3-D Mesh Generation Nonlinear Systems
Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
Shape design sensitivities using fully automatic 3-D mesh generation
NASA Technical Reports Server (NTRS)
Botkin, M. E.
1990-01-01
Previous work in three dimensional shape optimization involved specifying design variables by associating parameters directly with mesh points. More recent work has shown the use of fully-automatic mesh generation based upon a parameterized geometric representation. Design variables have been associated with a mathematical model of the part rather than the discretized representation. The mesh generation procedure uses a nonuniform grid intersection technique to place nodal points directly on the surface geometry. Although there exists an associativity between the mesh and the geometrical/topological entities, there is no mathematical functional relationship. This poses a problem during certain steps in the optimization process in which geometry modification is required. For the large geometrical changes which occur at the beginning of each optimization step, a completely new mesh is created. However, for gradient calculations many small changes must be made and it would be too costly to regenerate the mesh for each design variable perturbation. For that reason, a local remeshing procedure has been implemented which operates only on the specific edges and faces associated with the design variable being perturbed. Two realistic design problems are presented which show the efficiency of this process and test the accuracy of the gradient computations.
Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics
NASA Technical Reports Server (NTRS)
Kayrak, C.; Ozsoy, T.
1985-01-01
An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.
Hex-dominant mesh generation using 3D constrained triangulation
OWEN,STEVEN J.
2000-05-30
A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.
Lee, W; Kim, T-S; Cho, M; Lee, S
2005-01-01
In studying bioelectromagnetic problems, finite element method offers several advantages over other conventional methods such as boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropy. Mesh generation is the first requirement in the finite element analysis and there are many different approaches in mesh generation. However conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes, resulting in numerous elements in the smaller volume regions, thereby increasing computational load and demand. In this work, we present an improved content-adaptive mesh generation scheme that is efficient and fast along with options to change the contents of meshes. For demonstration, mesh models of the head from a volume MRI are presented in 2-D and 3-D.
A tetrahedral mesh generation approach for 3D marine controlled-source electromagnetic modeling
NASA Astrophysics Data System (ADS)
Um, Evan Schankee; Kim, Seung-Sep; Fu, Haohuan
2017-03-01
3D finite-element (FE) mesh generation is a major hurdle for marine controlled-source electromagnetic (CSEM) modeling. In this paper, we present a FE discretization operator (FEDO) that automatically converts a 3D finite-difference (FD) model into reliable and efficient tetrahedral FE meshes for CSEM modeling. FEDO sets up wireframes of a background seabed model that precisely honors the seafloor topography. The wireframes are then partitioned into multiple regions. Outer regions of the wireframes are discretized with coarse tetrahedral elements whose maximum size is as large as a skin depth of the regions. We demonstrate that such coarse meshes can produce accurate FE solutions because numerical dispersion errors of tetrahedral meshes do not accumulate but oscillates. In contrast, central regions of the wireframes are discretized with fine tetrahedral elements to describe complex geology in detail. The conductivity distribution is mapped from FD to FE meshes in a volume-averaged sense. To avoid excessive mesh refinement around receivers, we introduce an effective receiver size. Major advantages of FEDO are summarized as follow. First, FEDO automatically generates reliable and economic tetrahedral FE meshes without adaptive meshing or interactive CAD workflows. Second, FEDO produces FE meshes that precisely honor the boundaries of the seafloor topography. Third, FEDO derives multiple sets of FE meshes from a given FD model. Each FE mesh is optimized for a different set of sources and receivers and is fed to a subgroup of processors on a parallel computer. This divide and conquer approach improves the parallel scalability of the FE solution. Both accuracy and effectiveness of FEDO are demonstrated with various CSEM examples.
Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Blake, Kenneth R.; Spragle, Gregory S.
1993-01-01
Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.
3D active shape models of human brain structures: application to patient-specific mesh generation
NASA Astrophysics Data System (ADS)
Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.
2015-03-01
The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.
KNUPP,PATRICK; MITCHELL,SCOTT A.
1999-11-01
In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that many boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.
The 2D and 3D hypersonic flows with unstructured meshes
NASA Technical Reports Server (NTRS)
Thareja, Rajiv
1993-01-01
Viewgraphs on 2D and 3D hypersonic flows with unstructured meshes are presented. Topics covered include: mesh generation, mesh refinement, shock-shock interaction, velocity contours, mesh movement, vehicle bottom surface, and adapted meshes.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.
2013-01-01
The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031
An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform
NASA Astrophysics Data System (ADS)
Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra
2011-06-01
The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.
LayTracks3D: A new approach for meshing general solids using medial axis transform
Quadros, William Roshan
2015-08-22
This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.
3D-Meshes aus medizinischen Volumendaten
NASA Astrophysics Data System (ADS)
Zelzer, Sascha; Meinzer, Hans-Peter
Diese Arbeit beschreibt eine template-basierte Methode zur Erzeugung von adaptiven Hexaeder-Meshes aus Volumendaten, welche komplizierte konkave Strukturen aufweisen können. Es wird ein vollständiger Satz von Templates generiert der es erlaubt, die Ränder konkaver Regionen feiner zu zerlegen als angrenzende Bereiche und somit die Gesamtzahl an Hexaeder verringert. Der Algorithmus arbeitet mit beliebigen gelabelten Volumendaten und erzeugt ein adaptives, konformes, reines Hexaeder-Mesh.
Spherical geodesic mesh generation
Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich
2015-02-27
In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
Jain, Rajeev; Mahadevan, Vijay
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.
LayTracks3D: A new approach for meshing general solids using medial axis transform
Quadros, William Roshan
2015-08-22
This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less
3D model retrieval method based on mesh segmentation
NASA Astrophysics Data System (ADS)
Gan, Yuanchao; Tang, Yan; Zhang, Qingchen
2012-04-01
In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.
3D unstructured mesh discontinuous finite element hydro
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
1995-07-01
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.
Hough transform-based 3D mesh retrieval
NASA Astrophysics Data System (ADS)
Zaharia, Titus; Preteux, Francoise J.
2001-11-01
This papre addresses the issue of 3D mesh indexation by using shape descriptors (SDs) under constraints of geometric and topological invariance. A new shape descriptor, the Optimized 3D Hough Transform Descriptor (O3HTD) is here proposed. Intrinsically topologically stable, the O3DHTD is not invariant to geometric transformations. Nevertheless, we show mathematically how the O3DHTD can be optimally associated (in terms of compactness of representation and computational complexity) with a spatial alignment procedure which leads to a geometric invariant behavior. Experimental results have been carried out upon the MPEG-7 3D model database consisting of about 1300 meshes in VRML 2.0 format. Objective retrieval results, based upon the definition of a categorized ground truth subset, are reported in terms of Bull Eye Percentage (BEP) score and compared to those obtained by applying the MPEg-7 3D SD. It is shown that the O3DHTD outperforms the MPEg-7 3D SD of up to 28%.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
-based error estimates. We conclude that the quasi-optimal mesh must be quasi-uniform in this metric. All numerical experiments are based on the publicly available Ani3D package, the collection of advanced numerical instruments.
A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes.
Yohe, Stefan T; Freedman, Jonathan D; Falde, Eric J; Colson, Yolonda L; Grinstaff, Mark W
2013-08-07
Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate- co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications.
A skinning prediction scheme for dynamic 3D mesh compression
NASA Astrophysics Data System (ADS)
Mamou, Khaled; Zaharia, Titus; Prêteux, Françoise
2006-08-01
This paper presents a new prediction-based compression technique for dynamic 3D meshes with constant connectivity and time-varying geometry. The core of the proposed algorithm is a skinning model used for motion compensation. The mesh is first partitioned within vertex clusters that can be described by a single affine motion model. The proposed segmentation technique automatically determines the number of clusters and relays on a decimation strategy privileging the simplification of vertices exhibiting the same affine motion over the whole animation sequence. The residual prediction errors are finally compressed using a temporal-DCT representation. The performances of our encoder are objectively evaluated on a data set of eight animation sequences with various sizes, geometries and topologies, and exhibiting both rigid and elastic motions. The experimental evaluation shows that the proposed compression scheme outperforms state of the art techniques such as MPEG-4/AFX, Dynapack, RT, GV, MCGV, TDCT, PCA and RT compression schemes.
Unstructured mesh generation and adaptivity
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
Conservative Patch Algorithm and Mesh Sequencing for PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. P.; Abdol-Hamid, K. S.
2005-01-01
A mesh-sequencing algorithm and a conservative patched-grid-interface algorithm (hereafter Patch Algorithm ) have been incorporated into the PAB3D code, which is a computer program that solves the Navier-Stokes equations for the simulation of subsonic, transonic, or supersonic flows surrounding an aircraft or other complex aerodynamic shapes. These algorithms are efficient, flexible, and have added tremendously to the capabilities of PAB3D. The mesh-sequencing algorithm makes it possible to perform preliminary computations using only a fraction of the grid cells (provided the original cell count is divisible by an integer) along any grid coordinate axis, independently of the other axes. The patch algorithm addresses another critical need in multi-block grid situation where the cell faces of adjacent grid blocks may not coincide, leading to errors in calculating fluxes of conserved physical quantities across interfaces between the blocks. The patch algorithm, based on the Stokes integral formulation of the applicable conservation laws, effectively matches each of the interfacial cells on one side of the block interface to the corresponding fractional cell area pieces on the other side. This approach is comprehensive and unified such that all interface topology is automatically processed without user intervention. This algorithm is implemented in a preprocessing code that creates a cell-by-cell database that will maintain flux conservation at any level of full or reduced grid density as the user may choose by way of the mesh-sequencing algorithm. These two algorithms have enhanced the numerical accuracy of the code, reduced the time and effort for grid preprocessing, and provided users with the flexibility of performing computations at any desired full or reduced grid resolution to suit their specific computational requirements.
Composite mesh generator for CFD problems
NASA Astrophysics Data System (ADS)
Kalinin, E. I.; Mazo, A. B.; Isaev, S. A.
2016-11-01
In present paper a brief introduction of HybMesh grid generator which uses composite approach is given. The process of complicated area meshing using HybMesh generator consists of sequential building structured prototype grids in relatively simple geometry, mapping them to a non-regular domains and superposing to assemble resulting grid. Transitional areas between two superposed low level grids are filled with triangular cells. Currently only 2D algorithms of such approach are implemented; 3D grids can only be restored as a result of extrusion or revolution of 2D objects.
3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes
Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun
2016-01-01
By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849
3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.
Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua
2016-01-01
By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.
Polymer-based mesh as supports for multi-layered 3D cell culture and assays.
Simon, Karen A; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron D; Ngo, Philip M; Whitesides, George M
2014-01-01
Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system-Cells-in-Gels-in-Mesh (CiGiM)-that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells-layer-by-layer-within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis-(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format.
Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays
Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.
2013-01-01
Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253
Surface Generation and Cartesian Mesh Support
NASA Technical Reports Server (NTRS)
Haimes, Robert
2004-01-01
This document serves as the final report for the grant titled Surface Generation and Cartesian Mesh Support . This completed work was in algorithmic research into automatically generating surface triangulations from CAD geometries. NASA's OVERFLOW and Cart3D simulation packages use surface triangulations as an underlying geometry description and the ability to automatically generate these from CAD files (without translation) substantially reduces both the wall-clock time and expertise required to get geometry out of CAD and into mesh generation. This surface meshing was exercised greatly during the Shuttle investigation during the last year with success. The secondary efforts performed in this grant involve work on a visualization system cut-cell handling for Cartesian Meshes with embedded boundaries.
Semantic segmentation of 3D textured meshes for urban scene analysis
NASA Astrophysics Data System (ADS)
Rouhani, Mohammad; Lafarge, Florent; Alliez, Pierre
2017-01-01
Classifying 3D measurement data has become a core problem in photogrammetry and 3D computer vision, since the rise of modern multiview geometry techniques, combined with affordable range sensors. We introduce a Markov Random Field-based approach for segmenting textured meshes generated via multi-view stereo into urban classes of interest. The input mesh is first partitioned into small clusters, referred to as superfacets, from which geometric and photometric features are computed. A random forest is then trained to predict the class of each superfacet as well as its similarity with the neighboring superfacets. Similarity is used to assign the weights of the Markov Random Field pairwise-potential and to account for contextual information between the classes. The experimental results illustrate the efficacy and accuracy of the proposed framework.
Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.
Li, Gang; Guo, Lei
2012-01-01
Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.
3D Mesh Segmentation Based on Markov Random Fields and Graph Cuts
NASA Astrophysics Data System (ADS)
Shi, Zhenfeng; Le, Dan; Yu, Liyang; Niu, Xiamu
3D Mesh segmentation has become an important research field in computer graphics during the past few decades. Many geometry based and semantic oriented approaches for 3D mesh segmentation has been presented. However, only a few algorithms based on Markov Random Field (MRF) has been presented for 3D object segmentation. In this letter, we present a definition of mesh segmentation according to the labeling problem. Inspired by the capability of MRF combining the geometric information and the topology information of a 3D mesh, we propose a novel 3D mesh segmentation model based on MRF and Graph Cuts. Experimental results show that our MRF-based schema achieves an effective segmentation.
Software for Automated Generation of Cartesian Meshes
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Melton, John E.; Berger, Marshal J.
2006-01-01
Cart3D is a collection of computer programs for generating Cartesian meshes [for computational fluid dynamics (CFD) and other applications] in volumes bounded by solid objects. Aspects of Cart3D at earlier stages of development were reported in "Robust and Efficient Generation of Cartesian Meshes for CFD" (ARC-14275), NASA Tech Briefs, Vol. 23, No. 8 (August 1999), page 30. The geometric input to Cart3D comprises surface triangulations like those commonly generated by computer-aided-design programs. Complexly shaped objects can be represented as assemblies of simpler ones. Cart3D deletes all portions of such an assembled object that are not on the exterior surface. Intersections between components are preserved in the resulting triangulation. A tie-breaking routine unambiguously resolves geometric degeneracies. Then taking the intersected surface triangulation as input, the volume mesh is generated through division of cells of an initially coarse hexahedral grid. Cells are subdivided to refine the grid in regions of increased surface curvature and/or increased flow gradients. Cells that become split into multiple unconnected regions by thin pieces of surface are identified.
Dubai 3d Textuerd Mesh Using High Quality Resolution Vertical/oblique Aerial Imagery
NASA Astrophysics Data System (ADS)
Tayeb Madani, Adib; Ziad Ahmad, Abdullateef; Christoph, Lueken; Hammadi, Zamzam; Manal Abdullah Sabeal, Manal Abdullah x.
2016-06-01
Providing high quality 3D data with reasonable quality and cost were always essential, affording the core data and foundation for developing an information-based decision-making tool of urban environments with the capability of providing decision makers, stakeholders, professionals, and public users with 3D views and 3D analysis tools of spatial information that enables real-world views. Helps and assist in improving users' orientation and also increase their efficiency in performing their tasks related to city planning, Inspection, infrastructures, roads, and cadastre management. In this paper, the capability of multi-view Vexcel UltraCam Osprey camera images is examined to provide a 3D model of building façades using an efficient image-based modeling workflow adopted by commercial software's. The main steps of this work include: Specification, point cloud generation, and 3D modeling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on the images to generate point cloud. Then, a mesh model of points is calculated using and refined to obtain an accurate model of buildings. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough LoD2 details of the building based on visual assessment. The objective of this paper is neither comparing nor promoting a specific technique over the other and does not mean to promote a sensor-based system over another systems or mechanism presented in existing or previous paper. The idea is to share experience.
A 3-D upwind Euler solver for unstructured meshes
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
1991-01-01
A three-dimensional finite-volume upwind Euler solver is developed for unstructured meshes. The finite-volume scheme solves for solution variables at vertices of the mesh and satisfies the integral conservation law on nonoverlapping polyhedral control volumes surrounding vertices of the mesh. The schene achieves improved solution accuracy by assuming a piecewise linear variation of the solution in each control volume. This improved spatial accuracy hinges heavily upon the calculation of the solution gradient in each control volume given pointwise values of the solution at vertices of the mesh. Several algorithms are discussed for obtaining these gradients. Details concerning implementation procedures and data structures are discussed. Sample calculations for inviscid Euler flow about isolated aircraft wings at subsonic and transonic speeds are compared with established Euler solvers as well as experiment.
TRANSL8GDECIM8. Data Translation and Filtering for Large 3D Triangle Mesh Models
Janucik, F.X.; Ross, D.M.
1993-09-01
The TRANSL8GDECIM8 system consists of two programs: TRANSL8G and DECIM8. The TRANSL8G program facilitates the interchange, topology generation, error checking, and enhancement of large 3D triangle meshes. Such data is frequently used to represent conceptual designs, scientific visualization volume modeling, or discrete sample data. Interchange is provided between several popular commercial and defacto standard geometry formats. Error checking is included to identify duplicate and zero area triangles. Model enhancement features include common vertex joining, consistent triangle vertex ordering, vertex normal vector averaging, and triangle strip generation. Many of the traditional O(n squared) algorithms required to provide the above features have been recast and are O(n) which support large mesh sizes. The DECIM8 program is based on a data filter algorithm that significantly reduces the number of triangles required to represent three dimensional (3D) models of geometry, scientific visualization results, and discretely sampled data. The algorithm uses a combined incremental and iterative strategy. It eliminates local patches of triangles whose geometries are not appreciably different and replaces them with fewer larger triangles. The algorithm has been used to reduce triangles in large conceptual design models to facilitate virtual walk throughs and to enable interactive viewing of large 3D iso-surface volume visualizations.
Nanowire mesh solar fuels generator
Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin
2016-05-24
This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.
Han, Zhizhong; Liu, Zhenbao; Han, Junwei; Vong, Chi-Man; Bu, Shuhui; Chen, Chun Long Philip
2016-06-30
Discriminative features of 3-D meshes are significant to many 3-D shape analysis tasks. However, handcrafted descriptors and traditional unsupervised 3-D feature learning methods suffer from several significant weaknesses: 1) the extensive human intervention is involved; 2) the local and global structure information of 3-D meshes cannot be preserved, which is in fact an important source of discriminability; 3) the irregular vertex topology and arbitrary resolution of 3-D meshes do not allow the direct application of the popular deep learning models; 4) the orientation is ambiguous on the mesh surface; and 5) the effect of rigid and nonrigid transformations on 3-D meshes cannot be eliminated. As a remedy, we propose a deep learning model with a novel irregular model structure, called mesh convolutional restricted Boltzmann machines (MCRBMs). MCRBM aims to simultaneously learn structure-preserving local and global features from a novel raw representation, local function energy distribution. In addition, multiple MCRBMs can be stacked into a deeper model, called mesh convolutional deep belief networks (MCDBNs). MCDBN employs a novel local structure preserving convolution (LSPC) strategy to convolve the geometry and the local structure learned by the lower MCRBM to the upper MCRBM. LSPC facilitates resolving the challenging issue of the orientation ambiguity on the mesh surface in MCDBN. Experiments using the proposed MCRBM and MCDBN were conducted on three common aspects: global shape retrieval, partial shape retrieval, and shape correspondence. Results show that the features learned by the proposed methods outperform the other state-of-the-art 3-D shape features.
Delaunay Refinement Mesh Generation
1997-05-18
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...146 6.2 Related Work in Robust Computational Geometry . . . . . . . . . . . . . . . . . . . . . . . 148 6.3...during my seven years at Carnegie Mellon. Most of this work was carried out at the 61c Café in Pittsburgh. v vi Chapter 1 Introduction Meshes composed
3D unstructured-mesh radiation transport codes
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.
Joint synchronization and high capacity data hiding for 3D meshes
NASA Astrophysics Data System (ADS)
Itier, Vincent; Puech, William; Gesquière, Gilles; Pedeboy, Jean-Pierre
2015-03-01
Three-dimensional (3-D) meshes are already profusely used in lot of domains. In this paper, we propose a new high capacity data hiding scheme for vertex cloud. Our approach is based on very small displacements of vertices, that produce very low distortion of the mesh. Moreover this method can embed three bits per vertex relying only on the geometry of the mesh. As an application, we show how we embed a large binary logo for copyright purpose.
Iterative Mesh Transformation for 3D Segmentation of Livers with Cancers in CT Images
Lu, Difei; Wu, Yin; Harris, Gordon; Cai, Wenli
2015-01-01
Segmentation of diseased liver remains a challenging task in clinical applications due to the high inter-patient variability in liver shapes, sizes and pathologies caused by cancers or other liver diseases. In this paper, we present a multi-resolution mesh segmentation algorithm for 3D segmentation of livers, called iterative mesh transformation that deforms the mesh of a region-of-interest (ROI) in a progressive manner by iterations between mesh transformation and contour optimization. Mesh transformation deforms the 3D mesh based on the deformation transfer model that searches the optimal mesh based on the affine transformation subjected to a set of constraints of targeting vertices. Besides, contour optimization searches the optimal transversal contours of the ROI by applying the dynamic-programming algorithm to the intersection polylines of the 3D mesh on 2D transversal image planes. The initial constraint set for mesh transformation can be defined by a very small number of targeting vertices, namely landmarks, and progressively updated by adding the targeting vertices selected from the optimal transversal contours calculated in contour optimization. This iterative 3D mesh transformation constrained by 2D optimal transversal contours provides an efficient solution to a progressive approximation of the mesh of the targeting ROI. Based on this iterative mesh transformation algorithm, we developed a semi-automated scheme for segmentation of diseased livers with cancers using as little as five user-identified landmarks. The evaluation study demonstrates that this semiautomated liver segmentation scheme can achieve accurate and reliable segmentation results with significant reduction of interaction time and efforts when dealing with diseased liver cases. PMID:25728595
Iterative mesh transformation for 3D segmentation of livers with cancers in CT images.
Lu, Difei; Wu, Yin; Harris, Gordon; Cai, Wenli
2015-07-01
Segmentation of diseased liver remains a challenging task in clinical applications due to the high inter-patient variability in liver shapes, sizes and pathologies caused by cancers or other liver diseases. In this paper, we present a multi-resolution mesh segmentation algorithm for 3D segmentation of livers, called iterative mesh transformation that deforms the mesh of a region-of-interest (ROI) in a progressive manner by iterations between mesh transformation and contour optimization. Mesh transformation deforms the 3D mesh based on the deformation transfer model that searches the optimal mesh based on the affine transformation subjected to a set of constraints of targeting vertices. Besides, contour optimization searches the optimal transversal contours of the ROI by applying the dynamic-programming algorithm to the intersection polylines of the 3D mesh on 2D transversal image planes. The initial constraint set for mesh transformation can be defined by a very small number of targeting vertices, namely landmarks, and progressively updated by adding the targeting vertices selected from the optimal transversal contours calculated in contour optimization. This iterative 3D mesh transformation constrained by 2D optimal transversal contours provides an efficient solution to a progressive approximation of the mesh of the targeting ROI. Based on this iterative mesh transformation algorithm, we developed a semi-automated scheme for segmentation of diseased livers with cancers using as little as five user-identified landmarks. The evaluation study demonstrates that this semi-automated liver segmentation scheme can achieve accurate and reliable segmentation results with significant reduction of interaction time and efforts when dealing with diseased liver cases.
Refining 3D Earth models by unifying geological and geophysical information on unstructured meshes
NASA Astrophysics Data System (ADS)
Lelièvre, P. G.; Carter-McAuslan, A.; Tycholiz, C.; Farquharson, C. G.; Hurich, C. A.
2012-04-01
Earth models used for mineral exploration or other subsurface investigations should be consistent with all available geological and geophysical information. Geophysical inversion provides the means to integrate geological information, geophysical survey data, and physical property measurements taken on rock samples. Incorporation of geological information into inversions is always an iterative process. One begins with the geologists' best guess about the Earth (i.e. the geological model) and the models recovered from geophysical inversion may indicate that the geological model should be changed slightly prior to the next iteration of the procedure. In this way, geological and geophysical data can be combined through inversion and we can move towards the creation of a common Earth model consistent with all the available data. As more information is incorporated, the inherent non-uniqueness of the inverse problem is reduced, yielding a higher potential to resolve deeper features that are less well-constrained by the geophysical data alone. Geological ore deposit models are commonly created during delineation drilling. The accuracy of these models is crucial when used to determine if a deposit is economic. 3D geological Earth models typically comprise wireframe surfaces that represent the geological contacts between different rock units. The contacts may be known at points from down-hole intersections and surface mapping, and can be interpolated between boreholes and extrapolated outwards. Contacts may also be interpreted from seismic traces. Wireframe surfaces, comprising tessellated triangular facets, are sufficiently flexible to allow the representation of arbitrarily complicated geological structures. These surfaces can be honoured exactly within fully unstructured 3D volumetric tetrahedral meshes. In contrast, geophysical forward modelling and inversion algorithms typically work with rectilinear meshes when parameterizing the subsurface because this simplifies
Grid generation for 3D turbine configurations
Reymond, J.D.; Haeuser, J.; Xia, Y.
1996-12-31
Grid generation in domains with complex geometries presents the same degree of difficulty for both internal and external flow fields. A high degree of curvature of the flow bounding surfaces results in a mesh generation process, which has to exactly describe the geometry and therefore is not straightforward. However, for internal flow problems, such as an interblade channel of a turbine, the difficulties become particularly accute when the distance between the elements is relatively small (confined domains). It often occurs that the grids generated on the different surfaces of an internal domain are incompatible producing nonsmooth grids in some areas of the flow compartment. This incompatibility problem is particularly present if the distance between opposite surfaces varies considerably along the domain.
Irregular Grid Generation and Rapid 3D Color Display Algorithm
Wilson D. Chin, Ph.D.
2000-05-10
Computationally efficient and fast methods for irregular grid generation are developed to accurately characterize wellbore and fracture boundaries, and farfield reservoir boundaries, in oil and gas petroleum fields. Advanced reservoir simulation techniques are developed for oilfields described by such ''boundary conforming'' mesh systems. Very rapid, three-dimensional color display algorithms are also developed that allow users to ''interrogate'' 3D earth cubes using ''slice, rotate, and zoom'' functions. Based on expert system ideas, the new methods operate much faster than existing display methodologies and do not require sophisticated computer hardware or software. They are designed to operate with PC based applications.
Curved mesh generation and mesh refinement using Lagrangian solid mechanics
Persson, P.-O.; Peraire, J.
2008-12-31
We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
NASA Astrophysics Data System (ADS)
Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad
2014-03-01
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution
Hybrid mesh generation using advancing reduction technique
Technology Transfer Automated Retrieval System (TEKTRAN)
This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...
Multiscale mesh generation on the sphere
NASA Astrophysics Data System (ADS)
Lambrechts, Jonathan; Comblen, Richard; Legat, Vincent; Geuzaine, Christophe; Remacle, Jean-François
2008-12-01
A method for generating computational meshes for applications in ocean modeling is presented. The method uses a standard engineering approach for describing the geometry of the domain that requires meshing. The underlying sphere is parametrized using stereographic coordinates. Then, coastlines are described with cubic splines drawn in the stereographic parametric space. The mesh generation algorithm builds the mesh in the parametric plane using available techniques. The method enables to import coastlines from different data sets and, consequently, to build meshes of domains with highly variable length scales. The results include meshes together with numerical simulations of various kinds.
Blind robust watermarking schemes for copyright protection of 3D mesh objects.
Zafeiriou, Stefanos; Tefas, Anastasios; Pitas, Ioannis
2005-01-01
In this paper, two novel methods suitable for blind 3D mesh object watermarking applications are proposed. The first method is robust against 3D rotation, translation, and uniform scaling. The second one is robust against both geometric and mesh simplification attacks. A pseudorandom watermarking signal is cast in the 3D mesh object by deforming its vertices geometrically, without altering the vertex topology. Prior to watermark embedding and detection, the object is rotated and translated so that its center of mass and its principal component coincide with the origin and the z-axis of the Cartesian coordinate system. This geometrical transformation ensures watermark robustness to translation and rotation. Robustness to uniform scaling is achieved by restricting the vertex deformations to occur only along the r coordinate of the corresponding (r, theta, phi) spherical coordinate system. In the first method, a set of vertices that correspond to specific angles theta is used for watermark embedding. In the second method, the samples of the watermark sequence are embedded in a set of vertices that correspond to a range of angles in the theta domain in order to achieve robustness against mesh simplifications. Experimental results indicate the ability of the proposed method to deal with the aforementioned attacks.
Triangular mesh establishment of 3D laser scanning data based on ellipsoidal projection
NASA Astrophysics Data System (ADS)
Zheng, De-hua; Xu, Jia; Li, Jia; Wang, Xin-sen
2011-10-01
The establishment of high quality triangular mesh is one of the key steps in 3D laser scanning data processing. Traditional triangulation algorithms have been proposed directly on the basis of adjacency relation between points in 3D space. However, when the point density is non-uniform or the noise exists, the problems such as surface hole, dough sheet overlapping and inconsistent normal appear easily. In this paper, a triangular mesh establishing algorithm based on ellipsoidal projection is proposed. After comparing the theory of ellipsoidal projection and cylindrical projection, the proposed triangular mesh establishing algorithm is analyzed in detail including basic idea and implementation method. To evaluate the performance and efficiency of the proposed algorithm, two experiments are then carried out on the 3D point cloud data of a foundation pit. The results indicate that though the computational efficiency of proposed algorithm is a little inferior to the algorithm based on cylindrical projection, the proposed algorithm is more effective for establishing point cloud of both top and bottom of the object and the original topological relation of 3D scanning points can be maintained better.
Fruit bruise detection based on 3D meshes and machine learning technologies
NASA Astrophysics Data System (ADS)
Hu, Zilong; Tang, Jinshan; Zhang, Ping
2016-05-01
This paper studies bruise detection in apples using 3-D imaging. Bruise detection based on 3-D imaging overcomes many limitations of bruise detection based on 2-D imaging, such as low accuracy, sensitive to light condition, and so on. In this paper, apple bruise detection is divided into two parts: feature extraction and classification. For feature extraction, we use a framework that can directly extract local binary patterns from mesh data. For classification, we studies support vector machine. Bruise detection using 3-D imaging is compared with bruise detection using 2-D imaging. 10-fold cross validation is used to evaluate the performance of the two systems. Experimental results show that bruise detection using 3-D imaging can achieve better classification accuracy than bruise detection based on 2-D imaging.
3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants.
Usmani, Sadaf; Aurand, Emily Rose; Medelin, Manuela; Fabbro, Alessandra; Scaini, Denis; Laishram, Jummi; Rosselli, Federica B; Ansuini, Alessio; Zoccolan, Davide; Scarselli, Manuela; De Crescenzi, Maurizio; Bosi, Susanna; Prato, Maurizio; Ballerini, Laura
2016-07-01
In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments. We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces.
3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants
Usmani, Sadaf; Aurand, Emily Rose; Medelin, Manuela; Fabbro, Alessandra; Scaini, Denis; Laishram, Jummi; Rosselli, Federica B.; Ansuini, Alessio; Zoccolan, Davide; Scarselli, Manuela; De Crescenzi, Maurizio; Bosi, Susanna; Prato, Maurizio; Ballerini, Laura
2016-01-01
In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments. We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces. PMID:27453939
Method of generating a surface mesh
Shepherd, Jason F.; Benzley, Steven; Grover, Benjamin T.
2008-03-04
A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.
3D unstructured mesh ALE hydrodynamics with the upwind discontinuous galerkin method
Kershaw, D S; Milovich, J L; Prasad, M K; Shaw, M J; Shestakov, A I
1999-05-07
The authors describe a numerical scheme to solve 3D Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics on an unstructured mesh using a discontinuous Galerkin method (DGM) and an explicit Runge-Kutta time discretization. Upwinding is achieved through Roe's linearized Riemann solver with the Harten-Hyman entropy fix. For stabilization, a 3D quadratic programming generalization of van Leer's 1D minmod slope limiter is used along with a Lapidus type artificial viscosity. This DGM scheme has been tested on a variety of hydrodynamic test problems and appears to be robust making it the basis for the integrated 3D inertial confinement fusion modeling code (ICF3D). For efficient code development, they use C++ object oriented programming to easily separate the complexities of an unstructured mesh from the basic physics modules. ICF3D is fully parallelized using domain decomposition and the MPI message passing library. It is fully portable. It runs on uniprocessor workstations and massively parallel platforms with distributed and shared memory.
