the Hawaiian seamounts. It is suggested that the pattern of these anomalies may indicate the presence of longitudinal convective rolls beneath the Pacific plates, a result which tends to support the predictions of Richter and Parsons.

  7. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Chen, Y. John; Ning, Jieyuan; Yang, Yingjie; Afonso, Juan Carlos; Tang, Youcai

    2016-01-01

    A 3-D crustal and upper mantle S-wave velocity model of NE China is constructed by inversion of phase velocity dispersion curves at 6-140 s periods from ambient noise tomography and two-plane surface wave tomography. The seismic data used in this study are collected from 120 China Earthquake Administration (CEA) permanent stations and 127 portable stations of NECESSArray. We observe strong low S-wave velocity beneath the Changbaishan volcano in the upper mantle to at least 200-km depth, which is interpreted as a mantle upwelling beneath the Changbaishan volcano that is consistent with the body wave tomographic image. The Songliao Basin is dominated by a high velocity extending to at least 200-km depth. Built upon the observed velocity anomalies, we propose a sub-lithosphere mantle convection model for NE China in which the upwelling of upper mantle materials from the mantle transition zone to the Changbaishan volcano could induce a local sub-lithosphere convection in the upper mantle and the strong high velocity of the upper mantle beneath the Songliao Basin corresponds to the downwelling limb of this convection cell. The downwelling beneath the Songliao Basin could also induce secondary local convection in the asthenosphere to the west, leading to local asthenospheric upwelling beneath the Abaga and Halaha volcanoes in the Xing'an-Mongolia Orogenic Belt.

  8. Computational study of 3-D Benard convection with gravitational modulation

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Peltier, L. J.

    1989-01-01

    In this numerical study the effects of a modulated gravitational field on three-dimensional Rayleigh-Benard convection with heating from above or from below is investigated. The full, nonlinear, time-dependent, Boussinesq Navier-Stokes equations and the energy equation are solved by a semiimplicit, pseudo-spectral procedure. This study has been motivated by the need to better understand the effects of vibration (G-Jitter) on fluids systems especially in the low gravity environment.

  9. Variability of Water in the Convecting Mantle

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Saal, A. E.

    2014-12-01

    Estimation of the abundance of water in mantle sources first requires careful consideration of the shallow-level effects of degassing and contamination by seawater-derived components. Use of submarine glasses erupted at >500m water depth, and critically-evaluated use of melt inclusion volatile contents, can be used to identify and eliminate degassing as an important mitigating factor; widespread evidence for seawater-derived components are evident in halogen contents, but these effects do not typically correlate with water though there may be subtle effects in long-lived magmatic systems at mid-ocean ridges. H2O/Ce ratios show large differences between mid-ocean ridges, hotspots, back-arc basins and arc-front volcanoes that testify to the large input of water at subduction zones; however, at arcs most of the Ce (like most of the water) is derived from the subducting slab, and at hotspots isotopic tracers of recycled components indicate the presence of materials that can, in sufficient quantity, dominate the Ce budget of mantle plumes. Thus H2O/Ce ratios, while useful, are problematic when the goal is to determine the absolute abundances of water in mantle sources because the abundance of Ce cannot normally be assumed with confidence, except perhaps at mid-ocean ridges. A more complete understanding of the abundance of water in mantle sources can be obtained when data for radiogenic isotopes are used as tracers of mantle composition, and when major and trace element data illuminate the process of mantle melting. In areas far from hotspots, normal mid-ocean ridges reveal a remarkably narrow range of H2O/Ce ratios yet display large-scale regional differences between ocean basins [1]. Isotopically enriched signatures at hotspots suggest low absolute H2O abundances [2], yet there is so much water delivered to the sources of arc volcanoes that even >95% dehydration of slabs results in delivery of water to the deep mantle in excess of that observed in MORB sources. The

  10. Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection

    NASA Astrophysics Data System (ADS)

    Karato, S.

    An attempt is made to explore the geodynamical significance of seismic anisotropy in the deep mantle on the basis of mineral physics. The mineral physics observations used include the effects of deformation mechanisms on lattice and shape preferred orientation, the effects of pressure on elastic anisotropy and the nature of lattice preferred orientation in deep mantle minerals in dislocation creep regime. Many of these issues are still poorly constrained, but a review of recent results shows that it is possible to interpret deep mantle seismic anisotropy in a unified fashion, based on the solid state processes without invoking partial melting. The key notions are (i) the likely regional variation in the magnitude of anisotropy as deformation mechanisms change from dislocation to diffusion creep (or superplasticity), associated with a change in the stress level and/or grain-size in the convecting mantle with a high Rayleigh number, and (ii) the change in elastic anisotropy with pressure in major mantle minerals, particularly in (Mg, Fe)O. The results provide the following constraints on the style of mantle convection (i) the SH > SV anisotropy in the bottom transition zone and the SV > SH anisotropy in the top lower mantle can be attributed to anisotropy structures (lattice preferred orientation and/or laminated structures) caused by the horizontal flow in this depth range, suggesting the presence of a mid-mantle boundary layer due to (partially) layered convection, (ii) the observed no significant seismic anisotropy in the deep mantle near subduction zones implies that deformation associated with subducting slabs is due mostly to diffusion creep (or superplasticity) and therefore slabs are weak in the deep mantle and hence easily deformed when encountered with resistance forces, and (iii) the SH > SV anisotropy in the cold thick portions of the D" layer is likely to be due to horizontally aligned shape preferred orientation in perovskite plus magnesiow

  11. Polar motions excited by a convecting viscous mantle

    NASA Technical Reports Server (NTRS)

    Moser, Jiri; Yuen, David A.; Matyska, Ctirad

    1992-01-01

    The role played by time-dependent mantle convection on exciting long-term polar motions is examined by means of a viscous model. For sufficiently low effective viscosity, polar-wander speeds of 0(1 deg/Myr) would require contributions from the off-diagonal elements of the inertia tensor, with magnitudes around 100,000 times smaller than those found in viscoelastic models used for postglacial rebound. Contributions from the large-scale mantle flow to the angular momentum vector can be comparable to those due to changes in moment of inertia tensor for nonlinear rheology or for young planet. The relative roles of the two contributions depend on the nonlinear rheology of the mantle and its convective vigor.

  12. Three-Dimensional Simulations of Mantle Convection in Io

    NASA Technical Reports Server (NTRS)

    Tackley, Paul J.; Schubert, Gerald; Glatzmaier, Gary A.; Schenk, Paul; Ratcliff, J. Todd; Matas, J.-P.

    2001-01-01

    Io has very high surface heat flow and an abundance of volcanic activity, which are thought to be driven by nonuniform tidal heating in its interior. This nonuniform heat is transported to the base of the lithosphere by very vigorous convection in Io's silicate mantle, the form of which is presumably responsible for the distribution of surface features such as volcanoes and mountains. We here present three-dimensional spherical calculations of mantle convection in Io, in order to ascertain the likely form of this convection and the resulting distribution of heat flow at the surface and core-mantle boundary. Different models of tidal dissipation are considered: the endmember scenarios (identified by M. N. Ross and G. Schubert) of dissipation in the entire mantle, or dissipation in a thin (approximately 100-km-thick) asthenosphere, as well as the 'preferred' distribution of M. N. Ross et al. comprising 1/3 mantle and 2/3 asthenosphere heating. The thermal structure of Io's mantle and asthenosphere is found to be strongly dependent on tidal heating mode, as well as whether the mantle-asthenosphere boundary is permeable or impermeable. Results indicate a large-scale flow pattern dominated by the distribution of tidal heating, with superimposed small-scale asthenospheric instabilities that become more pronounced with increasing Rayleigh number. These small-scale instabilities spread out the surface heat flux, resulting in smaller heat flux variations with increasing Rayleigh number. Scaled to Io's Rayleigh number of O(10(exp 12)) variations of order a few percent are expected. This small but significant variation in surface heat flux may be compatible with the observed distributions of volcanic centers and mountains, which appear fairly uniform at first sight but display a discernible distribution when suitably processed. The observed distribution of volcanic centers is similar to the asthenosphere heating distribution, implying that most of the tidal heating in Io

  13. Numerical simulation of 3-D Benard convection with gravitational modulation

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Peltier, L. J.

    1990-01-01

    In this numerical study, randomly and sinusoidally modulated gravitational fields imposed on three-dimensional Rayleigh-Benard convection are investigated in an effort to understand the effects of vibration (G-Jitter) on fluid systems. The time-dependent, Navier-Stokes equations and the energy equation with Boussinesq approximations are solved by a semi-implicit, pseudospectral procedure. An analysis of energy balances indicates that with increasing modulation amplitude, transition from synchronous to relaxation oscillation goes through the subharmonic response. Random modulations are found to be less stabilizing than sinusoidal and are shown to impose three-dimensionality on the flow for some parameter ranges both at terrestrial and zero base gravity conditions.

  14. Multi-scale seismic heterogeneity and convection in the western U.S. upper mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Schmandt, B.; Humphreys, E.

    2010-12-01

    New P- and S-wave tomography of the U.S. upper mantle from the Pacific Coast to the Great Plains reveals strong multi-scale heterogeneity closely correlated with tectonic and magmatic activity. We invert teleseismic travel-time residuals from the USArray and more than 1700 additional temporary and permanent stations for 3-D velocity perturbations to a depth of 1200 km. The inversion uses recent advances in western U.S. crust models to better isolate the mantle component of travel-time residuals, and frequency-dependent 3-D sensitivity kernels to map travel-time residuals, measured in multiple frequency bands, into velocity structure. In addition to separate Vp and Vs models, we jointly invert the two datasets for Vp/Vs perturbations by imposing a smoothness constraint on the dlnVs/dlnVp field. The joint inversion helps us identify regions where partial melt is probable. The amplitude of Vp, Vs, and Vp/Vs variations is greatest in the upper 200 km of the mantle and the form of velocity anomalies suggests a provincially heterogeneous lithosphere and the occurrence of widespread small-scale convection. Unreasonably large mantle temperature variations, up to ~900 C at 100 km depth, are required if the entire magnitude of velocity structure is attributed to temperature. Partially molten mantle is inferred beneath Yellowstone and the eastern Snake River Plain (SRP), the Salton Trough, and the Clear Lake volcanic field. The inferred depth extent of partial melt is consistent with a generally hydrated upper mantle and elevated temperatures beneath the eastern SRP and Yellowstone. A northeast trending swath of relatively high-velocity mantle extends from the Colorado Plateau to northeastern Wyoming suggesting that considerable compositional heterogeneity in the lithosphere is necessary to reconcile the high mean elevation and negligible geoid anomaly of the region. This swath of high-velocity mantle is juxtaposed against generally low-velocity mantle beneath the Basin and

  15. 3-D simulations of solar and stellar convection and magnetoconvection

    NASA Astrophysics Data System (ADS)

    Nordlund, Å.; Stein, R. F.

    1990-05-01

    We present the key components of a 3-D code designed for simulating the hydrodynamics and magnetohydrodynamics of stellar atmospheres and envelopes. Some particular properties of the code are: (1) the ability to handle strong stratification (extensive simulations with bottom/top pressure ratios of 3×104 have been performed, and simulations with pressure ratios of 5×106 are being initiated); (2) a detailed treatment of the radiating surface; (3) a functional form of the subgrid-scale diffusion designed to minimize the influence on resolved motions; (4) boundary conditions open to flows. The top boundary allows the transmission of short period waves, while the bottom boundary condition was designed to enforce a displacement node for radial pressure modes.

  16. Crustal and Uppermost Mantle Structure of the Atlas Mountains of Morocco Revealed from 3-D Inversion of Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.

    2013-12-01

    The overarching objectives of the second phase of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structures of the Atlas Mountains, and (ii) to test the hypotheses for explaining the observation of a 'missing' mantle root inferred from surface heat flow, gravity and geoid anomalies, elevation and seismic data modeling (i.e. Zeyen et al., 2005; Teixell et al., 2005; Fullea et al., 2010). We present the results from three-dimensional (3-D) MT inversion of data from two MT profiles employing the parallel version of Modular system for Electromagnetic inversion (ModEM; Egbert & Kelbert, 2012) code. For the profile in eastern Morocco, passing through Midelt, a distinct conductivity difference between the Middle-High Atlas (conductive) and Anti Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approximately 55 km). In all inverse solutions, the crust and the upper mantle show a resistive signature (750 Ωm - 1,000 Ωm) beneath the Anti Atlas to a depth of 100 km, which is the part of stable West African Craton. Our results are at variance with the proposed thin lithosphere beneath the Middle-High Atlas as we see no evidence for a shallow asthenosphere. Our second profile lies in western Morocco traversing through Marrakech. For the first time, the electrical resistivity distribution in the crust and in the upper mantle of Western High Atlas has been studied. Our 3-D resistivity model shows that conductive (1-20 Ωm) western High Atlas is confined by two resistive basins (>1,000 Ωm), Souss basin to the south and Houz basin to the north. At the southern boundary of the western High Atlas

  17. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.

    2011-11-01

    We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we

  18. Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux

    NASA Astrophysics Data System (ADS)

    Glišović, P.; Forte, A. M.; Moucha, R.

    2012-08-01

    One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth's mantle, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the mantle thermal structure that is as 'realistic' (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D mantle convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on mantle structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green's functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green's function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-mantle formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the mantle. The use of geodynamically constrained spectral Green's functions facilitates the modelling of the dynamic impact on the mantle evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile

  19. The Mantle-Atmosphere Connection: Oxidation of the Atmosphere through Mantle Convection

    NASA Astrophysics Data System (ADS)

    Lee, K. K. M.; Gu, T.; Li, M.; McCammon, C. A.

    2015-12-01

    Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements1, recycling of refractory isotopes2 and the oxidation state of the atmosphere through volcanic outgassing3. The rise of oxygen in atmosphere, i.e., the Great Oxidation Event (G.O.E.) occurred ~2.4 billion years ago (Ga)4. However, multiple lines of evidence point to biological oxygen production well before 2.4 Ga5; while chromium isotopes in iron formations indicates a decline of atmospheric oxygen about 1.88 Ga6. In contrast to the fluctuation of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for ~3.5 Ga7. Indeed, the redox state of the deep Earth's interior is not well constrained8 and its effect on mantle dynamics is unknown. Here we show a redox-induced density difference affects mantle convection and may potentially cause the oxidation of the upper mantle. From two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) compressed to lower mantle pressures and temperatures, we find Al2O3 forms its own phase separate from the dominant Mg-silicate perovskite phase (i.e., bridgmanite9) in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is ~1-1.5% denser than the oxidized material. Geodynamical numerical simulations show that the redox-induced density difference could lead to an increased oxidation of Earth's upper mantle but is buffered by slow mixing with more reduced material through hot upwellings, which will potentially affect mantle redox and rise of oxygen in atmosphere.

  20. Assessing the role of slab rheology in coupled plate-mantle convection models

    NASA Astrophysics Data System (ADS)

    Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John

    2015-11-01

    Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.

  1. The effects of Venusian mantle convection with multiple phase transitions

    NASA Technical Reports Server (NTRS)

    Steinbach, V.; Yuen, D. A.; Christensen, U. R.

    1992-01-01

    Recently there was a flurry of activities in studying the effects of phase transitions in the Earth's mantle. From petrological and geophysical considerations, phase-transitions would also play an important role in venusian dynamics. The basic differences between the two planets are the surface boundary conditions, both thermally and mechanically. In this vein we have studied time-dependent mantle convection with multiple phase transitions and depth-dependent thermal expansivity (alpha is approximately rho(exp -6)), based on high-pressure and temperature measurements. Both the olivine-spinel and spinel-perovskite transitions were simulated by introducing an effective thermal expansivity, as described. Used together with the extended Boussinesq Approximation this method serves as a powerful tool to examine the effects of phase transitions on convection at relatively low computational costs.

  2. Microwave-based laboratory experiments for internally-heated mantle convection

    SciTech Connect

    Limare, A.; Di Giuseppe, E.; Vilella, K.; Farnetani, C. G.; Kaminski, E.; Jaupart, C.; Surducan, E.; Surducan, V.; Neamtu, C.

    2013-11-13

    The thermal evolution of terrestrial planets is mainly controlled by the amount of radioactive heat sources in their mantle, and by the geometry and efficiency of solid state thermo-chemical convection within. So far, these systems have been studied using numerical methods only and cross validation by laboratory analogous experiments has not been conducted yet. To fill this gap we perform the first laboratory experiments of mantle convection driven by microwave-generated internal heating. We use a 30×30×5 cm{sup 3} experimental tank filled with 0.5 % Natrosol in water mixture (viscosity 0.6 Pa.s at 20°C). The fluid is heated from within by a microwave device that delivers a uniform volumetric heating from 10 to 70 kW/m{sup 3}; the upper boundary of the fluid is kept at constant temperature, whereas the lower boundary is adiabatic. The velocity field is determined with particle image velocimetry and the temperature field is measured using thermochromic liquid crystals which enable us to charaterize the geometry of the convective regime as well as its bulk thermal evolution. Numerical simulations, conducted using Stag-3D in 3D cartesian geometry, reproduce the experimental setup (i.e., boundary conditions, box aspect ratio, temperature dependence of physical parameters, internal heating rate). The successful comparison between the experimental and numerical results validates our approach of modelling internal heating using microwaves.

  3. Evolving Views on the Scale and Nature of Mantle Convection

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.

    2014-12-01

    Since seminal studies of transition zone discontinuities in the 1960ies and the advent of seismic tomography a decade later much progress has been made with the understanding of the scale and nature of mantle convection. First order questions remain, however, about the fluxes between the canonical upper and lower parts of Earth's mantle and the origin and nature of deep mantle heterogeneity. The first generation of tomographic models depicted fast shear wave propagation in the lowermost mantle beneath the circum-Pacific subduction zones and large low shear wspeed anomalies beneath Africa and the central Pacific. In P-wave models these structures are less apparent, and the anomalous Vp/Vs ratios and related variables are suggestive of chemical heterogeneity. Later tomographic studies revealed the pattern of subducted oceanic lithosphere in more detail and discovered that some slabs sink deep into the lower mantle whereas others remain, at least temporarily, in the transition zone. The complex flow trajectories and the evidence for compositional heterogeneity render simple end-member models of strict layering or unobstructed mantle flow untenable. Various seismic imaging methods have been used to map with increasing precision the variations in depth to the major mantle discontinuities, and also these results are not fully consistent with expectations for simple convection models. In addition, renewed scrutiny with more data and better methods suggest that the models of phase transitions around 410 and 660 km depth in the olivine component of a pyrolitic mantle composition are oversimplifications. Indeed, interfaces are also found at other depths, and many exceptions to the expected anti correlation of the interface topographies have been reported. Some of these observations can be explained with experimental and computational studies of the mineralogy and phase chemistry of deep mantle assemblages, but with such studies still restricted to fairly simple bulk

  4. Towards the Next Generation Upper-Mantle 3D Anelastic Tomography

    NASA Astrophysics Data System (ADS)

    Karaoglu, H.; Romanowicz, B. A.

    2015-12-01

    In order to distinguish the thermal and compositional heterogeneities in the mantle, it is crucial to resolve the lateral variations not only in seismic velocities but also in intrinsic attenuation. Indeed, the high sensitivity of intrinsic attenuation to temperature and water content, governed by a form of Arrhenius equation, contrasts with the quasi-linear dependence of velocities on both temperature and major element composition. The major challenge in imaging attenuation lies in separating its effects on seismic waves from the elastic ones. The latter originate from the wave propagation in media with strong lateral elastic gradients causing (de)focusing and scattering. We have previously developed a 3D upper-mantle shear attenuation model based on time domain waveform inversion of long period (T > 60s) fundamental and overtone surface wave data (Gung & Romanowicz, 2004). However, at that time, resolution was limited to very long wavelength structure, because elastic models were still rather smooth, and the effects of focusing could only be estimated approximately, using asymptotic normal mode perturbation theory.With recent progress in constraining global mantle shear velocity from waveform tomography based on the Spectral Element Method (e.g. SEMUCB_WM1, French & Romanowicz, 2014), we are now in a position to develop an improved global 3D model of shear attenuation in the upper mantle. In doing so, we use a similar time domain waveform inversion approach, but (1) start with a higher resolution elastic model with better constraints on lateral elastic gradients and (2) jointly invert, in an iterative fashion, for shear attenuation and elastic parameters. Here, we present the results of synthetic tests that confirm our inversion strategy, as well as preliminary results towards the construction of the next generation upper-mantle anelastic model.

  5. Dynamiical layering in mantle convection - impact on the viscoisity structure

    NASA Astrophysics Data System (ADS)

    Hansen, Ulrich; Stein, Claudia; Dude, Sabine

    2016-04-01

    Thermal boundary layers play a key role for the dynamics of the Earth's mantle. They mark the transition between the core and the mantle and , at least locally and transient, the transition between the upper- and the lower mantle at a depth of 670 km. There is much evidence that these boundary layers do not resemble the picture of a simple thermal boundary layer, as known from thermal convection at high Rayleigh number. Especially the lower boundary seems to be of complex structure, possible induced by compositionally dense material. Present models of mantle convection, aiming at simulating the complex structure and dynamics of the lower boundary layer require several ad hoc assumptions. Especially the density excess and the mass of compositionally distinct need to be assumed. Both conditions are critical for the dynamics but hardly constrained. The internal boundary at 670 is usually implemented by specifying a density jump through a phase boundary, We have developed models where the internal boundary as well as a thermochemical CMB , displaying topography which result from compositionally distinct piles , develop self consistently without the named ad hoc assumptions. As a starting condition we assume that a chemically stratified mantle, as resulting from fractional crystallization in an early magma ocean , is heated by the hot core. Double diffusive convection in material with strongly temperature dependent viscosity leads then to layering and, in a later state to the formation of a rough lower thermochemical boundary layer. Especially the viscosity profiles, as emerging from this configuration are investigated and compared with recent results from inversion studies.

  6. Global distribution of MORB isotopic variability and mantle convection

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Meyzen, C.; Blichert-Toft, J.

    2006-12-01

    In order to assess the potential of mantle isochrons as parameters relevant to mantle convection, we compiled the isotopic variations of Sr, Nd, Hf, and Pb in MORB along most of the mid-ocean ridge system from the North Atlantic to the North Pacific. The data were extracted from the PetDB database. We calculated the variance of isotope distributions as a function of the distance along the ridge axis over a moving window of 5 degrees. Most of the variance is carried by a small number of regularly spaced peaks (~45°) which correspond to the locations of triple junctions at the time of continental breakup and to well-identified hot spots (Iceland, Azores, Ascension, Bouvet, St Paul, and Sala y Gomez). Overall, large hotspots, such as Iceland, contribute to less peak variance than smaller ones such as Bouvet and St Paul. These peaks also show some decoupling of the different isotopic systems, notably between Hf and the other isotopes, and between the source Th/U and 87Sr/86Sr. On a global scale, the variance is mainly localized along the Atlantic and Indian ridge segments (the Pangea domain), where near-ridge hotspots are much more abundant and spreading velocities much slower than in the Pacific domain. This large-scale pattern reflects different modes of lower mantle injection into the upper mantle. The upper mantle in the Pangea domain is only slowly filled by multiple narrow upwellings and the drag exerted by the deep roots of the Archean cratons strongly perturbs its velocity field. This mode is particularly well expressed along the Southwest Indian Ridge, which is very slowly pulling apart Africa from Antarctica, two continents with Archean cratons underlain by thick lithospheric roots. In contrast, upper mantle material from the Pacific domain is quickly replaced by broad lower mantle upwellings with no significant continental hindrance. The geochemical contrast between the Pangea and Pacific domains demonstrates therefore the long-term influence of

  7. Deformation of "stable" continental interiors by mantle convection: Implications for intraplate stress in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Simmons, N. A.; Grand, S. P.; Mitrovica, J. X.

    2011-12-01

    The enigmatic origin of large-magnitude earthquakes far from active plate boundaries, especially those occurring in so-called "stable" continental interiors, is a source of continuing controversy that has eluded a satisfactory explanation using past geophysical models of intraplate deformation and faulting. One outstanding case of such major intraplate earthquakes is the 1811-1812 series of events in the New Madrid Seismic Zone (NMSZ). We contend that the origin of some of these enigmatic intraplate events is due to regional variations in the pattern of tectonic stress generated by mantle convective flow acting on the overlying lithosphere and crust. Mantle convection affects the entire surface of the planet, irrespective of the current configuration of surface plate boundaries. In addition, it must be appreciated that plate tectonics is not a 2-D process, because the convective flow that drives the observed horizontal motions of the tectonic plates also drives vertical displacements of the crust across distances as great as 2 to 3 km. This dynamic topography is directly correlated with convection-driven stress field variations in the crust and lithosphere and these stresses can be locally focussed if the mantle rheology below the lithosphere is characterised by sufficiently low viscosities. We have developed global models of convection-driven mantle flow [Forte et al. 2009,2010] that are based on recent high-resolution 3-D tomography models derived from joint inversions of seismic, geodynamic and mineral physics data [Simmons et al. 2007,2008,2010]. These tomography-based mantle convection models also include a full suite of surface geodynamic (postglacial rebound and convection) constraints on the depth-dependent average viscosity of the mantle [Mitrovica & Forte 2004]. Our latest tomography-based and geodynamically-constrained convection calculations reveal that mantle flow under the central US are driven by density anomalies within the lower mantle associated

  8. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  9. Towards the next generation of global 3D upper mantle Q models

    NASA Astrophysics Data System (ADS)

    Gung, Y.; Romanowicz, B.; Capdeville, Y.

    2003-12-01

    Global anelastic tomography can bring important constraints on the thermal structure of the mantle and therefore is dynamics, complementing those provided by elastic tomography. Progress in anelastic tomography has been slow, because of the inherent technical difficulties encountered in discriminating anelastic signal from elastic effects on amplitude data. It has been shown that while the elastic focusing/defocusing effects are not significant at low degrees ( ˜ 8) (e.g. Selby and Woodhouse, 2002; Gung and Romanowicz, 2003), they need to be included to achieve a higher resolution Q model. Ideally, one would use an exact method, such as the Spectral Element Method (SEM) for predicting the focusing effects. SEM is however very heavy computationally. We present a procedure to better constrain the 3D upper mantle Q from 3 component long-period seismic waveforms. In this procedure, the amplitude and phase perturbations due to the 3D elastic structure are corrected for using higher order normal mode asymptotic theory, and applying it to current elastic models. We first evaluate the normal mode asymptotic approach by comparing the corresponding 3D synthetics with those computed using the coupled spectral element/normal mode method (CSEM). 3 normal mode based asymptotic approaches are compared: path average approximation (PAVA), non-linear asymptotic coupling theory (NACT) and NACT+F, an extension of NACT with focusing terms computed using higher order asymptotic theory. Systematic waveform comparison and inversion experiments are implemented. We find that (1) when the anomaly lies on the source-receiver great circle path, the 3 techniques are fairly accurate for fundamental mode surface waves, but NACT and NACT+F provide much better fit for overtone phases and are therefore more powerful in resolving 3D structure in the mid and lower mantle; and (2) the off-great-circle effects, which result in focusing/defocusing and not seen by PAVA or NACT, are well explained by NACT

  10. Modeling 3-D flow in the mantle wedge with complex slab geometries: Comparisons with seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Kincaid, C. R.; MacDougall, J. G.; Druken, K. A.; Fischer, K. M.

    2010-12-01

    Understanding patterns in plate scale mantle flow in subduction zones is key to models of thermal structure, dehydration reactions, volatile distributions and magma generation and transport in convergent margins. Different patterns of flow in the mantle wedge can generate distinct signatures in seismological observables. Observed shear wave fast polarization directions in several subduction zones are inconsistent with predictions of simple 2-D wedge corner flow. Geochemical signatures in a number of subduction zones also indicate 3-D flow and entrainment patterns in the wedge. We report on a series of laboratory experiments on subduction driven flow to characterize spatial and temporal variability in 3-D patterns in flow and shear-induced finite strain. Cases focus on how rollback subduction, along-strike dip changes in subducting plates and evolving gaps or tears in subduction zones control temporal-spatial patterns in 3-D wedge flow. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000 km of the mantle. Subducting lithosphere is modeled with two rubber-reinforced continuous belts. Belts pass around trench and upper/lower mantle rollers. The deeper rollers can move laterally to allow for time varying dip angle. Each belt has independent speed control and dip adjustment, allowing for along-strike changes in convergence rate and the evolution of slab gaps. Rollback is modeled using a translation system to produce either uniform and asymmetric lateral trench motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of anisotropy through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3-D velocity fields for directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening) and morphologies (gaps) in convergent margins produce flows with

  11. Similarities between 2D and 3D convection for large Prandtl number

    NASA Astrophysics Data System (ADS)

    Pandey, Ambrish; Verma, Mahendra K.; Chatterjee, Anando G.; Dutta, Biplab

    2016-06-01

    Using direct numerical simulations of Rayleigh-B\\'{e}nard convection (RBC), we perform a comparative study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D and 3D RBC, in particular the kinetic energy spectrum $E_u(k) \\sim k^{-13/3}$, and the entropy spectrum exhibits a dual branch with a dominant $k^{-2}$ spectrum. We showed that the dominant Fourier modes in the 2D and 3D flows are very close. Consequently, the 3D RBC is quasi two-dimensional, which is the reason for the similarities between the 2D and 3D RBC for large- and infinite Prandtl numbers.

  12. The crustal and mantle velocity structure in central Asia from 3D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Martin, R. V.; Toksoz, M. N.; Pei, S.

    2010-12-01

    The lithospheric structure in central Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the world. We developed P- and S- wave velocity structures of the central Asia in the crust using the traveltime data from Kyrgyzstan, Tajikistan, Kazakhstan, and Uzbek. We chose the events and stations between 32N65E and 45N85E and focused on the areas of Pamir and western Tianshan. In this data set, there are more than 6000 P and S arrivals received at 80 stations from about 300 events. The double difference tomography is applied to relocate events and to invert for seismic structures simultaneously. Our results provide accurate locations of earthquakes and high resolution crustal structure in this region. To extend the model deeper into the mantle through the upper mantle transition zone, ISC/EHB data for P and PP phases are combined with the ABCE data. To counteract the “smearing effect,” the crust and upper mantle velocity structure, derived from regional travel-times, is used. An adaptive grid method based on ray density is used in the inversion. A P-wave velocity model extending down to a depth of 2000 km is obtained. regional-teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of Tian Shan. The slab geometry is quite complex, reflecting the history of the changes in the plate motions and collision processes. Vp/Vs tomography was also determined in the study region, and an attenuation tomography was obtained as well.

  13. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  14. Mantle wedge flow pattern and thermal structure in Northeast Japan: Effects of oblique subduction and 3-D slab geometry

    NASA Astrophysics Data System (ADS)

    Wada, Ikuko; He, Jiangheng; Hasegawa, Akira; Nakajima, Junichi

    2015-09-01

    We develop a 3-D thermal model for the Northeast Japan subduction margin, using a realistic slab geometry for the subducting Pacific plate, and investigate the effects of oblique subduction and 3-D slab geometry on the mantle wedge flow pattern and the thermal structure. In the Tohoku region, the mantle wedge flow pattern is nearly two-dimensional resulting in a thermal structure similar to those obtained by a 2-D model, owing to the simple slab geometry and subduction nearly perpendicular to the margin. However, in Hokkaido, oblique subduction leads to 3-D mantle wedge flow with northerly inflow and west-northwestward outflow and also results in lower temperatures in the shallow part of the mantle wedge than in Tohoku due to lower sinking rate of the slab. Between Hokkaido and Tohoku, the slab has a hinge-like shape due to a relatively sharp change in the dip direction. In this hinge zone, northerly mantle inflow from Hokkaido and westerly mantle inflow from Tohoku converge, discouraging inflow from northwest and resulting in a cooler mantle wedge. The model-predicted mantle wedge flow patterns are consistent with observed seismic anisotropy and may explain the orientations of volcanic cross-chains. The predicted 3-D thermal structure correlates well with the along-arc variations in the location of the frontal arc volcanoes and help to provide new insights into the surface heat flow pattern and the down-dip extent of interplate earthquakes.

  15. GPU implementation for three-dimensional mantle convection at high Rayleigh number

    NASA Astrophysics Data System (ADS)

    Barnett, G. A.; Wright, G. B.; Yuen, D. A.

    2009-12-01

    The last decade has seen the strong influence exerted by the gaming industry on high-performance scientific computing since the landmark year of 2003 when the speed of floating point operations for GPUs surpassed that of CPUs. Since then, the progress of GPUs has been astounding because of the development of faster components with many flow processing units (cores) and larger memories (240 cores and 4 Gbytes with the NVIDIA Tesla 1060). It is feasible with GPUs to have the potential computing power of around one Teraflop in your office environment for around $5000. In this study we demonstrate the enormous capabilities GPUs offers for certain geophysical fluid dynamics applications. We focus our attention on high Rayleigh number three dimensional mantle convection (ie. Rayleigh-Bénard convection in the infinite Prandtl number limit) in a rectangular box. The model equations are taken from Larsen et al (1997), where a constant viscosity has been assumed, which allows the momentum equations to be decomposed into two coupled Poisson equations involving a scalar potential for computing the velocity. These equations together with the spatial derivatives in the energy equation are approximated with second order finite differences. The whole system is advanced forward in time with an explicit, third order accurate Runge-Kutta scheme, which allows for variable time-stepping. We discuss the method with specific attention given to the solution of the two Poisson equations, which are solved directly with a Fourier transform-based algorithm, eg. Hockney (1965). We compare the implementations of this algorithm and its variations on the GPU vs the CPU and demonstrate how the choice depends on the architecture. We report the results from 3D mantle convection simulations run on a single GPU with Rayleigh number up to 10**7 and grids of size up to 512X512X256 (see figure below). A comparison of the computational time for the GPU code shows a speed up of more than 10 times over the

  16. 3D structures of the crust and upper mantle in Atlas Mountains of Morocco from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Kiyan, D.; Jones, A.; Ledo, J.; Fullea, J.; Sinischalchi, A.; Romano, G.; Campanya, J.

    2012-04-01

    As a part of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) and concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROCORES TOPO-EUROPE project) projects, a multi-institutional magnetotelluric (MT) experiment across the Atlas Mountains initiated in September 2009 and ended in February 2010. The overarching objective of the project is to provide new constrains on the lithospheric structure of the Atlas Mountains, and to aid in discriminating between competing models describing the tectonics of the region. The experiment comprised acquisition of broad-band (crustal probing) and long period (mantle probing) MT data along two profiles: a N-S oriented profile crossing the Middle Atlas through the Central High Atlas to the east (profile MEK) and a NE-SW oriented profile crossing the western High Atlas towards the Anti Atlas in the west (profile MAR). Our MT inversion results from the MEK profile (Ledo et al., 2011), assuming that the Earth can be validly represented by two-dimensional (2D) structures, reveal two major mid- to lower crustal scale conductive features. The first anomaly is stretching from the Middle Atlas southward towards the High Moulouya basin and the second one is located beneath the Anti Atlas. There is a gradual increase in mantle resistivity to the south which may indicate a thickening lithosphere beneath the Anti Atlas. To validate the 2D inversion results, the MT data on the same profile were inverted for 3D electrical resistivity structure using both WSINV3DMT (Siripunvaraporn et al., 2005a) and ModEM (Egbert et al., 2011). We ran inversions with the full impedance tensor and also with only the off-diagonal components. Following the paper of Patro and Egbert (2011), we are testing the effect of using different length scales in the along-strike and across strike directions. As expected, the 3D inversion results provide a better fit to the

  17. Nanoscale 3D distribution of low melt and fluid fractions in mantle rocks

    NASA Astrophysics Data System (ADS)

    Gardes, Emmanuel; Morales, Luiz; Heinrich, Wilhelm; Sifre, David; Hashim, Leila; Gaillard, Fabrice; Katharina, Marquardt

    2016-04-01

    The presence of melts or fluids in the intergranular medium of rocks strongly influences their bulk physico-chemical properties (e.g. mass transport and chemical reactivity, electrical conductivity, seismic wave velocity, etc). Actually, the effects can be so large that only small melt or fluid fractions must sometimes be involved for explaining mantle geophysical discontinuities and anomalies. The investigation of the distribution of such small fractions in the intergranular medium of mantle rocks is therefore crucial for relating them to bulk and large scale properties. However, it involves submicrometric structures which are hardly characterizable using conventional techniques. Here we present how the FIB-SEM-STEM microscope can be used to produce 3D imaging at unequalled resolution. We show that low melt and fluid fractions can form films as thin as 20 nm at olivine grain boundaries, and that they can modify the physico-chemical properties of mantle rocks by orders of magnitude. The fine relationships between films at grain boundaries, tubules at triple junctions and pockets at grain corners can be explored, and appear to be complex and to differ from usual visions.

  18. Can we approximate non-Newtonian rheology to model mantle convection?

    NASA Astrophysics Data System (ADS)

    Hüttig, Christian; Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris

    2014-05-01

    One of the most important parameters in mantle convection studies is the rheology since it is directly responsible for the convective vigor, heat transport and shape of up- and downwellings. Deformation in terrestrial mantles is accommodated by two main deformation mechanisms: diffusion and dislocation creep. While the former probably plays a dominant role at high pressures, the latter is thought to be important at relatively low pressures, as inferred by seismic anisotropy of the Earth's upper mantle [1]. Dislocation creep is more challenging to handle than diffusion creep as the viscosity becomes strain-rate dependent [2], introducing a strong non-linearity that requires much longer computational times. In order to avoid this additional complexity, a Newtonian rheology (i.e. diffusion creep) with reduced activation parameters is often used to mimic non-Newtonian behaviour as described in [3], although this approximation has never been carefully tested for a stagnant-lid regime. Mobile-lid steady-state simulations presented in [3] show that the reduction of the activation parameters should be applied with care and in dependence of the problem considered (e.g., amount of internal heating, pressure- or temperature-dominated viscosity). Nevertheless, this simplification is widely employed in convection studies assuming its presumed general validity (e.g. [4,5]). We perform numerical simulations in 2D Cartesian, cylindrical and 3D spherical geometry using the mantle convection codes YACC [6] and Gaia [7] to investigate the consequences of this simplification for various scenarios. To verify our methods, we rerun some of the cases from [3] finding a good agreement. Using rheological parameters from [2] and the approximation from [3], our results show that some global properties such as mean temperature, root mean square velocity and nusselt number are indeed similar (within ~10%) to those obtained when employing a fully non-linear rheology. However, the mantle

  19. Global slab structure from (P-wave) travel time tomography: neither layered nor whole mantle convection

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Li, C.

    2007-12-01

    We comment on the fate of slabs of subducted lithosphere using a new global model of three dimensional (3-D) variations in mantle P-wave velocity. The model is parameterized by means of rectangular cells in latitude, longitude, and radius, the size of which adapts to sampling. The largest single data source is ISC-NEIC data reprocessed by Engdahl and co-workers, from which we use routinely picked, short period P, Pg, Pn, pP and pwP data (for earthquakes between 1964-2004). Resolution in the lowermost and uppermost mantle is improved by differential times of core phases (PKPDF - PKPAB, PKPBC - PKPAB, Pdiff - PKPDF) and surface reflected waves (PP-P), respectively. The low frequency differential times (Pdiff, PP) are measured by waveform cross-correlation. Approximate 3-D finite frequency kernels are used to integrate the long period data (Pdiff, PP) and short period (P, pP, PKP) data. Spatial resolution is ~100 km in best sampled upper mantle regions. Our model reveals in unprecedented detail the rich variation in style of subduction of lithospheric slabs into the mantle. The images confirm the structural complexity of downwellings in the transition zone discussed in previous papers (Van der Hilst et al., Nature, 1991, 1995, 1997). Slab deflection is apparent in the transition zone beneath back arc regions in the western Pacific and the Mediterranean (Fukao et al., Rev. Geophys., 2001), but deeper penetration seems to occur beneath many other convergent margins, in particular Indonesia and the eastern Pacific/Americas (e.g., Ren et al., JGR, 2007). Owing to added data from stations in China, our model reveals with more clarity the structure of slab fragments stagnant in the transition zone beneath East Asia. As we have suggested before, these results of variable depth subduction are not consistent with the canonical models of either strict layering at 660 km depth or unhindered whole mantle convection.

  20. Mantle convection: concensus and queries (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Ricard, Y.

    2012-04-01

    Thermal convection driven by surface cooling and internal heat production is the cause of endogenic activity of all planets, expressed as tectonic activity and volcanism for solid planets. The sluggish convection of the silicated mantle also controls the activity of the metallic core and the possibility of an active dynamo. A glimpse of the internal structure of Earth's mantle is provided by seismic tomography. However, both the limited resolution of seismic methods and the complexity of the relations between seismic velocities and the thermo-mechanical parameters (mostly temperature and density), leave to the geodynamicist a large degree of interpretation. At first order, a very simple model of mantle heterogeneities, only built from the paleogeographic positions of Cenozoic and Mesozoic slabs, explains the pattern and amplitude of Earth's plate motions and gravity field, while being in agreement with long wavelength tomography. This indicates that the mantle dynamics is mostly controlled by thermal anomalies and by the dynamics of the top boundary layer, the lithosphere. However, the presence of various complexities due to variations in elemental composition and to phase transitions is required by seismology, mineralogy and geochemistry. I will review how these complexities affect the dynamics of the transition zone and of the deep mantle and discuss the hypothesis on their origins, either primordial or as a consequence of plate tectonics. The rheologies that are used in global geodynamic models for the mantle and the lithosphere remain very simplistic. Some aspects of plate tectonics (e.g., the very existence of plates, their evolution, the dynamics of one-sided subductions...) are now reproduced by numerical simulations. However the rheologies implemented and their complexities remain only remotely related to that of solid minerals as observed in laboratories. The connections between the quantities measured at microscopic scale (e.g., mineralogy, grainsize

  1. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii

  2. 3D numerical modeling of subduction dynamics: plate stagnation and segmentation, and crustal advection in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tajima, F.

    2012-04-01

    Water content in the mantle transition zone (MTZ) has been broadly debated in the Earth science community as a key issue for plate dynamics [e.g., Bercovici and Karato, 2003]. In this study, a systematic series of three-dimensional (3D) numerical simulation are performed in an attempt to verify two hypotheses for plate subduction with effects of deep water transport: (1) the small-scale behavior of subducted oceanic plate in the MTZ; and (2) the role of subducted crust in the MTZ. These hypotheses are postulated based on the seismic observations characterized by large-scale flattened high velocity anomalies (i.e., stagnant slabs) in the MTZ and discontinuity depth variations. The proposed model states that under wet conditions the subducted plate main body of peridotite (olivine rich) is abutted by subducted crustal materials (majorite rich) at the base of the MTZ. The computational domain of mantle convection is confined to 3D regional spherical-shell geometry with a thickness of 1000 km and a lateral extent of 10° × 30° in the latitudinal and longitudinal directions. A semi-dynamic model of subduction zone [Morishige et al., 2010] is applied to let the highly viscous, cold oceanic plate subduct. Weak (low-viscosity) fault zones (WFZs), which presumably correspond to the fault boundaries of large subduction earthquakes, are imposed on the top part of subducting plates. The phase transitions of olivine to wadsleyite and ringwoodite to perovskite+magnesiowüstite with Clapeyron slopes under both "dry" and "wet" conditions are considered based on recent high pressure experiments [e.g., Ohtani and Litasov, 2006]. Another recent experiment provides new evidence for lower-viscosity (weaker strength) of garnet-rich zones than the olivine dominant mantle under wet conditions [Katayama and Karato, 2008]. According to this, the effect of viscosity reduction of oceanic crust is considered under wet condition in the MTZ. Results show that there is a substantial difference

  3. Mantle convection with continental drift and heat source around the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Kameyama, M.; Kawai, K.

    2012-12-01

    Geological studies have suggested that significant amount of granitic crustal materials have been lost from the surface by the delamination (~1.1 km^3/yr) [1], continental collision (~0.4-0.7 km^3/yr) [1, 2], and subduction at ocean-margin (~2.5-3 km^3/yr) [1, 2]. At ocean-margin subduction zones, most of the granitic materials subducted from the surface are expected to be conveyed through subduction channels by viscous drag to 270km depth [Ichikawa el al., in revision]. If so, then the subducted crustal materials might be expected to be trapped in the mid-mantle owing to the density difference from peridotitic materials induced by the phase transition from coesite to stishovite at 270km depth. In other words, strong heat source materials are most likely to be accumulated around the mantle transition zone, at least, near the plate subduction zones. In this study, we conducted two-dimensional numerical experiments of mantle convection with continental drift and a heat source placed around the mantle transition zone, in order to study the effect of the subducted granitic materials drifting around the mantle transition zone. The simulations deal with a time-dependent convection of fluid under the extended Boussinesq approximation in a model of a two-dimensional rectangular box of 2900km height and 11600km width, where a continent and heat source is imposed. We found that the addition of the heat source considerably reduces the time scale of continental drift. In the absence of the heat source, the resulting time scale is too long compared with that of the so-called supercontinent cycle, where the breakup is induced from a plume generated by an insulating effect of the continent. The heat source also causes massive mechanical mixing especially on the upper mantle. The result suggests that the heat source drifting around mantle transition zone can be a possible candidate inducing the supercontinent cycle in an appropriate time scale. [1] Clift, P. D., P. Vannucchi, and

  4. Imaging 3D anisotropic upper mantle shear velocity structure of Southeast Asia using seismic waveform inversion

    NASA Astrophysics Data System (ADS)

    Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.

    2011-12-01

    Southeast Asia as a special region in the world which is seismically active and is surrounded by active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. Seismic anisotropic tomography can shade light on the complex crust and upper mantle dynamics of this region, which is the subject of much debate. In this study, we applied full waveform time domain tomography to image 3D isotropic and anisotropic upper mantle shear velocity structure of Southeast Asia. Three component waveforms of teleseismic and far regional events (15 degree ≤ Δ≤ 165 degree) with magnitude ranges from Mw6.0 to Mw7.0 are collected from 91 permanent and 438 temporary broadband seismic stations in SE Asia. Wavepackets of both fundamental and overtone modes, filtered between 60 and 400 sec, are selected automatically according to the similarity between data and synthetic waveforms (Panning & Romanowicz, 2006). Wavepackets corresponding to event-station paths that sample the region considered are weighted according to path redundancy and signal to noise ratio. Higher modes and fundamental mode wavepackets are weighted separately in order to enhance the contribution of higher modes which are more sensitive to deeper structure compared to the fundamental mode. Synthetic waveforms and broadband sensitivity kernels are computed using normal mode asymptotic coupling theory (NACT, Li & Romanowicz, 1995). As a starting model, we consider a global anisotropic upper mantle shear velocity model based on waveform inversion using the Spectral Element Method (Lekic & Romanowicz, 2011), updated for more realistic crustal thickness (French et al., 2011) as our starting model, we correct waveforms for the effects of 3D structure outside of the region, and invert them for perturbations in the 3D structure of the target region only. We start with waveform inversion down to 60sec and after several iterations, we include shorter period

  5. Effect of Earth's rotation on thermal convection in the mantle

    NASA Astrophysics Data System (ADS)

    Bozoki, Tamas; Herein, Mátyás; Galsa, Attila

    2016-04-01

    Numerical model calculations have been carried out to study the effect of the centrifugal force on the thermal convection in the mantle. With the help of a simple dimensional analysis it can be shown that among the inertial forces generated by Earth's rotation, only the centrifugal force might have a detectable effect on the thermal convection in the mantle. A new non-dimensional parameter, RaCF was introduced to characterize the thermal buoyancy caused by the centrifugal force compared to the viscous force. Two-dimensional cylindrical shell geometry was applied with stationary value of angular velocity. The models started from the same non-rotated, quasi-stationary convection and 10 Gyr temporal evolution was observed. In the different models the magnitude of angular velocity varied from the recent value of Ω0 = 7.29E-5 1/s to the extreme value of 100 Ω0. The temporal and spatial variation of the surface heat flux (qs) and the root-mean-square velocity (vRMS) depending on the rotation velocity were investigated systematically in the model. Velocity was decomposed to tangential (vφ) and radial (vr) velocity to analyze the effect of the rotation on the flow system. The rotation arranges the convection to polar up- and equatorial downwellings, which structure is more peculiar at higher angular velocities and by the progress of time. Three main regimes can be identified based on the monitoring parameters (qs, vRMS). At low angular velocities (Ω = 0 - 4 Ω0) the convection pattern and the surface heat flux are slightly influenced by the centrifugal force. The most specific effect appears in the middle transitional regime (Ω = 4 - 15 Ω0) where the monotonic decrease of the heat flux separates from the unvarying average velocity. In this regime the constant vRMS is maintained by the enhanced tangential and reduced radial velocity component which is in accordance with the decrease in the number of plumes. vφ and vr shows an intensive decrease from the angular

  6. 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: A review

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Sobolev, Nikolay V.; Pernet-Fisher, John F.; Ketcham, Richard A.; Maisano, Jessica A.; Pokhilenko, Lyudmila N.; Taylor, Dawn; Taylor, Lawrence A.