Rare meshes FEM scheme for quasi-stationary electromagnetic fields determination 3D problems
NASA Astrophysics Data System (ADS)
Chekmarev, D. T.; Kalinin, A. V.; Sadovsky, V. V.; Tiukhtina, A. A.
2016-11-01
The initial-boundary value problem for the quasi-stationary magnetic approximation of the Maxwell equations in inhomogeneous media is studied. The considered problem is reduced to the variational problem of determining the vector magnetic potential. The special gauge for vector magnetic and scalar electrical potentials is used. The well-posedness of the problems is established under general conditions on the coefficients and the applicability of the projection methods for these problems is validated. For the numerical solution of this problem provides to use the effective rare mesh FEM scheme for 3D problems. This scheme is well- proven in 3D elasticity and plasticity problems solving.
Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Seong, Baekhoon; Yoo, Hyunwoong; Dat Nguyen, Vu; Jang, Yonghee; Ryu, Changkook; Byun, Doyoung
2014-09-01
Invisible Ag mesh transparent electrodes (TEs), with a width of 7 μm, were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing. With a 100 μm pitch, the EHD jet printed the Ag mesh on the convex glass which had a sheet resistance of 1.49 Ω/□. The printing speed was 30 cm s-1 using Ag ink, which had a 10 000 cPs viscosity and a 70 wt% Ag nanoparticle concentration. We further showed the performance of a 3-D transparent heater using the Ag mesh transparent electrode. The EHD jet printed an invisible Ag grid transparent electrode with good electrical and optical properties with promising applications on printed optoelectronic devices.
SHARP/PRONGHORN Interoperability: Mesh Generation
Avery Bingham; Javier Ortensi
2012-09-01
Progress toward collaboration between the SHARP and MOOSE computational frameworks has been demonstrated through sharing of mesh generation and ensuring mesh compatibility of both tools with MeshKit. MeshKit was used to build a three-dimensional, full-core very high temperature reactor (VHTR) reactor geometry with 120-degree symmetry, which was used to solve a neutron diffusion critical eigenvalue problem in PRONGHORN. PRONGHORN is an application of MOOSE that is capable of solving coupled neutron diffusion, heat conduction, and homogenized flow problems. The results were compared to a solution found on a 120-degree, reflected, three-dimensional VHTR mesh geometry generated by PRONGHORN. The ability to exchange compatible mesh geometries between the two codes is instrumental for future collaboration and interoperability. The results were found to be in good agreement between the two meshes, thus demonstrating the compatibility of the SHARP and MOOSE frameworks. This outcome makes future collaboration possible.
1990-03-01
following expressions: 0 = (e) ’/ (6a) 1/2 1/2 OL ULI+ P u (6b) I/2 + t)/2( QL eR Ht = P/HtL+ I2 HR (6cl 1/ H 1/2 - 6 Q1 + OR where the total enthalpy...i. Flow data computed on type-2 meshes replaces those computed ol . all meshes lower down the hierarchy. Finally, type-3 meshes head the hierarchy. It...Cotii at I d iscr~ti-a’ioa d ’ut it oIblie aCcolttinua q ui coasisitea trouver une traasfor .aaioa x( () do u u t...it,- de rJfr,tc e ( espae , ( t,) at
Development of an Immersive Environment to Aid in Automatic Mesh Generation LDRD Final Report
Pavlakos, Constantine J.
1998-10-01
The purpose of this work was to explore the use of immersive technologies, such as those used in synthetic environments (commordy referred to as virtual realily, or VR), in enhancing the mesh- generation process for 3-dimensional (3D) engineering models. This work was motivated by the fact that automatic mesh generation systems are still imperfect - meshing algorithms, particularly in 3D, are sometimes unable to construct a mesh to completion, or they may produce anomalies or undesirable complexities in the resulting mesh. It is important that analysts and meshing code developers be able to study their meshes effectively in order to understand the topology and qualily of their meshes. We have implemented prototype capabilities that enable such exploration of meshes in a highly visual and intuitive manner. Since many applications are making use of increasingly large meshes, we have also investigated approaches to handle large meshes while maintaining interactive response. Ideally, it would also be possible to interact with the meshing process, allowing interactive feedback which corrects problems and/or somehow enables proper completion of the meshing process. We have implemented some functionality towards this end -- in doing so, we have explored software architectures that support such an interactive meshing process. This work has incorporated existing technologies developed at SandiaNational Laboratories, including the CUBIT mesh generation system, and the EIGEN/VR (previously known as MUSE) and FLIGHT systems, which allow applications to make use of immersive technologies and advanced human computer interfaces. 1
An efficient 3D traveltime calculation using coarse-grid mesh for shallow-depth source
NASA Astrophysics Data System (ADS)
Son, Woohyun; Pyun, Sukjoon; Lee, Ho-Young; Koo, Nam-Hyung; Shin, Changsoo
2016-10-01
3D Kirchhoff pre-stack depth migration requires an efficient algorithm to compute first-arrival traveltimes. In this paper, we exploited a wave-equation-based traveltime calculation algorithm, which is called the suppressed wave equation estimation of traveltime (SWEET), and the equivalent source distribution (ESD) algorithm. The motivation of using the SWEET algorithm is to solve the Laplace-domain wave equation using coarse grid spacing to calculate first-arrival traveltimes. However, if a real source is located at shallow-depth close to free surface, we cannot accurately calculate the wavefield using coarse grid spacing. So, we need an additional algorithm to correctly simulate the shallow source even for the coarse grid mesh. The ESD algorithm is a method to define a set of distributed nodal sources that approximate a point source at the inter-nodal location in a velocity model with large grid spacing. Thanks to the ESD algorithm, we can efficiently calculate the first-arrival traveltimes of waves emitted from shallow source point even when we solve the Laplace-domain wave equation using a coarse-grid mesh. The proposed algorithm is applied to the SEG/EAGE 3D salt model. From the result, we note that the combination of SWEET and ESD algorithms can be successfully used for the traveltime calculation under the condition of a shallow-depth source. We also confirmed that our algorithm using coarse-grid mesh requires less computational time than the conventional SWEET algorithm using relatively fine-grid mesh.
Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure
Kim, Yohan; Kang, Kyojin; Jeong, Jaemin; Paik, Seung Sam; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Park, Jisun
2017-01-01
Purpose The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. Methods To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6–8 weeks old mice by a 2-step collagenase method. Samples of 4 × 107 hepatocytes with 80%–90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. Results Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin, HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. Conclusion Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers. PMID:28203553
3D model generation using an airborne swarm
NASA Astrophysics Data System (ADS)
Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.
2015-03-01
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
3D model generation using an airborne swarm
Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.
2015-03-31
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting
NASA Astrophysics Data System (ADS)
Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein
2016-06-01
In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.
Structured mesh generation with smoothness controls
Technology Transfer Automated Retrieval System (TEKTRAN)
In geometrically complex domains, the RL (Ryskin and Leal) orthogonal mesh generation system may cause mesh distortion and overlapping problems when using the “weak constraint” method with specified boundary point distribution for all boundaries. To resolve these problems, an improved RL system with...
Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
A 3D moving mesh Finite Element Method for two-phase flows
NASA Astrophysics Data System (ADS)
Anjos, G. R.; Borhani, N.; Mangiavacchi, N.; Thome, J. R.
2014-08-01
A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles.
Robust Detection of Round Shaped Pits Lying on 3D Meshes: Application to Impact Crater Recognition
NASA Astrophysics Data System (ADS)
Schmidt, Martin-Pierre; Muscato, Jennifer; Viseur, Sophie; Jorda, Laurent; Bouley, Sylvain; Mari, Jean-Luc
2015-04-01
Most celestial bodies display impacts of collisions with asteroids and meteoroids. These traces are called craters. The possibility of observing and identifying these craters and their characteristics (radius, depth and morphology) is the only method available to measure the age of different units at the surface of the body, which in turn allows to constrain its conditions of formation. Interplanetary space probes always carry at least one imaging instrument on board. The visible images of the target are used to reconstruct high-resolution 3D models of its surface as a cloud of points in the case of multi-image dense stereo, or as a triangular mesh in the case of stereo and shape-from-shading. The goal of this work is to develop a methodology to automatically detect the craters lying on these 3D models. The robust extraction of feature areas on surface objects embedded in 3D, like circular pits, is a challenging problem. Classical approaches generally rely on image processing and template matching on a 2D flat projection of the 3D object (i.e.: a high-resolution photograph). In this work, we propose a full-3D method that mainly relies on curvature analysis. Mean and Gaussian curvatures are estimated on the surface. They are used to label vertices that belong to concave parts corresponding to specific pits on the surface. The surface is thus transformed into binary map distinguishing potential crater features to other types of features. Centers are located in the targeted surface regions, corresponding to potential crater features. Concentric rings are then built around the found centers. They consist in circular closed lines exclusively composed of edges of the initial mesh. The first built ring represents the nearest vertex neighborhood of the found center. The ring is then optimally expanded using a circularity constrain and the curvature values of the ring vertices. This method has been tested on a 3D model of the asteroid Lutetia observed by the ROSETTA (ESA
NASA Astrophysics Data System (ADS)
Gonizzi Barsanti, S.; Guidi, G.
2017-02-01
Conservation of Cultural Heritage is a key issue and structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of Finite Elements Methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The typical workflow involves the use of CAD 3D models made by Non-Uniform Rational B-splines (NURBS) surfaces, representing the ideal shape of the object to be simulated. Nowadays, 3D documentation of CH has been widely developed through reality-based approaches, but the models are not suitable for a direct use in FEA: the mesh has in fact to be converted to volumetric, and the density has to be reduced since the computational complexity of a FEA grows exponentially with the number of nodes. The focus of this paper is to present a new method aiming at generate the most accurate 3D representation of a real artefact from highly accurate 3D digital models derived from reality-based techniques, maintaining the accuracy of the high-resolution polygonal models in the solid ones. The approach proposed is based on a wise use of retopology procedures and a transformation of this model to a mathematical one made by NURBS surfaces suitable for being processed by volumetric meshers typically embedded in standard FEM packages. The strong simplification with little loss of consistency possible with the retopology step is used for maintaining as much coherence as possible between the original acquired mesh and the simplified model, creating in the meantime a topology that is more favourable for the automatic NURBS conversion.
Zouhar, Alexander; Baloch, Sajjad; Tsin, Yanghai; Fang, Tong; Fuchs, Siegfried
2010-01-01
We address the problem of 3-D Mesh segmentation for categories of objects with known part structure. Part labels are derived from a semantic interpretation of non-overlapping subsurfaces. Our approach models the label distribution using a Conditional Random Field (CRF) that imposes constraints on the relative spatial arrangement of neighboring labels, thereby ensuring semantic consistency. To this end, each label variable is associated with a rich shape descriptor that is intrinsic to the surface. Randomized decision trees and cross validation are employed for learning the model, which is eventually applied using graph cuts. The method is flexible enough for segmenting even geometrically less structured regions and is robust to local and global shape variations.
Analysis of 3D multi-layer microfluidic gradient generator.
Ha, Jang Ho; Kim, Tae Hyeon; Lee, Jong Min; Ahrberg, Christian D; Chung, Bong Geun
2017-01-01
We developed a three-dimensional (3D) simple multi-layer microfluidic gradient generator to create molecular gradients on the centimeter scale with a wide range of flow rates. To create the concentration gradients, a main channel (MC) was orthogonally intersected with vertical side microchannel (SC) in a 3D multi-layer microfluidic device. Through sequential dilution from the SC, a spatial gradient was generated in the MC. Two theoretical models were created to assist in the design of the 3D multi-layer microfluidic gradient generator and to compare its performance against a two-dimensional equivalent. A first mass balance model was used to predict the steady-state concentrations reached, while a second computational fluid dynamic model was employed to predict spatial development of the gradient by considering convective as well as diffusive mass transport. Furthermore, the theoretical simulations were verified through experiments to create molecular gradients in a 3D multi-layer microfluidic gradient generator.
NASA Astrophysics Data System (ADS)
Bajc, Iztok; Hecht, Frédéric; Žumer, Slobodan
2016-09-01
This paper presents a 3D mesh adaptivity strategy on unstructured tetrahedral meshes by a posteriori error estimates based on metrics derived from the Hessian of a solution. The study is made on the case of a nonlinear finite element minimization scheme for the Landau-de Gennes free energy functional of nematic liquid crystals. Newton's iteration for tensor fields is employed with steepest descent method possibly stepping in. Aspects relating the driving of mesh adaptivity within the nonlinear scheme are considered. The algorithmic performance is found to depend on at least two factors: when to trigger each single mesh adaptation, and the precision of the correlated remeshing. Each factor is represented by a parameter, with its values possibly varying for every new mesh adaptation. We empirically show that the time of the overall algorithm convergence can vary considerably when different sequences of parameters are used, thus posing a question about optimality. The extensive testings and debugging done within this work on the simulation of systems of nematic colloids substantially contributed to the upgrade of an open source finite element-oriented programming language to its 3D meshing possibilities, as also to an outer 3D remeshing module.
The Feasibility of 3d Point Cloud Generation from Smartphones
NASA Astrophysics Data System (ADS)
Alsubaie, N.; El-Sheimy, N.
2016-06-01
This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone's motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.
A multistage mesh generator for solving the average-passage equation system
NASA Technical Reports Server (NTRS)
Mulac, Richard A.
1988-01-01
One means of numerically simulating the 3-D flow field within a multistage turbomachine is through the solution of the average-passage equation system. One requirement of a current algorithm used to solve this system of equations has been the ability to generate multiple blade row meshes which satisfy specific geometrical constraints. In addition to meeting this criterion, one desires a mesh generation code which requires minimal user input, utilizes variable mesh control parameters, generates diagnostics helpful to the user, and possesses the capability to handle widely varying geometries. A mesh generation code with these features was written and has been used in solving the inviscid form of the average-passing equation system for both ducted and unducted multiple blade row geometries. This paper serves as a user reference guide, with a description of the mesh generation algorithm, a sample input file, and examples of typical meshes generated.
Fast generation of virtual X-ray images for reconstruction of 3D anatomy.
Ehlke, Moritz; Ramm, Heiko; Lamecker, Hans; Hege, Hans-Christian; Zachow, Stefan
2013-12-01
We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach will improve treatments in orthopedics, where 3D anatomical information is essential.
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Scalable and Adaptive Streaming of 3D Mesh to Heterogeneous Devices
NASA Astrophysics Data System (ADS)
Abderrahim, Zeineb; Bouhlel, Mohamed Salim
2016-12-01
This article comprises a presentation of a web platform for the diffusion and visualization of 3D compressed data on the web. Indeed, the major goal of this work resides in the proposal of the transfer adaptation of the three-dimensional data to resources (network bandwidth, the type of visualization terminals, display resolution, user's preferences...). Also, it is an attempt to provide an effective consultation adapted to the user's request (preferences, levels of the requested detail, etc.). Such a platform can adapt the levels of detail to the change in the bandwidth and the rendering time when loading the mesh at the client level. In addition, the levels of detail are adapted to the distance between the object and the camera. These features are able to minimize the latency time and to make the real time interaction possible. The experiences as well as the comparison with the existing solutions show auspicious results in terms of latency, scalability and the quality of the experience offered to the users.
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
NASA Astrophysics Data System (ADS)
Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
2D nearly orthogonal mesh generation
NASA Astrophysics Data System (ADS)
Zhang, Yaoxin; Jia, Yafei; Wang, Sam S. Y.
2004-11-01
The Ryskin and Leal (RL) system is the most widely used mesh generation system for the orthogonal mapping. However, when this system is used in domains with complex geometry, particularly in those with sharp corners and strong curvatures, serious distortion or overlapping of mesh lines may occur and an acceptable solution may not be possible. In the present study, two methods are proposed to generate nearly orthogonal meshes with the smoothness control. In the first method, the original RL system is modified by introducing smoothness control functions, which are formulated through the blending of the conformal mapping and the orthogonal mapping; while in the second method, the RL system is modified by introducing the contribution factors. A hybrid system of both methods is also developed. The proposed methods are illustrated by several test examples. Applications of these methods in a natural river channel are demonstrated. It is shown that the modified RL systems are capable of producing meshes with an adequate balance between the orthogonality and the smoothness for complex computational domains without mesh distortions and overlapping.
3D Model Generation From the Engineering Drawing
NASA Astrophysics Data System (ADS)
Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav
2010-01-01
The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.
NASA Astrophysics Data System (ADS)
Gansen, A.; Hachemi, M. El; Belouettar, S.; Hassan, O.; Morgan, K.
2016-09-01
The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented. The 3D dual mesh leapfrog-scheme which is presented has the ability to model both electric and magnetic anisotropic lossy materials. This approach enables the modelling of problems, of current practical interest, involving structured composites and metamaterials.
3D measurement system based on computer-generated gratings
NASA Astrophysics Data System (ADS)
Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang
2010-08-01
A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.
Constrained CVT Meshes and a Comparison of Triangular Mesh Generators
Nguyen, Hoa; Burkardt, John; Gunzburger, Max; Ju, Lili; Saka, Yuki
2009-01-01
Mesh generation in regions in Euclidean space is a central task in computational science, and especially for commonly used numerical methods for the solution of partial differential equations, e.g., finite element and finite volume methods. We focus on the uniform Delaunay triangulation of planar regions and, in particular, on how one selects the positions of the vertices of the triangulation. We discuss a recently developed method, based on the centroidal Voronoi tessellation (CVT) concept, for effecting such triangulations and present two algorithms, including one new one, for CVT-based grid generation. We also compare several methods, including CVT-based methods, for triangulating planar domains. To this end, we define several quantitative measures of the quality of uniform grids. We then generate triangulations of several planar regions, including some having complexities that are representative of what one may encounter in practice. We subject the resulting grids to visual and quantitative comparisons and conclude that all the methods considered produce high-quality uniform grids and that the CVT-based grids are at least as good as any of the others.
V-Man Generation for 3-D Real Time Animation. Chapter 5
NASA Technical Reports Server (NTRS)
Nebel, Jean-Christophe; Sibiryakov, Alexander; Ju, Xiangyang
2007-01-01
The V-Man project has developed an intuitive authoring and intelligent system to create, animate, control and interact in real-time with a new generation of 3D virtual characters: The V-Men. It combines several innovative algorithms coming from Virtual Reality, Physical Simulation, Computer Vision, Robotics and Artificial Intelligence. Given a high-level task like "walk to that spot" or "get that object", a V-Man generates the complete animation required to accomplish the task. V-Men synthesise motion at runtime according to their environment, their task and their physical parameters, drawing upon its unique set of skills manufactured during the character creation. The key to the system is the automated creation of realistic V-Men, not requiring the expertise of an animator. It is based on real human data captured by 3D static and dynamic body scanners, which is then processed to generate firstly animatable body meshes, secondly 3D garments and finally skinned body meshes.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.
1999-05-01
Koide et al have investigated the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code on a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics. 3-D RMHD simulations wil be also performed to investigate the dynamics of a jet with a helical mangetic field in it.
Multiple footprint stereo algorithms for 3D display content generation
NASA Astrophysics Data System (ADS)
Boughorbel, Faysal
2007-02-01
This research focuses on the conversion of stereoscopic video material into an image + depth format which is suitable for rendering on the multiview auto-stereoscopic displays of Philips. The recent interest shown in the movie industry for 3D significantly increased the availability of stereo material. In this context the conversion from stereo to the input formats of 3D displays becomes an important task. In this paper we present a stereo algorithm that uses multiple footprints generating several depth candidates for each image pixel. We characterize the various matching windows and we devise a robust strategy for extracting high quality estimates from the resulting depth candidates. The proposed algorithm is based on a surface filtering method that employs simultaneously the available depth estimates in a small local neighborhood while ensuring correct depth discontinuities by the inclusion of image constraints. The resulting highquality image-aligned depth maps proved an excellent match with our 3D displays.
Tool-assisted mesh generation based on a tissue-growth model.
Smirnov, A V
2003-07-01
An heuristic mesh generation technique is proposed that is based on the model of forced particle motion, an edgewise cell-splitting algorithm and a moving tool concept. The method differs from conventional mesh generators in that it uses outward growth of the mesh, in contrast to the inward growth used in traditional meshing techniques. The method does not require prior meshing and patching of two-dimensional (2D) boundary surfaces. Instead, it uses a pre-defined skeleton of one-dimensional segments, or an arbitrary tool motion in three-dimensional (3D) space. In this respect, the technique can be considered as a 3D extension of a 2D drawing tool and can find applications in virtual reality systems. The method also guarantees the smoothness of the outer boundary of the mesh at each step of mesh generation, which is not the case with traditional propagating-front methods. The approach is based on the model of tissue growth and is suitable for meshing complex networks of bifurcating branches commonly found in biological structures: blood vessels, lungs, neural networks, plants etc. The generated meshes were used in solving unsteady flow and particle transport problems in lungs.
An Adaptive Mesh Algorithm: Mesh Structure and Generation
Scannapieco, Anthony J.
2016-06-21
The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented by a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally
NASA Astrophysics Data System (ADS)
Danilov, A. A.; Salamatova, V. Yu; Vassilevski, Yu V.
2012-12-01
Here, a workflow for high-resolution efficient numerical modeling of bioimpedance measurements is suggested that includes 3D image segmentation, adaptive mesh generation, finite-element discretization, and the analysis of simulation results. Using the adaptive unstructured tetrahedral meshes enables to decrease significantly a number of mesh elements while keeping model accuracy. The numerical results illustrate current, potential, and sensitivity field distributions for a conventional Kubicek-like scheme of bioimpedance measurements using segmented geometric model of human torso based on Visible Human Project data. The whole body VHP man computational mesh is constructed that contains 574 thousand vertices and 3.3 million tetrahedrons.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.
1999-12-01
We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.
2001-12-01
We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.
2000-12-01
We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, Ken-Ichi; Koide, Shinji; Shibata, Kazunari; Kudoh, Takashiro; Sol, Helene; Hughes, John
2002-04-01
We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J × B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R
2017-02-01
We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions.
Cartesian-cell based grid generation and adaptive mesh refinement
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1993-01-01
Viewgraphs on Cartesian-cell based grid generation and adaptive mesh refinement are presented. Topics covered include: grid generation; cell cutting; data structures; flow solver formulation; adaptive mesh refinement; and viscous flow.
Generation and use of human 3D-CAD models
NASA Astrophysics Data System (ADS)
Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf
2002-05-01
Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.
Simplified 3D protocol capable of generating early cortical neuroepithelium
Holmes, Dwayne B.
2017-01-01
ABSTRACT Here, we report a 3D cerebellar differentiation protocol with quick startup method, defined medium and no special materials or handling requirements. Three fibroblast growth factors (FGF2, 4 and 8) were used for cerebellar patterning and smoothened agonist (SAG) for granule cell development. After 35 days, differentiation products exhibited similar structures and neuronal markers reported in prior ‘organoid’ and ‘spheroid’ protocols. This included cells positive for KIRREL2 (a marker of early cerebellar neuroepithelium) and ZIC1 (a marker for granule cells). Follow-up tests indicated that addition of FGFs, if helpful, was not required to generate observed structures and cell types. This suggests that intrinsic production of patterning factors by aggregates themselves may be adequate for region-specific 3D modeling. This protocol may be used as a quick, easy and cost-efficient method for 3D culture, whether to research development of the early cerebellar neuroepithelium, a base to generate mature cortical structures, or to optimize minimal-factor protocols for other brain regions. PMID:28167491
Reddy, A.V.; Kothe, D.B.; Lam, K.L.
1997-06-01
The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation tool (known as Telluride) that employs robust, high-resolution finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification physics on three-dimensional (3-D) unstructured meshes. Their finite volume algorithms are based on colocated cell-centered schemes that are formally second order in time and space. The flow algorithm is a 3-D extension of recent work on projection method solutions of the Navier-Stokes (NS) equations. Their volume tracking algorithm can accurately track topologically complex interfaces by approximating the interface geometry as piecewise planar. Coupled to their fluid flow algorithm is a comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and melt convection as well as a microscopic description of segregation. The finite volume algorithms, which are efficient, parallel, and robust, can yield high-fidelity solutions on a variety of meshes, ranging from those that are structured orthogonal to fully unstructured (finite element). The authors discuss key computer science issues that have enabled them to efficiently parallelize their unstructured mesh algorithms on both distributed and shared memory computing platforms. These include their functionally object-oriented use of Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear systems of equations (JTpack90). Examples of their current capabilities are illustrated with simulations of mold filling and solidification of complex 3-D components currently being poured in LANL foundries.
Structured mesh generation with smoothness controls
NASA Astrophysics Data System (ADS)
Zhang, Yaoxin; Jia, Yafei; Wang, Sam S. Y.
2006-08-01
In geometrically complex domains, the Ryskin and Leal (RL) orthogonal mesh generation system may cause mesh distortion and overlapping problems when using the weak constraint method with specified boundary point distribution for all boundaries. To resolve these problems, an improved RL system with automatic smoothness control is proposed. In this improved RL system, the automatic smoothness control mechanism is based on five types of smoothness conditions and includes the self-adjustment mechanism and the auto-evaluation mechanism for an empirical parameter. The proposed system is illustrated using several test examples. Several applications to natural domains are also demonstrated. It is shown that the improved RL system is capable of resolving the above problems at little cost of orthogonality.
Vertical-Axis Wind Turbine Mesh Generator
2014-01-24
VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.
Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications
NASA Technical Reports Server (NTRS)
Biedron, Robert T,; Thomas, James L.
2009-01-01
An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.
Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems
NASA Technical Reports Server (NTRS)
Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John
2010-01-01
Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.
CUBIT mesh generation environment. Volume 1: Users manual
Blacker, T.D.; Bohnhoff, W.J.; Edwards, T.L.
1994-05-01
The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.
Note: 3D printed spheroid for uniform magnetic field generation
NASA Astrophysics Data System (ADS)
Öztürk, Y.; Aktaş, B.
2016-10-01
This article is focused on a novel and practical production method for a uniform magnetic field generator. The method involves building of a surface coil template using a desktop 3D printer and winding of a conducting wire onto the structure using surface grooves as a guide. Groove pattern was based on the parametric spheroidal helical coil formula. The coil was driven by a current source and the magnetic field inside was measured using a Hall probe placed into the holes on the printed structure. The measurements are found to be in good agreement with our finite element analysis results and indicate a fairly uniform field inside.
Cubit Mesh Generation Toolkit V11.1
HANKS, BYRON; KERR, ROBERT; KNUPP, PATRICK; MAEZ, JONATHAN; WHITE, DAVID; MITCHELL, SCOTT; OWEN, STEVEN; SHEPHERD, JASON; TAUTGES, TIMOTHY; MELANDER, DARRYL; BLACKER, TEDDY; BORDEN, MICHAEL; BREWER, MICHAEL; CLARK, BRETT; FORTIER, LESLIE; KALLAHER, JENNA; PEBAY, PHILIPPE; STATEN, MATTHEW; VINEYARD, CRAIG; GROVER, BENJAMIN; BENZLEY, STEVEN; SIMPSON, CLINTON; NIELSON, ERIC; KOPP, JOEL; STORM, STEVE; NUGENT, MARK; WALTON, KIRK; BORDEN, MIKE; ERNST, CORY; FOWLER, JOHN; KRAFTCHECL, JASON; STEPHNSON, MIKE; YEOU, RAMMAGAY; MERKLEY, KARL; METERS, RAY; DEWET, MARK; RICHARDS, SARA; PENDLEY, KEVIN; MORRIS, RANDY; RICHARDSON, MARK; VYAS, VED; SHOWMAN, SAM; HAYS, ALEX; TIDWELL, BOYD; MILLAR, ALEX
2009-03-25
CUBIT prepares models to be used in computer-based simulation of real-world events. CUBIT is a full-featured software toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking assemblies.
A density driven mesh generator guided by a neural network
Lowther, D.A.; Dyck, D.N. )
1993-03-01
A neural network guided mesh generator is described. The mesh generator used density information provided by the neural network to determine the size and placement of elements. This system is coupled with an adaptive meshing and solving process and is shown to have major computational benefits compared with adaptation alone.
An overset mesh approach for 3D mixed element high-order discretizations
NASA Astrophysics Data System (ADS)
Brazell, Michael J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.
2016-10-01
A parallel high-order Discontinuous Galerkin (DG) method is used to solve the compressible Navier-Stokes equations in an overset mesh framework. The DG solver has many capabilities including: hp-adaption, curved cells, support for hybrid, mixed-element meshes, and moving meshes. Combining these capabilities with overset grids allows the DG solver to be used in problems with bodies in relative motion and in a near-body off-body solver strategy. The overset implementation is constructed to preserve the design accuracy of the baseline DG discretization. Multiple simulations are carried out to validate the accuracy and performance of the overset DG solver. These simulations demonstrate the capability of the high-order DG solver to handle complex geometry and large scale parallel simulations in an overset framework.
On Adaptive Mesh Generation in Two-Dimensions
D'Azevedo, E.
1999-10-11
This work considers the effectiveness of using anisotropic coordinate transformation in adaptive mesh generation. The anisotropic coordinate transformation is derived by interpreting the Hessian matrix of the data function as a metric tensor that measures the local approximation error. The Hessian matrix contains information about the local curvature of the surface and gives guidance in the aspect ratio and orientation for mesh generation. Since theoretically, an asymptotically optimally efficient mesh can be produced by transforming a regular mesh of optimal shape elements, it would be interesting to compare this approach with existing techniques in solution adaptive meshes. PLTMG , a general elliptic solver, is used to generate solution adapted triangular meshes for comparison. The solver has the capability of performing a posteriori error estimates in performing longest edge refinement, vertex unrefinement and mesh smoothing. Numerical experiments on three simple problems suggest the methodology employed in PLTMG is effective in generating near optimally efficient meshes.
Update on Development of Mesh Generation Algorithms in MeshKit
Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay
2015-09-30
MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.
Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh
NASA Technical Reports Server (NTRS)
Sclafani, Anthony J.; DeHaan, Mark A.; Vassberg, John C.; Rumsey, Christopher L.; Pulliam, Thomas H.
2010-01-01
In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.
Adaptive optimal quantization for 3D mesh representation in the spherical coordinate system
NASA Astrophysics Data System (ADS)
Ahn, Jeong-Hwan; Ho, Yo-Sung
1998-12-01
In recent days, applications using 3D models are increasing. Since the 3D model contains a huge amount of information, compression of the 3D model data is necessary for efficient storage or transmission. In this paper, we propose an adaptive encoding scheme to compress the geometry information of the 3D model. Using the Levinson-Durbin algorithm, the encoder first predicts vertex positions along a vertex spanning tree. After each prediction error is normalized, the prediction error vector of each vertex point is represented in the spherical coordinate system (r,(theta) ,(phi) ). Each r is then quantizes by an optimal uniform quantizer. A pair of each ((theta) ,(phi) ) is also successively encoded by partitioning the surface of the sphere according to the quantized value of r. The proposed scheme demonstrates improved coding efficiency by exploiting the statistical properties of r and ((theta) ,(phi) ).
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
Mesh generation by conformal and quasiconformal mappings
NASA Technical Reports Server (NTRS)
Mastin, C. W.; Thompson, J. F.
1981-01-01
It is pointed out that many recent advances in the finite-difference solution of elliptic equations have been limited to regions whose boundary contours coincide with coordinate lines of the Cartesian coordinate system. The reason for this is related to the fact that in the case of an arbitrary curvilinear coordinate system the original equation becomes much more complex. However, there is no added complexity if an orthogonal coordinate system is generated from a conformal mapping. In the present investigation, a finite difference method developed for the construction of conformal mappings has been generalized to construct quasi-conformal mappings. It is expected that the use of more sophisticated numerical algorithms could lead to improvements in both speed and accuracy. Quasi-conformal mappings have applications not only in the solution of elliptic equations but also in other areas such as orthogonal mesh generation on surfaces and the solution of certain fluid flow problems.