    2015-04-01

    -systems'. Diamonds observed completely enclosed in garnets suggest an early diamond-forming event prior to major re-crystallization and eclogite formation during subduction. The occurrence of diamond in association with embayed garnets suggests that diamond grew at the expense of the hosting silicate protolith. In addition, the spatial relationships of diamonds with metasomatic pathways, which are generally interpreted to result from late-stage proto-kimberlitic fluid percolation, indicate a period of diamond growth occurring close to, but prior to, the time of kimberlite emplacement. Furthermore, the paragenesis of sulfides within eclogite xenoliths are described using 3-D models for entire xenoliths volumes, providing important constraints of the timing of sulfide mobilization within the mantle. Three-D animations created using X-ray tomography data for ten of the xenoliths can be viewed at the following link: http://eps.utk.edu/faculty/taylor/tomography.php

  7. Tides as drivers of plates and criticism of mantle convection

    NASA Astrophysics Data System (ADS)

    Ostrihansky, Lubor

    2015-04-01

    Forces moving plates are of two kinds: Force moving plates to the north and force moving plates to the west. They are both, by their origin, related to tidal forces but they act in quite different way. The northward force acts by its center in meridian, the westward force acts in direction of geographic parallels. Tidal forces of semidiurnal and diurnal periods cannot move plates because triggering of earthquakes by the stress of these amplitudes gives statistically insignificant results confirmed by many reports for more than 100 years. However the tidal forces acting on 10 km Earth's rotation bulges and the periodic Earth's deformations resulting in Earth's rotation variations give strong forces energetically equivalent to energy of large earthquakes. Oceanic lithosphere older than 180 M.Y. drops down to the mantle by gravity or is liquidated being overridden beneath continent. At that movement the released space facilitates the plate movement by tides. Hotspots firmly anchored in mantle show by tracks an exact movement of plates. Mantle convection is disregarded because it contradicts to existence of mid-ocean ridges triple junctions. Not Polfluchtkraft but Äquatorkraft force the tides create, which can move the large continent (for example Gondwana) far from equator as far as the pole, where after decay the Antarctica remains being out of tidal forces actions.

  8. The Large-scale Component of Mantle Convection

    NASA Astrophysics Data System (ADS)

    Cserepes, L.

    Circulation in the Earth's mantle occurs on multiple spatial scales: this review dis- cusses the character of its large-scale or global components. Direct and strong evi- dence concerning the global flow comes, first of all, from the pattern of plate motion. Further indirect observational data which can be transformed into flow velocities by the equation of motion are the internal density heterogeneities revealed by seismic to- mography, and the geoid can also be used as an observational constraint. Due to their limited spatial resolution, global tomographic data automatically filter out the small- scale features and are therefore relevant to the global flow pattern. Flow solutions obtained from tomographic models, using the plate motion as boundary condition, re- veal that subduction is the downwelling of the global mantle circulation and that the deep-rooted upwellings are concentrated in 2-3 superplumes. Spectral analysis of the tomographic heterogeneities shows that the power of global flow appears dominantly in the lowest spherical harmonic orders 2-5. Theoretical convection calculations con- tribute substantially to the understanding of global flow. If basal heating of the mantle is significant, numerical models can reproduce the basic 2 to 5 cell pattern of con- vection even without the inclusion of surface plates. If plates are superimposed on the solution with their present arrangement and motion, the dominance of these low spherical harmonic orders is more pronounced. The cells are not necessarily closed, rather they show chaotic time-dependence, but they are normally bordered by long downwelling features, and they have usually a single superplume in the cell interior. Swarms of small plumes can develop in the large cells, especially when convection is partially layered due to an internal boundary such as the 670 km discontinuity (source of small plumes). These small plumes are usually tilted by the background large-scale flow which shows that they are

  9. Thermal convection in a 3D spherical shell with strongly temperature and pressure dependent viscosity

    NASA Astrophysics Data System (ADS)

    Stemmer, K.; Harder, H.; Hansen, U.

    2004-12-01

    The style of convection in planetary mantles is presumably dominated by the strong dependence of the viscosity of the mantle material on temperature and pressure. While several efforts have been undertaken in cartesian geometry to investigate convection in media with strong temperature dependent viscosity, spherical models are still in their infancy and still limited to modest parameters. Spectral approaches are usually employed for spherical convection models which do not allow to take into account lateral variations, like temperature dependent viscosity. We have developed a scheme, based on a finite volume discretization, to treat convection in a spherical shell with strong temperature dependent viscosity. Our approach has been particularly tailored to run efficiently on parallel computers. The spherical shell is topologically divided into six cubes. The equations are formulated in primitive variables, and are treated in the cartesian cubes. In order to ensure mass conservation a SIMPLER pressure correction procedure is applied and to handle strong viscosity variations up to Δ η =106 and high Rayleigh-numbers up to Ra=108 the pressure correction algorithm is combined with a pressure weighted interpolation method to satisfy the incompressibility condition and to avoid oscillations. We study thermal convection in a basal and mixed-mode heated shell with stress free and isothermal boundary conditions, as a function of the Rayleigh-number and viscosity contrast. Besides the temperature dependence we have further explored the effects of pressure on the viscosity. As a general result we observe the existence of three regimes (mobile, sluggish and stagnant lid), characterized by the type of surface motion. Laterally averaged depth-profiles of velocity, temperature and viscosity exhibit significant deviations from the isoviscous case. As compared to cartesian geometries, convection in a spherical shell possesses strong memory for the initial state. At strong

  10. Episodic tectonic plate reorganizations driven by mantle convection

    NASA Astrophysics Data System (ADS)

    King, Scott D.; Lowman, Julian P.; Gable, Carl W.

    2002-10-01

    Periods of relatively uniform plate motion were interrupted several times throughout the Cenozoic and Mesozoic by rapid plate reorganization events [R. Hey, Geol. Soc. Am. Bull. 88 (1977) 1404-1420; P.A. Rona, E.S. Richardson, Earth Planet. Sci. Lett. 40 (1978) 1-11; D.C. Engebretson, A. Cox, R.G. Gordon, Geol. Soc. Am. Spec. Pap. 206 (1985); R.G. Gordon, D.M. Jurdy, J. Geophys. Res. 91 (1986) 12389-12406; D.A. Clague, G.B. Dalrymple, US Geol. Surv. Prof. Pap. 1350 (1987) 5-54; J.M. Stock, P. Molnar, Nature 325 (1987) 495-499; C. Lithgow-Bertelloni, M.A. Richards, Geophys. Res. Lett. 22 (1995) 1317-1320; M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. It has been proposed that changes in plate boundary forces are responsible for these events [M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. We present an alternative hypothesis: convection-driven plate motions are intrinsically unstable due to a buoyant instability that develops as a result of the influence of plates on an internally heated mantle. This instability, which has not been described before, is responsible for episodic reorganizations of plate motion. Numerical mantle convection experiments demonstrate that high-Rayleigh number convection with internal heating and surface plates is sufficient to induce plate reorganization events, changes in plate boundary forces, or plate geometry, are not required.

  11. Modelling of 3D Attenuation Structure in the Mantle Using a Waveform Approach: Successes and Challenges

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.; Gung, Y.

    2003-12-01

    The study of lateral variations in Q in the upper mantle at the global scale is generally addressed using isolated phases in the seismogram (for example fundamental mode surface wave spectra), which limits the sampling and therefore the resolution of Q structure that can be achieved. The use of isolated phases has the advantage of working directly with amplitudes, thus making it easier to detect contamination of the anelastic attenuation signal by elastic focusing and scattering, a key problem in attenuation tomography. We here discuss recent progress on a waveform modeling approach, which allows us to work with entire seismograms and exploit the information contained both in fundamental mode surface waves, overtones and body waves. The method is based on a normal mode approach and proceeds iteratively. In the first step, we invert for 3D elastic structure using the NACT approach (Non-linear Asymptotic Coupling Theory; Li and Romanowicz, 1995), which aligns the phase part of the observed and synthetic seismograms. In the second step, we invert for Q. The crucial issue is how to account for elastic effects in the amplitudes (focusing)- we discuss asymptotic versus more exact methods to address this problem and illustrate the effects on the resulting models. We discuss prominent features in the lateral variations in Q in the upper mantle, their evolution with depth, and their relation with elastic structure, in particular from the point of view of resolving upwellings and the large scale signature of plumes.

  12. Controls on the Flow Regime and Thermal Structure of the Subduction Zone Mantle Wedge: A Systematic 2-D and 3-D Investigation

    NASA Astrophysics Data System (ADS)

    Le Voci, Giuseppe; Davies, Rhodri; Goes, Saskia; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Arc volcanism at subduction zones is likely regulated by the mantle wedge's flow regime and thermal structure and, hence, numerous studies have attempted to quantify the principal controls on mantle wedge conditions. Here, we build on these previous studies by undertaking the first systematic 2-D and 3-D numerical investigation, across a wide parameter-space, into how hydration and thermal buoyancy influence the wedge's flow regime and associated thermal structure, above a kinematically driven subducting plate. We find that small-scale convection (SSC), resulting from Rayleigh-Taylor instabilities, or drips, off the base of the overriding lithosphere, is a typical occurrence, if: (i) viscosities are < 5×1018 Pa s; and (ii) hydrous weakening of wedge rheology extends at least 100-150 km from the trench. In 2-D models, instabilities generally take the form of 'drips'. Although along-strike averages of wedge velocities and temperature in 3-D structure are consistent with those in 2-D, fluctuations are larger in 3-D. Furthermore, in 3-D, two separate, but interacting, longitudinal Richter roll systems form (with their axes aligned perpendicular to the trench), the first below the arc region and the second below the back-arc region. These instabilities result in transient and spatial temperature fluctuations of 100-150K, which are sufficient to influence melting, the stability of hydrous minerals and the dehydration of crustal material. Furthermore, they are efficient at eroding the overriding lithosphere, particularly in 3-D and, thus, provide a means to explain observations of high heat flow and thin back-arc lithosphere at many subduction zones, if back-arc mantle is hydrated.

  13. New Era in 3-D Modeling of Convection and Magnetic Dynamos in Stellar Envelopes and Cores

    NASA Astrophysics Data System (ADS)

    Toomre, J.; Augustson, K. C.; Brown, B. P.; Browning, M. K.; Brun, A. S.; Featherstone, N. A.; Miesch, M. S.

    2012-09-01

    The recent advances in asteroseismology and spectropolarimetry are beginning to provide estimates of differential rotation and magnetic structures for a range of F and G-type stars possessing convective envelopes, and in A-type stars with convective cores. It is essential to complement such observational work with theoretical studies based on 3-D simulations of highly turbulent convection coupled to rotation, shear and magnetic fields in full spherical geometries. We have so employed the anelastic spherical harmonic (ASH) code, which deals with compressible magnetohydrodynamics (MHD) in spherical shells, to examine the manner in which the global-scale convection can establish differential rotation and meridional circulations under current solar rotation rates, and these make good contact with helioseismic findings. For younger G stars rotating 3 to 5 times faster than the current Sun, the convection establishes ever stronger angular velocity contrasts between their fast equators and slow poles, and these are accompanied by prominent latitudinal temperature contrasts as well. Turning to MHD simulation of magnetic dynamo action within these younger G stars, the resulting magnetism involves wreaths of strong toroidal magnetic fields (up to 50 to 100 kG strengths) in the bulk of the convection zone, typically of opposite polarity in the northern and southern hemispheres. These fields can persist for long intervals despite being pummeled by the fast convective downflows, but they can also exhibit field reversals and cycles. Turning to shallower convective envelopes in the more luminous F-type stars that range in mass from 1.2 to 1.4 solar masses and for various rotation rates, we find that the convection can again establish solar-like differential rotation profiles with a fast equator and slow poles, but the opposite is achieved at the slower rotation rates. The F stars are also capable of building strong magnetic fields, often as wreaths, through dynamo action. We also

  14. Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth

    NASA Astrophysics Data System (ADS)

    Walzer, Uwe; Hendel, Roland

    2010-05-01

    We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic

  15. A New Global Model for 3-D variations in P Wave Speed in Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Karason, H.; van der Hilst, R. D.; Li, C.

    2003-12-01

    In an effort to improve the resolution of mantle structure we have combined complementary data sets of short- and long period (absolute and differential) travel time residuals. Our new model is based on short period P (N\\~7.7x10**6), pP (N\\~2.3x10**5), and PKP (N\\~16x10**4) data from the catalog by Engdahl et al (BSSA, 1998), short-period PKP differential times (N\\~1600) measured by McSweeney & Creager, and long-period differential PP-P times - N\\~20,000 measured by Bolton & Masters and N\\~18,000 by Ritsema - and Pdiff-PKP (N\\~560) measured by Wysession. Inversion tests, spectral analysis, and comparison with geology indicate that the large-scale upper mantle structure is better constrained with the addition of PP-P, whereas the Pdiff and PKP data help constrain deep mantle structure (Karason & Van der Hilst, JGR, 2001). The long period data were measured by cross-correlation. We solved the system of equations using 400 iterations of the iterative algorithm LSQR For the short period (1 Hz) data we use a high frequency approximation and trace rays through a fine grid of constant slowness cells to invert for mantle structure. For low frequency Pdiff and PP data we account for sensitivity to structure away from the optical ray path with 3-D Frechet derivatives (sensitivity kernels) estimated from single forward scattering and projected onto basis functions (constant slowness blocks) used for model parameterization. With such kernels the low frequency data can constrain long wavelength heterogeneity without keeping the short period data from mapping details in densely sampled regions. In addition to finite frequency sensitivity kernels we optimized the localization by using a parameterization that adapts to spatial resolution, with small cells in regions of dense sampling and larger cells in regions where sampling is more sparse (the total number of cells was \\~ 350,000). Finally, we corrected all travel times and surface reflections for lateral variations in

  16. Conditions of the Asthenosphere Layer Appearance during Upper-Mantle Convection

    NASA Astrophysics Data System (ADS)

    Sharapov, V. N.; Perepechko, Y. V.; Sorokin, K.

    2012-12-01

    The upper mantle parameters responsible to the asthenosphere appearance during convection have been studied. Many geophysical models of the earth mantle have a continuous layer of a partially melted upper-mantle material under the lithosphere plate. From the period of the early earth this structure is possible only if there is the upper-mantle convection due to 660 km depth phase transition. The previous research considered hydrodynamic conditions of the general mantle convective systems taking into account phase boundaries within the upper mantle. In this work, based on numerical modeling, we discuss thermodynamic conditions of the asthenosphere layer evolution under a homogeneous lithospheric plate. Convection in the upper mantle is modeled using the Boussinesq approximation provided spatially distributed phase transitions within the upper mantle. The problem was solved using the control volume method, which provides integral conservation laws. The results of modeling show that the convective instability is possible when the temperature at the mantle boundary is Tb~1410÷1450°C. Decompression melting of the upper mantle rocks take place if Tb>1650°C. The starting temperatures at the lower boundary of the upper mantle are 1700÷1950°C result in the appearance of the asthenosphere layer existing for 30÷100 Ma. In this case the development of complex, separated asthenosphere zones with additional convective cells is typical. Further evolution results in decay of the melting elements and their final disappearance. The initial phase of the evolution of the asthenosphere zones lasts for about 30÷100 Ma. The second, longer phase of decompression melting contains periodical melting elements with the sizes coextensive to lava sheets of intraplate volcanoes. If Tb>1950°C, the evolution of the asthenosphere is different: after the decay of large asthenosphere zones we observe a reconstruction of convective cells; in this case spatial 'wandering' of varying melting

  17. Three-dimensional spherical models of layered and whole mantle convection

    NASA Technical Reports Server (NTRS)

    Glatzmaier, Gary A.; Schubert, Gerald

    1993-01-01

    We present numerical calculations of three-dimensional spherical shell thermal convection for constant viscosity and stratified viscosity models of whole-layer and two-layer mantle convection. These four examples are intended to provide theoretical guidance for determining the style of convection that is occurring in Earth's mantle. An impermeable interface between the upper and lower convecting shells in the two-layer solutions is placed at a depth of 670 km to coincide with the mantle seismic discontinuity that divides the upper and lower mantle. The interface results in an internal thermal boundary layer that raises the mean temperature in the lower shell by about 1400 K compared to the whole-layer solutions. The patterns of convection in the upper part of the whole-layer solutions are dominated by narrow arcuate sheetlike downflows in a background of weak upflow. In contrast, the upper shells of the two-layer solutions have complicated networks of convective rolls with the upflows and downflows having very similar structure. The structure of convection in the lower shells is similar to that in the lower part of the whole-layer solutions. Based on the horizontal structure of subduction zones on Earth's surface and on tomographic images of temperature variations in Earth's mantle, we conclude that the style of convection in Earth's mantle is more like that of the whole-mantle models.

  18. 3-D Isotropic and Anisotropic S-velocity Structure in the North American Upper Mantle

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Marone, F.; Romanowicz, B.; Abt, D.; Fischer, K.

    2008-12-01

    The tectonic diversity of the North American continent has led to a number of geological, tectonic and geodynamical models, many of which can be better tested with high resolution 3-d tomographic models of the isotropic and anisotropic mantle structure of the continent. In the framework of non-linear asymptotic coupling theory (NACT), we recently developed tools to invert long period seismic waveforms combined with SKS splitting data, for both isotropic and radial and azimuthal anisotropic S-wave velocity structure in the upper mantle at the continental scale (Marone et al., 2007; Marone and Romanowicz, 2007). Striking differences in both isotropic and anisotropic velocity structure were observed: beneath the high velocity stable cratonic region a distinct two-layer anisotropic domain is present, with the bottom layer fast axis direction aligned with the absolute plate motion, and a shallower lithospheric layer with north pointing fast axis most likely showing records of past tectonic history; under the active western US the direction of tomographically inferred anisotropy is stable with depth and compatible with the absolute plate motion direction. Here we present an updated model which includes nearly five more years of data, including data from newly operative USArray stations, and a somewhat more extended frequency band. Our new model confirms our previous results, and reveals greater yet complex details of the anisotropic velocity structure beneath the western U.S.. We also show initial results of incorporating constraints on the depth to the lithosphere-asthenosphere boundary (LAB) using teleseismic receiver functions. We discuss the different anisotropic domains resolved both laterally and in depth, in the context of tectonic history of the north American continent.

  19. Anomalously low amplitude of S waves produced by the 3D structures in the lower mantle

    NASA Astrophysics Data System (ADS)

    To, Akiko; Capdeville, Yann; Romanowicz, Barbara

    2016-07-01

    Direct S and Sdiff phases with anomalously low amplitudes are recorded for the earthquakes in Papua New Guinea by seismographs in northern America. According to the prediction by a standard 1D model, the amplitudes are the lowest at stations in southern California, at a distance and azimuth of around 95° and 55°, respectively, from the earthquake. The amplitude anomaly is more prominent at frequencies higher than 0.03 Hz. We checked and ruled out the possibility of the anomalies appearing because of the errors in the focal mechanism used in the reference synthetic waveform calculations. The observed anomaly distribution changes drastically with a relatively small shift in the location of the earthquake. The observations indicate that the amplitude reduction is likely due to the 3D shear velocity (Vs) structure, which deflects the wave energy away from the original ray paths. Moreover, some previous studies suggested that some of the S and Sdiff phases in our dataset are followed by a prominent postcursor and show a large travel time delay, which was explained by placing a large ultra-low velocity zone (ULVZ) located on the core-mantle boundary southwest of Hawaii. In this study, we evaluated the extent of amplitude anomalies that can be explained by the lower mantle structures in the existing models, including the previously proposed ULVZ. In addition, we modified and tested some models and searched for the possible causes of low amplitudes. Full 3D synthetic waveforms were calculated and compared with the observations. Our results show that while the existing models explain the trends of the observed amplitude anomalies, the size of such anomalies remain under-predicted especially at large distances. Adding a low velocity zone, which is spatially larger and has less Vs reduction than ULVZ, on the southwest side of ULVZ, contributes to explain the low amplitudes observed at distances larger than 100° from the earthquake. The newly proposed low velocity zone

  20. Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation.

    PubMed

    Wang, Yin; Zhang, Jun

    2010-10-15

    We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined with an extrapolation technique is used to approximate the sixth order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid independent convergence rate for solving convection diffusion equation with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth order compact scheme (SOC), compared with the previously published fourth order compact scheme (FOC). PMID:21151737

  1. Slab pull, mantle convection, and Pangaean assembly and dispersal

    NASA Astrophysics Data System (ADS)

    Collins, W. J.

    2003-01-01

    Two global-scale mantle convection cells presently exist on Earth, centred on upwelling zones in the South Pacific Ocean and northeast Africa: one cell (Panthalassan) contains only oceanic plates, the other (Pangaean) contains all the continental plates. They have remained fixed relative to one another for >400 Ma. A transverse (Rheic-Tethyian) subduction system splits the Pangaean cell. Poloidal plate motion in the oceanic cell reflects circumferential pull of Panthalassan slabs, but toroidal flow in the Pangaean cell, reflected by vortex-type motion of continents toward the Altaids of central-east Asia throughout the Phanerozoic, has resulted from the competing slab-pull forces of both cells. The combined slab-pull effects from both cells also controlled Pangaean assembly and dispersal. Assembly occurred during Palaeozoic clockwise toroidal motion in the Pangaean cell, when Gondwana was pulled into Pangaea by the NE-trending Rheic subduction zone, forming the Appalachian-Variscide-Altaid chain. Pangaean dispersal occurred when the Rheic trench re-aligned in the Jurassic to form the NW-trending Tethyside subduction system, which pulled east Gondwanan fragments in the opposite direction to form the Cimmerian-Himalayan-Alpine chain. This re-alignment also generated a new set of (Indian) mid-ocean ridge systems which dissected east Gondwana and facilitated breakup. 100-200-Myr-long Phanerozoic Wilson cycles reflect rifting and northerly migration of Gondwanan fragments across the Pangaean cell into the Rheic-Tethyian trench. Pangaean dispersal was amplified by retreat of the Panthalassan slab away from Europe and Africa, which generated mantle counterflow currents capable of pulling the Americas westward to create the Atlantic Ocean. Thermal blanketing beneath Pangaea and related hotspot activity were part of a complex feedback mechanism that established the breakup pattern, but slab retreat is considered to have been the main driving force. The size and longevity of

  2. Impact of lithosphere rheology on 3D continental rift evolution in presence of mantle plumes: insights from numerical models

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Gerya, Taras

    2015-04-01

    We implement fully-coupled high resolution 3D thermo-mechanical numerical models to investigate the impact of the laterally heterogeneous structure and rheological stratification of the continental lithosphere on the plume-activated rifting and continental break-up processes in presence of preexisting far-field tectonic stresses. In our experiments, the "plumes" represent short-lived diapiric upwellings that have no continuous feeding from the depth. Such upwellings may be associated with "true" plumes but also with various instabilities in the convective mantle. The models demonstrate that the prerequisite of strongly anisotropic strain localization during plume-lithosphere interaction (linear rift structures instead of axisymmetric radial faulting) refers to simultaneous presence of a mantle upwelling and of (even extremely weak) directional stress field produced by far-field tectonic forces (i.e. ultra-slow far field extension at < 3 mm/y). Although in all experiments the new-formed spreading centers have similar orientations perpendicular to the direction of the main far-field axis, the models with homogeneous lithosphere show that their number and spatial location is different for various extension rates and thermo-rheological structures of the lithosphere: relatively slow extension (3 mm/year) and colder isotherm (600-700°C at Moho depth) at the crustal bottom lead to the development of single rifts, whereas "faster" external velocities (6 mm/year) and "hotter" crustal geotherm (800°C at Moho depth) result in dual (sometimes asymmetric) rift evolution. On the contrary, the models with heterogeneous lithosphere (thick cratonic block with cold and thick depleted mantle embedded into «normal» lithosphere) and the plume centered below the craton, systematically show similar behaviors: two symmetrical and coeval rifting zones embrace the cratonic micro-plate along its long sides. The experiments where the initial plume position has been laterally shifted with

  3. 3D coexisting modes of thermal convection in the faulted Lower Yarmouk Gorge

    NASA Astrophysics Data System (ADS)

    Magri, Fabien; Inbar, Nimrod; Möller, Peter; Raggad, Marwan; Rödiger, Tino; Rosenthal, Eliyahu; Siebert, Christian

    2016-04-01

    Numerical investigations of 3D modes of large-scale convection in faulted aquifers are presented with the aim to infer possible transport mechanisms supporting the formation of thermal springs in the Lower Yarmouk Gorge (LYG), at the border between Israel and Jordan. The transient finite elements models are based on a geological model of the LYG that introduces more realistic structural features of the basin, compared to previous existing models of the area (Magri et al., submitted). The sensitivity analysis of the fault permeability showed that faults cross-cutting the main regional flow direction allow groundwater to be driven laterally by convective forces within the fault planes. Therein thermal waters can either discharge along the fault traces or exit the fault through adjacent permeable aquifers. The location of springs can migrate with time, is not strictly constrained to the damage zones and reflects the interplay between the wavelength of the multicellular regime in the fault zone and the regional flow toward discharge areas in the lowlands. The results presented here suggest that in the LYG case, crossing flow paths result from the coexistence of fault convection, that can develop for example along NE-SW oriented faults within the Gorge, and additional flow fields that can be induced either by topography N-S gradients, e.g. perpendicular to the major axe of the Gorge, or by local thermal convection in permeable aquifers below Eocene aquiclude. The sensitivity analysis is consistent with the analytical solutions based on viscous-dependent Rayleigh theory. It indicates that in the LYG coexisting transport processes likely occur at fault hydraulic conductivity ranging between 2.3e-7 m/s and 9.3e- 7 m/s (i.e. 7 m/yr and 30 m/yr). The LYG numerical example and the associated Rayleigh analysis can be applied to study the onset of thermal convection and resulting flow patterns of any fractured hydrothermal basin. References Magri F, Möller S, Inbar N, M

  4. Mixing and entrainment in mantle plumes: A 3D experimental investigation

    NASA Astrophysics Data System (ADS)

    Newsome, William; Cotel, Aline; Lithgow-Bertelloni, Carolina; Hart, Stanley; Whitehead, John

    2011-11-01

    Significant differences exist between isotopic signatures of typical mid-ocean ridge basalts (MORB) and those associated with many ocean islands, with ocean island basalts (OIB) generally exhibiting more variability in trace element concentrations and also a bias towards enrichment in radiogenic isotopes such as Sr, Nd, Hf and Pb. Such observations coupled with other geophysical evidence have been used to suggest that OIB's are surface manifestations of thermal plumes originating in the deep interior near the core-mantle boundary that interact with distinct, heterogeneous reservoirs as material is transported from the Earth's interior to the surface. We experimentally investigate the structure and transport characteristics of isolated thermal plumes in corn syrup. The 3D velocity field is measured using a scanning stereoscopic particle image velocimetry system. Two types of tracer particles are simultaneously utilized, with thermochromic liquid crystals providing an estimate of the temperature field. Lagrangian coherent structures computed from the velocity field identify key material lines and surfaces that provide a taxonomic picture of plumes operating in different regimes. These govern how the plume interacts with the ambient during its ascent.

  5. Core cooling by subsolidus mantle convection. [thermal evolution model of earth

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Cassen, P.; Young, R. E.

    1979-01-01

    Although vigorous mantle convection early in the thermal history of the earth is shown to be capable of removing several times the latent heat content of the core, a thermal evolution model of the earth in which the core does not solidify can be constructed. The large amount of energy removed from the model earth's core by mantle convection is supplied by the internal energy of the core which is assumed to cool from an initial high temperature given by the silicate melting temperature at the core-mantle boundary. For the smaller terrestrial planets, the iron and silicate melting temperatures at the core-mantle boundaries are more comparable than for the earth; the models incorporate temperature-dependent mantle viscosity and radiogenic heat sources in the mantle. The earth models are constrained by the present surface heat flux and mantle viscosity and internal heat sources produce only about 55% of the earth model's present surface heat flow.

  6. Computing 3-D wavefields in mantle circulations models to test hypotheses on the origin of lower mantle heterogeneity under Africa directly against seismic observations

    NASA Astrophysics Data System (ADS)

    Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust

    2015-04-01

    Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower mantle structure under Africa on flow in the upper mantle beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost mantle with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal mantle rock. This would imply negative buoyancy in the lowermost mantle under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-mantle boundary that might provide an alternative explanation for the lower mantle anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D mantle circulation model into seismic velocities using thermodynamic models of mantle mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the mantle. In an

  7. Investigating the Subduction History of the Southwest Pacific using Coupled Plate Tectonic-Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Matthews, K. J.; Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.

    2014-12-01

    The Late Cretaceous to mid Eocene (~85-45 Ma) evolution of the southwest Pacific has been the subject of starkly contrasting plate reconstruction models, reflecting sparse and ambiguous data. Disparate models of (1) west-dipping subduction and back-arc basin opening to the east of the Lord Howe Rise, (2) east-dipping subduction and back-arc basin closure to the east of the Lord Howe Rise, and (3) tectonic quiescence with no subduction have all been proposed for this time frame. To help resolve this long-standing problem we test a new southwest Pacific reconstruction using global mantle flow models with imposed plate motions. The kinematic model incorporates east to northeast directed rollback of a west-dipping subduction zone between 85 and 55 Ma, accommodating opening of the South Loyalty back-arc basin to the east of New Caledonia. At 55 Ma there is a plate boundary reorganization in the region. West-dipping subduction and back-arc basin spreading end, and there is initiation of northeast dipping subduction within the back-arc basin. Consumption of South Loyalty Basin seafloor continues until 45 Ma, when obduction onto New Caledonia begins. West-dipping Tonga-Kermadec subduction initiates at this time at the relict Late Cretaceous-earliest Eocene subduction boundary. We use the 3D spherical mantle convection code CitcomS coupled to the plate reconstruction software GPlates, with plate motions and evolving plate boundaries imposed since 230 Ma. The predicted present-day mantle structure is compared to S- and P-wave seismic tomography models, which can be used to infer the presence of slab material in the mantle at locations where fast velocity anomalies are imaged. This workflow enables us to assess the forward-modeled subduction history of the region.

  8. Characterizing 3D Structure of Convective Momentum Transport Associated with the MJO Based on Contemporary Reanalyses

    NASA Astrophysics Data System (ADS)

    Oh, J.; Jiang, X.; Waliser, D. E.; Moncrieff, M. W.; Johnson, R. H.

    2013-12-01

    As one of the most prominent tropical atmospheric variability modes, the Madden-Julian Oscillation (MJO) exerts profound influences on global weather and climate, and serves as a critical predictability source for extend-range forecast. While credible representation of the MJO still represents a great challenge for current general circulation models (GCMs), previous studies on the vertical structure of the MJO have largely focused on collective impacts from multi-scale convective systems on thermodynamic properties of the MJO. Most recently, limited observational studies and idealized modeling work suggested that convective momentum transport (CMT) could also play an important role in interpreting the observed MJO features. In this study, the 3D CMT structure associated with the MJO is examined by analyzing model output from three recent high-quality reanalysis systems, including NOAA's Climate Forecast System Reanalysis (CFSR), NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA), and ECMWF-the Year of Tropical Convection (YOTC) reanalysis. Consistent with previous cloud-resolving model study, a well-organized three-layer vertical structure in the CMT associated with the MJO is also discerned based on reanalyses. The result suggests that CMT tends to intensify the MJO circulation, particularly in the lower troposphere. Relative roles of meso-scale systems (MCS) and synoptic waves in contributing the total CMT profiles of the MJO will also be explored. Differences in CMT profiles in these several reanalysis models will be discussed.

  9. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  10. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation

    NASA Astrophysics Data System (ADS)

    Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham

    2015-08-01

    The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with

  11. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    PubMed

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online. PMID:23305831

  12. Transition Zone Structure and Dynamics in Mantle Convection Calculations with Self-Consistently Calculated Mineralogy

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Nakagawa, T.; Deschamps, F.; Connolly, J.

    2011-12-01

    Phase diagrams of materials in Earth's transition zone (TZ) are complex and composition-dependent and phase transitions have a first-order influence on mantle dynamics, yet simulations of mantle convection typically include only one or two major phase transitions in the olivine system. In our recent work [1,2], phase assemblages of mantle rocks calculated by free energy minimization for MORB and harzburgite compositions expressed as the ratios of 5 or 6 oxides (CaO-FeO-MgO-Al2O3- SiO2-Na2O) are used to calculate the material properties density, thermal expansivity, specific heat capacity, and seismic velocity as a function of temperature and pressure, which are then incorporated into a numerical thermo-chemical mantle convection model in a 2-D spherical annulus or 3-D spherical shell. The advantage of using such an approach is that thermodynamic parameters affecting dynamics and seismic velocities are included implicitly and self-consistently, obviating the need for ad hoc parameterizations. Here we focus on the resulting thermo-chemical structures in the transition zone and their seismic signature. A robust result is some compositional stratification around 660 km depth caused by the inversion of the MORB-harzburgite density difference between ~660-740 km depth [3], with MORB enrichment in the lower TZ and depletion just below the TZ. The extent of this is quite sensitive to variations in MORB composition of the order 1-2% oxide fraction, particularly FeO and Al2O3, which influence the magnitude and depth of this effect and the density difference. The detailed structure also has a strong lateral variation. We plot radial profiles from different parts of our models, characterizing typical structures and the range of structures, and compare to local seismological profiles as well as profiles from regional inversions [4]. [1] Nakagawa, T., P.J. Tackley, F. Deschamps & J.A.D. Connolly (2009) Geochem. Geophys. Geosyst. 10, doi:10.1029/2008GC002280. [2] Nakagawa, T., P

  13. Convective instability rising out of the underbelly of stagnant slabs in the Mantle Transition Zone

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim D.; Motoki, Matthew H.

    2016-04-01

    The study of volcanism can further our understanding of Earth's mantle processes and composition. Continental intraplate volcanism commonly occurs above subducted slabs that stagnate in the Mantle Transition Zone (MTZ), such as in Europe, eastern China, and western North America. Here, we use two-dimensional numerical models to explore the evolution of stagnant slabs in the MTZ and their potential to sustain mantle upwellings that can support volcanism. We find [1] that weak slabs may go convectively unstable within tens of Myr. Upwellings rise out of the relatively warm underbelly of the slab, are entrained by ambient-mantle flow and reach the base of the lithosphere. The first and most vigorous upwellings rise adjacent to lateral heterogeneity within the slab. Ultimately, convective instability also acts to separate the compositional components of the slab, harzburgite and eclogite, from each other with harzburgite rising into the upper mantle and eclogite sinking toward the base of the MTZ, and potentially into the lower mantle. Such a physical filtering process may sustain a long-term compositional stratification across the mantle [2]. [1] Motoki, M. H. and M. D. Ballmer (2015): Convective instability of Stagnant Slabs in the Mantle Transition Zone, Geochem. Geophys. Geosys., doi:10.1002/2014GC005608. [2] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015): Compositional mantle layering revealed by slab stagnation at ~1,000 km depth, Science Advances, doi:10.1126/sciadv.1500815

  14. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection.

    PubMed

    Yoshida, Masaki; Hamano, Yozo

    2015-01-01

    Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr(-1)) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean. PMID:25673102

  15. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection

    PubMed Central

    Yoshida, Masaki; Hamano, Yozo

    2015-01-01

    Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr−1) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean. PMID:25673102

  16. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki; Hamano, Yozo

    2015-02-01

    Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr-1) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean.

  17. SALSA3D: Validating a Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Encarnacao, A.; Phillips, W. S.; Chael, E. P.; Rowe, C. A.

    2012-12-01

    We are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography to assess improvement to seismic event locations obtained using high quality 3D Earth models in lieu of 1D and 2/2.5D models. We present the most recent version of SALSA3D (SAndia LoS Alamos 3D) version 1.9, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events. Our model is derived from the latest version of the GT catalog of P/Pn travel-time picks assembled by Los Alamos National Laboratory. For this current version, we employ more robust data quality control measures than previously used, as well as additional global GT data sources. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays into representative rays. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model everywhere else, overlying a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant such a refinement. In previous versions, we based this refinement on velocity changes from previous model iterations. For the current version, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. In addition to the changes in grid refinement, we also employ a more robust convergence criterion between successive grid refinements, allowing a better fit to first broader

  18. What lies beneath: Unveiling the fine-scale 3D compositional and thermal structure of the lithosphere and upper mantle

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos

    2013-04-01

    The lithosphere and sublithospheric upper mantle (above 410d) are highly heterogeneous in their chemistry, thermal structure and physical properties. Since most of the upper mantle is inaccessible to direct observation, we must rely on indirect methods to estimate its thermochemical structure. Lateral discontinuities (i.e. sharp changes in the thermal and/or compositional structure) in these regions are known to correlate with the location of seismically active zones, oil producing basins, foci of magma intrusion/production, and giant ore deposits. Understanding the fine-scale thermochemical structure of the lithosphere and sublithospheric upper mantle is therefore one of the most important goals in Geosciences. A detailed knowledge of the thermal and compositional structure of the upper mantle is also an essential prerequisite to understanding the formation, deformation and destruction of continents, the physical and chemical interactions between the lithosphere and the convective sublithospheric upper mantle, the long-term stability of ancient lithosphere, and the evolution of surface topography. Unfortunately, with current geophysical methods, such a holistic and detailed characterisation remains a technically and conceptually challenging problem. In this talk, I will discuss recent advancements in thermodynamically-constrained multi-observable probabilistic inversions, which have the potential to overcome the problems affecting other inversions schemes and provide realistic estimates of the present-day thermochemical structure of the lithosphere and upper mantle. I will present results for both synthetic and real case studies, which serve to highlight the advantages and limitations of our approach compared to others. I will also discuss future work towards the incorporation of such an approach into global thermo-mechanical simulations/inversions to study the intricate connections between the thermochemical structure of the upper mantle and the evolution of

  19. High Resolution Modelling of Mantle Convective Flow Below the North American Plate.

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Simmons, N. A.; Grand, S. P.; Rowley, D. B.; Mitrovica, J. X.; Quéré, S.

    2008-12-01

    Recent progress in joint seismic-geodynamic tomographic imaging of both thermal and compositional anomalies in Earth's mantle allows us to carry out new high-resolution calculations of the present-day mantle convective flow at all depths, from the lithosphere down to the core-mantle boundary. We are therefore able to delineate the detailed connections between fundamental geological and geophysical surface processes and the underlying mantle convection. We employ these convection calculations to consider North American continental dynamics, with a special focus on the detailed relationship between flow in upper mantle, especially in the asthenosphere, and the impact on present-day dynamic topography as well as its rate-of- change. The surface dynamics that we obtain show a clear and detailed connection to the mantle flow driven by the descent of the ancient Kula-Farallon plate system and a buoyant, actively ascending hot upwelling under the western US. Of particular importance is the relationship of the deep-seated upwelling under the Colorado Plateau as a driving force for current rifting in the Rio Grande River valley. This rifting and its temporal evolution bears a strong resemblance to the convection-induced rifting our convection model also predicts under the East African Rift system. The close similarity between these two rifts, in terms of asthenospheric flow dynamics, will be discussed.

  20. Laboratory convection experiments with internal, noncontact, microwave generated heating, applied to Earth's mantle dynamics

    NASA Astrophysics Data System (ADS)

    Limare, Angela; Surducan, Emanoil; di Giuseppe, Erika; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Fourel, Loic; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude

    2014-05-01

    The thermal evolution of terrestrial planets is controlled by secular cooling and internal heating due to the decay of radiogenic isotopes, two processes which are equivalent from the standpoint of convection dynamics. Few studies have been devoted to the intrinsic characteristics of this form of convection, which are dominated by instabilities of a single boundary layer and which involve a non-isentropic interior thermal structure. Laboratory studies of such convection have been plagued by considerable technical difficulties and have been mostly restricted to aqueous solutions with moderate values of the Prandtl number, contrary to planetary mantles. Here, we describe a new laboratory setup to generate internal heating in controlled conditions based on microwave (MW) absorption. The advantages of our technique include, but are not limited to: (1) a volumetric heat source that can be localized or distributed in space, (2) selectively heating part of the volume with time varying intensity and space distribution. Our tank prototype had horizontal dimensions of 30 cm × 30 cm and 5 cm height. A uniform and constant temperature was maintained at the upper boundary by an aluminium heat exchanger and adiabatic conditions were imposed at the tank base. Experimental fluids were hydroxyethylcellulose - water mixtures whose viscosities were varied within a wide range depending on concentration. Experimental Prandtl numbers were set at values larger than 100. Thermochromic Liquid Crystals (TLC) were used to visualize the temperature field, and the velocity field was determined using Particle Image Velocimetry (PIV). The Rayleigh-Roberts number was varied from 105 to 107. We also conducted numerical simulations in 3D cartesian geometry using Stag-3D (Tackley 1993) to reproduce the experimental conditions, including the tank aspect ratio and the temperature dependence of physical properties. We observed that convection is driven by cold descending plumes generated at the upper

  1. SALSA3D - Improving Event Locations Using a Global 3D P-Velocity Model of the Earth's Crust and Mantle

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A.; Rowe, C. A.; Phillips, W. S.; Steck, L.

    2011-12-01

    To test the hypothesis that high quality 3D Earth models will produce seismic event locations that are more accurate and more precise than currently used 1D and 2/2.5D models, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D (SAndia LoS Alamos 3D) version 1.7, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events, compared to existing models and/or systems. Our model is derived from the latest version of the GT catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model elsewhere, over a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant it. In previous versions of SALSA3D, we based this refinement on velocity changes from previous model iterations. For version 1.7, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. We

  2. Cold cratonic roots and thermal blankets: How continents affect mantle convection

    USGS Publications Warehouse

    Trubitsyn, V.P.; Mooney, W.D.; Abbott, D.H.

    2003-01-01

    Two-dimensional convection models with moving continents show that continents profoundly affect the pattern of mantle convection. If the continents are wider than the wavelength of the convection cells (???3000 km, the thickness of the mantle), they cause neighboring deep mantle thermal upwellings to coalesce into a single focused upwelling. This focused upwelling zone will have a potential temperature anomaly of about 200??C, much higher than the 100??C temperature anomaly of upwelling zones generated beneath typical oceanic lithosphere. Extensive high-temperature melts (including flood basalts and late potassic granites) will be produced, and the excess temperature anomaly will induce continental uplift (as revealed in sea level changes) and the eventual breakup of the supercontinent. The mantle thermal anomaly will persist for several hundred million years after such a breakup. In contrast, small continental blocks (<1000 km diameter) do not induce focused mantle upwelling zones. Instead, small continental blocks are dragged to mantle downwelling zones, where they spend most of their time, and will migrate laterally with the downwelling. As a result of sitting over relatively cold mantle (downwellings), small continental blocks are favored to keep their cratonic roots. This may explain the long-term survival of small cratonic blocks (e.g., the Yilgarn and Pilbara cratons of western Australia, and the West African craton). The optimum size for long-term stability of a continental block is <3000 km. These results show that continents profoundly affect the pattern of mantle convection. These effects are illustrated in terms of the timing and history of supercontinent breakup, the production of high-temperature melts, and sea level changes. Such two-dimensional calculations can be further refined and tested by three-dimensional numerical simulations of mantle convection with moving continental and oceanic plates.

  3. Three-dimensional instabilities of mantle convection with multiple phase transitions

    NASA Technical Reports Server (NTRS)

    Honda, S.; Yuen, D. A.; Balachandar, S.; Reuteler, D.

    1993-01-01

    The effects of multiple phase transitions on mantle convection are investigated by numerical simulations that are based on three-dimensional models. These simulations show that cold sheets of mantle material collide at junctions, merge, and form a strong downflow that is stopped temporarily by the transition zone. The accumulated cold material gives rise to a strong gravitational instability that causes the cold mass to sink rapidly into the lower mantle. This process promotes a massive exchange between the lower and upper mantles and triggers a global instability in the adjacent plume system. This mechanism may be cyclic in nature and may be linked to the generation of superplumes.

  4. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Whitehouse, Pippa L.; Schrama, Ernst J. O.

    2015-03-01

    Seismic data indicate that there are large viscosity variations in the mantle beneath Antarctica. Consideration of such variations would affect predictions of models of Glacial Isostatic Adjustment (GIA), which are used to correct satellite measurements of ice mass change. However, most GIA models used for that purpose have assumed the mantle to be uniformly stratified in terms of viscosity. The goal of this study is to estimate the effect of lateral variations in viscosity on Antarctic mass balance estimates derived from the Gravity Recovery and Climate Experiment (GRACE) data. To this end, recently-developed global GIA models based on lateral variations in mantle temperature are tuned to fit constraints in the northern hemisphere and then compared to GPS-derived uplift rates in Antarctica. We find that these models can provide a better fit to GPS uplift rates in Antarctica than existing GIA models with a radially-varying (1D) rheology. When 3D viscosity models in combination with specific ice loading histories are used to correct GRACE measurements, mass loss in Antarctica is smaller than previously found for the same ice loading histories and their preferred 1D viscosity profiles. The variation in mass balance estimates arising from using different plausible realizations of 3D viscosity amounts to 20 Gt/yr for the ICE-5G ice model and 16 Gt/yr for the W12a ice model; these values are larger than the GRACE measurement error, but smaller than the variation arising from unknown ice history. While there exist 1D Earth models that can reproduce the total mass balance estimates derived using 3D Earth models, the spatial pattern of gravity rates can be significantly affected by 3D viscosity in a way that cannot be reproduced by GIA models with 1D viscosity. As an example, models with 1D viscosity always predict maximum gravity rates in the Ross Sea for the ICE-5G ice model, however, for one of the three preferred 3D models the maximum (for the same ice model) is found

  5. Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China

    USGS Publications Warehouse

    Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.

    2002-01-01

    Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.