Mitton, D; Landry, C; Véron, S; Skalli, W; Lavaste, F; De Guise, J A
2000-03-01
Standard 3D reconstruction of bones using stereoradiography is limited by the number of anatomical landmarks visible in more than one projection. The proposed technique enables the 3D reconstruction of additional landmarks that can be identified in only one of the radiographs. The principle of this method is the deformation of an elastic object that respects stereocorresponding and non-stereocorresponding observations available in different projections. This technique is based on the principle that any non-stereocorresponding point belongs to a line joining the X-ray source and the projection of the point in one view. The aim is to determine the 3D position of these points on their line of projection when submitted to geometrical and topological constraints. This technique is used to obtain the 3D geometry of 18 cadaveric upper cervical vertebrae. The reconstructed geometry obtained is compared with direct measurements using a magnetic digitiser. The order of precision determined with the point-to-surface distance between the reconstruction obtained with that technique and reference measurements is about 1 mm, depending on the vertebrae studied. Comparison results indicate that the obtained reconstruction is close to the actual vertebral geometry. This method can therefore be proposed to obtain the 3D geometry of vertebrae.
3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture
NASA Astrophysics Data System (ADS)
Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben
2016-12-01
This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.
An interface-fitted mesh generator and virtual element methods for elliptic interface problems
NASA Astrophysics Data System (ADS)
Chen, Long; Wei, Huayi; Wen, Min
2017-04-01
A simple and efficient interface-fitted mesh generation algorithm which can produce a semi-structured interface-fitted mesh in two and three dimensions quickly is developed in this paper. Elements in such interface-fitted meshes are not restricted to simplices but can be polygons or polyhedra. Especially in 3D, the polyhedra instead of tetrahedra can avoid slivers. Virtual element methods are applied to solve elliptic interface problems with solutions and flux jump conditions. Algebraic multigrid solvers are used to solve the resulting linear algebraic system. Numerical results are presented to illustrate the effectiveness of our method.
Mesh Generation via Local Bisection Refinement of Triangulated Grids
2015-06-01
UNCLASSIFIED Mesh Generation via Local Bisection Refinement of Triangulated Grids Jason R. Looker Joint and Operations Analysis Division Defence...Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...relatively simple to implement, has the capacity to quickly generate a refined mesh with triangles that rapidly change size over a short distance, and does
Generation Of 3d Periodic Internal Wave Beams:
NASA Astrophysics Data System (ADS)
Chashechkin, Yuli D.; Vasiliev, Alexey Yu.
We study generation of 2D and 3D periodic internal wave beams in continuously strat- ified viscous liquid basing on a complete set of governing equations and exact bound- ary conditions that is no-slip for velocity and attenuation of all disturbances at infinite distance from the source. The linearized governing equations are solved by an integral transform method. A total set of dispersion equation roots contains terms correspond- ing to internal waves and additional roots describing two kinds of periodic boundary layers. The first one is a viscous boundary layer and has an analogue that is a periodic or Stokes' layer in a homogeneous fluid. Its thickness is defined by a kinematic viscos- ity coefficient and a buoyancy frequency. The second one, that is an internal boundary layer, is a specific feature of stratified flows. Its thickness besides the Stokes' scale contains additional factor depending on relative wave frequency and geometry of the problem that is on the local slope of emitting surface and a direction of the waves propagation. We have constructed exact solutions of linear problems describing gen- eration of 2D waves by a strip and 3D by a rectangular with an arbitrary ratio of sides moving along or normally to a sloping plane. We also calculated the wave pattern gen- erated by a part of a vertical cylinder surface with different ratios of intrinsic scales that is of cylinder radius, thickness of the boundary layer and internal viscous scale. All solutions are regularly matched between themselves in limiting cases. The spatial decay of the waves depends on dimension and geometry of the problem. Non-linear generation of internal waves by the Stokes' boundary layer on a periodically rotating horizontal disk or by interacting boundary layers on an arbitrary moving strip is in- vestigated. We found conditions of generation of the main frequency and its second harmonic. In experiments periodic waves beams from different sources are visualised by the
3D Adaptive Mesh Refinement Simulations of Pellet Injection in Tokamaks
R. Samtaney; S.C. Jardin; P. Colella; D.F. Martin
2003-10-20
We present results of Adaptive Mesh Refinement (AMR) simulations of the pellet injection process, a proven method of refueling tokamaks. AMR is a computationally efficient way to provide the resolution required to simulate realistic pellet sizes relative to device dimensions. The mathematical model comprises of single-fluid MHD equations with source terms in the continuity equation along with a pellet ablation rate model. The numerical method developed is an explicit unsplit upwinding treatment of the 8-wave formulation, coupled with a MAC projection method to enforce the solenoidal property of the magnetic field. The Chombo framework is used for AMR. The role of the E x B drift in mass redistribution during inside and outside pellet injections is emphasized.
BMP-2-loaded silica nanotube fibrous meshes for bone generation
Chen, Song; Shi, Xuetao; Morita, Hiromi; Li, Jie; Ogawa, Nobuhiro; Ikoma, Toshiyuki; Hayakawa, Satoshi; Shirosaki, Yuki; Osaka, Akiyoshi; Hanagata, Nobutaka
2011-01-01
Silica nanotube fibrous meshes were fabricated as multiple functional matrices for both delivering bone morphological protein-2 (BMP-2) and supporting osteoblast attachment and proliferation. The meshes were fabricated via a collagen-templated sol–gel route and consisted of tubular silica with open ends. BMP-2 was loaded to the meshes by soaking in BMP-2 solution. The meshes effectively enabled the attachment and proliferation of osteoblast MC3T3-E1 cells and delivered bioactive BMP-2 to stimulate cell differentiation. These results demonstrate the potential use of the meshes in bone generation applications. PMID:27877463
Registration of 3D point clouds and meshes: a survey from rigid to nonrigid.
Tam, Gary K L; Cheng, Zhi-Quan; Lai, Yu-Kun; Langbein, Frank C; Liu, Yonghuai; Marshall, David; Martin, Ralph R; Sun, Xian-Fang; Rosin, Paul L
2013-07-01
Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends.
3D Boltzmann Simulation of the Io's Plasma Environment with Adaptive Mesh and Particle Refinement
NASA Astrophysics Data System (ADS)
Lipatov, A. S.; Combi, M. R.
2002-12-01
The global dynamics of the ionized and neutral components in the environment of Io plays an important role in the interaction of Jupiter's corotating magnetospheric plasma with Io [Combi et al., 2002; 1998; Kabin et al., 2001]. The stationary simulation of this problem was done in the MHD [Combi et al., 1998; Linker et al, 1998; Kabin et al., 2001] and the electrodynamic [Saur et al., 1999] approaches. In this report, we develop a method of kinetic ion-neutral simulation, which is based on a multiscale adaptive mesh, particle and algorithm refinement. This method employs the fluid description for electrons whereas for ions the drift-kinetic and particle approaches are used. This method takes into account charge-exchange and photoionization processes. The first results of such simulation of the dynamics of ions in the Io's environment are discussed in this report. ~ M R Combi et al., J. Geophys. Res., 103, 9071, 1998. M R Combi, T I Gombosi, K Kabin, Atmospheres in the Solar System: Comparative\\ Aeronomy. Geophys. Monograph Series, 130, 151, 2002. K Kabin et al., Planetary and Space Sci., 49, 337, 2001. J A Linker et al., J. Geophys. Res., 103(E9), 19867, 1998. J Saur et al., J. Geophys. Res., 104, 25105, 1999.
Developments and trends in three-dimensional mesh generation
NASA Technical Reports Server (NTRS)
Baker, Timothy J.
1989-01-01
An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation.
3D Numerical Simulation on the Rockslide Generated Tsunamis
NASA Astrophysics Data System (ADS)
Chuang, M.; Wu, T.; Wang, C.; Chu, C.
2013-12-01
The rockslide generated tsunami is one of the most devastating nature hazards. However, the involvement of the moving obstacle and dynamic free-surface movement makes the numerical simulation a difficult task. To describe both the fluid motion and solid movement at the same time, we newly developed a two-way fully-coupled moving solid algorithm with 3D LES turbulent model. The free-surface movement is tracked by volume of fluid (VOF) method. The two-step projection method is adopted to solve the Navier-Stokes type government equations. In the new moving solid algorithm, a fictitious body force is implicitly prescribed in MAC correction step to make the cell-center velocity satisfied with the obstacle velocity. We called this method the implicit velocity method (IVM). Because no extra terms are added to the pressure Poission correction, the pressure field of the fluid part is stable, which is the key of the two-way fluid-solid coupling. Because no real solid material is presented in the IVM, the time marching step is not restricted to the smallest effective grid size. Also, because the fictitious force is implicitly added to the correction step, the resulting velocity is accurate and fully coupled with the resulting pressure field. We validated the IVM by simulating a floating box moving up and down on the free-surface. We presented the time-history obstacle trajectory and compared it with the experimental data. Very accurate result can be seen in terms of the oscillating amplitude and the period (Fig. 1). We also presented the free-surface comparison with the high-speed snapshots. At the end, the IVM was used to study the rock-slide generated tsunamis (Liu et al., 2005). Good validations on the slide trajectory and the free-surface movement will be presented in the full paper. From the simulation results (Fig. 2), we observed that the rockslide generated waves are manly caused by the rebounding waves from two sides of the sliding rock after the water is dragging
Automated robust generation of compact 3D statistical shape models
NASA Astrophysics Data System (ADS)
Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo
2004-05-01
Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.
High resolution 3D imaging of synchrotron generated microbeams
Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi
2015-12-15
Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.
A two-dimensional adaptive mesh generation method
NASA Astrophysics Data System (ADS)
Altas, Irfan; Stephenson, John W.
1991-05-01
The present, two-dimensional adaptive mesh-generation method allows selective modification of a small portion of the mesh without affecting large areas of adjacent mesh-points, and is applicable with or without boundary-fitted coordinate-generation procedures. The cases of differential equation discretization by, on the one hand, classical difference formulas designed for uniform meshes, and on the other the present difference formulas, are illustrated through the application of the method to the Hiemenz flow for which the Navier-Stokes equation's exact solution is known, as well as to a two-dimensional viscous internal flow problem.
Amato, Giuseppe; Romano, Giorgio; Agrusa, Antonino; Marasa, Salvatore; Cocorullo, Gianfranco; Gulotta, Gaspare; Goetze, Thorsten; Puleio, Roberto
2015-01-01
Despite improvements in prosthetics and surgical techniques, the rate of complications following inguinal hernia repair remains high. Among these, discomfort and chronic pain have become a source of increasing concern among surgeons. Poor quality of tissue ingrowth, such as thin scar plates or shrinking scars-typical results with conventional static implants and plugs-may contribute to these adverse events. Recently, a new type of 3D dynamically responsive implant was introduced to the market. This device, designed to be placed fixation-free, seems to induce ingrowth of viable and structured tissue instead of regressive fibrotic scarring. To elucidate the differences in biologic response between the conventional static meshes and this 3D dynamically responsive implant, a histological comparison was planned. The aim of this study was to determine the quality of tissue incorporation in both types of implants excised after short, medium, and long periods post-implantation. The results showed large differences in the biologic responses between the two implant types. Histologically, the 3D dynamic implant showed development of tissue elements more similar to natural abdominal wall structures, such as the ingrowth of loose and well-hydrated connective tissue, well-formed vascular structures, elastic fibers, and mature nerves, with negligible or absent inflammatory response. All these characteristics were completely absent in the conventional static implants, where a persistent inflammatory reaction was associated with thin, hardened, and shrunken fibrotic scar formation. Consequently, as herniation is a degenerative process, the 3D dynamic implants, which induce regeneration of the typical groin components, seem to address its pathogenesis.
3-D grid refinement using the University of Michigan adaptive mesh library for a pure advective test
NASA Astrophysics Data System (ADS)
Oehmke, R.; Vandenberg, D.; Andronova, N.; Penner, J.; Stout, Q.; Zubov, V.; Jablonowski, C.
2008-05-01
The numerical representation of the partial differential equations (PDE) for high resolution atmospheric dynamical and physical features requires division of the atmospheric volume into a set of 3D grids, each of which has a not quite rectangular form. Each location on the grid contains multiple data that together represent the state of Earth's atmosphere. For successful numerical integration of the PDEs the size of each grid box is used to define the Courant-Friedrichs-Levi criterion in setting the time step. 3D adaptive representations of a sphere are needed to represent the evolution of clouds. In this paper we present the University of Michigan adaptive mesh library - a library that supports the production of parallel codes with use of adaptation on a sphere. The library manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits blocks as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells — the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. Users provide data manipulation functions for performing interpolation of user data when refining blocks. We rigorously test the library using refinement of the modeled vertical transport of a tracer with prescribed atmospheric sources and sinks. It is both a 2 and a 3D test, and bridges the performance of the model's dynamics and physics needed for inclusion of cloud formation.
Automatic generation of endocardial surface meshes with 1-to-1 correspondence from cine-MR images
NASA Astrophysics Data System (ADS)
Su, Yi; Teo, S.-K.; Lim, C. W.; Zhong, L.; Tan, R. S.
2015-03-01
In this work, we develop an automatic method to generate a set of 4D 1-to-1 corresponding surface meshes of the left ventricle (LV) endocardial surface which are motion registered over the whole cardiac cycle. These 4D meshes have 1- to-1 point correspondence over the entire set, and is suitable for advanced computational processing, such as shape analysis, motion analysis and finite element modelling. The inputs to the method are the set of 3D LV endocardial surface meshes of the different frames/phases of the cardiac cycle. Each of these meshes is reconstructed independently from border-delineated MR images and they have no correspondence in terms of number of vertices/points and mesh connectivity. To generate point correspondence, the first frame of the LV mesh model is used as a template to be matched to the shape of the meshes in the subsequent phases. There are two stages in the mesh correspondence process: (1) a coarse matching phase, and (2) a fine matching phase. In the coarse matching phase, an initial rough matching between the template and the target is achieved using a radial basis function (RBF) morphing process. The feature points on the template and target meshes are automatically identified using a 16-segment nomenclature of the LV. In the fine matching phase, a progressive mesh projection process is used to conform the rough estimate to fit the exact shape of the target. In addition, an optimization-based smoothing process is used to achieve superior mesh quality and continuous point motion.
NASA Astrophysics Data System (ADS)
Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin
2017-02-01
We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.
3D Moving-Mesh Simulations of Galactic Center Cloud G2
NASA Astrophysics Data System (ADS)
Wilson, Julia; Fragile, P. C.; Anninos, P.; Murray, S. D.
2013-01-01
Using three-dimensional, moving-mesh simulations, we investigate the future evolution of the recently discovered gas cloud G2 traveling through the galactic center. We consider the case of a spherical cloud initially in pressure equilibrium with the background. Our suite of simulations explores the following parameters: the equation of state, radial profiles of the background gas, and start times for the evolution. Our primary focus is on how the fate of this cloud will affect the future activity of Sgr A*. From our simulations we expect an average feeding rate in the range of 5 - 19 × 10-8M⊙ yr-1 beginning in 2013 and lasting for at least 7 years (our simulations stop in year 2020). The accretion varies by less than a factor of three on timescales ≤ 1 month, and shows no more than a factor of 10 difference between the maximum and minimum observed rates within any given model. These rates are comparable to the current estimated accretion rate in the immediate vicinity of Sgr A*, although they represent only a small (≤ 5%) increase over the current expected feeding rate at the effective inner boundary of our simulations (r = 750RS ≈ 1015 cm), where RS is the Schwarzschild radius of the black hole. Therefore, the break up of cloud G2 may have only a minimal effect on the brightness and variability of Sgr A* over the next decade. This is because current models of the galactic center predict that most of the gas will be caught up in outflows. However, if the accreted G2 material can remain cold, it may not mix well with the hot, diffuse background gas, and instead accrete efficiently onto Sgr A*. Further observations of G2 will give us an unprecedented opportunity to test this idea. The break up of the cloud itself may also be observable. By tracking the amount of cloud energy that is dissipated during our simulations, we are able to get a rough estimate of the luminosity associated with its tidal disruption; we find values of a few 1036 erg s-1.
Some mesh generation requirements and methods
NASA Technical Reports Server (NTRS)
Dickson, L. J.
1978-01-01
Discretized solution algorithms, which find solutions of field equations in a two or three dimensional field, generally use meshes which are fitted to the field boundary to allow convenient formulation of boundary conditions there. A mesh is defined to be the image of a rectangular grid in computational space under a mesh mapping which maps computational space into physical space. It is not necessary that all of computational space be mapped onto the region of interest in physical space. Parts of it can be excised to give a better fit to the boundary. Many different excisions can be made to fit a single boundary; the choice depends on the mesh arrangement desired in the field.
Chedid, R.; Najjar, N.
1996-09-01
One of the inconveniences associated with the existing finite-element packages is the need for an educated user to develop a correct mesh at the preprocessing level. Procedures which start with a coarse mesh and attempt serious refinements, as is the case in most adaptive finite-element packages, are time consuming and costly. Hence, it is very important to develop a tool that can provide a mesh that either leads immediately to an acceptable solution, or would require fewer correcting steps to achieve better results. In this paper, the authors present a technique for automatic mesh generation based on artificial neural networks (ANN). The essence of this technique is to predict the mesh density distribution of a given model, and then supply this information to a Kohonen neural network which provides the final mesh. Prediction of mesh density is accomplished by a simple feedforward neural network which has the ability to learn the relationship between mesh density and model geometric features. It will be shown that ANN are able to recognize delicate areas where a sharp variation of the magnetic field is expected. Examples of 2-D models are provided to illustrate the usefulness of the proposed technique.
NASA Astrophysics Data System (ADS)
O'Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.
2016-03-01
Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.
From medical images to flow computations without user-generated meshes.
Dillard, Seth I; Mousel, John A; Shrestha, Liza; Raghavan, Madhavan L; Vigmostad, Sarah C
2014-10-01
Biomedical flow computations in patient-specific geometries require integrating image acquisition and processing with fluid flow solvers. Typically, image-based modeling processes involve several steps, such as image segmentation, surface mesh generation, volumetric flow mesh generation, and finally, computational simulation. These steps are performed separately, often using separate pieces of software, and each step requires considerable expertise and investment of time on the part of the user. In this paper, an alternative framework is presented in which the entire image-based modeling process is performed on a Cartesian domain where the image is embedded within the domain as an implicit surface. Thus, the framework circumvents the need for generating surface meshes to fit complex geometries and subsequent creation of body-fitted flow meshes. Cartesian mesh pruning, local mesh refinement, and massive parallelization provide computational efficiency; the image-to-computation techniques adopted are chosen to be suitable for distributed memory architectures. The complete framework is demonstrated with flow calculations computed in two 3D image reconstructions of geometrically dissimilar intracranial aneurysms. The flow calculations are performed on multiprocessor computer architectures and are compared against calculations performed with a standard multistep route.
Hexahedral mesh generation via the dual arrangement of surfaces
Mitchell, S.A.; Tautges, T.J.
1997-12-31
Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatible hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.
Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation
GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.
1999-09-27
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core
NASA Astrophysics Data System (ADS)
Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.
2009-12-01
One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.
The 3D Euler solutions using automated Cartesian grid generation
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.
Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh
NASA Technical Reports Server (NTRS)
Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.
2007-01-01
A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.
Generation of Delaunay meshes in implicit domains with edge sharpening
NASA Astrophysics Data System (ADS)
Belokrys-Fedotov, A. I.; Garanzha, V. A.; Kudryavtseva, L. N.
2016-11-01
A variational algorithm for the construction of 3D Delaunay meshes in implicit domains with a nonsmooth boundary is proposed. The algorithm is based on the self-organization of an elastic network in which each Delaunay edge is interpreted as an elastic strut. The elastic potential is constructed as a combination of the repulsion potential and the sharpening potential. The sharpening potential is applied only on the boundary and is used to minimize the deviation of the outward normals to the boundary faces from the direction of the gradient of the implicit function. Numerical experiments showed that in the case when the implicit function specifying the domain is considerably different from the signed distance function, the use of the sharpening potential proposed by Belyaev and Ohtake in 2002 leads to the mesh instability. A stable version of the sharpening potential is proposed. The numerical experiments showed that acceptable Delaunay meshes for complex shaped domains with sharp curved boundary edges can be constructed.
NASA Astrophysics Data System (ADS)
Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.
2014-10-01
A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.
Numerical interactive grid generation for 3-D flow calculations
NASA Astrophysics Data System (ADS)
Jacobs, J. M. J. W.; Kassies, A.; Boerstoel, J. W.; Buijsen, F.; Kuijvenhoven, J. L.
1988-08-01
A method for the generation of three-dimensional block-structured grids is described. The grid generation process is decomposed into two major stages: block decomposition of the flow domain and construction of a grid in each block. Examples of grids are shown together with flow solver results. Improvements and future extensions of the present concepts are discussed.
2011-01-01
A 63 year-old male with a huge odontogenic lesion of sinus maxillaris was treated with computer-assisted surgery. After resection of the odontogenic lesion, the sinus wall was reconstructed with a prebended 3D titanium-mesh using CAD/CAM technique. This work provides a new treatment device for maxillary reconstruction via rapid prototyping procedures. PMID:22070833
Bland, M; Wondra, J; Nunan, S; Walters, D
1998-12-01
A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes. These codes are workhorse legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed by hand. physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.
Bland, M; Walters, D; Wondra, J
1999-06-01
A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes [1,2]. These codes are ''workhorse'' legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation Program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed ''by hand''. Physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.
Extraction and applications of skeletons in finite element mesh generation.
Quadros, William Roshan
2010-05-01
This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.
Numerical grid generation in 3D Euler-flow simulation
NASA Astrophysics Data System (ADS)
Boerstoel, J. W.
1988-04-01
The technical problems with grid generation are analyzed and an overview of proposed solutions is given. The usefulness of grid-generation techniques, for the numerical simulation of Euler (and Navier-Stokes) flows around complex three-dimensional aerodynamic configurations, is illustrated. It is shown that the core of the grid-generation problem is a topology problem. The following remarks are sketched: grid generation is a subtask in a numerical simulation of a flow in industrial and research environments; the design requirements of a grid generation concern the geometrical imput, the desired grid as output, the technical means to control grid resolution and quality and turnaround time performance; the construction of a blocked grid can be subdivided in a block-decomposition task and a grid-point distribution task. A technique for using connectivity relations to define conventions about local coordinate systems in edges, faces and blocks is presented. Experiences are reported and an example concerning a 96-blocked grid around a complex aerodynamic configuration is given. Concepts for improvements in the presented technique are discussed.
Fast Generation of body conforming grids for 3-D
NASA Technical Reports Server (NTRS)
Dulikravich, O.
1980-01-01
A fast algorithm was developed for accurately generating boundary conforming, three dimensional, consecutively refined, computational grids applicable to arbitrary axial turbomachinery geometry. The method is based on using a single analytic function to generate two dimensional grids on a number of coaxial axisymmetric surfaces positioned between the hub and the shroud. These grids are of the "O" type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flowfield. Due to the built in additional nonorthogonal coordinate stretching and shearing, the grid lines leaving the trailing of the blade end at downstream infinity, thus simplifying the numerical treatment of the three dimensional trailing vortex sheet.
PREDICTING TSUNAMIS GENERATED BY 3D GRANULAR LANDSLIDES
NASA Astrophysics Data System (ADS)
Mohammed, F.; Fritz, H. M.
2009-12-01
Landslides can trigger tsunamis with locally high amplitudes and runup, which can cause devastating effects in the near field region such as at Lituya Bay (1958), Papua New Guinea (1998) and Java (2006). Tsunamis generated by granular landslides were studied in the three dimensional NEES tsunami wave basin (TWB) at Oregon State University (OSU) based on the generalized Froude similarity. A novel pneumatic landslide generator was deployed to simulate deformable granular landslides with varying geometry and kinematics. Measurement techniques such as particle image velocimetry (PIV), multiple above and underwater video cameras, multiple acoustic transducer arrays (MTA), as well as resistance wave and runup gauges were applied. The wave generation was characterized by an extremely unsteady three phase flow consisting of the slide granulate, water and air entrained into the flow. The landslide deformation during the impact and the subsequent underwater motion was studied by underwater cameras while the MTA provided the shapes of the slide deposits on the basin bottom. The generated waves depend on determined non-dimensional landslide and water body parameters such as the slide Froude number and relative slide shape at impact, among others. The experimental data was used to obtain predictive equations for the wave amplitudes and time periods based on landslide characteristics at impact. The partition between wave crests and troughs departed from equipartition with wave profiles dominated either by a trough or a crest depending on the source. Attenuation functions of the leading wave crest amplitude, the lateral wave runup on the hill slope, the wave length and the time period were obtained to describe the wave behavior in the near field and to quantify the wave amplitude decay away from the landslide source. The measured wave celerity of the leading wave corresponds well to the theoretical approximation of the solitary wave speed while the trailing waves are considerably
Characteristics of tsunamis generated by 3D deformable granular landslides
NASA Astrophysics Data System (ADS)
Mohammed, F.; Fritz, H. M.; McFall, B.
2010-12-01
Landslides can trigger tsunamis with locally high amplitudes and runup, which can cause devastating effects in the near field region. The events of 1958 Lituya Bay, 1998 Papua New Guinea and 2006 Java tsunamis are reminders of the hazards associated with impulse waves. Tsunamis generated by granular landslides were studied in the three dimensional NEES tsunami wave basin (TWB) at Oregon State University (OSU) based on the generalized Froude similarity. A novel pneumatic landslide generator was deployed to simulate landslides with varying geometry and kinematics. Granular materials were used to model deformable landslides. Measurement techniques such as particle image velocimetry (PIV), multiple above and underwater video cameras, multiple acoustic transducer arrays (MTA), as well as resistance wave and runup gauges were applied. Tsunami wave generation and propagation is studied off a hill slope, in fjords and around curved headlands. The wave generation was characterized by an extremely unsteady three phase flow consisting of the slide granulate, water and air entrained into the flow. Landslide deformation is quantified and the slide kinematics with reference to slide surface velocity distribution and slide front velocity is obtained. Empirical equations for predicting the wave amplitude, period and wavelength are obtained. The generated waves depend on determined non-dimensional landslide and water body parameters such as the slide Froude number and relative slide shape at impact, among others. Attenuation functions of the leading wave crest amplitude, the lateral wave runup on the hill slope, the wave length and the time period were obtained to describe the wave behavior in the near field and to quantify the wave amplitude decay away from the landslide source. The measured wave celerity of the leading wave corresponds well to the solitary wave speed while the trailing waves are considerably slower in propagation. The individual waves in the wave train span from
3D automatic Cartesian grid generation for Euler flows
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
A simple and low-cost 3d-printed emulsion generator
NASA Astrophysics Data System (ADS)
Zhang, J. M.; Aguirre-Pablo, A. A.; Li, E. Q.; Thoroddsen, S. T.
2015-11-01
The technique traditionally utilized to fabricate microfluidic emulsion generators, i.e. soft-lithography, is complex and expensive for producing three-dimensional (3D) structures. Here we apply 3D printing technology to fabricate a simple and low-cost 3D printed microfluidic device for emulsion generation without the need for surface treatment on the channel walls. This 3D-printed emulsion generator has been successfully tested over a range of conditions. We also formulate and demonstrate uniform scaling laws for emulsion droplets generated in different regimes for the first time, by incorporating the dynamic contact angle effects during the drop formation. Magnetically responsive microspheres are also produced with our emulsion templates, demonstrating the potential applications of this 3D emulsion generator in material and chemical engineering.
Georeferenced LiDAR 3D Vine Plantation Map Generation
Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell
2011-01-01
The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth®, providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952
Georeferenced LiDAR 3D vine plantation map generation.
Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell
2011-01-01
The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes.
The role of the cytoskeleton in cellular force generation in 2D and 3D environments
NASA Astrophysics Data System (ADS)
Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.
2011-02-01
To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.
Feature based volume decomposition for automatic hexahedral mesh generation
LU,YONG; GADH,RAJIT; TAUTGES,TIMOTHY J.
2000-02-21
Much progress has been made through these years to achieve automatic hexahedral mesh generation. While general meshing algorithms that can take on general geometry are not there yet; many well-proven automatic meshing algorithms now work on certain classes of geometry. This paper presents a feature based volume decomposition approach for automatic Hexahedral Mesh generation. In this approach, feature recognition techniques are introduced to determine decomposition features from a CAD model. The features are then decomposed and mapped with appropriate automatic meshing algorithms suitable for the correspondent geometry. Thus a formerly unmeshable CAD model may become meshable. The procedure of feature decomposition is recursive: sub-models are further decomposed until either they are matched with appropriate meshing algorithms or no more decomposition features are detected. The feature recognition methods employed are convexity based and use topology and geometry information, which is generally available in BREP solid models. The operations of volume decomposition are also detailed in the paper. The final section, the capability of the feature decomposer is demonstrated over some complicated manufactured parts.
Automated Mosaicking of Multiple 3d Point Clouds Generated from a Depth Camera
NASA Astrophysics Data System (ADS)
Kim, H.; Yoon, W.; Kim, T.
2016-06-01
In this paper, we propose a method for automated mosaicking of multiple 3D point clouds generated from a depth camera. A depth camera generates depth data by using ToF (Time of Flight) method and intensity data by using intensity of returned signal. The depth camera used in this paper was a SR4000 from MESA Imaging. This camera generates a depth map and intensity map of 176 x 44 pixels. Generated depth map saves physical depth data with mm of precision. Generated intensity map contains texture data with many noises. We used texture maps for extracting tiepoints and depth maps for assigning z coordinates to tiepoints and point cloud mosaicking. There are four steps in the proposed mosaicking method. In the first step, we acquired multiple 3D point clouds by rotating depth camera and capturing data per rotation. In the second step, we estimated 3D-3D transformation relationships between subsequent point clouds. For this, 2D tiepoints were extracted automatically from the corresponding two intensity maps. They were converted into 3D tiepoints using depth maps. We used a 3D similarity transformation model for estimating the 3D-3D transformation relationships. In the third step, we converted local 3D-3D transformations into a global transformation for all point clouds with respect to a reference one. In the last step, the extent of single depth map mosaic was calculated and depth values per mosaic pixel were determined by a ray tracing method. For experiments, 8 depth maps and intensity maps were used. After the four steps, an output mosaicked depth map of 454x144 was generated. It is expected that the proposed method would be useful for developing an effective 3D indoor mapping method in future.
Generation of flat viewing zone in DFVZ autostereoscopic multiview 3D display by weighting factor
NASA Astrophysics Data System (ADS)
Kim, Sung-Kyu; Yoon, Seon-Kyu; Yoon, Ky-Hyuk
2013-05-01
A new method is introduced to reduce three crosstalk problems and the brightness variation in 3D image by means of the dynamic fusion of viewing zones (DFVZ) using weighting factor. The new method effectively generates the flat viewing zone at the center of viewing zone. The new type autostereoscopic 3D display can give less brightness variation of 3D image when observer moves.
Manual for automatic generation of finite element models of spiral bevel gears in mesh
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Reddy, S.; Kumar, A.
1994-01-01
The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.
Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
Scawn, Richard L; Foster, Alex; Lee, Bradford W; Kikkawa, Don O; Korn, Bobby S
2015-01-01
Additive manufacturing or 3D printing is the process by which three dimensional data fields are translated into real-life physical representations. 3D printers create physical printouts using heated plastics in a layered fashion resulting in a three-dimensional object. We present a technique for creating customised, inexpensive 3D orbit models for use in orbital surgical training using 3D printing technology. These models allow trainee surgeons to perform 'wet-lab' orbital decompressions and simulate upcoming surgeries on orbital models that replicate a patient's bony anatomy. We believe this represents an innovative training tool for the next generation of orbital surgeons.
Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
2011-01-01
Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.
Generating unstructured nuclear reactor core meshes in parallel
Jain, Rajeev; Tautges, Timothy J.
2014-10-24
Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less
A finite-element mesh generator based on growing neural networks.
Triantafyllidis, D G; Labridis, D P
2002-01-01
A mesh generator for the production of high-quality finite-element meshes is being proposed. The mesh generator uses an artificial neural network, which grows during the training process in order to adapt itself to a prespecified probability distribution. The initial mesh is a constrained Delaunay triangulation of the domain to be triangulated. Two new algorithms to accelerate the location of the best matching unit are introduced. The mesh generator has been found able to produce meshes of high quality in a number of classic cases examined and is highly suited for problems where the mesh density vector can be calculated in advance.