  6. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle

    NASA Astrophysics Data System (ADS)

    Schmandt, Brandon; Humphreys, Eugene

    2010-09-01

    New high-resolution P- and S-wave tomography of the United States upper mantle from the Pacific Coast to the Great Plains reveals strong multi-scale heterogeneity closely correlated with tectonic and magmatic activity. We invert teleseismic travel-time residuals from the EarthScope Transportable Array and more than 1700 additional temporary and permanent stations for 3-D velocity perturbations to a depth of 1000 km. The inversion uses recent advances in western U.S. crust models to better isolate the mantle component of travel-time residuals, and frequency-dependent 3-D sensitivity kernels to map travel-time residuals, measured in multiple frequency bands, into velocity structure. In addition to separate V P and V S models, we jointly invert the two datasets for V P/V S perturbations by imposing a smoothness constraint on the δ lnV S/δ lnV P field. The joint inversion helps us identify regions where partial melt is probable. The amplitude of V P, V S, and V P/V S variations is greatest in the upper 200 km of the mantle and the form of velocity anomalies suggests a provincially heterogeneous lithosphere and the occurrence of widespread small-scale convection. Partially molten mantle is inferred beneath Yellowstone and the eastern Snake River Plain (SRP), the Salton Trough, and the Clear Lake volcanic field. The inferred depth extent of partial melt is consistent with a generally hydrated upper mantle and elevated temperatures beneath the eastern SRP and Yellowstone. Despite continuous subduction since the Cretaceous, the distribution of sub-lithospheric high-velocity anomalies is dissected (similar to other recent studies). Based on our new tomography models, western U.S. geologic history, and plate-tectonic reconstructions, we infer patchy and incomplete removal of the flat-subducting Laramide slab and slab tearing associated with Eocene accretion in the northwestern U.S.

  7. SALSA3D - A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Begnaud, M. L.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A. V.; Rowe, C. A.; Phillips, W. S.; Steck, L.

    2010-12-01

    To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth’s crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions.. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with ~400 processors. Resolution of our model is assessed using a

  8. Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.

    1989-01-01

    The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.

  9. Crust Uppermost Mantle Structure beneath Eastern Asia: Progress towards a Uniform, Tightly Constrained, High Resolution 3-D Model

    NASA Astrophysics Data System (ADS)

    Shen, W.; Ritzwoller, M. H.; Zheng, Y.; Lin, F. C.; Kim, Y.; Ning, J.; Kang, D.; Feng, L.; Wiens, D. A.

    2015-12-01

    In the past decade, large and dense seismic arrays have been deployed across much of eastern Asia (e.g., the "CEArray" and the "China Array" deployed by the China Earthquake Administration (CEA), the NECESS Array deployed collaboratively by China, Japan and the US, Korean Seismic Network, KNET and other networks in Japan, and historical PASSCAL installations), which have been used to produce increasingly well resolved models of the crust and uppermost mantle at different length scales. These models, however, do not cover eastern Asia uniformly. In this presentation, we report on an effort to generate a uniform high resolution 3-D model of the crust and uppermost mantle beneath eastern Asia using state-of-art surface wave and body wave inversion techniques. Highlights of this effort include: 1) We collect ambient noise cross-correlations using more than 1,800 seismic stations from multiple seismic arrays in this area and perform uniform surface wave tomography for the study area. 2) We collect P-wave receiver functions for over 1,000 stations and Rayleigh wave H/V ratio measurements for over 200 stations in this area. 3) We adopt a Bayesian Monte Carlo inversion to the Rayleigh wave dispersion maps and produce a uniform 3-D model with uncertainties of the crust and uppermost mantle. 4) In the areas where receiver functions and/or Rayleigh wave H/V ratios are collected, we replace the surface wave inversion by a joint inversion of surface waves and these seismic observables. The resulting model displays a great variety and considerable richness of geological and tectonic features in the crust and in the uppermost mantle which we summarize and discuss with focus on the relationship between the observed crustal variations and tectonic/geological boundaries and lithospheric modifications associated with volcanism in Northeast China.

  10. Evidence for small-scale mantle convection in the upper mantle beneath the Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Gao, Stephen S.; Liu, Kelly H.; Davis, Paul M.; Slack, Phillip D.; Zorin, Yuliy A.; Mordvinova, Valentina V.; Kozhevnikov, Vladimir M.

    2003-04-01

    Inversion of teleseismic P wave travel time residuals collected along a 1280-km-long profile traversing the Baikal rift zone (BRZ) reveals the existence of an upwarped lithosphere/asthenosphere interface, which causes a travel time delay of about 1 s at the rift axis ("central high"). An area with early arrivals relative to the stable Siberian platform of up to 0.5 s is observed on each side of the rift, about 200 km from the rift axis ("flank lows"). While the location of the central high is approximately fixed in the vicinity of the rift axis, those of the flank lows vary as much as 200 km with the azimuth of the arriving rays. We use three techniques to invert the travel time residuals for velocity anomalies beneath the profile. Two of the techniques assume an isotropic velocity structure, and one of them considers a transversely isotropic velocity model with a vertical axis of symmetry. We use independent geophysical observations such as gravity, active source seismic exploration, and crustal thickness measurements to compare the applicability of the models. Other types of geophysical measurements suggest that the model involving transverse isotropy is a plausible one, which suggests that the central high and flank lows are caused by the combined effects of an upwarped asthenosphere with a 2.5% lateral velocity reduction, and a velocity increase due to transverse isotropy with a vertical axis of symmetry. We consider the anisotropy to be the result of the vertical component of a lithosphere/asthenosphere small-scale mantle convection system that is associated with the rifting.

  11. Small-scale convective instability and upper mantle viscosity under california.

    PubMed

    Zandt, G; Carrigan, C R

    1993-07-23

    Thermal calculations and convection analysis, constrained by seismic tomography results, suggest that a small-scale convective instability developed in the upper 200 kilometers of the mantle under California after the upwelling and cooling of asthenosphere into the slab window associated with the formation of the San Andreas transform boundary. The upper bound for the upper mantle viscosity in the slab window, 5 x 10(19) pascal seconds, is similar to independent estimates for the asthenosphere beneath young oceanic and tectonically active continental regions. These model calculations suggest that many tectonically active continental regions characterized by low upper mantle seismic velocities may be affected by time-dependent small-scale convection that can generate localized areas of uplift and subsidence. PMID:17770025

  12. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.

    PubMed

    King, S D; Ritsema, J

    2000-11-10

    Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere. PMID:11073447

  13. MANTLE: A finite element program for the thermal-mechanical analysis of mantle convection. A user's manual with examples

    NASA Technical Reports Server (NTRS)

    Thompson, E.

    1979-01-01

    A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.

  14. Osmium isotope variations in the Pacific mantle: implications for the distribution of heterogeneity in the convecting mantle

    NASA Astrophysics Data System (ADS)

    Ishikawa, A.; Senda, R.; Suzuki, K.; Tani, K.; Ishii, T.

    2015-12-01

    Recent accumulation of Os isotope data obtained either from abyssal peridotites or from ocean island peridotite xenoliths has clearly demonstrated that the modern convecting mantle is substantially heterogeneous in Os-isotope composition. Unlike other radiogenic isotope heterogeneities observed in oceanic basalts, largely controlled by incorporation of recycled crustal materials, it seems likely that the observed range of Os-isotope compositions in oceanic peridotites directly reflect varying degrees of ancient melt extraction from peridotitic mantle. Hence, global variations of Os-isotope compositions in oceanic peridotites may provide an important piece of information in unraveling the geochemical and geodynamic evolution of the convecting mantle. Here we present the Os-isotope variations in peridotite-serpentinite recovered from the Pacific area because the number of data available is yet scarce when compared with data from other oceans (Atlantic, Arctic and Indian Ocean). Our primary purpose is to test whether mantle domains underlying four major oceans are distinct in terms of Os isotope variations, reflecting the pattern of mantle convection or mixing efficiency. We examined 187Os/188Os ratios and highly siderophile element concentrations in serpentinized harzburgite recovered from Hess Deep in the East Pacific Rise, a mantle section in the Taitao ophiolite, Chile (Schulte et al., 2009), serpentinized harzburgite bodies in the Izu-Ogasawara and Tonga forearc (Parkinson et al., 1998), peridotite xenoliths from the Pali-Kaau vent in O'ahu island, Hawaii (Bizimis et al., 2007), and low-temperature type peridotite xenoliths from Malaita, Solomon Islands (Ishikawa et al., 2011). The results demonstrate that samples from each area display very similar Os-isotope variations with a pronounced peak in 187Os/188Os = 0.125-0.128. Moreover, the relatively larger datasets obtained from Hess Deep, Taitao and Malaita clearly exhibit the presence of secondary peak in 187Os

  15. A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics

    NASA Astrophysics Data System (ADS)

    Bocher, M.; Coltice, N.; Fournier, A.; Tackley, P. J.

    2016-01-01

    With the progress of mantle convection modelling over the last decade, it now becomes possible to solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter, where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to take into account data observed at different times. Whenever observations are available, an analysis infers the most probable state of the mantle at this time, considering a prior guess (supplied by the forecast) and the new observations at hand, using the classical best linear unbiased estimate. Between two observation times, the evolution of the mantle is governed by the forward model of mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data assimilation. Two parameters control the behaviour of the scheme: the time between two analyses, and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in retrieving temperature field evolutions provided the time between two analyses is ≲10 Myr. If the amplitude of the a priori error on the observations is large (30 per cent), our method provides a better estimate of surface tectonics than the observations, taking advantage of the information within the physics of convection.

  16. 3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea

    SciTech Connect

    Baumgardner, J.R.

    1992-10-01

    Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.

  17. 3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea

    SciTech Connect

    Baumgardner, J.R.

    1992-01-01

    Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.

  18. Formation and Preservation of the Depleted and Enriched Shergottite Isotopic Reservoirs in a Convecting Martian Mantle

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Jones, John H.

    2015-01-01

    There is compelling isotopic and crater density evidence for geologically recent volcanism on Mars, in the last 100-200 million years and possibly in the last 50 million years. This volcanism is due to adiabatic decompression melting and thus requires some type of present-day convective upwelling in the martian mantle. On the other hand, martian meteorites preserve evidence for at least 3 distinct radiogenic isotopic reservoirs. Anomalies in short-lived isotopic systems (Sm-146, Nd-142, Hf-182, W-182) require that these reservoirs must have developed in the first 50 to 100 million years of Solar System history. The long-term preservation of chemically distinct reservoirs has sometimes been interpreted as evidence for the absence of mantle convection and convective mixing on Mars for most of martian history, a conclusion which is at odds with the evidence for young volcanism. This apparent paradox can be resolved by recognizing that a variety of processes, including both inefficient mantle mixing and geographic separation of isotopic reservoirs, may preserve isotopic heterogeneity on Mars in an actively convecting mantle. Here, we focus on the formation and preservation of the depleted and enriched isotopic and trace element reservoirs in the shergottites. In particular, we explore the possible roles of processes such as chemical diffusion and metasomatism in dikes and magma chambers for creating the isotopically enriched shergottites. We also consider processes that may preserve the enriched reservoir against convective mixing for most of martian history.

  19. Chaotic, subduction-like downflows in a spherical model of convection in the earth's mantle

    NASA Technical Reports Server (NTRS)

    Glatzmaier, Gary A.; Schubert, Gerald; Bercovici, Dave

    1990-01-01

    Model calculations are described for a compressible fluid in a three-dimensional spherical shell with 80 percent of the surface heat flow generated within the model mantle. The numerical solutions are strongly chaotic, with surface planforms dominated by long curvilinear downflows reminiscent of the descending slabs in the earth's mantle. The results suggest that descending slabs play an important part in driving mantle convection, and that their chaotic evolution may influence the spatial and temporal behavior of plates and thus the dispersal and aggregation of continents.

  20. Convective upwelling in the mantle beneath the Gulf of California.

    PubMed

    Wang, Yun; Forsyth, Donald W; Savage, Brian

    2009-11-26

    In the past six million years, Baja California has rifted obliquely apart from North America, opening up the Gulf of California. Between transform faults, seafloor spreading and rifting is well established in several basins. Other than hotspot-dominated Iceland, the Gulf of California is the only part of the world's seafloor-spreading system that has been surrounded by enough seismometers to provide horizontal resolution of upper-mantle structure at a scale of 100 kilometres over a distance great enough to include several spreading segments. Such resolution is needed to address the long-standing debate about the relative importance of dynamic and passive upwelling in the shallow mantle beneath spreading centres. Here we use Rayleigh-wave tomography to image the shear velocity in the upper 200 kilometres or so of the mantle. Low shear velocities similar to those beneath the East Pacific Rise oceanic spreading centre underlie the entire length of the Gulf, but there are three concentrated locations of anomalously low velocities spaced about 250 kilometres apart. These anomalies are 40 to 90 kilometres beneath the surface, at which depths petrological studies indicate that extensive melting of passively upwelling mantle should begin. We interpret these seismic velocity anomalies as indicating that partial melting triggers dynamic upwelling driven by either the buoyancy of retained melt or by the reduced density of depleted mantle. PMID:19940924

  1. An Early Formed D'' Reservoir Reconciles Geochemical Mass Balance With Whole Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Tolstikhin, I. N.; Kramers, I.

    2004-12-01

    One of the most intriguing present-day problems in Earth sciences is reconciling whole mantle convection models (that follow from seismic tomography and dynamic modeling) and the chemical and isotopic mass balance of continents and depleted mantle, which favor partial-mantle convection. Specifically, geochemical observations point to an apparently isolated, early-formed reservoir deep in the Earth. The most important of these observations are: (1) The occurrence of solar noble gases in the mantle, which is in contrast with the extreme degassing of this reservoir indicated by mantle xenology; (2) specific isotopic compositions of mantle He, Ne and Xe point to a reservoir with low U/3He and 136Xe(Pu)/129Xe(I) ratios, implying both early formation and low degassing of this reservoir. We suggest that the core-mantle transition zone (termed D'') is the reservoir indicated by these observations. The material of D'' could comprise an early gabbroic-basaltic crust loaded with chondrite-like, late-accreting matter including a solar-wind irradiated regolith. If subducted, this material should accumulate above the metal core due to an intrinsic density contrast. Provided that it was not hydrated at the surface, so that subduction did not entail volatile loss, it could have retained its geochemical characteristics. We examined the consequences of this scenario by transport models envisaging: (1) Earth accretion accompanied by mantle melting and fractionation, core segregation, formation and recycling of mafic crust, degassing, and gas loss from the atmosphere, followed by (2) crust-mantle evolution involving continent growth and recycling. Comparison of calculated and observed parameters allows a solution of the model. The D'' is formed within a time interval from 40 to 80 Ma after formation of the solar system and comprises about 20% of the BSE inventory of incompatible (including heat-producing) elements. Because the bulk of the D'' material (basalt) is fractionated, its

  2. Development of a Mantle Convection Physical Model to Assist with Teaching about Earth's Interior Processes

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.; Aurnou, J. M.

    2010-12-01

    The Modeling and Educational Demonstrations Laboratory (MEDL) at UCLA is developing a mantle convection physical model to assist educators with the pedagogy of Earth’s interior processes. Our design goal consists of two components to help the learner gain conceptual understanding by means of visual interactions without the burden of distracters, which may promote alternative conceptions. Distracters may be any feature of the conceptual model that causes the learner to use inadequate mental artifact to help him or her understand what the conceptual model is intended to convey. The first component, and most important, is a psychological component that links properties of “everyday things” (Norman, 1988) to the natural phenomenon, mantle convection. Some examples of everyday things may be heat rising out from a freshly popped bag of popcorn, or cold humid air falling from an open freezer. The second component is the scientific accuracy of the conceptual model. We would like to simplify the concepts for the learner without sacrificing key information that is linked to other natural phenomena the learner will come across in future science lessons. By taking into account the learner’s mental artifacts in combination with a simplified, but accurate, representation of what scientists know of the Earth’s interior, we expect the learner to have the ability to create an adequate qualitative mental simulation of mantle convection. We will be presenting some of our prototypes of this mantle convection physical model at this year’s poster session and invite constructive input from our colleagues.

  3. Mantle convection, tectonics and the evolution of the Tethyan subduction zone

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Sternai, Pietro; Menant, Armel; Faccenna, Claudio; Becker, Thorsten; Burov, Evguenii

    2014-05-01

    Mantle convection drives plate tectonics and the size, number and thermotectonic age of plates codetermines the convection pattern. However, the degree of coupling of surface deformation and mantle flow is unclear. Most numerical models of lithospheric deformation are designed such that strain is a consequence of kinematic boundary conditions, and rarely account for basal stresses due to mantle flow. On the other hand, convection models often treat the lithosphere as a single-layer stagnant lid with vertically undeformable surface. There is thus a gap between convection models and lithospheric-scale geodynamic models. The transmission of stresses from the flowing mantle to the crust is a complex process. The presence of a ductile lower crust inhibits the upward transmission of stresses but a highly extended crust in a hot environment such as a backarc domain, with no lithospheric mantle and a ductile lower crust in direct contact with asthenosphere, will be more prone to follow the mantle flow than a thick and stratified lithosphere. We review geological observations and present reconstructions of the Aegean and Middle East and discuss the possible role played by basal drag in governing lithospheric deformation. In Mediterranean backarc regions, lithosphere-mantle coupling is effective on geological time scale as shown by the consistency of SKS fast orientations in the mantle with stretching directions in the crust. The long-term geological history of the Tethyan convergent zone suggests that asthenospheric flow has been an important player. The case of Himalaya and Tibet strongly supports a major contribution of a northward asthenospheric push, with no persistent slab that could drive India after collision, large thrust planes being then decoupling zones between deep convection and surface tectonics. The African plate repeatedly fragmented during its northward migration with the separation of Apulia and Arabia. Indeed, extension has been active on the northern

  4. Geodynamic and seismic constraints on the thermochemical structure and dynamics of convection in the deep mantle.

    PubMed

    Forte, Alessandro M; Mitrovica, Jerry X; Espesset, Aude

    2002-11-15

    We revisit a recent study by Forte & Mitrovica in which global geophysical observables associated with mantle convection were inverted and the existence of a strong increase in viscosity near a depth of 2000 km was inferred. Employing mineral-physics data and theory we also showed that, although there are chemical anomalies in the lowermost mantle, they are unable to inhibit the dominant thermal buoyancy of the deep-mantle mega-plumes below Africa and the Pacific Ocean. New Monte Carlo simulations are employed to explore the impact of uncertainties in current mineral-physics constraints on inferences of deep-mantle thermochemical structure. To explore the impact of the high-viscosity peak at a depth of 2000 km on the evolution of lower-mantle structure, we carried out time-dependent convection simulations. The latter show that the stability and longevity of the dominant long-wavelength heterogeneity in the lowermost mantle are controlled by this viscosity peak. PMID:12460479

  5. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  6. Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection

    NASA Astrophysics Data System (ADS)

    Leng, Wei; Zhong, Shijie

    2008-05-01

    Although it has been suggested that the total viscous heating, Qv, should be exactly balanced by the total adiabatic heating, Qa, for compressible mantle convection, previous numerical studies show a significant imbalance of up to several percent between Qv and Qa for simple isoviscous compressible convection. The cause of this imbalance and its potential effects on more complicated convective systems remain largely unknown. In this study, we present an analysis to show that total viscous heating and adiabatic heating for compressible mantle convection with anelastic liquid approximation (ALA) and the Adams-Williamson equation of state are balanced out at any instant in time, and that the previously reported imbalance between Qv and Qa for numerical models with a truncated anelastic liquid approximation (TALA) is caused by neglecting the effect of the pressure on the buoyancy force. Although we only consider the Adams-Williamson equation of state in our analysis, our method can be used to check the energetic consistency for other forms of equation of state. We formulate numerical models of compressible mantle convection under both TALA and ALA formulations by modifying the Uzawa algorithm in Citcom code. Our numerical results confirm our analysis on the balance between total viscous heating and total adiabatic heating.

  7. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  8. New Insights about Meridional Circulation Dynamics from 3D MHD Global Simulations of Solar Convection and Dynamo Action

    NASA Astrophysics Data System (ADS)

    Passos, D.; Charbonneau, P.; Miesch, M. S.

    2016-04-01

    The solar meridional circulation is a "slow", large scale flow that transports magnetic field and plasma throughout the convection zone in the (r,θ) plane and plays a crucial role in controlling the magnetic cycle solutions presented by flux transport dynamo models. Observations indicate that this flow speed varies in anti-phase with the solar cycle at the solar surface. A possible explanation for the source of this variation is based on the fact that inflows into active regions alter the global surface pattern of the meridional circulation. In this work we examine the meridional circulation profile that emerges from a 3D global simulation of the solar convection zone, and its associated dynamics. We find that at the bottom of the convection zone, in the region where the toroidal magnetic field accumulates, the meridional circulation is highly modulated through the action of a magnetic torques and thus provides evidence for a new mechanism to explain the observed cyclic variations.

  9. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Becker, Thorsten W.; Jolivet, Laurent; Keskin, Mehmet

    2013-08-01

    The Middle East region represents a key site within the Tethyan domain where continental break-up, collision, backarc extension and escape tectonics are kinematically linked together. We perform global mantle circulation computations to test the role of slab pull and mantle upwellings as driving forces for the kinematics of the Arabia-Anatolia-Aegean (AAA) system, evaluating different boundary conditions and mantle density distributions as inferred from seismic tomography or slab models. Model results are compared with geodetically inferred crustal motions, residual topography, and shear wave splitting measurements. The AAA velocity field with respect to Eurasia shows an anti-clockwise toroidal pattern, with increasing velocities toward the Aegean trench. The best match to these crustal motions can be obtained by combining the effect of slab pull exerted in the Aegean with a mantle upwelling underneath Afar and, more generally, with the large-scale flow associated with a whole mantle, Tethyan convection cell. Neogene volcanism for AAA is widespread, not only in the extensional or subduction settings, but also within plates, such as in Syria-Jordan-Israel and in Turkey, with geochemical fingerprints similar of those of the Afar lava. In addition, morphological features show large uplifting domains far from plate boundaries. We speculate that the tectonic evolution of AAA is related to the progressive northward entrainment of upwelling mantle material, which is itself associated with the establishment of the downwelling part of a convection cell through the segmented Tethyan slab below the northern Zagros and Bitlis collision zone. The recently established westward flow dragged Anatolia and pushed the Aegean slab south-westward, thus accelerating backarc extension. Our model reconciles Afar plume volcanism, the collision in the Bitlis mountains and northern Zagros, and the rapid increase of Aegean trench rollback in a single coherent frame of large scale mantle

  10. 3-D crust and mantle structure in southern Ontario, Canada via receiver function imaging

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Frederiksen, A. W.

    2013-11-01

    A teleseismic data set from the POLARIS project is used to obtain 3-D images of southern Ontario using two imaging techniques: scattering tomography and common-conversion-point stacking. The resulting images reveal a layered crust, the layering being interrupted by discontinuities associated with major crustal-scale faulting. Breaks in crustal continuity and Moho deflections associated with the Ottawa-Bonnechère Graben indicate that the graben is associated with faulting on a whole crust scale. We also detect similar discontinuities across the Mississauga Domain, supporting the previous interpretation that the domain is bounded by crustal-scale faults. We locate discontinuous sub-lithospheric negative-polarity arrivals which indicate complex three-dimensional structures within the lithosphere and may be associated with subduction remnants or a mid-lithosphere discontinuity.

  11. Dynamical implications of single-sided subduction and floating continents in global self-consistent models of mantle convection

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Rolf, T.; Tackley, P. J.

    2012-12-01

    Previous global dynamical models using a visco-plastic rheology are able to reproduce some aspects of plate tectonics and mantle convection. However, these models still fail to reproduce some first-order features of plate tectonics, for example Earth-like one-sided subduction. The usual assumption these models make inhibits development of surface topography. Schmeling et al. (2008) and Crameri et al. (2012a) showed that it is necessary to include a proper free surface in numerical models in order to reproduce laboratory results and to guarantee a physically accurate topographic evolution, respectively. According to these benchmark studies, mimicking a free surface by inserting a weak, zero density layer on top of the crust is an adequate approach if (a) it is sufficiently thick and (b) has a sufficiently low viscosity. As shown in Crameri et al. (2012b), this model extension directly leads to dynamically self-consistent single-sided subduction. On the other hand, Rolf & Tackley (2011) showed that the presence of pre-existing, floating continents plays an important role on the evolution of plate tectonics: convective stresses may be focused at the rheological boundary between continent and ocean, which facilitates the formation of plate boundaries and makes the Earth-like, mobile lid mode of plate tectonics easier to observe. We here study the effect of (a) the mode of subduction and (b) the presence of strong Archean cratons on the dynamics of Earth's interior using Cartesian 2-D to spherical 3-D global, fully dynamic mantle convection models with self-consistent plate tectonics. For this we use the finite volume multi-grid code STAGYY (Tackley 2008). While in the mobile lid (plate tectonic like) regime, our model shows that single-sided subduction has strong implications on Earth's interior such as its rms. velocity and mantle flow distribution. Continents might support a model that produces continuously evolving single-sided subduction and thus allow for

  12. Can We Approximate Non-Newtonian Rheology to Model Mantle Convection?

    NASA Astrophysics Data System (ADS)

    Plesa, A. C.; Breuer, D.; Hüttig, C.; Tosi, N.

    2014-12-01

    The rheology is a key influencing factor in mantle convection as it is directly responsible for the convective vigor, therefore altering heat transport and the distribution of stresses. Deformation in terrestrial mantles is mainly accommodated by two mechanisms: diffusion and dislocation creep. While the former probably plays a dominant role at high pressures, the latter is thought to be important at relatively low pressures, as inferred by seismic anisotropy in the Earth's upper mantle [1].Dislocation creep is more challenging to handle than diffusion creep as the viscosity becomes strain-rate dependent, introducing a non-linearity that requires more computational resources. Thus, to avoid this additional complexity, a Newtonian rheology (i.e. diffusion creep) with reduced activation parameters is often used to mimic non-Newtonian behavior [2], causing misleading results if applied to certain scenarios.We run thermal evolution models in 2D cylindrical geometry using the mantle convection code Gaia [3] for Mercury, the Moon and Mars. It has been argued that their mantles deform by pure dislocation creep but our simulations show that, when using a mixed rheology that accounts for both diffusion and dislocation creep, deformation in the mantles of Mercury, Moon and Mars is dominated by diffusion creep, while dislocation creep only occurs in small confined regions. Further, our results show a transition from a diffusion creep to a dislocation creep dominated mantle as the Rayleigh number increases and indicate that systems even with relatively high effective Rayleigh numbers (up to 5 x 107) are dominated by diffusion creep. Terrestrial bodies like Mercury, the Moon or Mars can thus be correctly modeled using a Newtonian rheology. This may change for bodies like the Earth or Venus since the effective Rayleigh numbers are higher and thus either a mixture of both diffusion and dislocation or purely dislocation creep would define the deformation mechanism. Moreover

  13. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Prichard, Hazel M.; Ishiwatari, Akira; Pimentel, Márcio

    2002-01-01

    Chromites separated from the upper mantle or lower crustal portions of 18 ophiolites ranging in age from 900 Ma to 50 Ma are examined for Re-Os isotopic systematics. The ophiolites include both MORB and back arc types, although most are from supra-subduction zone (SSZ) settings. The chromites are robust indicators of the initial Os isotopic compositions of the systems sampled. There is very limited range in calculated initial γ Os values, with the entire group averaging +1.31. Least squares linear regression of the age of chromite formation (in Ga) versus initial 187Os/ 188Os of a filtered suite yields a slope of -0.0058±0.0019 (2σ) and a present day intercept of 0.12809±0.00085 (2σ), equivalent to a γ Os value of +0.9±0.6. Of the suite of 51 samples analyzed, 68% lie within ±1% of this evolution trajectory. Although most of the samples formed in SSZ environments, there is little evidence to suggest modification of the mantle Os isotopic composition via radiogenic melts or fluids derived from subducting slabs. The ophiolite data are interpreted as representative of the convecting upper mantle and suggest that the present isotopic composition of the convecting upper mantle averages approximately 1.2% less radiogenic than the estimated minimum composition of the primitive upper mantle of 0.1296±8 (Meisel et al., 2001). The most likely explanation for the difference is the formation, subduction and isolation of some portion of the mafic oceanic crust. Using models based on the assumption that the convecting upper mantle comprises 50% of the total mass of the mantle, and that the average isolation period for subducted oceanic crust is 1.5 to 2.0 Ga, it is estimated that approximately 2 to 3% of the total mass of the mantle is composed of subducted mafic oceanic crust that remains isolated from the convecting upper mantle. Because the isotopic compositions of the DMM and PUM overlap within uncertainties, however, the results do not require any isolated slab

  14. Mantle convection pattern and subcrustal stress field under Asia

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1978-01-01

    Satellite tracking and surface gravity data are used to model the subcrustal stress fields in the terrestrial mantle beneath Asia; the results permit interpretation of the tectonic and seismic systems in China. The east and west China blocks, together with five seismic zones, are identified and related to metallogenic domains on the Chinese mainland. In addition, it is shown that the subcrustal stresses beneath China are arranged perpendicularly to the major fault systems and seismic belts. Stress calculations indicate a notable zone of compression in north China, associated with the Shansi Graben, the Linfen Basin Systems and, possibly, the high seismicity of the region.

  15. Linking the geological record for large igneous provinces and hotspots with tomography-based numerical models of thermal convection in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Glisovic, P.; Forte, A. M.; Rowley, D. B.; Simmons, N. A.; Grand, S. P.

    2013-12-01

    Current tomographic imaging of the 3-D structure in Earth's interior reveals several large-scale anomalies of strongly reduced seismic velocity in the deep lower mantle, in particular beneath the Perm region in Western Siberia, the East Pacific Rise, the West Pacific (Caroline Islands), the Southwest Indian Ocean, as well as under Western and Southern Africa. We have carried out mantle dynamic simulations (Glisovic et al., GJI 2012) of the evolution of these large-scale structures that directly incorporate robust constraints provided by joint seismic-geodynamic inversions of mantle density structure with further constraints provided by mineral physics data (Simmons et al., GJI 2009, JGR 2010). These tomography-based convection simulations also incorporate constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) and are characterized by Earth-like Rayleigh numbers. The convection simulations provide a detailed insight into the very-long-time evolution of the buoyancy of these lower-mantle anomalies. We find, in particular, that the buoyancy associated with the 'Perm Anomaly' generates a very long-lived hot upwelling or 'superplume' that is connected to the paleomagnetic location of the Siberian Traps (Smirnov & Tarduno, EPSL 2010) and also to location of North Atlantic Igneous Provinces (i.e., the opening of North Atlantic Ocean). These convection simulations (both backwards and forwards in time) also reveal stable and long-lived plume-like upwellings under the East Pacific Rise, as previously identified by Rowley et al. (AGU 2011, Nature - in review), in particular beneath the Easter & Pitcairn hotspots. Finally we also provide detailed reconstructions of the 65 Myr evolution of the 'Reunion plume' that gave rise to the Deccan Traps.

  16. A simple three-dimensional model of thermo-chemical convection in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Honda, Satoru; Gerya, Taras; Zhu, Guizhi

    2010-02-01

    In order to understand the possible existence of small-scale convection in the mantle wedge, we have constructed a simple three-dimensional model of convection driven by both thermal and chemical buoyancies above the subducting slab. In this model, a chemical agent, which affects both the density and the viscosity of mantle, is introduced from the top of the subducting slab and the associated density and viscosity decreases are treated as parameters. The model does not include the along-arc variation of the source of the chemical agent. We found that the major effects of low density chemical anomaly are to suppress the three-dimensional instability and make the flow two-dimensional, i.e., the flow velocity is normal to the plate boundary. The chemically polluted region tends to stay in the corner of the mantle wedge because of its low density and this results in the low temperature zone there. This suggests the importance of chemical buoyancy on the origin of cold mantle part or "nose" in the corner of the mantle wedge. We also studied the hybrid case: The region closer to the trench is in the low density and viscosity state and the region in the back arc is in the low viscosity state only. This case shows the existence of the low temperature nose and the small-scale thermally driven convection in the back arc. We also investigated the nature of the flip-flop phenomenon of the thermally driven convection and found that the thickness of the thermal boundary layer under the back arc controls it. This flow pattern in the back arc may have a close connection with the temporal and spatial variation of volcano distribution.

  17. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.

    2015-11-01

    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  18. Possible links between long-term geomagnetic variations and whole-mantle convection processes

    NASA Astrophysics Data System (ADS)

    Biggin, A. J.; Steinberger, B.; Aubert, J.; Suttie, N.; Holme, R.; Torsvik, T. H.; van der Meer, D. G.; van Hinsbergen, D. J. J.

    2012-08-01

    The Earth's internal magnetic field varies on timescales of months to billions of years. The field is generated by convection in the liquid outer core, which in turn is influenced by the heat flowing from the core into the base of the overlying mantle. Much of the magnetic field's variation is thought to be stochastic, but over very long timescales, this variability may be related to changes in heat flow associated with mantle convection processes. Over the past 500 Myr, correlations between palaeomagnetic behaviour and surface processes were particularly striking during the middle to late Mesozoic era, beginning about 180 Myr ago. Simulations of the geodynamo suggest that transitions from periods of rapid polarity reversals to periods of prolonged stability -- such as occurred between the Middle Jurassic and Middle Cretaceous periods -- may have been triggered by a decrease in core-mantle boundary heat flow either globally or in equatorial regions. This decrease in heat flow could have been linked to reduced mantle-plume-head production at the core-mantle boundary, an episode of true polar wander, or a combination of the two.

  19. Cratonic root beneath North America shifted by basal drag from the convecting mantle

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; Mooney, Walter D.; Petrunin, Alexey G.

    2015-10-01

    Stable continental cratons are the oldest geologic features on the planet. They have survived 3.8 to 2.5 billion years of Earth’s evolution. The key to the preservation of cratons lies in their strong and thick lithospheric roots, which are neutrally or positively buoyant with respect to surrounding mantle. Most of these Archaean-aged cratonic roots are thought to have remained stable since their formation and to be too viscous to be affected by mantle convection. Here we use a combination of gravity, topography, crustal structure and seismic tomography data to show that the deepest part of the craton root beneath the North American Superior Province has shifted about 850 km to the west-southwest relative to the centre of the craton. We use numerical model simulations to show that this shift could have been caused by basal drag induced by mantle flow, implying that mantle flow can alter craton structure. Our observations contradict the conventional view of cratons as static, non-evolving geologic features. We conclude that there could be significant interaction between deep continental roots and the convecting mantle.

  20. Full Three-Dimensional Approach: Seismic Structure of the Mantle Beneath Western Pacific Using 3-D Fréchet Kernels

    NASA Astrophysics Data System (ADS)

    Chen, L.; Zhao, L.; Jordan, T. H.

    2002-12-01

    We present a full three-dimensional (3-D) model of the shear-speed structure for the mantle beneath western Pacific Ocean. Over 800 three-component recordings of earthquakes (Mw > 5.5) from the seismic zones around the western Pacific rim to station HON/KIP in Hawaii, MIDW in Midway, MAT/MAJO and ERM in Japan, and GUMO in Mariana Island were processed to obtain ~20,000 frequency-dependent phase delays for various of seismic waves, including S, SS, upper-mantle guided and surface waves, and ScS reverberations. The 3-D Fréchet kernels for these delay times are computed by the coupled normal mode theory described by Zhao, Jordan, and Chapman (2000), and the measurements were inverted for a 3-D radially anisotropic shear-speed model using a linear Gaussian-Bayesian scheme. The model parameters include shear-speed variations throughout the mantle and perturbations to radial shear-wave anisotropy in the uppermost mantle. The resolving power of the inversion has been investigated through a series of checkerboard and other tests, which indicate that the horizontal and vertical resolving lengths of about 700 and 200 km or less in the upper mantle. Our results for the large-scale variations in the isotropic shear speeds are generally consistent with published global tomographic models. For example, the uppermost mantle (< 200 km depth) shows fast anomalies in the interior of the Pacific plate and slow anomalies in the marginal basins along the Pacific rim, while this pattern is reversed in the transition zone (400-700 km). Our model reveals greater lateral heterogeneity than the global models, especially in the 200-400 km depth range, suggesting a complex 3-D mantle flow in the western Pacific upper mantle.

  1. On the aspect ratio of Rayleigh-Benard convection cells. [in earth mantle

    NASA Technical Reports Server (NTRS)

    Christensen, Ulrich; Yuen, David

    1988-01-01

    Numerical model calculations of isoviscous bottom-heated convection in a two-dimensional box with aspect ratio twelve are reported. The aim was to determine the preferred aspect ratio of convection cells. Time-dependent runs were started from two widely different initial conditions. At Rayleigh numbers in the range 10 to the 5th to 10 to the 6th about eight cells with a mean aspect ratio of 1.5 formed eventually in each case. Thus neither the preference for approximately square cells nor the stability of very elongated cells could be confirmed. The existence of large-scale convective structures in the earth's mantle must be due to deviations from the simple Rayleigh-Benard model of convection.

  2. Mantle Convection, Stagnant Lids and Plate Tectonics on Super-Earths

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; van Heck, H. J.

    2008-12-01

    The discovery of extra-solar super-Earths has prompted interest in their possible mantle dynamics and evolution, and in whether their lithospheres are most likely to be undergoing plate tectonics like on Earth, or be stagnant lids like on Mars and Venus. The origin of plate tectonics is poorly understood for the Earth, likely involving a complex interplay of rheological, compositional, melting and thermal effects, which makes it impossible to make reliable predictions for other planets. Nevertheless, as a starting point it is common to parameterize the complex processes involved as a simple yield stress that is either constant or has a linear "Byerlee's law" dependence on pressure (e.g., [Tackley, GCubed 2000ab] in 3D cartesian geometry; [van Heck and Tackley, GRL 2008] in 3D spherical geometry). For such a simple description, scaling with planet size is expected to depend on heating mode (internal versus basal) and lithospheric strength profile. Simple "back of the envelope" scaling laws (e.g., following Moresi and Solomatov, GJI 1998) ignoring the pressure- dependence of physical properties such as density and thermal expansivity, suggest that the threshold for plate tectonics (i.e., yield stress or friction coefficient) does not depend strongly on planet size, and plate tectonics is equally likely or more likely for larger planets. Scalings that take into account pressure-related changes in physical properties [Valencia et al., Astrophys. J., 2007] make a similar prediction for predominantly internally-heated convection. Because the simplifying assumptions made in developing analytical scalings may not be valid over all parameter ranges, numerical simulations are needed; the one numerical study on super-Earths to date (O'Neill and Lenardic, GRL 2007) finds that plate tectonics is less likely on a larger planet, in apparent contradiction of analytical results. To try and understand this we here present new calculations of yielding- induced plate tectonics as a

  3. Progress in developing the ASPECT Mantle Convection Code - New Features, Benchmark Comparisons and Applications

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Bangerth, Wolfgang; Sobolev, Stephan

    2014-05-01

    Since there is no direct access to the deep Earth, numerical simulations are an indispensible tool for exploring processes in the Earth's mantle. Results of these models can be compared to surface observations and, combined with constraints from seismology and geochemistry, have provided insight into a broad range of geoscientific problems. In this contribution we present results obtained from a next-generation finite-element code called ASPECT (Advanced Solver for Problems in Earth's ConvecTion), which is especially suited for modeling thermo-chemical convection due to its use of many modern numerical techniques: fully adaptive meshes, accurate discretizations, a nonlinear artificial diffusion method to stabilize the advection equation, an efficient solution strategy based on a block triangular preconditioner utilizing an algebraic multigrid, parallelization of all of the steps above and finally its modular and easily extensible implementation. In particular the latter features make it a very versatile tool applicable also to lithosphere models. The equations are implemented in the form of the Anelastic Liquid Approximation with temperature, pressure, composition and strain rate dependent material properties including associated non-linear solvers. We will compare computations with ASPECT to common benchmarks in the geodynamics community such as the Rayleigh-Taylor instability (van Keken et al., 1997) and demonstrate recently implemented features such as a melting model with temperature, pressure and composition dependent melt fraction and latent heat. Moreover, we elaborate on a number of features currently under development by the community such as free surfaces, porous flow and elasticity. In addition, we show examples of how ASPECT is applied to develop sophisticated simulations of typical geodynamic problems. These include 3D models of thermo-chemical plumes incorporating phase transitions (including melting) with the accompanying density changes, Clapeyron

  4. The Tonga-Vanuatu Subduction Complex -- a Self-Optimized 3D Slab-Slab-Mantle Heat Pump

    NASA Astrophysics Data System (ADS)

    McCreary, J. A.

    2008-12-01

    Recently published geophysical and geochemical data and increasingly actualistic free subduction models prompted a fresh look at 2 classics hinting, in combination, that a coupled 3D slab-slab-upper mantle interaction (Scholz and Campos, 1995; full citations at URL below) might power the prodigious surface heat dissipation (Lagabrielle et al., 1997) characterizing one of Earth's most remarkable tectonomagmatic systems, the Tonga-Vanuatu Subduction Complex (TVSC). The 3D TVSC includes (1) the kinematically, magmatically, and bathymetrically distinct North Tonga (NT, 14-26° S) and South Vanuatu (SV, 16-23° S) trenches and slabs, (2) the shared NT-SV backarc, and (3) entrained mobile upper mantle (MUM). That Earth's greatest convergence, rollback, and spreading rates; most disseminated spreading (the North Fiji Basin (NFB) ridge swarm); and greatest concentration of aggregate active ridge length coincide in a 1,500 km TVSC can't be accidental. To the north and south, the respective active NT and SV trenches swing abruptly 90° counterclockwise into continuity with the Vitiaz and Hunter fossil trenches, both active in the Late Miocene but now sinistral strike-slip loci standing over long exposed PA and AU slab edges. These 2 active-fossil trench pairs bracket a hot, shallow and geophysically and geochemically exceptional TVSC interior consisting of 2 rapidly spreading backarcs set back-to-back in free sublithospheric communication: The Lau-Havre NT backarc on the east and the ridge-infested SV backarc (NFB) on the west. The NFB and adjacent North Fiji Plateau make up the unplatelike New Hebrides-Fiji Orogen (Bird, 2003). As in the western Aleutians, the NT-Vitiaz and SV-Hunter subduction-to-strike-slip transitions (SSSTs) stand above toroidal fluxes of hot, dry PA and AU MUM driven along-trench and around the free NT and SV slab edges from subslab to supraslab regions by dynamic pressure gradients powered by slab free-fall and induced viscous couplings. These edge

  5. Ultraslow, slow, or fast spreading ridges: an interplay between plate tectonics and mantle convection

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Bézos, Antoine

    2015-04-01

    Oceanic spreading rates are highly variable. These variations are known to correlate to a variety of surface observables, like magmatic production, heat flow or bathymetry, which lead to classify ridges into fast and slow spreading ridges, but also as the more peculiar ultraslow spreading regime. Here we explore the dynamic relationships between spreading ridges, plate tectonics and mantle flow. For this, we first focus on the thermal signature at deeper levels that we infer from the global S-wave seismic tomography model of Debayle and Ricard (2012). We show that the thermal structure of ridges gradually departs from the half-space cooling model for slow, and above all ultraslow spreading ridges. We also infer that the sub- lithospheric mantle temperature decreases by more than 180K from fast spreading to ultraslow spreading regimes. Both observations indicate that the mantle convection pattern is increasingly altered underneath slow and ultraslow spreading ridges. We suggest that this is due to far-field tectonics on the other ends of lithospheric plates. Not only it modulates the spreading rates but it also alters the convection regime: collisions at active plate boundaries obstruct plate motion and decrease their velocities. We then test this hypothesis using a thermo-mechanical model that represents a convection cell carrying a positively buoyant continental lithosphere on top. The continent gradually drifts away from the spreading ridge, from which the oceanic lithosphere grows and cools while the continent eventually collides at the opposite side. In turn, this event drastically modifies the upper kinematic condition for the convecting mantle that evolves from a mobile lid regime to an almost stagnant lid regime. Implications on spreading ridges are prominent: heat advection is slower than thermal diffusion, which causes the oceanic lithosphere to thicken faster; the oceanic plates get compressed and destabilized by a growing number of small scale transient

  6. A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: The importance of rheology and core solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Parmentier, E. M.; Liang, Yan

    2013-09-01

    in which the mantle of the Moon evolves from an initially stratified state following magma ocean solidification and overturn have been applied to address important features of long-term thermal evolution of the Moon, including convective instability of overturned ilmenite-bearing cumulates (IBC) at the lunar core-mantle boundary, generation of mare basalts, core sulfur content and inner core radius, paleomagnetism, and the present-day mantle structure. Whether a dense overturned IBC-rich layer at the bottom of the mantle can become thermally unstable to generate a single upwelling is controlled largely by the temperature-dependence of viscosity (the activation energy). Convective instability of the IBC-rich layer controls the heat flux out the core and the presence of an internally generated magnetic field. A long period of (~700 Ma) high positive core-mantle-boundary (CMB) heat flux after the instability of the IBC-rich layer is expected from our models. Present-day deep mantle temperatures inferred from seismic and gravitational inversion constrain the magnitude of mantle viscosity from 5 × 1019 to 1 × 1021 Pa s. The CMB temperature and solidified inner core radius inferred from seismic reflection constrain the core sulfur content. Our evolution models with 5-10 wt % sulfur content can produce the observed 240 km radius inner core at the present day. The asymmetrical distribution of the deep moonquakes only in the nearside mantle could be explained as the remnant structure of the single chemical upwelling generated from IBC-rich layer. Our evolution model after the overturn results in an early ~0.55 km expansion in radius for ~1000 Ma due to the radiogenic heating associated with IBC in the deep mantle and may provide a simple explanation for the early expansion inferred from the Gravity Recovery and Interior Laboratory mission.

  7. Internally heated mantle convection and the thermal and degassing history of the earth

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Pan, Vivian

    1992-01-01

    An internally heated model of parameterized whole mantle convection with viscosity dependent on temperature and volatile content is examined. The model is run for 4l6 Gyr, and temperature, heat flow, degassing and regassing rates, stress, and viscosity are calculated. A nominal case is established which shows good agreement with accepted mantle values. The effects of changing various parameters are also tested. All cases show rapid cooling early in the planet's history and strong self-regulation of viscosity due to the temperature and volatile-content dependence. The effects of weakly stress-dependent viscosity are examined within the bounds of this model and are found to be small. Mantle water is typically outgassed rapidly to reach an equilibrium concentration on a time scale of less than 200 Myr for almost all models, the main exception being for models which start out with temperatures well below the melting temperature.

  8. 3D analytical investigation of melting at lower mantle conditions in the laser-heated diamond anvil cel

    NASA Astrophysics Data System (ADS)

    Nabiei, F.; Cantoni, M.; Badro, J.; Dorfman, S. M.; Gaal, R.; Piet, H.; Gillet, P.

    2015-12-01

    The diamond anvil cell is a unique tool to study materials under static pressures up to several hundreds of GPa. It is possible to generate temperatures as high as several thousand degrees in the diamond anvil cell by laser heating. This allows us to achieve deep mantle conditions in the laser-heated diamond anvil cell (LHDAC). The small heated volume is surrounded by thermally conductive diamond anvils results in high temperature gradients which affect phase transformation and chemical distribution in the LH-DAC. Analytical characterization of samples in three dimensions is essential to fully understand phase assemblages and equilibrium in LHDAC. In this study we used San Carlos olivine as a starting material as a simple proxy to deep mantle composition. Three samples were melted at ~3000 K and at ~45 GPa for three different durations ranging from 1 to 6 minutes; two other samples were melted at 30 GPa and 70 GPa. All samples were then sliced by focused ion beam (FIB). From each slice, an electron image and energy dispersive X-ray (EDX) map were acquired by scanning electron microscope (SEM) in the dual beam FIB instrument. These slices were collected on one half of the heated area in each sample, from which we obtained 3D elemental and phase distribution. The other half of the heated area was used to extract a 100 nm thick section for subsequent analysis by analytical transmission electron microscopy (TEM) to obtain diffraction patterns and high resolution EDX maps. 3D reconstruction of SEM EDX results shows at least four differentiated regions in the heated area for all samples. The exact Fe and Mg compositions mentioned below are an example of the sample melted at 45 GPa for 6 minutes. The bulk of the heated are is surrounded by ferropericlase (Mg0.92, Fe0.08)O shell (Fp). Inside this shell we find a thick region of (Mg,Fe)SiO3 perovskite-structured bridgmanite (Brg) coexisting with Fp. In the center lies a Fe-rich core which is surrounded by magnesiow

  9. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS

    SciTech Connect

    Van Summeren, Joost; Conrad, Clinton P.; Gaidos, Eric

    2011-07-20

    Recently discovered exoplanets on close-in orbits should have surface temperatures of hundreds to thousands of Kelvin. They are likely tidally locked and synchronously rotating around their parent stars and, if an atmosphere is absent, have surface temperature contrasts of many hundreds to thousands of Kelvin between permanent day and night sides. We investigated the effect of elevated surface temperature and strong surface temperature contrasts for Earth-mass planets on the (1) pattern of mantle convection, (2) tectonic regime, and (3) rate and distribution of partial melting, using numerical simulations of mantle convection with a composite viscous/pseudo-plastic rheology. Our simulations indicate that if a close-in rocky exoplanet lacks an atmosphere to redistribute heat, a {approx}>400 K surface temperature contrast can maintain an asymmetric degree 1 pattern of mantle convection in which the surface of the planet moves preferentially toward subduction zones on the cold night side. The planetary surface features a hemispheric dichotomy, with plate-like tectonics on the night side and a continuously evolving mobile lid on the day side with diffuse surface deformation and vigorous volcanism. If volcanic outgassing establishes an atmosphere and redistributes heat, plate tectonics is globally replaced by diffuse surface deformation and volcanism accelerates and becomes distributed more uniformly across the planetary surface.

  10. The complex 3-D transition from continental crust to backarc magmatism and exhumed mantle in the Central Tyrrhenian basin

    NASA Astrophysics Data System (ADS)

    Prada, M.; Sallares, V.; Ranero, C. R.; Vendrell, M. G.; Grevemeyer, I.; Zitellini, N.; de Franco, R.

    2015-10-01

    Geophysical data from the MEDOC experiment across the Northern Tyrrhenian backarc basin has mapped a failed rift during backarc extension of cratonic Variscan lithosphere. In contrast, data across the Central Tyrrhenian have revealed the presence of magmatic accretion followed by mantle exhumation after continental breakup. Here we analyse the MEDOC transect E-F, which extends from Sardinia to the Campania margin at 40.5°N, to define the distribution of geological domains in the transition from the complex Central Tyrrhenian to the extended continental crust of the Northern Tyrrhenian. The crust and uppermost mantle structure along this ˜400-km-long transect have been investigated based on wide-angle seismic data, gravity modelling and multichannel seismic reflection imaging. The P-wave tomographic model together with a P-wave-velocity-derived density model and the multichannel seismic images reveal seven different domains along this transect, in contrast to the simpler structure to the south and north. The stretched continental crust under Sardinia margin abuts the magmatic crust of Cornaglia Terrace, where accretion likely occurred during backarc extension. Eastwards, around Secchi seamount, a second segment of thinned continental crust (7-8 km) is observed. Two short segments of magmatically modified continental crust are separated by the ˜5-km-wide segment of the Vavilov basin possibly made of exhumed mantle rocks. The eastern segment of the 40.5°N transect E-F is characterized by continental crust extending from mainland Italy towards the Campania margin. Ground truthing and prior geophysical information obtained north and south of transect E-F was integrated in this study to map the spatial distribution of basement domains in the Central Tyrrhenian basin. The northward transition of crustal domains depicts a complex 3-D structure represented by abrupt spatial changes of magmatic and non-magmatic crustal domains. These observations imply rapid variations

  11. Stellar models with mixing length and T(τ) relations calibrated on 3D convection simulations

    NASA Astrophysics Data System (ADS)

    Salaris, Maurizio; Cassisi, Santi

    2015-05-01

    The calculation of the thermal stratification in the superadiabatic layers of stellar models with convective envelopes is a long-standing problem of stellar astrophysics, and has a major impact on predicted observational properties such as radius and effective temperature. The mixing length theory, almost universally used to model the superadiabatic convective layers, contains one free parameter to be calibrated (αml) whose value controls the resulting effective temperature. Here we present the first self-consistent stellar evolution models calculated by employing the atmospheric temperature stratification, Rosseland opacities, and calibrated variable αml (dependent on effective temperature and surface gravity) from a recently published large suite of three-dimensional radiation hydrodynamics simulations of stellar convective envelopes and atmospheres for solar stellar composition. From our calculations (with the same composition of the radiation hydrodynamics simulations), we find that the effective temperatures of models with the hydro-calibrated variable αml (that ranges between ~1.6 and ~2.0 in the parameter space covered by the simulations) present only minor differences, by at most ~30-50 K, compared to models calculated at constant solar αml (equal to 1.76, as obtained from the same simulations). The depth of the convective regions is essentially the same in both cases. We also analyzed the role played by the hydro-calibrated T(τ) relationships in determining the evolution of the model effective temperatures, when compared to alternative T(τ) relationships often used in stellar model computations. The choice of the T(τ) can have a larger impact than the use of a variable αml compared to a constant solar value. We found that the solar semi-empirical T(τ) by Vernazza et al. (1981, ApJS, 45, 635) provides stellar model effective temperatures that agree quite well with the results with the hydro-calibrated relationships.

  12. Kuiper's Double Planet: Mantle Convection In The Present-day Earth

    NASA Astrophysics Data System (ADS)

    Bostrom, R. C.

    To what extent does the gravity field of the Moon, rotating relative to the geocentric field of the Earth [1], affect convection in the mantle? This enquiry follows a formula- tion developed by Chandrasekhar, evaluating convection in a body subject additionally to an external field. The tides have been examined as measure of the Earth-Moon interaction. Dissipation estimates based respectively on an oceanic data set of unprecedented precision [2] and a continental gravimetric set [3] are compatible when observations are referred to the M2 wave, in contrast to a fictitious geostationary bulge. The external contribution required to produce asymmetry in convection internally powered is theoretically infinitesimal, but in practice unknown. Reduced in cog- nizance of the M2 wave, the tidal data indicate that dissipation in the mantle represents a fraction of up to 50 Under Earth's supercritical Rayleigh number, not less than 10(6), internally powered mantle convection must exist but necessarily is a function of the TOTAL field. It seems possible that basically the 'two-body' Rayleigh number determines the phase- lag, hence also the despin rate, in respect to the tidal Earth. The model best-fitting current observations expects a flow bias, sharply peaked in low latitudes. Its sense is to foster the development of the west limb of convection structures. The theoretical surface displacement resembles a continuation of the Cenozoic plate motion found by Gordon and Jurdy (1986). With a view to understanding unexplained aspects of 'plate tectonics', it would be valuable to test the currently best-fitting 2-body model using GPS to overcome the 'absolute-motion' difficulty, by observing latitude-dependence (or otherwise) of rela- tive motion between cratonic stations. [1] RCB 2000: Tectonic Consequences of Earth's Rotation. Oxford UP: sect. 4.3. [2] Ray,R.D. et al. 2001. Geophys. J.Intern. 144: 471-480. [3] Melchior, Bn. P., 1994. Phys. Ea. Plan. Ints. 82: 125-156.

  13. Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Bézos, Antoine

    2015-11-01

    Oceanic spreading rates are highly variable, and these variations are known to correlate to a variety of surface observables, like magmatic production, heat flow or bathymetry. This correlation lead to classify ridges into fast and slow spreading ridges, but also into the more peculiar ultraslow spreading regime. Here we explore the dynamic relationships between spreading ridges, plate tectonics and mantle flow. We first focus on the thermal signature of the mantle, that we infer from the global S-wave seismic tomography model of Debayle and Ricard (2012). We show that the thermal structure of ridges gradually departs from the half-space cooling model for slow, and above all ultraslow spreading ridges. We also infer that the sublithospheric mantle temperature decreases by more than 150 °C from fast to ultraslow spreading regimes. Both observations overall indicate that the mantle convection pattern is increasingly chaotic underneath slow and ultraslow spreading ridges. We suggest that this is due to far-field tectonics at the other ends of lithospheric plates: not only it modulates the spreading rates but it also alters the convection regime by obstructing the circulation of plates, which in turn modifies the surface kinematic conditions for the convecting mantle. We test this hypothesis using a thermo-mechanical model that represents a convection cell carrying a continental lithosphere atop. The continent gradually drifts away from the spreading ridge, from which the oceanic lithosphere grows and cools while the continent eventually collides at the opposite side. In turn, this event drastically modifies the upper kinematic condition for the convecting mantle that evolves from a mobile lid regime to an almost stagnant lid regime. Implications on spreading ridges are prominent: heat advection decreases with respect to thermal conduction, which causes the oceanic lithosphere to thicken faster; the oceanic plates get compressed and destabilized by a growing number of

  14. Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Bezos, Antoine

    2016-04-01

    Oceanic spreading rates are highly variable, and these variations are known to correlate to a variety of surface observables, like magmatic production, heat flow or bathymetry. This correlation lead to classify ridges into fast and slow spreading ridges, but also into the more peculiar ultraslow spreading regime. Here we explore the dynamic relationships between spreading ridges, plate tectonics and mantle flow. We first focus on the thermal signature of the mantle, that we infer from the global S-wave seismic tomography model of Debayle and Ricard (2012). We show that the thermal structure of ridges gradually departs from the half-space cooling model for slow, and above all ultraslow spreading ridges. We also infer that the sublithospheric mantle temperature decreases by more than 150 degrees C from fast to ultraslow spreading regimes. Both observations overall indicate that the mantle convection pattern is increasingly chaotic underneath slow and ultraslow spreading ridges. We suggest that this is due to far-field tectonics at the other ends of lithospheric plates: not only it modulates the spreading rates but it also alters the convection regime by obstructing the circulation of plates, which in turn modifies the surface kinematic conditions for the convecting mantle. We test this hypothesis using a thermo-mechanical model that represents a convection cell carrying a continental lithosphere atop. The continent gradually drifts away from the spreading ridge, from which the oceanic lithosphere grows and cools while the continent eventually collides at the opposite side. In turn, this event drastically modifies the upper kinematic condition for the convecting mantle that evolves from a mobile lid regime to an almost stagnant lid regime. Implications on spreading ridges are prominent: heat advection decreases with respect to thermal conduction, which causes the oceanic lithosphere to thicken faster; the oceanic plates get compressed and destabilized by a growing

  15. Linking TERRA and DRex to relate mantle convection and seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Walker, Andrew; Davies, Huw; Davies, Rhodri; Wookey, James

    2015-04-01

    Seismic anisotropy caused by flow induced alignment of the olivine crystals in Earth's upper mantle provides a powerful way to test our ideas of mantle convection. We have been working to directly combine computer simulations of mantle dynamics, using fluid mechanics at the continuum scale, with models of rock deformation to capture fabric evolution at the grain scale. By combining models of deformation at these two scales we hope to be able to rigorously test hypothesis linking mantle flow to seismic anisotropy in regions as diverse as subduction zones, the lithosphere-asthenosphere boundary, and the transition zone. We also intend to permit feedback, for example via geometrical softening, from the model of fabric development into the material properties used in the convection simulation. We are building a flexible framework for this approach which we call Theia. Our initial implementation uses the TERRA convection code (Baumgardner, J. Stat. Phys. 39:501-511, 1985; Davies et al. Geosci. Model Dev. 6:1095-1107, 2013) to drive DRex (Kaminski et al. Geophys. J. Int. 158:744-752, 2004), which is used to predict the evolution of crystallographic preferred orientation in the upper mantle. Here we describe our current implementation which makes use of the ability of TERRA to track markers, or particles, through the evolving flow field. These tracers have previously been used to track attributes such as the bulk chemical composition or trace element ratios. Our modification is to use this technology to track a description of the current state of the texture and microstructure (encompassing an orientation distribution function, grain size parameters and dislocation density) such that we can advance models of polycrystalline deformation for many simultaneous DRex instances alongside and in sync with models of mantle convection. We will also describe initial results from our first use of the Theia framework where we are investigating the effect of asthenospheric viscosity

  16. Multigrid-based simulation code for mantle convection in spherical shell using Yin Yang grid

    NASA Astrophysics Data System (ADS)

    Kameyama, Masanori; Kageyama, Akira; Sato, Tetsuya

    2008-12-01

    A new simulation code of mantle convection in a three-dimensional spherical shell is presented. Major innovation of the code comes from an combination of two numerical techniques, namely Yin-Yang grid and ACuTE algorithm, which we had developed for large-scale simulations of solid earth sciences. Benchmark comparisons for the steady convection for low Rayleigh numbers ( Ra) with previous calculations revealed that accurate results are successfully reproduced not only for isoviscous cases but also for the cases where the mild temperature-dependence of viscosity is included. We also demonstrated that our code can reproduce the change in convective flow patterns into the "sluggish-lid" regime with increasing the viscosity variation rη up to 104.

  17. The Stagger-grid: A grid of 3D stellar atmosphere models. III. The relation to mixing length convection theory

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Weiss, A.; Asplund, M.

    2015-01-01

    Aims: We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. Methods: The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, were matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derived the mass mixing length parameter, αm, and the vertical correlation length of the vertical velocity, C[vz,vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. Results: The calibrated mixing length parameter for the Sun is α๏MLT (Sbot) = 1.98. . For different stellar parameters, αMLT varies systematically in the range of 1.7 - 2.4. In particular, αMLT decreases towards higher effective temperature, lower surface gravity and higher metallicity. We find equivalent results for α๏MLT (ΔS). In addition, we find a tight correlation between the mixing length parameter and the inverse entropy jump. We derive an analytical expression from the hydrodynamic mean-field equations that motivates the relation to the mass mixing length parameter, αm, and find that it qualitatively shows a similar variation with stellar parameter (between 1.6 and 2.4) with the solar value of α๏m = 1.83.. The vertical correlation length scaled with the pressure scale height yields 1.71 for the Sun, but only displays a small systematic variation with stellar parameters, the correlation length slightly increases with Teff. Conclusions: We derive mixing length parameters for various stellar parameters that can be used to replace a constant value. Within any convective envelope, αm and related quantities vary strongly. Our results will help to replace a constant αMLT. Appendices are available in electronic form at http

  18. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dohmen, Janik; Wallner, Herbert; Noack, Lena; Tosi, Nicola; Plesa, Ana-Catalina; Maurice, Maxime

    2015-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we initiate a benchmark comparison. In the initial phase of this endeavor we focus on the usefulness of the definitions of the test cases keeping the physics as sound as possible. The reference model is taken from the mantle convection benchmark, case 1b (Blanckenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and a Rayleigh number of 1e5. Melting is modelled assuming a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) three cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 includes batch melting, melt buoyancy (melt Rayleigh number Rm), depletion buoyancy and latent heat, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms) and qm approaching a statistical steady state. Case 3 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases should be carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction

  19. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  20. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    SciTech Connect

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-10

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  1. Numerical Modeling of Mantle Convection with Heat-pipe Melt Transport

    NASA Astrophysics Data System (ADS)

    Prinz, Sebastian; Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris

    2015-04-01

    During the early evolution of terrestrial bodies, a large amount of mantle melting is expected to affect significantly the energy budget of the interior through heat transport by volcanism. Partial melt, generated when the mantle temperature exceeds the solidus, can propagate to the surface through dikes, thereby advecting upwards a large amount of heat. This so-called heat-pipe mechanism is an effective way to transport thermal energy from the meltregion to the planetary surface. Indeed, recent studies suggest that this mechanism may have shaped the Earth's earliest evolution by controlling interior heat loss until the onset of plate tectonics [1]. Furthermore, heat-piping is likely the primary mechanism through which Jupiter's moon Io loses its tidally generated heat, leading to massive volcanism able to cause a present-day heat-flux about 40 times higher than the Earth's average heat-flux [2]. However, despite its obvious importance, heat-piping is often neglected in mantle convection models of terrestrial planets because of its additional complexity and vaguely defined parameterization. In this study, adopting the approach of [1] we model mantle convection in a generic stagnant lid planet and study heat-piping effects in a systematic way. Assuming that melt is instantaneously extracted to the surface and melting regions are refilled by downward advection of cold mantle material in order to ensure mass conservation, we investigate the influence of heat-pipes on the mantle temperature and stagnant lid thickness using the numerical code Gaia [3]. To this end, we run a large set of simulations in 2D Cartesian geometry spanning a wide parameter space. Our results are consistent with [1] and show that in systems with strongly temperature-dependent viscosity the heat-pipe mechanism sets in at a Rayleigh number Ra ~ 2 × 107. Upon increasing Ra up to ~ 6 × 107mantle temperature accompanied by an increase of the

  2. Evolution of the interior of Mercury influenced by coupled magmatism-mantle convection system and heat flux from the core

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaki

    2016-02-01

    To discuss mantle evolution in Mercury, I present two-dimensional numerical models of magmatism in a convecting mantle. Thermal, compositional, and magmatic buoyancy drives convection of temperature-dependent viscosity fluid in a rectangular box placed on the top of the core that is modeled as a heat bath of uniform temperature. Magmatism occurs as a permeable flow of basaltic magma generated by decompression melting through a matrix. Widespread magmatism caused by high initial temperature of the mantle and the core makes the mantle compositionally stratified within the first several hundred million years of the 4.5 Gyr calculated history. The stratified structure persists for 4.5 Gyr, when the reference mantle viscosity at 1573 K is higher than around 1020 Pa s. The planet thermally contracts by an amount comparable to the one suggested for Mercury over the past 4 Gyr. Mantle upwelling, however, generates magma only for the first 0.1-0.3 Gyr. At lower mantle viscosity, in contrast, a positive feedback between magmatism and mantle upwelling operates to cause episodic magmatism that continues for the first 0.3-0.8 Gyr. Convective current stirs the mantle and eventually dissolves its stratified structure to enhance heat flow from the core and temporarily resurrect magmatism depending on the core size. These models, however, predict larger contraction of the planet. Coupling between magmatism and mantle convection plays key roles in mantle evolution, and the difficulty in numerically reproducing the history of magmatism of Mercury without causing too large radial contraction of the planet warrants further exploration of this coupling.

  3. Os Isotope Heterogeneity of the Convecting Upper Mantle: The Mayari-Baracoa Ophiolitic Belt (Eastern Cuba)

    NASA Astrophysics Data System (ADS)

    Frei, R.; Gervilla, F.; Meibom, A.; Proenza, J. A.

    2005-12-01

    Chromite separates from a set of historically important chromite deposits from the 90 Ma old Mayarí-Baracoa Ophiolitic Belt in eastern Cuba were inspected for Re-Os isotopic systematics in an attempt to quantify the extent of Os isotopic heterogeneities within a restricted upper mantle portion represented by a single ophiolite. Compositional variations of chromites indicate their crystallization from hydrous melts varying in composition from back-arc basin basalts (Al-rich chromites; Cr# = 0.43-0.55; low Pd/Ir) to boninites (Cr-rich chromites; Cr# = 0.60-0.83; high Pd/Ir) in a supra-subduction zone setting. Initial Os isotopic compositions of the studied chromites can be grouped according to their distribution in 3 regional districts. Results indicate systematically negative calculated initial γOs values varying from -1.06 ± 0.79 (Moa-Baracoa district), -1.77 ± 0.80 (Sagua de Tanamo district) and -2.79 ± 0.31 (Mayari district). These suprachondritic values are distinctly (3.5-5.2%) less radiogenic than the estimated minimum 187Os/188Os composition of the primitive upper mantle of 0.1296 ± 8 and can be explained by Re depletion during ancient partial melting and melt percolation events. Old Os isotope model ages (<2100 Ma)of some of the chromites (or platinum-group minerals included in them) show and confirm previous findings that ancient Os isotopic signatures can survive in the Earth's upper mantle. Our systematically negative initial γOs values do not improve the definition of an already statistically poorly defined present-day Os isotopic composition of the convecting upper mantle, but instead indicate a complex history for the convecting upper mantle which precludes the calculation of a uniform regional Os isotopic signature for this reservoir.

  4. Investigating Global 3-D Shear-Wave Anisotropy in the Earth's Mantle from Free Oscillations, Body Waves, Surface Waves and Long-period Waveforms

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Ekstrom, G.

    2012-12-01

    We have developed a framework that can be used to investigate anisotropic velocity, density and anelastic heterogeneity in the Earth's mantle using a wide spectrum (0.3-50 mHz) of seismological observables. We start with the extensive dataset of surface-wave phase anomalies, long-period waveforms, and body-wave travel times collected by Kustowski et al. (2008) for the development of the global model S362ANI. The additional data included in our analysis are splitting functions of spheroidal and toroidal modes, which are analogous to phase velocity maps at low frequencies. We include in this set of observations a new dataset containing the splitting functions of 56 spheroidal fundamental modes and overtones, measured by Deuss et al. (2011, 2012) using data from large recent earthquakes. Apart from providing unique constraints on the long-wavelength elastic and density structure in the mantle, the overtone splitting data are especially sensitive to the velocity (and anisotropic) structure in the transition zone and in the deeper mantle. The detection of anisotropy, a marker of flow, in the transition zone has implications for our understanding of mantle convection. Our forward modeling of the splitting functions, like the other types of data, includes the effects of radial anisotropy (Mochizuki, 1986). We show that the upper-mantle shear-wave anisotropy of S362ANI generates a clear contribution to the splitting functions of the modes that are sensitive to the upper-mantle structure. We explore the tradeoffs between fitting the mode splitting functions and the travel-times of body waves that turn in the transition zone or in the lower mantle (e.g. SS), while observing that the waveforms and the surface wave phase-anomalies provide complementary information about the mantle. Our experiments suggest that the splitting data are sufficiently sensitive to the anisotropy in the mantle such that their inclusion may provide a better depth resolution of the anisotropic shear

  5. Geoid Anomalies and Dynamic Topography from Time Dependent, Spherical Axisymmetric Mantle Convection

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Kellogg, Louise H.

    1998-01-01

    Geoid anomalies and dynamic topography are two important diagnostics of mantle convection. We present geoid and topography results for several time-dependent convection models in spherical axisymmetric geometry for Rayleigh numbers between 10(exp 6) and 10(exp 7) with depth-dependent viscosity and mixtures of bottom and internal heating. The models are strongly chaotic, with boundary layer instabilities erupting out of both thermal boundary layers. In some instances, instabilities from one boundary layer influence the development of instabilities in the other boundary layer. Such coupling between events at the top and bottom of the mantle has been suggested to play a role in a mid-Cretaceous episode of enhanced volcanism in the Pacific. These boundary layer instabilities produce large temporal variations in the geoid anomalies and dynamic nd to the topography associated with the convection. The amplitudes of these fluctuations depend on the detailed model parameter,.% it of this but fluctuations of 30-50% relative to the time-averaged geoid and topography are common. The convective planform is strongly sensitive to the specific initial conditions. Convection cells with larger aspect ratio tend to have larger fractional fluctuations in their geoid and topography amplitudes, because boundary layer instabilities have more time to develop in long cells. In some instances, we observe low-amplitude topographic highs adjacent to the topographic lows produced by cold downwellings. We discuss applications of these results to several situations, including the temporal variability of m basis. hotspots such as Hawaii, the topography of subduction zone outer rises, and the topography of coronae on Venus.

  6. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Sternai, Pietro; Jolivet, Laurent; Guillou-Frottier, Laurent; Gerya, Taras

    2016-05-01

    Interactions between subduction dynamics and magma genesis have been intensely investigated, resulting in several conceptual models derived from geological, geochemical and geophysical data. To provide physico-chemical constraints on these conceptual models, self-consistent numerical simulations containing testable thermo-mechanical parameters are required, especially considering the three-dimensional (3D) natural complexity of subduction systems. Here, we use a 3D high-resolution petrological and thermo-mechanical numerical model to quantify the relative contribution of oceanic and continental subduction/collision, slab roll-back and tearing to magma genesis and transport processes. Our modeling results suggest that the space and time distribution and composition of magmas in the overriding plate is controlled by the 3D slab dynamics and related asthenospheric flow. Moreover, the decrease of the bulk lithospheric strength induced by mantle- and crust-derived magmas promotes the propagation of strike-slip and extensional fault zones through the overriding crust as response to slab roll-back and continental collision. Reduction of the lithosphere/asthenosphere rheological contrast by lithospheric weakening also favors the transmission of velocities from the flowing mantle to the crust. Similarities between our modeling results and the late Cenozoic tectonic and magmatic evolution across the eastern Mediterranean region suggest an efficient control of mantle flow on the magmatic activity in this region, which in turn promotes lithospheric deformation by mantle drag via melt-induced weakening effects.

  7. Imprint of global mantle convection on the intra-plate stress field of Eurasia

    NASA Astrophysics Data System (ADS)

    Ruckstuhl, K.; Govers, R. M.; Wortel, M. J.

    2010-12-01

    For most tectonic plates, torque balance methods have been quite successful for reproducing the large-scale stress field. The Eurasian plate has however remained a challenge. We recently established (Ruckstuhl et al., GRL, 2010) that a net torque contribution from an actively convecting mantle is required to mechanically balance the Eurasian plate. We found that, from the available mantle flow models, only hose that are forced by mantle densities from published S-wave tomographic models may provide the required torque. Here we evaluate mechanically balanced force sets containing various global mantle flow models for their ability to reproduce the observed stress field of Eurasia. In our finite element calculations, the stress field is aken to result from mechanical balance of lithospheric body forces, edge forces that arise from interaction with adjacent plates, and from tractions on the base of the Eurasian plate. Lithospheric body forces (and uncertainties) are computed a priori from the topology of major density interfaces. Directions of edge forces are parallel to relative motion directions. Edge force magnitudes follow from solving the torque balance equations. Basal tractions from mantle flow are computed a priori using SEATREE (Milner et al., 2009). Stresses are calculated in a spherical elastic shell containing major faults. Modeled intra-plate stresses turn out to be highly sensitive to uncertainties in lithospheric body forces and to the net basal traction. The horizontal distribution of the mantle shear stress affects the model stresses only mildly. Incorporation of dynamic topography has a significant influence on the lithospheric stress field. The mechanical properties of the major faults also affect the predicted stresses. Comparison of our best-fitting model with World Stress Map data shows a good correlation in Europe, southeast Asia and the Baikal. Predicted and observed compression directions in the Zagros and the Tibetan plateau do however not

  8. Turbulent Convection: Is 2D a good proxy of 3D?

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    2000-01-01

    Several authors have recently carried out 2D simulations of turbulent convection for both solar and massive stars. Fitting the 2D results with the MLT, they obtain that alpha(sub MLT) greater than 1 specifically, 1.4 less than alpha(sub MLT) less than 1.8. The authors further suggest that this methodology could be used to calibrate the MLT used in stellar evolutionary codes. We suggest the opposite viewpoint: the 2D results show that MLT is internally inconsistent because the resulting alpha(sub MLT) greater than 1 violates the MLT basic assumption that alpha(sub MLT) less than 1. When the 2D results are fitted with the CM model, alpha(sub CMT) less than 1, in accord with the basic tenet of the model. On the other hand, since both MLT and CM are local models, they should be replaced by the next generation of non-local, time dependent turbulence models which we discuss in some detail.

  9. Anisotropic rheology of a polycrystalline aggregate and convection in planetary mantles

    NASA Astrophysics Data System (ADS)

    Pouilloux, L. S.; Labrosse, S.; Kaminski, E.

    2011-12-01

    Observations of seismic anisotropy in the Earth mantle is often related to the crystal preferred orientation of polycrystalline aggregates. In this case, the physical properties depends on the direction and require the use of tensors to be fully described. In particular, the viscosity must be defined as a fourth order tensor whereas the thermal conductivity is a 2nd order tensor. However, the dynamical implications of such physical properties have received little attention until now. In this work, we present the mathematical formulation for an anisotropic medium and the relationship with dislocation creep deformation. We explore extensively the problem of the onset of Rayleigh-Bénard convection with such anisotropic properties. We finally presents some numerical results on the time-dependent problem using an orthotropic law for an ice polycrystal. Geophysical implications of this work related to the dynamics of planetary mantles are discussed, especially the potential of anisotropic rheology to localize deformation.

  10. Global mantle convection: Evidence from carbon and nitrogen isotopes in super-deep diamonds (Invited)

    NASA Astrophysics Data System (ADS)

    Palot, M.; Cartigny, P.; Harris, J.; Kaminsky, F. V.; Stachel, T.

    2009-12-01

    Constraining the convective regime of the Earth’s mantle has profound implications for our understanding of the Earth’s cooling and the geodynamics of plate tectonics. Although subducting plates seem to be occasionally deflected at 660 km, evidence from seismic tomography and fluid dynamics suggest that substantial amounts of material reach the core-mantle boundary. Most geochemists, on the other hand, based on evidence from noble gases, would argue for the presence of separate upper and lower mantle reservoirs. Diamond provides a unique opportunity to sample those parts of the mantle that remains inaccessible by any other means. Some mineral associations in diamond, such as majoritic garnet, calcic and magnesian perovskite and manganoan ilmenite with ferropericlase have been recognised as originated from the transition zone down to the lower mantle (Stachel et al., 1999; Kaminsky et al., 2001). In addition, nitrogen in these diamonds is potentially a good tracer for mantle geodynamics. Exchanges between an inner reservoir (characterised by negative δ15N) via degassing at oceanic ridges with an outer reservoir (characterised by positive δ15N) via recycling at a subduction zones can lead to isotopic contrast in a stratified mantle. Because of common super-deep mineral inclusion assemblages in diamonds from Juina (Brazil) and Kankan (Guinea), we carried out a detailed study of nitrogen and carbon isotopes. The Juina diamonds show broadly similar ranges of δ15N from +3.8‰ down to -8.8‰ for both upper (UM) and lower (LM) mantle diamonds. This important feature is also found for UM and LM diamonds from Kankan, although the range of δ15N differs with values from +9.6‰ down to -39.4‰. Both sets of results suggest extensive material-isotopic exchange through the 660km discontinuity, contrary to the idea of an isolated reservoir. Transition zone (TZ) diamonds are enriched in 13C with δ13C from -3.1‰ up to +3.8‰ at Kankan but those of Juina are depleted

  11. EFFECTS OF STELLAR FLUX ON TIDALLY LOCKED TERRESTRIAL PLANETS: DEGREE-1 MANTLE CONVECTION AND LOCAL MAGMA PONDS

    SciTech Connect

    Gelman, S. E.; Elkins-Tanton, L. T.; Seager, S. E-mail: ltelkins@mit.edu

    2011-07-10

    We model the geodynamical evolution of super-Earth exoplanets in synchronous rotation about their star. While neglecting the effects of a potential atmosphere, we explore the parameter spaces of both the Rayleigh number and intensity of incoming stellar flux, and identify two main stages of mantle convection evolution. The first is a transient stage in which a lithospheric temperature and thickness dichotomy emerges between the substellar and the antistellar hemispheres, while the style of mantle convection is dictated by the Rayleigh number. The second stage is the development of degree-1 mantle convection. Depending on mantle properties, the timescale of onset of this second stage of mantle evolution varies from order 1 to 100 billion years of simulated planetary evolution. Planets with higher Rayleigh numbers (due to, for instance, larger planetary radii than the Earth) and planets whose incoming stellar flux is high (likely for most detectable exoplanets) will develop degree-1 mantle convection most quickly, on the order of 1 billion years, which is within the age of many planetary systems. Surface temperatures range from 220 K to 830 K, implying the possibility of liquid water in some regions near the surface. These results are discussed in the context of stable molten magma ponds on hotter planets, and the habitability of super-Earths which may lie outside the Habitable Zone.

  12. Examining In-Cloud Convective Turbulence in Relation to Total Lightning and the 3D Wind Field of Severe Thunderstorms

    NASA Astrophysics Data System (ADS)

    Al-Momar, S. A.; Deierling, W.; Williams, J. K.; Hoffman, E. G.

    2014-12-01

    Convectively induced turbulence (CIT) is commonly listed as a cause or factor in weather-related commercial aviation accidents. In-cloud CIT is generated in part by shears between convective updrafts and downdrafts. Total lightning is also dependent on a robust updraft and the resulting storm electrification. The relationship between total lightning and turbulence could prove useful in operational aviation settings with the use of future measurements from the geostationary lightning mapper (GLM) onboard the GOES-R satellite. Providing nearly hemispheric coverage of total lightning, the GLM could help identify CIT in otherwise data-sparse locations. For a severe thunderstorm case on 7 June 2012 in northeast Colorado, in-cloud eddy dissipation rate estimates from the NCAR/NEXRAD Turbulence Detection Algorithm were compared with cloud electrification data from the Colorado Lightning Mapping Array and radar products from the Denver, Colorado WSR-88D. These comparisons showed that high concentrations of very high frequency (VHF) source densities emitted by lightning occurred near and downstream of the storm's convective core. Severe turbulence was also shown to occur near this area, extending near the melting level of the storm and spreading upward and outward. Additionally, increases/decreases in VHF sources and turbulence volumes occurred within a few minutes of each other; although, light turbulence was shown to increase near one storm's dissipation. This may be due to increased shear from the now downdraft dominate storm. The 3D wind field from this case, obtained by either a dual-Doppler or a Variational Doppler Radar Assimilation System (VDRAS) analysis, will also be examined to further study the relationships between total lightning and thunderstorm kinematics. If these results prove to be robust, lightning may serve as a strong indicator of the location of moderate or greater turbulence.

  13. An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow

    NASA Astrophysics Data System (ADS)

    Antonini Alves, Thiago; Santos, Paulo H. D.; Barbur, Murilo A.

    2015-09-01

    In this research, the temperatures of threedimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissipation in each heater by using a matrix G + with invariant coefficients, which are dimensionless. These coefficients are defined in this study as the conjugate influence coefficients ( g +) caused by the forced convection- conduction nature of the heaters' cooling process. The temperature increase of each heater in the channel is quantified to clearly identify the contributions attributed to the self-heating and power dissipation in the other heaters (both upstream and downstream). The conjugate coefficients are invariant with the heat generation rate in the array of heaters when assuming a defined geometry, invariable fluid and flow rate, and constant substrate and heater conductivities. The results are numerically obtained by considering three 3D protruding heaters on a twodimensional (2D) array by ANSYS/Fluent™ 15.0 software. The conservation equations are solved by a coupled procedure within a single calculation domain comprising of solid and fluid regions and by considering a steady state laminar airflow with constant properties. Some examples are shown, indicating the effects of substrate thermal conductivity and Reynolds number on conjugate influence coefficients.

  14. The Break-up and Drifting of the Continental Plates in 2D Models of Convecting Mantle

    NASA Astrophysics Data System (ADS)

    Dal Zilio, L.; Faccenda, M.; Capitanio, F. A.

    2014-12-01

    Since the early theory of Wegener, the break-up and drift of continents have been controversial and hotly debated topics. To assist the interpretation of the break-up and drift mechanisms and its relation with mantle circulation patterns, we carried out a 2D numerical modelling of the dynamics of these processes. Different regimes of upper plate deformation are studied as consequence of stress coupling with convection patterns. Subduction of the oceanic plate and induced mantle flow propagate basal tractions to the upper plate. This mantle drag forces (FMD) can be subdivided in two types: (1) active mantle drag occurring when the flow drives plate motion (FAD), and (2) passive mantle drag (FPD), when the asthenosphere resists plate motion. The active traction generated by the convective cell is counterbalanced by passive mantle viscous drag away from it and therefore tension is generated within the continental plate. The shear stress profiles indicate that break-up conditions are met where the gradient of the basal shear stress is maximised, however the break-up location varies largely depending on the convection style primarily controlled by slab stagnation on the transition zone, avalanching through or subduction in the lower mantle. We found good correspondence between our models and the evolution of convergent margins on Earth, giving precious insights into the break-up and drifting mechanisms of some continental plates, such as the North and South American plates, Calabria and the Japan Arc.

  15. Linking the stratigraphic record with mantle convection in time and space (Invited)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Spasojevic, S.; Liu, L.; Dicaprio, L.; Müller, D.; Sutherland, R.

    2009-12-01

    The influence of mantle convection on basin subsidence, the stratigraphic record, and sea level change has been discussed over the last decade and a number of connections made between the observational record and models. We are now making this linkage more explicit to both better constrain mantle processes and for use as a tool for the interpretation of vertical motions with sparse and incomplete observations. We provide an overview and discuss a number of concrete results that have emerged from our collaboration. One of the most important technical issues considered, but which is ignored in general, is that the stratigraphic record is attached to the moving plates and that plates differentially under go vertical motions as they move with respect to a changing dynamic topography field. We have embodied these ideas in a workflow using a linked paleogeographic-spherical mantle convection system (using the open source packages GPlates and CitcomS). Examples are taken from Australia, North America, and Antarctic-New Zealand. Using inferred paleoshorelines, we show that Australia tilted downward at long wavelengths by 300 m since the Eocene. In a high-resolution model of Australia embedded into a global model, we show that the tilting is consistent with motion toward the slabs in Melanesia but that an additional source of buoyancy beneath Antarctic is required to fit the total subsidence. For North America since the Cretaceous we have developed adjoint models in which we start from the present seismic structure beneath the continent, the robust Farallon slab in the lower mantle, and infer the initial condition and mantle parameters. The model that best fits an extensive set of tectonic subsidence curves and paleo-shorelines is consistent with the putative flat lying slab associated with the Laramide orogeny. Our prediction of a significant east-ward shift of a depocenter has been independently verified by a new high resolution set of tectonic subsidence curves from Utah

  16. Self-consistent Synthetic Mantle Discontinuities From Joint Modeling of Geodynamics and Mineral Physics and Their Effects on the 3D Global Wave Field

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.; Moder, C.; Oeser, J.

    2007-12-01

    Our current understanding of mantle structure and dynamics is to a large part based on inversion of seismic data resulting in tomographic images and on direct analysis of a wide range of seismic phases such as Pdiff, PcP, ScS SdS etc. For solving inverse problems, forward modeling is needed to obtain a synthetic dataset for a given set of model parameters. In this respect, great progress has been made over the last years in the developement of sophisticated numerical full waveform modeling tools. However, the main limitation in the application of this new class of techniques for the forward problem of seismology is the lack of accurate predictions of mantle heterogeneity that allow us to test hypotheses about Earth's mantle. Such predictive models should be based on geodynamic and mineralogical considerations and derived independently of seismological observations. Here, we demonstrate the feasibility of joining forward simulations from geodynamics, mineral physics and seismology to obtain earth-like seismograms. 3D global wave propagation is simulated for dynamically consistent thermal structures derived from 3D mantle circulation modeling (e.g. Bunge et al. 2002), for which the temperatures are converted to seismic velocities using a recently published, thermodynamically self-consistent mineral physics approach (Piazzoni et al. 2007). Assuming a certain, fixed mantle composition (e.g. pyrolite) our mineralogic modeling algorithm computes the stable phases at mantle pressures for a wide range of temperatures by system Gibbs free energy minimization. Through the same equations of state that model the Gibbs free energy, we compute elastic moduli and density for each stable phase assemblage at the same P-T conditions. One straightforward application of this approach is the study of the seismic signature of synthetic mantle discontinuities arising in such models, as the temperature dependent phase transformations occuring at around 410 Km and 660 Km depth are

  17. The power spectrum of solar convection flows from high-resolution observations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.

    2014-03-01

    Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used

  18. Iron isotopic evidence for convective resurfacing of recycled arc-front mantle beneath back-arc basins

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Arculus, R. J.; Sossi, P. A.; Jenner, F. E.; Whan, T. H. E.

    2013-11-01

    observations suggest sub-arc convective flow transports melt-exhausted and metasomatized wedge mantle into deeper mantle regions. Reciprocally, asthenospheric, fertile mantle may supply back-arc ridges distal to the trench by shallow, lateral mantle ingress, insinuating initial wedge mantle depletion in its back-arc region. Here we show that light Fe isotope compositions of the Central Lau Spreading Centre located in the Lau back-arc basin on the farside of the Tonga-Kermadec arc are indicative for derivation from a modified arc-front mantle with elemental and Nd-isotopic memory of former slab fluid addition. We propose that this shallow wedge material has been transported from the sub-arc mantle to the back-arc either convectively or in a buoyant diapir. This implies that melt-depleted mantle in subduction zones is, at least in parts, recycled in a resurfacing loop. This can explain the depletion in back-arc regions, and the progressively depleted nature of island arc sources in maturing arc systems.

  19. Evolution of 3-D subduction-induced mantle flow around lateral slab edges in analogue models of free subduction analysed by stereoscopic particle image velocimetry technique

    NASA Astrophysics Data System (ADS)

    Strak, Vincent; Schellart, Wouter P.

    2014-10-01

    We present analogue models of free subduction in which we investigate the three-dimensional (3-D) subduction-induced mantle flow focusing around the slab edges. We use a stereoscopic Particle Image Velocimetry (sPIV) technique to map the 3-D mantle flow on 4 vertical cross-sections for one experiment and on 3 horizontal depth-sections for another experiment. On each section the in-plane components are mapped as well as the out-of-plane component for several experimental times. The results indicate that four types of maximum upwelling are produced by the subduction-induced mantle flow. The first two are associated with the poloidal circulation occurring in the mantle wedge and in the sub-slab domain. A third type is produced by horizontal motion and deformation of the frontal part of the slab lying on the 660 km discontinuity. The fourth type results from quasi-toroidal return flow around the lateral slab edges, which produces a maximum upwelling located slightly laterally away from the sub-slab domain and can have another maximum upwelling located laterally away from the mantle wedge. These upwellings occur during the whole subduction process. In contrast, the poloidal circulation in the mantle wedge produces a zone of upwelling that is vigorous during the free falling phase of the slab sinking but that decreases in intensity when reaching the steady-state phase. The position of the maximum upward component and horizontal components of the mantle flow velocity field has been tracked through time. Their time-evolving magnitude is well correlated to the trench retreat rate. The maximum upwelling velocity located laterally away from the subducting plate is ∼18-24% of the trench retreat rate during the steady-state subduction phase. It is observed in the mid upper mantle but upwellings are produced throughout the whole upper mantle thickness, potentially promoting decompression melting. It could thereby provide a source for intraplate volcanism, such as Mount Etna in

  20. The importance of mineral physics and a free surface in large-scale numerical models of mantle convection and plate tectonics

    NASA Astrophysics Data System (ADS)

    Tackley, Paul; Nakagawa, Takashi; Crameri, Fabio; Connolly, James; Deschamps, Frédéric; Kaus, Boris; Gerya, Taras

    2010-05-01

    introduced into global mantle convection models by using visco-plastic rheology with a constant or depth (pressure)-dependent yield stress [Moresi et al., GJI 1998; van Heck and Tackley, GRL 2008]. Yet, these models fail to create Earth-like plate tectonics, because the "subduction" is two-sided and approximately symmetric, whereas terrestrial subduction is one-sided. Previous gobal models assumed a free-slip upper boundary, in which the shear stress is zero but the vertical position of the boundary is fixed. In contrast, subduction zones display some of the largest topographic variations on Earth. We thus study the effect of a free surface on the mode of subduction in 2D and 3D global, fully dynamic mantle convection models with self-consistent plate tectonics. We observe that indeed, a free surface leads to single-sided subduction, whereas identical models with a free slip upper boundary develop double-sided subduction. A free surface is thus an essential ingredient to obtain realistic subduction behaviour in numerical models, probably because it allows the slab to bend in a natural manner. Another ingredient for stable single-sided subduction is a low strength interface between the plates achieved by the presence of metamorphic fluids in the subduction channel. Such a lubrication layer consisting of weak hydrated sediments accommodates stable one-sided subduction by strain localization, while the absence of a weak shear zone leads to mechanically two-sided subduction since in this case the plastic strength of the entire plates needs to be sufficiently low to allow for subduction [Gerya et al, Geology 2008]. In conclusion, a free surface is the key ingredient to obtain thermally one-sided subduction, while additionally including a weak crust is essential to obtain subduction that is both mechanically and thermally one-sided.

  1. Dynamic evolution of continental and oceanic lithosphere in global mantle convection model with plate-like tectonics and one sided subduction.

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Coltice, Nicolas; Tackley, Paul

    2015-04-01

    Drifting of continents, spreading of the seafloor and subduction at convergent boundaries shape the surface of the Earth. On the timescales of several hundreds of millions of years, divergent boundaries at mid-ocean ridges are created and destroyed in within the Wilson cycle. This controls the evolution of the Earth as it determines the heat loss out. Presence of floating continents facilitates the Earth-like mobile lid style of convection as convective stresses are concentrated on the rheological boundary between oceanic and continental lithosphere. Subducting slabs allow for the surface material to be buried down into the mantle and have an important effect on surface tectonics. The main feature of the subduction zones observed on Earth is that it is single-sided forming the deep trenches. Recently, different numerical models were successful in reproducing one-sided subduction by allowing for the vertical deformation of the Earth surface (Crameri and Tackley 2014). In the meantime, advances were made in modelling continental break-up and formation (Rolf et al. 2014). In this study we perform numerical simulations of global mantle convection in spherical annulus geometry with strongly depth and temperature dependent rheology using StagYY code (Tackley 2008). In these models plate tectonics is generated self-consistently and features one-sided subduction on ocean-ocean plate boundary as well as floating continents. We focus on determining (1) the influence of one-sided subduction on the dynamics of the system (2) formation and breakup of continents. Rerefences: Crameri, F. and P. J. Tackley, Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface, J. Geophys. Res., 119(7), 5921-5942, 2014. Rolf, T., N. Coltice and P. J. Tackley (2014), Statistical cyclicity of the supercontinent cycle, Geophys. Res. Lett. 41, 2014. Tackley, P. J., Modellng compressible mantle convection with large viscosity contrasts in

  2. Simultaneous inversion for 3D crustal and lithospheric structure and regional hypocenters beneath Germany in the presence of an anisotropic upper mantle

    NASA Astrophysics Data System (ADS)

    Koch, M.; Muench, T.

    2010-12-01

    There is now ample evidence from both refraction seismic studies and from more recent local earthquake travel-time analysis of some of the authors that large sections of the upper mantle underneath Europe and Germany, in particular, are anisotropic. Employing a modified version of the method of simultaneous inversion for structure and hypocenters (SSH) of the first author, including a priori known upper mantle anisotropy, a full 3D SSH-inversion underneath Germany is carried out. Regional travel times from local events occurring between 1975 - 2003 are used which, after application of several selection criteria, results in ~1300 events with a total of ~30000 P- and S-phases for the SSH inversion. The SSH procedure is carried out in several incremental steps. First of all improved 1D seismic velocity models are derived assuming an isotropic as well as an anisotropic upper mantle. In addition of a slightly better model fit for the anisotropic than for the isotropic model, the latter gives also a somewhat lower Pn-velocity of ~7.90 km/s, compared with ~8.0 km/s for the former. This indicates that inclusion of upper mantle anisotropy into the SSH model is required to obtain physically reasonable Pn-velocities. The results for the P-velocity in the lower crust are less clear, because of some trade-off with the upper mantle layer. Increasingly refined 3D seismic models are then computed, starting with a lateral discretization into 15 x 15 blocs (=40 x 40 km per bloc) and finally going up to 35 × 35 blocs, (=16 x 16 km). For each of the models, inversion solutions for the isotropic, as well as the anisotropic case are examined. The quality of the solution is estimated by means of various tests for resolution, covariance and other trade-off characteristics of the data- and the model-space. Significant improvements for both the isotropic and anisotropic upper mantle cases are obtained for full 3D SSH inversion models. Similar to the 1D Pn-velocity models there are

  3. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.

    PubMed

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals. PMID:25554309

  4. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    NASA Astrophysics Data System (ADS)

    Surducan, E.; Surducan, V.; Limare, A.; Neamtu, C.; Di Giuseppe, E.

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm3 convection tank is filled with a water-based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  5. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    SciTech Connect

    Surducan, E.; Surducan, V.; Neamtu, C.; Limare, A.; Di Giuseppe, E.