NASA Technical Reports Server (NTRS)
Marvriplis, D. J.; Venkatakrishnan, V.
1995-01-01
An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.
Efficient generation of 3D hologram for American Sign Language using look-up table
NASA Astrophysics Data System (ADS)
Park, Joo-Sup; Kim, Seung-Cheol; Kim, Eun-Soo
2010-02-01
American Sign Language (ASL) is one of the languages giving the greatest help for communication of the hearing impaired person. Current 2-D broadcasting, 2-D movies are used the ASL to give some information, help understand the situation of the scene and translate the foreign language. These ASL will not be disappeared in future three-dimensional (3-D) broadcasting or 3-D movies because the usefulness of the ASL. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic ASL in holographic 3DTV or 3-D movies using look-up table method. The proposed method is largely consisted of five steps: construction of the LUT for each ASL images, extraction of characters in scripts or situation, call the fringe patterns for characters in the LUT for each ASL, composition of hologram pattern for 3-D video and hologram pattern for ASL and reconstruct the holographic 3D video with ASL. Some simulation results confirmed the feasibility of the proposed method in efficient generation of CGH patterns for ASL.
Blacker, Teddy Dean; Staten, Matthew L.; Kerr, Robert A.; Owen, Steven James
2010-03-01
The generation of all-hexahedral finite element meshes has been an area of ongoing research for the past two decades and remains an open problem. Unconstrained plastering is a new method for generating all-hexahedral finite element meshes on arbitrary volumetric geometries. Starting from an unmeshed volume boundary, unconstrained plastering generates the interior mesh topology without the constraints of a pre-defined boundary mesh. Using advancing fronts, unconstrained plastering forms partially defined hexahedral dual sheets by decomposing the geometry into simple shapes, each of which can be meshed with simple meshing primitives. By breaking from the tradition of previous advancing-front algorithms, which start from pre-meshed boundary surfaces, unconstrained plastering demonstrates that for the tested geometries, high quality, boundary aligned, orientation insensitive, all-hexahedral meshes can be generated automatically without pre-meshing the boundary. Examples are given for meshes from both solid mechanics and geotechnical applications.
NASA Astrophysics Data System (ADS)
Huang, Sujuan; Wang, Duocheng; He, Chao
2012-11-01
A new method of synthesizing computer-generated hologram of three-dimensional (3D) objects is proposed from their projection images. A series of projection images of 3D objects are recorded with one-dimensional azimuth scanning. According to the principles of paraboloid of revolution in 3D Fourier space and 3D central slice theorem, spectra information of 3D objects can be gathered from their projection images. Considering quantization error of horizontal and vertical directions, the spectrum information from each projection image is efficiently extracted in double circle and four circles shape, to enhance the utilization of projection spectra. Then spectra information of 3D objects from all projection images is encoded into computer-generated hologram based on Fourier transform using conjugate-symmetric extension. The hologram includes 3D information of objects. Experimental results for numerical reconstruction of the CGH at different distance validate the proposed methods and show its good performance. Electro-holographic reconstruction can be realized by using an electronic addressing reflective liquid-crystal display (LCD) spatial light modulator. The CGH from the computer is loaded onto the LCD. By illuminating a reference light from a laser source to the LCD, the amplitude and phase information included in the CGH will be reconstructed due to the diffraction of the light modulated by the LCD.
RESTRUCTURING RELAP5-3D FOR NEXT GENERATION NUCLEAR PLANT ANALYSIS
Donna Post Guillen; George L. Mesina; Joshua M. Hykes
2006-06-01
RELAP5-3D is used worldwide for analyzing nuclear reactors under both operational transients and postulated accident conditions. Development of the RELAP code series began in 1975 and since that time the code has been continuously improved, enhanced, verified and validated [1]. Since RELAP5-3D will continue to be the premier thermal hydraulics tool well into the future, it is necessary to modernize the code to accommodate the incorporation of additional capabilities to support the development of the next generation of nuclear reactors [2]. This paper discusses the reengineering of RELAP5-3D into structured code.
Towards a theory of automated elliptic mesh generation
NASA Technical Reports Server (NTRS)
Cordova, J. Q.
1992-01-01
The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented.
NASA Astrophysics Data System (ADS)
Tonello, N.; Eude, Y.; de Laage de Meux, B.; Ferrand, M.
2017-01-01
The steady-state operation of the Francis-99, Tokke turbine [1-3] has been simulated numerically at different loads using the open source, CAD and CFD software, SALOME [4] Code_Saturne [5]. The full 3D mesh of the Tokke turbine provided for the Second Francis-99 Workshop has been adapted and modified to work with the solver. Results are compared for the frozen-rotor and the unsteady, conservative sliding mesh approach over three operating points, showing that good agreement with the experimental data is obtained with both models without having to tune the CFD models for each operating point. Approaches to the simulation of transient operation are also presented with results of work in progress.
NASA Astrophysics Data System (ADS)
Yang, Dan; Liu, Juan; Zhang, Yingxi; Li, Xin; Wang, Yongtian
2016-10-01
Holographic display has been considered as a promising display technology. Currently, low-speed generation of holograms with big holographic data is one of crucial bottlenecks for three dimensional (3D) dynamic holographic display. To solve this problem, the acceleration method computation platform is presented based on look-up table point source method. The computer generated holograms (CGHs) acquisition is sped up by offline file loading and inline calculation optimization, where a pure phase CGH with gigabyte data is encoded to record an object with 10 MB sampling data. Both numerical simulation and optical experiment demonstrate that the CGHs with 1920×1080 resolution by the proposed method can be applied to the 3D objects reconstruction with high quality successfully. It is believed that the CGHs with huge data can be generated by the proposed method with high speed for 3D dynamic holographic display in near future.
Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao
2014-09-01
Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.
A Novel Coarsening Method for Scalable and Efficient Mesh Generation
Yoo, A; Hysom, D; Gunney, B
2010-12-02
matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size
Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED).
Jeong, Heon-Ho; Yelleswarapu, Venkata R; Yadavali, Sagar; Issadore, David; Lee, Daeyeon
2015-12-07
Droplet-based microfluidics has led to transformational new approaches in diverse areas including materials synthesis and high-throughput biological assays. However, the translation of droplet microfluidics technology into commercial applications requires scale-up of droplet generation from the laboratory (<10 mL h(-1)) to the industrial (>1 L h(-1)) scale. To address this challenge, we develop a three-dimensional monolithic elastomer device (3D MED) for mass production of monodisperse emulsion droplets. Using double-sided imprinting, 3D microchannels are formed in a single elastomer piece that has 1000 parallel flow focusing generators (k-FFGs). Compared to previous work that parallelizes droplet generation, the 3D MED eliminates the needs for alignment and bonding of multiple pieces and thus makes it possible to achieve the high flow rates and pressure necessary for the kilo-scale generation of droplets. Using this approach, we demonstrate mass production of water-in-oil (W/O) emulsion droplets at production rates as high as 1.5 L h(-1) (>30 billion 45 μm diameter droplets per hour), with a coefficient of variation of droplet diameter of only 6.6%. Because of the simplicity, robustness, and manufacturability of our 3D MED architecture, it is well suited to bridge the gap between the continuously growing library of promising microfluidic technologies to generate microparticles that have been demonstrated in laboratory settings and their successful application in industry.
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves
2015-04-01
Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.
Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D
Cliff B. Davis
2010-09-01
RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.
MESH2D GRID GENERATOR DESIGN AND USE
Flach, G.; Smith, F.
2012-01-20
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
Fonseca, T C Ferreira; Bogaerts, R; Lebacq, A L; Mihailescu, C L; Vanhavere, F
2014-04-01
A realistic computational 3D human body library, called MaMP and FeMP (Male and Female Mesh Phantoms), based on polygonal mesh surface geometry, has been created to be used for numerical calibration of the whole body counter (WBC) system of the nuclear power plant (NPP) in Doel, Belgium. The main objective was to create flexible computational models varying in gender, body height, and mass for studying the morphology-induced variation of the detector counting efficiency (CE) and reducing the measurement uncertainties. First, the counting room and an HPGe detector were modeled using MCNPX (Monte Carlo radiation transport code). The validation of the model was carried out for different sample-detector geometries with point sources and a physical phantom. Second, CE values were calculated for a total of 36 different mesh phantoms in a seated position using the validated Monte Carlo model. This paper reports on the validation process of the in vivo whole body system and the CE calculated for different body heights and weights. The results reveal that the CE is strongly dependent on the individual body shape, size, and gender and may vary by a factor of 1.5 to 3 depending on the morphology aspects of the individual to be measured.
3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials
NASA Astrophysics Data System (ADS)
Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan
2016-06-01
We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.
3D dendritic gold nanostructures: seeded growth of a multi-generation fractal architecture.
Pan, Ming; Xing, Shuangxi; Sun, Ting; Zhou, Wenwen; Sindoro, Melinda; Teo, Hui Hian; Yan, Qingyu; Chen, Hongyu
2010-10-14
In this report, we focus on the synthetic challenges for nanoscale 3D fractal architectures, namely the multi-generation growth with control in both size uniformity and colloidal stability; by directing the simultaneous growth of Au and polyaniline on Au seeds, fractal nanoparticles can be achieved with a topology distinctively different from those of spheres, cubes or rods.
Automatic generation of 3D motifs for classification of protein binding sites
Nebel, Jean-Christophe; Herzyk, Pawel; Gilbert, David R
2007-01-01
Background Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands. Results Our new approach was validated by generating automatically 3D patterns for the main adenine based ligands, i.e. AMP, ADP and ATP. Out of the 18 detected patterns, only one, the ADP4 pattern, is not associated with well defined structural patterns. Moreover, most of the patterns could be classified as binding site 3D motifs. Literature research revealed that the ADP4 pattern actually corresponds to structural features which show complex evolutionary links between ligases and transferases. Therefore, all of the generated patterns prove to be meaningful. Each pattern was used to query all PDB proteins which bind either purine based or guanine based ligands, in order to evaluate the classification and annotation properties of the pattern. Overall, our 3D patterns matched 31% of proteins with adenine based ligands and 95.5% of them were classified correctly. Conclusion A new metric has been introduced allowing the classification of proteins according to the similarity of atomic environment of binding sites, and a methodology has been developed to automatically produce 3D patterns from that classification. A study of proteins binding adenine based ligands showed that these 3D patterns are not
Unconstrained paving and plastering method for generating finite element meshes
Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert
2010-03-02
Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.
Radon transform based automatic metal artefacts generation for 3D threat image projection
NASA Astrophysics Data System (ADS)
Megherbi, Najla; Breckon, Toby P.; Flitton, Greg T.; Mouton, Andre
2013-10-01
Threat Image Projection (TIP) plays an important role in aviation security. In order to evaluate human security screeners in determining threats, TIP systems project images of realistic threat items into the images of the passenger baggage being scanned. In this proof of concept paper, we propose a 3D TIP method which can be integrated within new 3D Computed Tomography (CT) screening systems. In order to make the threat items appear as if they were genuinely located in the scanned bag, appropriate CT metal artefacts are generated in the resulting TIP images according to the scan orientation, the passenger bag content and the material of the inserted threat items. This process is performed in the projection domain using a novel methodology based on the Radon Transform. The obtained results using challenging 3D CT baggage images are very promising in terms of plausibility and realism.
3D texture analysis for classification of second harmonic generation images of human ovarian cancer
Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.
2016-01-01
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83–91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set. PMID:27767180
3D texture analysis for classification of second harmonic generation images of human ovarian cancer
NASA Astrophysics Data System (ADS)
Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.
2016-10-01
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83–91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.
Nava, José L; Sirés, Ignasi; Brillas, Enric
2014-01-01
This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.
2012-01-04
GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh is generated by mapping a two-dimensional mesh into threedimensions according to one of four types of transformations: translating, rotating, mapping onto a spherical surface, and mapping onto a cylindrical surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, and revolving about an axis. GEN3D can be used to mesh geometries that are axisymmetric or planar, but, due to three-dimensional loading or boundary conditions, require a three-dimensional finite element mesh and analysis. More importantly, it can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GEN3D reads and writes twodimensional and threedimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes used by the Engineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.
Unstructured Grid Generation for Complex 3D High-Lift Configurations
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
The application of an unstructured grid methodology on a three-dimensional high-lift configuration is presented. The focus of this paper is on the grid generation aspect of an integrated effort for the development of an unstructured-grid computational fluid dynamics (CFD) capability at the NASA Langley Research Center. The meshing approach is based on tetrahedral grids generated by the advancing-front and the advancing-layers procedures. The capability of the method for solving high-lift problems is demonstrated on an aircraft model referred to as the energy efficient transport configuration. The grid generation issues, including the pros and cons of the present approach, are discussed in relation to the high-lift problems. Limited viscous flow results are presented to demonstrate the viability of the generated grids. A corresponding Navier-Stokes solution capability, along with further computations on the present grid, is presented in a companion SAE paper.
Hortolà, Policarp
2010-01-01
When dealing with microscopic still images of some kinds of samples, the out-of-focus problem represents a particularly serious limiting factor for the subsequent generation of fully sharp 3D animations. In order to produce fully-focused 3D animations of strongly uneven surface microareas, a vertical stack of six digital secondary-electron SEM micrographs of a human bloodstain microarea was acquired. Afterwards, single combined images were generated using a macrophotography and light microscope image post-processing software. Subsequently, 3D animations of texture and topography were obtained in different formats using a combination of software tools. Finally, a 3D-like animation of a texture-topography composite was obtained in different formats using another combination of software tools. By one hand, results indicate that the use of image post-processing software not concerned primarily with electron micrographs allows to obtain, in an easy way, fully-focused images of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs. On the other hand, results also indicate that such small series of electron micrographs can be utilized for generating 3D and 3D-like animations that can subsequently be converted into different formats, by using certain user-friendly software facilities not originally designed for use in SEM, that are easily available from Internet. Although the focus of this study was on bloodstains, the methods used in it well probably are also of relevance for studying the surface microstructures of other organic or inorganic materials whose sharp displaying is difficult of obtaining from a single SEM micrograph.
Design and verification of diffractive optical elements for speckle generation of 3-D range sensors
NASA Astrophysics Data System (ADS)
Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang
2016-12-01
The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.
NASA Astrophysics Data System (ADS)
Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan
2015-04-01
Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.
Generation of 3-D surface maps in waste storage silos using a structured light source
NASA Technical Reports Server (NTRS)
Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.
1992-01-01
Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.
4DCBCT-based motion modeling and 3D fluoroscopic image generation for lung cancer radiotherapy
NASA Astrophysics Data System (ADS)
Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Berbeco, Ross; Lewis, John
2015-03-01
A method is developed to build patient-specific motion models based on 4DCBCT images taken at treatment time and use them to generate 3D time-varying images (referred to as 3D fluoroscopic images). Motion models are built by applying Principal Component Analysis (PCA) on the displacement vector fields (DVFs) estimated by performing deformable image registration on each phase of 4DCBCT relative to a reference phase. The resulting PCA coefficients are optimized iteratively by comparing 2D projections captured at treatment time with projections estimated using the motion model. The optimized coefficients are used to generate 3D fluoroscopic images. The method is evaluated using anthropomorphic physical and digital phantoms reproducing real patient trajectories. For physical phantom datasets, the average tumor localization error (TLE) and (95th percentile) in two datasets were 0.95 (2.2) mm. For digital phantoms assuming superior image quality of 4DCT and no anatomic or positioning disparities between 4DCT and treatment time, the average TLE and the image intensity error (IIE) in six datasets were smaller using 4DCT-based motion models. When simulating positioning disparities and tumor baseline shifts at treatment time compared to planning 4DCT, the average TLE (95th percentile) and IIE were 4.2 (5.4) mm and 0.15 using 4DCT-based models, while they were 1.2 (2.2) mm and 0.10 using 4DCBCT-based ones, respectively. 4DCBCT-based models were shown to perform better when there are positioning and tumor baseline shift uncertainties at treatment time. Thus, generating 3D fluoroscopic images based on 4DCBCT-based motion models can capture both inter- and intra- fraction anatomical changes during treatment.
NASA Astrophysics Data System (ADS)
Patchimpattapong, Apisit
This dissertation develops an expert system for generating an effective spatial mesh distribution for the discrete ordinates particle transport method in a parallel environment. This expert system consists of two main parts: (1) an algorithm for generating an effective mesh distribution in a serial environment, and (2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. The mesh generation algorithm consists of four steps: creation of a geometric model as partitioned into coarse meshes, determination of an approximate flux shape, selection of appropriate differencing schemes, and generation of an effective fine mesh distribution. A geometric model was created using AutoCAD. A parallel code PENFC (Parallel Environment Neutral-Particle First Collision) has been developed to calculate an uncollided flux in a 3-D Cartesian geometry. The appropriate differencing schemes were selected based on the uncollided flux distribution using a least squares methodology. A menu-driven serial code PENXMSH has been developed to generate an effective spatial mesh distribution that preserves problem geometry and physics. The domain decomposition selection process involves evaluation of the four factors that affect parallel performance, which include number of processors and memory available per processor, load balance, granularity, and degree-of-coupling among processors. These factors are used to derive a parallel-performance-index that provides expected performance of a parallel algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems: the VENUS-3 experimental facility and the BWR core shroud.
Next-generation regenerative medicine: organogenesis from stem cells in 3D culture.
Sasai, Yoshiki
2013-05-02
The behavior of stem cells, when they work collectively, can be much more sophisticated than one might expect from their individual programming. This Perspective covers recent discoveries about the dynamic patterning and structural self-formation of complex organ buds in 3D stem cell culture, including the generation of various neuroectodermal and endodermal tissues. For some tissues, epithelial-mesenchymal interactions can also be manipulated in coculture to guide organogenesis. This new area of stem cell research-the spatiotemporal control of dynamic cellular interactions-will open a new avenue for next-generation regenerative medicine.
Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant
Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson
2011-01-01
Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.
Drag Prediction for the DLR-F4 Wing/Body using OVERFLOW and CFL3D on an Overset Mesh
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Buning, Pieter G.; Rumsey, Christopher L.
2002-01-01
This paper reviews the importance of numerical drag prediction in an aircraft design environment. A chronicle of collaborations between the authors and colleagues is discussed. This retrospective provides a road-map which illustrates some of the actions taken in the past seven years in pursuit of accurate drag prediction. The advances made possible through these collaborations have changed the manner in which business is conducted during the design of all-new aircraft. The subject of this study is the DLR-F4 wing/body transonic model. Specifically, the work conducted herein was in support of the 1st CFD Drag Prediction Workshop, which was held in conjunction with the 19th Applied Aerodynamics Conference in Anaheim, CA during June, 2001. Comprehensive sets of OVERFLOW simulations were independently performed by several users on a variety of computational platforms. CFL3D was used on a limited basis for additional comparison on the same overset mesh. Drag polars based on this database were constructed with a CFD-to-Test correction applied and compared with test data from three facilities. These comparisons show that the predicted drag polars fall inside the scatter band of the test data, at least for pre-buffet conditions. This places the corrected drag levels within 1% of the averaged experimental values. At the design point, the OVERFLOW and CFL3D drag predictions are within 1-2% of each other. In addition, drag-rise characteristics and a boundary of drag-divergence Mach number are presented.
Lee, W H; Kim, T S; Kim, Andrew T; Lee, S Y
2008-01-01
Realistic finite element (FE) head models have been successfully applied to bioelectromagnetic problems due to a realistic representation of arbitrary head geometry with inclusion of anisotropic material properties. In this paper, we propose a new automatic FE mesh generation scheme to generate a diffusion tensor MRI (DT-MRI) white matter anisotropy content-adaptive FE head model. We term this kind of mesh as wMesh. With this meshing technique, the anisotropic electrical conductivities derived from DT-MRIs can be best incorporated into the model. The influence of the white matter anisotropy on the EEG forward solutions has been studied via our wMesh head models. The scalp potentials computed from the anisotropic wMesh models against those of the isotropic models have been compared. The results describe that there are substantial changes in the scalp electrical potentials between the isotropic and anisotropic models, indicating that the inclusion of the white matter anisotropy is critical for accurate computation of E/MEG forward and inverse solutions. This fully automatic anisotropy-adaptive wMesh meshing scheme could be useful for modeling of individual-specific FE head models with better incorporation of the white matter anisotropic property towards bioelectromagnetic imaging.
Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.
2015-01-01
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443
Automatic Generation of 3D Caricatures Based on Artistic Deformation Styles.
Clarke, Lyndsey; Chen, Min; Mora, Benjamin
2011-06-01
Caricatures are a form of humorous visual art, usually created by skilled artists for the intention of amusement and entertainment. In this paper, we present a novel approach for automatic generation of digital caricatures from facial photographs, which capture artistic deformation styles from hand-drawn caricatures. We introduced a pseudo stress-strain model to encode the parameters of an artistic deformation style using "virtual" physical and material properties. We have also developed a software system for performing the caricaturistic deformation in 3D which eliminates the undesirable artifacts in 2D caricaturization. We employed a Multilevel Free-Form Deformation (MFFD) technique to optimize a 3D head model reconstructed from an input facial photograph, and for controlling the caricaturistic deformation. Our results demonstrated the effectiveness and usability of the proposed approach, which allows ordinary users to apply the captured and stored deformation styles to a variety of facial photographs.
Performance of an improved first generation optical CT scanner for 3D dosimetry.
Qian, Xin; Adamovics, John; Wuu, Cheng-Shie
2013-12-21
Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.
Performance of an improved first generation optical CT scanner for 3D dosimetry
NASA Astrophysics Data System (ADS)
Qian, Xin; Adamovics, John; Wuu, Cheng-Shie
2013-12-01
Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.
Advances in Parallelization for Large Scale Oct-Tree Mesh Generation
NASA Technical Reports Server (NTRS)
O'Connell, Matthew; Karman, Steve L.
2015-01-01
Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.
GIA-Induced 3-D Crustal Velocities Predicted Using a New Generation of Viscoelastic Earth Models
NASA Astrophysics Data System (ADS)
Mitrovica, J. X.; Latychev, K.; Tamisiea, M. E.; Tromp, J.; Milne, G. A.
2004-05-01
In recent work we have described a new finite-volume, time-domain numerical scheme for predicting the response of a complex (Maxwell) viscoelastic Earth model to arbitrary surface mass loads. The method permits the incorporation of 3-D variations in mantle viscoelastic structure including, for example, heterogeneities in elastic plate strength and mantle viscosity. To address these complexities numerically, we have developed our code for a distributed (parallel) computer environment such as a Beowulf PC cluster. In this talk we apply the numerical formulation to compute a suite of predictions of present-day 3-D crustal deformation rates driven by the glacial isostatic adjustment process (GIA). These predictions are generated using an input global ice model and an ocean load computed using a solution to the governing `sea-level equation'. The latter is obtained in a numerical calculation that utilizes the same space-time discretization as in the main solver. Our goal is to assess the sensitivity of previous predictions of GIA-induced 3-D crustal rates based on spherically symmetric Earth models to the introduction of: (1) elastic plate thickness variations within oceanic regions and across the ocean-continent interface; and (2) variations in mantle viscosity inferred, indirectly, from a tomographic model of seismic velocity heterogeneity.
Monte Carlo generators for studies of the 3D structure of the nucleon
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H
2012-09-01
Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC
Efficient and Robust Cartesian Mesh Generation for Building-Cube Method
NASA Astrophysics Data System (ADS)
Ishida, Takashi; Takahashi, Shun; Nakahashi, Kazuhiro
In this study, an efficient and robust Cartesian mesh generation method for Building-Cube Method (BCM) is proposed. It can handle “dirty” geometry data whose surface has cracks, overlaps, and reverse of triangle. BCM mesh generation is implemented by two procedures; cube generation and cell generation in each cube. The cell generation procedure in this study is managed in each cube individually, and parallelized by OpenMP. Efficiency of the parallelized BCM mesh generation is demonstrated for several three-dimensional test cases using a multi-core PC.
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan
2016-04-01
Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies.
Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan
2016-04-14
Oceanic mesoscale eddies with horizontal scales of 50-300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies.
Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan
2016-01-01
Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies. PMID:27074710
A second generation of physical anthropomorphic 3D breast phantoms based on human subject data
NASA Astrophysics Data System (ADS)
Nolte, Adam; Kiarashi, Nooshin; Samei, Ehsan; Segars, W. P.; Lo, Joseph Y.
2014-03-01
Previous fabrication of anthropomorphic breast phantoms has demonstrated their viability as a model for 2D (mammography) and 3D (tomosynthesis) breast imaging systems. Further development of these models will be essential for the evaluation of breast x-ray systems. There is also the potential to use them as the ground truth in virtual clinical trials. The first generation of phantoms was segmented from human subject dedicated breast computed tomography data and fabricated into physical models using highresolution 3D printing. Two variations were made. The first was a multi-material model (doublet) printed with two photopolymers to represent glandular and adipose tissues with the greatest physical contrast available, mimicking 75% and 35% glandular tissue. The second model was printed with a single 75% glandular equivalent photopolymer (singlet) to represent glandular tissue, which can be filled independently with an adipose-equivalent material such as oil. For this study, we have focused on improving the latter, the singlet phantom. First, the temporary oil filler has been replaced with a permanent adipose-equivalent urethane-based polymer. This offers more realistic contrast as compared to the multi-material approach at the expense of air bubbles and pockets that form during the filling process. Second, microcalcification clusters have been included in the singlet model via crushed eggshells, which have very similar chemical composition to calcifications in vivo. The results from these new prototypes demonstrate significant improvement over the first generation of anthropomorphic physical phantoms.
Composite structured mesh generation with automatic domain decomposition in complex geometries
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents a novel automatic domain decomposition method to generate quality composite structured meshes in complex domains with arbitrary shapes, in which quality structured mesh generation still remains a challenge. The proposed decomposition algorithm is based on the analysis of an initi...
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Wiart, J.; Bloch, I.
2014-08-01
Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer.
Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Grasso, Salvatore; Sakka, Yoshio; Tok, Alfred; Su, Liap Tat; Bosman, Michael; Ma, Jan
2012-02-01
Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties.
3D printer generated thorax phantom with mobile tumor for radiation dosimetry.
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.
2015-07-15
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
NASA Astrophysics Data System (ADS)
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro
2015-03-01
Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability.
NASA Astrophysics Data System (ADS)
Palevicius, Arvydas; Grigaliunas, Viktoras; Janusas, Giedrius; Palevicius, Paulius; Sakalys, Rokas
2016-04-01
The main focus of the paper is the development of technological route of the production of complex 3D microstructure, from designing it by the method of computer generated holography till its physical 3D patterning by exploiting the process of electron beam lithography and thermal replication which is used for biomedical application. A phase data of a complex 3D microstructure was generated by using Gerchberg-Saxton algorithm which later was used to produce a computer generated hologram. Physical implementation of microstructure was done using a single layer polymethyl methacrylate (PMMA) as a basis for 3D microstructure, which was exposed using e-beam lithography system e-Line and replicated, using high frequency vibration. Manufactured 3D microstructure is used for designing micro sensor for biomedical applications.
View generation for 3D-TV using image reconstruction from irregularly spaced samples
NASA Astrophysics Data System (ADS)
Vázquez, Carlos
2007-02-01
Three-dimensional television (3D-TV) will become the next big step in the development of advanced TV systems. One of the major challenges for the deployment of 3D-TV systems is the diversity of display technologies and the high cost of capturing multi-view content. Depth image-based rendering (DIBR) has been identified as a key technology for the generation of new views for stereoscopic and multi-view displays from a small number of views captured and transmitted. We propose a disparity compensation method for DIBR that does not require spatial interpolation of the disparity map. We use a forward-mapping disparity compensation with real precision. The proposed method deals with the irregularly sampled image resulting from this disparity compensation process by applying a re-sampling algorithm based on a bi-cubic spline function space that produces smooth images. The fact that no approximation is made on the position of the samples implies that geometrical distortions in the final images due to approximations in sample positions are minimized. We also paid attention to the occlusion problem. Our algorithm detects the occluded regions in the newly generated images and uses simple depth-aware inpainting techniques to fill the gaps created by newly exposed areas. We tested the proposed method in the context of generation of views needed for viewing on SynthaGram TM auto-stereoscopic displays. We used as input either a 2D image plus a depth map or a stereoscopic pair with the associated disparity map. Our results show that this technique provides high quality images to be viewed on different display technologies such as stereoscopic viewing with shutter glasses (two views) and lenticular auto-stereoscopic displays (nine views).
Hambach, Lothar; Buser, Andreas; Vermeij, Marcel; Pouw, Nadine; van der Kwast, Theo; Goulmy, Els
2016-01-01
Cellular immunotherapy targeting human tumor antigens is a promising strategy to treat solid tumors. Yet clinical results of cellular immunotherapy are disappointing. Moreover, the currently available in vitro human tumor models are not designed to study the optimization of T-cell therapies of solid tumors. Here, we describe a novel assay for multiparametric in situ analysis of therapeutic effects on individual human three-dimensional (3D) tumors. In this assay, tumors of several millimeter diameter are generated from human cancer cell lines of different tumor entities in a collagen type I microenvironment. A newly developed approach for efficient morphological analysis reveals that these in vitro tumors resemble many characteristics of the corresponding clinical cancers such as histological features, immunohistochemical staining patterns, distinct tumor growth compartments and heterogeneous protein expression. To assess the response to therapy with tumor antigen specific T-cells, standardized protocols are described to determine T-cell infiltration and tumor destruction by monitoring soluble factors and tumor growth. Human tumors engineered in 3D collagen scaffolds are excellent in vitro surrogates for avascular tumor stages allowing integrated analyses of the antitumor efficacy of cancer specific immunotherapy in situ.
3D numerical investigation on landslide generated tsunamis around a conical island
NASA Astrophysics Data System (ADS)
Montagna, Francesca; Bellotti, Giorgio
2010-05-01
This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we
Recent progress on fully analytic mesh based computer-generated holography
NASA Astrophysics Data System (ADS)
Park, Jae-Hyeung
2016-10-01
Computer generated holography plays a main role in the contents generation for holographic displays and digital archiving of three-dimensional objects. The fully analytic mesh based computer generated holography finds exact complex optical field for each triangular mesh of the three-dimensional objects for given sampling interval in the hologram plane without any approximation, enhancing the quality of the reconstruction. The mesh based processing rather than conventional point based one makes it compatible with most computer graphics techniques and efficient especially for large objects. In this paper, we present a few recent progress on fully analytic mesh based computer generated holography techniques including the dark line artifact removal, continuous shading of each mesh surface, the implementation of the angular reflectance distribution of the object surface and application of the texture map.
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
Design Curve Generation for 3D SiC Fiber Architecture
NASA Technical Reports Server (NTRS)
Lang, Jerry; Dicarlo, James A.
2014-01-01
The design tool provides design curves that allow a simple and quick way to examine multiple factors that can influence the processing and key properties of the preforms and their final SiC-reinforced ceramic composites without over obligating financial capital for the fabricating of materials. Tool predictions for process and fiber fraction properties have been validated for a HNS 3D preform.The virtualization aspect of the tool will be used to provide a quick generation of solid models with actual fiber paths for finite element evaluation to predict mechanical and thermal properties of proposed composites as well as mechanical displacement behavior due to creep and stress relaxation to study load sharing characteristic between constitutes for better performance.Tool predictions for the fiber controlled properties of the SiCSiC CMC fabricated from the HNS preforms will be valuated and up-graded from the measurements on these CMC
MeshGUI: A Mesh Generation and Editing Toolset for the ADCIRC Model
2008-02-08
40 APPENDIX II: Creating Input Data for Meshcreate…………………….. 42 a. Bathymetric Data: Extraction from NRL-DBDB2 Database...The first data file is a boundary file that describes the geographic limits of the mesh to be created . Often the boundary file represents a coastline...constructed to include overland areas as long as supporting topographic information is available. The boundary file can be created using an auxiliary
NASA Astrophysics Data System (ADS)
Boerstoel, J. W.