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  6. Characterization of two monoclonal antibodies (UCL4D12 and UCL3D3) that discriminate between human mantle zone and marginal zone B cells.

    PubMed

    Smith-Ravin, J; Spencer, J; Beverley, P C; Isaacson, P G

    1990-10-01

    Two new monoclonal antibodies (MoAbs), UCL3D3 and UCL4D12 were obtained following immunization with follicular lymphoma (UCL3D3) or low-grade primary B cell gastric lymphoma cells (UCL4D12). In normal splenic white pulp, tonsil and small intestinal Peyer's patches, UCL4D12 recognizes marginal zone B cells and a subpopulation of follicle centre cells, whereas mantle zone B cells are UCL4D12 negative. In contrast, UCL3D3 recognizes mantle zone B cells and follicular dendritic cells, but not marginal zone B cells or follicle centre B cells. Double-immunofluorescence studies showed that in the splenic white pulp, these antibodies stain reciprocally. The majority of UCL3D3+ cells are sIgM+ and sIgD+ whereas a higher proportion of UCL4D12+ cells express surface IgM (sIgM) but not surface IgD (sIgD). Less than 10% of splenic B cells express both 3D3 and 4D12 antigens. None of the cell lines tested expressed either antigen. Functional studies showed that both antigens play a role in B cell activation as the MoAbs increase the mitogenic effect of Staphylococcus aureus Cowan I on tonsil B cells. This effect was maximal at 72 h in culture. TPA activation was reduced, and no effect was observed with anti-immunoglobulin (anti mu) or CDw40 (G28.5). UCL3D3 and UCL4D12 did not show any stimulatory effect on their own. Biochemical studies show that both MoAbs recognize proteins of 80-90 kD under reducing conditions. These two MoAbs appear to recognize new B cell surface antigens which may be useful for identifying subpopulations of B cells. PMID:2208792

  7. Numerical Modeling of Deep Mantle Convection: Advection and Diffusion Schemes for Marker Methods

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2013-04-01

    Thermal and chemical evolution of Earth's deep mantle can be studied by modeling vigorous convection in a chemically heterogeneous fluid. Numerical modeling of such a system poses several computational challenges. Dominance of heat advection over the diffusive heat transport, and a negligible amount of chemical diffusion results in sharp gradients of thermal and chemical fields. The exponential dependence of the viscosity of mantle materials on temperature also leads to high gradients of the velocity field. The accuracy of many numerical advection schemes degrades quickly with increasing gradient of the solution, while the computational effort, in terms of the scheme complexity and required resolution, grows. Additional numerical challenges arise due to a large range of length-scales characteristic of a thermochemical convection system with highly variable viscosity. To examplify, the thickness of the stem of a rising thermal plume may be a few percent of the mantle thickness. An even thinner filament of an anomalous material that is entrained by that plume may consitute less than a tenth of a percent of the mantle thickness. We have developed a two-dimensional FEM code to model thermochemical convection in a hollow cylinder domain, with a depth- and temperature-dependent viscosity representative of the mantle (Steinberger and Calderwood, 2006). We use marker-in-cell method for advection of chemical and thermal fields. The main advantage of perfoming advection using markers is absence of numerical diffusion during the advection step, as opposed to the more diffusive field-methods. However, in the common implementation of the marker-methods, the solution of the momentum and energy equations takes place on a computational grid, and nodes do not generally coincide with the positions of the markers. Transferring velocity-, temperature-, and chemistry- information between nodes and markers introduces errors inherent to inter- and extrapolation. In the numerical scheme

  8. Fluctuations in seafloor spreading predicted by tectonic reconstructions and mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Seton, Maria; Rolf, Tobias; Müller, R. Dietmar; Tackley, Paul J.

    2013-04-01

    The theory of plate tectonics theory has enabled possible the reconstruction of the ancient seafloor and paleogeography. Over 50 years of data collection and kinematic reconstruction efforts, plate models have improved significantly (Seton et al., 2012) although reconstructions of ancient seafloor are naturally limited by the limited preservation of of very old seafloor. It is challenging to reconstruct ancient ocean basins and associated plate boundaries for times earlier than 200 Ma, since seafloor of this age is not preserved. This means we can merely reconstruct only 5% of the history of the planet in this fashion. However, geodynamic models can now help evaluate how seafloor spreading may evolve over longer time periods, since recent developments of numerical models of mantle convection with pseudo-plasticity can generate long-term solutions that simulate a form of seafloor spreading (Moresi and Solomatov, 1998; Tackley, 2000a; Tackley, 2000b). The introduction of models of continental lithosphere further improves the quality of the predictions: the computed distribution of seafloor ages reproduces the consumption of young seafloor as observed on the present-day Earth (Coltice et al., 2012). The time-dependence of the production of new seafloor has long been debated and there is no consensus on how much it has varied in the past 150My, and how it could have fluctuated over longer time-scales. Using plate reconstructions, Parsons (1982) and Rowley (2002) proposed the area vs. age distribution of the seafloor could have experienced limited fluctuations in the past 150My while others suggest stronger variations would fit the observations equally well (Seton et al., 2009. Here we propose to investigate the global dynamics of seafloor spreading using state-of-the-art plate reconstructions and geodynamic models. We focus on the evolution of the distribution of seafloor ages because fundamental geophysical observations like mantle heat flow or sea level provide

  9. A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Lewis, J.; Begnaud, M. L.; Rowe, C. A.

    2009-12-01

    further refinement takes place around adjusted nodes to form a new model, and the process is repeated until no more improvement can be obtained. We thus produce a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a Java-based distributed computing framework developed by Sandia National Laboratories (SNL), providing us with 300+ processors having an efficiency of better than 90% for the calculations. We evaluate our model both in terms of travel time residual variance reduction and in location improvement for GT events. For the latter, we use a new multi-threaded version of the SNL-developed LocOO code modified to use 3D velocity models.

  10. Compositional Density Structure of the Upper Mantle from Constrained 3-D Inversion of Gravity Anomaly: A Case Study of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Chen, C.; Kaban, M. K.; Thomas, M.

    2014-12-01

    Mantle density structure is a key for tectonics. The density variations in the upper mantle are affected by temperature and composition. Seismic tomography method has been widely applied to obtain the P- and S-wave velocity structure in the mantle, which is then used to calculate the density perturbation. However, the velocity model is mainly due to the thermal effects but not the compositional effects. A method of 3-D inversion of gravity anomaly developed in spherical coordinates is used to image the large-scale density structure of upper mantle in Southeast Asia. The mantle gravity anomalies used in inversion are calculated by removing the crustal effects from the observed gravity. With constraints of thermal density model from seismic tomography, the integrative density structure is estimated from gravity inversion. Consequently, we obtain the compositional density by subtracting the thermal density from the integrative structure. The result of inversion shows the anisotropic composition of subduction zones, Cratons and plates boundary in Southeast Asia. In the shallow depth, the compositional density anomalies of large scales present uniform features in oceanic and continental mantle. In depth of 75-175 km, there are differences between the thermal and the compositional variations. The density anomalies at these depths are both affected by temperature and composition of the upper mantle. Below 175-km depth, the density anomalies are dominated by the compositional variations. Furthermore, comparing with high seismicity occurred at moderate-depth (50-300 km), we found that the compositional density variations is one of the factor that inducing earthquakes. The constrained inversion of mantle gravity anomaly has possibility to reveal the subduction which is not clearly seen from low-resolution tomography data, and may reveal the relation of seismicity and composition in the upper mantle. This study is supported by the Program of International Science and

  11. Comparative Simulations of 2D and 3D Mixed Convection Flow in a Faulted Basin: an Example from the Yarmouk Gorge, Israel and Jordan

    NASA Astrophysics Data System (ADS)

    Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.

    2014-12-01

    Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014

  12. Time-dependent large aspect-ratio thermal convection in the earth's mantle

    NASA Astrophysics Data System (ADS)

    Weinstein, Stuart A.; Olson, Peter L.; Yuen, David A.

    Numerical simulations of two-dimensional time-dependent thermal convection in a Boussinesq, isoviscous, infinite Prandtl number fluid with isothermal, stress-free boundaries have been performed in large aspect-ratio configurations, in which the fluid is heated from below as well as internally. The value of the basal heated Rayleigh number ranged from 16000 to 800 000 and the Rayleigh number based on internal heat generation was varied from zero to 4 500 000. Large aspect-ratio cells are found to exist, however, they are time-dependent even at small values of the Rayleigh number. In the absence of internal heating, the onset of time-dependence occurs as a regular oscillation in the flow characteristics (Nusselt number, kinetic energy), and is accompanied by the presence of boundary layer instabilities (BLI) which exist within a large aspect-ratio circulation. At high values of the Rayleigh number the BLI are powerful features which leave the confines of the boundary layer and strongly perturb the large aspect-ratio circulation giving the flow a multi-scale character. Convective mixing of these powerful BLI results in heterogeneity in the cell interior which plays a role in the excitation of new BLI and establishes a negative temperature gradient in the cell interior. We have developed a fluid loop model which gives a qualitative explanation for the variation of the onset of time-dependence with aspect-ratio. The addition of internal heating tends to destabilize the large aspect-ratio cell configuration. Multi-cellular states last longer and occur more frequently with increasing amounts of internal heating. These calculations shed new light on a variety of time-dependent phenomena in geodynamics such as subduction, back-arc spreading, intraplate deformation, and the average geotherm. Recently, Jeanloz and Morris proposed that the seismic inhomogeneity parameter () can be used to measure the importance of internal heating in mantle convection. However, our

  13. Influence of Intrusive vs. Extrusive Magmatism on Venus' Tectonics and long-term Mantle Evolution: 2D and 3D Simulations

    NASA Astrophysics Data System (ADS)

    Tackley, Paul

    2014-05-01

    Here we extend the models of [1]. Numerical convection models of the thermochemical evolution of Venus are compared to present-day topography and geoid, recent resurfacing history and surface deformation. The models include melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that in stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick, cold crust, inconsistent with observations. Partitioning of heat-producing elements into the crust helps but does not help enough. Episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ˜150 Myr, initiating in one place and then spreading globally. During quiescent periods convection keeps the lithosphere thin. Magmatism keeps the mantle temperature constant over Venus's history. Crustal recycling occurs by entrainment in stagnant lid convection, and by lid overturn in episodic mode. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. The basalt density inversion below the olivine-perovskite transition causes compositional stratification around 730 km; breakdown of this layering increases episodicity but far less than episodic lid overturn. The classical stagnant lid mode with interior temperature approximately a rheological temperature scale lower than T_CMB is not reached because mantle temperature is controlled by magmatism while the core cools slowly from a superheated start. Core heat flow decreases with time, possibly shutting off the dynamo, particularly in episodic cases. Here we extend [1] by considering intrusive

  14. Physical Parameters Controlling Subduction Dynamics and Surface Topography in Self-consistent Global Models of Mantle Convection

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Pears, M. I.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2014-12-01

    Recent advances in numerical modelling allow global models of mantle convection to realistically reproduce the behaviour at convergent plate boundaries (Crameri et al., 2012a). This allows for a more extensive study of subduction that, in contrast to the numerous regional models, incorporates the complete framework of mantle convection. Here, we focus on different aspects of mantle convection including (i) slab dip variations, (ii) variations in radial mantle viscosity, and (iii) the presence of localised mantle upwellings and discuss their control on the dynamics of Earth-like plate tectonics. Additionally, we present the effect these parameter variations have on measurable quantities like dynamic topography and plate velocity. The models are calculated by the finite-volume code Stag-YY (e.g., Tackley 2008) using a multi-grid method on a fully staggered grid. Second, the sticky-air method (Matsumoto and Tomoda 1983; Schmeling et al, 2008) is applied and thus approximates a free surface when the sticky-air parameters are chosen carefully (Crameri et al., 2012b). Overall, this study demonstrates the ability of various parameters to significantly influence both subduction dynamics and surface topography. REFERENCES Crameri, F., et al. (2012a), Geophys. Res. Lett., 39(3). Crameri, F., et al. (2012b), Geophys. J. Int., 189(1). Matsumoto, T., and Y. Tomoda (1983), J. Phys. Earth, 31(3). Schmeling, H., et al. (2008), Phys. Earth Planet. Int., 171(1-4). Tackley, P. J. (2008), Phys. Earth Planet. Int., 171(1-4).

  15. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    SciTech Connect

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  16. Modeling 3-D density distribution in the upper mantle beneath the Yellowstone from inversion of geoid anomaly data

    NASA Astrophysics Data System (ADS)

    Moreno Chaves, C. M.; Ussami, N.

    2011-12-01

    We developed a simple three-dimensional scheme to invert geoid anomalies, aiming to map density variations in the lower crust and the upper mantle. Using a flat-Earth approximation, the model space is represented by a finite set of rectangular prisms. The linear inversion algorithm is based on Tikhonov regularization and the convergence of the solution is controlled by the Levenberg-Marquardt method. Our linear inversion algorithm does not require an initial density model, allowing it to be used where geological constraints on density are not available. To analyze the quality of the model density obtained by the inversion algorithm, we used the resolution and the covariance matrices. In order to study the thermal and the composition state beneath the Yellowstone and to test our algorithm inversion, geoid anomalies were inverted and modeled. Yellowstone exhibits a high geoid anomaly (~13 m), with a topographic swell of about 500 km wide. Residual geoid anomalies were obtained using the EGM2008 [Pavlis et al., 2008] geopotential model expanded up to degree 2160 after removing the long-wavelength component (degree 10). Lower crust and mantle-related geoid anomalies with -80 m amplitude were obtained after removing crustal effects (topographic masses, sediments and crustal thickness variations). The center of the negative geoid anomaly coincides geographically with the low velocity body (Yuan and Dueker [2005] and Waite et al. [2006]) in the upper mantle and with a depression of 12 km of the 410 km discontinuity detected by Fee and Dueker [2004]. Our results show that the lower crust and the upper mantle of the Yellowstone have a predominantly negative density contrast (-10 to -75 kg/m3) relative to the surrounding mantle. The mass deficiency mapped beneath the Yellowstone suggests the mantle to be hotter (-200 to -300 °C) and buoyant to isostatically sustain the high topography of this province (> 3000 m above sea level). The density model shows that the negative

  17. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  18. Boundary Layer Dynamics and Sub-Adiabaticity in Convecting Planetary Mantles

    NASA Astrophysics Data System (ADS)

    Moore, W. B.

    2007-05-01

    A broad range of phenomena are influenced by the behavior of thermal boundary layers in planetary mantles including plume temperatures, lithospheric stresses, resistance to plate motions, and the temperature structure of the mantle as a whole. The textbook picture of the temperature profile in a convecting layer consists of two boundary layers separated by a well-mixed, adiabatic interior. The sum of the temperature drops across the upper and lower boundary layers is equal to super-adiabatic temperature drop across the entire layer. This picture does not accurately describe, however, the horizontally averaged temperature structure derived from numerical solutions of the equations of infinite Prandtl number, Boussinesq convection. The sum of the average temperature drops across the boundary layers in such models is always greater than the super-adiabatic drop across the whole layer, with the result that some portions of the interior are sub-adiabatic. The excess average temperature drop across each boundary layer is due to the arrival of material from the other boundary layer which has not equilibrated with the well-mixed interior. It is this material which transfers heat conductively across the boundary and thus controls the heat transport of the layer. Internal heating breaks the symmetry of the boundary layers (as does temperature dependence of viscosity), and it is the interaction between the two boundary layers that sets the equilibrium temperature drops. The scaling of the temperature drop across each boundary layer is controlled by two competing factors which depend on the Rayleigh number in different ways: the scale of boundary layer instabilities and the velocity of plumes (hot and cold). Furthermore, these scalings change as the system becomes time-dependent at moderate Rayleigh number. At very high Rayleigh number, beyond that of most planetary mantles, the plumes do equilibrate with the interior and the textbook picture applies. A scaling theory for the

  19. Chemical and chronologic complexity in the convecting upper mantle: Evidence from the Taitao ophiolite, southern Chile

    NASA Astrophysics Data System (ADS)

    Schulte, Ruth F.; Schilling, Manuel; Anma, Ryo; Farquhar, James; Horan, Mary F.; Komiya, Tsuyoshi; Piccoli, Philip M.; Pitcher, Lynnette; Walker, Richard J.

    2009-10-01

    initial 187Os/ 188Os ratios, calculated for 6 Ma, that range from 0.126 ( γOs = -1) to as high as 0.561 ( γOs = +342). The Os isotopic systematics of each of these rocks may reflect derivation from mixed lithologies that include the peridotites, but may also include pyroxenites with considerably more radiogenic Os than the peridotites. This observation supports the view that suprachondritic Os present in MORB derives from mixed mantle source lithologies, accounting for some of the worldwide dichotomy in 187Os/ 188Os between MORB and abyssal peridotites. The collective results of this study suggest that this >500 km 3 block of the mantle underwent at least two stages of melting. The first stage occurred at ˜1.6 Ga, after which the block remained isolated and unmixed within the DMM. A final stage of melting recently occurred at or near the Chile Ridge, resulting in the production of at least some of the mafic rocks. Convective stirring of this mantle domain during a >1 Ga period was remarkably inefficient, at least with regard to Os isotopes.

  20. 3D High-Resolution Seismic Tomography in the Upper Mantle of Gulf of California Region by SEM Seismogram Simulation and Adjoint Inversion

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Forsyth, D. W.; Savage, B.

    2010-12-01

    In our previous surface wave study in Gulf of California area, we developed a moderate-resolution 3D shear velocity model by employing two-plane wave field representation array technique and 2D finite frequency kernels based on Born’s approximation. Using both amplitude and phase information of 22-111s teleseismic Rayleigh wave, we were able to constrain a lateral resolution on the order of 100 km in the upper 160 km depth. In order to enhance resolution beneath the highly heterogeneous Gulf region, we carry on further study using Spectral element method (SEM) for forward wave propagation simulation and adjoint method for tomographic inversion. The code we are using is SPECFEM3D_GLOBE by Komatitsch and Tromp et al. To enhance the resolution in the Gulf, we will minimize the waveform difference between the regional earthquake seismograms, recorded by NARS-Baja seismic array and stations in southern California, and synthetic seismograms simulated by SEM, to iteratively update the current model based on an adjoint inversion. Taking our current 3D moderate-resolution model as starting point and a recently developed crustal structure of Gulf region should help to reduce the number of iterations. There are two reasons that resolution should be enhanced compared to surface wave tomography: first, regional events contain more high frequency signals than teleseismic events; second, SEM is a full waveform synthesis method avoiding many of the usual approximations in tomographic studies. Improved tomographic images of 3D velocity heterogeneities in the upper mantle of Gulf of California will help to identify compositional and temperature variations, leading to a better understanding of mantle dynamics in the region.

  1. Constructing a starting 3D shear velocity model with sharp interfaces for SEM-based upper mantle tomography in North America

    NASA Astrophysics Data System (ADS)

    Calo, M.; Bodin, T.; Yuan, H.; Romanowicz, B. A.; Larmat, C. S.; Maceira, M.

    2013-12-01

    Seismic tomography is currently evolving towards 3D earth models that satisfy full seismic waveforms at increasingly high frequencies. This evolution is possible thanks to the advent of powerful numerical methods such as the Spectral Element Method (SEM) that allow accurate computation of the seismic wavefield in complex media, and the drastic increase of computational resources. However, the production of such models requires handling complex misfit functions with more than one local minimum. Standard linearized inversion methods (such as gradient methods) have two main drawbacks: 1) they produce solution models highly dependent on the starting model; 2) they do not provide a means of estimating true model uncertainties. However, these issues can be addressed with stochastic methods that can sample the space of possible solutions efficiently. Such methods are prohibitively challenging computationally in 3D, but increasingly accessible in 1D. In previous work (Yuan and Romanowicz, 2010; Yuan et al., 2011) we developed a continental scale anisotropic upper mantle model of north America based on a combination of long period seismic waveforms and SKS splitting measurements, showing the pervasive presence of layering of anisotropy in the cratonic lithosphere with significant variations in depth of the mid-lithospheric boundary. The radial anisotropy part of the model has been recently updated using the spectral element method for forward wavefield computations and waveform data from the latest deployments of USarray (Yuan and Romanowicz, 2013). However, the long period waveforms (periods > 40s) themselves only provide a relatively smooth view of the mantle if the starting model is smooth, and the mantle discontinuities necessary for geodynamical interpretation are not imaged. Increasing the frequency of the computations to constrain smaller scale features is possible, but challenging computationally, and at the risk of falling in local minima of the misfit function. In

  2. New Insights into the Lithospheric Mantle Carbon Storage in an Intra-Continental Area: A Geochemical and 3D X-Ray Micro-Tomography Study

    NASA Astrophysics Data System (ADS)

    Creon, L.; Rouchon, V.; Rosenberg, E.; Delpech, G.; Youssef, S.; Guyot, F. J.; Szabo, C.

    2014-12-01

    The Pannonian Basins situated in a context of lithospheric fluxing by mantle CO2-rich fluids, as evidenced by Plio-Pleistocene alkaline basalts and Basin gas geochemical data [1]. Such type of intracontinental CO2-fluxes remain poorly constrained at the scale of the global C-cycle. We report here the first quantification of the CO2 volumes stored in the lithospheric mantle, by coupling geochemical and 3D micro-tomography studies of lherzolitic and harzburgitic mantle xenoliths. The Pannonian Basin xenolith peridotites present numerous signs of melt/fluid migration. The compositions of glasses found in the peridotites vary from sub-alkaline (Na2O + K2O = 3.8 wt. %) to alkaline (Na2O + K2O = 12.6 wt. %) and from mafic (SiO2 = 48.2 wt. %) to more felsic (SiO2 = 62.1 wt. %) compositions and differ markedly from the host basalts of the xenoliths. Microthermometric and Raman spectroscopic studies on fluid inclusions (n = 115) show pure CO2 compositions with densities range between 0.6 and 0.9 g.cm3 [290 to 735 MPa (PCO2)], corresponding to deep fluid trapping on both sides of the Moho. High-resolution synchrotron X-ray micro-tomography (Micro-CT), together with laboratory micro-CT were performed to obtain information about structure, volume and density of each phase (minerals, melts and fluids). Fluids and melts are mainly located at grain boundaries and secondary trails cut off the grain boundaries, which implies a contemporary introduction of such fluids [Figure 1]. The amount of fluid inclusions in xenoliths is heterogeneous and varied from 0.79 ± 0.15 to 4.58 ± 0.54 vol % of the peridotite. The carbon-dioxide content stored in the lithospheric mantle, due to the percolation of asthenospheric melts produced in the mantle beneath the Pannonian Basin, can be estimated by the combination of 3D reconstruction (Micro-CT) and CO2 pressures from inclusions. [1] B. Sherwood Lollar et al., 1997. Geochim. Cosmochim. Acta, vol. 61, no. 11, pp. 2295-2307

  3. Relocation of the Waldkirch seismic event, December 5, 2004, with regional 1D- and 3D-velocity models in the presence of upper mantle anisotropy

    NASA Astrophysics Data System (ADS)

    Muench, Thomas; Koch, Manfred; Schlittenhard, Jörg

    2010-05-01

    On December 5, 2004 a strong earthquake occurred near the city of Waldkirch, about 30 km's north of Freiburg, with a local magnitude of ML = 5.4. This seismic event was one of the strongest observed since the ML = 5.7 'Schwäbische Alb' event of September 3, 1978, 30 years before. In the aftermath of the event several institutions (Bens, BGR, LGBR, LED, SED and NEIC) have attempted to relocate this earthquake that came up with a hypocentral depth range of 9 - 12 km which. In fact, as the exact hypocentral location of the Waldkirch - and other events in the area - namely, the seismic depths, are of utmost importance for the further understanding of the seismotectonics as well as of the seismic hazard in the upper Rhinegraben area, one cannot over stress the necessity for a hypocenter relocation as best as possible. This requires a careful analysis of all factors that may impede an unbiased relocation of such an event. In the present talk we put forward the question whether the Waldkirch seismic event can be relocated with sufficient accuracy by a regional network when, additionally, improved regional 1D- and 3D seismic velocity models for the crust and upper mantle that take into consideration Pn-anisotropy of the upper mantle beneath Germany are employed in the hypocentral determination process. The seismological work starts with a comprehensive analysis of the dataset available for the relocation of the event. By means of traveltime curves a reevaluation of the observed phases is done and it is shown that some of the big observed traveltime residuals are most likely the consequence of wrongly associated phases as well as of the neglect of the anisotropic Pn traveltime correction for the region. Then hypcocenter relocations are done for 1D vertically inhomogeneous and 3D laterally inhomogeneous seismic velocity models, without and with the anisotropic Pn-traveltime correction included. The effects of the - often not well-known - Moho depth and of the VP

  4. Numerical studies on convective stability and flow pattern in three-dimensional spherical mantle of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takatoshi; Kameyama, Masanori; Ogawa, Masaki

    2016-06-01

    We explore thermal convection of a fluid with a temperature-dependent viscosity in a basally heated three-dimensional spherical shell using linear stability analyses and numerical experiments, while considering the application of our results to terrestrial planets. The inner to outer radius ratio of the shell f assumed in the linear stability analyses is in the range of 0.11-0.88. The critical Rayleigh number Rc for the onset of thermal convection decreases by two orders of magnitude as f increases from 0.11 to 0.88, when the viscosity depends sensitively on the temperature, as is the case for real mantle materials. Numerical simulations carried out in the range of f = 0.11-0.55 show that a thermal boundary layer (TBL) develops both along the surface and bottom boundaries to induce cold and hot plumes, respectively, when f is 0.33 or larger. However, for smaller f values, a TBL develops only on the bottom boundary. Convection occurs in the stagnant-lid regime where the root mean square velocity on the surface boundary is less than 1% of its maximum at depth, when the ratio of the viscosity at the surface boundary to that at the bottom boundary exceeds a threshold that depends on f. The threshold decreases from 106.5 at f = 0.11 to 104 at f = 0.55. If the viscosity at the base of the convecting mantle is 1020-1021 Pa s, the Rayleigh number exceeds Rc for Mars, Venus and the Earth, but does not for the Moon and Mercury; convection is unlikely to occur in the latter planets unless the mantle viscosity is much lower than 1020 Pa s and/or the mantle contains a strong internal heat source.

  5. 3-D Modeling for Upper Mantle Anisotropy Beneath Idaho-Oregon (IDOR) Region Using Sks Splitting Intensity Measurements from IDOR Passive Seismic Project Dataset

    NASA Astrophysics Data System (ADS)

    Hongsresawat, S.; Panning, M. P.; Russo, R. M.; Mocanu, V. I.; Stanciu, A. C.; Bremner, P. M.; Torpey, M. E.; VanDecar, J. C.

    2014-12-01

    We used data recorded at 86 broadband seismic stations of the IDOR Passive Seismic Project to determine upper mantle anisotropy across the suture along which Blue Mountain island-arc terranes accreted to North America during Cretaceous. This suture is currently associated with the Western Idaho Shear Zone (WISZ), a narrow, highly-deformed ductile fault that was the locus of both dextral strike-slip along, and subduction beneath, the Paleozoic margin of the North American craton. We measured shear wave splitting intensity (SI), a seismic observable that is suitable for use in 3-D inversions of upper mantle seismic anisotropy, to determine these fabrics beneath the IDOR network. SI fast-polarization directions are spatially coherent across the region, and fall into three main groups: a group with fast azimuths trending ENE-WSW, observed at stations in eastern Oregon and the NW-SE-striking western Snake River Plain; a group with E-W trending fast azimuths observed at stations along the WISZ and the Idaho Batholith, which outcrops immediately east of the suture zone; and a group with ENE-WSW trending fast azimuths observed at stations situated in the Basin-and-Range extended region of southeastern Idaho. SI delay times range from 0.46 to 1.85 seconds, with a mean of 1.1 s. We also used backazimuthal variations of SI at all stations to invert for for 3-D anisotropic fabric using the finite-frequency approach called vectorial tomography (Chevrot and Monteiller, 2009). Our preliminary results are consistent with alignment of upper mantle fabrics in the extension direction as Basin-and-Range extension propagates northward into less-extended regions of Idaho and Oregon.

  6. New constraints on the 3D shear wave velocity structure of the upper mantle underneath Southern Scandinavia revealed from non-linear tomography

    NASA Astrophysics Data System (ADS)

    Wawerzinek, B.; Ritter, J. R. R.; Roy, C.

    2013-08-01

    We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.

  7. Earthquake calamity warning from space station: orbital dynamics coupling geology mantle convection

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Liu, Han-Shou

    2009-04-01

    It is not surprising that the earthquakes happened among clashing tectonic plate boundaries where numerous earthquake stations exist. Then, why do we need more? The significance of Sichuan and Tongshan earthquakes of China is a wakeup call that major earthquakes of logarithmic Richter scales beyond 7 could happen exactly within a single tectonic plate surprisingly. Thus, the previous border surveillance is broadened to areas coverage. Judging the success of archival survey of NASA with the gravitational potential by Liu et al., we review a unified earthquakes theory covering both the peripheral and the central plate in this paper, so that we can take seriously the need of a comprehensive global surveillance of natural calamity in the Space. The earth surface crust, like a kitchen kettle lid, covers tightly the melted mantle rock layer, like a pea soup cooking in the kettle. Given the time they will all become bubbling, rattling & shaking, known as the Bernard instability. This instability is ubiquitous for any liquid state matter being heated from below, if and only if it has a real positive thermal expansion coefficient. Likewise, the earth mantle is being cooked from below by an enormously hot fireball of the size of a moon. The heat comes from the radioactive decay confined within the core over eon's age. Due to the enormous gravitation attraction being always real positive and additive, the inner core is bifurcated into 2 regimes, a heat-melted liquid metal regime, where the earth magnetic field is produced and predicted by Faraday induction law. And further inside there exists a tightly squeezed solid metal ball regime, due to the gigantic weight compression, as confirmed by sonar experiments. The complexity of earth Bernard instability is due to the extra rotational Coriolis force that makes the up-down thermal convection side-way, creating the mass imbalance and permitting in-situ measurements feasible at a distance.

  8. a Multiple Data Set Joint Inversion Global 3d P-Velocity Model of the Earth's Crust and Mantle for Improved Seismic Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Begnaud, M. L.; Hipp, J. R.; Chael, E. P.; Encarnacao, A.; Maceira, M.; Yang, X.; Young, C. J.; Phillips, W.

    2013-12-01

    SALSA3D is a global 3D P wave velocity model of the Earth's crust and mantle developed specifically to provide seismic event locations that are more accurate and more precise than are locations from 1D and 2.5D models. In this paper, we present the most recent version of our model, for the first time jointly derived from multiple types of data: body wave travel times, surface wave group velocities, and gravity. The latter two are added to provide information in areas with poor body wave coverage, and are down-weighted in areas where body wave coverage is good. To constrain the inversions, we invoked empirical relations among the density, S velocity, and P velocity. We demonstrate the ability of the new SALSA3D model to reduce mislocations and generate statistically robust uncertainty estimates for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. We obtain path-dependent travel time prediction uncertainties for our model by computing the full 3D model covariance matrix of our tomographic system and integrating the model slowness variance and covariance along paths of interest. This approach yields very low travel time prediction uncertainties for well-sampled paths through the Earth and higher uncertainties for paths that are poorly represented in the data set used to develop the model. While the calculation of path-dependent prediction uncertainties with this approach is computationally expensive, uncertainties can be pre-computed for a network of stations and stored in 3D lookup tables that can be quickly and efficiently interrogated using GeoTess software.

  9. Melt-rock reaction in the asthenospheric mantle: Perspectives from high-order accurate numerical simulations in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.

    2013-12-01

    The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales

  10. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  11. Electromagnetic mini arrays (EMMA project). 3D modeling/inversion for mantle conductivity in the Archaean of the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.

    2009-04-01

    Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates

  12. Discontinuous and smooth 3D structure of the upper mantle and crust across and along the Eurasia-Africa plate boundary

    NASA Astrophysics Data System (ADS)

    Marone, F.; van der Meijde, M.; van der Lee, S.; Giardini, D.

    2003-04-01

    We have acquired and analyzed new seismological data to investigate and map seismic discontinuities and to image smooth 3DS-velocity structure of the upper mantle and crust of the Africa-Eurasia suture zone. The results of this effort have a resolution that is complementary to that of existing studies. The new data have been recorded at 25 broadband seismic stations (MIDSEA project), temporarily deployed across and along the plate boundary region. We used additional seismic data from permanent networks in the region. We jointly inverted linear constraints on Moho depth and upper mantleS-velocity structure obtained by waveform modeling (ofS- and surface wave trains) and from point estimates of crustal thickness (from receiver function, gravity and active-source seismic studies). This joint inversion has yielded a Moho map and a 3D upper mantleS-velocity model. The Moho map shows strong lateral variations, which confirm the complex evolution of this plate boundary region. The Moho appears to be deeper than 45 km beneath mountain ranges (e.g. Alps), while in locations dominated by extension it is found shallower than 15 km (e.g. Algero-Provençal Basin). Beneath the eastern Atlantic Ocean, the crust may be up to 5 km thicker than standard oceanic crust (6 km). Serpentinization of the sub-Moho mantle at the Mid-Atlantic ridge could be a process contributing to the imaging of an anomalously deep apparent Moho in this region. Depsite the high level of heterogeneity, the region appears to be very close to isostatic equilibrium. The 3D upper mantleS-velocity structure shows strong correlation between the imaged heterogeneities and the tectonics along the plate boundary. The Eurasia-Africa suture zone manifests itself in the upper mantle mainly as a belt of fast material representing subducted oceanic lithosphere. A new, striking and resolved feature of our model is a high velocity anomaly imaged beneath eastern Spain between 250 and 500 km depth. We suggest that this fast

  13. Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Wicht, Johannes; Hori, Kumiko

    2015-12-01

    Within the fluid iron cores of terrestrial planets, convection and the resulting generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, such as the thermal footprint of a giant impact or hot mantle plumes, will locally reduce the heat flux through the core mantle boundary (CMB), thereby weakening core convection and affecting the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary sizes, amplitudes, and positions affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric, axisymmetric (EAA) zonal flows. For purely hydrodynamic models, the EAA symmetry scales almost linearly with the CMB amplitude and size, whereas self-consistent dynamo simulations typically reveal either suppressed or drastically enhanced EAA symmetry depending mainly on the horizontal extent of the heat flux anomaly. Our results suggest that the length scale of the anomaly should be on the same order as the outer core radius to significantly affect flow and field symmetries. As an implication to Mars and in the range of our model, the study concludes that an ancient core field modified by a CMB heat flux anomaly is not able to heterogeneously magnetise the crust to the present-day level of north-south asymmetry on Mars. The resulting magnetic fields obtained using our model either are not asymmetric enough or, when they are asymmetric enough, show rapid polarity inversions, which are incompatible with thick unidirectional magnetisation.

  14. Linear analysis on the onset of thermal convection of highly compressible fluids with variable physical properties: Implications for the mantle convection of super-Earths

    NASA Astrophysics Data System (ADS)

    Kameyama, Masanori

    2016-02-01

    A series of our linear analysis on the onset of thermal convection was applied to that of highly compressible fluids in a planar layer whose thermal conductivity and viscosity vary in space, in order to study the influences of spatial variations in physical properties expected in the mantles of massive terrestrial planets. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. Our analysis demonstrated that the nature of incipient thermal convection is strongly affected by the interplay between the adiabatic compression and spatial variations in physical properties of fluids. Owing to the effects of adiabatic compression, a `stratosphere' can occur in the deep mantles of super-Earths, where a vertical motion is insignificant. An emergence of `stratosphere' is greatly enhanced by the increase in thermal conductivity with depth, while it is suppressed by the decrease in thermal expansivity with depth. In addition, by the interplay between the static stability and strong temperature dependence in viscosity, convection cells tend to be confined in narrow regions around the `tropopause' at the interface between the `stratosphere' of stable stratification and the `troposphere' of unstable stratification. We also found that, depending on the variations in physical properties, two kinds of stagnant regions can separately develop in the fluid layer. One is well-known `stagnant-lids' of cold and highly viscous fluids, and the other is `basal stagnant regions' of hot and less viscous fluids. The occurrence of `basal stagnant regions' may imply that convecting motions can be insignificant in the lowermost part of the mantles of massive super-Earths, even in the absence of strong increase in viscosity with pressure (or depth).

  15. Influence of Intrusive vs. Extrusive Magmatism on Venus' Tectonics and long-term Mantle Evolution: 2D and 3D Simulations

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.

    2014-12-01

    Here we extend the numerical convection models of Venus models of [1], which included melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that for stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick, cold crust, inconsistent with observations. In contrast, episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ˜150 Myr, initiating in one place and then spreading globally. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. Here we extend [1] by considering intrusive magmatism as an alternative to the purely extrusive magmatism previously assumed. Intrusive magmatism warms and weakens the crust, resulting in substantial surface deformation and a thinner crust. This is further enhanced by using a basaltic rheology for the crust instead of assuming the same rheological parameters as for the mantle. In some cases massive intrusive magmatism can even lead to episodic lithospheric overturn events without plastic yielding. Here we quantitatively analyse the resulting surface deformation and other signatures, and compare to observations in order to constrain the likely ratio of intrusive to extrusive magmatism. [1] Armann, M., and P. J. Tackley (2012), Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models, J. Geophys. Res., 117, E12003, doi:10.1029/2012JE004231.

  16. Determination of sub-lithospheric stress due to mantle convection using GOCE gradiometric data over Iran

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Romeshkani, Mohsen

    2015-11-01

    Sub-lithospheric stress due to mantle convection can be determined from gravimetric data based on Runcorn's theory. In this paper, the satellite gradiometric data of the recent European satellite mission, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) is used to determine the sub-lithospheric stress locally in Iran. The method of S function (SF) with numerical differentiation is developed further and an integral equation connecting satellite gradiometric data to SF is presented. The integral equation will be used to invert the real gradiometric data of GOCE to recover the SF. Later on, the sub-lithospheric shear stresses, which are the northward and eastward derivatives of the SF, are computed numerically. Our numerical results show that the mean squares error of the recovered SF is smaller than the values of the SF meaning that the recovery process is successful. Also, the recovered stress has a good agreement with the tectonic boundaries and active seismic points of the world stress map (WSM) database. This stress reaches amplitude of 100 MPa in the territory.

  17. The mantle convection model with non-Newtonian rheology and phase transitions: The flow structure and stress fields

    NASA Astrophysics Data System (ADS)

    Bobrova, A. M.; Baranov, A. A.

    2016-01-01

    The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σ xz and σ xx in the Earth's mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σ xz and superlithostatic horizontal stresses σ xx are calculated. In the model area of the subducting slabs the stresses are 60-80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields

  18. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Griffin, W. L.; Yang, Y.; Jones, A. G.; D. Connolly, J. A.; O'Reilly, S. Y.

    2013-05-01

    of natural mantle samples collected from different tectonic settings (xenoliths, abyssal peridotites, ophiolite samples, etc.). This strategy relaxes more typical and restrictive assumptions such as the use of local/limited xenolith data or compositional regionalizations based on age-composition relations. We demonstrate that the combination of our ρ(m) with a L(m) that exploits the differential sensitivities of specific geophysical observables provides a general and robust inference platform to address the thermochemical structure of the lithosphere and sublithospheric upper mantle. An accompanying paper deals with the integration of these two functions into a general 3-D multiobservable Bayesian inversion method and its computational implementation.

  19. Mixing in mantle convection models with self-consistent plate tectonics and melting and crustal production: Application to mixing in the early Earth

    NASA Astrophysics Data System (ADS)

    Tackley, Paul

    2016-04-01

    It is generally thought that the early Earth's mantle was hotter than today, which using conventional convective scalings should have led to vigorous convection and mixing. Geochemical observations, however, suggest that mixing was not as rapid as would be expected, leading to the suggestion that early Earth had stagnant lid convection (Debaille et al., EPSL 2013). Additionally, the mantle's thermal evolution is difficult to explain using conventional scalings because early heat loss would have been too rapid, which has led to the hypothesis that plate tectonics convection does not follow the conventional convective scalings (Korenaga, GRL 2003). One physical process that could be important in this context is partial melting leading to crustal production, which has been shown to have the major effects of buffering mantle temperature and carrying a significant fraction of the heat from hot mantle (Nakagawa and Tackley, EPSL 2012), making plate tectonics easier (Lourenco et al., submitted), and causing compositional differentiation of the mantle that can buffer core heat loss (Nakagawa and Tackley, GCubed 2010). Here, the influence of this process on mantle mixing is examined, using secular thermo-chemical models that simulate Earth's evolution over 4.5 billion years. Mixing is quantified both in terms of how rapidly stretching occurs, and in terms of dispersion: how rapidly initially close heterogeneities are dispersed horizontally and vertically through the mantle. These measures are quantified as a function of time through Earth's evolution. The results will then be related to geochemically-inferred mixing rates.

  20. Multi-scale Finite-Frequency Travel-time Tomography Applied to Imaging 3-D Velocity Structure of the Upper Mantle Beneath the Southwest United States

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hung, S.

    2007-12-01

    Seismic tomographic imaging has played a key component to unravel the deep processes that caused the surface morphology and rift magmatism in the southwest United States. Several studies used teleseismic body- wave arrivals recorded by the La Ristra experiment, a dense broadband array of 950-km in length deployed during 1999-2001 and run through the Great Plains, the Rio Grande Rift, and the Colorado Plateau, to construct a 2-D tomographic image of the upper mantle structure beneath this linear array (e.g., Gao et al., 2004). However, because of the inevitable smoothing and damping imposed in the tomographic model, the resulting velocity contrast is too weak to explain distinct P and S waveform changes across the array (Song and Helmberger, 2007). In this study, we include all the data from the La Ristra and available nearby arrays and reexamine finite- frequency travel time delays measured by inter-station cross correlation of waveforms at both high- (0.3-2 Hz for P and 0.1-0.5 Hz for S) and low-frequencies (0.03-0.125 Hz for P and 0.03-0.1 Hz for S). Differing from the previous models that rely on classical ray theory and simple grid parameterization, our inversion considers more realistic 3-D sensitivity kernels for relative travel-time delays and a wavelet-based, multi-scale parameterization that enables to yield robust features with spatially-varying resolutions. Our preliminary P-wave model reveals a prominent low-velocity zone extending from near surface to the depth of 300 km beneath the Rio Grande Rift, while the upper mantle which underlies the Great Plains and the Colorado Plateau is seismically fast. We will demonstrate the difference and improvement of 3-D tomographic models through the use of finite-frequency kernels and multi-scale parameterization.

  1. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    SciTech Connect

    Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the

  2. Convection experiments in a centrifuge and the generation of plumes in a very viscous fluid. [for earth mantle models

    NASA Technical Reports Server (NTRS)

    Nataf, H.-C.; Hager, B. H.; Scott, R. F.

    1984-01-01

    In this paper, experiments are described for which inertial effects are negligible. A small aspect-ratio tank filled with a very viscous fluid (Pr = 10 to the 6th) is used to observe the behavior of convection for Rayleigh numbers up to 6.3 x 10 to the 5th. These high values are reached by conducting the experiment in a centrifuge which provides a 130-fold increase in apparent gravity. Rotational effects are small, but cannot be totally dismissed. In this geometry, thermal boundary layer instabilities are indeed observed, and are found to be very similar to their lower Prandtl number counterparts. It is tentatively concluded that once given a certain degree of 'vulnerability' convection can develop 'plume' like instabilities, even when the Prandtl number is infinite. The concept is applied to the earth's mantle and it is speculated that 'plumes' could well be the dominant mode of small-scale convection under the lithospheric plates.

  3. Glacial isostatic adjustment and relative sea-level changes: the role of lithospheric and upper mantle heterogeneities in a 3-D spherical Earth

    NASA Astrophysics Data System (ADS)

    Spada, G.; Antonioli, A.; Cianetti, S.; Giunchi, C.

    2006-05-01

    The response of the Earth to the melting of the Late Pleistocene ice sheets is commonly studied by spherically layered models, based on well-established analytical methods. In parallel, a few models have been recently proposed to circumvent the limitations imposed by spherical symmetry, and to reproduce the actual structure of the lithosphere and of the upper mantle. Their main outcome is that laterally varying rheological structures may significantly affect various geophysical quantities related to glacial isostatic adjustment (GIA), and particularly post-glacial relative sea-level (RSL) variations and 3-D crustal velocities in formerly ice-covered regions. In this paper, we contribute to the ongoing debate about the role of lithospheric and mantle heterogeneities by new 3-D spherical Newtonian finite elements models and we directly compare their outcomes with publicly available global RSL data. This differs from previous investigations, in that have mainly focused on extensive sensitivity analyses or have considered a limited number of RSL observations from formerly glaciated regions and their periphery. In our study the lithospheric thickness mimics the global structure of the cratons based on geological evidence, and the upper mantle includes a low-viscosity zone beneath the oceanic lithosphere. We use two distinct global surface loads, based upon the ICE1 and ICE3G deglaciation chronologies, respectively. Our main finding is that using all of the available RSL observations in the last 6000 years it is not possible to discern between homogeneous and heterogeneous GIA models. This result, which holds for both ICE1 and ICE3G, suggests that the cumulative effects of laterally varying structures on the synthetic RSL curves cancel out globally, yielding signals that do not significantly differ from those based on the 1-D models. We have also considered specific subsets of the global RSL database, sharing similar geographical settings and distances from the main

  4. Calibration of 3D Upper Mantle Structure in Eurasia Using Regional and Teleseismic Full Waveform Seismic Data

    SciTech Connect

    Barbara Romanowicz; Mark Panning

    2005-04-23

    Adequate path calibrations are crucial for improving the accuracy of seismic event location and origin time, size, and mechanism, as required for CTBT monitoring. There is considerable information on structure in broadband seismograms that is currently not fully utilized. The limitations have been largely theoretical. the development and application to solid earth problems of powerful numerical techniques, such as the Spectral Element Method (SEM), has opened a new era, and theoretically, it should be possible to compute the complete predicted wavefield accurately without any restrictions on the strength or spatial extent of heterogeneity. This approach requires considerable computational power, which is currently not fully reachable in practice. We propose an approach which relies on a cascade of increasingly accurate theoretical approximations for the computation of the seismic wavefield to develop a model of regional structure for the area of Eurasia located between longitudes of 30 and 150 degrees E, and latitudes of -10 to 60 degrees North. The selected area is particularly suitable for the purpose of this experiment, as it is highly heterogeneous, presenting a challenge for calibration purposes, but it is well surrounded by earthquake sources and, even though they are sparsely distributed, a significant number of high quality broadband digital stations exist, for which data are readily accessible through IRIS (Incorporated Research Institutions for Seismology) and the FDSN (Federation of Digital Seismic Networks). The starting models used will be a combination of a-priori 3D models recently developed for this region, combining various geophysical and seismological data, and a major goal of this study will be to refine these models so as to fit a variety of seismic waveforms and phases.

  5. 3-D patterns and volumes of decompression melting fueled by asthenospheric flow: comparison and interaction of shear-driven upwelling with small-scale convection

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Conrad, C. P.; Harmon, N.; Bianco, T. A.; Smith, E. I.

    2011-12-01

    Volcanism far from plate boundaries is typically ascribed to mantle plumes. Related hotspot melting can indeed explain a wide range of observations at a fair number of age-progressive volcano lineaments. Various other sites of intraplate volcanism, however, such as in the western US and the south Pacific, require alternative explanations, for which candidates are asthenospheric flow and lithospheric cracking. While cracking mechanisms presume abundant metastable melt in the asthenosphere, upward flow in the asthenosphere can generate significant amounts of decompression melting to support intraplate volcanism. Shear-driven upwellings (SDU) arise from rheological heterogeneity in the asthenosphere, a configuration that can redirect vigorous horizontal shearing into localized upwellings. Thermally-driven instabilities (small-scale convection, or SSC) develop at the base of cool and relatively thick lithosphere. It has been shown that areas with abundant non-hotspot volcanism indeed statistically correlate with regions of large asthenospheric shear [Conrad et al., 2011, see URL below]. In three-dimensional thermochemical numerical simulations, we investigate the relevance of SDU and SSC for mantle melting and intraplate volcanism. Depending on ambient mantle viscosity, plate thickness, asthenospheric shear, as well as the geometry and viscosity contrast of rheological heterogeneity (i.e., low-viscosity pockets), either SDU or SSC dominates asthenospheric flow and decompression melting. SDU is promoted over SSC by high viscosities, young plates, high shear, as well as wide, shallow, and strongly contrasting heterogeneity. Once melting initiates, it is amplified through the positive feedback effects of melt buoyancy (buoyant melting instability, or BMI), and lubrication. However, degrees of melting are effectively capped by stiffening of the residue upon melt and water extraction. In some cases, the dominance of SDU over SSC or vice-versa is transient, since

  6. Rheological transition in mantle convection with a composite temperature-dependent, non-Newtonian and Newtonian rheology

    NASA Technical Reports Server (NTRS)

    Van Den Berg, Arie P.; Yuen, David A.; Van Keken, Peter E.

    1995-01-01

    Numerical simulations of mantle convection with a composite temperature-dependent, Newtonian and non-Newtonian creep law have revealed a transition in the dominant creep mechanism with the increasing vigour of convection. Newtonian creep is found to dominate in the low Rayleigh number regime. With sufficiently high effective Rayleigh number, the overall creep mechanism in the convective flow becomes non-Newtonian. The transitional Rayleigh number increases strongly with the activation energy. These results would suggest a scenario that in the early epochs of Earth the flow in the mantle would have been governed by non-Newtonian rheology and would have exhibited both strong spatial and temporal fluctuations. With time the flow mechanism would behave like a Newtonian fluid and would have a different time-dependent character. In time-dependent Newtonian-dominated flows there are still localized features with distinctly non-Newtonian character. Our analysis of the relative contributions to the lateral viscosity field supports the idea that the inference of the nature of lateral viscosity heterogeneities by seismic tomography may be strongly contaminated by the dominant non-Newtonian contributions to the total lateral viscosity field.

  7. Exploring Geothermal Energy Potential in Ireland through 3-D Geophysical-Petrological Modelling of Surface Heat-Flow and Crustal and Upper-Mantle Structure

    NASA Astrophysics Data System (ADS)

    Fullea, J.; Muller, M. R.; Jones, A. G.

    2012-04-01

    Little is known of Ireland's deep, low-enthalpy geothermal resources and the potential for space heating and/or electricity generation based on geothermal energy to displace Ireland's significant reliance on carbon-based fuels. IRETHERM (www.iretherm.ie) is a four-and-a-half year, all-island, academic-government-industry collaborative project, initiated in 2011, with the overarching objective of developing a strategic and holistic understanding of Ireland's geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One of the challenges in searching for deep geothermal resources in the relatively unexplored setting of Ireland lies in identifying those areas most likely to support significantly elevated temperatures at depth. Available borehole data, although sparse and clustered around areas of mineral and hydrocarbon interest, suggest a marked regional increase in surface heat-flow across Ireland, from ~40 mW/m2 in the south to >80 mW/m2 in the north. The origins of both the observed regional heat-flow trend and local temperature anomalies have not been investigated and are not currently understood. Although variations in the structure of the crust and lithosphere have been revealed by a number of active-source seismic and teleseismic experiments, their effects on surface heat-flow have not been modelled. Bulk 3-D variation in crustal heat-production across Ireland, which may contribute significantly to the observed regional and local temperature variations, has also not been determined. We investigate the origins of Ireland's regional heat-flow trend and regional and local temperature variations using the software package LitMod. This software combines petrological and geophysical modelling of the lithosphere and sub-lithospheric upper mantle within an internally consistent thermodynamic-geophysical framework, where all relevant properties are functions of temperature, pressure and chemical composition. The major

  8. Stress Coupling Relationship between Mantle Convection and Seismogenic Layer in Southeastern Tibetan Plateau and its Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Qiang, H.

    2015-12-01

    The lithospheric stress states and interlayer coupling interaction is of great significant in studying plate driven mechanism and seismogenic environment. The coupling relationship between mantle convection generated drag stress in the lithospheric base and seismogenic layer stress in the crust represents the lithospheric mechanical coupling intensity level. We calculate the lithospheric bottom mantle convection stress field of the southeastern Tibetan Plateau using 11~36 spherical harmonic coefficients of gravity model EGM2008. Meanwhile we collect and organize the focal mechanism of 1131 earthquakes that occurred from 2000 to now in Sichuan-Yunnan region. The current seismogenic layer stress and stress field before Lushan earthquake are calculated by the damping regional stress tensor inversion. We further analyze the correlation between the two kinds of stress fields, then discuss the relation between mechanics coupling situation and strong earthquakes in different regions. The results show that: (1) Most of Sichuan-Yunnan region is located in the coupling and decoupling intermediate zone. Coupling zones distribute on the basis of block, the eastern South China block has strong coupling, and the coupling phenomenon also exists in parts of the northern Tibet block, Balyanlkalla block in the northwest and southwest Yunnan block. The decoupling mainly occurs in Songpan-Ganzi block, connecting with the strong coupling South China block and Longmenshan fault zone is their boundary. (2) We have analyzed seismogenic mechanism, then proposed the border zone of strong and weak coupling relation between mantle convection stress and seismogenic layer stress exists high seismic risk. The current coupling situation shows that Longmenshan fault zone is still in the large varying gradient area of coupling intensity level, it has conditions to accumulate energy and develop earthquakes. Other dangerous areas are: Mingjiang, Xianshuihe, Anninghe, Zemuhe, the Red River, Nantinghe

  9. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  10. Blankenbach 3 revisited: intricate time-dependent patterns in a simple model of mantle convection

    NASA Astrophysics Data System (ADS)

    Hu, Z.; van Keken, P. E.

    2010-12-01

    We evaluate time-dependent nature of mantle convection using a simple 2D Cartesian model with internal heating based on the benchmark case 3 in Blankenbach et al. (Geophysical Journal International, 1989). We are particularly interested in the bifurcation patterns of the Vrms-Nu phase plot for Rayleigh numbers (Ra) around the benchmark value (Ra = 2.16×105), but more information is disclosed when we go to higher Ra (up to 8×105). We also investigate the role of the boundary conditions, for which we change to periodic boundary conditions for a second bifurcation study. We find an intricate pattern in the behavior of the heat flow (as measured by the Nusselt number Nu(t)) and the kinetic energy (as measured by Vrms(t)) which include period doubling, break down of periodic into episodic flow and reorganization into periodic flow at higher Ra. Two patterns of bifurcation are found. One is the period doubling pattern, described in Blankenbach et al. 1989 and referred to as P2-P4 bifurcation. The period doubling results from the differentiation of existing limit points of the time series of Nu or Vrms. The other pattern is period-preserving, which is found at higher Ra number in this study. In the period-preserving bifurcation, the new limit points (peak and valley) of the Nu and Vrms time series showed up as a twist in the monotonic intervals between a peak and valley. In this case the period doesn’t change. Both of the two patterns are observed in the models with the two types of boundary conditions (reflective and periodic). At a given Ra, different solutions can be obtained with different initial conditions. The initial condition is usually a solution with its Ra in the neighborhood, and with this neighborhood searching method, we were able to span the bifurcation plot (Ra-limit points of Nu(t) or Vrms(t)) to the range of Ra = 1×105~8×105 with both two boundary conditions. In this process, hysteresis is observed as expected in dynamic system, and the overlap of

  11. Two-Body Convection in the Mantle of the Earth: E/W Asymmetry, Under Astronomically Determined Tilt in g

    NASA Astrophysics Data System (ADS)

    Bostrom, R. C.

    2002-12-01

    Under purely geocentric gravity, over time displacement under mantle convection is globally symmetrical, resulting in zero net lithosphere rotation. The effect is here explored of substituting the asymmetric Earth-Moon field, gconv, prevalent in actuality. The gravity responsible for mantle convection is defined as the vector sum of a vertical component and the day-averaged attraction of masses lagging tidal equilibrium. The increasingly accurately measured lunar recession may then be used to delimit the internal field in terms of the secular luni-tidal interval of the Earth as a whole, some 600 seconds [1], without having to identify tidal components i.e. separate marine from body tides. In context the astronomic phase-lag may be viewed as a global isostatic anomaly, in which the longitude circles marking Earth's gravimetric figure are located east of those describing its perpetually unattained equilibrium figure by some 89 km at the Equator. Reference the hydrostatic ellipsoid gconv is tilted by the astronomically delimited amount, albeit that the phase lag is attributable in part to the convection itself. As with the convection, the tectonic significance of its asymmetry is determinable geodetically. Using present art-state a strategically located GPS grid [2] would provide continuously more precise separation of the asymmetric component of surface displacement. In developing plate-motion models including members of the Nuvel series, it would be logical to follow up rather than discard the set permitting minor asymmetrical convection sans net torque, such as an element of net-lithosphere-rotation relative to plumes. To conserve system angular-momentum, this may be the only valid set. Characteristics of the convection to be expected accord with 'paradoxical' features of plate tectonics under purely radial gravity, including: difficulty in closing plate-motion circuits; net-lithosphere-rotation refce. hot-spots, sans net torque; geotectonic maps ranging from

  12. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  13. Model of the Arctic evolution since the Cretaceous to present, based on upper mantle convection linked with Pacific lithosphere subduction

    NASA Astrophysics Data System (ADS)

    Lobkovsky, Leopold

    2015-04-01

    The present paper comprises a model of Arctic basin evolution since early-mid Cretaceous to present. The model is based on the mechanism of upper mantle substance circulation beneath the Arctic lithosphere linked with Pacific lithosphere subduction. Seismic tomography data obtained for the Pacific-Eurasia-Arctic joint area indicate that Pacific lithosphere slab sinking to the mantle in subduction zone transforms into the horizontal layer upon reaching the upper mantle foot, this layer extending for two or more thousands km beneath the Eurasian continent. This pattern of seismic tomography indicates the presence of a horizontal convective cell where a flow of substance moving along the upper mantle foot from a subduction zone into the continent is compensated by a return flow moving along the lithosphere foot towards the subduction zone. The return mantle flow makes continental lithosphere extension, giving rise to processes of rifting, magmatism and spreading. The convective cell being continuously supplied with new substance which is transported through the subduction zone it is sure to expand horizontally. The above cell expansion occurs first, due to ocean ward movement of subduction zone (roll back) and secondly, due to the cell front propagation into the continent. The given model allows to understand main features for the Arctic evolution since early-mid Cretaceous to present. Numerous seismic profiling data obtained for shelf and deep water sedimentary basins in the Arctic Ocean as well as on land geological investigation reveal that since Aptian up to present the Arctic region has been characterized by sublatitudinal lithosphere extension. This extension is explained by the effect the return mantle flow related to the subduction of the Northern part of the Pacific plate acts on the Arctic lithosphere foot. The model shows the phenomenon of Arctic plume to be caused by the convective cell uprising flow. In fact lower horizontal flow of convective cell moving

  14. A Global Model of Mantle Convection that Incorporates Plate Bending Forces, Slab Pull, and Seismic Constraints on the Plate Stress.

    NASA Astrophysics Data System (ADS)

    Lewis, K.; Buffett, B.; Becker, T.

    2008-12-01

    We introduce a global mantle convection model employing mantle density anomalies inferred from seismic tomography to determine present day plate motions. Our approach addresses two aspects that are not usually considered in previous work. First, we include forces associated with the bending of subducting plates. The bending forces oppose the plate motion, and may be comparable in magnitude to other important forces at subduction zones, including slab pull. Second, our model incorporates data from the Global CMT Catalog. We use the focal mechanisms of earthquakes associated with subducting slabs to estimate the relative occurrence of compressional and tensional axes in the down-dip direction of subducting slabs. This information is used to infer the state of stress in the subducting slab, which we use to calculate slab pull forces. We investigate regional variations in slab pull by comparing plate motions derived using seismic constraints with those derived using slab pull forces based solely on the age of subducting plates. Furthermore, we constrain the rheology of subducted plates by comparing plate motions predicted with and without bending forces. Although our current model uses only radial variations in mantle viscosity, we include the capability of permitting lateral variations in viscosity by calculating buoyancy and plate-driven flows using Citcom

  15. Near-infrared spectro-interferometry of Mira variables and comparisons to 1D dynamic model atmospheres and 3D convection simulations

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Chiavassa, A.; Freytag, B.; Scholz, M.; Höfner, S.; Karovicova, I.; Whitelock, P. A.

    2016-03-01

    Aims: We aim at comparing spectro-interferometric observations of Mira variable asymptotic giant branch (AGB) stars with the latest 1D dynamic model atmospheres based on self-excited pulsation models (CODEX models) and with 3D dynamic model atmospheres including pulsation and convection (CO5BOLD models) to better understand the processes that extend the molecular atmosphere to radii where dust can form. Methods: We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres. Results: Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phases are mostly consistent with those of the best-fit CODEX models, except for near-maximum phases, where data are better described by near-minimum models. Rosseland angular diameters derived from the model fits are broadly consistent between those based on the 1D and the 3D models and with earlier observations. We derived fundamental parameters including absolute radii, effective temperatures, and luminosities for our sources. Conclusions: Our results provide a first observational support for theoretical results that shocks induced by convection and pulsation in the

  16. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid

    NASA Astrophysics Data System (ADS)

    Tackley, Paul J.

    2008-12-01

    Here it is documented how an existing code for modelling mantle convection in a cartesian domain, Stag3D, has been converted to model a 3D spherical shell by using the recently introduced yin-yang grid. StagYY is thus the latest evolution of a code that has been in continuous use and development for about 15 years so incorporates much physics and several features including compressibility, phase transitions, compositional variations, non-linear rheology, parallelisation, tracers to track composition, partial melting and melt migration, and the ability to also model spherical patches, cartesian boxes, and various 2D geometries by changing one input switch. StagYY uses a multigrid solver to obtain a velocity-pressure solution at each timestep on a staggered grid, a finite-volume scheme for advection of temperature and tracers to track composition. Convergence of multigrid solvers in the presence of realistically large viscosity variations has always been a problem; here a new pressure interpolation scheme is presented that can dramatically improve the robustness of the iterations to large viscosity variations, with up to 19 orders of magnitude variation in presented tests. Benchmark tests show that StagYY produces results that are consistent with those produced by other codes. Performance tests show reasonable scaling on a parallel Beowulf cluster up to 64 CPUs, with up to 1.2 billion unknowns solved for in a few minutes. StagYY is designed to be a stand-alone application with no libraries required and if MPI is installed it can be run in parallel. Technical issues and goals for the future are discussed.

  17. Decreasing µ142Nd Variation in the Archean Convecting Mantle from 4.0 to 2.5 Ga: Heterogeneous Domain Mixing or Crustal Recycling?

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Debaille, V.

    2014-12-01

    The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for

  18. Innovative radar products for the 3D, high-resolution and real-time monitoring of the convective activity in the airspace around airports

    NASA Astrophysics Data System (ADS)

    Tabary, P.; Bousquet, O.; Sénési, S.; Josse, P.

    2009-09-01

    Airports are recognized to become critical areas in the future given the expected doubling in air traffic by 2020. The increased density of aircrafts in the airport airspaces calls for improved systems and products to monitor in real-time potential hazards and thus meet the airport objectives in terms of safety and throughput. Among all meteorological hazards, convection is certainly the most impacting one. We describe here some innovative radar products that have recently been developed and tested at Météo France around the Paris airports. Those products rely on the French Doppler radar network consisting today of 24 elements with some of them being polarimetric. Reflectivity and Doppler volumetric data are concentrated from all 24 radar sites in real-time at the central level (Toulouse) where 3D Cartesian mosaics covering the entire French territory (i.e. a typical 1,000 by 1,000 km² area) are elaborated. The innovation with respect to what has been done previously is that the three components of the wind are retrieved by operational combination of the radial velocities. The final product, available in real-time every 15 minutes with a spatial resolution of 2.5 km horizontally and 500 m vertically, is a 3D grid giving the interpolated reflectivity and wind field (u, v and w) values. The 2.5 km resolution, arising from the fact that the retrieval is carried out every 15 minutes from radars typically spaced apart by 150 km, is not sufficient for airport airspace monitoring but is valuable for en-route monitoring. Its extension to the entire European space is foreseen. To address the specific needs in the airport areas, a downscaling technique has been proposed to merge the above-mentioned low-resolution 3D wind and reflectivity fields with the high resolution (5 minutes and 1 km²) 2D imagery of the Trappes radar that is the one that covers the Paris airports. The merging approach is based on the assumption that the Vertical Profile of Reflectivity (i.e. the

  19. Seismic Tomography of the Arctic: Continental Cratons, Ancient Orogens, Oceanic Lithosphere and Convecting Mantle Beneath (Invited)

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Schaeffer, A. J.

    2013-12-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, reflect primarily the variations in the temperature of the rock at depth. Seismic tomography thus reveals lateral changes in the temperature and thickness of the lithosphere; it maps deep boundaries between tectonic blocks with different properties and with different age of the lithosphere. Our new global, shear-wave tomographic model of the upper mantle and the crust is constrained by an unprecedentedly large number of broadband waveform fits (nearly one million seismograms, with both surface and S waves included) and provides improved resolution of the lithosphere across the whole of the Arctic region, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. In Eurasia, in contrast, cratonic lithosphere extends hundreds of kilometres north of the coast of the continent, beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures in northern Eurasia. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster-spreading ridges globally. South of the ridge, the Nansen Basin shows higher seismic velocities in the upper mantle beneath it, compared to the Amundsen Basin. At 150-250 km depth, most of the oceanic portions of the central Arctic (the

  20. Chemical Exchange Between the Core and the Convecting Mantle of the Earth: Evidence from Highly Siderophile Elements (HSE)

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Palme, H.; Kratz, K. L.

    1995-09-01

    , and Au with a slightly modified neutron activation analysis in combination with a NiS extraction method [16]. All samples (except peridotitic xenoliths) have essentially unfractionated patterns (except Pd/Ir) despite significant variations in absolute abundances [17]. Os/Re ratios from massive peridotitic rocks from Zabargad are chondritic. Peridotitic xenoliths generally have Os/Re-ratios much higher than the chondritic ratio [2]. The Pd/Ir ratios from all studied peridotites are approximately two times and the Rh/Ir ratios are approximately 1.5 times higher than the chondritic ratio of 1.21 and 0.29, respectively. This is in qualitative agreement with estimates of Pd and Ir in primitive undepleted mantle [1]. The non-chondritic Pd/Ir and Rh/Ir ratios is either the result of Pd and Rh addition or these elements are not quantitatively removed from the mantle in the process of core formation [10]. Extrapolation of experimentally determined palladium and iridium metal/silicate partition coefficients to 3500 K are 3.8x10^3 and 2x10^8, respectively [18,19]. The observed non-chondritic ratio of Ir to Pd in the upper mantle is in qualitative agreement with experimentally determined metal/silicate partition coefficients for Ir and Pd. This could support recent speculation on the possibility of chemical exchange between the outer liquid shell of the core and the convecting mantle of the Earth. Acknowledgements. This work was supported by DFG. References: [1] Morgan J. W. (1986) JGR, 91, 12375-12387. [2] Morgan J. W. et al. (1981) Tectonophys., 75, 47-67. [3] Anders E. (1968) Acc. Chem. Res., 1, 289-298. [4] Turekian K. K. and Clark S. P. (1969) EPSL, 6, 346-348. [5] Kimura K. et al. (1974) GCA, 38, 683-701. [6] Ganapathy R. and Anders E. (1974) Proc. LPSC. [7] Chou C.-L. (1978) Proc. LPSC 9th, 219-230. [8] Jagoutz E. et al. (1979) Proc. LPSC 10th, 2031-2050. [9] Wanke H. (1981) Philos. Trans. R. Soc. London, A303, 287-302. [10] Jones J. H. and Drake M. J. (1986) Nature, 322

  1. A parameterized model for the evolution of isotopic heterogeneities in a convecting system. [for earth mantle

    NASA Technical Reports Server (NTRS)

    Richter, F. M.; Daly, S. F.; Nataf, H.-C.

    1982-01-01

    It is experimentally shown that, although steady convective flows are efficient means to heterogeneity within a single cell, they do not produce a dispersal of heterogeneous material over scales that are large by comparison to their depth, which requires that the flow be time-dependent on a time scale comparable to the overturn time. Convection in an internally heated layer does possess this property, and numerical solutions are presently used to study the way in which it disperses a set of neutrally bouyant particles initially confined to a small space. The derived concept of effective diffusivity is applied to the isotopic evolution of the Sm-Nd and Rb-Sr systems, with spatial variations generated by horizontal variations in degree of melting 1.8 billion years ago.

  2. Mantle structure beneath the western United States and its implications for convection processes

    NASA Astrophysics Data System (ADS)

    Xue, Mei; Allen, Richard M.

    2010-07-01

    We present tomographic images of the mantle structure beneath the western United States. Our Dynamic North America Models of P and S velocity structure (DNA07-P and DNA07-S) use teleseismic body waves recorded at ˜600 seismic stations provided by the Earthscope Transportable Array and regional networks. DNA07-P and -S benefit from the unprecedented aperture of the network while maintaining a dense station distribution providing high-resolution body wave imaging of features through the transition zone and into the lower mantle. The main features imaged include (1) the Juan de Fuca subduction system that bottoms at ˜400 km beneath Oregon, implying interaction with the Yellowstone anomaly; (2) a low-velocity conduit beneath Yellowstone National Park that bottoms at 500 km and dips toward the northwest; (3) shallow low-velocity anomalies (upper 200 km) beneath the eastern Snake River Plain (ESRP) and the High Lava Plains, and a deep low-velocity anomaly (>600 km) beneath the ESRP but not Newberry; (4) a low-velocity "slab gap" to ˜400 km depth immediately south of the Mendocino Triple Junction and south of the Gorda slab; and (5) high-velocity "drips" beneath the Transverse Ranges, the southern Central Valley/Sierra Nevada, and central Nevada. These observations reveal extremely heterogeneous mantle structure for the western United States and suggest that we are only just beginning to image the complex interactions between geologic objects. The transportable array allows for analysis of the relationships between these anomalies in an internally consistent single tomographic model. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu.

  3. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: From convecting mantle source to palaeo-ocean floor and back

    NASA Astrophysics Data System (ADS)

    Aulbach, S.; Viljoen, K. S.

    2015-12-01

    Major- and trace-element compositions of eclogite and pyroxenite xenoliths of ≥2.5 Ga age (in situ Pb-Pb data on clinopyroxene) from the Lace kimberlite on the Kaapvaal craton were investigated in order to constrain: (1) the nature and evolution of their protoliths; (2) the extent to which they preserve information on the state of the asthenospheric mantle source that gave rise to their low-pressure protoliths; and (3) the effect of their deep recycling on the radiogenic isotope evolution of the convecting mantle. Their elemental relationships are consistent with low-pressure fractionation of olivine ± plagioclase and clinopyroxene during oceanic crust formation, whereby the residual melt was enriched in rare-earth elements (REE), high field-strength elements and Y, producing inverse correlations of ΣREE with the size of Eu- and Sr-anomalies. LREE-depletion may indicate loss of on average 20% of a partial melt upon subduction and metamorphism (eclogitisation) of oceanic crust, which did not, however, contribute to juvenile growth of continental crust. The eclogites have median Sm/Nd (0.40) and Lu/Hf (0.27) similar to Depleted Mantle, and lower U/Pb (0.02) and Th/Pb (0.02). If deeply subducted, these rocks cannot explain unradiogenic Nd and Hf, and radiogenic Pb isotope compositions in the sources of some modern ocean island basalts. Low incompatible trace-element contents similar to picrites, and Yb concentrations at a given TiO2 content similar to modern MORB, indicate derivation of the protoliths by average melt fractions of ∼ 0.20- 0.25 that left a spinel peridotite residue at pressures ≤2.5 to 3.0 GPa. This shallow intersection of the peridotite solidus suggests moderate Archaean ambient mantle potential temperatures of ≤1420 to 1470 °C. Samples filtered for clinopyroxene fractionation and metasomatism have V/Sc (4.7 ± 1.2; n = 11) indicating lower fO2 (-1.9 relative to the fayalite-magnetite-quartz buffer = ΔFMQ) than modern MORB. This is in part

  4. Shear wave splitting hints at dynamical features of mantle convection: a global study of homogeneously processed source and receiver side upper mantle anisotropy

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J. M.; Masters, G.; Kendall, J. M.

    2013-12-01

    The asthenosphere is embroiled in the process of mantle convection. Its viscous properties allow it to flow around sinking slabs and deep cratonic roots as it is displaced by intruding material and dragged around by the moving layer above. As the asthenosphere flows it develops a crystalline fabric with anisotropic crystals preferentially aligned in the direction of flow. Meanwhile, the lithosphere above deforms as it is squeezed and stretched by underlying tectonic processes, enabling anisotropic fabrics to develop and become fossilised in the rigid rock and to persist over vast spans of geological time. As a shear wave passes through an anisotropic medium it splits into two orthogonally polarised quasi shear waves that propagate at different velocities (this phenomenon is known as shear wave splitting). By analysing the polarisation and the delay time of many split waves that have passed through a region it is possible to constrain the anisotropy of the medium in that region. This anisotropy is the key to revealing the deformation history of the deep Earth. In this study we present measurements of shear wave splitting recorded on S, SKS, and SKKS waves from earthquakes recorded at stations from the IRIS DMC catalogue (1976-2010). We have used a cluster analysis phase picking technique [1] to pick hundreds of thousands of high signal to noise waveforms on long period data. These picks are used to feed the broadband data into an automated processing workflow that recovers shear wave splitting parameters [2,3]. The workflow includes a new method for making source and receiver corrections, whereby the stacked error surfaces are used as input to correction rather than a single set of parameters, this propagates uncertainty information into the final measurement. Using SKS, SKKS, and source corrected S, we recover good measurements of anisotropy beneath 1,569 stations. Using receiver corrected S we recover good measurements of anisotropy beneath 470 events. We compare

  5. Convection

    NASA Astrophysics Data System (ADS)

    Britz, Dieter

    Convection has long been coupled with electrochemistry, and the name hydrodynamic voltammetry has become standard. In electroanalytical chemistry we mainly seek reproducible conditions. These are almost always attained by systems in which a steady convective state is achieved, although not always. Thus, the once popular dropping mercury electrode (see texts such as [74, 257]) has convection around it, but is never in steady state; it might be called a reproducible periodic dynamic state.

  6. Interaction of mantle plume heads with the earth's surface and onset of small-scale convection

    NASA Astrophysics Data System (ADS)

    Griffiths, R. W.; Campbell, I. H.

    1991-10-01

    The interaction of a mantle plume head with the earth's surface was examined by studying the behavior of a spherical blob of a buoyant fluid under the effect of gravity which forces it toward either a rigid horizontal boundary or a free surface. In the experiments, buoyant spheres of diapir fluid having no surface tension and extremely small Reynolds numbers but diameters as large as are practical in the laboratory were injected into wide cylindrical tanks filled with viscous (nu = 149 sq cm/sec) glucose syrup. Experimental results are presented for the thinning and lateral spreading of the bouyant fluid and for the thinning of the squeeze layer for both the case of a rigid, nonslip boundary (a rigid Perspex lid) and that of a free surface. These are compared with similarity scaling laws based on a balance between the buoyancy of the diapir and the viscous stresses in the diapir's surroundings.

  7. Lithospheric deformation and mantle/crust coupling related to slab roll-back and tearing processes: the role of magma-related rheological weakening highlighted by 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Jolivet, Laurent; Guillou-Frottier, Laurent; Sternai, Pietro; Gerya, Taras

    2016-04-01

    Active convergent margins are the locus of various large-scale lithospheric processes including subduction, back-arc opening, lithospheric delamination, slab tearing and break-off. Coexistence of such processes results in a complex lithospheric deformation pattern through the rheological stratification of the overriding lithosphere. In this context, another major feature is the development of an intense arc- and back-arc-related magmatism whose effects on lithospheric deformation by rheological weakening are largely unknown. Quantifying this magma-related weakening effect and integrating the three-dimensional (3D) natural complexity of subduction system is however challenging because of the large number of physico-chemical processes involved (e.g. heat advection, dehydration of subducted material, partial melting of the mantle wedge). We present here a set of 3D high-resolution petrological and thermo-mechanical numerical experiments to assess the role of low-viscosity magmatic phases on lithospheric deformation associated with coeval oceanic and continental subduction, followed by slab retreat and tearing processes. Results in terms of crustal kinematics, patterns of lithospheric deformation and distribution and composition of magmatic phases are then compared to a natural example displaying a similar geodynamical evolution: the eastern Mediterranean subduction zone. Our modeling results suggest that the asthenospheric flow controls the ascending trajectories of mantle-derived magmatic sources developed in the mantle wedge in response to dehydration of oceanic slab. Once stored at the base of the overriding continental crust, low-viscosity mantle- and crustal-derived magmatic phases allow to decrease the lithospheric strength. This weakening then enhances the propagation of localized extensional and strike-slip deformation in response to slab roll-back and extrusion tectonics respectively. In addition, we show that storage of large amounts of low-viscosity magmas

  8. Patterns of seismic anisotropy and mantle flow around convergent margins: predictions from 3D geodynamic modelling, comparison with observations and implications for the interpretation of seismic tomographies (Arne Richter Award Lecture for OYS)

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele

    2015-04-01

    Seismic anisotropy generated by strain-induced lattice/crystal preferred orientation (LPO/CPO) of intrinsically anisotropic minerals is commonly used to study flow in the mantle and its relations with plate motions. In this contribution, I will present results from 3D petrological-thermomechanical models of subduction/collisional settings, where the strain-induced LPO of polycrystalline aggregates of the upper and mid mantle is computed. Overall, medium to strong fabrics develop in the upper and uppermost lower mantle around the convergent margin, with distinctive patterns that are related to the margin dynamic history. The full elastic tensors obtained from each polycrystalline aggregate is then used to carry out several seismological synthetic experiments. In particular: 1) seismogram synthetics of teleseismic waves propagating sub-vertically were computed to estimate SKS splitting patterns that are mostly controlled by the anisotropy in the upper mantle. Results are compared with observations from different subduction and collisional settings, yielding a strong constrain on the recent dynamics of these convergent margins. 2) synthetic seismic tomographies were produced using realistic ray path distributions around convergent margins, showing how the interpretation of seismic anomalies could potentially be biased by the presence of seismic anisotropy and a non-uniform seismic ray coverage.

  9. Recent upper mantle structure beneath Siberia and surrounding areas according to a seismic tomography and numerical thermogravitational convection modeling data

    NASA Astrophysics Data System (ADS)

    Bushenkova, N.; Chervov, V.; Koulakov, I.

    2012-04-01

    We investigate the interaction between the recent lithosphere structure and dynamics of the upper mantle beneath a big segment of Asia. This study is based on the results of seismic tomography using travel times from the ISC catalog (1964-2007) and numerical thermogravitational modeling. The model contains thick lithosphere blocks of the Siberian Craton, the Tarim plate, and remnant parts of the Mongol-Tuva microcontinent. These blocks are alternated with weaker younger lithosphere corresponding to the West-Siberian plate, orogenic belts in southern Siberia and the Arctic shelves to the north. In the tomography part, we have updated a previously published model by Koulakov and Bushenkova (2010) based on a larger dataset including reflected PP and teleseismic P travel times from global catalogues. The lithosphere thickness has been estimated based on seismic anomalies at 250 km depth according to a technique described in (Bushenkova et al., 2008). These estimates were used to define the lithosphere thickness which is then implemented for setting the boundary conditions in numerical modeling and for joint interpretation of the final results. When computing the mantle dynamics, we consider the viscosity which is depends from temperature and pressure. Calculations are performed in the spherical coordinates. To minimize the boundary effects and to take into account the effect of the outside features, we considerably enlarged the calculation area by including the Russian, North- and South China Cratons and the Indian Plate. The modeling results demonstrate formation of steady ascending flows caused by overheating under the cratons (the average temperature of the upper mantle under a craton increases to ~100°) and descending flows on their periphery. The ascending flows spread along the bottom of the cratonic lithosphere and propagate towards its edges which cause smaller-scale convection cells nearly the borders of the cratons. The computed temperature distribution is

  10. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2016-04-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  11. Mantle Convection in a Spherical Shell: Comparison of Numerical Simulations with the GeoFlow Experiment on the ISS

    NASA Astrophysics Data System (ADS)

    Zaussinger, F.; Plesa, A.; Egbers, C.; Breuer, D.

    2012-04-01

    Convection in not directly observable fluids or objects with a central symmetry buoyancy field in spherical shells plays an important role in geophysical and astrophysical research. The main focus of this study is to compare two different numerical approaches based on two Navier-Stokes solvers (RESPECT code and GAIA code) with the 'on orbit' experiments called GeoFlowI and GeoFlowII. The numerical simulation of flows in the spherical gap geometry is challenging and requests high accuracy to resolve all relevant scales. Beside isoviscous Rayleigh-B'enard convection the influence of temperature dependent viscosity on the temperature field is investigated. The Simulation of Geophysical Fluid Flow under Microgravity (Geoflow) is an ESA investigation running inside the Fluid Science Laboratory (FSL) on the International Space Station ISS and has the goal to better understand the interior dynamics of our planet [1]. The GeoFlowI mission focused on the simulation of iso-viscous flows, whereas in the GeoFlowII mission the effects of temperature-dependent viscosity are investigated - the latter is more relevant for mantle material. The GAIA software package, developed at DLR, solves the conservation equations of thermal convection for an incompressible Boussinesq fluid with infinite Prandtl number. The discretization of the governing equations is based on the finite-volume method with the advantage of using fully irregular grids [2, 3]. The code can handle viscosity variations of up to 8 orders of magnitude from cell-to-cell and up to 45 orders of magnitude system wide. We further use the pseudo spectral method based code RESPECT modified after [4] to be able to handle viscosity contrast up to 10. The main property of the underlying algorithm is the implicitly treatment of the linear parts and the pseudo spectral calculation of the non-linearities. While the spectral method based code is fast and accurate for small viscosity ratios, the GAIA suite provides stable

  12. Coherent He-Nd-Sr isotope trends in high 3He/ 4He basalts: implications for a common reservoir, mantle heterogeneity and convection

    NASA Astrophysics Data System (ADS)

    Ellam, R. M.; Stuart, F. M.

    2004-12-01

    Early-mid-Tertiary picritic basalts associated with the proto-Iceland plume (PIP) show correlated He-Nd and He-Sr isotope trends. Other intraplate basalts with olivine phenocryst 3He/ 4He>10 Ra either (1) fall on the PIP trends, (2) lie in triangular fields defined by the PIP trend and a depleted mantle field or (3) are displaced to low 143Nd/ 144Nd and high 87Sr/ 86Sr, indicating the involvement of an ancient enriched component, but are consistent with a high 3He/ 4He end-member similar to that required by the Baffin Island data. Neither end of the PIP trend represents isotope compositions that have previously been recognised as global geochemical components. A concentration of data around 143Nd/ 144Nd≈0.5128, with low 3He/ 4He suggests this may be an important composition and we speculate that it might represent an enriched mantle average (EMA) composition preferentially sampled at the melt fraction operating in ocean island basalt (OIB) generation. The high 3He/ 4He component has Nd and Sr isotope compositions that are indistinguishable from mid-ocean ridge basalts (MORB) and more "depleted" than other common mantle components that have been postulated from the global OIB-MORB data base. We suggest that this composition is best explained as a mixture between depleted and (He-rich) primordial mantle and we therefore refer to this mixed composition as He-recharged depleted mantle (HRDM). Even the Baffin Island lavas require only a small proportion (<10%) of primordial mantle and most OIB demand <2%. If high 3He/ 4He is a lower mantle signal, then only limited lower mantle involvement in plumes is indicated. However, the low proportion of primordial material also removes the requirement for an extensive primordial reservoir. These observations can be reconciled with whole mantle convection provided (1) a small volume of relatively undegassed and undepleted mantle has survived intact and (2) an inventory of incompatible trace elements, similar to that housed in

  13. Analyzing One-Sided vs. Two-Sided Subduction Arising from Mantle Convection Simulations

    NASA Astrophysics Data System (ADS)

    Kaplan, M. S.; Becker, T. W.

    2013-12-01

    Purely thermal plate tectonic generation models struggle to consistently reproduce one-sided subduction as is observed on Earth (Tackley 2000; Van Heck and Tackley 2008; Foley and Becker 2009), and instead produce two-sided subduction where the subducting slab contains a significant flux of material from both plates. The models of Crameri et al. (2012) demonstrate that the implementation of a free upper surface boundary condition and the inclusion of a weak hydrated crust can facilitate one-sided subduction. We employ a similar model configuration to Crameri et al. (2012) to further investigate the dynamics and energetics which are associated with one-sided vs. two-sided subduction. We use a 2D finite difference code based off of the algorithms of I2ELVIS (Gerya and Yuen 2007) where material parameters are tracked on Lagrangian markers and the Stokes and Energy equations are solved on a Cartesian grid. A free surface is implemented by a low viscosity and density 'sticky air layer' (Schmeling et al., 2008; Crameri et al., 2012) with the stabilization routine of Duretz et al. (2011) to prevent the 'drunken seaman' instability (Kaus et al., 2010). The effects of a weak crust, shear heating, a free surface or free slip upper mechanical boundary condition, plasticity as a function of depth or pressure, and the sticky air layer thermal conductivity on one-sided vs. two-sided subduction are investigated. When we observe one-sided subduction it is transient and can smoothly evolve back to a two-sided configuration. In our models, 'sidedness' is a spectrum, rather than either discretely one or two sided, and the models move between the two regimes throughout the model runs. We observe that the thermal conductivity of the sticky air layer can influence the dynamics of the convective domain. Elevated values of thermal conductivity compared to those of rock must be implemented in the sticky air layer in order to maintain a constant temperature at the surface of the convective

  14. Constraining mantle flow with seismic and geodynamic data: A joint approach

    NASA Astrophysics Data System (ADS)

    Simmons, Nathan A.; Forte, Alessandro M.; Grand, Stephen P.

    2006-06-01

    Understanding the style of convective flow occurring in the mantle is essential to understand the thermal and chemical evolution of Earth's interior as well as the forces driving plate tectonics. Models of mantle convection based on three-dimensional (3-D) seismic tomographic reconstructions have the potential to provide the most direct constraints on mantle flow. Seismic imaging of deep Earth structure has made great advances in recent years; however, it has not been possible to reach a consensus on the nature of convection in the mantle. Models of mantle flow based on tomography results have yielded variable conclusions largely because of the inherent non-uniqueness and differing degrees of resolution of seismic tomography models as well as the difficulty in determining flow directly from seismic images. Here we address this difficulty by simultaneously inverting global seismic and convection-related data sets. The seismic data consist of globally distributed shear body wave travel times including multi-bounce S-waves, shallow-turning triplicated phases, as well as core reflections and phases traversing the core (SKS and SKKS). Convection-related data sets include global free air gravity, tectonic plate divergence, and excess ellipticity of the core-mantle boundary. In addition, the convection-related constraint on dynamic surface topography is estimated on the basis of a recent global model of crustal heterogeneity. These convection-related observables are related to mantle density anomalies through instantaneous mantle flow calculations and linked to the seismic data via optimized density-velocity scaling relationships. Simultaneous inversion allows us to test various mantle flow hypotheses directly against the combined seismic and convection data sets, rather than considering flow predictions based solely on a seismically derived 3-D mantle model. In this study, we test four different mantle flow hypotheses, including whole-mantle flow and models with

  15. A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter; Richards, Mark A.; Baumgardner, John R.

    1997-06-01

    Mantle convection is influenced simultaneously by a number of physical effects: brittle failure in the surface plates, strongly variable viscosity, mineral phase changes, and both internal heating (radioactivity) and bottom heating from the core. Here we present a systematic study of three potentially important effects: depth-dependent viscosity, an endothermic phase change, and bottom versus internal heating. We model three-dimensional spherical convection at Rayleigh Ra=108 thus approaching the dynamical regime of the mantle. An isoviscous, internally heated reference model displays point-like downwellings from the cold upper boundary layer, a blue spectrum of thermal heterogeneity, and small but rapid time variations in flow diagnostics. A modest factor 30 increase in lower mantle viscosity results in a planform dominated by long, linear downwellings, a red spectrum, and great temporal stability. Bottom heating has the predictable effect of adding a thermal boundary layer at the base of the mantle. We use a Clapeyron slope of γ=-4 MPa °K-1 for the 670 km phase transition, resulting in a phase buoyancy parameter of P=-0.112. This phase change causes upwellings and downwellings to pause in the transition zone but has little influence on the inherent time dependence of flow and only a modest reddening effect on the heterogeneity spectrum. Larger values of P result in stronger effects, but our choice of P is likely already too large to be representative of the mantle transition zone. Combinations of all three effects are remarkably predictable in terms of the single-effect models, and the effect of depth-dependent viscosity is found to be dominant.

  16. A hypothesis for Proterozoic-Phanerozoic supercontinent cyclicity, with implications for mantle convection, plate tectonics and Earth system evolution

    NASA Astrophysics Data System (ADS)

    Grenholm, Mikael; Scherstén, Anders

    2015-11-01

    relation to mantle convection and Earth system evolution.

  17. Simulation of 3D Global Wave Propagation Through Geodynamic Models

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.

    2005-12-01

    This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.

  18. Reconstructing mantle heterogeneity with data assimilation based on the back-and-forth nudging method: Implications for mantle-dynamic fitting of past plate motions

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro

    2016-04-01

    The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.

  19. Numerical modeling of convective erosion and peridotite-melt interaction in big mantle wedge: Implications for the destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    He, Lijuan

    2014-04-01

    The deep subduction of the Pacific Plate underneath East Asia is thought to have played a key role in the destruction of the North China Craton (NCC). To test this hypothesis, this paper presents a new 2-D model that includes an initial stable equilibrated craton, the formation of a big mantle wedge (BMW), and erosion by vigorous mantle convection. The model shows that subduction alone cannot thin the cold solid craton, but it can form a low-viscosity BMW. The amount of convective erosion is directly proportional to viscosity within the BMW (η0bmw), and the rheological boundary layer thins linearly with decreasing log10(η0bmw), thereby contributing to an increase in heat flow at the lithospheric base. This model also differs from previous modeling in that the increase in heat flow decays linearly with t1/2, meaning that the overall thinning closely follows a natural log relationship over time. Nevertheless, convection alone can only cause a limited thinning due to a minor increase in basal heat flow. The lowering of melting temperature by peridotite-melt interaction can accelerate thinning during the early stages of this convection. The two combined actions can thin the craton significantly over tens of Myr. This modeling, combined with magmatism and heat flow data, indicates that the NCC evolution has involved four distinct stages: modification in the Jurassic by Pacific Plate subduction and BMW formation, destruction during the Early Cretaceous under combined convective erosion and peridotite-melt interaction, extension in the Late Cretaceous, and cooling since the late Cenozoic.

  20. 3-D Modeling of Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe Growth Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    A numerical calculation for a non-dilute alloy solidification was performed using the FIDAP finite element code. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. Estimates of convection contributions for various gravity conditions was performed parametrically. For gravity levels higher then 1 0 -7 of earth's gravity it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by factor of 50% for precise orientation of the ampoule in the microgravity environment. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D modeling are compared with previous 2-D finding. A video film featuring melt convection will be presented.

  1. Retrodicting the Cenozoic evolution of the mantle: Implications for dynamic surface topography

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro; Rowley, David; Simmons, Nathan; Grand, Stephen

    2014-05-01

    Seismic tomography is the essential starting ingredient for constructing realistic models of the mantle convective flow and for successfully predicting a wide range of convection-related surface observables. However, the lack of knowledge of the initial thermal state of the mantle in the geological past is still an outstanding problem in mantle convection. The resolution of this problem requires models of 3-D mantle evolution that yield maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. We have carried out mantle dynamic simulations (Glišović & Forte, EPSL 2014) using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spectral geometry that directly incorporate: 1) joint seismic-geodynamic inversions of mantle density structure with constraints provided by mineral physics data (Simmons et al., GJI 2009); and 2) constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) characterised by Earth-like Rayleigh numbers. These time-reversed convection simulations reveal how the buoyancy associated with hot, active upwellings is a major driver of the mantle-wide convective circulation and the changes in dynamic topography at the Earth's surface. These simulations reveal, for example, a stable and long-lived superplume under the East Pacific Rise (centred under the Easter and Pitcairn hotspots) that was previously identified by Rowley et al. (AGU 2011, Nature in review) on the basis of plate kinematic data. We also present 65 Myr reconstructions of the Reunion plume that gave rise to the Deccan Traps.

  2. ISS COLUMBUS laboratory experiment `GeoFlow I and II' -fluid physics research in microgravity environment to study convection phenomena inside deep Earth and mantle

    NASA Astrophysics Data System (ADS)

    Futterer, Birgit; Egbers, Christoph; Chossat, Pascal; Hollerbach, Rainer; Breuer, Doris; Feudel, Fred; Mutabazi, Innocent; Tuckerman, Laurette

    Overall driving mechanism of flow in inner Earth is convection in its gravitational buoyancy field. A lot of effort has been involved in theoretical prediction and numerical simulation of both the geodynamo, which is maintained by convection, and mantle convection, which is the main cause for plate tectonics. Especially resolution of convective patterns and heat transfer mechanisms has been in focus to reach the real, highly turbulent conditions inside Earth. To study specific phenomena experimentally different approaches has been observed, against the background of magneto-hydrodynamic but also on the pure hydrodynamic physics of fluids. With the experiment `GeoFlow' (Geophysical Flow Simulation) instability and transition of convection in spherical shells under the influence of central-symmetry buoyancy force field are traced for a wide range of rotation regimes within the limits between non-rotating and rapid rotating spheres. The special set-up of high voltage potential between inner and outer sphere and use of a dielectric fluid as working fluid induce an electro-hydrodynamic force, which is comparable to gravitational buoyancy force inside Earth. To reduce overall gravity in a laboratory this technique requires microgravity conditions. The `GeoFlow I' experiment was accomplished on International Space Station's module COLUM-BUS inside Fluid Science Laboratory FSL und supported by EADS Astrium, Friedrichshafen, User Support und Operations Centre E-USOC in Madrid, Microgravity Advanced Research and Support Centre MARS in Naples, as well as COLUMBUS Control Center COL-CC Munich. Running from August 2008 until January 2009 it delivered 100.000 images from FSL's optical diagnostics module; here more precisely the Wollaston shearing interferometry was used. Here we present the experimental alignment with numerical prediction for the non-rotating and rapid rotation case. The non-rotating case is characterized by a co-existence of several stationary supercritical

  3. Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 187Os/ 188Os composition of the convecting mantle and the nature of high 3He/ 4He mantle

    NASA Astrophysics Data System (ADS)

    Dale, C. W.; Pearson, D. G.; Starkey, N. A.; Stuart, F. M.; Ellam, R. M.; Larsen, L. M.; Fitton, J. G.; Macpherson, C. G.