1986-08-01
Aproaches to grid generation are analyzed. A grid-generation procedure for complex aircraft configurations could be based on a combination of three subprocesses: decomposition of the flow domain into 100 hexahedronal blocks; trilinear transfinite interpolation to generate initial grid point distributions; and elliptic mesh-size tuning and smoothing. To get insight into this procedure, mathematical models of the subprocesses were worked out. The results of the analysis are technical concepts required or desirable in the grid-generation procedure.
Carbon nanotubes leading the way forward in new generation 3D tissue engineering.
Hopley, Erin Leigh; Salmasi, Shima; Kalaskar, Deepak M; Seifalian, Alexander M
2014-01-01
Statistics from the NHS Blood and Transplant Annual Review show that total organ transplants have increased to 4213 in 2012, while the number of people waiting to receive an organ rose to 7613 that same year. Human donors as the origin of transplanted organs no longer meet the ever-increasing demand, and so interest has shifted to synthetic organ genesis as a form of supply. This focus has given rise to new generation tissue and organ engineering, in the hope of one day designing 3D organs in vitro. While research in this field has been conducted for several decades, leading to the first synthetic trachea transplant in 2011, scaffold design for optimising complex tissue growth is still underexplored and underdeveloped. This is mostly the result of the complexity required in scaffolds, as they need to mimic the cells' native extracellular matrix. This is an intricate nanostructured environment that provides cells with physical and chemical stimuli for optimum cell attachment, proliferation and differentiation. Carbon nanotubes are a popular addition to synthetic scaffolds and have already begun to revolutionise regenerative medicine. Discovered in 1991, these are traditionally used in various areas of engineering and technology; however, due to their excellent mechanical, chemical and electrical properties their potential is now being explored in areas of drug delivery, in vivo biosensor application and tissue engineering. The incorporation of CNTs into polymer scaffolds displays a variety of structural and chemical enhancements, some of which include: increased scaffold strength and flexibility, improved biocompatibility, reduction in cancerous cell division, induction of angiogenesis, reduced thrombosis, and manipulation of gene expression in developing cells. Moreover CNTs' tensile properties open doors for dynamic scaffold design, while their thermal and electrical properties provide opportunities for the development of neural, bone and cardiac tissue constructs
NASA Astrophysics Data System (ADS)
McFall, B. C.; Fritz, H. M.; Horrillo, J. J.; Mohammed, F.
2014-12-01
Landslide generated tsunamis such as Lituya Bay, Alaska 1958 account for some of highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models. Two 3D Navier-Stokes models were tested, the commercial code FLOW-3D
Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism
NASA Astrophysics Data System (ADS)
Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.
2016-06-01
Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.
PARC3D calculations of the F/A-18A HARV inlet vortex generators
NASA Technical Reports Server (NTRS)
Podleski, Steve D.
1995-01-01
NASA Lewis Research Center is currently engaged in a research effort as a team member of the High Alpha Technology Program within the NASA agency. This program uses a specially-equipped F/A-18A aircraft called the High Alpha Research Vehicle (HARV), in an effort to improve the maneuverability of high performance military aircraft at low-subsonic-speed, high-angle-of-attack conditions. The overall objective of the NASA Lewis effort is to develop inlet analysis technology towards efficient airflow delivery to the engine during these maneuvers. One portion of this inlet analysis technology uses computational fluid dynamics to predict installed inlet performance. Most of the F/A-18A HARV geometry, which includes the ramp/splitter plate, side diverter and slot, inlet lip and upper diverter, and deflected leading-edge flap has been modeled. The empennage and rear fuselage have not. A pair of vortex generators located on the bottom wall of the inlet were not modeled initially. These vortex generators were installed to alleviate any flow separation that may be induced by the wheel well protrusion into the inlet wall. Calculations completed with the PARC3D code showed that the pressure recovery has been underpredicted and the flow distortion over-predicted. To improve the correlation of PARC3D predictions with flight and wind tunnel tests, the vortex generators were included in the grid geometry and the results are presented in this report. The grid totals 27 blocks or 1.3 million grid points for the half model, which includes the vortex generator grid blocks. Two flight cases were calculated, a high speed case with a Mach number of 0.8 and angle of attack of 3.4; and a low speed case with a Mach number of 0.43 and angle of attack of 32.2. The vortex generators have a significant effect on the inlet boundary layers at high speed, low angle of attack; and have no effect at low speed, high angle of attack.
General application of rapid 3-D digitizing and tool path generation for complex shapes
Kwok, K.S.; Loucks, C.S.; Driessen, B.J.
1997-09-01
A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation and experimental results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm in simulation studies. In actual experiments, a nose cone and a turbine blade were successfully scanned. A complex shaped turbine blade was successfully scanned and finished machined using these algorithms.
Lift and thrust generation by a butterfly-like 3D flapping wing model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Inamuro, Takaji
2013-11-01
The flapping flight of tiny insects such as a butterfly is of fundamental interest not only in biology itself but also in its practical use for the development of micro air vehicles. It is known that a butterfly flaps downward for generating lift force and backward for generating thrust force. In this study, we consider a simple butterfly-like 3D flapping wing model whose body is a thin rod, wings are rigid and rectangular, and wing motion is simplified. We investigate the lift and thrust generation by the butterfly-like flapping wing model by using the immersed boundary-lattice Boltzmann method. Firstly, we compute the lift and thrust forces when the body of the model is fixed for Reynolds numbers in the range of 50 - 1000. In addition, we evaluate the supportable mass for each Reynolds number by using the computed lift force. Secondly, we simulate the free flight where the body can move translationally but cannot rotate. As results, we find that the evaluated supportable mass can be supported even in the free flight, and the wing model with the mass and the Reynolds number of a fruit fly can go upward against the gravity. Finally, we simulate the effect of the rotation of the body. As results, we find that the body has a large pitching motion and consequently gets off-balance.
Unstructured and adaptive mesh generation for high Reynolds number viscous flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1991-01-01
A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.
Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y
2006-12-07
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
NASA Astrophysics Data System (ADS)
Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.
2006-12-01
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
2D nearly orthogonal mesh generation with controls on distortion functions
Technology Transfer Automated Retrieval System (TEKTRAN)
A method to control the distortion function of the Ryskin and Leal (RL) orthogonal mesh generation system is presented. The proposed method considers the effects from not only the local orthogonal condition but also the local smoothness condition (the geometry and the mesh size) on the distortion fu...
Towards the Next Generation Upper-Mantle 3D Anelastic Tomography
NASA Astrophysics Data System (ADS)
Karaoglu, H.; Romanowicz, B. A.
2015-12-01
In order to distinguish the thermal and compositional heterogeneities in the mantle, it is crucial to resolve the lateral variations not only in seismic velocities but also in intrinsic attenuation. Indeed, the high sensitivity of intrinsic attenuation to temperature and water content, governed by a form of Arrhenius equation, contrasts with the quasi-linear dependence of velocities on both temperature and major element composition. The major challenge in imaging attenuation lies in separating its effects on seismic waves from the elastic ones. The latter originate from the wave propagation in media with strong lateral elastic gradients causing (de)focusing and scattering. We have previously developed a 3D upper-mantle shear attenuation model based on time domain waveform inversion of long period (T > 60s) fundamental and overtone surface wave data (Gung & Romanowicz, 2004). However, at that time, resolution was limited to very long wavelength structure, because elastic models were still rather smooth, and the effects of focusing could only be estimated approximately, using asymptotic normal mode perturbation theory.With recent progress in constraining global mantle shear velocity from waveform tomography based on the Spectral Element Method (e.g. SEMUCB_WM1, French & Romanowicz, 2014), we are now in a position to develop an improved global 3D model of shear attenuation in the upper mantle. In doing so, we use a similar time domain waveform inversion approach, but (1) start with a higher resolution elastic model with better constraints on lateral elastic gradients and (2) jointly invert, in an iterative fashion, for shear attenuation and elastic parameters. Here, we present the results of synthetic tests that confirm our inversion strategy, as well as preliminary results towards the construction of the next generation upper-mantle anelastic model.
Fast DRR generation for 2D to 3D registration on GPUs
Tornai, Gabor Janos; Cserey, Gyoergy
2012-08-15
Purpose: The generation of digitally reconstructed radiographs (DRRs) is the most time consuming step on the CPU in intensity based two-dimensional x-ray to three-dimensional (CT or 3D rotational x-ray) medical image registration, which has application in several image guided interventions. This work presents optimized DRR rendering on graphical processor units (GPUs) and compares performance achievable on four commercially available devices. Methods: A ray-cast based DRR rendering was implemented for a 512 Multiplication-Sign 512 Multiplication-Sign 72 CT volume. The block size parameter was optimized for four different GPUs for a region of interest (ROI) of 400 Multiplication-Sign 225 pixels with different sampling ratios (1.1%-9.1% and 100%). Performance was statistically evaluated and compared for the four GPUs. The method and the block size dependence were validated on the latest GPU for several parameter settings with a public gold standard dataset (512 Multiplication-Sign 512 Multiplication-Sign 825 CT) for registration purposes. Results: Depending on the GPU, the full ROI is rendered in 2.7-5.2 ms. If sampling ratio of 1.1%-9.1% is applied, execution time is in the range of 0.3-7.3 ms. On all GPUs, the mean of the execution time increased linearly with respect to the number of pixels if sampling was used. Conclusions: The presented results outperform other results from the literature. This indicates that automatic 2D to 3D registration, which typically requires a couple of hundred DRR renderings to converge, can be performed quasi on-line, in less than a second or depending on the application and hardware in less than a couple of seconds. Accordingly, a whole new field of applications is opened for image guided interventions, where the registration is continuously performed to match the real-time x-ray.
NASA Astrophysics Data System (ADS)
Shalbaf, Farzaneh; Dokos, Socrates; Lovell, Nigel H.; Turuwhenua, Jason; Vaghefi, Ehsan
2015-12-01
Retinal prosthesis has been proposed to restore vision for those suffering from the retinal pathologies that mainly affect the photoreceptors layer but keep the inner retina intact. Prior to costly risky experimental studies computational modelling of the retina will help to optimize the device parameters and enhance the outcomes. Here, we developed an anatomically detailed computational model of the retina based on OCT data sets. The consecutive OCT images of individual were subsequently segmented to provide a 3D representation of retina in the form of finite elements. Thereafter, the electrical properties of the retina were modelled by implementing partial differential equation on the 3D mesh. Different electrode configurations, that is bipolar and hexapolar configurations, were implemented and the results were compared with the previous computational and experimental studies. Furthermore, the possible effects of the curvature of retinal layers on the current steering through the retina were proposed and linked to the clinical observations.
ESCHER: An interactive mesh-generating editor for preparing finite-element input
NASA Technical Reports Server (NTRS)
Oakes, W. R., Jr.
1984-01-01
ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J.
2006-11-01
This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
NASA Astrophysics Data System (ADS)
Colangelo, Antonio C.
2010-05-01
each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (f<1), the sub-region in the "prs" equal or deeper than critical depths. When the effective potential rupture surface acquires significant extension with respect the thickness of critical depth and retaining walls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.
Gibelli, Daniele; De Angelis, Danilo; Poppa, Pasquale; Sforza, Chiarella; Cattaneo, Cristina
2017-03-01
Techniques of 2D-3D superimposition are widely used in cases of personal identification from video surveillance systems. However, the progressive improvement of 3D image acquisition technology will enable operators to perform also 3D-3D facial superimposition. This study aims at analyzing the possible applications of 3D-3D superimposition to personal identification, although from a theoretical point of view. Twenty subjects underwent a facial 3D scan by stereophotogrammetry twice at different time periods. Scans were superimposed two by two according to nine landmarks, and root-mean-square (RMS) value of point-to-point distances was calculated. When the two superimposed models belonged to the same individual, RMS value was 2.10 mm, while it was 4.47 mm in mismatches with a statistically significant difference (p < 0.0001). This experiment shows the potential of 3D-3D superimposition: Further studies are needed to ascertain technical limits which may occur in practice and to improve methods useful in the forensic practice.
Marsano, Anna; Conficconi, Chiara; Lemme, Marta; Occhetta, Paola; Gaudiello, Emanuele; Votta, Emiliano; Cerino, Giulia; Redaelli, Alberto; Rasponi, Marco
2016-02-07
In the past few years, microfluidic-based technology has developed microscale models recapitulating key physical and biological cues typical of the native myocardium. However, the application of controlled physiological uniaxial cyclic strains on a defined three-dimension cellular environment is not yet possible. Two-dimension mechanical stimulation was particularly investigated, neglecting the complex three-dimensional cell-cell and cell-matrix interactions. For this purpose, we developed a heart-on-a-chip platform, which recapitulates the physiologic mechanical environment experienced by cells in the native myocardium. The device includes an array of hanging posts to confine cell-laden gels, and a pneumatic actuation system to induce homogeneous uniaxial cyclic strains to the 3D cell constructs during culture. The device was used to generate mature and highly functional micro-engineered cardiac tissues (μECTs), from both neonatal rat and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), strongly suggesting the robustness of our engineered cardiac micro-niche. Our results demonstrated that the cyclic strain was effectively highly uniaxial and uniformly transferred to cells in culture. As compared to control, stimulated μECTs showed superior cardiac differentiation, as well as electrical and mechanical coupling, owing to a remarkable increase in junction complexes. Mechanical stimulation also promoted early spontaneous synchronous beating and better contractile capability in response to electric pacing. Pacing analyses of hiPSC-CM constructs upon controlled administration of isoprenaline showed further promising applications of our platform in drug discovery, delivery and toxicology fields. The proposed heart-on-a-chip device represents a relevant step forward in the field, providing a standard functional three-dimensional cardiac model to possibly predict signs of hypertrophic changes in cardiac phenotype by mechanical and biochemical co-stimulation.
Choi, Kyongsik; Kim, Joohwan; Lim, Yongjun; Lee, Byoungho
2005-12-26
A novel full parallax and viewing-angle enhanced computer-generated holographic (CGH) three-dimensional (3D) display system is proposed and implemented by combining an integral lens array and colorized synthetic phase holograms displayed on a phase-type spatial light modulator. For analyzing the viewing-angle limitations of our CGH 3D display system, we provide some theoretical background and introduce a simple ray-tracing method for 3D image reconstruction. From our method we can get continuously varying full parallax 3D images with the viewing angle about +/-6 degrees . To design the colorized phase holograms, we used a modified iterative Fourier transform algorithm and we could obtain a high diffraction efficiency (~92.5%) and a large signal-to-noise ratio (~11dB) from our simulation results. Finally we show some experimental results that verify our concept and demonstrate the full parallax viewing-angle enhanced color CGH display system.
Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma.
Marrero, Bernadette; Messina, Jane L; Heller, Richard
2009-10-01
An in vitro 3D model was developed utilizing a synthetic microgravity environment to facilitate studying the cell interactions. 2D monolayer cell culture models have been successfully used to understand various cellular reactions that occur in vivo. There are some limitations to the 2D model that are apparent when compared to cells grown in a 3D matrix. For example, some proteins that are not expressed in a 2D model are found up-regulated in the 3D matrix. In this paper, we discuss techniques used to develop the first known large, free-floating 3D tissue model used to establish tumor spheroids. The bioreactor system known as the High Aspect Ratio Vessel (HARVs) was used to provide a microgravity environment. The HARVs promoted aggregation of keratinocytes (HaCaT) that formed a construct that served as scaffolding for the growth of mouse melanoma. Although there is an emphasis on building a 3D model with the proper extracellular matrix and stroma, we were able to develop a model that excluded the use of matrigel. Immunohistochemistry and apoptosis assays provided evidence that this 3D model supports B16.F10 cell growth, proliferation, and synthesis of extracellular matrix. Immunofluorescence showed that melanoma cells interact with one another displaying observable cellular morphological changes. The goal of engineering a 3D tissue model is to collect new information about cancer development and develop new potential treatment regimens that can be translated to in vivo models while reducing the use of laboratory animals.
2D nearly orthogonal mesh generation with controls on distortion function
NASA Astrophysics Data System (ADS)
Zhang, Yaoxin; Jia, Yafei; Wang, Sam S. Y.
2006-11-01
A method to control the distortion function of the Ryskin and Leal (RL) orthogonal mesh generation system is presented. The proposed method considers the effects from not only the local orthogonal condition but also the local smoothness condition (the geometry and the mesh size) on the distortion function. The distortion function is determined by both the scale factors and the averaged scale factors of the constant mesh lines. Two adjustable parameters are used to control the local balance of the orthogonality and the smoothness. The proposed method is successfully applied to several benchmark examples and the natural river channels with complex geometries.
Generating fractal-like surfaces on general purpose mesh-connected computers
NASA Technical Reports Server (NTRS)
Wainer, Michael
1988-01-01
Realistic images of natural surfaces are often generated using computationally expensive stochastic modeling techniques. Here a parallel procedure to generate such models is presented. The target machines are general-purpose mesh-connected computers. The complexity of the procedure is similar to that of a proposed special-purpose parallel fractal generator.
Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T. III
2013-04-15
Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the 'base' and 'target' for morphing. Several combinations of transformations were applied to morph between the 'base' and 'target' datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing three human
NASA Astrophysics Data System (ADS)
Samian, R. S.; Abbassi, A.; Ghazanfarian, J.
2013-09-01
The thermal performance of two-dimensional (2D) field-effect transistors (FET) is investigated frequently by solving the Fourier heat diffusion law and the Boltzmann transport equation (BTE). With the introduction of the new generation of 3D FETs in which their thickness is less than the phonon mean-free-path it is necessary to carefully simulate the thermal performance of such devices. This paper numerically integrates the BTE in common 2D transistors including planar single layer and Silicon-On-Insulator (SOI) transistor, and the new generation of 3D transistors including FinFET and Tri-Gate devices. In order to decrease the directional dependency of results in 3D simulations; the Legendre equal-weight (PN-EW) quadrature set has been employed. It is found that if similar switching time is assumed for 3D and 2D FETs while the new generation of 3D FETs has less net energy consumption, they have higher hot-spot temperature. The results show continuous heat flux distribution normal to the silicon/oxide interface while the temperature jump is seen at the interface in double layer transistors.
Lithographically-generated 3D lamella layers and their structural color.
Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen
2016-04-28
Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ∼ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.
Lithographically-generated 3D lamella layers and their structural color
NASA Astrophysics Data System (ADS)
Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen
2016-04-01
Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.
NASA Astrophysics Data System (ADS)
Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; zur Loye, Hans-Conrad
2012-11-01
Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi2O2(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P21 (a=9.6479(9) Å, b=4.2349(4) Å, c=11.9615(11) Å, β=109.587(1)°), which contains Bi2O2 chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi4Na4(1R3S-cam)8(EtOH)3.1(H2O)3.4 (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P21 (a=19.0855(7) Å, b=13.7706(5) Å, c=19.2429(7) Å, β=90.701(1)°) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi3+, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer.
Han, Dong Ju; Jung, Jae Hwan; Choi, Jong Seob; Kim, Yong Tae; Seo, Tae Seok
2013-10-21
Spherical 3D graphite microballs (3D GMs) and their nanohybrids (3D GM-Fe3O4 nanoparticles) were synthesized by using a microfluidic droplet generator and a thermal evaporation-induced capillary compression method. Using the 3D GM-Fe3O4 nanoparticle as a support for polymerization, 3D GM-polypyrrole composites were produced with a unique core-shell structure.
Unstructured Polyhedral Mesh Thermal Radiation Diffusion
Palmer, T.S.; Zika, M.R.; Madsen, N.K.
2000-07-27
Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.
Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur
2012-11-15
Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.
Automated and integrated mask generation from a CAD constructed 3D model.
Schiek, Richard Louis; Schmidt, Rodney Cannon
2005-03-01
We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micromachining. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology to the model. The 3D model is first separated into bodies that are non-intersecting, made from different materials or only linked through a ground plane. Next, for each body unique horizontal cross sections are located and arranged into a tree based on their topological relationship. A branch-wise search of the tree uncovers locations where deposition boundaries must lie and identifies candidate masks creating a generic mask set for the 3D model. Finally, in the last step specific process requirements are considered that may constrain the generic mask set.
Analysis automation with paving: A new quadrilateral meshing technique
Blacker, T.D. ); Stephenson, M.B.; Canann, S. )
1990-01-01
This paper describes the impact of paving, a new automatic mesh generation algorithm, on the analysis portion of the design process. Paving generates an all-quadrilateral mesh in arbitrary 2D geometries. The paving technique significantly impacts the analysis process by drastically reducing the time and expertise requirements of traditional mesh generation. Paving produces a high quality mesh based on geometric boundary definitions and user specified element sizing constraints. In this paper we describe the paving algorithm, discuss varying aspects of the impact of the technique on design automation, and elaborate on current research into 3D all-hexahedral mesh generation. 11 refs., 10 figs.
3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation
Yang, Fan; Bhutani, Nidhi
2015-01-01
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414
Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing
2014-01-01
Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. Results Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. Conclusions The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods. PMID:24886511
NASA Astrophysics Data System (ADS)
Jansen, Gunnar; Sohrabi, Reza; Miller, Stephen A.
2017-02-01
Short for Hexahedra from Unique Location in (K)convex Polyhedra - HULK is a simple and efficient algorithm to generate hexahedral meshes from generic STL files describing a geological model to be used in simulation tools based on the finite element, finite volume or finite difference methods. Using binary space partitioning of the input geometry and octree refinement on the grid, a successive increase in accuracy of the mesh is achieved. We present the theoretical basis as well as the implementation procedure with three geological models with varying complexity, providing the basis on which the algorithm is evaluated. HULK generates high accuracy discretizations with cell counts suitable for state-of-the-art subsurface simulators and provides a new method for hexahedral mesh generation in geological settings.
Detecting Translation Errors in CAD Surfaces and Preparing Geometries for Mesh Generation
Petersson, N Anders; Chand, K K
2001-08-27
The authors have developed tools for the efficient preparation of CAD geometries for mesh generation. Geometries are read from IGES files and then maintained in a boundary-representation consisting of a patchwork of trimmed and untrimmed surfaces. Gross errors in the geometry can be identified and removed automatically while a user interface is provided for manipulating the geometry (such as correcting invalid trimming curves or removing unwanted details). Modifying the geometry by adding or deleting surfaces and/or sectioning it by arbitrary planes (e.g. symmetry planes) is also supported. These tools are used for robust and accurate geometry models for initial mesh generation and will be applied to in situ mesh generation requirements of moving and adaptive grid simulations.
NASA Astrophysics Data System (ADS)
Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso
2013-04-01
Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the
Adil, Maroof M.; Rodrigues, Gonçalo M. C.; Kulkarni, Rishikesh U.; Rao, Antara T.; Chernavsky, Nicole E.; Miller, Evan W.; Schaffer, David V.
2017-01-01
Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson’s Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research. PMID:28091566
NASA Astrophysics Data System (ADS)
Sanzana, P.; Jankowfsky, S.; Branger, F.; Braud, I.; Vargas, X.; Hitschfeld, N.; Gironás, J.
2013-08-01
Distributed hydrological models rely on a spatial discretization composed of homogeneous units representing different areas within the catchment. Hydrological Response Units (HRUs) typically form the basis of such a discretization. HRUs are generally obtained by intersecting raster or vector layers of land uses, soil types, geology and sub-catchments. Polylines maps representing ditches and river drainage networks can also be used. However this overlapping may result in a mesh with numerical and topological problems not highly representative of the terrain. Thus, a pre-processing is needed to improve the mesh in order to avoid negative effects on the performance of the hydrological model. This paper proposes computer-assisted mesh generation tools to obtain a more regular and physically meaningful mesh of HRUs suitable for hydrologic modeling. We combined existing tools with newly developed scripts implemented in GRASS GIS. The developed scripts address the following problems: (1) high heterogeneity in Digital Elevation Model derived properties within the HRUs, (2) correction of concave polygons or polygons with holes inside, (3) segmentation of very large polygons, and (4) bad estimations of units' perimeter and distances among them. The improvement process was applied and tested using two small catchments in France. The improvement of the spatial discretization was further assessed by comparing the representation and arrangement of overland flow paths in the original and improved meshes. Overall, a more realistic physical representation was obtained with the improved meshes, which should enhance the computation of surface and sub-surface flows in a hydrologic model.
Stokes, Harold T; Campbell, Branton J; van Smaalen, Sander
2011-01-01
A complete table of (3 + 1)D, (3 + 2)D and (3 + 3)D superspace groups (SSGs) has been enumerated that corrects omissions and duplicate entries in previous tables of superspace groups and Bravais classes. The theoretical methods employed are not new, though the implementation is both novel and robust. The paper also describes conventions for assigning a unique one-line symbol for each group in the table. Finally, a new online data repository is introduced that delivers more complete information about each SSG than has been presented previously.
Joo, Kyung-Il; Kim, Mugeon; Park, Min-Kyu; Park, Heewon; Kim, Byeonggon; Hahn, JoonKu; Kim, Hak-Rin
2016-01-01
We propose a liquid crystal (LC)-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG) using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB) LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters. PMID:27801812
Wood, Scott T; Dean, Brian C; Dean, Delphine
2013-04-01
This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.
Carlson, Aaron L.; Bennett, Neal K.; Francis, Nicola L.; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C.; Hart, Ronald P.; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P.; Moghe, Prabhas V.
2016-01-01
Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594
Investigation of three-dimensional mesh generation with precise controls
NASA Astrophysics Data System (ADS)
Eiseman, Peter R.
1989-01-01
In the grant, a number of accomplishments were made in a variety of ways and in a variety of topics. The ways in which this was achieved were in oral communication with others, in the organization of conferences, in the journal publications, in the direction of graduate studies, and in the computer demonstration of theoretical developments. The topics include a study of shock-vortex interaction and a number of studies in grid generation. Those studies covered algebraic and interactive aspects here converged with the establishment of a powerful control point formulation for arbitrary grid generation.
Numerical investigation of the 3D flow field generated by a self-propelling manta ray
NASA Astrophysics Data System (ADS)
Pederzani, Jean-Noel; Haj-Hariri, Hossein
2010-11-01
A mixed Lagrangian-Eulerian approach is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta ray. The motion of the manta ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted using the λ2 criteria; and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented on a block-structured Cartesian grid using a volume of fluid approach. To enhance the computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated for the flow around a sphere. A basic station keeping control problem for a pitching and lagging wing is also analyzed to show the capability of the code to aid in controller design and stability analysis.
Generation of Multi-Lod 3d City Models in Citygml with the Procedural Modelling Engine RANDOM3DCITY
NASA Astrophysics Data System (ADS)
Biljecki, F.; Ledoux, H.; Stoter, J.
2016-09-01
The production and dissemination of semantic 3D city models is rapidly increasing benefiting a growing number of use cases. However, their availability in multiple LODs and in the CityGML format is still problematic in practice. This hinders applications and experiments where multi-LOD datasets are required as input, for instance, to determine the performance of different LODs in a spatial analysis. An alternative approach to obtain 3D city models is to generate them with procedural modelling, which is - as we discuss in this paper - well suited as a method to source multi-LOD datasets useful for a number of applications. However, procedural modelling has not yet been employed for this purpose. Therefore, we have developed RANDOM3DCITY, an experimental procedural modelling engine for generating synthetic datasets of buildings and other urban features. The engine is designed to produce models in CityGML and does so in multiple LODs. Besides the generation of multiple geometric LODs, we implement the realisation of multiple levels of spatiosemantic coherence, geometric reference variants, and indoor representations. As a result of their permutations, each building can be generated in 392 different CityGML representations, an unprecedented number of modelling variants of the same feature. The datasets produced by RANDOM3DCITY are suited for several applications, as we show in this paper with documented uses. The developed engine is available under an open-source licence at Github at 3d/Random3Dcity"target="_blank">http://github.com/tudelft3d/Random3Dcity.
Generation and Comparison of Tls and SFM Based 3d Models of Solid Shapes in Hydromechanic Research
NASA Astrophysics Data System (ADS)
Zhang, R.; Schneider, D.; Strauß, B.
2016-06-01
The aim of a current study at the Institute of Hydraulic Engineering and Technical Hydromechanics at TU Dresden is to develop a new injection method for quick and economic sealing of dikes or dike bodies, based on a new synthetic material. To validate the technique, an artificial part of a sand dike was built in an experimental hall. The synthetic material was injected, which afterwards spreads in the inside of the dike. After the material was fully solidified, the surrounding sand was removed with an excavator. In this paper, two methods, which applied terrestrial laser scanning (TLS) and structure from motion (SfM) respectively, for the acquisition of a 3D point cloud of the remaining shapes are described and compared. Combining with advanced software packages, a triangulated 3D model was generated and subsequently the volume of vertical sections of the shape were calculated. As the calculation of the volume revealed differences between the TLS and the SfM 3D model, a thorough qualitative comparison of the two models will be presented as well as a detailed accuracy assessment. The main influence of the accuracy is caused by generalisation in case of gaps due to occlusions in the 3D point cloud. Therefore, improvements for the data acquisition with TLS and SfM for such kind of objects are suggested in the paper.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
An improved nearly-orthogonal structured mesh generation system with smoothness control functions
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents an improved nearly-orthogonal structured mesh generation system with a set of smoothness control functions, which were derived based on the ratio between the Jacobian of the transformation matrix and the Jacobian of the metric tensor. The proposed smoothness control functions are...
Geometry modeling and grid generation using 3D NURBS control volume
NASA Technical Reports Server (NTRS)
Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin
1995-01-01
The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.
Generating 3D Images of Sub-glacial Landscapes: Three Antarctic Case Studies
NASA Astrophysics Data System (ADS)
King, E. C.
2011-12-01
The formation mechanism of subglacial landforms such as drumlins and mega-scale glacial lineations remains controversial. Factors include the type and properties of subglacial sediments; the availability and pressurization of water; and the thickness and flow speed of the overlying ice. While new survey techniques have allowed increasingly sophisticated quantification of the morphology of palaeo-bedforms, observation of contemporary examples has remained difficult, thus inhibiting the development of viable models of formation. I have undertaken ground-radar surveys of three currently-active Antarctic ice streams (Rutford Ice Stream, Talutis Inlet and Pine Island Glacier) to map the type and distribution of subglacial landforms to provide primary observations to inform this debate. Each survey used a low frequency (2-4 MHz) impulse radar towed behind a snowmobile. Line spacing was 500 m and along-track trace interval was c. 7.5 m. The processing techniques used to turn raw profile data into 3D landscape images will be described. The technique works well for elongate sub-glacial bedforms but has limitations in accurately mapping bedform terminations and complex bedrock outcrop landscapes. Developments underway for the future include using a robot snowmobile for data acquisition and airborne survey with similar geometry.
Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph
2016-01-01
Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.
1991-01-01
In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.
Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.
Staten, Matthew L.; Owen, Steven James
2010-09-01
Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.
A new-generation 3D ozone FACE (Free Air Controlled Exposure).
Paoletti, Elena; Materassi, Alessandro; Fasano, Gianni; Hoshika, Yasutomo; Carriero, Giulia; Silaghi, Diana; Badea, Ovidiu
2017-01-01
To artificially simulate the impacts of ground-level ozone (O3) on vegetation, ozone FACE (Free Air Controlled Exposure) systems are increasingly recommended. We describe here a new-generation, three-dimensional ozone FACE, with O3 diffusion through laser-generated micro-holes, pre-mixing of air and O3, O3 generator with integral oxygen generator, continuous (day/night) exposure and full replication. Based on three O3 levels and assumptions on the pre-industrial O3 levels, we describe principles to calculate relative yield/biomass and estimate impacts even at lower-than-ambient O3 levels. The case study is called FO3X, and is at present the only ozone FACE in Mediterranean climate and one of the very few ozone FACEs investigating more than one stressor at a time. The results presented here will give further impulse to the research on O3 impacts on vegetation all over the world.
Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T
2003-08-01
An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
Patel, Mumukshu D; Cha, Eunho; Choudhary, Nitin; Kang, Chiwon; Lee, Wonki; Hwang, Jun Yeon; Choi, Wonbong
2016-12-09
The advent of advanced electrode materials has led to performance enhancement of traditional lithium ion batteries (LIBs). We present novel binder-free MoS2 coated three-dimensional carbon nanotubes (3D CNTs) as an anode in LIBs. Scanning transmission electron microscopy analysis shows that vertically oriented MoS2 nanoflakes are strongly bonded to CNTs, which provide a high surface area and active electrochemical sites, and enhanced ion conductivity at the interface. The electrochemical performance shows a very high areal capacity of ~1.65 mAh cm(-2) with an areal density of ~0.35 mg cm(-2) at 0.5 C rate and coulombic efficiency of ~99% up to 50 cycles. The unique architecture of 3D CNTs-MoS2 is indicative to be a promising anode for next generation Li-ion batteries with high capacity and long cycle life.
NASA Astrophysics Data System (ADS)
Patel, Mumukshu D.; Cha, Eunho; Choudhary, Nitin; Kang, Chiwon; Lee, Wonki; Hwang, Jun Yeon; Choi, Wonbong
2016-12-01
The advent of advanced electrode materials has led to performance enhancement of traditional lithium ion batteries (LIBs). We present novel binder-free MoS2 coated three-dimensional carbon nanotubes (3D CNTs) as an anode in LIBs. Scanning transmission electron microscopy analysis shows that vertically oriented MoS2 nanoflakes are strongly bonded to CNTs, which provide a high surface area and active electrochemical sites, and enhanced ion conductivity at the interface. The electrochemical performance shows a very high areal capacity of ~1.65 mAh cm-2 with an areal density of ~0.35 mg cm-2 at 0.5 C rate and coulombic efficiency of ~99% up to 50 cycles. The unique architecture of 3D CNTs-MoS2 is indicative to be a promising anode for next generation Li-ion batteries with high capacity and long cycle life.
Linden, Katharina; Dewald, Oliver; Gatzweiler, Eva; Seehase, Matthias; Duerr, Georg Daniel; Dörner, Jonas; Kleppe, Stephanie
2016-01-01
Background Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data. Methods In 17 piglets (weight range: 3.6–8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor-blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets. Results Correlation between CMR- and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml ±1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter- and intra-observer coefficients of variation were below 5% for all parameters. Conclusions PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This
Prediction of Tsunami Waves and Runup Generated by 3d Granular Landslides
NASA Astrophysics Data System (ADS)
Mohammed, F.; Fritz, H. M.
2008-12-01
Subaerial and submarine landslides can trigger tsunamis with locally high amplitudes and runup, which can cause devastating effects in the near field region. The 50th anniversary of the Lituya Bay 1958 landslide impact generated mega tsunami recalls the largest tsunami runup of 524m in recorded history. In contrast to earthquake generated tsunamis, landslide generated tsunami sources are not confined to active tectonic regions and therefore are of particular importance for the Atlantic Ocean. Landslide generated tsunamis were studied in the three dimensional NEES tsunami wave basin TWB at OSU based on the generalized Froude similarity. A novel pneumatic landslide generator was deployed to control the landslide geometry and kinematics. Granular materials were used to model deformable landslides. Measurement techniques such as particle image velocimetry (PIV), multiple above and underwater video cameras, multiple acoustic transducer arrays (MTA), as well as resistance wave and runup gauges were applied. The wave generation was characterized by an extremely unsteady three phase flow consisting of the slide granulate, water and air entrained into the flow. The underwater cameras and the MTA provide data on the landslide deformation as it impacts the water surface, penetrates the water and finally deposits on the bottom of the basin. The influence of the landslide volume, shape and the impact speed on the generated tsunami wave characteristics were extensively studied. The experimental data provides prediction models for the generated tsunami wave characteristics based on the initial landslide characteristics and the final slide deposits. PIV provided instantaneous surface velocity vector fields, which gave insight into the kinematics of the landslide and wave generation process. At high impact velocities flow separation occurred on the slide shoulder resulting in a hydrodynamic impact crater. The recorded wave profiles yielded information on the wave propagation and
Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes
NASA Astrophysics Data System (ADS)
Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.
2013-03-01
The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.
A density-controlled triangular and quadrilateral element mesh automatic generation system
NASA Astrophysics Data System (ADS)
Sun, L.; Yeh, G.; Lin, F.; Zhao, G.
2013-12-01
We made an intensive study to develop an automatic mesh generation system based on the theory of Voronoi diagram and front advancing. The objective of this system is to create meshes for numerical modeling of practical engineering problems in the fields of geomechanics, hydrology, hydraulics, and water resources. The input data of the system is a set of given points to form the boundary contour of the analyzed geometry, containing the coordinates, the connections and the point spacing specified by users. Boundary points are generated by recursively inserting midpoints according to the spacing of the input points. For the curved boundaries, B-splines are constructed to interpolate midpoints. For the geometries with concave features and long thin domains, boundary loss problem may occur after generating the Voronoi diagram of boundary points. This problem is resolved by recursively inserting pseudo-points at the midpoints of the missing edges until all the original boundary edges are fully described. In order to ensure the curvature accuracy of curved boundaries, pseudo-points should be eliminated again by corresponding modes. Two criteria for selecting removal modes are employed, the Jacobian and minimum angle. Two methods are used to generate interior points. One is direct method and the other is pre-test method. A comparison of the two methods is also made. Laplacian method is used to smooth the interior points of triangles. For the geometries with several sub-domains, it is required to ensure the conformity of the elements and points on the intersecting boundaries between adjacent sub-domains. We establish corresponding methods to treat the overlapped boundary edges and implement the reasonable distribution and excellent conformity of the triangles and points on the overlapped boundaries. On the basis of the triangular mesh created by Delaunay triangulation, a front-advancing method is used to further generate quadrilateral mesh by combining two connected
Summary on several key techniques in 3D geological modeling.
Mei, Gang
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
Methodology for generating a 3D computerized breast phantom from empirical data
Li, Christina M.; Segars, W. Paul; Tourassi, Georgia D.; Boone, John M.; Dobbins, James T.
2009-01-01
The initial process for creating a flexible three-dimensional computer-generated breast phantom based on empirical data is described. Dedicated breast computed-tomography data were processed to suppress noise and scatter artifacts in the reconstructed image set. An automated algorithm was developed to classify the breast into its primary components. A preliminary phantom defined using subdivision surfaces was generated from the segmented data. To demonstrate potential applications of the phantom, simulated mammographic image data were acquired of the phantom using a simplistic compression model and an analytic projection algorithm directly on the surface model. The simulated image was generated using a model for a polyenergetic cone-beam projection of the compressed phantom. The methods used to create the breast phantom generate resulting images that have a high level of tissue structure detail available and appear similar to actual mammograms. Fractal dimension measurements of simulated images of the phantom are comparatively similar to measurements from images of real human subjects. A realistic and geometrically defined breast phantom that can accurately simulate imaging data may have many applications in breast imaging research. PMID:19673211
Shape reconstruction from medical images and quality mesh generation via implicit surfaces
NASA Astrophysics Data System (ADS)
Peiró, J.; Formaggia, L.; Gazzola, M.; Radaelli, A.; Rigamonti, V.
2007-03-01
The ability of automatically reconstructing physiological shapes, of generating computational meshes, and of calculating flow solutions from medical images is enabling the introduction of computational fluid dynamics (CFD) techniques as an additional tool to aid clinical practice.This article presents a set of procedures for the shape reconstruction and triangulation of geometries derived from a set of medical images representing planar cross sections of the object. The reconstruction of the shape of the boundary is based on the interpolation of an implicit function through a set of points obtained from the segmentation of the images. This approach is favoured for its ability of smoothly interpolating between sections of different topology. The boundary of the object is an iso-surface of the implicit function that is approximated by a triangulation extracted by the method of marching cubes. The quality of this triangulation is often neither suitable for mesh generation nor for flow solution. We discuss the use of mesh enhancement techniques to maximize the quality of the triangulation together with curvature adaption to optimize mesh resolution.The proposed methodology is applied to the reconstruction and discretization of two physiological geometries: a femoral by-pass graft and a nasal cavity.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.
2006-01-01
Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.
Evaluating the Potential of Rtk-Uav for Automatic Point Cloud Generation in 3d Rapid Mapping
NASA Astrophysics Data System (ADS)
Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F.
2016-06-01
During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of σ = 1.5 cm and vertical accuracy of σ = 2.3 cm. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable
The 3D Recognition, Generation, Fusion, Update and Refinement (RG4) Concept
NASA Technical Reports Server (NTRS)
Maluf, David A.; Cheeseman, Peter; Smelyanskyi, Vadim N.; Kuehnel, Frank; Morris, Robin D.; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes an active (real time) recognition strategy whereby information is inferred iteratively across several viewpoints in descent imagery. We will show how we use inverse theory within the context of parametric model generation, namely height and spectral reflection functions, to generate model assertions. Using this strategy in an active context implies that, from every viewpoint, the proposed system must refine its hypotheses taking into account the image and the effect of uncertainties as well. The proposed system employs probabilistic solutions to the problem of iteratively merging information (images) from several viewpoints. This involves feeding the posterior distribution from all previous images as a prior for the next view. Novel approaches will be developed to accelerate the inversion search using novel statistic implementations and reducing the model complexity using foveated vision. Foveated vision refers to imagery where the resolution varies across the image. In this paper, we allow the model to be foveated where the highest resolution region is called the foveation region. Typically, the images will have dynamic control of the location of the foveation region. For descent imagery in the Entry, Descent, and Landing (EDL) process, it is possible to have more than one foveation region. This research initiative is directed towards descent imagery in connection with NASA's EDL applications. Three-Dimensional Model Recognition, Generation, Fusion, Update, and Refinement (RGFUR or RG4) for height and the spectral reflection characteristics are in focus for various reasons, one of which is the prospect that their interpretation will provide for real time active vision for automated EDL.
Computer-generated 3D ultrasound images of the carotid artery
NASA Astrophysics Data System (ADS)
Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.
A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.
Computer-generated 3D ultrasound images of the carotid artery
NASA Technical Reports Server (NTRS)
Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.
1989-01-01
A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.
NASA Astrophysics Data System (ADS)
Madden, Christopher S.; Richards, Noel J.; Culpepper, Joanne B.
2016-10-01
This paper investigates the ability to develop synthetic scenes in an image generation tool, E-on Vue, and a gaming engine, Unity 3D, which can be used to generate synthetic imagery of target objects across a variety of conditions in land environments. Developments within these tools and gaming engines have allowed the computer gaming industry to dramatically enhance the realism of the games they develop; however they utilise short cuts to ensure that the games run smoothly in real-time to create an immersive effect. Whilst these short cuts may have an impact upon the realism of the synthetic imagery, they do promise a much more time efficient method of developing imagery of different environmental conditions and to investigate the dynamic aspect of military operations that is currently not evaluated in signature analysis. The results presented investigate how some of the common image metrics used in target acquisition modelling, namely the Δμ1, Δμ2, Δμ3, RSS, and Doyle metrics, perform on the synthetic scenes generated by E-on Vue and Unity 3D compared to real imagery of similar scenes. An exploration of the time required to develop the various aspects of the scene to enhance its realism are included, along with an overview of the difficulties associated with trying to recreate specific locations as a virtual scene. This work is an important start towards utilising virtual worlds for visible signature evaluation, and evaluating how equivalent synthetic imagery is to real photographs.
Validation of "AW3D" Global Dsm Generated from Alos Prism
NASA Astrophysics Data System (ADS)
Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi
2016-06-01
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).
Tsunami Generation and Propagation by 3D deformable Landslides and Application to Scenarios
NASA Astrophysics Data System (ADS)
McFall, Brian C.; Fritz, Hermann M.
2014-05-01
Tsunamis generated by landslides and volcano flank collapse account for some of the most catastrophic natural disasters recorded and can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1
Measuring nonlinear stresses generated by defects in 3D colloidal crystals
NASA Astrophysics Data System (ADS)
Lin, Neil Y. C.; Bierbaum, Matthew; Schall, Peter; Sethna, James P.; Cohen, Itai
2016-11-01
The mechanical, structural and functional properties of crystals are determined by their defects, and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements have important implications for strain hardening, yield and fatigue.
Tsunamis generated by 3D granular landslides in various scenarios from fjords to conical islands
NASA Astrophysics Data System (ADS)
McFall, Brian C.; Fritz, Hermann M.
2015-04-01
Landslide generated tsunamis such as in Lituya Bay, Alaska 1958 account for some of the highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models.
Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data
NASA Astrophysics Data System (ADS)
van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.
2011-02-01
Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.
Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.
2016-01-01
The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.
Shepherd, Jason; Mitchell, Scott A.; Jankovich, Steven R.; Benzley, Steven E.
2007-05-15
The present invention provides a meshing method, called grafting, that lifts the prior art constraint on abutting surfaces, including surfaces that are linking, source/target, or other types of surfaces of the trunk volume. The grafting method locally modifies the structured mesh of the linking surfaces allowing the mesh to conform to additional surface features. Thus, the grafting method can provide a transition between multiple sweep directions extending sweeping algorithms to 23/4-D solids. The method is also suitable for use with non-sweepable volumes; the method provides a transition between meshes generated by methods other than sweeping as well.
Mesh generation and energy group condensation studies for the jaguar deterministic transport code
Kennedy, R. A.; Watson, A. M.; Iwueke, C. I.; Edwards, E. J.
2012-07-01
The deterministic transport code Jaguar is introduced, and the modeling process for Jaguar is demonstrated using a two-dimensional assembly model of the Hoogenboom-Martin Performance Benchmark Problem. This single assembly model is being used to test and analyze optimal modeling methodologies and techniques for Jaguar. This paper focuses on spatial mesh generation and energy condensation techniques. In this summary, the models and processes are defined as well as thermal flux solution comparisons with the Monte Carlo code MC21. (authors)
2015-01-07
and Anisotropic All-Hexahedral Mesh Generation Using a Hybrid Octree and Bubble Packing. 4. Octree-based Dual Contouring Method for Triangular and...Parameterization Using Eigenfunction-based Cross Field. Graphical Models, 76(6):691-705, 2014 8. X. Liang, Y. Zhang. An Octree-based Dual Contouring Method for...and Evaluation, the 27th Conference on Computer Animation and Social Agents (CASA 2014). Houston, TX. May 26-28, 2014. 13. K. Hu, J. Qian, Y. Zhang
NASA Astrophysics Data System (ADS)
Schartmann, M.; Ballone, A.; Burkert, A.; Gillessen, S.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Plewa, P. M.; Ott, T.; George, E. M.; Habibi, M.
2015-10-01
The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtained results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position-velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.
Schartmann, M.; Ballone, A.; Burkert, A.; Gillessen, S.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Plewa, P. M.; Ott, T.; George, E. M.; Habibi, M.
2015-10-01
The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtained results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position–velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.
Parameter studies of gear cooling using an automatic finites element mesh generator
NASA Technical Reports Server (NTRS)
El-Bayoumy, L. E.; Akin, L. S.; Townsend, D. P.
1984-01-01
The range of accuracies achieved in the gear tooth temperature using an automatic finite element mesh generator were investigated. Gear web contribution to the gear cooling process was studied by introducing a varying size hole at the center of the gear because of the versatility of program TARG in allowing different heat transfer coefficients in different areas of the gear tooth. A study was carried out to evaluate the contribution of the loaded and unloaded faces as well as the top and bottom lands. A general purpose two-dimensional finite element preprocessor ATOGEN has been developed for automatic generation of a finite element mesh over a pie-shaped sector of a gear. The program was used for facilitating the input to an upgraded version of a previously developed program for the thermal analysis of running gears (TARG). The latter program determined the steady state temperature distribution throughout the specified gear. The automatic mesh generator program includes a band width minimization routine for reducing computer cost.
Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm.
Engström, David; Frank, Anders; Backsten, Jan; Goksör, Mattias; Bengtsson, Jörgen
2009-06-08
Algorithms based on the fast Fourier transform (FFT) for the design of spot-generating computer generated holograms (CGHs) typically only make use of a few sample positions in the propagated field. We have developed a new design method that much better utilizes the information-carrying capacity of the sampled propagated field. In this way design tasks which are difficult to accomplish with conventional FFT-based design methods, such as spot positioning at non-sample positions and/or spot positioning in 3D, are solved as easily as any standard design task using a conventional method. The new design method is based on a projection optimization, similar to that in the commonly used Gerchberg-Saxton algorithm, and the vastly improved design freedom comes at virtually no extra computational cost compared to the conventional design. Several different design tasks were demonstrated experimentally with a liquid crystal spatial light modulator, showing highly accurate creation of the desired field distributions.
Automatic Texture Reconstruction of 3d City Model from Oblique Images
NASA Astrophysics Data System (ADS)
Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang
2016-06-01
In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.
NASA Astrophysics Data System (ADS)
Wright, A.; Kluesner, J. W.; Brothers, D. S.; Johnson, S. Y.
2015-12-01
Multiple submarine landslides have been previously documented on the north flank of the Santa Barbara Channel, and such failures are considered capable of generating local tsunamis. 2D seismic-reflection datasets provide a general view of regional framework geology, including faulting and folding associated with north-south compression. However, better understanding of the relationships between faults, folds, stratigraphic architecture, and submarine landslides can be obtained with 3D seismic datasets. In this study we use an industry 3D seismic-reflection volume that encompasses the slope and shelfbreak surrounding the Gaviota submarine landslide (3.8 km2) to investigate structural and stratigraphic controls on slope failure in this region. The depth-migrated seismic volume shows a network of stacked thrust faults, backthrusts, and splays that results in both broad and local zones of compression and folding along the slope and shelf. One localized zone of enhanced folding associated with small-offset thrust faults is located directly beneath the Gaviota landslide headwall, while another zone is located directly below an imaged seafloor fissure. In addition, 3D seismic attribute analysis provides insight into the shallow sedimentary section of the failed and non-failed sedimentary packages. Calculation of RMS amplitude and dominant frequency within a windowed region below the seafloor horizon delineates an apparent zone of gas-charged strata that onlaps onto older folded sediments. The up-dip limit of these gas-charged sediments aligns with the location of a seafloor fissure that extends westward from the Gaviota landslide headwall. We propose that the combination of deformation and fluid charging acted to pre-condition and trigger the failure of the Gaviota landslide, and as a result, the presence of these conditions along the fissure adjacent to the Gaviota landslide suggests this area should be considered landslide prone.
NASA Astrophysics Data System (ADS)
Chang, Chenliang; Qi, Yijun; Wu, Jun; Yuan, Caojin; Nie, Shouping; Xia, Jun
2017-03-01
A method of calculating computer-generated hologram (CGH) for color holographic 3D projection is proposed. A color 3D object is decomposed into red, green and blue components. For each color component, a virtual wavefront recording plane (WRP) is established which is nonuniformly sampled according to the depth map of the 3D object. The hologram of each color component is calculated from the nonuniform sampled WRP using the shifted Fresnel diffraction algorithm. Finally three holograms of RGB components are encoded into one single CGH based on the multiplexing encoding method. The computational cost of CGH generation is reduced by converting diffraction calculation from huge 3D voxels to three 2D planar images. Numerical experimental results show that the CGH generated by our method is capable to project zoomable color 3D object with clear quality.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
NASA Astrophysics Data System (ADS)
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece.
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-05
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more "hydrophilic" than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization. PMID:28054635
Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design
NASA Technical Reports Server (NTRS)
Li, Wu; Robinson, Jay
2016-01-01
This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.
Wilson, B G; Sonnad, V
2011-02-14
Precise electronic structure calculations of ions in plasmas benefit from optimized numerical radial meshes. A new closed form expression for obtaining non-linear parameters for the efficient generation of analytic log-linear radial meshes is presented. In conjunction with the (very simple) algorithm for the rapid high precision evaluation of Lambert's W-function, the above identity allows the precise construction of generalized log-linear radial meshes adapted to various constraints.
a Novel Method for Automation of 3d Hydro Break Line Generation from LIDAR Data Using Matlab
NASA Astrophysics Data System (ADS)
Toscano, G. J.; Gopalam, U.; Devarajan, V.
2013-08-01
Water body detection is necessary to generate hydro break lines, which are in turn useful in creating deliverables such as TINs, contours, DEMs from LiDAR data. Hydro flattening follows the detection and delineation of water bodies (lakes, rivers, ponds, reservoirs, streams etc.) with hydro break lines. Manual hydro break line generation is time consuming and expensive. Accuracy and processing time depend on the number of vertices marked for delineation of break lines. Automation with minimal human intervention is desired for this operation. This paper proposes using a novel histogram analysis of LiDAR elevation data and LiDAR intensity data to automatically detect water bodies. Detection of water bodies using elevation information was verified by checking against LiDAR intensity data since the spectral reflectance of water bodies is very small compared with that of land and vegetation in near infra-red wavelength range. Detection of water bodies using LiDAR intensity data was also verified by checking against LiDAR elevation data. False detections were removed using morphological operations and 3D break lines were generated. Finally, a comparison of automatically generated break lines with their semi-automated/manual counterparts was performed to assess the accuracy of the proposed method and the results were discussed.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no
Highly Symmetric and Congruently Tiled Meshes for Shells and Domes
Rasheed, Muhibur; Bajaj, Chandrajit
2016-01-01
We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368
Scalable Multi-Platform Distribution of Spatial 3d Contents
NASA Astrophysics Data System (ADS)
Klimke, J.; Hagedorn, B.; Döllner, J.
2013-09-01
Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.
NASA Technical Reports Server (NTRS)
Kumar, D.
1980-01-01
The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs.
Cleves, Ann E; Jain, Ajay N
2017-03-13
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2017-03-01
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.
Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2015-02-01
Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.
Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2015-08-01
Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.
Comment on "A note on generalized radial mesh generation for plasma electronic structure"
NASA Astrophysics Data System (ADS)
Pain, J.-Ch.
2011-12-01
In a recent note, B.G. Wilson and V. Sonnad [1] proposed a very useful closed form expression for the efficient generation of analytic log-linear radial meshes. The central point of the note is an implicit equation for the parameter h, involving Lambert's function W[x]. The authors mention that they are unaware of any direct proof of this equation (they obtained it by re-summing the Taylor expansion of h[α] using high-order coefficients obtained by analytic differentiation of the implicit definition using symbolic manipulation). In the present comment, we propose a direct proof of that equation.
Biedron, S. G.; Freund, H. P.; Yu, L.-H.
1999-09-10
One possible design for a fourth-generation light source is the high-gain harmonic generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at a subharmonic of the desired output radiation interacts with the electron beam in an energy-modulating section. This energy modulation is then converted into spatial bunching while traversing a dispersive section (a three-dipole chicane). The final step is passage through a radiative section, an undulator tuned to the desired higher harmonic output wavelength. The coherent seed serves to remove noise and can be at a much lower subharmonic of the output radiation, thus eliminating the concerns found in self-amplified spontaneous emission (SASE) and seeded FELs, respectively. Recently, a 3D code that includes multiple frequencies, multiple undulatory (both in quantity and/or type), quadruple magnets, and dipole magnets was developed to easily simulate HGHG. Here, a brief review of the HGHG theory, the code development, the Accelerator Test Facility's (ATF) HGHG FEL experimental parameters, and the parameter analysis from simulations of this specific experiment will be discussed.
NASA Astrophysics Data System (ADS)
Wang, S.
2012-07-01
An automated model-image fitting algorithm is proposed in this paper for generating façade texture image from pictures taken by smartphones or tablet PCs. The façade texture generation requires tremendous labour work and thus, has been the bottleneck of 3D photo-realistic city modelling. With advanced developments of the micro electro mechanical system (MEMS), camera, global positioning system (GPS), and gyroscope (G-sensors) can all be integrated into a smartphone or a table PC. These sensors bring the possibility of direct-georeferencing for the pictures taken by smartphones or tablet PCs. Since the accuracy of these sensors cannot compared to the surveying instruments, the image position and orientation derived from these sensors are not capable of photogrammetric measurements. This paper adopted the least-squares model-image fitting (LSMIF) algorithm to iteratively improve the image's exterior orientation. The image position from GPS and the image orientation from gyroscope are treated as the initial values. By fitting the projection of the wireframe model to the extracted edge pixels on image, the image exterior orientation elements are solved when the optimal fitting achieved. With the exact exterior orientation elements, the wireframe model of the building can be correctly projected on the image and, therefore, the façade texture image can be extracted from the picture.
NASA Astrophysics Data System (ADS)
Schubert, Jochen E.; Sanders, Brett F.; Smith, Martin J.; Wright, Nigel G.
2008-12-01
Urban flood inundation modeling with a hydrodynamic flow solver is addressed in this paper, focusing on strategies to effectively integrate geospatial data for unstructured mesh generation, building representation and flow resistance parameterization. Data considered include Light Detection and Ranging (LiDAR) terrain height surveys, aerial imagery and vector datasets such as building footprint polygons. First, a unstructured mesh-generation technique we term the building-hole method (BH) is developed whereby building footprint data define interior domain boundaries or mesh holes. A wall boundary condition depicts the impact of buildings on flood hydrodynamics. BH provides an alternative to the more commonly used method of raising terrain heights where buildings coincide with the mesh. We term this the building-block method (BB). Application of BH and BB to a flooding site in Glasgow, Scotland identifies a number of tradeoffs to consider at resolutions ranging from 1 to 5 m. At fine resolution, BH is shown to be similarly accurate but execute faster than BB. And at coarse resolution, BH is shown to preserve the geometry of buildings and maintain better accuracy than BB, but requires a longer run time. Meshes that ignore buildings completely ( no-building method or NB) also support surprisingly good flood inundation predictions at coarse resolution compared to BH and BB. NB also supports faster execution times than BH at coarse resolution because the latter uses localized refinements that mandate a greater number of computational cells. However, with mesh refinement, NB converges to a different (and presumably less-accurate) solution compared to BH and BB. Using the same test conditions, Hunter et al. [Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, et al. Benchmarking 2D hydraulic models for urban flood simulations. ICE J Water Manage 2008;161(1):13-30] compared the performance of dynamic-wave and diffusive-wave models and reported that
Generation and Computerized Simulation of Meshing and Contact of Modified Involute Helical Gears
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Chen, Ningxin; Lu, Jian
1995-01-01
The design and generation of modified involute helical gears that have a localized and stable bearing contact, and reduced noise and vibration characteristics are described. The localization of the bearing contact is achieved by the mismatch of the two generating surfaces that are used for generation of the pinion and the gear. The reduction of noise and vibration will be achieved by application of a parabolic function of transmission errors that is able to absorb the almost linear function of transmission errors caused by gear misalignment. The meshing and contact of misaligned gear drives can be analyzed by application of computer programs that have been developed. The computations confirmed the effectiveness of the proposed modification of the gear geometry. A numerical example that illustrates the developed theory is provided.
NASA Technical Reports Server (NTRS)
Ashford, Gregory A.; Powell, Kenneth G.
1995-01-01
A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.
NASA Astrophysics Data System (ADS)
Chen, Dong; Liu, ShiBin; Yin, ShiMin; Liang, JinTao
2016-09-01
Lateral diffusion of photon-generated carriers is a critical factor affecting the signal stability and spatial resolution of light-addressable potentiometric sensor (LAPS) array. LAPS with meshed working electrode for rejecting lateral diffusion is presented. Simulation shows that using meshed working electrode can resist the lateral distribution. In an experiment, the inhibition of lateral distribution and the signal stability was studied. Results showed, using the meshed working electrode, the ability to reject the lateral distribution and the signal stability is obviously enhanced. Research in this paper may help to enhance spatial resolution and detection stability of LAPS.
SU-E-J-251: Fast MR-Based DRR Generation Using Highly Undersampled 3D Radial Trajectories
Pereira, G; Traughber, B; Traughber, M; Hu, L; Su, K; Muzic, R
2014-06-01
Purpose: The construction of a digitally reconstructed radiograph (DRR) from a magnetic resonance image (MRI) is possible if the cortical bone signal can be acquired and separated from air and soft tissue. This may be accomplished by subtracting a long echo-time, in-phase, gradient echo (GRE) image volume from an ultra-short echo time free induction decay (FID) image to produce a bone-enhanced (BE) image that reveals cortical bone. One limitation of this approach is the length of time required for data acquisition, which can limit the quality of the DRRs due to patient and organ motion. This study aimed to significantly reduce the acquisition time without compromising DRR quality. Methods: Brain data were acquired from two volunteers using a 3T MR scanner (Ingenia, Philips Healthcare). The FID and GRE images were acquired in a single acquisition using a 3D radial readout sequence with the following parameters: TE1=0.142ms (ultra-short), TE2=2.197ms (nearly in-phase), 2*2*2mm3 isotropic voxels, 250*250*250mm3 FOV. To reduce the acquisition time, k-space was sampled at 75, 50 and 25% of a full 3D sphere . The TE2 image was subtracted from the TE1 image to generate the BE images. The BE images were used to generate DRRs using the Pinnacle treatment planning system (Philips-version 9.2). The quality of the DRRs was evaluated qualitatively by 5 board certified medical physicists for clinical usefulness. Results: The acquisition time for 75, 50 and 25% sampling schemes were 219s, 146s, and 73s, respectively, the latter of which was a four-fold reduction in scan time compared to a 300s fully-sampled acquisition. All DRRs obtained were of acceptable quality and were shown to have sufficient information for clinical 2D image matching. Conclusion: Undersampling k-space while maintaining the same range of frequency information results in significantly reduced scan time and clinically acceptable DRR image quality. Drs. B Traughber and R Muzic have research support from Philips
Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant
Not Available
2010-12-01
The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.
Muniandy, Kalaivani; Sankar, Prabu Siva; Xiang, Benedict Lian Shi; Soo-Beng, Alan Khoo; Balakrishnan, Venugopal; Mohana-Kumaran, Nethia
2016-01-01
Spheroids have been shown to recapitulate the tumour in vivo with properties such as the tumour microenvironment, concentration gradients, and tumour phenotype. As such, it can serve as a platform for determining the growth and invasion behaviour pattern of the cancer cells as well as be utilised for drug sensitivity assays; capable of exhibiting results that are closer to what is observed in vivo compared to two-dimensional (2D) cell culture assays. This study focused on establishing a three-dimensional (3D) cell culture model using the Nasopharyngeal Carcinoma (NPC) cell line, HK1 and analysing its growth and invasion phenotypes. The spheroids will also serve as a model to elucidate their sensitivity to the chemotherapeutic drug, Flavopiridol. The liquid overlay method was employed to generate the spheroids which was embedded in bovine collagen I matrix for growth and invasion phenotypes observation. The HK1 cells formed compact spheroids within 72 hours. Our observation from the 3 days experiments revealed that the spheroids gradually grew and invaded into the collagen matrix, showing that the HK1 spheroids are capable of growth and invasion. Progressing from these experiments, the HK1 spheroids were employed to perform a drug sensitivity assay using the chemotherapeutic drug, Flavopiridol. The drug had a dose-dependent inhibition on spheroid growth and invasion. PMID:27965750
Raj, Utkarsh; Kumar, Himansu; Varadwaj, Pritish Kumar
2015-01-01
A short-lived membrane protein IRHOM2 pedals a cascade of events by regulating Epidermal Growth Factor Receptor (EGFR) signalling in parallel with metalloproteases which results their involvement in cancer as well as in rheumatoid arthritis. Therefore, IRHOM2 is a potential therapeutic drug target for these diseases, but its 3D-structure has not been reported yet. In this study, the three-dimensional structure of the IRHOM2 protein was generated using I-TASSER (Iterative Threading Assembly Refinement) server. The modeled structure of IRHOM2 receptor was validated using various Structural Analysis and Verification Server (SAVES) in which 99.7% of amino acid residues are present in the favoured regions of the Ramachandran Plot. Further, the refined modeled structure was subjected to molecular dynamics simulation & docking analysis. Virtual screening studies were carried out using Glide with various selective libraries containing 24552 compounds and the analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in its binding. Docking results were analyzed for high ranking compounds using a consensus based docking score to calculate the binding affinity as a measure of protein-ligand interactions. The top ranking molecule against IRHOM2 active site has a glide g-score of -12.565 kcal/mol and glide e-model score of -74.967 with 3 hydrogen bonds and 11 hydrophobic contacts. This compound may act as probable inhibitor against these chronic diseases but further in vitro studies are required.
Choi, Youngwoo; Baek, Minki; Zhang, Zhuo; Dao, Van-Duong; Choi, Ho-Suk; Yong, Kijung
2015-10-07
A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad photoresponse in the UV to near-IR region, resulting in 47% IPCE in a wide light region from 400 to 500 nm; and the stainless steel mesh serves not only as a conductor for charge transport, but also as a skeleton of the grid structure for absorbing more light. The related mechanism has been investigated, which demonstrates that the two-storey CZTS/CdS/ZnO@steel composite nanostructure would have great potential as a promising photoelectrode with high efficiency and low cost for PEC hydrogen generation.
A 3-D chimera grid embedding technique
NASA Technical Reports Server (NTRS)
Benek, J. A.; Buning, P. G.; Steger, J. L.
1985-01-01
A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.
A hierarchical structure for automatic meshing and adaptive FEM analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Saxena, Mukul; Perucchio, Renato
1987-01-01
A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.
Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique
Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho
2017-01-01
Background/Aims Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. Methods A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liver-specific markers was quantified on days 1, 7, 14, and 21. Results The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. Conclusions The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver. PMID:27559001
Liu, Jing; Redmond, Michael J; Brodsky, Ethan K; Alexander, Andrew L; Lu, Aiming; Thornton, Francis J; Schulte, Michael J; Grist, Thomas M; Pipe, James G; Block, Walter F
2006-02-01
Time-resolved contrast-enhanced magnetic resonance (MR) angiography (CE-MRA) has gained in popularity relative to X-ray Digital Subtraction Angiography because it provides three-dimensional (3-D) spatial resolution and it is less invasive. We have previously presented methods that improve temporal resolution in CE-MRA while providing high spatial resolution by employing an undersampled 3-D projection (3D PR) trajectory. The increased coverage and isotropic resolution of the 3D PR acquisition simplify visualization of the vasculature from any perspective. We present a new algorithm to develop a set of time-resolved 3-D image volumes by preferentially weighting the 3D PR data according to its acquisition time. An iterative algorithm computes a series of density compensation functions for a regridding reconstruction, one for each time frame, that exploit the variable sampling density in 3D PR. The iterative weighting procedure simplifies the calculation of appropriate density compensation for arbitrary sampling patterns, which improve sampling efficiency and, thus, signal-to-noise ratio and contrast-to-noise ratio, since it is does not require a closed-form calculation based on geometry. Current medical workstations can display these large four-dimensional studies, however, interactive cine animation of the data is only possible at significantly degraded resolution. Therefore, we also present a method for interactive visualization using powerful graphics cards and distributed processing. Results from volunteer and patient studies demonstrate the advantages of dynamic imaging with high spatial resolution.
NASA Astrophysics Data System (ADS)
Choi, D.; Knight, C. J.
1991-06-01
A method to generate H and O-H grid systems for 3D gas turbine geometries has been developed. It is a simple procedure which solves a set of elliptic equations starting from an initial grid system generated algebraically. This grid generation procedure is for 3D Navier-Stokes analysis based on the scalar or diagonalized form of approximate factorization. The grids generated by this procedure have been applied to 3D heat transfer calculations and compared with experimental results. Detailed comparisons are given for both H and O-H grid topologies, considering the Low Aspect Ratio Turbine (LART) and using a two-equation turbulence model with viscous sublayer resolution.
NASA Astrophysics Data System (ADS)
Dalichaouch, Thamine; Davidson, Asher; Xu, Xinlu; Yu, Peicheng; Tsung, Frank; Mori, Warren; Li, Fei; Zhang, Chaojie; Lu, Wei; Vieira, Jorge; Fonseca, Ricardo
2016-10-01
In the past few decades, there has been much progress in theory, simulation, and experiment towards using Laser wakefield acceleration (LWFA) as the basis for designing and building compact x-ray free-electron-lasers (XFEL) as well as a next generation linear collider. Recently, ionization injection and density downramp injection have been proposed and demonstrated as a controllable injection scheme for creating higher quality and ultra-bright relativistic electron beams using LWFA. However, full-3D simulations of plasma-based accelerators are computationally intensive, sometimes taking 100 millions of core-hours on today's computers. A more efficient quasi-3D algorithm was developed and implemented into OSIRIS using a particle-in-cell description with a charge conserving current deposition scheme in r - z and a gridless Fourier expansion in ϕ. Due to the azimuthal symmetry in LWFA, quasi-3D simulations are computationally more efficient than 3D cartesian simulations since only the first few harmonics in are needed ϕ to capture the 3D physics of LWFA. Using the quasi-3D approach, we present preliminary results of ionization and down ramp triggered injection and compare the results against 3D LWFA simulations. This work was supported by DOE and NSF.
NASA Astrophysics Data System (ADS)
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-02-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-01-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng
2016-02-29
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
NASA Astrophysics Data System (ADS)
Friedrich, Axel; Raabe, Helmut; Schiefele, Jens; Doerr, Kai Uwe
1999-07-01
In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite
A GPU implementation of adaptive mesh refinement to simulate tsunamis generated by landslides
NASA Astrophysics Data System (ADS)
de la Asunción, Marc; Castro, Manuel J.
2016-04-01
In this work we propose a CUDA implementation for the simulation of landslide-generated tsunamis using a two-layer Savage-Hutter type model and adaptive mesh refinement (AMR). The AMR method consists of dynamically increasing the spatial resolution of the regions of interest of the domain while keeping the rest of the domain at low resolution, thus obtaining better runtimes and similar results compared to increasing the spatial resolution of the entire domain. Our AMR implementation uses a patch-based approach, it supports up to three levels, power-of-two ratios of refinement, different refinement criteria and also several user parameters to control the refinement and clustering behaviour. A strategy based on the variation of the cell values during the simulation is used to interpolate and propagate the values of the fine cells. Several numerical experiments using artificial and realistic scenarios are presented.
NASA Astrophysics Data System (ADS)
Rajpriya, N. R.; Vyas, A.; Sharma, S. A.
2014-11-01
Urban design is a subject that is concerned with the shape, the surface and its physical arrangement of all kinds of urban elements. Although urban design is a practice process and needs much detailed and multi-dimensional description. 3D city models based spatial analysis gives the possibility of solving these problems. Ahmedabad is third fastest growing cities in the world with large amount of development in infrastructure and planning. The fabric of the city is changing and expanding at the same time, which creates need of 3d visualization of the city to develop a sustainable planning for the city. These areas have to be monitored and mapped on a regular basis and satellite remote sensing images provide a valuable and irreplaceable source for urban monitoring. With this, the derivation of structural urban types or the mapping of urban biotopes becomes possible. The present study focused at development of technique for 3D modeling of buildings for urban area analysis and to implement encoding standards prescribed in "OGC City GML" for urban features. An attempt has been to develop a 3D city model with level of details 1 (LOD 1) for part of city of Ahmedabad in State of Gujarat, India. It shows the capability to monitor urbanization in 2D and 3D.
NASA Astrophysics Data System (ADS)
Bolick, Leslie; Harguess, Josh
2016-05-01
An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.
Pichenot, G.; Premel, D.; Sollier, T.; Maillot, V.
2004-02-26
In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws.
Optical 3D imaging and visualization of concealed objects
NASA Astrophysics Data System (ADS)
Berginc, G.; Bellet, J.-B.; Berechet, I.; Berechet, S.
2016-09-01
This paper gives new insights on optical 3D imagery. In this paper we explore the advantages of laser imagery to form a three-dimensional image of the scene. 3D laser imaging can be used for three-dimensional medical imaging and surveillance because of ability to identify tumors or concealed objects. We consider the problem of 3D reconstruction based upon 2D angle-dependent laser images. The objective of this new 3D laser imaging is to provide users a complete 3D reconstruction of objects from available 2D data limited in number. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different meshed objects of the scene of interest or from experimental 2D laser images. We show that combining the Radom transform on 2D laser images with the Maximum Intensity Projection can generate 3D views of the considered scene from which we can extract the 3D concealed object in real time. With different original numerical or experimental examples, we investigate the effects of the input contrasts. We show the robustness and the stability of the method. We have developed a new patented method of 3D laser imaging based on three-dimensional reflective tomographic reconstruction algorithms and an associated visualization method. In this paper we present the global 3D reconstruction and visualization procedures.
NASA Astrophysics Data System (ADS)
Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Stegman, Dave R.; Suetsugu, Daisuke; Bina, Craig; Inoue, Toru; Wiens, Douglas; Jellinek, Mark
2010-11-01
Seismic tomography reveals the natural mode of convection in the Earth is whole mantle with subducted slabs clearly seen as continuous features into the lower mantle. However, simultaneously existing alongside these deep slabs are stagnant slabs which are, if only temporarily, trapped in the upper mantle. Previous numerical models of mantle convection have observed a range of behavior for slabs in the transition zone depending on viscosity stratification and mineral phase transitions, but typically only exhibit flat-lying slabs when mantle convection is layered or trench migration is imposed. We use 3-D spherical models of mantle convection which range up to Earth-like conditions in Rayleigh number to systematically investigate three effects on mantle dynamics: (1) the mineral phase transitions, (2) a strongly temperature-dependent viscosity with plastic yielding at shallow depth, and (3) a viscosity increase in the lower mantle. First a regime diagram is constructed for isoviscous models over a wide range of Rayleigh number and Clapeyron slope for which the convective mode is determined. It agrees very well with previous results from 2-D simulations by Christensen and Yuen (1985), suggesting present-day Earth is in the intermittent convection mode rather than layered or strictly whole mantle. Two calculations at Earth-like conditions (Ra and RaH = 2 í 107 and 5 í 108, respectively) which include effects (2) and (3) are produced with and without the effect of the mineral phase transitions. The first calculation (without the phase transition) successfully produces plate-like behavior with a long wavelength structure and surface heat flow similar to Earth's value. While the observed convective flow pattern in the lower mantle is broader compared to isoviscous models, it basically shows the behavior of whole mantle convection, and does not exhibit any slab flattening at the viscosity increase at 660 km depth. The second calculation which includes the phase
Hanumanthappa, Pradeep; Teli, Mahesh K; Krishnamurthy, Rajanikant G
2012-05-01
In the present report, 3D-QSAR analysis was executed on the previously synthesized and evaluated derivatives of isoquinolin-1-ones and quinazolin-4-ones; potent inhibitors of tumor necrosis factor α (TNFα). Statistically significant 3D-QSAR models were generated using 42 molecules in the training set. The predictive ability of models was determined using a randomly chosen test set of 16 molecules, which gave excellent predictive correlation coefficients for 3-D models, suggesting good predictive index. Pharmacophore prediction generated a five point pharmacophore (AAHRR): two hydrogen bond acceptor (A), one hydrophobic (H) and two ring (RR) features. This pharmacophore hypothesis furnished a statistically meaningful 3D-QSAR model with partial least-square (PLS) factors seven having R2=0.9965, Q2=0.6185, Root Mean Squared Error=0.4284 and Pearson-R=0.853. Docking study revealed the important amino acid residues (His 15, Tyr 59, Tyr 151, Gly 121 and Gly 122) in the active site of TNFα that are involved in binding of the active ligand. Orientation of the pharmacophore hypothesis AAHRR.25 corresponded very closely with the binding mode recorded in the active site of ligand bound complex. The results of ligand based pharmacophore hypothesis and atom based 3D-QSAR furnished crucial structural insights and also highlighted the important binding features of isoquinolin-1-ones and quinazolin-4-ones derivatives, which may provide guidance for the rational design of novel and more potent TNFα inhibitors.
NASA Astrophysics Data System (ADS)
Podwin, A.; Kubicki, W.; Adamski, K.; Walczak, R.; Dziuban, J. A.
2016-11-01
The concept of biochemical energy cascade of microorganisms towards oxygen generation in 3D printed lab-on-a-chip has been presented. In this work, carbon dioxide - a product of ethanol fermentation of yeasts has been utilized to enable light-initialized photosynthesis of euglenas and as a result of their metabolic transitions produce pure oxygen.
XML3D and Xflow: combining declarative 3D for the Web with generic data flows.
Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp
2013-01-01
Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing.
Ovsyannikov, A; Lang, M N; Ferlay, S; Solovieva, S E; Antipin, I S; Konovalov, A I; Kyritsakas, N; Hosseini, M W
2013-01-07
Three new organic tectons (2–4) based on the p-tert-butylthiacalix[4]arene backbone, blocked in the 1,3-alternate conformation, bearing four pyridyl coordinating moieties, have been synthesised and characterised in the solid state. The ligands are positional isomers and differ by the position of the N atom on the pyridyl unit (ortho for 2, meta for 3 and para for 4). Their combination with the Ag+ cation leads, reproducibly, to the formation of 2- and 3-D infinite silver coordination networks. Independent of the nature of the anion, the combination of 2 offering four (N,S) type chelates with the Ag+ cation affords an unprecedented diamond type 3D network. Both 3 and 4, behaving as tetrakis monodentate ligands, lead to the formation of 2-D architectures.
NASA Astrophysics Data System (ADS)
Khan, Ziyauddin; Chetia, Tridip Ranjan; Qureshi, Mohammad
2012-05-01
Hyperbranched 3D SrS/CdS nanostructures were synthesized using a one pot hydrothermal method. Transmission Electron Microscopy (TEM) and Field Emission-Scanning Electron Microscopy (FE-SEM) analysis showed the formation of flower-like structure and the crystalline phase was confirmed by powder X-ray diffraction. The prepared 3D SrS/CdS exhibited improved photocatalytic activity for water splitting leading to H2 generation (AQY 10%) and nearly complete degradation of methyl orange (MO) dye. The dye degradation followed first order kinetics and the apparent reaction rate constant (kapp) was 0.136 min-1. The present 3D SrS/CdS structure promise to be efficient photocatalysts due to (i) the facile intersystem charge transfer resulting from their band alignment (ii) enhanced specific surface area and (iii) crystallinity.Hyperbranched 3D SrS/CdS nanostructures were synthesized using a one pot hydrothermal method. Transmission Electron Microscopy (TEM) and Field Emission-Scanning Electron Microscopy (FE-SEM) analysis showed the formation of flower-like structure and the crystalline phase was confirmed by powder X-ray diffraction. The prepared 3D SrS/CdS exhibited improved photocatalytic activity for water splitting leading to H2 generation (AQY 10%) and nearly complete degradation of methyl orange (MO) dye. The dye degradation followed first order kinetics and the apparent reaction rate constant (kapp) was 0.136 min-1. The present 3D SrS/CdS structure promise to be efficient photocatalysts due to (i) the facile intersystem charge transfer resulting from their band alignment (ii) enhanced specific surface area and (iii) crystallinity. Electronic supplementary information (ESI) available: Schematic experimental setup for photocatalytic hydrogen generation, TEM of CdS NWs and SrS NPs, FESEM images of 3D SrS/CdS, Low resolution TEM images for 3D SrS/CdS, EDX and SAED, SEM of SrS/CdS at different ratios, progress of hydrogen production at different time interval, different UV
MHD simulations on an unstructured mesh
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
Blacker, Teddy D.
1994-01-01
An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.
Lee, Won Hee; Kim, Tae-Seong
2012-01-01
This study proposes an advanced finite element (FE) head modeling technique through which high-resolution FE meshes adaptive to the degree of tissue anisotropy can be generated. Our adaptive meshing scheme (called wMesh) uses MRI structural information and fractional anisotropy maps derived from diffusion tensors in the FE mesh generation process, optimally reflecting electrical properties of the human brain. We examined the characteristics of the wMeshes through various qualitative and quantitative comparisons to the conventional FE regular-sized meshes that are non-adaptive to the degree of white matter anisotropy. We investigated numerical differences in the FE forward solutions that include the electrical potential and current density generated by current sources in the brain. The quantitative difference was calculated by two statistical measures of relative difference measure (RDM) and magnification factor (MAG). The results show that the wMeshes are adaptive to the anisotropic density of the WM anisotropy, and they better reflect the density and directionality of tissue conductivity anisotropy. Our comparison results between various anisotropic regular mesh and wMesh models show that there are substantial differences in the EEG forward solutions in the brain (up to RDM=0.48 and MAG=0.63 in the electrical potential, and RDM=0.65 and MAG=0.52 in the current density). Our analysis results indicate that the wMeshes produce different forward solutions that are different from the conventional regular meshes. We present some results that the wMesh head modeling approach enhances the sensitivity and accuracy of the FE solutions at the interfaces or in the regions where the anisotropic conductivities change sharply or their directional changes are complex. The fully automatic wMesh generation technique should be useful for modeling an individual-specific and high-resolution anisotropic FE head model incorporating realistic anisotropic conductivity distributions
Kim, Do-Hyeong; Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Jeong, Ji-Seong; Lee, Jae-Won; Kim, Kyung-Ah; Kim, Nam; Yoo, Kwan-Hee
2013-12-01
This paper proposes an open computer language (OpenCL) parallel processing method to generate the elemental image arrays (EIAs) for hexagonal lens array from a three-dimensional (3D) object such as a volume data. Hexagonal lens array has a higher fill factor compared to the rectangular lens array case; however, each pixel of an elemental image should be determined to belong to the single hexagonal lens. Therefore, generation for the entire EIA requires very large computations. The proposed method reduces processing time for the EIAs for a given hexagonal lens array. By using the proposed image space parallel processing (ISPP) method, it can enhance the processing speed that generates the 3D display of real-time interactive integral imaging for hexagonal lens array. In our experiment, we implemented the EIAs for hexagonal lens array in real-time and obtained a good processing time for a large of volume data for multiple cases of lens arrays.
NASA Astrophysics Data System (ADS)
Choi, Youngwoo; Baek, Minki; Zhang, Zhuo; Dao, Van-Duong; Choi, Ho-Suk; Yong, Kijung
2015-09-01
A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad photoresponse in the UV to near-IR region, resulting in 47% IPCE in a wide light region from 400 to 500 nm; and the stainless steel mesh serves not only as a conductor for charge transport, but also as a skeleton of the grid structure for absorbing more light. The related mechanism has been investigated, which demonstrates that the two-storey CZTS/CdS/ZnO@steel composite nanostructure would have great potential as a promising photoelectrode with high efficiency and low cost for PEC hydrogen generation.A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad
NASA Astrophysics Data System (ADS)
Gumerov, R. N.
2016-11-01
Shift transformations and linear operators generated by shifts have a number of applications in signal and image processing. This note is concerned with a problem which has arisen in studying properties of real-world signals and images defined on meshes. For processing we suggest to introduce in domains of signals and images different semigroup structures. Semigroup operations give us opportunities to introduce shift transformations of signals and images. We study norms of polynomial filters generated by shift operators.
Infrastructure for 3D Imaging Test Bed
2007-05-11
analysis. (c.) Real time detection & analysis of human gait: using a video camera we capture walking human silhouette for pattern modeling and gait ... analysis . Fig. 5 shows the scanning result result that is fed into a Geo-magic software tool for 3D meshing. Fig. 5: 3D scanning result In
Adaptive Meshing of Ship Air-Wake Flowfields
2014-03-03
this code are currently generated using Pointwise .[2] This code also uses a second order spatial finite-volume scheme with first order explicit...simulated with the two codes and is shown below. The surface mesh from the 3D mesh generated by Pointwise serves as the geometry for the OctFlow code. A...Geometries", AIAA- 2000-1006,2000. 2. " Pointwise ." Pointwise , Inc., http://www.pointwise.com. 3. O’Connell, M., and Karman, S., "Mesh Rupturing: A
Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori; Yamamoto, Kenji; Kurita, Taiichiro
2012-09-10
We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.
You, Shi-Jie; Wang, Xiu-Heng; Zhang, Jin-Na; Wang, Jing-Yuan; Ren, Nan-Qi; Gong, Xiao-Bo
2011-01-15
This study reports the fabrication of a new membrane electrode assembly by using stainless steel mesh (SSM) as raw material and its effectiveness as gas diffusion electrode (GDE) for electrochemical oxygen reduction in microbial fuel cell (MFC). Based on feeding glucose (0.5 g L(-1)) substrate to a single-chambered MFC, power generation using SSM-based GDE was increased with the decrease of polytetrafluoroethylene (PTFE) content applied during fabrication, reaching the optimum power density of 951.6 mW m(-2) at 20% PTFE. Repeatable cell voltage of 0.51 V (external resistance of 400 Ω) and maximum power density of 951.6 mW m(-2) produced for the MFC with SSM-based GDE are comparable to that of 0.52 V and 972.6 mW m(-2), respectively obtained for the MFC containing typical carbon cloth (CC)-made GDE. Besides, Coulombic efficiency (CE) is found higher for GDE (SSM or CC) with membrane assembly than without, which results preliminarily from the mitigation of Coulombic loss being associated with oxygen diffusion and substrate crossover. This study demonstrates that with its good electrical conductivity and much lower cost, the SSM-made GDE suggests a promising alternative as efficient and more economically viable material to conventional typical carbon for power production from biomass in MFC.
Ataei, Sanaz; Yilmaz, Serap; Ertan-Bolelli, Tugba; Yildiz, Ilkay
2015-07-01
The continued interest in designing novel topoisomerase I (Topo I) inhibitors and the lack of adequate ligand-based computer-aided drug discovery efforts combined with the drawbacks of structure-based design prompted us to explore the possibility of developing ligand-based three-dimensional (3D) pharmacophore(s). This approach avoids the pitfalls of structure-based techniques because it only focuses on common features among known ligands; furthermore, the pharmacophore model can be used as 3D search queries to discover new Topo I inhibitory scaffolds. In this article, we employed the HipHop module using Discovery Studio to construct plausible binding hypotheses for clinically used Topo I inhibitors, such as camptothecin, topotecan, belotecan, and SN-38, which is an active metabolite of irinotecan. The docked pose of topotecan was selected as a reference compound. The first hypothesis (Hypo 01) among the obtained 10 hypotheses was chosen for further analysis. Hypo 01 had six features, which were two hydrogen-bond acceptors, one hydrogen-bond donor, one hydrophob aromatic and one hydrophob aliphatic, and one ring aromatic. Our obtained hypothesis was checked by using some of the aromathecin derivatives which were published for their Topo I inhibitory potency. Moreover, five structures were found to be possible anti-Topo I compounds from the DruglikeDiverse database. From this research, it can be suggested that our model could be useful for further studies in order to design new potent Topo I-targeting antitumor drugs.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Becker, Reinard
2012-02-15
The plasma-beam interface (meniscus) is highly nonlinear and its correct simulation needs a mesh resolution of the order of the Debye length. In high intensity ion sources, the plasma density is usually too high and the Debye length is too small for a sufficient mesh resolution. A well established method to overcome this dilemma is the use of a field line and an equipotential line to be created in a first run, in order to dissect the simulation problem into a plasma part with much higher mesh resolution and a transport part with usual resolution. In the past many users of IGUN have found it difficult to perform this dissection. Therefore, a new feature has been added to IGUN to automatically write new input files for the dissected areas. For this a field line starting point needs to be defined as well as the potential of a pseudo electrode. The field line then is used for the plasma part as a slanted and curved Neumann boundary, while the pseudo electrode will act as the extraction electrode. The trajectory end data then are used in the automatically generated concatenating run as ion starting input without any need for the user to adjust for positions or different mesh resolutions. Here we show as an example the simulation of the well-known CHORDIS ion source, the calculated field line, the pseudo equipotential line, and the resulting simulations for the automatically generated input files for the plasma and the transport parts.
NASA Astrophysics Data System (ADS)
Aasen, Helge; Burkart, Andreas; Bolten, Andreas; Bareth, Georg
2015-10-01
This paper describes a novel method to derive 3D hyperspectral information from lightweight snapshot cameras for unmanned aerial vehicles for vegetation monitoring. Snapshot cameras record an image cube with one spectral and two spatial dimensions with every exposure. First, we describe and apply methods to radiometrically characterize and calibrate these cameras. Then, we introduce our processing chain to derive 3D hyperspectral information from the calibrated image cubes based on structure from motion. The approach includes a novel way for quality assurance of the data which is used to assess the quality of the hyperspectral data for every single pixel in the final data product. The result is a hyperspectral digital surface model as a representation of the surface in 3D space linked with the hyperspectral information emitted and reflected by the objects covered by the surface. In this study we use the hyperspectral camera Cubert UHD 185-Firefly, which collects 125 bands from 450 to 950 nm. The obtained data product has a spatial resolution of approximately 1 cm for the spatial and 21 cm for the hyperspectral information. The radiometric calibration yields good results with less than 1% offset in reflectance compared to an ASD FieldSpec 3 for most of the spectral range. The quality assurance information shows that the radiometric precision is better than 0.13% for the derived data product. We apply the approach to data from a flight campaign in a barley experiment with different varieties during the growth stage heading (BBCH 52 - 59) to demonstrate the feasibility for vegetation monitoring in the context of precision agriculture. The plant parameters retrieved from the data product correspond to in-field measurements of a single date field campaign for plant height (R2 = 0.7), chlorophyll (BGI2, R2 = 0.52), LAI (RDVI, R2 = 0.32) and biomass (RDVI, R2 = 0.29). Our approach can also be applied for other image-frame cameras as long as the individual bands of the
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, T.J.; Mitchell, S.A.; Blacker, T.D.; Murdoch, P.
1998-06-16
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as ``whisker chords.`` This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method. 79 figs.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, Timothy James; Mitchell, Scott A.; Blacker, Ted D.; Murdoch, Peter
1998-01-01
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as "whisker chords." This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method.
Huang, Charles Lung-Cheng; Hsiao, Sigmund; Hwu, Hai-Gwo; Howng, Shen-Long
2012-12-30
The Chinese Facial Emotion Recognition Database (CFERD), a computer-generated three-dimensional (3D) paradigm, was developed to measure the recognition of facial emotional expressions at different intensities. The stimuli consisted of 3D colour photographic images of six basic facial emotional expressions (happiness, sadness, disgust, fear, anger and surprise) and neutral faces of the Chinese. The purpose of the present study is to describe the development and validation of CFERD with nonclinical healthy participants (N=100; 50 men; age ranging between 18 and 50 years), and to generate normative data set. The results showed that the sensitivity index d' [d'=Z(hit rate)-Z(false alarm rate), where function Z(p), p∈[0,1
Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images
NASA Astrophysics Data System (ADS)
Babu, Sabarish; Liao, Pao-Chuan; Shin, Min C.; Tsap, Leonid V.
2006-12-01
The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.
Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images
Babu, S; Liao, P; Shin, M C; Tsap, L V
2004-04-28
The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.
Real time 3D and heterogeneous data fusion
Little, C.Q.; Small, D.E.
1998-03-01
This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.
3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D
Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.
2012-07-01
As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)
Measuring the Visual Salience of 3D Printed Objects.
Wang, Xi; Lindlbauer, David; Lessig, Christian; Maertens, Marianne; Alexa, Marc
2016-01-01
To investigate human viewing behavior on physical realizations of 3D objects, the authors use an eye tracker with scene camera and fiducial markers on 3D objects to gather fixations on the presented stimuli. They use this data to validate assumptions regarding visual saliency that so far have experimentally only been analyzed for flat stimuli. They provide a way to compare fixation sequences from different subjects and developed a model for generating test sequences of fixations unrelated to the stimuli. Their results suggest that human observers agree in their fixations for the same object under similar viewing conditions. They also developed a simple procedure to validate computational models for visual saliency of 3D objects and found that popular models of mesh saliency based on center surround patterns fail to predict fixations.
Interactive 3d Landscapes on Line
NASA Astrophysics Data System (ADS)
Fanini, B.; Calori, L.; Ferdani, D.; Pescarin, S.
2011-09-01
The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.
Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment.
Biedron, S. G.
1999-02-26
Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented.
NASA Astrophysics Data System (ADS)
Kwak, Eunju
The development of sensor technologies and the increase in user requirements have resulted in many different approaches for efficient building model generation. Three-dimensional building models are important in various applications, such as disaster management and urban planning. Despite this importance, generation of these models lacks economical and reliable techniques which take advantage of the available multi-sensory data from single and multiple platforms. Therefore, this research develops a framework for fully-automated building model generation by integrating data-driven and model-driven methods as well as exploiting the advantages of images and LiDAR datasets. The building model generation starts by employing LiDAR data for building detection and approximate boundary determination. The generated building boundaries are then integrated into a model-based image processing strategy, because LiDAR derived planes show irregular boundaries due to the nature of LiDAR point acquisition. The focus of the research is generating models for the buildings with right-angled-corners, which can be described with a collection of rectangles (e.g., L-shape, T-shape, U-shape, gable roofs, and more complex building shapes which are combinations of the aforementioned shapes), under the assumption that the majority of the buildings in urban areas belong to this category. Therefore, by applying the Minimum Bounding Rectangle (MBR) algorithm recursively, the LiDAR boundaries are decomposed into sets of rectangles for further processing. At the same time the quality of the MBRs are examined to verify that the buildings, from which the boundaries are generated, are buildings with right-angled-corners. These rectangles are preliminary model primitives. The parameters that define the model primitives are adjusted using detected edges in the imagery through the least-squares adjustment procedure, i.e., model-based image fitting. The level of detail in the final Digital Building Model
Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J
2010-04-28
In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes.
NASA Astrophysics Data System (ADS)
Liu, Lichen; Díaz, Urbano; Arenal, Raul; Agostini, Giovanni; Concepción, Patricia; Corma, Avelino
2017-01-01
Single metal atoms and metal clusters have attracted much attention thanks to their advantageous capabilities as heterogeneous catalysts. However, the generation of stable single atoms and clusters on a solid support is still challenging. Herein, we report a new strategy for the generation of single Pt atoms and Pt clusters with exceptionally high thermal stability, formed within purely siliceous MCM-22 during the growth of a two-dimensional zeolite into three dimensions. These subnanometric Pt species are stabilized by MCM-22, even after treatment in air up to 540 °C. Furthermore, these stable Pt species confined within internal framework cavities show size-selective catalysis for the hydrogenation of alkenes. High-temperature oxidation-reduction treatments result in the growth of encapsulated Pt species to small nanoparticles in the approximate size range of 1 to 2 nm. The stability and catalytic activity of encapsulated Pt species is also reflected in the dehydrogenation of propane to propylene.
Liu, Lichen; Díaz, Urbano; Arenal, Raul; Agostini, Giovanni; Concepción, Patricia; Corma, Avelino
2017-01-01
Single metal atoms and metal clusters have attracted much attention thanks to their advantageous capabilities as heterogeneous catalysts. However, the generation of stable single atoms and clusters on a solid support is still challenging. Herein, we report a new strategy for the generation of single Pt atoms and Pt clusters with exceptionally high thermal stability, formed within purely siliceous MCM-22 during the growth of a two-dimensional zeolite into three dimensions. These subnanometric Pt species are stabilized by MCM-22, even after treatment in air up to 540 °C. Furthermore, these stable Pt species confined within internal framework cavities show size-selective catalysis for the hydrogenation of alkenes. High-temperature oxidation-reduction treatments result in the growth of encapsulated Pt species to small nanoparticles in the approximate size range of 1 to 2 nm. The stability and catalytic activity of encapsulated Pt species is also reflected in the dehydrogenation of propane to propylene.
Sun, Ke; Jing, Yi; Li, Chun; Zhang, Xiaofeng; Aguinaldo, Ryan; Kargar, Alireza; Madsen, Kristian; Banu, Khaleda; Zhou, Yuchun; Bando, Yoshio; Liu, Zhaowei; Wang, Deli
2012-03-07
We report the fabrication of a three dimensional branched ZnO/Si heterojunction nanowire array by a two-step, wafer-scale, low-cost, solution etching/growth method and its use as photoelectrode in a photoelectrochemical cell for high efficiency solar powered water splitting. Specifically, we demonstrate that the branched nanowire heterojunction photoelectrode offers improved light absorption, increased photocurrent generation due to the effective charge separation in Si nanowire backbones and ZnO nanowire branching, and enhanced gas evolution kinetics because of the dramatically increased surface area and decreased radius of curvature. The branching nanowire heterostructures offer direct functional integration of different materials for high efficiency water photoelectrolysis and scalable photoelectrodes for clean hydrogen fuel generation.
Hurwitz, Martina; Williams, Christopher L; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G; Mak, Raymond H; Lewis, John H
2015-01-21
Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.
NASA Astrophysics Data System (ADS)
Wu, Guangxi; Yu, Xiong
2015-06-01
Thermoelectric power generator has potential for small-scale and distributed power generation because of its high durability and scalability. It is very important to realize that the transient behavior of thermoelectric modules (TEM) affects a thermoelectric generator's response to dynamic working environments. Traditionally, researchers have used simplified models to describe the behavior of thermoelectric modules. In this paper we propose a comprehensive mathematical model that considers the effect of variations of chemical potential and carrier density, which are ignored by traditional models. Finite element models based on this new model are used to simulate the transient behavior of a thermoelectric module subjected to rapid changes in boundary temperature or working load. Simulation results show that transition times of thermoelectric modules affected by temperature change are much longer than those of modules affected by changes in electrical load resistance. Sudden changes in working temperature cause voltage overshoot of the TEM output, which, however, is not observed in responses to sudden changes of load resistance. Comparisons also show there are significant differences between the behavior of TEM predicted by use of this new comprehensive model and that predicted by use of traditional models, particularly for the high-temperature intrinsic ionization region and the low-temperature weak ionization region. This implies that chemical potential and carrier density variations, which are taken into account by this new model but ignored by traditional models, have major effects on the performance of TEM.
NASA Astrophysics Data System (ADS)
Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.
2015-01-01
Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271
Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe
2015-07-15
X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations.
MeshVoro: A three-dimensional Voronoi mesh building tool for the TOUGH family of codes
NASA Astrophysics Data System (ADS)
Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.
2014-09-01
Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro++ (Chris H. Rycroft, 2009. Chaos 19, 041111) library and is capable of generating complex three-dimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess, K., Oldenburg C., Moridis G., 1999. Report LBNL-43134, 582. Lawrence Berkeley National Laboratory, Berkeley, CA) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.
MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes
Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.
2013-09-30
Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.
N. A. Anderson; P. Sabharwall
2014-01-01
The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.
NASA Astrophysics Data System (ADS)
Schilling, S.; Diefenbach, A. K.
2012-12-01
Photogrammetry has been used to generate contours and Digital Elevation Models (DEMs) to monitor change at Mount St. Helens, WA since the 1980 eruption. We continue to improve techniques to monitor topographic changes within the crater. During the 2004-2008 eruption, 26 DEMs were used to track volume and rates of growth of a lava dome and changes of Crater Glacier. These measurements constrained seismogenic extrusion models and were compared with geodetic deflation volume to constrain magma chamber behavior. We used photogrammetric software to collect irregularly spaced 3D points primarily by hand and, in reasonably flat areas, by automated algorithms, from commercial vertical aerial photographs. These models took days to months to complete and the areal extent of each surface was determined by visual inspection. Later in the eruption, we pioneered the use of different software to generate irregularly spaced 3D points manually from oblique images captured by a hand-held digital camera. In each case, the irregularly spaced points and intervening interpolated points formed regular arrays of cells or DEMs. Calculations using DEMs produced from the hand-held images duplicated volumetric and rate results gleaned from the vertical aerial photographs. This manual point capture technique from oblique hand-held photographs required only a few hours to generate a model over a focused area such as the lava dome, but would have taken perhaps days to capture data over the entire crater. Here, we present results from new photogrammetric software that uses robust image-matching algorithms to produce 3D surfaces automatically after inner, relative, and absolute orientations between overlapping photographs are completed. Measurements using scans of vertical aerial photographs taken August 10, 2005 produced dome volume estimates within two percent of those from a surface generated using the vertical aerial photograph manual method. The new August 10th orientations took less than 8
NASA Astrophysics Data System (ADS)
McFall, B. C.; Fritz, H. M.
2013-12-01
Tsunamis generated by landslides and volcano flank collapse can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. Two different materials are used to simulate landslides to study the granulometry effects: naturally rounded river gravel and cobble mixtures. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1
NASA Technical Reports Server (NTRS)
Volakis, John L.
1990-01-01
There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. Second, the diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's).
Di Buduo, Christian A.; Wray, Lindsay S.; Tozzi, Lorenzo; Malara, Alessandro; Chen, Ying; Ghezzi, Chiara E.; Smoot, Daniel; Sfara, Carla; Antonelli, Antonella; Spedden, Elise; Bruni, Giovanna; Staii, Cristian; De Marco, Luigi; Magnani, Mauro; Kaplan, David L.
2015-01-01
We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production. PMID:25575540
Final Report for LDRD Project on Rapid Problem Setup for Mesh-Based Simulation (Rapsodi)
Brown, D L; Henshaw, W; Petersson, N A; Fast, P; Chand, K
2003-02-07
Under LLNL Exploratory Research LDRD funding, the Rapsodi project developed rapid setup technology for computational physics and engineering problems that require computational representations of complex geometry. Many simulation projects at LLNL involve the solution of partial differential equations in complex 3-D geometries. A significant bottleneck in carrying out these simulations arises in converting some specification of a geometry, such as a computer-aided design (CAD) drawing to a computationally appropriate 3-D mesh that can be used for simulation and analysis. Even using state-of-the-art mesh generation software, this problem setup step typically has required weeks or months, which is often much longer than required to carry out the computational simulation itself. The Rapsodi project built computational tools and designed algorithms that help to significantly reduce this setup time to less than a day for many realistic problems. The project targeted rapid setup technology for computational physics and engineering problems that use mixed-element unstructured meshes, overset meshes or Cartesian-embedded boundary (EB) meshes to represent complex geometry. It also built tools that aid in constructing computational representations of geometry for problems that do not require a mesh. While completely automatic mesh generation is extremely difficult, the amount of manual labor required can be significantly reduced. By developing novel, automated, component-based mesh construction procedures and automated CAD geometry repair and cleanup tools, Rapsodi has significantly reduced the amount of hand crafting required to generate geometry and meshes for scientific simulation codes.
NASA Astrophysics Data System (ADS)
Shetty, Rishabh M.; Myers, Jakrey R.; Sreenivasulu, Manoj; Teller, Wacey; Vela, Juan; Houkal, Jeff; Chao, Shih-Hui; Johnson, Roger H.; Kelbauskas, Laimonas; Wang, Hong; Meldrum, Deirdre R.
2017-01-01
This paper presents three different microfabrication technologies for manufacturing out-of-plane, flat-bottomed, undercut trapezoidal structures for generating a fluidic microscale vortex (microvortex). The first method is based on anisotropic silicon etching and a ‘sandwich’ UV polymer casting assembly; the second method uses a backside diffuser photolithography technique; and the third method features a tilted backside photolithography technique. We discuss the advantages, limitations, and utility of each technique. We further demonstrate that the microvortex generated in the resultant undercut trapezoidal structures can be used to rotate biological microparticles, e.g. single, live cells for multiperspective, high resolution 3D imaging using computed tomography, and angularly resolved confocal imaging.
Tam, Matthew David; Laycock, Stephen David; Jayne, David; Babar, Judith; Noble, Brendon
2013-08-01
This report concerns a 67 year old male patient with known advanced relapsing polychondritis complicated by tracheobronchial chondromalacia who is increasingly symptomatic and therapeutic options such as tracheostomy and stenting procedures are being considered. The DICOM files from the patient's dynamic chest CT in its inspiratory and expiratory phases were used to generate stereolithography (STL) files and hence print out 3-D models of the patient's trachea and central airways. The 4 full-sized models allowed better understanding of the extent and location of any stenosis or malacic change and should aid any planned future stenting procedures. The future possibility of using the models as scaffolding to generate a new cartilaginous upper airway using regenerative medical techniques is also discussed.
Getting in touch--3D printing in forensic imaging.
Ebert, Lars Chr; Thali, Michael J; Ross, Steffen
2011-09-10
With the increasing use of medical imaging in forensics, as well as the technological advances in rapid prototyping, we suggest combining these techniques to generate displays of forensic findings. We used computed tomography (CT), CT angiography, magnetic resonance imaging (MRI) and surface scanning with photogrammetry in conjunction with segmentation techniques to generate 3D polygon meshes. Based on these data sets, a 3D printer created colored models of the anatomical structures. Using this technique, we could create models of bone fractures, vessels, cardiac infarctions, ruptured organs as well as bitemark wounds. The final models are anatomically accurate, fully colored representations of bones, vessels and soft tissue, and they demonstrate radiologically visible pathologies. The models are more easily understood by laypersons than volume rendering or 2D reconstructions. Therefore, they are suitable for presentations in courtrooms and for educational purposes.
Beam Optics Analysis - An Advanced 3D Trajectory Code
Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark
2006-01-03
Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.
An adaptive learning approach for 3-D surface reconstruction from point clouds.
Junior, Agostinho de Medeiros Brito; Neto, Adrião Duarte Dória; de Melo, Jorge Dantas; Goncalves, Luiz Marcos Garcia
2008-06-01
In this paper, we propose a multiresolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3-D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen's self-organizing map (SOM). Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multiresolution, iterative scheme. Reconstruction was experimented on with several point sets, including different shapes and sizes. Results show generated meshes very close to object final shapes. We include measures of performance and discuss robustness.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
NASA Astrophysics Data System (ADS)
Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee
2012-04-01
In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.
Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee
2012-04-21
In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.
3D reconstruction of SEM images by use of optical photogrammetry software.
Eulitz, Mona; Reiss, Gebhard
2015-08-01
Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.
Yang, Hao; Xu, Xiangyang; Neumann, Ingo
2014-11-19
Terrestrial laser scanning technology (TLS) is a new technique for quickly getting three-dimensional information. In this paper we research the health assessment of concrete structures with a Finite Element Method (FEM) model based on TLS. The goal focuses on the benefits of 3D TLS in the generation and calibration of FEM models, in order to build a convenient, efficient and intelligent model which can be widely used for the detection and assessment of bridges, buildings, subways and other objects. After comparing the finite element simulation with surface-based measurement data from TLS, the FEM model is determined to be acceptable with an error of less than 5%. The benefit of TLS lies mainly in the possibility of a surface-based validation of results predicted by the FEM model.
NASA Astrophysics Data System (ADS)
Provost, Floriane; Malet, Jean-Philippe; Helmstetter, Agnès; Doubre, Cécile; Gance, Julien
2016-04-01
Microseismicity monitoring has proven to be an important tool for a better understanding of the deformation occurring in slow-sliding landslides. However locating the seismic sources generated by a landslide remains a challenging problem due to (1) the small sizes of the landslide, (b) the heterogenous and time-changing petro-physical properties of the landslide material, (c) the complexity of the recorded signals with unclear discriminations of the wave onsets, and (d) the difficulties to install and maintain a dense seismological network on-site close to the seismic sources. We studied the seismic sources generated by the deformation of the clay-rich Super-Sauze landslide (South French Alps). Previous studies show that the most active zone is the uphill part of the landslide within a zone of 300x300m2. Two seismic antennas have been installed on the sides of this zone and a seismic campaign was conducted to build a 3D velocity model of the area. Calibration shots were performed to test the performance of the location method. We show that the use of a 3D velocity model integrated in a beam forming location method slightly improves the accuracy of the shot location epicenter. However, this approach does not help to interpret with confidence the location of the natural events because the horizontal error remains larger than 50m for more than 50% of the shots. Nevertheless, adding station corrections and constraining the grid search area with additional informations based on the signal and the landslide behavior such as SNR, seismic event typology, and surface kinematics of the landslide allow obtaining reliable results. More than 70% of the calibration shots could be located with a horizontal error of less than 40m. The lack of sensor installed in depth as well as the the lack of calibration shots realized at different depths does not permit us to identify the depth of the sources.
NASA Technical Reports Server (NTRS)
Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no
An Improved Version of TOPAZ 3D
Krasnykh, Anatoly
2003-07-29
An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.
Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge
Wang, Yongjie; Dong, Lifang Liu, Weibo; He, Yafeng; Li, Yonghui
2014-07-15
Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals are actually temporal integrations of those of transient sublattices.
Pope, Paul A; Ranken, Doug M
2010-01-01
A method for abstracting a 3D model by shrinking a triangular mesh, defined upon a best fitting ellipsoid surrounding the model, onto the model's surface has been previously described. This ''shrinkwrap'' process enables a semi-regular mesh to be defined upon an object's surface. This creates a useful data structure for conducting remote sensing simulations and image processing. However, using a best fitting ellipsoid having a graticule-based tessellation to seed the shrinkwrap process suffers from a mesh which is too dense at the poles. To achieve a more regular mesh, the use of a best fitting, subdivided icosahedron was tested. By subdividing each of the twenty facets of the icosahedron into regular triangles of a predetermined size, arbitrarily dense, highly-regular starting meshes can be created. Comparisons of the meshes resulting from these two seed surfaces are described. Use of a best fitting icosahedron-based mesh as the seed surface in the shrinkwrap process is preferable to using a best fitting ellipsoid. The impacts to remote sensing simulations, specifically generation of synthetic imagery, is illustrated.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1993-01-01
A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part eliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.
Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F
2014-12-21
Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Feng, Pin-Hao; Lagutin, Sergei A.
2000-01-01
In this report, we propose a new geometry for low-noise, increased-strength helical gears of the Novikov-Wildhaber type. Contact stresses are reduced as a result of their convex-concave gear tooth surfaces. The gear tooth surfaces are crowned in the profile direction to localize bearing contact and in the longitudinal direction to obtain a parabolic function of transmission errors. Such a function results in the reduction of noise and vibrations. Methods for the generation of the proposed gear tooth surfaces by grinding and hobbing are considered, and a tooth contact analysis (TCA) computer program to simulate meshing and contact is applied. The report also investigates the influence of misalignment on transmission errors and shift of bearing contact. Numerical examples to illustrate the developed approaches are proposed. The proposed geometry was patented by Ford/UIC (Serial Number 09-340-824, pending) on June 28, 1999.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.
1984-02-01
of three dimensional grid generation both elliptic and hyper- bolic methods were developed. A chimera grid scheme, that is, the use of overset multiple...were developed. A chimera grid scheme, that is, the use of overset multiple grid systems, was also tested in two dimensions. In our study of zonal...Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Grid Generation ............................... 2 3. Overset Grids
2010-01-01
Background Growing evidence suggests that the majority of tumors are organized hierarchically, comprising a population of tumor-initiating, or cancer stem cells (CSCs) responsible for tumor development, maintenance and resistance to drugs. Previously we have shown that the CD133high/CD44high fraction of colon cancer cells is different from their bulk counterparts at the functional, morphological and genomic levels. In contrast to the majority of colon cancer cells expressing moderate levels of CD133, CD44 and CD166, cells with a high combined expression of CD133 and CD44 possessed several characteristic stem cell features, including profound self-renewal capacity in vivo and in vitro, and the ability to give rise to different cell phenotypes. The present study was undertaken for two aims: a) to determine stem cell-related genomic characteristics of floating 3D multicellular spheroids induced by CD133high/CD44high colon cancer cells; and b) to evaluate CSC-specific alterations induced by new-generation taxoid SB-T-1214. Results Selected CSC phenotype was isolated from three independent invasive colon cancer cell lines, HCT116, HT29 and DLD-1. A stem cell-specific PCR array assay (SABiosciences) revealed that colonospheres induced by purified CD133high/CD44high expressing cells display profound up-regulation of stem cell-related genes in comparison with their bulk counterparts. The FACS analysis has shown that the 3D colonospheres contained some minority cell populations with high levels of expression of Oct4, Sox2, Nanog and c-Myc, which are essential for stem cell pluripotency and self-renewal. Single administration of the SB-T-1214 at concentration 100 nM-1 μM for 48 hr not only induced growth inhibition and apoptotic cell death in these three types of colon cancer spheroids in 3D culture, but also mediated massive inhibition of the stem cell-related genes and significant down-regulation of the pluripotency gene expression. PCR array and FACS data were confirmed
Laser Based 3D Volumetric Display System
1993-03-01
Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye
García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano
2015-01-01
A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611
Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C
2016-07-01
Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers.
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju
2015-01-01
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
Kleinstreuer, C.; Patterson, M.R.
1980-05-01
A two- or three-dimensional finite difference mesh generator capable of discretizing subrectangular flow regions (planar coordinates) with arbitrarily shaped bottom contours (vertical dimension) was developed. This economical, interactive computer code, written in FORTRAN IV and employing DISSPLA software together with graphics terminal, generates first a planar rectangular grid of variable element density according to the geometry and local kinematic flow patterns of a given fluid flow problem. Then subrectangular areas are deleted to produce canals, tributaries, bays, and the like. For three-dimensional problems, arbitrary bathymetric profiles (river beds, channel cross section, ocean shoreline profiles, etc.) are approximated with grid lines forming steps of variable spacing. Furthermore, the code works as a preprocessor numbering the discrete elements and the nodal points. Prescribed values for the principal variables can be automatically assigned to solid as well as kinematic boundaries. Cabinet drawings aid in visualizing the complete flow domain. Input data requirements are necessary only to specify the spacing between grid lines, determine land regions that have to be excluded, and to identify boundary nodes. 15 figures, 2 tables.
García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier
2012-01-01
The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.
NASA Astrophysics Data System (ADS)
Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Raeth, Christoph W.
2005-04-01
Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities (high resolution MRI, micro-CT) are capable of depicting structural details of trabecular bone tissue. From the image data, structural properties obtained by quantitative measures are analysed with respect to the presence of osteoporotic fractures of the spine (in-vivo) or correlated with biomechanical strength as derived from destructive testing (in-vitro). Fairly well established are linear structural measures in 2D that are originally adopted from standard histo-morphometry. Recently, non-linear techniques in 2D and 3D based on the scaling index method (SIM), the standard Hough transform (SHT), and the Minkowski Functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. In this contribution, we generate models of trabecular bone with pre-defined structural properties which are exposed to simulated osteoclastic activity. We apply linear and non-linear texture measures to the models and analyse their performance with respect to detecting architectural changes. This study demonstrates, that the texture measures are capable of monitoring structural changes of complex model data. The diagnostic potential varies for the different parameters and is found to depend on the topological composition of the model and initial "bone density". In our models, non-linear texture measures tend to react more sensitively to small structural changes than linear measures. Best performance is observed for the 3rd and 4th Minkowski Functionals and for the scaling
Pattern based 3D image Steganography
NASA Astrophysics Data System (ADS)
Thiyagarajan, P.; Natarajan, V.; Aghila, G.; Prasanna Venkatesan, V.; Anitha, R.
2013-03-01
This paper proposes a new high capacity Steganographic scheme using 3D geometric models. The novel algorithm re-triangulates a part of a triangle mesh and embeds the secret information into newly added position of triangle meshes. Up to nine bits of secret data can be embedded into vertices of a triangle without causing any changes in the visual quality and the geometric properties of the cover image. Experimental results show that the proposed algorithm is secure, with high capacity and low distortion rate. Our algorithm also resists against uniform affine transformations such as cropping, rotation and scaling. Also, the performance of the method is compared with other existing 3D Steganography algorithms. [Figure not available: see fulltext.
Discovering Structural Regularity in 3D Geometry
Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.
2010-01-01
We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292
Gulyás, Attila I.; Freund, Tamás F.; Káli, Szabolcs
2016-01-01
In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells (PCs) and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree. We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that PCs and inhibitory neurons probably use different input integration strategies. In PCs, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies of active dendritic integration. In
Gulyás, Attila I; Freund, Tamás F; Káli, Szabolcs
2016-01-01
In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells (PCs) and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree. We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that PCs and inhibitory neurons probably use different input integration strategies. In PCs, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies of active dendritic integration. In
M3D project for simulation studies of plasmas
Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.
1998-12-31
The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.
Generating quality word sense disambiguation test sets based on MeSH indexing.
Fan, Jung-Wei; Friedman, Carol
2009-11-14
Word sense disambiguation (WSD) determines the correct meaning of a word that has more than one meaning, and is a critical step in biomedical natural language processing, as interpretation of information in text can be correct only if the meanings of their component terms are correctly identified first. Quality evaluation sets are important to WSD because they can be used as representative samples for developing automatic programs and as referees for comparing different WSD programs. To help create quality test sets for WSD, we developed a MeSH-based automatic sense-tagging method that preferentially annotates terms being topical of the text. Preliminary results were promising and revealed important issues to be addressed in biomedical WSD research. We also suggest that, by cross-validating with 2 or 3 annotators, the method should be able to efficiently generate quality WSD test sets. Online supplement is available at: http://www.dbmi.columbia.edu/~juf7002/AMIA09.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
Filippi, Stefano; Motyl, Barbara; Bandera, Camillo
2009-02-01
At present, computer assisted surgery systems help orthopaedic surgeons both plan and perform surgical procedures. To enable these systems to function, it is crucial to have at one's disposal 3D models of anatomical structures, surgical tools and prostheses (if required). This paper analyses and compares three methods for generating 3D digital models of anatomical structures starting from X-ray images: parametric solid modelling/reconfiguration, global shape modelling and free-form deformation. Seven experiences involving the generation of a femur model were conducted by software developers and different skilled users. These experiences are described in detail and compared at different stages and from different points of view.
Spong, Donald A
2016-06-20
AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.
NASA Astrophysics Data System (ADS)
Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine
2014-03-01
The changing of TV systems from 2D to 3D mode is the next expected step in the telecommunication world. Some works have already been done to perform this progress technically, but interaction of the third dimension with humans is not yet clear. Previously, it was found that any increased load of visual system can create visual fatigue, like prolonged TV watching, computer work or video gaming. But watching S3D can cause another nature of visual fatigue, since all S3D technologies creates illusion of the third dimension based on characteristics of binocular vision. In this work we propose to evaluate and compare the visual fatigue from watching 2D and S3D content. This work shows the difference in accumulation of visual fatigue and its assessment for two types of content. In order to perform this comparison eye-tracking experiments using six commercially available movies were conducted. Healthy naive participants took part into the test and gave their answers feeling the subjective evaluation. It was found that watching stereo 3D content induce stronger feeling of visual fatigue than conventional 2D, and the nature of video has an important effect on its increase. Visual characteristics obtained by using eye-tracking were investigated regarding their relation with visual fatigue.
NASA Technical Reports Server (NTRS)
Volakis, John L.
1991-01-01
There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. A Fourier series expansion of the vector electric and magnetic fields is employed to reduce the dimensionality of the system, and an exact boundary condition is employed to terminate the mesh. The mesh termination boundary is chosen such that it leads to convolutional boundary operators for low O(n) memory demand. Second, rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. Ray solutions are obtained which remain valid in the transition region and reduce uniformly those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder.
An approach to 3D model fusion in GIS systems and its application in a future ECDIS
NASA Astrophysics Data System (ADS)
Liu, Tao; Zhao, Depeng; Pan, Mingyang
2016-04-01
Three-dimensional (3D) computer graphics technology is widely used in various areas and causes profound changes. As an information carrier, 3D models are becoming increasingly important. The use of 3D models greatly helps to improve the cartographic expression and design. 3D models are more visually efficient, quicker and easier to understand and they can express more detailed geographical information. However, it is hard to efficiently and precisely fuse 3D models in local systems. The purpose of this study is to propose an automatic and precise approach to fuse 3D models in geographic information systems (GIS). It is the basic premise for subsequent uses of 3D models in local systems, such as attribute searching, spatial analysis, and so on. The basic steps of our research are: (1) pose adjustment by principal component analysis (PCA); (2) silhouette extraction by simple mesh silhouette extraction and silhouette merger; (3) size adjustment; (4) position matching. Finally, we implement the above methods in our system Automotive Intelligent Chart (AIC) 3D Electronic Chart Display and Information Systems (ECDIS). The fusion approach we propose is a common method and each calculation step is carefully designed. This approach solves the problem of cross-platform model fusion. 3D models can be from any source. They may be stored in the local cache or retrieved from Internet, or may be manually created by different tools or automatically generated by different programs. The system can be any kind of 3D GIS system.
Calculation of grain boundary normals directly from 3D microstructure images
Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; ...
2015-03-11
The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less
Calculation of grain boundary normals directly from 3D microstructure images
Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; Kober, E. M.
2015-03-11
The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.
NASA Astrophysics Data System (ADS)
Morgan, Joanna; Warner, Michael; Arnoux, Gillean; Hooft, Emilie; Toomey, Douglas; VanderBeek, Brandon; Wilcock, William
2016-02-01
3-D full-waveform inversion (FWI) is an advanced seismic imaging technique that has been widely adopted by the oil and gas industry to obtain high-fidelity models of P-wave velocity that lead to improvements in migrated images of the reservoir. Most industrial applications of 3-D FWI model the acoustic wavefield, often account for the kinematic effect of anisotropy, and focus on matching the low-frequency component of the early arriving refractions that are most sensitive to P-wave velocity structure. Here, we have adopted the same approach in an application of 3-D acoustic, anisotropic FWI to an ocean-bottom-seismometer (OBS) field data set acquired across the Endeavour oceanic spreading centre in the northeastern Pacific. Starting models for P-wave velocity and anisotropy were obtained from traveltime tomography; during FWI, velocity is updated whereas anisotropy is kept fixed. We demonstrate that, for the Endeavour field data set, 3-D FWI is able to recover fine-scale velocity structure with a resolution that is 2-4 times better than conventional traveltime tomography. Quality assurance procedures have been employed to monitor each step of the workflow; these are time consuming but critical to the development of a successful inversion strategy. Finally, a suite of checkerboard tests has been performed which shows that the full potential resolution of FWI can be obtained if we acquire a 3-D survey with a slightly denser shot and receiver spacing than is usual for an academic experiment. We anticipate that this exciting development will encourage future seismic investigations of earth science targets that would benefit from the superior resolution offered by 3-D FWI.
Vale, Francisco; Scherzberg, Jessica; Cavaleiro, João; Sanz, David; Caramelo, Francisco; Maló, Luísa; Marcelino, João Pedro
2016-01-01
Objective: In this case report, the feasibility and precision of tridimensional (3D) virtual planning in one patient with craniofacial microsomia is tested using Nemoceph 3D-OS software (Software Nemotec SL, Madrid, Spain) to predict postoperative outcomes on hard tissue and produce CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) surgical splints. Methods: The clinical protocol consists of 3D data acquisition of the craniofacial complex by cone-beam computed tomography (CBCT) and surface scanning of the plaster dental casts. The ''virtual patient'' created underwent virtual surgery and a simulation of postoperative results on hard tissues. Surgical splints were manufactured using CAD/CAM technology in order to transfer the virtual surgical plan to the operating room. Intraoperatively, both CAD/CAM and conventional surgical splints are comparable. A second set of 3D images was obtained after surgery to acquire linear measurements and compare them with measurements obtained when predicting postoperative results virtually. Results: It was found a high similarity between both types of surgical splints with equal fitting on the dental arches. The linear measurements presented some discrepancies between the actual surgical outcomes and the predicted results from the 3D virtual simulation, but caution must be taken in the analysis of these results due to several variables. Conclusions: The reported case confirms the clinical feasibility of the described computer-assisted orthognathic surgical protocol. Further progress in the development of technologies for 3D image acquisition and improvements on software programs to simulate postoperative changes on soft tissue are required. PMID:27007767
3D Vision on Mars: Stereo processing and visualizations for NASA and ESA rover missions
NASA Astrophysics Data System (ADS)
Huber, Ben
2016-07-01
Three dimensional (3D) vision processing is an essential component of planetary rover mission planning and scientific data analysis. Standard ground vision processing products are digital terrain maps, panoramas, and virtual views of the environment. Such processing is currently developed for the PanCam instrument of ESA's ExoMars Rover mission by the PanCam 3D Vision Team under JOANNEUM RESEARCH coordination. Camera calibration, quality estimation of the expected results and the interfaces to other mission elements such as operations planning, rover navigation system and global Mars mapping are a specific focus of the current work. The main goals of the 3D Vision team in this context are: instrument design support & calibration processing: Development of 3D vision functionality Visualization: development of a 3D visualization tool for scientific data analysis. 3D reconstructions from stereo image data during the mission Support for 3D scientific exploitation to characterize the overall landscape geomorphology, processes, and the nature of the geologic record using the reconstructed 3D models. The developed processing framework PRoViP establishes an extensible framework for 3D vision processing in planetary robotic missions. Examples of processing products and capabilities are: Digital Terrain Models, Ortho images, 3D meshes, occlusion, solar illumination-, slope-, roughness-, and hazard-maps. Another important processing capability is the fusion of rover and orbiter based images with the support of multiple missions and sensors (e.g. MSL Mastcam stereo processing). For 3D visualization a tool called PRo3D has been developed to analyze and directly interpret digital outcrop models. Stereo image products derived from Mars rover data can be rendered in PRo3D, enabling the user to zoom, rotate and translate the generated 3D outcrop models. Interpretations can be digitized directly onto the 3D surface, and simple measurements of the outcrop and sedimentary features
NASA Astrophysics Data System (ADS)
Ishibashi, K.; Shirai, K.; Ogawa, K.; Wada, K.; Honda, R.; Arakawa, M.; Sakatani, N.; Ikeda, Y.
2016-11-01
Deployable Camera 3-D (DCAM3-D) is a small high-resolution camera equipped on Deployable Camera 3 (DCAM3), one of the Hayabusa2 instruments. Hayabusa2 will explore asteroid 162137 Ryugu (1999 JU3) and conduct an impact experiment using a liner shooting device called Small Carry-on Impactor (SCI). DCAM3 will be detached from the Hayabusa2 spacecraft and observe the impact experiment. The purposes of the observation are to know the impact conditions, to estimate the surface structure of asteroid Ryugu, and to understand the physics of impact phenomena on low-gravity bodies. DCAM3-D requires high imaging performance because it has to image and detect multiple targets of different scale and radiance, i.e., the faint SCI before the shot from 1-km distance, the bright ejecta generated by the impact, and the asteroid. In this paper we report the evaluation of the performance of the CMOS imaging sensor and the optical system of DCAM3-D. We also describe the calibration of DCAM3-D. We confirmed that the imaging performance of DCAM3-D satisfies the required values to achieve the purposes of the observation.
3D Printed Bionic Nanodevices.
Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C
2016-06-01
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the
NASA Technical Reports Server (NTRS)
Gabrielson, V. K.
1975-01-01
The computer program DVMESH and the use of the Tektronix DVST graphics terminal were described for applications of preparing mesh data for use in various two-dimensional axisymmetric finite element stress analysis and heat transfer codes.
Technical note: 3D from standard digital photography of human crania-a preliminary assessment.
Katz, David; Friess, Martin
2014-05-01
This study assessed three-dimensional (3D) photogrammetry as a tool for capturing and quantifying human skull morphology. While virtual reconstruction with 3D surface scanning technology has become an accepted part of the paleoanthropologist's tool kit, recent advances in 3D photogrammetry make it a potential alternative to dedicated surface scanners. The principal advantages of photogrammetry are more rapid raw data collection, simplicity and portability of setup, and reduced equipment costs. We tested the precision and repeatability of 3D photogrammetry by comparing digital models of human crania reconstructed from conventional, 2D digital photographs to those generated using a 3D surface scanner. Overall, the photogrammetry and scanner meshes showed low degrees of deviation from one another. Surface area estimates derived from photogrammetry models tended to be slightly larger. Landmark configurations generally did not cluster together based upon whether the reconstruction was created with photogrammetry or surface scanning technology. Average deviations of landmark coordinates recorded on photogrammetry models were within the generally allowable range of error in osteometry. Thus, while dependent upon the needs of the particular research project, 3D photogrammetry appears to be a suitable, lower-cost alternative to 3D imaging and scanning options.
SUPERIMPOSED MESH PLOTTING IN MCNP
J. HENDRICKS
2001-02-01
The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.
NASA Astrophysics Data System (ADS)
Moore, Gregory F.
2009-05-01
This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
2011-11-01
PLATE A two-dimensional flat plate mesh was created using the Gridgen software package (Ref. 13). This mesh (shown in Fig. 10) closely resembled a...desired tolerance of the projection onto the surface. The geometry file on which the geometry surface is based can be easily generated using Gridgen ...by exporting a curve (or number of curves) under the INPUT/OUTPUT commands in the Gridgen interface (Ref. 13). Initially, the floating boundary
NASA Astrophysics Data System (ADS)
Ishmael, Johnathan; Race, Nicholas
Wireless Mesh Networks have emerged as an important technology in building next-generation networks. They are seen to have a range of benefits over traditional wired and wireless networks including low deployment costs, high scalability and resiliency to faults. Moreover, Wireless Mesh Networks (WMNs) are often described as being autonomic with self-* (healing and configuration) properties and their popularity has grown both as a research platform and as a commercially exploitable technology.