    2009-02-01

    Identifying the Os isotope composition of the prevalent, largely peridotitic, convecting mantle places important constraints on the Earth's accretion, differentiation and evolution and also has implications for the interpretation of Re-depletion ages in mantle peridotites. As partial melting preferentially samples mantle components with the lowest melting temperatures, large degree melts such as picrites should most closely reflect the peridotitic components within the source. Thus, Re-Os analyses of thirty picrites from Baffin Island and West Greenland are thought to provide a good estimate of the bulk 187Os/ 188Os composition of their convecting mantle source, which is indistinguishable from DMM in terms of lithophile isotopes and trace elements. In addition, the high 3He/ 4He of these rocks allows us to comment on the possible origins of high 3He/ 4He mantle. Ingrowth-corrected 187Os/ 188Os of the picrites ranges from 0.1267 to 0.1322. The higher 187Os/ 188Os samples have correspondingly lower 143Nd/ 144Nd which can be explained by contribution (˜ 5%) from old recycled oceanic crust, including sediment. However, Baffin Island and the earliest West Greenland picrites are remarkably uniform in composition with 187Os/ 188Os between 0.1267 and 0.1280, and a mean and mode of 0.1272 ± 0.0007. Such Os isotope compositions are less radiogenic than estimates of primitive upper mantle but are similar to the least radiogenic mid-ocean ridge basalts (MORB) and the most common composition of ophiolite-derived platinum-group alloys and chromites. These compositions appear to represent a source dominated by peridotite. The picrites studied record the highest known 3He/ 4He in the silicate Earth (up to 50 Ra). For this signature to reflect isolated domains of ancient melt depletion would require significantly less radiogenic Os isotope compositions than observed ( 187Os/ 188Os: < 0.115), unless radiogenic Os, but not He, has been subsequently added. Conversely, a bulk outer

  4. Seismology in Ryukyu arc, Japan reveals the distribution and orientation of serpentine minerals suggesting convection and low viscosity of forearc mantle

    NASA Astrophysics Data System (ADS)

    Nagaya, T.; Walker, A.; Wookey, J. M.; Kendall, M.; Wallis, S.

    2014-12-01

    Refining available estimates of the amount, distribution and alignment of serpentinite in the forearc wedge is needed to develop a better understanding of the seismic anisotropy, strength and fluid transport in this region. Mantle dominantly consists of olivine. However, petrological studies and thermal modeling of convergent margins predict that olivine will be replaced by hydrous mineral phases in fluid-rich and relatively cold forearc mantle. The dominant hydrous mineral will be antigorite. Lower seismic velocities (Vp < ~8 km/s and Vs < ~4 km/s) and higher Vp/Vs values (> ~1.8) of serpentine minerals than those of olivine are commonly used as to detect the distribution of antigorite and estimate its proportion compared to olivine. However, antigorite is highly anisotropic and this anisotropy can disguise the presence of antigorite in seismic tomography; the apparent Vp/Vs ratio of antigorite can vary from 1.2-3.4 (Vp = 5.6-8.9 km/s and Vs = 2.5-5.1 km/s) depending on the propagation path of the seismic wave relative to the crystal orientation. Here, we take advantage of this anisotropy and perform an analysis of seismic anisotropy that takes into account ray path measured above the forearc mantle of the Rykuyu arc subduction zone. The measured shear wave splitting delay time above this subduction zone is very large, suggesting the presence of aligned antigorite. Comparing the results of modeling to observed shear wave splitting for both local-S and teleseismic SKS phases, we conclude that the mantle wedge consists of 65 % antigorite and that the antigorite must be aligned along the subducting slab in the deepest part of the wedge but aligned vertically at intermediate depths. This distribution of different orientations strongly suggests the presence of convective mantle flow in the forearc mantle. Physical modeling of the dynamics of the mantle wedge shows that a bulk long-term viscosity of less than 1019 Pa s is required to maintain this large-scale flow. This

  5. A new approach to obtaining a 3D shear wave velocity model of the crust and upper mantle: An application to eastern Turkey

    NASA Astrophysics Data System (ADS)

    Delph, Jonathan R.; Zandt, George; Beck, Susan L.

    2015-12-01

    We present a new approach to the joint inversion of surface wave dispersion data and receiver functions by utilizing Common Conversion Point (CCP) stacking to reconcile the different sampling domains of the two datasets. Utilizing CCP stacking allows us to suppress noise in the data by waveform stacking, and correct for backazimuthal variations and complex crustal structure by mapping receiver functions back to their theoretical location. When applied to eastern Turkey, this approach leads to a higher resolution image of the subsurface and clearly delineates different tectonic features in eastern Turkey that were not apparent using other approaches. We observe that the slow seismic velocities near the Karliova Triple Junction correlate to moderate strain rates and high heat flow, which leads to a rheologically weak crust that has allowed for the upward propagation of Miocene and younger volcanics near the triple junction. We find seismically fast, presumably rigid blocks located in the southeastern Anatolian Plate and Arabian Plate are separated by a band of low shear wave velocities that correspond to the East Anatolian Fault Zone, which is consistent with the presence of fluids in the fault zone. We observe that the Arabian Plate has underthrust the Eurasian Plate as far as the northern boundary of the Bitlis Massif, which can explain the high exhumation rates in the Bitlis Massif as a result of slab break-off of the Arabian oceanic lithosphere. We also find a shallow (~ 33 km) anomaly beneath eastern Turkey that we interpret as a localized wedge of mantle that was underthrust by a crustal fragment during the collision of Arabia and Eurasia. These observations are possible because of the high-resolution images obtained by combining common conversion point receiver function stacks with ambient noise dispersion data to create a data-driven three-dimensional shear wave velocity model.

  6. Impact of lithosphere rheology and pre-existing tectonic stress field on surface topography, crustal and mantle deformation during plume-lithosphere interactions in continents: insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Gerya, Taras

    2014-05-01

    We implement high-resolution 3D thermo-mechanical numerical models to elucidate the impact of realistically implemented rheological structure of continental lithosphere and of far-field tectonic stress/strain field on the localization and style of deformation during the emplacement of a mantle plume at the bottom of continental lithosphere. Numerical models demonstrate strong dependence of crustal strain distributions and surface topography on the rheological composition of the lower crust and the initial thermal structure of the lithosphere. In contrast to the usual inferences from passive rifting models, distributed wide rifting takes place in case of cold (500° C at Moho depth) initial isotherm and mafic composition of the lower crust, whereas hotter geotherms and weaker (wet quartzite) lower crustal rheology lead to strong localization of rifting. Moreover, it appears that the prerequisite of strongly anisotropic strain localization (linear rift structures) refers to simultaneous presence of an active mantle plume and of some, even very weak, slow (< 3 mm/y) passive horizontal extension produced by far-field tectonic forces. Higher (than 1.5-3 mm/y) velocities of supplementary far-field extension expectedly lead to enlargement of the active fault zone for the same lapse of time. Yet, simultaneous rise of the lithospheric geotherm associated with active rifting has an opposite effect leading to the narrowing of the rift zone. Consequently, interplays between active and passive rifting result in highly varying rifts styles hence breaking common rift-style classifications. The importance of the rheological properties of the continental crust for deformation regime is demonstrated not only by considerable difference in surface morphology and crustal strain patterns between the models with different lower crustal rheology, but also by a noticeable distinction in deep distribution of the plume head material, with consequent effect for magmatic processes and mantle

  7. Local Discontinuous Galerkin (LDG) Method for Advection of Active Compositional Fields with Discontinuous Boundaries: Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

    NASA Astrophysics Data System (ADS)

    He, Y.; Billen, M. I.; Puckett, E. G.

    2015-12-01

    Flow in the Earth's mantle is driven by thermo-chemical convection in which the properties and geochemical signatures of rocks vary depending on their origin and composition. For example, tectonic plates are composed of compositionally-distinct layers of crust, residual lithosphere and fertile mantle, while in the lower-most mantle there are large compositionally distinct "piles" with thinner lenses of different material. Therefore, tracking of active or passive fields with distinct compositional, geochemical or rheologic properties is important for incorporating physical realism into mantle convection simulations, and for investigating the long term mixing properties of the mantle. The difficulty in numerically advecting fields arises because they are non-diffusive and have sharp boundaries, and therefore require different methods than usually used for temperature. Previous methods for tracking fields include the marker-chain, tracer particle, and field-correction (e.g., the Lenardic Filter) methods: each of these has different advantages or disadvantages, trading off computational speed with accuracy in tracking feature boundaries. Here we present a method for modeling active fields in mantle dynamics simulations using a new solver implemented in the deal.II package that underlies the ASPECT software. The new solver for the advection-diffusion equation uses a Local Discontinuous Galerkin (LDG) algorithm, which combines features of both finite element and finite volume methods, and is particularly suitable for problems with a dominant first-order term and discontinuities. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a global maximum/minimum. One potential drawback for the LDG method is that the total number of degrees of freedom is larger than the finite element method. To demonstrate the capabilities of this new method we present results for two benchmarks used previously: a falling cube with distinct buoyancy and

  8. A new estimate of the effective elastic thickness of the Canadian shield from admittance analyses using the wavelet transform, and models of flexure and mantle convection

    NASA Astrophysics Data System (ADS)

    Kirby, J. F.; Swain, C. J.

    2013-12-01

    The flexural rigidity of the Earth's cratonic regions is a topic of much controversy. While many studies have suggested that cratons possess high elastic strength, others maintain that the continental lithosphere is everywhere weak. In this study we focus on the Canadian shield, and show that perceived evidence for weak cratonic lithosphere is compromised by shortcomings of the spectral analysis technique. Here we compare estimates of the admittance between free-air gravity and topography in the spectral domain from wavelet and multitaper methods. We apply particular attention to their long wavelength values, since it is here that the signals from mantle convection, glacial isostatic adjustment (GIA) and flexure are often present together. Our results show that, when used with certain parameter values, the multitaper method has a comparatively poor resolution at long wavelengths, and hence is not always able to distinguish between the harmonics due to convection and flexural processes. This renders it unreliable for estimating the flexural rigidity. We then show that the wavelet method does have the requisite properties to make this distinction, since it is able to correctly resolve a low-admittance dip at long wavelengths in both synthetic and real data. When the observed wavelet admittance of the Canadian shield is inverted against the predictions of a combined flexural, convection and GIA model, we find that the shield possesses a core of high effective elastic thickness (Te), greater than 118 km to 95% confidence, located to the immediate south-west of Hudson Bay.

  9. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    USGS Publications Warehouse

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  10. The impact of non-local buoyancy flux on the convective boundary layer development as simulated by a 3-D TKE-based subgrid mixing scheme in a mesoscale model

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Bao, Jian-Wen; Chen, Baode

    2016-04-01

    This presentation highlights a study in which a series of dry convective boundary layer (CBL) simulations are carried out using a generalized 3-dimensional (3-D) TKE-based parameterization scheme of sub-grid turbulent mixing in the Weather Research and Forecasting (WRF) model. The simulated characteristics of dry CBL are analyzed for the purpose of evaluating this scheme in comparison with a commonly-used scheme for sub-grid turbulent mixing in NWP models (i.e., the Mellor-Yamada 1.5-order TKE scheme). The same surface layer scheme is used in all the simulations so that only the sensitivity of the WRF model to different parameterizations of the sub-grid turbulent mixing above the surface layer is examined. The effect of horizontal grid resolution on the simulated CBL is also examined by running the model with grid sizes of 200, 400 m, 600 m, 1 km and 3 km. We will first compare the characteristics of the simulated CBL using the two schemes with the WRF LES dataset. We will then illustrate the importance of including the non-local component in the vertical buoyancy specification in the 3-D TKE-based scheme. Finally, comparing the results from the simulations against coarse-grained WRF LES dataset, we will show the feasibility and advantage of replacing conventional planetary boundary layer parameterization schemes with a scale-aware 3-D TKE-based scheme in the WRF model.

  11. The effect of convective life cycle stage on microwave brightness temperature/rainrate relations as determined from 3-D cloud model results

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Tao, Wei-Kuo; Simpson, Joanne; Prasad, N.; Yeh, H.-Y. M.

    1990-01-01

    The relationship between the rain rate and the brightness temperature (Tb) was investigated using a cloud model/microwave radiative transfer model combination to obtain the rain-rate/Tb relations for four different frequencies: 10, 19, 37, and 86 GHz. The results at 19, 37, and 86 GHz were found to be significantly affected by ice in the modeled convective system, while the results at 10 GHz showed very little effect. Nonprecipitating cloud water was found to affect Tb in two ways. First, at low rain rates, the presence of significant cloud water produced higher Tb values than in cases with little cloud water. The second effects occurs at 19, 37, and 86 GHz at higher rainrates associated with significant ice formation; the scattering by ice lowered the Tb.

  12. Dynamic coupling of bulk chemistry, trace elements and mantle flow

    NASA Astrophysics Data System (ADS)

    Davies, J. H.; Heck, H. V.; Nowacki, A.; Wookey, J. M.; Elliott, T.; Porcelli, D.

    2015-12-01

    Fully dynamical models that not only track the evolution of chemical heterogeneities through the mantle, but also incorporate the effect of chemical heterogeneities on the dynamics of mantle convection are now emerging. Since in general analytical solutions to these complex problems are lacking, careful testing and investigations of the effect and usefulness of these models is needed. We extend our existing numerical mantle convection code that can track fluid flow in 3D spherical geometry and tracks both bulk chemical components (basal fraction) and different trace elements. The chemical components fractionate upon melting when and where the solidus is crossed. Now, the chemical information will effect the flow of the fluid in the following ways: The bulk composition will link to density and the (radioactive) trace element abundance to heat production. Results will be reported of the effect of different density structures; either starting with a primordial dense layer at the base of the mantle, having all density variation originate from melting (basalt production), or a combination between these two end-member scenarios. In particular we will focus on the connection between large scale bulk chemical structures in the (deep) mantle and the evolution of the distribution of noble gasses (He and Ar). The distribution of noble gasses depend upon 1) assumptions on the initial distributions in the mantle, 2) the mantle flow, 3) radioactive production and, 4) outgassing to the atmosphere upon melting close to the surface.

  13. Three-dimensional mantle dynamics with an endothermic phase transition

    NASA Technical Reports Server (NTRS)

    Honda, S.; Balachandar, S.; Yuen, D. A.; Reuteler, D.

    1993-01-01

    3D convection for the spinel to perovskite phase change has been simulated numerically. Results for Rayleigh (Ra) numbers of 0(10 exp 6) show intermittent layering with a strong robust plume rising through the phase boundary. Many descending instabilities are deflected but merging cold sheets come together at a junction. A pool of cold material accumulates underneath in the phase-transition zone. A strong gravitational instability results, which precipitates a rapid and massive discharge of upper-mantle material.

  14. Geoid anomalies and dynamic topography from convection in cylindrical geometry - Applications to mantle plumes on earth and Venus

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Hager, Bradford H.

    1992-01-01

    A variety of evidence suggests that at least some hotspots are formed by quasi-cylindrical mantle plumes upwelling from deep in the mantle. Such plumes are modeled in cylindrical, axisymmetric geometry with depth-dependent, Newtonian viscosity. Cylindrical and sheet-like, Cartesian upwellings have significantly different geoid and topography signatures. However, Rayleigh number-Nusselt number systematics in the two geometries are quite similar. The geoid anomaly and topographic uplift over a plume are insensitive to the viscosity of the surface layer, provided that it is at least 1000 times the interior viscosity. Increasing the Rayleigh number or including a low-viscosity asthenosphere decreases the geoid anomaly and the topographic uplift associated with an upwelling plume.

  15. Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.

    2014-03-01

    The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle

  16. Peridotite xenoliths from the Polynesian Austral and Samoa hotspots: Implications for the destruction of ancient 187Os and 142Nd isotopic domains and the preservation of Hadean 129Xe in the modern convecting mantle

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Shirey, S. B.; Hauri, E. H.; Kurz, M. D.; Rizo, H.

    2016-07-01

    The Re-Os systematics in 13 peridotite xenoliths hosted in young (<0.39 myr) rejuvenated lavas from the Samoan island of Savai'i and 8 peridotite xenoliths from 6 to 10 myr old lavas from the Austral island of Tubuai have been examined to evaluate the history of the oceanic mantle in this region. Modal mineralogy, trace element compositions and 187Os/188Os ratios suggest that these peridotites are not cognate or residual to mantle plumes but rather samples of Pacific oceanic lithosphere created at the ridge. Savai'i and Tubuai islands lie along a flow line in the Pacific plate, and provide two snapshots (separated by over 40 Ma in time) of Pacific mantle that originated in the same region of the East Pacific rise. Tubuai xenoliths exhibit 187Os/188Os from 0.1163 to 0.1304, and Savai'i (Samoa) xenoliths span a smaller range from 0.1173 to 0.1284. The 187Os/188Os ratios measured in Tubuai xenoliths are lower than (and show no overlap with) basalts from Tubuai. The 187Os/188Os of the Savai'i xenoliths overlap the isotopic compositions of lavas from the island of Savai'i, but also extend to lower 187Os/188Os than the lavas. 3He/4He measurements of a subset of the xenoliths range from 2.5 to 6.4 Ra for Tubuai and 10.8 to 12.4 Ra for Savai'i. Like abyssal peridotites and xenoliths from oceanic hotspots that sample the convecting mantle, Os isotopes from the Savai'i and Tubuai xenolith suites are relatively unradiogenic, but do not preserve a record of depleted early-formed (Hadean and Archean) mantle domains expected from earlier cycles of ridge-related depletion, continent extraction, or subcontinental lithospheric mantle erosion. The lack of preservation of early-formed, geochemically-depleted Os-isotopic and 142Nd/144Nd domains in the modern convecting mantle contrasts with the preservation of early-formed (early-Hadean) 129Xe/130Xe isotopic heterogeneities in the convecting mantle. This can be explained if the initial isotopic signatures in Re-Os and Sm-Nd systems

  17. Neoproterozic Re-Os age of a sulfide inclusion in a superdeep diamond: Implications for mantle convection beneath Juina, Brazil

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Smit, K.; Nestola, F.; Steele, A.; Bulanova, G.; Smith, C. B.

    2015-12-01

    Diamonds from the Juina area Brazil have long been known for their sublithospheric or superdeep (e.g. from depths of 300-800 km) origins. These diamonds have yielded new information about high pressure mantle mineralogy, deep crustal recycling, diamond source fluids, and mantle transition zone water content. A type II (low N) diamond (sample J1) from the 93.1±1.5 myr old (Heaman 7IKC 1998 ) Collier 4 kimberlite was studied previously (Walter et al. Nature 2008; Bulanova et al. CMP 2010) as part of a larger suite of eclogitic-composition, inclusion-bearing type II Collier 4 diamonds with complex internal growth structure. Major and trace element analyses of mineral inclusions in these diamonds include Ca-Ti-Si perovskite, Ca-rich majoritic-garnet, clinopyroxene, olivine, jeffbenite, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca-Mg-carbonate. The C isotopic compositions of the diamond hosts range from a δ13C of -25 to -5‰ ( J1 being -15‰). Collier 4 diamonds have been interpreted to crystallize from carbonatitic melts derived from the recycling of oceanic lithosphere at TransitionZone depths (Walter et al. Nature 2008; Bulanova et al. CMP 2010). A rare Fe-sulfide inclusion in the core of diamond J1 has been dated with the Re-Os system in order to provide age and compositional constraints on the proposed oceanic slab recycling. The rim of J1 contained inclusions of Ca-Ti-Si perovskite that yielded U-Pb age of 101±7 Ma and eclogitic (low Cr, high Ca) majorite that yielded formation pressures (Si - Al+Cr geobarometry) >8 GPa (Bulanova et al. CMP 2010). The Fe-sulfide analyzed was low Ni pyrrhotite determined to be Fe10S11 of a rare 11T polytype by single-crystal X-ray diffraction. The 27 ug interior pyrrhotite had a high Re/Os (187Re/188Os = 854) typical of MORB (Re/Os ~100) and radiogenic Os isotopic composition (187Os/188Os = 8.50±1.38) that yields a 602±16 Ma model age relative to normal mantle

  18. Global correlation of volcanic centers on Venus with uplands and with extension: Influence of mantle convection and altitude

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, James W., III; Aubele, J. C.

    1992-01-01

    The observed distribution of volcanism on Venus and its associations with geologic and tectonic characteristics are examined for significant global-scale tectonic, mantle, and volcanic influences. We find that volcanic centers are correlated geologically with zones of extension, infrequent in lowland regions, and infrequent in regions with evidence for tectonic shortening. In addition, volcanic centers are significantly concentrated in a broad region at least 10,000 km in diameter between Beta, Alta, and Themis Regiones. This area is nearly hemispheric in scale and coincides spatially with the area of greatest concentration of extensional characteristics. Our analysis suggests that the observed distribution patterns of volcanic centers reflect the regional patterns of extension, the origin of the extension and volcanism are closely related, and the hemispheric scale of both patterns implies a deep-seated origin such as large-scale interior mantle dynamic patterns. However, altitude-dependent effects on both the formation and preservation of volcanic centers could also strongly influence the observed distribution pattern.

  19. Geochemistry of lamprophyres at the Daping gold deposit, Yunnan Province, China: Constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Yaohuang; Yao, Shuzhen; Pan, Yuanming

    2014-10-01

    Cenozoic lamprophyre dykes occur widely along the Ailao-Shan-Red-River (ASRR) shear zone related to the Indian-Eurasian collision. Two generations of lamprophyres have been found at the Daping gold deposit in the southern part of the ASRR shear zone and have been investigated by using phlogopite 40Ar/39Ar dating and whole-rock major and trace element as well as Sr and Nd isotope geochemical analyses. The 40Ar/39Ar plateau ages of phlogopite from the two generations of lamprophyres bracket the emplacement of auriferous quartz veins in the Daping deposit between 36.8 ± 0.2 Ma and 29.6 ± 0.2 Ma, consistent with the timing of gold mineralization in other parts of the ASRR shear zone. Geochemical data suggest that these lamprophyres most likely originated from a subduction-modified mantle source consisting of phlogopite-bearing spinel lherzolite, which underwent partial melting with contributions from crust materials. In particular, the second generation lamprophyres are characterized by more primitive geochemical features than the first, suggesting that secular source evolution probably resulted from post-collisional slab break-off mantle convection and remelting from ascending asthenosphere after subducted lithosphere break-off. Widespread and episodic occurrences of lamprophyres and other potassic volcanism in the eastern Tibetan Plateau were probably related to the onset of transtensional tectonics along the ASRR shear zone during Oligocene. A genetic model involving transtensional tectonics has been proposed for lamprophyres and gold mineralization in the ASRR shear zone.

  20. The impacts of mantle phase transitions and the iron spin crossover in ferropericlase on convective mixing—is the evidence for compositional convection definitive? New results from a Yin-Yang overset grid-based control volume model

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Peltier, W. R.

    2015-08-01

    High-resolution seismic tomographic images from several subduction zones provide evidence for the inhibition of the downwelling of subducting slabs at the level of the 660 km depth seismic discontinuity. Furthermore, the inference of old (~140 Myr) sinking slabs below fossil subduction zones in the lower mantle has yet to be explained. We employ a control volume methodology to develop a new anelastically compressible model of three-dimensional thermal convection in the "mantle" of a terrestrial planet that fully incorporates the influence of large variations in material properties. The model also incorporates the influence of (1) multiple solid-solid pressure-induced phase transitions, (2) transformational superplasticity at 660 km depth, and (3) the high spin-low spin iron spin transition in ferropericlase at midmantle pressures. The message passing interface-parallelized code is successfully tested against previously published benchmark results. The high-resolution control volume models exhibit the same degree of radial layering as previously shown to be characteristic of otherwise identical 2-D axisymmetric spherical models. The layering is enhanced by the presence of moderate transformational superplasticity, and in the presence of the spin crossover in ferropericlase, stagnation of cold downwellings occurs in the range of spin crossover depths (~1700 km). Although this electronic spin transition has been suggested to be invisible seismically, recent high-pressure ab initio calculations suggest it to have a clear signature in body wave velocities which could provide an isochemical explanation of a seismological signature involving the onset of decorrelation between Vp and Vs that has come to be interpreted as requiring compositional layering.

  1. A novel thermodynamic model of Mg2SiO4 with a superior representation of experimental data predicts negligible layering in mantle convection

    NASA Astrophysics Data System (ADS)

    Jacobs, M. H.; de Jong, B. H.; van den Berg, A. P.

    2005-12-01

    substances behave quasi-harmonically. The predicted Clapeyron slope of the post- spinel phase boundary is -(2.0±0.5) MPa/K. These results, have been included in a numerical model of convection in the Earth's mantle revealing no layered convection in the transition zone. Our model includes the recently discovered post-perovskite phase (P~125 GPa) based on ab-initio results and V-P-T measurements by Murakami et al. [6]. The convection results indicate that the post- perovskite layer at the bottom of the mantle is a time-dependent phenomenon strongly affected by core temperature of a cooling earth. References [1] M.H.G. Jacobs and B.H.W.S. de Jong, Geochim. Cosmochim. Acta (2005), in press. [2] S.W. Kieffer, Rev. Geophys. Space Physics, 17 (1979) 35-59. [3] M.H.G. Jacobs, B.H.W.S. de Jong and A.P. van den Berg, Calphad (2005), submitted. [4] T. Inoue, Y. Tanimoto, T. Irifune, T. Suzuki, H. Fukui and O. Ohtaka, Phys. Earth Planet. Int. 143-144 (2004) 279-290. [5] I. Suzuki, J. Phys. Earth, 27 (1979) 53-61. [6] M. Murakami, K. Hirose, K. Kawamura, N. Sata and Y. Ohishi, Science, 304 (2004) 855-855

  2. 3-D Spherical modelling of the thermo-chemical evolution of Venus

    NASA Astrophysics Data System (ADS)

    Armann, M.; Tackley, P. J.

    2009-04-01

    Several first-order aspects of the dynamics of Venus' mantle remain poorly understood. These include (i) how Venus' mantle loses its radiogenic heat (presumably about the same as Earth's) despite the presence of stagnant lid convection. Hypotheses that have been advanced (summarised in [1]) are conduction through a thin lithosphere, episodic overturn of the lithosphere, magmatic heat transport, and concentration of almost all heat-producing elements into the crust, but there are problems with all of these taken individually. A thick lithosphere may not be consistent with admittance ratios, magmatic heat transport would require a too-large resurfacing rate, and a large concentration of heat-producing elements in the crust would cause weakness and possibly melting in the deep crust. (ii) The relatively long-wavelength distribution of surface features, which is surprising because numerical models and analogue laboratory experiments of stagnant-lid convection produce relatively short-wavelength convective cells. (iii) The inferred (from crater distributions [2]) relatively uniform surface age of 500-700 Ma. (iv) Whether the highlands are above mantle downwellings as on Earth or above mantle upwellings [3]. (v) How the mantle can have outgassing only 25% of 40Ar [4] but supposedly most of its water [5]. (vi) The cause of coronae and relationship to mantle processes [6]. To study some of these questions, we are performing integrated thermo-chemical convection modelling of Venus' evolution over 4.5 billion years, in 3-D spherical geometry as well as 2-D spherical annulus geometry [7]. These models include realistic ("laboratory") rheological parameters for diffusion creep and dislocation creep based on [8][9], which are also composition-dependent, and plastic yielding based on Byerlee's law, which might cause changes in tectonic regime (e.g., episodic plate tectonics). Crustal formation and the resulting differentiation of the crust and mantle are modelled using a self

  3. Seismological constraints on deep mantle structure: recent results

    NASA Astrophysics Data System (ADS)

    Ritsema, J. E.

    2002-12-01

    Thanks to the development of global seismic networks, especially in the past two decades when digital broadband ground motion sensors were employed, full waveform analysis has led to the development of three-dimensional models of the structure of Earth's interior. Yet, many of the new models confirm a number of critical conclusions that F. Birch drew in his seminal 1952 JGR paper. For example, he envisioned that the upper mantle transition zone plays a prominent role in mantle circulation and he emphasized the significant effect of pressure on thermodynamic parameters. Indeed, a large number of seismic studies of the transition zone indicate that the descent of slabs of former oceanic lithosphere is, with few exceptions, impeded by the 660--km discontinuity. Furthermore, the observation of predominantly broad seismic velocity structures in the lower mantle (> 1500 km depth) may reflect sluggish convection, due to reduced thermal expansivity. I will review several recent seismological studies of the deep mantle and place them in the context of Birch's paper. In particular, I will discuss surprising new findings in the deep mantle beneath Africa, which is especially well studied with data from recent African deployments. Furthermore, I will show results of the application of a new 3D waveform modeling technique that may prove invaluable in future seismological studies of the deep mantle.

  4. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  5. Chemical stratification of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    A possible scenario for the chemical stratification of the earth's mantle is presented. Differentiation of the mantle by either the production of basaltic magmas or partial melting by the upper mantle is proposed to lead to a thick basalt layer, the lower part of which is converted to eclogite as the earth cools. Density estimates indicate that the eclogite formed would not be able to sink to below 670 km. The eclogite layer is thus demonstrated to be trapped as a result of whole-mantle convection and possible irreversible differentiation of the mantle into eclogite and overlying residual peridotite layers.

  6. Mechanism of Hot Finger Formation in Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Matsuo, M. Y.; Tamura, Y.; Sakaguchi, H.

    2013-12-01

    Processes of mantle melting and volcanic eruptions along subduction zones are often illustrated by the use of two-dimensional cross-section models of convergent margins. However, Quaternary volcanoes in the NE Japan arc could be grouped into ten volcano clusters striking transverse to the arc; these have an average width of ~ 50 km, and are separated by parallel gaps 30-75 km wide (Tamura et al., 2002). Moreover, the structure of the mantle wedge and arc crust beneath the NE Japan arc and the Izu-Bonin-Mariana arc, respectively, suggest that the third dimension, lying along the strike of the arc, is necessary to understand the actual production of magmas in subduction zones (e.g., Nakajima et al., 2001; Hasegawa & Nakajima, 2004; Kodaira et al., 2007; Kodaira et al., 2008). Common periodic structural variations, having wavelengths of 80-100 km, can be observed in both areas. This grouping of volcanoes and the structural variations may be related to locally developed hot regions within the mantle wedge that have the form of inclined, 50 km-wide fingers (hot fingers). The 'hot fingers' models (Tamura et al., 2002) may play an important role in linking the 3D structures within the mantle wedge and overlying arc crust to volcanic eruptions at the surface. To explore a physical and mathematical mechanism to produce a hot finger pattern, we develop a hydrodynamic model of mantle convection in mantle wedge. A hypothesis incorporated in our model is a double diffusive mechanism of mantle materials; diffusion of composition of mantle materials is much weaker than temperature diffusion. We show that our model shows a spatiotemporal pattern in a mantle material composition, temperature, and velocity that are similar to the spatiotemporal patterns observed in the NE Japan arc.

  7. Implementation of a flexible and scalable particle-in-cell method for massively parallel computations in the mantle convection code ASPECT

    NASA Astrophysics Data System (ADS)

    Gassmöller, Rene; Bangerth, Wolfgang

    2016-04-01

    Particle-in-cell methods have a long history and many applications in geodynamic modelling of mantle convection, lithospheric deformation and crustal dynamics. They are primarily used to track material information, the strain a material has undergone, the pressure-temperature history a certain material region has experienced, or the amount of volatiles or partial melt present in a region. However, their efficient parallel implementation - in particular combined with adaptive finite-element meshes - is complicated due to the complex communication patterns and frequent reassignment of particles to cells. Consequently, many current scientific software packages accomplish this efficient implementation by specifically designing particle methods for a single purpose, like the advection of scalar material properties that do not evolve over time (e.g., for chemical heterogeneities). Design choices for particle integration, data storage, and parallel communication are then optimized for this single purpose, making the code relatively rigid to changing requirements. Here, we present the implementation of a flexible, scalable and efficient particle-in-cell method for massively parallel finite-element codes with adaptively changing meshes. Using a modular plugin structure, we allow maximum flexibility of the generation of particles, the carried tracer properties, the advection and output algorithms, and the projection of properties to the finite-element mesh. We present scaling tests ranging up to tens of thousands of cores and tens of billions of particles. Additionally, we discuss efficient load-balancing strategies for particles in adaptive meshes with their strengths and weaknesses, local particle-transfer between parallel subdomains utilizing existing communication patterns from the finite element mesh, and the use of established parallel output algorithms like the HDF5 library. Finally, we show some relevant particle application cases, compare our implementation to a

  8. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  9. 3D dynamics of hydrous thermal-chemical plumes in subduction zones

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Gerya, T.; Yuen, D.; Connolly, J. A. D.

    2009-04-01

    Mantle wedges are identified as sites of intense thermal convection and thermal-chemical Rayleigh-Taylor instabilities ("cold plumes") controlling distribution and intensity of magmatic activity in subduction zones. To investigate 3D hydrous partially molten cold plumes forming in the mantle wedge in response to slab dehydration, we perform 3D petrological-thermomechanical numerical simulations of the intraoceanic one-sided subduction with spontaneously bending retreating slab characterized by weak hydrated upper interface. I3ELVIS code is used which is developed based on multigrid approach combined with marker-in-cell method with conservative finite-difference schemes. We investigated regional 800 km wide and 200 km deep 3D subduction models with variable 200 to 800 km lateral dimension along the trench using uniform numerical staggered grid with 405x101x101 nodal points and up to 50 million markers. Our results show three patterns (roll(sheet)-, zig-zag- and finger-like) of Rayleigh-Taylor instabilities can develop above the subducting slab, which are controlled by effective viscosity of partially molten rocks. Spatial and temporal periodicity of plumes correlate well with that of volcanic activity in natural intraoceanic arcs such as Japan. High laterally variable surface heat flow predicted in the arc region in response to thermal-chemical plumes activity is also consistent with natural observations.

  10. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  11. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  12. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2016-04-01

    Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 ‑ 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.

  13. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton

  14. Mantle dynamics and seismic tomography.

    PubMed

    Tanimoto, T; Lay, T

    2000-11-01

    Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure-high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784

  15. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  16. Seafloor Subsidence, Effective Thermal Conductivity, and Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Adam, C. M.; King, S. D.; Rabinowicz, M.; Vidal, V.; Jalobeanu, A.; Yoshida, M.

    2014-12-01

    The subsidence of seafloor is generally considered as a passive phenomenon related to the conductive cooling of the lithosphere since its creation at mid-oceanic ridges. Recent alternative theories suggest that the mantle dynamics plays an important role in the structure and depth of the oceanic lithosphere. However, the link between mantle dynamics and seafloor subsidence has still to be quantitatively assessed. Here we provide a statistic study of the subsidence parameters (subsidence rate and ridge depth) for all the oceans. These parameters are retrieved through the positive outliers method, a classical method used in signal processing. We also model the mantle convection pattern from the S40RTS tomography model. The density anomalies derived from this model are used to compute the instantaneous flow in a global 3D spherical geometry, and the induced dynamic topography. The variations of the mid-oceanic ridge depths are well recovered by the modeled dynamic topography. Moreover, the dynamic topography perfectly matches the subsidence trend away from mid-oceanic ridges. The systematic fit of the bathymetry allows the recovery of the subsidence rate, from which we derive the effective thermal conductivity, keff. This parameter ranges between 1 and 7 Wm-1K-1. We show that departures from the keff=3 Wm-1K-1 standard value are systematically related to mantle convection and not to the lithospheric structure. Regions characterized by keff>3 Wm-1K-1 are associated with the uplift of mantle plumes. Regions characterized by keff<3 Wm-1K-1 are related to large scale mantle downwellings such as the Australia-Antarctic Discordance (ADD) or the return flow from the South Pacific Superswell to the East Pacific rise. This demonstrates that the mantle dynamics plays a major role in the shaping of the oceanic seafloor. In particular, the parameters generally considered to quantify the lithosphere structure, such as the thermal conductivity, are not only representative of this

  17. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2015-04-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions using a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a hot lower thermal boundary layer is used to introduce spontaneously developing mantle plumes. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics and/or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic to granitic depending on its source rock. For a major increase in the mantle temperature, presumably corresponding to an Archean mantle (ΔTp = 200 - 300K compared to present day conditions), models show large amounts of subcrustal decompression melting and consequently large amounts of volcanics, which in turn influence the dynamics. Mantle and crust are convecting separately. Dome-shaped felsic plutons can be observed in the crust. Between these domes elongated belts of downwelling basalt and sediments are formed. Both crust and lithosphere thickness are regulated by thermo-chemical instabilities assisted by lower crust eclogitization: linear or cylindrical drips originating at the crust or lithosphere bottom or delamination of lower crust or lithosphere. Very similar examples of dome and belt structures are still preserved in Archean cratons. One example is the Kaapvaal craton is South Africa where the elongated shape of the Barberton Greenstone Belt, mainly built from mafic rocks and sediments, is surrounded

  18. Along-Arc Variation in Slab Surface Temperature Caused By 3D Material Circulation at the Plate Interface

    NASA Astrophysics Data System (ADS)

    Morishige, M.; Van Keken, P. E.

    2014-12-01

    In the northeast Japan arc, we can observe the along-arc variation of Quaternary volcano distribution, topography, seismic wave velocity, and Bouguer gravity anomaly whose characteristic wavelength is ~80 km. These observations may be related to 3D thermal structure in the mantle wedge and/or subducting Pacific slab. As a possible explanation of this, small-scale convection in the mantle wedge of thermal and chemical origin has been proposed so far. In this presentation, we will show another possible explanation for it. It is known mainly based on surface heat flow observation that the mantle wedge in this region is decoupled from the subducting Pacific slab down to ~80 km depth for geological time scale. We also observe that the down-dip limit of low angle thrust type earthquakes in this region is ~50 km depth. These suggest that in the northeast Japan arc, the mantle wedge and the slab decouples by brittle failure down to 50 km depth and by plastic deformation from 50 to 80 km depth. In order to test the effects of the plate interface on the thermal structure in this region, we construct 3D finite element models. The mantle flow is computed only in the mantle wedge, whereas temperature is computed for the whole model domain. We assume a thin, low viscosity layer just above the slab surface from 50 to 80 km depth to decouple the mantle wedge and the slab. We find that the along-arc variation in the slab surface temperature gradually develops with time. Its characteristic wavelength is ~100 km, which is comparable to or slightly higher than that observed. It arises because of the small-scale 3D circulation in the assumed low viscosity layer. The wavelength and the time of onset may depend on the viscosity and dimension of the low viscosity layer. Surface heat flow, on the other hand, does not show significant along-arc variation because forearc mantle is kept cold and hence rigid. These findings suggest that the observed along-arc variation in the northeast Japan

  19. Integrating Plate Tectonic Reconstruction and Mantle Dynamics: A valuable Aid in Frontier Exploration

    NASA Astrophysics Data System (ADS)

    Hafkenscheid, Edith; Warners-Ruckstuhl, Karin; van Oosterhout, Cees; Bergman, Steve; Davies, J. Huw; Govers, Rob; Hochard, Cyril; Kennan, Lorcan; Ross, Malcolm; Stampfli, Gérard M.; Vérard, Christan; Webb, Peter; Wortel, Rinus

    2013-04-01

    Effective hydrocarbon exploration in frontier regions requires an understanding of the tectonic and thermal evolution of basins, among other parameters or conditions. This is especially challenging when high-resolution local data are lacking, requiring reasonable interpolation and extrapolation of more regional knowledge. Some of the key first-order parameters influencing the presence and preservation of an economic petroleum system are the basin's vertical motion history and its thermal and stress evolution. To quantify these parameters in a physically consistent manner over several hundred million years, an integrated lithosphere-mantle dynamics modeling approach is needed. To this purpose, we embarked on developing a 3D dynamic model for the whole earth that links surface phenomena to mantle convection and lithosphere dynamics. The project involved a close collaboration between Shell and three universities, and integration of many disciplines and techniques. University of Lausanne developed 600-0 Ma global plate reconstructions with consistently evolving plate boundaries. The 300-0 Ma period was then adapted to be used as surface boundary condition for forward mantle convection modeling by Cardiff University, producing global predictions of base lithosphere temperatures, heat flow and mantle induced vertical surface motion through time. As a last step, Utrecht University developed a method to predict the lithospheric stress field through time based on integration of these mantle modeling results with the plate reconstruction model. This approach offers predictive scenarios and grids relevant to petroleum exploration that can be validated with local geological and geophysical data.

  20. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  1. Mantle structure beneath eastern Africa: Evidence for a through going-mantle anomaly and its implications for the origin of Cenozoic tectonism in eastern Africa

    NASA Astrophysics Data System (ADS)

    Mulibo, G.; Tugume, F.; Julia, J.

    2012-12-01

    In this study, teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are used to invert P and S travel time residuals, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds and for examining relief on transition zone discontinuities using receiver function stacks. Tomographic images reveal a low wave speed anomaly (LWA) that dips to the SW beneath northern Zambia, extending to a depth of at least 900 km. The anomaly appears to be continuous across the transition zone, extending into the lower mantle. Receiver function stacks reveal an average transition zone thickness (TZT) across a wide region extending from central Zambia to the NE through Tanzania and into Kenya, which is ~30-40 km thinner than the global average. These results are not easily explained by models for the origin of the Cenozoic tectonism in eastern Africa that invoke a plume head or small scale convection either by edge flow or passive stretching of the lithosphere. However, the depth extent of the LWA coincident with a thin transition zone is consistent with a model invoking a through-going mantle anomaly beneath eastern Africa that links anomalous upper mantle to the African Superplume anomaly in the lower mantle beneath southern Africa. This finding indicates that geodynamic processes deep in the lower mantle are influencing surface dynamics across the Afro-Arabian rift system.

  2. Plate Tectonics on Earth and on Alien Worlds - Novel Insights into Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Stamenkovic, V.; Breuer, D.; Seager, S.

    2014-12-01

    We derive the framework of how common assumptions behind parameterized 1D and full convection 2D/3D models, as well as planet mass, interior structure and composition impact the evolution of plate tectonics on Earths and super-Earths. This approach additionally allows us to resolve previous disagreements between groups that studied plate tectonics on super-Earths and to unveil major problems when modeling the thermal evolution of plate tectonics with both 1D and 2D/3D models. How planet properties impact the evolution of plate tectonics is highly sensitive to a planet's initial thermal conditions, the rheology of mantle rock, the scaling of interior heat and yield stress with planet mass, and especially to whether shear or normal stresses drive plate tectonics. Based on the currently most likely model configuration and for planets starting molten, we find that plate tectonics is less likely to occur on super-Earths, for increasing iron and radiogenic heat contents within the mantle, and also with decreasing core to mantle mass fractions. Interestingly, we also find that water within a planet's mantle has a negative impact on plate tectonics and that only surface water can beneficially impact subduction (but not the initiation of plate tectonics). This emphasizes how the distribution and exchange of water between surface and mantle reservoirs are crucial for plate tectonics, and how difficult it is to find positive water-plate tectonics correlations.

  3. A convective forecast experiment of global tectonics

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Giering, Ralf

    2016-04-01

    Modeling jointly the deep convective motions in the mantle and the deformation of the lithosphere in a self-consistent way is a long-standing quest, for which significant advances have been made in the late 1990's. The complexities used in lithospheric models are making their way into the models of mantle convection (density variations, pseudo-plasticity, elasticity, free surface), hence global models of mantle motions can now display tectonics at their surface, evolving self-consistantly and showing some of the most important properties of plate tectonics on Earth (boundaries, types of boundaries, plate sizes, seafloor spreading properties, continental drift). The goal of this work is to experiment the forecasting power of such convection models with plate-like behavior, being here StagYY (Tackley, 2008). We generate initial conditions for a 3D spherical model in the past (50Ma and younger), using models with imposed plate velocities from 200Ma. By doing this, we introduce errors in the initial conditions that propagate afterwards. From these initial conditions, we run the convection models free, without imposing any sort of motion, letting the self-organization take place. We compare the forecast to the present-day plate velocities and plate boundaries. To investigate the optimal parameterization, and also have a flavor of the sensitivity of the results to rheological parameters, we compute the derivatives of the misfit of the surface velocities relative to the yield stress, the magnitude of the viscosity jump at 660km and the properties of a weak crust. These derivates are computed thanks to the tangent linear model of StagYY, that is built through the automatic differentiation software TAF (Giering and Kaminski, 2003). References Tackley, P. J., Modeling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter. 171, 7-18 (2008). Giering, R., Kaminski, T., Applying TAF

  4. The Galicia 3D experiment: an Introduction.

    NASA Astrophysics Data System (ADS)

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel

    2014-05-01

    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  5. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  6. Reservoirs of Undegassed Material in the Deep Mantle and the Origin of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Deschamps, Frédéric; Tackley, Paul; Cobden, Laura; Kaminski, Edouard

    2013-04-01

    The large scattering in the isotopic Helium ratio (4He/3He) observed in Ocean Island Basalts (OIB) suggests that the plumes at the origin of OIB sample several reservoirs. The low values (< 30000) of the Helium ratio indicates that OIB sample an undegassed reservoir. Its lowest value, around 15000, imposes a constraint on the entrainment of primitive material by plumes, which should not exceed 10%. Numerical experiments of thermo-chemical convection in 3D-Cartesian and spherical geometries showed that reservoirs of primordial material can be maintained at the bottom of the system, the shape and stability of these reservoirs depending on the chemical density contrast and on the thermal viscosity contrast. In addition, plumes are generated at the top of these reservoirs, entraining small fraction of primordial material up to the surface. Numerical experiments showed that this entrainment quantitatively agrees with OIB data, with values around 9%. The location of the undegassed reservoirs is still a matter of debate. Images of slabs penetrating in the deep mantle indicate that the lower mantle itself is not isolated. The undegassed reservoirs may instead consist of pools of chemically distinct material located in the lowermost mantle. Possible candidates for these pools are the low shear-wave velocity provinces (LLSVP) observed by seismic tomography. Additional observations, including the anti-correlation between shear- and bulk-sound velocity anomalies, show that these structures are caused by large scale thermo-chemical anomalies. The exact nature of the chemical component of these anomalies is still unclear, two end-members hypotheses (namely the recycling of MORB by subduction, and the survival of primordial deep reservoirs) being usually advocated. The combination of mineral physics data and global tomographic models shows that LLSVP are better explained by material enriched in iron and silicates than by high pressure MORB, unless these LLVSP are hotter than the

  7. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  8. Variable viscosity convection experiments with a stress-free upper boundary and implications for the heat transport in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Giannandrea, E.; Christensen, U.

    1993-06-01

    We carried out laboratory convection experiments in a large aspect ratio tank to study the effect of a stress-free upper boundary on the heat transfer and the size of convection cells. We used a concentrated sucrose solution to achieve both a high Prandtl number and a strongly temperature-dependent viscosity. We find that for a stress-free upper boundary the Nusselt number is proportional to the cubic root of the Rayleigh number, if the latter is defined with the viscosity at the mean of surface and bottom temperature and if the viscosity contrast is kept constant. For a parametrization with constant surface temperature and a Rayleigh number defined with the viscosity at the average temperature we obtain Nu ∝ Ra 0.2. The Nusselt number drops by some 20% for viscosity contrasts between 50 and 5000. At large viscosity contrast, a stagnant lid forms on top of an actively convecting region, and the Nusselt number and the size of the convection cells are nearly identical for both no-slip and free-slip experiments. For viscosity contrasts up to 1000 the surface layer is mobile, and we observe convection cells with aspect ratios ranging from 1.5 to 3.5. Our heat transfer data are reliable only for Rayleigh numbers up to 10 5. For higher Rayleigh numbers an evaporation skin forms on the surface, which hampers the movement of the upper boundary layer and reduces the Nusselt number. For viscosity contrasts less than 250 the heat transfer data agree well with results from three-dimensional numerical calculations. At higher viscosity contrasts the numerical data are 10% lower than the experimental values both for a stress-free and rigid upper boundary.

  9. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  10. Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Zhong, Shijie

    2016-03-01

    Long-wavelength geoid anomalies provide important constraints on mantle dynamics and viscosity structure. Previous studies have successfully reproduced the observed geoid using seismically inferred buoyancy in whole-mantle convection models. However, it has been suggested that large low shear velocity provinces (LLSVPs) underneath Pacific and Africa in the lower mantle are chemically distinct and are likely denser than the ambient mantle. We formulate instantaneous flow models based on seismic tomographic models to compute the geoid and constrain mantle viscosity by assuming both thermochemical and whole-mantle convection. Geoid modeling for the thermochemical model is performed by considering the compensation effect of dense thermochemical piles and removing buoyancy structure of the compensation layer in the lower mantle. Thermochemical models well reproduce the observed geoid, thus reconciling the geoid with the interpretation of LLSVPs as dense thermochemical piles. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models. In the preferred model, the lower mantle viscosity is ˜10 times higher than the upper mantle viscosity that is ˜10 times higher than the transition zone viscosity. The weak transition zone is consistent with the proposed high water content there. The geoid in thermochemical mantle models is sensitive to seismic structure at midmantle depths, suggesting a need to improve seismic imaging resolution there. The geoid modeling constrains the vertical extent of dense and stable chemical piles to be within ˜500 km above CMB. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modeling.

  11. Modeling Three-Dimensional Upper Mantle Seismic Anisotropy with Higher Mode Surface Waves

    NASA Astrophysics Data System (ADS)

    Yuan, Kaiqing

    This dissertation presents a new 3-D global upper mantle model of elastic anisotropy obtained from surface wave seismic tomography. This research contributes to our understanding of deep Earth structure. The two main results are the following: (1) Our work unravels the presence of azimuthal seismic anisotropy in the mantle transition zone, to greater depths than previously found, thereby challenging common views of mantle deformation mechanisms. It also reveals a striking correlation between changes in seismic anisotropy where upper mantle phase transitions occur, which provides new constraints on the style of mantle convection; (2) We confirm the dominantly thermal nature of the oceanic lithosphere-asthenosphere boundary (LAB), and show that the Gutenberg discontinuity associated with vertical changes in azimuthal anisotropy inside the lithosphere, implying that this interface is not equivalent to the LAB, contrary to what is commonly assumed. The origin of the Gutenberg discontinuity is a result of frozen-in lithospheric structures, regional compositional variations of the mantle, or dynamically perturbed LAB.

  12. The role of small-scale convection on the formation of volcanic passive margins

    NASA Astrophysics Data System (ADS)

    Van Hunen, J.; Phethean, J. J. J.

    2014-12-01

    Several models have been presented in the literature to explain volcanic passive margins (VPMs), including variation in rifting speed or history, enhanced melting from mantle plumes, and enhanced flow through the melting zone by small-scale convection (SSC) driven by lithospheric detachments. Understanding the mechanism is important to constrain the paleo-heat flow and petroleum potential of VPM. Using 2D and 3D numerical models, we investigate the influence of SSC on the rate of crust production during continental rifting. Conceptually, SSC results in up/downwellings with a typical spacing of a few-100 km, and may lead to enhanced decompression melting. Subsequent mantle depletion changes buoyancy (from latent heat consumption and compositional changes), and affects mantle dynamics under the MOR and potentially any further melting. Decompression melting leads to a colder, thermally denser residue (from consumption of latent heat of melting), but also a compositionally more buoyant one. A parameter sensitivity study of the effects of mantle viscosity, spreading rate, mantle temperature, and a range material parameters indicates that competition between thermal and compositional buoyancy determines the mantle dynamics. For mantle viscosities ηm > ~1022 Pa s, no SSC occurs, and a uniform 7-8 km-thick oceanic crust forms. For ηm < ~1021 Pa s, SSC is vigorous and can form VPMs with > 10-20 km crust. If thermal density effects dominate, a vigorous (inverted) convection may drive significant decompression melting, and create VPMs. Such dynamics could also explain the continent-dipping normal faults that are commonly observed at VPMs. After the initial rifting phase, the crustal thickness reduces significantly, but not always to a uniformly thick 7-8 km, as would be appropriate for mature oceanic basins. Transverse convection rolls may result in margin-parallel crustal thickness variation, possibly related to observations such as the East-Coast Magnetic Anomaly.

  13. Subduction History and the Evolution of Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Bull, Abigail; Shephard, Grace; Torsvik, Trond

    2016-04-01

    , geometry and morphology of lower mantle structures can be influenced by the movement of subducting slabs, and thus by the motions of tectonic plates at the surface. Alternatively, a long-term stability for both LLSVPs, which would suggest a first-order dissociation from the effects of surface plate motions, is hypothesised by recent studies which propose a geographic correlation between the reconstructed surface eruption sites of kimberlites and Large Igneous Provinces with the margins of the LLSVPs. If the surface volcanism was sourced from the lower mantle, such a link would suggest that the LLSVPs may have remained stationary for at least the age of the volcanic rocks (> 500 Myr) and further that the anomalies were largely insensitive to the formation and subsequent breakup of Pangea, and thus to Earth's plate motion history. Here we discuss the evolution of lower mantle structure, LLSVPs and surface volcanics in terms of subduction dynamics. We integrate high-resolution plate tectonic histories and numerical models of mantle convection and perform a series of 3D spherical calculations with Earth-like boundary conditions to investigate the role that subduction history plays in the development and evolution of lower mantle structures. To test whether such an interaction exists, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. We incorporate global shifts in both longitude and latitude, with the correction applied over timescales of 230-50 Myrs. With this method, the location of subduction at the surface and thus the global flow field can be altered. This in turn affects the time-dependent sinking of lithospheric slabs and may affect their interaction with the lower mantle and the LLSVPs at both their margins and top surfaces. We aim to understand how the subduction history has affected mantle structure on a global scale. We show that shifts to the surface history of subduction, even for extreme and

  14. Subduction History and the Evolution of Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Bull, Abigail; Shephard, Grace; Torsvik, Trond

    2016-04-01

    , geometry and morphology of lower mantle structures can be influenced by the movement of subducting slabs, and thus by the motions of tectonic plates at the surface. Alternatively, a long-term stability for both LLSVPs, which would suggest a first-order dissociation from the effects of surface plate motions, is hypothesised by recent studies which propose a geographic correlation between the reconstructed surface eruption sites of kimberlites and Large Igneous Provinces with the margins of the LLSVPs. If the surface volcanism was sourced from the lower mantle, such a link would suggest that the LLSVPs may have remained stationary for at least the age of the volcanic rocks (> 500 Myr) and further that the anomalies were largely insensitive to the formation and subsequent breakup of Pangea, and thus to Earth's plate motion history. Here we discuss the evolution of lower mantle structure, LLSVPs and surface volcanics in terms of subduction dynamics. We integrate high-resolution plate tectonic histories and numerical models of mantle convection and perform a series of 3D spherical calculations with Earth-like boundary conditions to investigate the role that subduction history plays in the development and evolution of lower mantle structures. To test whether such an interaction exists, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. We incorporate global shifts in both longitude and latitude, with the correction applied over timescales of 230-50 Myrs. With this method, the location of subduction at the surface and thus the global flow field can be altered. This in turn affects the time-dependent sinking of lithospheric slabs and may affect their interaction with the lower mantle and the LLSVPs at both their margins and top surfaces. We aim to understand how the subduction history has affected mantle structure on a global scale. We show that shifts to the surface history of subduction, even for extreme and

  15. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  16. The statistical upper mantle assemblage

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Anderson, Don L.

    2004-01-01

    A fundamental challenge in modern mantle geochemistry is to link geochemical data with geological and geophysical observations. Most of the early geochemical models involved a layered mantle and the concept of geochemical reservoirs. Indeed, the two layer mantle model has been implicit in almost all geochemical literature and the provenance of oceanic island basalt (OIB) and mid-ocean ridge basalt (MORB) [van Keken et al., Annu. Rev. Earth Planet. Sci. 30 (2002) 493-525]. Large-scale regions in the mantle, such as the 'convective' (i.e. well-stirred, homogeneous) upper mantle, sub-continental lithosphere, and the lower mantle were treated as distinct and accessible geochemical reservoirs. Here we discuss evidence for a ubiquitous distribution of small- to moderate-scale (i.e. 10 2-10 5 m) heterogeneity in the upper mantle, which we refer to as the statistical upper mantle assemblage (SUMA). This heterogeneity forms as the result of long-term plate tectonic recycling of sedimentary and crustal components. The SUMA model does not require a convectively homogenized MORB mantle reservoir, which has become a frequently used concept in geochemistry. Recently, Kellogg et al. [Earth Planet. Sci. Lett. 204 (2002) 183-202] modeled MORB and OIB Sr and Nd isotopic compositions as local mantle averages of random distributions of depleted residues and recycled continental crustal material. In this model, homogenization of the MORB source region is achieved by convective stirring and mixing. In contrast, in the SUMA model, the isotopic compositions of MORB and OIB are the outcome of homogenization during sampling, by partial melting and magma mixing (e.g. [Helffrich and Wood, Nature 412 (2001) 501-507]), of a distribution of small- to moderate-scale upper mantle heterogeneity, as predicted by the central limit theorem. Thus, the 'SUMA' acronym also captures what we consider the primary homogenization process: sampling upon melting and averaging. SUMA does not require the

  17. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  18. Combined buoyancy-thermocapillary convection

    NASA Technical Reports Server (NTRS)

    Homsy, G. M.

    1990-01-01

    Combined buoyancy-thermocapillary convection was studied in 2D and 3D. Fluid motion caused by thermally induced tension gradients on the free surface of a fluid is termed thermocapillary convection. It is well-known that in containerless processing of materials in space, thermocapillary convection is a dominant mechanism of fluid flow. Welding and crystal growth processes are terrestrial applications where thermocapillary convection has direct relevance.

  19. Intraplate volcanism and mantle dynamics in East Asia: Big mantle wedge (BMW) model (Invited)

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2009-12-01

    In the East Asia continent there are many Cenozoic volcanoes, but only a few are still active now, such as the Changbai, Wudalianchi, and Tengchong volcanoes which have erupted several times in the past 1000 years. Although many studies have been made by using various approaches, the origin of the intraplate volcanoes in East Asia is still not very clear. Recently we used regional and global seismic tomography to determine high-resolution 3-D mantle structure under Western Pacific to East Asia (Zhao, 2004; Huang and Zhao, 2006; Zhao et al., 2009). Our results show prominent low-velocity anomalies from the surface down to 410 km depth beneath the intraplate volcanoes and a broad high-velocity anomaly in the mantle transition zone under East Asia. Focal-mechanism solutions of deep earthquakes indicate that the subducting Pacific slab under the Japan Sea and the East Asia margin is subject to compressive stress regime. These results suggest that the Pacific slab meets strong resistance at the 660-km discontinuity and so it becomes stagnant in the mantle transition zone under East Asia. The Philippine Sea slab has also subducted down to the mantle transition zone under western Japan and the Ryukyu back-arc region. The western edge of the stagnant slab is generally parallel with the Japan trench and the Ryukyu trench and roughly coincides with a prominent surface topography and gravity boundary in East China, which is located approximately 1800 km west of the trenches. The upper mantle under East Asia has formed a big mantle wedge (BMW) above the stagnant slab. The BMW exhibits low seismic-velocity and high electrical-conductivity, which is hot and wet because of the deep dehydration reactions of the stagnant slab and the convective circulation process in the BMW. These processes lead to the upwelling of hot and wet asthenospheric materials and thinning and fracturing of the continental lithosphere, leading to the formation of the active intraplate volcanoes in East

  20. Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Cooper, C. M.; Lenardic, A.

    2010-12-01

    Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.

  1. Partial melting and the efficiency of mantle outgasing in one-plate planets

    NASA Astrophysics Data System (ADS)

    Plesa, Ana-Catalina; Breuer, Doris

    2013-04-01

    The generation of partial melting can have a major impact on the thermo-chemical evolution of a terrestrial body by the depletion of the mantle material in incompatible elements such as radioactive elements and volatiles, crust formation and volcanic outgassing. During some period in the thermal history of a terrestrial planet, the temperature in regions of the upper mantle, either below tectonic plates or a stagnant lid, rises above the solidus - the temperature at which the mineral with the lowest melting temperature among those that form the silicate mantle mixture starts to melt. The melt than rises toward the surface, forms the crust, and releases volatiles into the atmosphere. In case of one-plate (stagnant lid) planets the thickness of the present-day crust can 'tell' us already about the efficiency of mantle melting and mantle degassing - the thicker the crust the more mantle material experienced melting and thus the more efficient can be the outgassing. However, it has been shown with parameterized convection models [1] but also 2-3D convection models [2] that crustal delamination is a common process in one-plate planets. Crustal delamination allows that possibly much more crust is produced during the entire evolution (and thus more mantle material experienced differentiation) than what is observed today, implying also more efficient outgassing than expected. Crustal delamination is therefore a process that may help to generate a substantial planetary atmosphere. In the present work we investigate the influence of partial melt on mantle dynamics and the volcanic outgassing of one-plate planets using the mantle convection code GAIA [3] in a 2D cylindrical geometry. We consider the depletion of the mantle, redistribution of radioactive heat sources between mantle and crust, as well as mantle dehydration and volcanic outgassing [4]. When melt is extracted to form the crust, the mantle material left behind is more buoyant than its parent material and depleted

  2. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  3. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  4. 3-D Spherical modelling of the thermo-chemical evolution of Venus

    NASA Astrophysics Data System (ADS)

    Armann, M.; Tackley, P. J.

    2009-04-01

    Several first-order aspects of the dynamics of Venus' mantle remain poorly understood. These include (i) how Venus' mantle loses its radiogenic heat (presumably about the same as Earth's) despite the presence of stagnant lid convection. Hypotheses that have been advanced (summarised in [1]) are conduction through a thin lithosphere, episodic overturn of the lithosphere, magmatic heat transport, and concentration of almost all heat-producing elements into the crust, but there are problems with all of these taken individually. A thick lithosphere may not be consistent with admittance ratios, magmatic heat transport would require a too-large resurfacing rate, and a large concentration of heat-producing elements in the crust would cause weakness and possibly melting in the deep crust. (ii) The relatively long-wavelength distribution of surface features, which is surprising because numerical models and analogue laboratory experiments of stagnant-lid convection produce relatively short-wavelength convective cells. (iii) The inferred (from crater distributions [2]) relatively uniform surface age of 500-700 Ma. (iv) Whether the highlands are above mantle downwellings as on Earth or above mantle upwellings [3]. (v) How the mantle can have outgassing only 25% of 40Ar [4] but supposedly most of its water [5]. (vi) The cause of coronae and relationship to mantle processes [6]. To study some of these questions, we are performing integrated thermo-chemical convection modelling of Venus' evolution over 4.5 billion years, in 3-D spherical geometry as well as 2-D spherical annulus geometry [7]. These models include realistic ("laboratory") rheological parameters for diffusion creep and dislocation creep based on [8][9], which are also composition-dependent, and plastic yielding based on Byerlee's law, which might cause changes in tectonic regime (e.g., episodic plate tectonics). Crustal formation and the resulting differentiation of the crust and mantle are modelled using a self

  5. Traveltime dispersion in an isotropic elastic mantle: strong lower-mantle signal in differential-frequency residuals

    NASA Astrophysics Data System (ADS)

    Schuberth, Bernhard S. A.; Zaroli, Christophe; Nolet, Guust

    2015-12-01

    We study wavefield effects of direct P- and S-waves in elastic and isotropic 3-D seismic structures derived from the temperature field of a high-resolution mantle circulation model. More specifically, we quantify the dispersion of traveltime residuals caused by diffraction in structures with dynamically constrained length scales and magnitudes of the lateral variations in seismic velocities and density. 3-D global wave propagation is simulated using a spectral element method. Intrinsic attenuation (i.e. dissipation of seismic energy) is deliberately neglected, so that any variation of traveltimes with frequency can be attributed to structural effects. Traveltime residuals are measured at 15, 22.5, 34 and 51 s dominant periods by cross-correlation of 3-D and 1-D synthetic waveforms. Additional simulations are performed for a model in which 3-D structure is removed in the upper 800 km to isolate the dispersion signal of the lower mantle. We find that the structural length scales inherent to a vigorously convecting mantle give rise to significant diffraction-induced body-wave traveltime dispersion. For both P- and S-waves, the difference between long-period and short-period residuals for a given source-receiver pair can reach up to several seconds for the period bands considered here. In general, these `differential-frequency' residuals tend to increase in magnitude with increasing short-period delay. Furthermore, the long-period signal typically is smaller in magnitude than the short-period one; that is, wave-front healing is efficient independent of the sign of the residuals. Unlike the single-frequency residuals, the differential-frequency residuals are surprisingly similar between the `lower-mantle' and the `whole-mantle' model for corresponding source-receiver pairs. The similarity is more pronounced in case of S-waves and varies between different combinations of period bands. The traveltime delay acquired in the upper mantle seems to cancel in these differential

  6. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  7. Dynamical Evolution and Chemistry of the Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, G. F.

    2009-12-01

    has shown that refractory trace elements and isotopes can be well explained. An accumulation of former oceanic crust forms early at the base of the mantle, in the D” region. Once formed it persists into the present, even though it would no longer readily form now. This layer will be tapped by plumes, which will deliver more “enriched” signatures to oceanic island basalts (OIBs), as proposed by Hofmann and White. Careful modelling in 2- and 3-D has shown that the observed lead-isotope apparent age of about 1.8 Ga results from residence times (between melting events) of about 1.5 Gyr. This result is controlled almost entirely by the rate of processing through melting zones. Recently it has been argued that the incompatible-element content of the MORB source is about twice previous estimates because the full effects of source heterogeneity have not been accounted for. This would accommodate mass balances of these elements without a hidden reservoir. Noble gases would reside in a ‘hybrid pyroxenite’ component that would be denser than average mantle and would therefore accumulate in D”, along with degassed former crust. Longer residence times in D” can then explain the enigmatic unradiogenic helium in some OIBs, and can quantitatively account for He, Ne and Ar isotopic observations.

  8. Mantle metasomatism

    SciTech Connect

    Menzies, M.; Hawkesworth, C.

    1986-01-01

    The concept of metasomatism and its role in the geochemical enrichment and depletion processes in upper mantle rocks remains contentious. This volume makes a comprehensive contribution to the study of metasomatic and enrichment processes: origin and importance in determining trace element and isotopic heterogeneity in the lithospheric mantle. It begins with a theoretical thermodynamic and experimental justification for metasomatism and proceeds to present evidence for this process from the study of mantle xenoliths. Finally the importance of metasomatism in relation to basaltic volcanism is assessed. The contents are as follows: Dynamics of Translithospheric Migration of Metasomatic Fluid and Alkaline Magma. Solubility of Major and Trace Elements in Mantle Metasomatic Fluids: Experimental Constraints. Mineralogic and Geochemical Evidence for Differing Styles of Metasomatism in Spinel Lherzolite Xenoliths: Enriched Mantle Source Regions of Basalts. Characterization of Mantle Metasomatic Fluids in Spinel Lherzolites and Alkali Clinophyroyxenites from the West Eifel and South-West Uganda. Metasomatised Harzburgites in Kimberlite and Alkaline Magmas: Enriched Resites and ''Flushed'' Lherzolites. Metasomatic and Enrichment Phenomena in Garnet-Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite Pipe Lesotho. Evidence for Mantle Metasomatism in Periodite Nodules from the Kimberley Pipes South Africa. Metasomatic and Enrichment Processes in Lithospheric Peridotites, an Effective of Asthenosphere-Lithosphere Interaction. Isotope Variations in Recent Volcanics: A Trace Element Perspective. Source Regions of Mid-Ocean Ridge Basalts: Evidence for Enrichment Processes. The Mantle Source for the Hawaiian Islands: Constraints from the Lavas and Ultramafic Inclusions.

  9. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  10. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  11. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  12. Traveltime dispersion in an isotropic elastic mantle: strong lower-mantle signal in differential-frequency residuals

    NASA Astrophysics Data System (ADS)

    Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust

    2016-04-01

    Recently, we developed a joint forward modelling approach to test geodynamic hypotheses directly against seismic observations. By computing 3-D global wave propagation in seismic models derived from simulations of mantle flow, synthetic seismograms are generated independent of any seismic data. Here, we now show that this is also an excellent tool to study wavefield effects in a consistent manner, as length scales and magnitudes of seismic heterogeneity in the models are constrained by the dynamics of the flow. In this study, we quantify the traveltime dispersion of P- and S-waves caused by diffraction in our elastic and isotropic 3-D synthetic seismic structures. Intrinsic attenuation (i.e. dissipation of seismic energy) is deliberately neglected, so that any variation of traveltimes with frequency can be attributed to structural effects. Traveltime residuals are measured at 15, 22.5, 34 and 51 s dominant periods by cross-correlation of 3-D and 1-D synthetic waveforms. Additional simulations are performed for a model in which 3-D structure is removed in the upper 800 km to isolate the dispersion signal of the lower mantle. We find that the structural length scales inherent to a vigorously convecting mantle give rise to significant diffraction-induced body-wave traveltime dispersion. For both P- and S-waves, the difference between long-period and short-period residuals for a given source-receiver pair can reach up to several seconds for the period bands considered here. In general, these 'differential-frequency' residuals tend to increase in magnitude with increasing short-period delay. Furthermore, the long-period signal typically is smaller in magnitude than the short-period one; that is, wave-front healing is efficient independent of the sign of the residuals. Unlike the single-frequency residuals, the differential-frequency residuals are surprisingly similar between the 'lower-mantle' and the 'whole-mantle' model for corresponding source-receiver pairs. The

  13. Thermal Evolution Of The Core And Mantle Of Mars: Effects Of A Sequence Of Basin-Forming Impacts

    NASA Astrophysics Data System (ADS)

    Roberts, James; Arkani-Hamed, Jafar

    2015-04-01

    Several giant impact basins have been identified on Mars [1-2]. The youngest of these basins [1] are completely demagnetized [3], indicating that a global magnetic field [4] vanished in the mid-Noachian. Shock heating from the seven largest impacts penetrates below the core-mantle boundary (CMB) [5]. Previous investigations of coupled core cooling and mantle convection [5-6] showed that a single basin-forming impact could halt dynamo activity for 100 My, and that the core would not become fully convective again for nearly 1 Gy after the impact. However, the interval between impacts [1] is shorter than the timescale for dynamo activity to resume following an impact. Sub-sequent impacts may delay this recovery. Here, we expand this investigation into 3D and consider the full sequence of basin-forming impacts large enough to affect the core. Our goal is to obtain a better estimate of the timescale for resumption of dynamo activity. We compute the shock heating due to formation of the seven largest impact basins in the core and mantle using ray-tracing and scaling laws [7-8]. We model 3D mantle convection using CitcomS [9-10], and core cooling with a 1-D parametrization [5]. The temperature is initially adiabatic, with thermal boundary layers (TBL) at the surface and both sides of the CMB. At the time of each impact [1] we introduce a temperature perturbation resulting from shock heating into the core and mantle, and allow the core to stratify [11]. At a given timestep, we fix the mantle temperature and solve the 1D enthalpy equation in the core and lower TBL of the mantle over a time corresponding to a mantle timestep. We update the temperature at the CMB and TBL, and let the mantle convection progress for another timestep. We continue this iteration until the next impact occurs, or until the entire core is again convecting. Only the outermost core is affected by the impact heating. Because the conductivity of the core is higher than that of the mantle, the top of the

  14. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  15. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  16. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  17. Using mineral elasticities to link geodynamics and seismic observations in the lowermost mantle.

    NASA Astrophysics Data System (ADS)

    Wookey, J.; Walker, A. M.; Nowacki, A.; Walpole, J.; Kendall, J.

    2012-12-01

    created integrated models based on static flow fields estimated from seismic tomography. These are used to generate strain histories for a grid of points in the lowermost mantle, which in turn are used in conjunction with predicted elasticities and proposed deformation mechanisms to perform viscoplastic self-consistent modelling to generate models of general anisotropy for the lowermost mantle. We have compared these with both tomographic and local determinations of D″ anisotropy in a variety of regions using raytracing, however more robust comparison requires full waveform modelling. To this end we have modified a spectral finite-element code to allow a fully general anisotropic model, and produced waveforms which can be compared directly to observation. These show the complexity of the effect of anisotropy, and underline the importance of understanding the contributing elasticities to make robust dynamic inferences. Ultimately, properties derived from the complex mineralogy (such as the rheology) also needs to feed back into the geodynamic calculations, as developing texture changes parameters such as viscosity. Our current generation of models (which integrate texture development modelling into 3D mantle convection simulation) are a step toward this.

  18. 3D strength map of the Asia region

    NASA Astrophysics Data System (ADS)

    Rebetskiy, Y. L.; Baranov, A. A.

    2009-04-01

    The Southern and Central Asia is a tectonically complex region which characterized by the great collision between the Asian and Indian plates. Its tectonic evolution is strongly related to the active subduction process along the Pacific border. Stress investigation in the continental crust is a very important problem not only for science but also for the practical purposes. There are four main factors which produce tectonic stresses: gravity anomalies of the crust, density inhomogeneities, deformation from area with intraplate collision, residual elastic deformations and underthrust stresses conditions from convective mantle. We present the stress model of the crust and lithosphere for the Central and Southern Asia on the basis of the finite element modeling. For the crust we take the elasto-plastic rheology with Drucker-Prager criterion. In the lithosphere the elasto-plastic model with von Mises criterion is assumed. We investigated stresses which are produced by the crustal density inhomogeneities and surface relief. The calculations are done using the U-WAY finite element code developed at the Institute of Applied Mechanics Russian Academy of Sciences. (similar to the Nastran program) Density inhomogeneities are based on the AsCRUST-08 crustal model (Baranov, 2008), which has resolution of 1 x 1 degree. AsCRUST-08 was built using the data of deep seismic reflection, refraction and receiver functions studies from published papers. The complex 3D crustal model consists of three layers: upper, middle, and lower crust. Besides depth of the boundaries, we provided average P-wave velocities in the upper, middle and lower parts of the crystalline crust and sediments. The seismic P-velocity data was also recalculated to the densities and the elastic moduli of the crustal layers using the rheological properties and geological constraints. Strength parameters of rocks strongly depend on temperature, tectonic and fluid pressure. Fluid pressure can reduce resistance forces

  19. Evidence for mantle plumes?

    PubMed

    Anderson, Don L; Natland, James H

    2007-11-22

    Geophysical hotspots have been attributed to partially molten asthenosphere, fertile blobs, small-scale convection and upwellings driven by core heat. Most are short-lived or too close together to be deeply seated, and do not have anomalous heat flow or temperature; many are related to tectonic features. Bourdon et al. investigate the dynamics of mantle plumes from uranium-series geochemistry and interpret their results as evidence for thermal plumes. Here we show why alternative mechanisms of upwelling and melting should be considered. PMID:18033248

  20. Mantle Plume Dynamics Constrained by Seismic Tomography and Geodynamics

    NASA Astrophysics Data System (ADS)

    Glisovic, P.; Forte, A. M.

    2012-12-01

    We construct a time-dependent, compressible mantle convection model in three-dimensional spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method [Glisovic et al., Geophys. J. Int. 2012]. We explored the impact of two end-member surface boundary conditions, for a rigid and plate-like surface, along with geodynamically-inferred radial viscosity profiles. In each case we find that deep-mantle hot upwellings are durable and stable features in the mantle-wide convective circulation. These deeply-rooted mantle plumes show remarkable longevity over very long geological time spans (several hundred million years), mainly owing to the high viscosity in the lower mantle. Our very-long time convection simulations suggest that the deep-mantle plumes beneath the following hotspots: Pitcairn, Easter, Galapagos, Crozet, Kerguelen, Caroline and Cape Verde, are most reliably resolved in the present-day tomographic images.

  1. Slab Driven Mantle Deformation and Plate-Mantle Decoupling

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2015-12-01

    Observations of shear wave splitting derived from local sources in subduction zones suggest viscous flow in the mantle wedge is commonly non-parallel to both the subducting plate velocity vector and the motion of the overriding plate. However, far from the subduction zone trench, observations indicate the fast axis of shear wave splitting tends to align with the velocity vector of the surface plates. Similarly, previous 3D geodynamic models show the slab can drive local decoupling of the mantle and surface plates, in both direction and speed. This suggests that there is some distance from the trench over which there is significant decoupling of the mantle flow from surface plate motion, and that this decoupling zone then decays with continued distance from the trench, resulting in far-field plate-mantle coupling. Here we present results from geodynamic models of subduction coupled with calculations of olivine fabric deformation and synthetic splitting to 1) examine the influence of slab strength, slab dip, and non-Newtonian viscosity on the deformation fabric in the mantle wedge and subslab mantle and 2) quantify the spatial extent and intensity of this slab driven decoupling zone. We compare the deformation fabric in a 2D corner flow solution with varying dip to that of a 2D free subduction model with varying initial dip and slab strength. The results show that using an experimentally derived flow law to define viscosity (both diffusion creep and dislocation creep deformation mechanisms) has a first order effect on the viscosity structure and flow velocity in the upper mantle. The free subduction models using the composite viscosity formulation produce a zone of subduction induced mantle weakening that results in reduced viscous support of the slab and lateral variability in coupling of the mantle to the base of the surface plates. The maximum yield stress, which places an upper bound on the slab strength, can also have a significant impact on the viscosity

  2. Can the mantle control the core?: Energetics and dynamics

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2011-12-01

    The sustainability of magnetic field generation is discussed from a coupled model of numerical mantle convection simulation and core energetics theory. The pattern of geomagnetic field could be also controlled as a consequence of mantle convection [e.g. Amit and Choblet, 2009]. Our previous studies have suggested that the best-fit scenario for explaining both sustainability of magnetic field generation caused by dynamo actions and the size of inner core would be strongly controlled by the heat transfer of mantle convection with strongly compositional heterogeneities [Nakagawa and Tackley, 2004; Nakagawa and Tackley, 2010]. Here we investigate effects of initial mantle temperature and radioactive heat source in a convecting mantle with extremely high initial temperature at the core-mantle boundary that has been suggested from the hypothesis of early Earth [Labrosse et al., 2007] for checking how the mantle can control the thermal evolution of the core. Main consequence is that the amount of heat production rate and initial mantle temperature are not very sensitive to the thermal evolution of Earth's core but the convective vigor seems to be sensitive to the results. For the mantle side, the Urey ratio is not very good constraint for understanding thermal evolution of the whole Earth. In addition, we also show an example of numerical dynamo simulations with both a stably stratified layer and lateral variation of heat flux across the core-mantle boundary (CMB), which expands a paper by Nakagawa [2011], evaluated from numerical mantle convection simulations for checking how the mantle can control the dynamics of the core, which checks dead or alive for the magnetic field generated by dynamo actions with strongly lateral variation of CMB heat flux.

  3. A 3-D density model of Greece constrained by gravity and seismic data

    NASA Astrophysics Data System (ADS)

    Makris, Jannis; Papoulia, Joanna; Yegorova, Tamara

    2013-07-01

    A 3-D density model of Greece was developed by gravity modelling constrained by 2-D seismic profiles. Densities were defined from seismic velocities using the Nafe & Drake and Birch empirical functions for the sediments, crust and upper mantle. Sediments in the North Aegean are 6 km thick, and are deposited in transtensional basins developing by dextral strike slip motion of the North Anatolian Fault. The Cyclades, central Aegean Sea, are free of sediments. South of Crete, in the Libyan Sea, sediments are approximately 11 km thick. At the western Hellenides sediments of up to 8 km thickness have been accumulated in basins formed by crustal bending and southwestwards thrusting of the Hellenic napes. At a deeper crustal level variations of crustal type and thickness cause density variations explaining large part of the observed gravity field. The North Aegean domain is characterized by a 24-km-thick continental crust, including sediments, whereas the western Cyclades, in central Aegean area, have a slightly thickened crust of 26 km. Crustal thicknesses vary between 16 km in the deep Ionian and Cretan Seas to 40 km in the western Hellenides. In western Crete crust is 30-32 km thick, thinning eastwards to only 26 km. The deep Ionian basin, the Mediterranean Ridge, as well as most of the Libyan Sea are underlain by oceanic crust. In western Turkey the crust thickens from 30 km along the coast to 34 km to the interior. A third deeper level of density variations occurs in the upper mantle. Subduction of the oceanic lithosphere below the Aegean continental domain destabilizes the thermal field, uplifting the isotherms by convection and conduction below the Aegean Sea. Consequently, volume expansion of the upper mantle and lithological changes reduce its density and depress the gravity intensity. This low density-velocity upper mantle extends from the Sporades islands in the North Aegean to the Cretan Sea, occupying the space between the cold subducted Ionian oceanic

  4. Global Upper Mantle Azimuthal Anisotropy From Probabilistic Tomography

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Yuan, K.

    2014-12-01

    The new model of Yuan and Beghein (2013), hereafter YBaniSV13, is the first global model to constrain 3-D azimuthal anisotropy in the deep upper mantle. It is compatible with previous models in the uppermost 200km of the mantle, but also displays 1% anisotropy above, inside, and below the Mantle Transition Zone (MTZ). Another interesting characteristic of this model is the change in fast seismic direction detected, on average, at ~250km depth and at the MTZ boundaries. These results have important consequences for our understanding of mantle deformation and convection patterns in the mantle. It is therefore important to assess the robustness if these features. We already tested that the model does not strongly depend on the reference 1-D mantle model, on the presence of discontinuities in this reference model, or on the crustal model and Moho depth used to calculate the laterally varying partial derivatives. In this work, we apply a model space approach, the Neighborhood Algorithm (NA) of Sambridge (1999), to determine quantitative model uncertainties and parameter trade-offs. First, the NA generates an ensemble of models with a sampling density that increases toward the best fitting regions of the model space, and then performs a Bayesian appraisal of the models obtained that allows us to determine the likelihood of azimuthal anisotropy in different region of Earth's interior. Such approaches have the advantage of sampling the model null-space, and therefore provide more reliable model uncertainties than traditional inverse techniques. We use YBaniSV13 as initial model, and search the model space around it, allowing for large enough deviations to test the robustness of the anisotropy amplitude. We compare results from a model space search based on the chi-square misfit and from a model space search based on the variance reduction, which is another useful measure of data fit that is independent of data uncertainties. Preliminary results for the chi-square driven

  5. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  6. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  7. Effect of Hydrous Mantle on a Coupled Core-Mantle Evolution

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Iwamori, H.

    2014-12-01

    The water in the mantle is also important for dynamics, evolution, composition and structure of deep Earth's interior [e.g. Karato, 2011]. However, the hydrous mantle was not assumed for thermo-chemical evolution model in numerical mantle convection simulations [e.g. Nakagawa and Tackley, 2014]. To assess the effect of hydrous mantle in thermo-chemical evolution of deep Earth's interior, we develop a coupled core-mantle evolution model including water transportation system based on Iwamori [1998; 2004]. The important ingredient of this model is the rheological property of hydrous mantle and dehydration processes. Here we assume this taken from deformation experiments on hydrous olivine [e.g. Mei and Kohlsteadt, 2000; Korenaga and Karato, 2008; Fei et al., 2013], which ranges from weak to extremely strong viscosity dependence due to the water content. We also assume the reduction of solidus temperature of mantle minerals based on Katz et al. [2003]. Preliminary results suggested that the best-fit scenario of thermo-chemical evolution of Earth's mantle and core could be found in the weak rheological dependence due to the water content. In the successful model, the lower mantle would be close to water-saturated situation less than 1.0 Gyrs from initial condition assuming the completely dry mantle. In the presentation, we will also discuss the possibility on hydrous basalt in the lowermost mantle and geochemical evolution in the deep mantle.

  8. Mantle seismic structure beneath USArray: slab segmentation and deep roots of the Yellowstone hotspot (Invited)

    NASA Astrophysics Data System (ADS)

    Schmandt, B.

    2013-12-01

    The Yellowstone hotspot track is a dramatic example of how EarthScope data are helping to reveal systematic connectivity between deep Earth convection, plate tectonics, and surface geologic activity in the plate interior. Two types of seismic constraints provide evidence for buoyant ascent of a lower mantle thermal plume beneath Yellowstone. First, teleseismic body-wave tomography images of smooth 3-D velocity structure show a vertically elongated and irregular low-velocity volume extending to about 1000 km depth. Second, upward deflection of the endothermic postspinel phase transition that represents the boundary between the lower and upper mantle specifically indicates local upwelling of hot lower mantle. Beyond establishing the present day existence of the Yellowstone plume, recent seismic images afford further insight into hotspot initiation in a region where subducted slabs might be expected to block ascent of a lower mantle plume. Several body-wave tomography using EarthScope data reveal a dissected distribution of high-velocity slabs beneath the western U.S., thus providing potential pathways for plume ascent and origins for the plume's vertical irregularity. The possibility of plume ascent through such a slab gap has recently been substantiated by other workers' numerical forward modeling of Farallon subduction constrained by a global plate tectonic model, which predicts a trench-normal slab segmentation event that is spatially consistent with present day tomography and temporally consistent with Miocene initiation of the Yellowstone hotspot track near the edge of Precambrian North America lithosphere.

  9. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  10. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  11. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  12. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  13. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  14. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  16. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  17. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  18. The evolution of mantle mixing.

    PubMed

    Allègre, Claude J

    2002-11-15

    We present a geochemical overview of the canonic model that suggests a two-layer mantle for most of the Earth's history. A change in the Rayleigh number may have modified the convection and now allows the subduction of oceanic plates into the lower mantle, which was not the case in the past. The measurement of stirring time in the source of mid-ocean-ridge basalt, together with Xe- and Pb-isotopic ratios in the mid-ocean-ridge-basalt source, suggests that the upper mantle is separated into two domains, one above the 400 km discontinuity (asthenosphere) with rapid mixing and short residence time, and another between the 400 and 670 km discontinuities with sluggish mixing and a residence time of ca. 1.5 x 10(9) yr. PMID:12460474

  19. Role of rheology in reconstructing slab morphology in global mantle models

    NASA Astrophysics Data System (ADS)

    Bello, Léa; Coltice, Nicolas; Tackley, Paul; Müller, Dietmar

    2015-04-01

    Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 years. Although numerical models and computational capabilities have incredibly progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of the lithosphere. Previous studies have employed diverse viscosity laws, most of them being temperature and depth dependent with relatively small viscosity contrasts. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. We also investigate the importance of pseudo-plasticity in such models. We show that strong temperature dependence of viscosity combined with pseudo-plasticity produce laterally and vertically continuous slabs, and flat subduction where trench retreat is fast (North, Central and South America). Moreover, pseudo-plasticity allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity only. However, even our most sophisticated model is not able to reproduce unambiguously stagnant slabs probably because of the simplicity of material properties we use here. The differences between models employing different viscosity laws are very large, larger than the differences between two models with the same rheology but using two different plate reconstructions or initial conditions.

  20. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  1. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  2. Constraints on the mantle and lithosphere dynamics from the observed geoid with the effect of visco-elasto-plastic rheology in the upper 300 km

    NASA Astrophysics Data System (ADS)

    Osei Tutu, Anthony; Steinberger, Bernhard; Rogozhina, Irina; Sobolev, Stephan

    2015-04-01

    used. Finally, given significant dispersion of geodynamic predictions from different seismic tomography models currently available, we further look for seismic models that provide predictions closest to observations at both regional and global scales. References 1. Hager B.H & O'Connell R.J., 1981. A simple global model of plate dynamics and mantle convection, J.Geophys. Res. 86, 4843-4867 2. Popov A.A., Sobolev S.V., 2008. SLIM3D: A tool for three-dimensional thermo- mechanical modelling of lithospheric deformation with elasto-visco-plastic rheology, J.pepi.2008.03.007 3. Steinberger B., 2014. Dynamic topography: A comparison between observations and models based on seismic tomography. (Submitted) 4. Becker T and Boschi L., 2002, A comparison of tomographic and geodynamic mantle models. , J.Geophys. Res. 115, 0148-0227

  3. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  4. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  5. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  6. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  7. Evidence for deep mantle circulation from global tomography

    USGS Publications Warehouse

    Van Der Hilst, R. D.; Widiyantoro, S.; Engdahl, E.R.

    1997-01-01

    Seismic tomography based on P-wave travel times and improved earthquake locations provides further evidence for mantle-wide convective flow. The use of body waves makes it possible to resolve long, narrow structures in the lower mantle some of which can be followed to sites of present-day plate oonvergence at the Earth's surface. The transition from subduction-related linear structures in the mid-mantle to long-wavelength hetorogeneity near the core-mantle boundary remains enigmatic, but at least some slab segments seem to sink to the bottom of the mantle.

  8. Venus: Mantle convection, hotspots, and tectonics

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1989-01-01

    The putative paradigm that planets of the same size and mass have the same tectonic style led to the adaptation of the mechanisms of terrestrial plate tectonics as the a priori model of the way Venus should behave. Data acquired over the last decade by Pioneer Venus, Venera, and ground-based radar have modified this view sharply and have illuminated the lack of detailed understanding of the plate tectonic mechanism. For reference, terrestrial mechanisms are briefly reviewed. Venusian lithospheric divergence, hotspot model, and horizontal deformation theories are proposed and examined.

  9. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  10. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  11. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  12. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  13. The continental drift convection cell

    NASA Astrophysics Data System (ADS)

    Whitehead, J. A.; Behn, Mark D.

    2015-06-01

    Continents on Earth periodically assemble to form supercontinents and then break up again into smaller continental blocks (the Wilson cycle). Previous highly developed numerical models incorporate fixed continents while others indicate that continent movement modulates flow. Our simplified numerical model suggests that continental drift is fundamental. A thermally insulating continent is anchored at its center to mantle flow on an otherwise stress-free surface for infinite Prandtl number cellular convection with constant material properties. Rayleigh numbers exceed 107, while continent widths and chamber lengths approach Earth's values. The Wilson cycle is reproduced by a unique, rugged monopolar "continental drift convection cell." Subduction occurs at the cell's upstream end with cold slabs dipping at an angle beneath the moving continent (as found in many continent/subduction regions on Earth). Drift enhances vertical heat transport up to 30%, especially at the core-mantle boundary, and greatly decreases lateral mantle temperature differences.

  14. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  15. Platinum group elements in mantle melts and mantle samples

    NASA Astrophysics Data System (ADS)

    Barnes, Stephen J.; Mungall, James E.; Maier, Wolfgang D.

    2015-09-01

    Al-bearing lherzolites; and a lack of systematic variation in IPGEs across this range. Strongest correlations across the entire set are observed between Ir, Ru and Os; and between Pt and Rh. Melt-depleted cratonic mantle samples are notably more deficient in Pd than in Pt, but comparable Pd-enriched components are not represented in the available data from continental environments. The only group of mantle melts that systematically record high Pd/Pt ratios are MORBs; if these are indeed the complement of the depleted cratonic mantle suite then the melt depletion recorded by the cratonic mantle suite occurred at low pressure prior to tectonic underplating of the depleted lithosphere beneath the cratons. A filtered subset of orogenic peridotite compositions that are thought not to have been affected by significant extents of melt extraction or metasomatic refertilization have median concentrations of 3.9 ppb Os, 2.9 ppb Ir, 6.3 ppb Ru, 1.0 ppb Rh, 6.2 ppb Pt, 5.4 ppb Pd, and Cu/Pd ratio of 5500, which we consider to be representative of the modern convecting mantle. The convecting mantle has PGE proportions closely resembling those of lunar impact breccias, diverging considerably from chondritic proportions and attributable to the presence of a late veneer-derived, predominantly sulfide-hosted component. The compositions of mantle peridotites show considerable scatter attributable to the combined effects of measurement error and a strong covariance due to a heterogeneous distribution of sulfide in the small samples typically chosen for pulverization. The intensity of the covariance between all of the PGE due to sampling error gives a false impression of a genetic trend toward highly enriched PGE in some samples which could be mistaken for the effects of metasomatism; however no plausible metasomatic process would be expected to retain the tight interelement correlations shown.

  16. Mantle cryptology

    SciTech Connect

    Zindler, A.; Jagoutz, E.

    1988-02-01

    A group of anhydrous peridotites from Peridot Mesa, Arizona, document isotopic and trace element heterogeneity in the source mantle. LREE enrichments in two spinel periodotites may have occurred immediately prior to entrainment through interaction with a melt similar to the hose basanite. Detailed characterization of inclusion-free peridotite phases, and washed and unwahsed whole-rock samples, verifies the presence of a ubiquitous secondary contaminant which derives from interaction of the peridotites with local ground waters and host magma. Once the veil of this contamination is removed, coexisting phases are found to be in isotopic equilibrium. Further, a comparison of washed whole rocks and calculated clean-bulk compositions documents the occurrence of an important intragranular fluid-hosted trace element component. For the very incompatible elements (K, Rb, Cs, and Ba, and probably U, Th, Pb and gaseous components as well) this component dominates the nodule budget for two of the three samples studied in detail. Production of basaltic magmas from fertile but incompatible-element-depleted peridotite requires the action of melting processes such as those recently proposed by McKenzie (1985) and O'Hara (1985). The distinctive feature of these models is that they call on effectively larger source volumes for more incompatible elements. In this context, depletions of incompatible trace elements in MORB source mantle will be more extreme than has heretofore been suspected. This would essentially preclude the long-term total isolation of a MORB source mantle above the 670 km seismic discontinuity.

  17. Preliminary dynamical models of thermal and chemical evolution of the mantles of Mars and Earth

    NASA Astrophysics Data System (ADS)

    Walzer, U.; Hendel, R.; Burghardt, T.

    At first, we develop the theory and show numerical simulations of solid-state convection of the Martian mantle. Available structural models of Mars have been studied in order to receive a basic model for our dynamical calculations of the Martian spherical- shell mantle. We newly derived thermal expansivity, activation volume and energy, Grüneisen parameter, melting temperatures, shear viscosity, and other parameters. Different sets of the distribution of the mentioned quantities result in different types of the convection planforms as a function of viscoplastic yield stress, Rayleigh number, Nusselt number and Urey number. Only in a few cases, we obtain an early Martian plate tectonics and the transfer to a one-plate planet. For comparison we present our results on the numerical simulation of the chemical differentiation of the Earth's mantle. This differentiation induces the generation and growth of the continents and, as a complement, the formation and augmentation of the depleted MORB mantle. Here, we present for the first time a solution of this problem by an integrated theory in common with the problem of thermal convection in a 3-D compressible spherical- shell mantle. The whole coupled thermal and chemical evolution of mantle plus crust was calculated starting with the formation of the solid-state primordial silicate mantle. No restricting assumptions have been made regarding number, size and form of the continents. It was, however, implemented that moving oceanic plateaus touching a continent are to be accreted to this continent at the corresponding place. The model contains a mantle-viscosity profile with a usual asthenosphere beneath a lithosphere, a highly viscous transition zone and a second low-viscosity layer below the 660-km mineral phase boundary. The central part of the lower mantle is highly viscous. This explains the fact that there are, regarding the incompatible elements, chemically different mantle reservoirs in spite of perpetual stirring

  18. On a coupled evolution of Earth's mantle and core: Implications for magnetic evolution over the geologic time-scale

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi

    2015-04-01

    According to the recent progress of numerical modeling of mantle convection with various realistic physical processes, we can look into possible scenarios on core-mantle evolution suggested from theoretical and experimental studies with developing a coupled core-mantle evolution model in fully dynamical mantle convection simulations. The core evolution theory that allows to generate the inner core can be treated with the thermal boundary condition at the core-mantle boundary of mantle convection simulations. Here we introduce our recent accomplishments in a coupled core-mantle evolution: 1. Influence of early Earth differentiation and 2. Importance of hydrous minerals in the deep mantle. In the presentation, we will give implications for history of heat flow across the core-mantle boundary from early to present Earth and magnetic evolution over geologic time suggested from paleomagnetism measurements.

  19. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy,