Science.gov

Sample records for 3-d modeling software

  1. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  2. On Fundamental Evaluation Using Uav Imagery and 3d Modeling Software

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Suzuki, H.; Tamino, T.; Chikatsu, H.

    2016-06-01

    Unmanned aerial vehicles (UAVs), which have been widely used in recent years, can acquire high-resolution images with resolutions in millimeters; such images cannot be acquired with manned aircrafts. Moreover, it has become possible to obtain a surface reconstruction of a realistic 3D model using high-overlap images and 3D modeling software such as Context capture, Pix4Dmapper, Photoscan based on computer vision technology such as structure from motion and multi-view stereo. 3D modeling software has many applications. However, most of them seem to not have obtained appropriate accuracy control in accordance with the knowledge of photogrammetry and/or computer vision. Therefore, we performed flight tests in a test field using an UAV equipped with a gimbal stabilizer and consumer grade digital camera. Our UAV is a hexacopter and can fly according to the waypoints for autonomous flight and can record flight logs. We acquired images from different altitudes such as 10 m, 20 m, and 30 m. We obtained 3D reconstruction results of orthoimages, point clouds, and textured TIN models for accuracy evaluation in some cases with different image scale conditions using 3D modeling software. Moreover, the accuracy aspect was evaluated for different units of input image—course unit and flight unit. This paper describes the fundamental accuracy evaluation for 3D modeling using UAV imagery and 3D modeling software from the viewpoint of close-range photogrammetry.

  3. Software for browsing sectioned images of a dog body and generating a 3D model.

    PubMed

    Park, Jin Seo; Jung, Yong Wook

    2016-01-01

    The goals of this study were (1) to provide accessible and instructive browsing software for sectioned images and a portable document format (PDF) file that includes three-dimensional (3D) models of an entire dog body and (2) to develop techniques for segmentation and 3D modeling that would enable an investigator to perform these tasks without the aid of a computer engineer. To achieve these goals, relatively important or large structures in the sectioned images were outlined to generate segmented images. The sectioned and segmented images were then packaged into browsing software. In this software, structures in the sectioned images are shown in detail and in real color. After 3D models were made from the segmented images, the 3D models were exported into a PDF file. In this format, the 3D models could be manipulated freely. The browsing software and PDF file are available for study by students, for lecture for teachers, and for training for clinicians. These files will be helpful for anatomical study by and clinical training of veterinary students and clinicians. Furthermore, these techniques will be useful for researchers who study two-dimensional images and 3D models.

  4. 3DVEM Software Modules for Efficient Management of Point Clouds and Photorealistic 3d Models

    NASA Astrophysics Data System (ADS)

    Fabado, S.; Seguí, A. E.; Cabrelles, M.; Navarro, S.; García-De-San-Miguel, D.; Lerma, J. L.

    2013-07-01

    Cultural heritage managers in general and information users in particular are not usually used to deal with high-technological hardware and software. On the contrary, information providers of metric surveys are most of the times applying latest developments for real-life conservation and restoration projects. This paper addresses the software issue of handling and managing either 3D point clouds or (photorealistic) 3D models to bridge the gap between information users and information providers as regards the management of information which users and providers share as a tool for decision-making, analysis, visualization and management. There are not many viewers specifically designed to handle, manage and create easily animations of architectural and/or archaeological 3D objects, monuments and sites, among others. 3DVEM - 3D Viewer, Editor & Meter software will be introduced to the scientific community, as well as 3DVEM - Live and 3DVEM - Register. The advantages of managing projects with both sets of data, 3D point cloud and photorealistic 3D models, will be introduced. Different visualizations of true documentation projects in the fields of architecture, archaeology and industry will be presented. Emphasis will be driven to highlight the features of new userfriendly software to manage virtual projects. Furthermore, the easiness of creating controlled interactive animations (both walkthrough and fly-through) by the user either on-the-fly or as a traditional movie file will be demonstrated through 3DVEM - Live.

  5. Remote measurement methods for 3-D modeling purposes using BAE Systems' Software

    NASA Astrophysics Data System (ADS)

    Walker, Stewart; Pietrzak, Arleta

    2015-06-01

    Efficient, accurate data collection from imagery is the key to an economical generation of useful geospatial products. Incremental developments of traditional geospatial data collection and the arrival of new image data sources cause new software packages to be created and existing ones to be adjusted to enable such data to be processed. In the past, BAE Systems' digital photogrammetric workstation, SOCET SET®, met fin de siècle expectations in data processing and feature extraction. Its successor, SOCET GXP®, addresses today's photogrammetric requirements and new data sources. SOCET GXP is an advanced workstation for mapping and photogrammetric tasks, with automated functionality for triangulation, Digital Elevation Model (DEM) extraction, orthorectification and mosaicking, feature extraction and creation of 3-D models with texturing. BAE Systems continues to add sensor models to accommodate new image sources, in response to customer demand. New capabilities added in the latest version of SOCET GXP facilitate modeling, visualization and analysis of 3-D features.

  6. UCVM: An Open Source Software Package for Querying and Visualizing 3D Velocity Models

    NASA Astrophysics Data System (ADS)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2015-12-01

    Three-dimensional (3D) seismic velocity models provide foundational data for ground motion simulations that calculate the propagation of earthquake waves through the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) package for both Linux and OS X. This unique framework provides a cohesive way for querying and visualizing 3D models. UCVM v14.3.0, supports many Southern California velocity models including CVM-S4, CVM-H 11.9.1, and CVM-S4.26. The last model was derived from 26 full-3D tomographic iterations on CVM-S4. Recently, UCVM has been used to deliver a prototype of a new 3D model of central California (CCA) also based on full-3D tomographic inversions. UCVM was used to provide initial plots of this model and will be used to deliver CCA to users when the model is publicly released. Visualizing models is also possible with UCVM. Integrated within the platform are plotting utilities that can generate 2D cross-sections, horizontal slices, and basin depth maps. UCVM can also export models in NetCDF format for easy import into IDV and ParaView. UCVM has also been prototyped to export models that are compatible with IRIS' new Earth Model Collaboration (EMC) visualization utility. This capability allows for user-specified horizontal slices and cross-sections to be plotted in the same 3D Earth space. UCVM was designed to help a wide variety of researchers. It is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. It is also used to provide the initial input to SCEC's CyberShake platform. For those interested in specific data points, the software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Also included in the last release was the ability to add small

  7. UCVM: Open Source Software for Understanding and Delivering 3D Velocity Models

    NASA Astrophysics Data System (ADS)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2014-12-01

    Physics-based ground motion simulations can calculate the propagation of earthquake waves through 3D velocity models of the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) framework to help researchers build structured or unstructured velocity meshes from 3D velocity models for use in wave propagation simulations. The UCVM software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Currently, the platform supports multiple California models, including SCEC CVM-S4 and CVM-H 11.9.1, and has been designed to support models from any region on earth. UCVM is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. In this presentation, we describe improvements to the UCVM software. The current version, UCVM 14.3.0, released in March of 2014, supports the newest Southern California velocity model, CVM-S4.26, which was derived from 26 full-3D tomographic iterations using CVM-S4 as the starting model (Lee et al., this meeting), and the Broadband 1D velocity model used in the CyberShake 14.2 study. We have ported UCVM to multiple Linux distributions and OS X. Also included in this release is the ability to add small-scale stochastic heterogeneities to extract Cartesian meshes for use in high-frequency ground motion simulations. This tool was built using the C language open-source FFT library, FFTW. The stochastic parameters (Hurst exponent, correlation length, and the horizontal/vertical aspect ratio) can be customized by the user. UCVM v14.3.0 also provides visualization scripts for constructing cross-sections, horizontal slices, basin depths, and Vs30 maps. The interface allows researchers to visually review velocity models . Also, UCVM v14.3.0 can extract

  8. 3D model based visualisation using dynamic models: problems with standard software and extensive strategies

    NASA Astrophysics Data System (ADS)

    Appelt, Veit; Shvetsov, Vladimir

    2006-04-01

    For projects concerning modification of urban structures or landscape, it is essential to have a visualisation before, during and after the planning. It conveys an impression of existing city structures or newly planned buildings roads, railways in 3D reality it helps to gain public acceptance. The design of such constructions makes high demands on geometry and planning technology. The construction project, as a 3D object, must therefore be assessed in whole and only this leads to a comprehensive evaluation of alignment, design and following up safety. On the basis of surveying and planning data, a 3D model fitted together of several information levels.

  9. IGMAS+ A New 3D Gravity, FTG and Magnetic Modeling Software

    NASA Astrophysics Data System (ADS)

    Goetze, H.; Schmidt, S.; Fichler, C.; Alvers, M. R.

    2007-12-01

    Modern geophysical interpretation requires an interdisciplinary approach, particularly when considering the available amount of 'state of the art' information contained in comprehensive data bases. A combination of different geophysical surveys employing seismics, gravity and geoelectrics, together with geological and petrological studies, can provide new insights into the structures and tectonic evolution of the lithosphere and natural deposits. Interdisciplinary interpretation is essential for any numerical modelling of these structures and the processes acting on them. Three-dimensional (3D) interactive modeling with the IGMAS+ software provides means for integrated processing and interpretation of geoid, gravity and magnetic fields and their gradients (full tensor), yielding improved geological interpretation. IGMAS+ is an acronym standing for "Interactive Geophysical Modelling Application System". It bases on the existing software IGMAS (http://www.gravity.uni-kiel.de/igmas), a tool developed during the past twenty years for potential field modelling. The new IGMAS+, however, will comprise the advantages of the "old" IGMAS (e.g. flexible geometry concept and a fast and stable algorithm) with automated interpretation tools and a modern graphical GUI based on leading edge insights from psychological computer graphics research and thus provide optimal man machine communication. IGMAS+ fully three-dimensional models are constructed using triangulated polyhedra and/or triangulated grids, to which constant density and/or induced and remanent susceptibility are assigned. Interactive modifications of model parameters (geometry, density, susceptibility, magnetization), access to the numerical modeling process, and direct visualization of both calculated and measured fields of gravity and magnetics, enable the interpreter to design the model as realistically as possible. IGMAS+ allows easy integration of constraining data into interactive modeling processes

  10. Motion-Capture-Enabled Software for Gestural Control of 3D Models

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony

    2012-01-01

    Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.

  11. Designing Spatial Visualisation Tasks for Middle School Students with a 3D Modelling Software: An Instrumental Approach

    ERIC Educational Resources Information Center

    Turgut, Melih; Uygan, Candas

    2015-01-01

    In this work, certain task designs to enhance middle school students' spatial visualisation ability, in the context of an instrumental approach, have been developed. 3D modelling software, SketchUp®, was used. In the design process, software tools were focused on and, thereafter, the aim was to interpret the instrumental genesis and spatial…

  12. OS3D/GIMRT software for modeling multicomponent-multidimensional reactive transport

    SciTech Connect

    CI Steefel; SB Yabusaki

    2000-05-17

    OS3D/GIMRT is a numerical software package for simulating multicomponent reactive transport in porous media. The package consists of two principal components: (1) the code OS3D (Operator Splitting 3-Dimensional Reactive Transport) which simulates reactive transport by either splitting the reaction and transport steps in time, i.e., the classic time or operator splitting approach, or by iterating sequentially between reactions and transport, and (2) the code GIMRT (Global Implicit Multicomponent Reactive Transport) which treats up to two dimensional reactive transport with a one step or global implicit approach. Although the two codes do not yet have totally identical capabilities, they can be run from the same input file, allowing comparisons to be made between the two approaches in many cases. The advantages and disadvantages of the two approaches are discussed more fully below, but in general OS3D is designed for simulation of transient concentration fronts, particularly under high Peclet number transport conditions, because of its use of a total variation diminishing or TVD transport algorithm. GIMRT is suited for simulating water-rock alteration over long periods of time where the aqueous concentration field is at or close to a quasi-stationary state and the numerical transport errors are less important. Where water-rock interaction occurs over geological periods of time, GIMRT may be preferable to OS3D because of its ability to take larger time steps.

  13. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  14. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  15. Status of the phenomena representation, 3D modeling, and cloud-based software architecture development

    SciTech Connect

    Smith, Curtis L.; Prescott, Steven; Kvarfordt, Kellie; Sampath, Ram; Larson, Katie

    2015-09-01

    Early in 2013, researchers at the Idaho National Laboratory outlined a technical framework to support the implementation of state-of-the-art probabilistic risk assessment to predict the safety performance of advanced small modular reactors. From that vision of the advanced framework for risk analysis, specific tasks have been underway in order to implement the framework. This report discusses the current development of a several tasks related to the framework implementation, including a discussion of a 3D physics engine that represents the motion of objects (including collision and debris modeling), cloud-based analysis tools such as a Bayesian-inference engine, and scenario simulations. These tasks were performed during 2015 as part of the technical work associated with the Advanced Reactor Technologies Program.

  16. Laser scanner data processing and 3D modeling using a free and open source software

    SciTech Connect

    Gabriele, Fatuzzo; Michele, Mangiameli Giuseppe, Mussumeci; Salvatore, Zito

    2015-03-10

    The laser scanning is a technology that allows in a short time to run the relief geometric objects with a high level of detail and completeness, based on the signal emitted by the laser and the corresponding return signal. When the incident laser radiation hits the object to detect, then the radiation is reflected. The purpose is to build a three-dimensional digital model that allows to reconstruct the reality of the object and to conduct studies regarding the design, restoration and/or conservation. When the laser scanner is equipped with a digital camera, the result of the measurement process is a set of points in XYZ coordinates showing a high density and accuracy with radiometric and RGB tones. In this case, the set of measured points is called “point cloud” and allows the reconstruction of the Digital Surface Model. Even the post-processing is usually performed by closed source software, which is characterized by Copyright restricting the free use, free and open source software can increase the performance by far. Indeed, this latter can be freely used providing the possibility to display and even custom the source code. The experience started at the Faculty of Engineering in Catania is aimed at finding a valuable free and open source tool, MeshLab (Italian Software for data processing), to be compared with a reference closed source software for data processing, i.e. RapidForm. In this work, we compare the results obtained with MeshLab and Rapidform through the planning of the survey and the acquisition of the point cloud of a morphologically complex statue.

  17. Software for Building Models of 3D Objects via the Internet

    NASA Technical Reports Server (NTRS)

    Schramer, Tim; Jensen, Jeff

    2003-01-01

    The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.

  18. 3-d finite element model development for biomechanics: a software demonstration

    SciTech Connect

    Hollerbach, K.; Hollister, A.M.; Ashby, E.

    1997-03-01

    Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.

  19. An overview of 3D software visualization.

    PubMed

    Teyseyre, Alfredo R; Campo, Marcelo R

    2009-01-01

    Software visualization studies techniques and methods for graphically representing different aspects of software. Its main goal is to enhance, simplify and clarify the mental representation a software engineer has of a computer system. During many years, visualization in 2D space has been actively studied, but in the last decade, researchers have begun to explore new 3D representations for visualizing software. In this article, we present an overview of current research in the area, describing several major aspects like: visual representations, interaction issues, evaluation methods and development tools. We also perform a survey of some representative tools to support different tasks, i.e., software maintenance and comprehension, requirements validation and algorithm animation for educational purposes, among others. Finally, we conclude identifying future research directions. PMID:19008558

  20. A Comprehensive Software System for Interactive, Real-time, Visual 3D Deterministic and Stochastic Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Li, S.

    2002-05-01

    Taking advantage of the recent developments in groundwater modeling research and computer, image and graphics processing, and objected oriented programming technologies, Dr. Li and his research group have recently developed a comprehensive software system for unified deterministic and stochastic groundwater modeling. Characterized by a new real-time modeling paradigm and improved computational algorithms, the software simulates 3D unsteady flow and reactive transport in general groundwater formations subject to both systematic and "randomly" varying stresses and geological and chemical heterogeneity. The software system has following distinct features and capabilities: Interactive simulation and real time visualization and animation of flow in response to deterministic as well as stochastic stresses. Interactive, visual, and real time particle tracking, random walk, and reactive plume modeling in both systematically and randomly fluctuating flow. Interactive statistical inference, scattered data interpolation, regression, and ordinary and universal Kriging, conditional and unconditional simulation. Real-time, visual and parallel conditional flow and transport simulations. Interactive water and contaminant mass balance analysis and visual and real-time flux update. Interactive, visual, and real time monitoring of head and flux hydrographs and concentration breakthroughs. Real-time modeling and visualization of aquifer transition from confined to unconfined to partially de-saturated or completely dry and rewetting Simultaneous and embedded subscale models, automatic and real-time regional to local data extraction; Multiple subscale flow and transport models Real-time modeling of steady and transient vertical flow patterns on multiple arbitrarily-shaped cross-sections and simultaneous visualization of aquifer stratigraphy, properties, hydrological features (rivers, lakes, wetlands, wells, drains, surface seeps), and dynamically adjusted surface flooding area

  1. Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.

    PubMed

    Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John

    2015-01-01

    Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise.

  2. Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.

    PubMed

    Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John

    2015-01-01

    Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise. PMID:25053423

  3. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  4. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  5. Modeling Cellular Processes in 3-D

    PubMed Central

    Mogilner, Alex; Odde, David

    2011-01-01

    Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197

  6. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    SciTech Connect

    Briere, E.; Larrauri, D.; Olive, J.

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  7. Performance testing of 3D point cloud software

    NASA Astrophysics Data System (ADS)

    Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-10-01

    LiDAR systems are being used widely in recent years for many applications in the engineering field: civil engineering, cultural heritage, mining, industry and environmental engineering. One of the most important limitations of this technology is the large computational requirements involved in data processing, especially for large mobile LiDAR datasets. Several software solutions for data managing are available in the market, including open source suites, however, users often unknown methodologies to verify their performance properly. In this work a methodology for LiDAR software performance testing is presented and four different suites are studied: QT Modeler, VR Mesh, AutoCAD 3D Civil and the Point Cloud Library running in software developed at the University of Vigo (SITEGI). The software based on the Point Cloud Library shows better results in the loading time of the point clouds and CPU usage. However, it is not as strong as commercial suites in working set and commit size tests.

  8. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  9. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  10. Measurement of Channel Morphology in a Headwater Stream using Low-Altitude Photography and a 3D Model Software

    NASA Astrophysics Data System (ADS)

    Nidaira, K.; Hiraoka, M.; Gomi, T.; Uchiyama, Y.

    2015-12-01

    We developed a method for measuring detail channel morphology using a low elevation photographic scanning. This study was conducted in a 36-m step-pool channel segment in a headwater stream of Ooborazawa watershed located in 20 km south of Tokyo. The channels were covered by Boenninghausenia japonica and Oplismenus undulatifolius var. undulatifolius. Therefore, topographic measurement in high altitude (up to 5 m) using a drone is not applicable. D50 and D90 of channel substrates were 4 cm and 21 cm, respectively. A plastic case that equipped with two digital cameras (RICOH CX5) is mounted at the top of 2.2 m of a glass fiber pole. Photos were taken every 5 seconds from 1.8 m above ground surface. Eleven ground control points (GCP) were installed and measured coordinates. We developed digital 3D topographic model using PhotoScan Pro edition version 1.0.0 and the developed 1 cm contour map using ArcGIS version 10.2. Furthermore, we measured the number, height, and length of steps for examining the accuracy of data. Resolution of obtained topographic model was from 9 to 11 mm per pixel. 1 cm of particle was identified using photo was 1 cm. Estimated step height was agreed to the measured step height in the field. We detected maximum channel scour from October to December, 2014 with (146.5 mm/day for maximum daily rain) occurred at pools with 13cm changes , while 5 to 10 cm of changes in sediment deposition occurred from Mya to June, 2015 with 78.5 mm/day of maximum daily rain. Disposition of sediment was concentration within the sequences of step structures. Our method allows us for understanding detail sediment movement and resultant localized channel changes in steep channels.

  11. FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Noh, Y. H.; Um, J. G.; Choi, Y.

    2014-12-01

    A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  12. Software tool for 3D extraction of germinal centers

    PubMed Central

    2013-01-01

    Background Germinal Centers (GC) are short-lived micro-anatomical structures, within lymphoid organs, where affinity maturation is initiated. Theoretical modeling of the dynamics of the GC reaction including follicular CD4+ T helper and the recently described follicular regulatory CD4+ T cell populations, predicts that the intensity and life span of such reactions is driven by both types of T cells, yet controlled primarily by follicular regulatory CD4+ T cells. In order to calibrate GC models, it is necessary to properly analyze the kinetics of GC sizes. Presently, the estimation of spleen GC volumes relies upon confocal microscopy images from 20-30 slices spanning a depth of ~ 20 - 50 μm, whose GC areas are analyzed, slice-by-slice, for subsequent 3D reconstruction and quantification. The quantity of data to be analyzed from such images taken for kinetics experiments is usually prohibitively large to extract semi-manually with existing software. As a result, the entire procedure is highly time-consuming, and inaccurate, thereby motivating the need for a new software tool that can automatically identify and calculate the 3D spot volumes from GC multidimensional images. Results We have developed pyBioImage, an open source cross platform image analysis software application, written in python with C extensions that is specifically tailored to the needs of immunologic research involving 4D imaging of GCs. The software provides 1) support for importing many multi-image formats, 2) basic image processing and analysis, and 3) the ExtractGC module, that allows for automatic analysis and visualization of extracted GC volumes from multidimensional confocal microscopy images. We present concrete examples of different microscopy image data sets of GC that have been used in experimental and theoretical studies of mouse model GC dynamics. Conclusions The pyBioImage software framework seeks to be a general purpose image application for immunological research based on 4D imaging

  13. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  14. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  15. [Development of a software for 3D virtual phantom design].

    PubMed

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research. PMID:24804488

  16. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  17. NOTE: A software tool for 2D/3D visualization and analysis of phase-space data generated by Monte Carlo modelling of medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Neicu, Toni; Aljarrah, Khaled M.; Jiang, Steve B.

    2005-10-01

    A computer program has been developed for novel 2D/3D visualization and analysis of the phase-space parameters of Monte Carlo simulations of medical accelerator radiation beams. The software is written in the IDL language and reads the phase-space data generated in the BEAMnrc/BEAM Monte Carlo code format. Contour and colour-wash plots of the fluence, mean energy, energy fluence, mean angle, spectra distribution, energy fluence distribution, angular distribution, and slices and projections of the 3D ZLAST distribution can be calculated and displayed. Based on our experience of using it at Massachusetts General Hospital, the software has proven to be a useful tool for analysis and verification of the Monte Carlo generated phase-space files. The software is in the public domain.

  18. SOAX: A software for quantification of 3D biopolymer networks

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Tsai, Feng-Ching; Koenderink, Gijsje H.; Nie, Wei; Yusuf, Eddy; I-Ju Lee; Wu, Jian-Qiu; Huang, Xiaolei

    2015-01-01

    Filamentous biopolymer networks in cells and tissues are routinely imaged by confocal microscopy. Image analysis methods enable quantitative study of the properties of these curvilinear networks. However, software tools to quantify the geometry and topology of these often dense 3D networks and to localize network junctions are scarce. To fill this gap, we developed a new software tool called “SOAX”, which can accurately extract the centerlines of 3D biopolymer networks and identify network junctions using Stretching Open Active Contours (SOACs). It provides an open-source, user-friendly platform for network centerline extraction, 2D/3D visualization, manual editing and quantitative analysis. We propose a method to quantify the performance of SOAX, which helps determine the optimal extraction parameter values. We quantify several different types of biopolymer networks to demonstrate SOAX's potential to help answer key questions in cell biology and biophysics from a quantitative viewpoint. PMID:25765313

  19. SOAX: a software for quantification of 3D biopolymer networks.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Tsai, Feng-Ching; Koenderink, Gijsje H; Nie, Wei; Yusuf, Eddy; I-Ju Lee; Wu, Jian-Qiu; Huang, Xiaolei

    2015-03-13

    Filamentous biopolymer networks in cells and tissues are routinely imaged by confocal microscopy. Image analysis methods enable quantitative study of the properties of these curvilinear networks. However, software tools to quantify the geometry and topology of these often dense 3D networks and to localize network junctions are scarce. To fill this gap, we developed a new software tool called "SOAX", which can accurately extract the centerlines of 3D biopolymer networks and identify network junctions using Stretching Open Active Contours (SOACs). It provides an open-source, user-friendly platform for network centerline extraction, 2D/3D visualization, manual editing and quantitative analysis. We propose a method to quantify the performance of SOAX, which helps determine the optimal extraction parameter values. We quantify several different types of biopolymer networks to demonstrate SOAX's potential to help answer key questions in cell biology and biophysics from a quantitative viewpoint.

  20. New software for visualizing 3D geological data in coal mines

    NASA Astrophysics Data System (ADS)

    Lee, Sungjae; Choi, Yosoon

    2015-04-01

    This study developed new software to visualize 3D geological data in coal mines. The Visualization Tool Kit (VTK) library and Visual Basic.NET 2010 were used to implement the software. The software consists of several modules providing functionalities: (1) importing and editing borehole data; (2) modelling of coal seams in 3D; (3) modelling of coal properties using 3D ordinary Kriging method; (4) calculating economical values of 3D blocks; (5) pit boundary optimization for identifying economical coal reserves based on the Lerchs-Grosmann algorithm; and (6) visualizing 3D geological, geometrical and economical data. The software has been applied to a small-scale open-pit coal mine in Indonesia revealed that it can provide useful information supporting the planning and design of open-pit coal mines.

  1. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  2. 3D Stratigraphic Modeling of Central Aachen

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x

  3. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  4. FRAMES-2.0 Software System: Linking to the Groundwater Modeling System (GMS) RT3D and MT3DMS Models

    SciTech Connect

    Whelan, Gene; Castleton, Karl J.; Pelton, Mitch A.

    2007-08-08

    Linkages to the Groundwater Modeling System have been developed at Pacific Northwest National Laboratory to enable the Nuclear Regulatory Commission (NRC) to more realistically assess the risk to the public of radioactive contaminants at NRC-licensed sites. Common software tools presently in use are limited in that they cannot assess contaminant migration through complex natural environments. The purpose of this initiative is to provide NRC with a licensing safety-analysis tool with sufficient power, flexibility, and utility that it can serve as the primary software platform for analyzing the hazards associated with licensing actions at those “complex” sites at which the traditional tools are inappropriate. As a tool designed to realistically approximate prospective doses to the public, this initiative addresses NRC’s safety-performance goal by confirming that licensing actions do not result in undue risk to the public.

  5. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  6. VALIDATION OF IMPROVED 3D ATR MODEL

    SciTech Connect

    Soon Sam Kim; Bruce G. Schnitzler

    2005-11-01

    A full-core Monte Carlo based 3D model of the Advanced Test Reactor (ATR) was previously developed. [1] An improved 3D model has been developed by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) to eliminate homogeneity of fuel plates of the old model, incorporate core changes into the new model, and to validate against a newer, more complicated core configuration. This new 3D model adds capability for fuel loading design and azimuthal power peaking studies of the ATR fuel elements.

  7. 3D facial expression modeling for recognition

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Jain, Anil K.; Dass, Sarat C.

    2005-03-01

    Current two-dimensional image based face recognition systems encounter difficulties with large variations in facial appearance due to the pose, illumination and expression changes. Utilizing 3D information of human faces is promising for handling the pose and lighting variations. While the 3D shape of a face does not change due to head pose (rigid) and lighting changes, it is not invariant to the non-rigid facial movement and evolution, such as expressions and aging effect. We propose a facial surface matching framework to match multiview facial scans to a 3D face model, where the (non-rigid) expression deformation is explicitly modeled for each subject, resulting in a person-specific deformation model. The thin plate spline (TPS) is applied to model the deformation based on the facial landmarks. The deformation is applied to the 3D neutral expression face model to synthesize the corresponding expression. Both the neutral and the synthesized 3D surface models are used to match a test scan. The surface registration and matching between a test scan and a 3D model are achieved by a modified Iterative Closest Point (ICP) algorithm. Preliminary experimental results demonstrate that the proposed expression modeling and recognition-by-synthesis schemes improve the 3D matching accuracy.

  8. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.

  9. Digital relief generation from 3D models

    NASA Astrophysics Data System (ADS)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  10. Internet-based hardware/software co-design framework for embedded 3D graphics applications

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-Tsai; Wang, Chun-Hao; Huang, Ing-Jer; Wong, Weng-Fai

    2011-12-01

    Advances in technology are making it possible to run three-dimensional (3D) graphics applications on embedded and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics application development that includes the 3D graphics software, OpenGL ES application programming interface (API), device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC) accelerator using transaction-level modeling (TLM). This gives software designers early access to the hardware even before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches made available in the software for verification. A unique aspect of our framework is that it allows hardware and software designers from geographically dispersed areas to cooperate and work on the same framework. Designs can be entered and executed from anywhere in the world without full access to the entire framework, which may include proprietary components. This results in controlled and secure transparency and reproducibility, granting leveled access to users of various roles.

  11. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  12. Software-based geometry operations for 3D computer graphics

    NASA Astrophysics Data System (ADS)

    Sima, Mihai; Iancu, Daniel; Glossner, John; Schulte, Michael; Mamidi, Suman

    2006-02-01

    In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floating-point representation in graphics applications on embedded devices where performance is of paramount importance, while the dynamic range and precision requirements are limited due to the small display sizes (current PDA's are 640 × 480 (VGA), while cell-phones are even smaller). In this paper we analyze the efficiency of a CORDIC-augmented Sandbridge processor when implementing a vertex processor in software using fixed-point arithmetic. A CORDIC-based solution for vertex processing exhibits a number of advantages over classical Multiply-and-Acumulate solutions. First, since a single primitive is used to describe the computation, the code can easily be vectorized and multithreaded, and thus fits the major Sandbridge architectural features. Second, since a CORDIC iteration consists of only a shift operation followed by an addition, the computation may be deeply pipelined. Initially, we outline the Sandbridge architecture extension which encompasses a CORDIC functional unit and the associated instructions. Then, we consider rigid-body rotation, lighting, exponentiation, vector normalization, and perspective division (which are some of the most important data-intensive 3D graphics kernels) and propose a scheme to implement them on the CORDIC-augmented Sandbridge processor. Preliminary results indicate that the performance improvement within the extended instruction set ranges from 3× to 10× (with the exception of rigid body rotation).

  13. IVUSAngio tool: a publicly available software for fast and accurate 3D reconstruction of coronary arteries.

    PubMed

    Doulaverakis, Charalampos; Tsampoulatidis, Ioannis; Antoniadis, Antonios P; Chatzizisis, Yiannis S; Giannopoulos, Andreas; Kompatsiaris, Ioannis; Giannoglou, George D

    2013-11-01

    There is an ongoing research and clinical interest in the development of reliable and easily accessible software for the 3D reconstruction of coronary arteries. In this work, we present the architecture and validation of IVUSAngio Tool, an application which performs fast and accurate 3D reconstruction of the coronary arteries by using intravascular ultrasound (IVUS) and biplane angiography data. The 3D reconstruction is based on the fusion of the detected arterial boundaries in IVUS images with the 3D IVUS catheter path derived from the biplane angiography. The IVUSAngio Tool suite integrates all the intermediate processing and computational steps and provides a user-friendly interface. It also offers additional functionality, such as automatic selection of the end-diastolic IVUS images, semi-automatic and automatic IVUS segmentation, vascular morphometric measurements, graphical visualization of the 3D model and export in a format compatible with other computer-aided design applications. Our software was applied and validated in 31 human coronary arteries yielding quite promising results. Collectively, the use of IVUSAngio Tool significantly reduces the total processing time for 3D coronary reconstruction. IVUSAngio Tool is distributed as free software, publicly available to download and use.

  14. The CIFIST 3D model atmosphere grid.

    NASA Astrophysics Data System (ADS)

    Ludwig, H.-G.; Caffau, E.; Steffen, M.; Freytag, B.; Bonifacio, P.; Kučinskas, A.

    Grids of stellar atmosphere models and associated synthetic spectra are numerical products which have a large impact in astronomy due to their ubiquitous application in the interpretation of radiation from individual stars and stellar populations. 3D model atmospheres are now on the verge of becoming generally available for a wide range of stellar atmospheric parameters. We report on efforts to develop a grid of 3D model atmospheres for late-type stars within the CIFIST Team at Paris Observatory. The substantial demands in computational and human labor for the model production and post-processing render this apparently mundane task a challenging logistic exercise. At the moment the CIFIST grid comprises 77 3D model atmospheres with emphasis on dwarfs of solar and sub-solar metallicities. While the model production is still ongoing, first applications are already worked upon by the CIFIST Team and collaborators.

  15. The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology

    NASA Astrophysics Data System (ADS)

    Kessler, Holger; Mathers, Steve; Sobisch, Hans-Georg

    2009-06-01

    The Geological Surveying and Investigation in 3 Dimensions (GSI3D) software tool and methodology has been developed over the last 15 years. Since 2001 this has been in cooperation with the British Geological Survey (BGS). To-date over a hundred BGS geologists have learned to use the software that is now routinely deployed in building systematic and commercial 3D geological models. The success of the GSI3D methodology and software is based on its intuitive design and the fact that it utilises exactly the same data and methods, albeit in digital forms, that geologists have been using for two centuries in order to make geological maps and cross-sections. The geologist constructs models based on a career of observation of geological phenomena, thereby incorporating tacit knowledge into the model. This knowledge capture is a key element to the GSI3D approach. In BGS GSI3D is part of a much wider set of systems and work processes that together make up the cyberinfrastructure of a modern geological survey. The GSI3D software is not yet designed to cope with bedrock structures in which individual stratigraphic surfaces are repeated or inverted, but the software is currently being extended by BGS to encompass these more complex geological scenarios. A further challenge for BGS is to enable its 3D geological models to become part of the semantic Web using GML application schema like GeoSciML. The biggest benefits of widely available systematic geological models will be an enhanced public understanding of the sub-surface in 3D, and the teaching of geoscience students.

  16. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  17. MATADOR: Software for the Manipulation of 3D Data

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Munoz-Tunon, C.

    The evaluation of 3D data-cubes obtained by bidimensional spectroscopy is not a very simple task due to the huge amount of data that they contain. A typical data-cube could be 256x256 pixels in the spatial plane and 100 frames in the spectral direction. We present a powerful software package, MATADOR, which can easily handle this kind of data. MATADOR is written on IDL but it is not necessary for the user to have any knowledge of this language. MATADOR offers to the user a widget based interface, and any task is performed by simple manipulation of the mouse. The program is basically interactive, although some time/memory consuming operations can be executed as independent sub-tasks. The available tools can visualize an image at any desired wavelength interval and analyze the spectrum for any selected region on the image. The spectrum can, on the spot, be fitted by the combination of the background and several Gaussian or Lorentzians. The asymmetry parameters of emission-lines can also be studied. Different possibilities exist for manipulating two-dimensional images, such as masking, contouring and combining options. There are also tools for investigating the velocity distribution and the structure function of any chosen area. On-line help and a flexible hard-copy option are available, too. IDL is a registered trademark of Research Systems, Inc.

  18. 3D Modeling Engine Representation Summary Report

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  19. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  20. Use Models like Maps in a 3D SDI

    NASA Astrophysics Data System (ADS)

    Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha

    2013-04-01

    Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.

  1. Evolution of Archaea in 3D modeling

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Tankosic, Dragana; Sheldon, Rob

    2012-11-01

    The analysis of all groups of Archaea performed in two-dimensions have demonstrated a specific distribution of Archaean species as a function of pH/temperature, temperature/salinity and pH/salinity. Work presented here is an extension of this analysis with a three dimensional (3D) modeling in logarithmic scale. As it was shown in 2D representation, the "Rules of the Diagonal" have been expressed even more clearly in 3D modeling. In this article, we used a 3D Mesh modeling to show the range of distribution of each separate group of Archaea as a function of pH, temperature, and salinity. Visible overlap and links between different groups indicate a direction of evolution in Archaea. The major direction in ancestral life (vector of evolution) has been indicated: from high temperature, acidic, and low-salinity system towards low temperature, alkaline and high salinity systems. Specifics of the geometrical coordinates and distribution of separate groups of Archaea in 3 D scale were analyzed with a mathematical description of the functions. Based on the obtained data, a new model for the origin and evolution of life on Earth is proposed. The geometry of this model is described by a hyperboloid of one sheet. Conclusions of this research are consistent with previous results derived from the two-dimensional diagrams. This approach is suggested as a new method for analyzing any biological group in accordance to its environmental parameters.

  2. Visualizer: 3D Gridded Data Visualization Software for Geoscience Education and Research

    NASA Astrophysics Data System (ADS)

    Harwood, C.; Billen, M. I.; Kreylos, O.; Jadamec, M.; Sumner, D. Y.; Kellogg, L. H.; Hamann, B.

    2008-12-01

    In both research and education learning is an interactive and iterative process of exploring and analyzing data or model results. However, visualization software often presents challenges on the path to learning because it assumes the user already knows the locations and types of features of interest, instead of enabling flexible and intuitive examination of results. We present examples of research and teaching using the software, Visualizer, specifically designed to create an effective and intuitive environment for interactive, scientific analysis of 3D gridded data. Visualizer runs in a range of 3D virtual reality environments (e.g., GeoWall, ImmersaDesk, or CAVE), but also provides a similar level of real-time interactivity on a desktop computer. When using Visualizer in a 3D-enabled environment, the software allows the user to interact with the data images as real objects, grabbing, rotating or walking around the data to gain insight and perspective. On the desktop, simple features, such as a set of cross-bars marking the plane of the screen, provide extra 3D spatial cues that allow the user to more quickly understand geometric relationships within the data. This platform portability allows the user to more easily integrate research results into classroom demonstrations and exercises, while the interactivity provides an engaging environment for self-directed and inquiry-based learning by students. Visualizer software is freely available for download (www.keckcaves.org) and runs on Mac OSX and Linux platforms.

  3. 3-D Teaching Models for All

    ERIC Educational Resources Information Center

    Bradley, Joan; Farland-Smith, Donna

    2010-01-01

    Allowing a student to "see" through touch what other students see through a microscope can be a challenging task. Therefore, author Joan Bradley created three-dimensional (3-D) models with one student's visual impairment in mind. They are meant to benefit all students and can be used to teach common high school biology topics, including the…

  4. Microfluidic 3D models of cancer

    PubMed Central

    Sung, Kyung Eun; Beebe, David J.

    2014-01-01

    Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models has the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery. PMID:25017040

  5. Microfluidic 3D models of cancer.

    PubMed

    Sung, Kyung Eun; Beebe, David J

    2014-12-15

    Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models have the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery.

  6. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  7. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  8. Collaborative annotation of 3D crystallographic models.

    PubMed

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  9. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    NASA Astrophysics Data System (ADS)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and

  10. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  11. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter. PMID:16238061

  12. Sensing and compressing 3-D models

    SciTech Connect

    Krumm, J.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  13. Gis-Based Smart Cartography Using 3d Modeling

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  14. Robust hashing for 3D models

    NASA Astrophysics Data System (ADS)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  15. Fallon FORGE 3D Geologic Model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  16. 3D Models of Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.

    2015-12-01

    Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.

  17. 3D model of bow shocks

    NASA Astrophysics Data System (ADS)

    Gustafsson, M.; Ravkilde, T.; Kristensen, L. E.; Cabrit, S.; Field, D.; Pineau Des Forêts, G.

    2010-04-01

    Context. Shocks produced by outflows from young stars are often observed as bow-shaped structures in which the H2 line strength and morphology are characteristic of the physical and chemical environments and the velocity of the impact. Aims: We present a 3D model of interstellar bow shocks propagating in a homogeneous molecular medium with a uniform magnetic field. The model enables us to estimate the shock conditions in observed flows. As an example, we show how the model can reproduce rovibrational H2 observations of a bow shock in OMC1. Methods: The 3D model is constructed by associating a planar shock with every point on a 3D bow skeleton. The planar shocks are modelled with a highly sophisticated chemical reaction network that is essential for predicting accurate shock widths and line emissions. The shock conditions vary along the bow surface and determine the shock type, the local thickness, and brightness of the bow shell. The motion of the cooling gas parallel to the bow surface is also considered. The bow shock can move at an arbitrary inclination to the magnetic field and to the observer, and we model the projected morphology and radial velocity distribution in the plane-of-sky. Results: The morphology of a bow shock is highly dependent on the orientation of the magnetic field and the inclination of the flow. Bow shocks can appear in many different guises and do not necessarily show a characteristic bow shape. The ratio of the H2 v = 2-1 S(1) line to the v = 1-0 S(1) line is variable across the flow and the spatial offset between the peaks of the lines may be used to estimate the inclination of the flow. The radial velocity comes to a maximum behind the apparent apex of the bow shock when the flow is seen at an inclination different from face-on. Under certain circumstances the radial velocity of an expanding bow shock can show the same signatures as a rotating flow. In this case a velocity gradient perpendicular to the outflow direction is a projection

  18. Composite model of a 3-D image

    NASA Technical Reports Server (NTRS)

    Dukhovich, I. J.

    1980-01-01

    This paper presents a composite model of a moving (3-D) image especially useful for the sequential image processing and encoding. A non-linear predictor based on the composite model is described. The performance of this predictor is used as a measure of the validity of the model for a real image source. The minimization of a total mean square prediction error provides an inequality which determines a condition for the profitable use of the composite model and can serve as a decision device for the selection of the number of subsources within the model. The paper also describes statistical properties of the prediction error and contains results of computer simulation of two non-linear predictors in the case of perfect classification between subsources.

  19. 3D Model of Surfactant Replacement Therapy

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  20. MOSSFRAC: An anisotropic 3D fracture model

    SciTech Connect

    Moss, W C; Levatin, J L

    2006-08-14

    Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

  1. 3D reconstruction software comparison for short sequences

    NASA Astrophysics Data System (ADS)

    Strupczewski, Adam; Czupryński, BłaŻej

    2014-11-01

    Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.

  2. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  3. Strategy and software for the statistical spatial analysis of 3D intracellular distributions.

    PubMed

    Biot, Eric; Crowell, Elizabeth; Burguet, Jasmine; Höfte, Herman; Vernhettes, Samantha; Andrey, Philippe

    2016-07-01

    The localization of proteins in specific domains or compartments in the 3D cellular space is essential for many fundamental processes in eukaryotic cells. Deciphering spatial organization principles within cells is a challenging task, in particular because of the large morphological variations between individual cells. We present here an approach for normalizing variations in cell morphology and for statistically analyzing spatial distributions of intracellular compartments from collections of 3D images. The method relies on the processing and analysis of 3D geometrical models that are generated from image stacks and that are used to build representations at progressively increasing levels of integration, ultimately revealing statistical significant traits of spatial distributions. To make this methodology widely available to end-users, we implemented our algorithmic pipeline into a user-friendly, multi-platform, and freely available software. To validate our approach, we generated 3D statistical maps of endomembrane compartments at subcellular resolution within an average epidermal root cell from collections of image stacks. This revealed unsuspected polar distribution patterns of organelles that were not detectable in individual images. By reversing the classical 'measure-then-average' paradigm, one major benefit of the proposed strategy is the production and display of statistical 3D representations of spatial organizations, thus fully preserving the spatial dimension of image data and at the same time allowing their integration over individual observations. The approach and software are generic and should be of general interest for experimental and modeling studies of spatial organizations at multiple scales (subcellular, cellular, tissular) in biological systems.

  4. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  5. Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2013-08-01

    3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.

  6. 3d model for site effect assessment at Nice (France)

    NASA Astrophysics Data System (ADS)

    Bertrand, E.; Courrioux, G.; Bourgine, B.; Bour, M.; Guillen, A.; Mouroux, P.; Devaux, E.; Duval, A. M.

    2003-04-01

    Assessment of lithologic site effects is based on an accurate knowledge of properties and geometry of superficial geological formations, i.e. ideally a 3D-4G subsurface model (Geology, Geomorphology, Geophysics, Geotechnics). Such a model has been achieved using a 3D geomodeler ("Geological Editor" developed at BRGM) that allows building 3D volumes of geological formations starting from drill-holes data, sections, and geological maps. This software uses a pseudo-stratigraphic pile in order to reproduce geological history and structural relationships (erosion, deposit). The interpolation is achieved through a 3D potential field. A geostatistical formulation allows to consider data points of a geological limit as equipotential, and sructural dips as gradient inputs for the 3D field interpolation. Then isosurfaces corresponding to each limit are combined using formation relationships to provide volumic models of geological formations. The first task was to identify the relevant geological formations underlying in Nice area. In a first approach Mesozoic bedrock, Pliocene bedrock, and Quaternary alluvial deposits have been distinguished considering their seismic properties. Then alluvions have been subdivided into 9 groups according to their lithology and granulometry. Modelling has been performed considering 2 major erosion surfaces, post-Mesozoic and post-Pliocene. The succession of Quaternary alluviums have been considered as "onlap deposits". Given adjacent lithologies contained in maps and drill holes, these relations lead to logical identification of the roof of formations to be interpolated. The distribution of modeled geological formations can be visualised in 3 dimensions or in 2D sections. Besides the visual interest of 3D representations, the model is first used to build a series of earth columns over a 50m/50m 2D grid. A statistical analysis allowed to identify 73 existing configurations in the Nice district area. Among these, only 15 configurations

  7. Using Computer-Aided Design Software and 3D Printers to Improve Spatial Visualization

    ERIC Educational Resources Information Center

    Katsio-Loudis, Petros; Jones, Millie

    2015-01-01

    Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…

  8. JULIDE: a software tool for 3D reconstruction and statistical analysis of autoradiographic mouse brain sections.

    PubMed

    Ribes, Delphine; Parafita, Julia; Charrier, Rémi; Magara, Fulvio; Magistretti, Pierre J; Thiran, Jean-Philippe

    2010-11-23

    In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

  9. New Instruments for Survey: on Line Softwares for 3d Recontruction from Images

    NASA Astrophysics Data System (ADS)

    Fratus de Balestrini, E.; Guerra, F.

    2011-09-01

    3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation) to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting), acquisition tools (digital cameras) and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings. The research

  10. Right approach to 3D modeling using CAD tools

    NASA Astrophysics Data System (ADS)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  11. Deriving 3d Point Clouds from Terrestrial Photographs - Comparison of Different Sensors and Software

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Mokroš, Martin; Lange, Julia; Petschko, Helene; Prasicek, Günther; Oude Elberink, Sander

    2016-06-01

    Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. While PhotoScan and Pix4D offer the user-friendliest workflows, they are also "black-box" programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.

  12. 3-D physical models of amitosis (cytokinesis).

    PubMed

    Cheng, Kang; Zou, Changhua

    2005-01-01

    Based on Newton's laws, extended Coulomb's law and published biological data, we develop our 3-D physical models of natural and normal amitosis (cytokinesis), for prokaryotes (bacterial cells) in M phase. We propose following hypotheses: Chromosome rings exclusion: No normally and naturally replicated chromosome rings (RCR) can occupy the same prokaryote, a bacterial cell. The RCR produce spontaneous and strong electromagnetic fields (EMF), that can be alternated environmentally, in protoplasm and cortex. The EMF is approximately a repulsive quasi-static electric (slowly variant and mostly electric) field (EF). The EF forces between the RCR are strong enough, and orderly accumulate contractile proteins that divide the procaryotes in the cell cortex of division plane or directly split the cell compartment envelope longitudinally. The radial component of the EF forces could also make furrows or cleavages of procaryotes. The EF distribution controls the protoplasm partition and completes the amitosis (cytokinesis). After the cytokinesis, the spontaneous and strong EF disappear because the net charge accumulation becomes weak, in the protoplasm. The exclusion is because the two sets of informative objects (RCR) have identical DNA codes information and they are electro magnetically identical, therefore they repulse from each other. We also compare divisions among eukaryotes, prokaryotes, mitochondria and chloroplasts and propose our hypothesis: The principles of our models are applied to divisions of mitochondria and chloroplasts of eucaryotes too because these division mechanisms are closer than others in a view of physics. Though we develop our model using 1 division plane (i.e., 1 cell is divided into 2 cells) as an example, the principle of our model is applied to the cases with multiple division planes (i.e., 1 cell is divided into multiple cells) too.

  13. Generation and use of human 3D-CAD models

    NASA Astrophysics Data System (ADS)

    Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf

    2002-05-01

    Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.

  14. Method for modeling post-mortem biometric 3D fingerprints

    NASA Astrophysics Data System (ADS)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.

    2016-05-01

    Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.

  15. 3D Models of Stellar Interactions

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.

    2014-04-01

    Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.

  16. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ). PMID:26440264

  17. 3D model of the Bernese Part of the Swiss Molasse Basin: visualization of uncertainties in a 3D model

    NASA Astrophysics Data System (ADS)

    Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco

    2016-04-01

    The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D

  18. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    PubMed

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.

  19. 3D-GNOME: an integrated web service for structural modeling of the 3D genome

    PubMed Central

    Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-01-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892

  20. Modelling of 3D fractured geological systems - technique and application

    NASA Astrophysics Data System (ADS)

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related

  1. Impact of the 3-D model strategy on science learning of the solar system

    NASA Astrophysics Data System (ADS)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  2. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  3. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

    SciTech Connect

    Bliznakova, K.; Suryanarayanan, S.; Karellas, A.; Pallikarakis, N.

    2010-11-15

    Purpose: This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. Methods: The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Cooper's ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. Results: The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as {beta} exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. Conclusions: The

  4. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  5. 3D modelling of the Black Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Capet, A.; Gregoire, M.; Beckers, J.-M.; Joassin, P.; Naithani, J.; Soetart, K.

    2009-04-01

    A coupled physical-biogeochemical model has been developed to simulate the ecosystem of the Black Sea at the end of the 80's when eutrophication and invasion by gelatinous organisms seriously affected the stability and dynamics of the system. The biogeochemical model describes the cycle of carbon, nitrogen, silicate, oxygen and phosphorus through the foodweb from bacteria to gelatinous carnivores and explicitly represents processes in the anoxic layer down to the bottom. For calibration and analyses purposes, the coupled model has first been run in 1D at several places in the Black Sea. The biogeochemical model involves some hundred parameters which have been first calibrated by hand using published values. Then, an identifiability analysis has been performed in order to determine a subset of 15 identifiable parameters. An automatic calibration subroutine has been used to fine tune these parameters. In 1D, the model solution exhibits a complex dynamics with several years of transient adjustment. This complexity is imparted by the explicit modelling of top predators. The model has been calibrated and validated using a large set of data available in the Black Sea TU Ocean Base. The calibrated biogeochemical model is implemented in a 3D hydrodynamical model of the Black Sea. Results of these 3D simulations will be presented and compared with maps of in-situ data reconstructed from available data base using the software DIVA (Data Interpolation and Variational analysis).

  6. 3D model tools for architecture and archaeology reconstruction

    NASA Astrophysics Data System (ADS)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  7. Anatomy-based 3D skeleton extraction from femur model.

    PubMed

    Gharenazifam, Mina; Arbabi, Ehsan

    2014-11-01

    Using 3D models of bones can highly improve accuracy and reliability of orthopaedic evaluation. However, it may impose excessive computational load. This article proposes a fully automatic method for extracting a compact model of the femur from its 3D model. The proposed method works by extracting a 3D skeleton based on the clinical parameters of the femur. Therefore, in addition to summarizing a 3D model of the bone, the extracted skeleton would preserve important clinical and anatomical information. The proposed method has been applied on 3D models of 10 femurs and the results have been evaluated for different resolutions of data.

  8. CityGML - Interoperable semantic 3D city models

    NASA Astrophysics Data System (ADS)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    relationship to other standards from the fields of computer graphics and computer-aided architectural design and to the prospective INSPIRE model are discussed, as well as the impact CityGML has and is having on the software industry, on applications of 3D city models, and on science generally.

  9. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  10. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  11. The 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.

  12. Morphological and Volumetric Assessment of Cerebral Ventricular System with 3D Slicer Software.

    PubMed

    Gonzalo Domínguez, Miguel; Hernández, Cristina; Ruisoto, Pablo; Juanes, Juan A; Prats, Alberto; Hernández, Tomás

    2016-06-01

    We present a technological process based on the 3D Slicer software for the three-dimensional study of the brain's ventricular system with teaching purposes. It values the morphology of this complex brain structure, as a whole and in any spatial position, being able to compare it with pathological studies, where its anatomy visibly changes. 3D Slicer was also used to obtain volumetric measurements in order to provide a more comprehensive and detail representation of the ventricular system. We assess the potential this software has for processing high resolution images, taken from Magnetic Resonance and generate the three-dimensional reconstruction of ventricular system. PMID:27147517

  13. 3D Face modeling using the multi-deformable method.

    PubMed

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  14. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  15. Optimal Alignment novel software procedure for 3D reconstruction of electronmicroscopic serial sections.

    PubMed

    Simon, László; Garab, Sándor; Noszek, Annamária; Römmer, Elizabeth; Záborszky, László

    2007-03-30

    3D reconstruction from electronmicroscopic (EM) serial sections substantially differs from modeling body parts by linking convoluted planes delivered by CT and NMR. Namely, variations both in relative X-Y position and rotation of the target elements between the adjacent images and also additional problems caused by deformed, deteriorated or missing sections can only be overruled by an aligning paradigm, which exploits all the pixel-level information, and results in an optimal fitting with selected precision. This paper presents a complex computer program called Optimal Alignment, which performs the precise elaboration of X-Y shift and relative rotation of two consecutive images. The required searching process will be customized by setting four independent parameters which relate the span and density of the pixel-scanning basic process. Optimalization of fitting accuracy versus running time can be achieved by a rather short training period. The potential precision of Optimal Alignment based on complex algorithms is far superior to manual aligning of EM photographs with the eye-wrist-mouse facility. The resulted database of alignment orientation parameters can serve as an advanced source for the 3D reconstructing programs. Optimal Alignment software tool (supported by Hungarian Space Office grant TP 138) will be demonstrated on a basal forebrain NPY+ axonal reconstruction, performed in L. Záborszky's laboratory (supported by NIH grant NSO23945).

  16. Assessing the RELAPS-3D Heat Conduction Enclosure Model

    SciTech Connect

    McCann, Larry D.

    2008-09-30

    Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

  17. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  18. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  19. Handheld camera 3D modeling system using multiple reference panels

    NASA Astrophysics Data System (ADS)

    Fujimura, Kouta; Oue, Yasuhiro; Terauchi, Tomoya; Emi, Tetsuichi

    2002-03-01

    A novel 3D modeling system in which a target object is easily captured and modeled by using a hand-held camera with several reference panels is presented in this paper. The reference panels are designed to be able to obtain the camera position and discriminate between each other. A conventional 3D modeling system using a reference panel has several restrictions regarding the target object, specifically the size and its location. Our system uses multiple reference panels, which are set around the target object to remove these restrictions. The main features of this system are as follows: 1) The whole shape and photo-realistic textures of the target object can be digitized based on several still images or a movie captured by using a hand-held camera; as well as each location of the camera that can be calculated using the reference panels. 2) Our system can be provided as a software product only. That means there are no special requirements for hardware; even the reference panels , because they can be printed from image files or software. 3) This system can be applied to digitize a larger object. In the experiments, we developed and used an interactive region selection tool to detect the silhouette on each image instead of using the chroma -keying method. We have tested our system with a toy object. The calculation time is about 10 minutes (except for the capturing the images and extracting the silhouette by using our tool) on a personal computer with a Pentium-III processor (600MHz) and 320MB memory. However, it depends on how complex the images are and how many images you use. Our future plan is to evaluate the system with various kind of objects, specifically, large ones in outdoor environments.

  20. A 3D Geometry Model Search Engine to Support Learning

    ERIC Educational Resources Information Center

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  1. Multithreaded real-time 3D image processing software architecture and implementation

    NASA Astrophysics Data System (ADS)

    Ramachandra, Vikas; Atanassov, Kalin; Aleksic, Milivoje; Goma, Sergio R.

    2011-03-01

    Recently, 3D displays and videos have generated a lot of interest in the consumer electronics industry. To make 3D capture and playback popular and practical, a user friendly playback interface is desirable. Towards this end, we built a real time software 3D video player. The 3D video player displays user captured 3D videos, provides for various 3D specific image processing functions and ensures a pleasant viewing experience. Moreover, the player enables user interactivity by providing digital zoom and pan functionalities. This real time 3D player was implemented on the GPU using CUDA and OpenGL. The player provides user interactive 3D video playback. Stereo images are first read by the player from a fast drive and rectified. Further processing of the images determines the optimal convergence point in the 3D scene to reduce eye strain. The rationale for this convergence point selection takes into account scene depth and display geometry. The first step in this processing chain is identifying keypoints by detecting vertical edges within the left image. Regions surrounding reliable keypoints are then located on the right image through the use of block matching. The difference in the positions between the corresponding regions in the left and right images are then used to calculate disparity. The extrema of the disparity histogram gives the scene disparity range. The left and right images are shifted based upon the calculated range, in order to place the desired region of the 3D scene at convergence. All the above computations are performed on one CPU thread which calls CUDA functions. Image upsampling and shifting is performed in response to user zoom and pan. The player also consists of a CPU display thread, which uses OpenGL rendering (quad buffers). This also gathers user input for digital zoom and pan and sends them to the processing thread.

  2. Indoor Modelling Benchmark for 3D Geometry Extraction

    NASA Astrophysics Data System (ADS)

    Thomson, C.; Boehm, J.

    2014-06-01

    A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.

  3. Finite-element simulation of flanging in the deform 3D software package

    NASA Astrophysics Data System (ADS)

    Vostrov, V. N.; Kononov, P. V.

    2016-05-01

    The results of a finite element simulation of the rolling of cylindrical workpieces using the DEFORM 3D software package are presented. The curve of the limiting plasticity of L63 brass that corresponds to various schemes of the state of stress in a workpiece is plotted. The deformation paths of the characteristic regions in a rolled part are calculated.

  4. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning…

  5. Fringe projection 3D microscopy with the general imaging model.

    PubMed

    Yin, Yongkai; Wang, Meng; Gao, Bruce Z; Liu, Xiaoli; Peng, Xiang

    2015-03-01

    Three-dimensional (3D) imaging and metrology of microstructures is a critical task for the design, fabrication, and inspection of microelements. Newly developed fringe projection 3D microscopy is presented in this paper. The system is configured according to camera-projector layout and long working distance lenses. The Scheimpflug principle is employed to make full use of the limited depth of field. For such a specific system, the general imaging model is introduced to reach a full 3D reconstruction. A dedicated calibration procedure is developed to realize quantitative 3D imaging. Experiments with a prototype demonstrate the accessibility of the proposed configuration, model, and calibration approach.

  6. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.

    PubMed

    de la Rosa-Trevín, J M; Quintana, A; Del Cano, L; Zaldívar, A; Foche, I; Gutiérrez, J; Gómez-Blanco, J; Burguet-Castell, J; Cuenca-Alba, J; Abrishami, V; Vargas, J; Otón, J; Sharov, G; Vilas, J L; Navas, J; Conesa, P; Kazemi, M; Marabini, R; Sorzano, C O S; Carazo, J M

    2016-07-01

    In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es. PMID:27108186

  7. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.

    PubMed

    de la Rosa-Trevín, J M; Quintana, A; Del Cano, L; Zaldívar, A; Foche, I; Gutiérrez, J; Gómez-Blanco, J; Burguet-Castell, J; Cuenca-Alba, J; Abrishami, V; Vargas, J; Otón, J; Sharov, G; Vilas, J L; Navas, J; Conesa, P; Kazemi, M; Marabini, R; Sorzano, C O S; Carazo, J M

    2016-07-01

    In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es.

  8. Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface

    NASA Astrophysics Data System (ADS)

    Brocks, S.; Bareth, G.

    2016-06-01

    Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.

  9. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  10. Complete 3D model reconstruction from multiple views

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Yung; Subbarao, Murali; Park, Soon-Yong

    2002-02-01

    New algorithms are presented for automatically acquiring the complete 3D model of single and multiple objects using rotational stereo. The object is placed on a rotation stage. Stereo images for several viewing directions are taken by rotating the object by known angles. Partial 3D shapes and the corresponding texture maps are obtained using rotational stereo and shape from focus. First, for each view, shape from focus is used to obtain a rough 3D shape and the corresponding focused image. Then, the rough 3D shape and focused images are used in rotational stereo to obtain a more accurate measurement of 3D shape. The rotation axis is calibrated using three fixed points on a planar object and refined during surface integration. The complete 3D model is reconstructed by integrating partial 3D shapes and the corresponding texture maps of the object from multiple views. New algorithms for range image registration, surface integration and texture mapping are presented. Our method can generate 3D models very fast and preserve the texture of objects. A new prototype vision system named Stonybrook VIsion System 2 (SVIS-2) has been built and used in the experiments. In the experiments, 4 viewing directions at 90-degree intervals are used. SVIS-2 can acquire the 3D model of objects within a 250 mm x 250 mm x 250 mm cubic workspace placed about 750 mm from the camera. Both computational algorithms and experimental results on several objects are presented.

  11. An Automated 3d Indoor Topological Navigation Network Modelling

    NASA Astrophysics Data System (ADS)

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  12. Highway 3D model from image and lidar data

    NASA Astrophysics Data System (ADS)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  13. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  14. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  15. Reassessing Geophysical Models of the Bushveld Complex in 3D

    NASA Astrophysics Data System (ADS)

    Cole, J.; Webb, S. J.; Finn, C.

    2012-12-01

    Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less

  16. New insights into high resolution DEM structural analysis with Coltop3D software

    NASA Astrophysics Data System (ADS)

    Metzger, R.; Jaboyedoff, M.; Oppikofer, T.

    2009-04-01

    Modern measurement devices such a terrestrial laser scanning (TLS) systems allow for collecting tremendous amount of (x,y,z) points (up to 20 millions) within a few minutes. However, data analysis still may be impaired because of software limitations, which are usually not designed to handle such huge data sets. To overcome this shortcoming, a software - Coltop3D - was written from scratch. Coltop3D aims at providing the geosciences community a powerful tool to visually handle seamlessly large point clouds and large regular grids DEM, at allowing for straightforward visual analysis of the data with different colour scheme, and at providing specific geologist and/or geoscientist treatment methods such as structural analysis. The main features of Coltop3D are as follow: 1) Ability to handle huge data sets (up to 150 millions points); 2) Coloring the surface with a color scheme linking computer graphics HSV wheel and Schmidt-Lambert stereonet projection; 3) Ability to select a subset of a point cloud with complex geometric shapes; 4) Ability to select a subset of a point cloud with dip and dip direction values; 5) Creating density stereonets with selected subset; 6) Easily import from or export point cloud data to third party software. Besides the technical and basic capabilities of Coltop3D, specific case studies such as structural analysis and rock fall analysis will be presented.

  17. Extending 3D city models with legal information

    NASA Astrophysics Data System (ADS)

    Frank, A. U.; Fuhrmann, T.; Navratil, G.

    2012-10-01

    3D city models represent existing physical objects and their topological and functional relations. In everyday life the rights and responsibilities connected to these objects, primarily legally defined rights and obligations but also other socially and culturally established rights, are of importance. The rights and obligations are defined in various laws and it is often difficult to identify the rules applicable for a certain case. The existing 2D cadastres show civil law rights and obligations and plans to extend them to provide information about public law restrictions for land use are in several countries under way. It is tempting to design extensions to the 3D city models to provide information about legal rights in 3D. The paper analyses the different types of information that are needed to reduce conflicts and to facilitate decisions about land use. We identify the role 3D city models augmented with planning information in 3D can play, but do not advocate a general conversion from 2D to 3D for the legal cadastre. Space is not anisotropic and the up/down dimension is practically very different from the two dimensional plane - this difference must be respected when designing spatial information systems. The conclusions are: (1) continue the current regime for ownership of apartments, which is not ownership of a 3D volume, but co-ownership of a building with exclusive use of some rooms; such exclusive use rights could be shown in a 3D city model; (2) ownership of 3D volumes for complex and unusual building situations can be reported in a 3D city model, but are not required everywhere; (3) indicate restrictions for land use and building in 3D city models, with links to the legal sources.

  18. Defect modelling in an interactive 3-D CAD environment

    NASA Astrophysics Data System (ADS)

    Reilly, D.; Potts, A.; McNab, A.; Toft, M.; Chapman, R. K.

    2000-05-01

    This paper describes enhancement of the NDT Workbench, as presented at QNDE '98, to include theoretical models for the ultrasonic inspection of smooth planar defects, developed by British Energy and BNFL-Magnox Generation. The Workbench is a PC-based software package for the reconstruction, visualization and analysis of 3-D ultrasonic NDT data in an interactive CAD environment. This extension of the Workbeach now provides the user with a well established modelling approach, coupled with a graphical user interface for: a) configuring the model for flaw size, shape, orientation and location; b) flexible specification of probe parameters; c) selection of scanning surface and scan pattern on the CAD component model; d) presentation of the output as a simulated ultrasound image within the component, or as graphical or tabular displays. The defect modelling facilities of the Workbench can be used for inspection procedure assessment and confirmation of data interpretation, by comparison of overlay images generated from real and simulated data. The modelling technique currently implemented is based on the Geometrical Theory of Diffraction, for simulation of strip-like, circular or elliptical crack responses in the time harmonic or time dependent cases. Eventually, the Workbench will also allow modelling using elastodynamic Kirchhoff theory.

  19. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

    SciTech Connect

    Horwedel, J.E.; Bowman, S.M.

    2000-06-01

    Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system.

  20. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    ERIC Educational Resources Information Center

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  1. Efficient 3D rendering for web-based medical imaging software: a proof of concept

    NASA Astrophysics Data System (ADS)

    Cantor-Rivera, Diego; Bartha, Robert; Peters, Terry

    2011-03-01

    Medical Imaging Software (MIS) found in research and in clinical practice, such as in Picture and Archiving Communication Systems (PACS) and Radiology Information Systems (RIS), has not been able to take full advantage of the Internet as a deployment platform. MIS is usually tightly coupled to algorithms that have substantial hardware and software requirements. Consequently, MIS is deployed on thick clients which usually leads project managers to allocate more resources during the deployment phase of the application than the resources that would be allocated if the application were deployed through a web interface.To minimize the costs associated with this scenario, many software providers use or develop plug-ins to provide the delivery platform (internet browser) with the features to load, interact and analyze medical images. Nevertheless there has not been a successful standard means to achieve this goal so far. This paper presents a study of WebGL as an alternative to plug-in development for efficient rendering of 3D medical models and DICOM images. WebGL is a technology that enables the internet browser to have access to the local graphics hardware in a native fashion. Because it is based in OpenGL, a widely accepted graphic industry standard, WebGL is being implemented in most of the major commercial browsers. After a discussion on the details of the technology, a series of experiments are presented to determine the operational boundaries in which WebGL is adequate for MIS. A comparison with current alternatives is also addressed. Finally conclusions and future work are discussed.

  2. RELAP5-3D Compressor Model

    SciTech Connect

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  3. A 3D model of Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Vangvichith, M.; Forget, F.; Wordsworth, R.

    2011-10-01

    For the first time, we have built a GCM of Pluto's atmosphere, adapted from the model of Triton's, recently developed[9] . In fact, Pluto and Triton have a lot of similarities (atmospheric, orbital). This GCM will allow to better understand the complex mechanism of the planet and to study the variation of the thermal profile during time.

  4. Beyond 3D culture models of cancer

    PubMed Central

    Tanner, Kandice; Gottesman, Michael M.

    2016-01-01

    The mechanisms underlying the spatiotemporal evolution of tumor ecosystems present a challenge in evaluating drug efficacy. In this Perspective, we address the use of three-dimensional in vitro culture models to delineate the dynamic interplay between the tumor and the host microenvironment in an effort to attain realistic platforms for assessing pharmaceutical efficacy in patients. PMID:25877888

  5. Venusian Applications of 3D Convection Modeling

    NASA Technical Reports Server (NTRS)

    Bonaccorso, Timary Annie

    2011-01-01

    This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.

  6. Virtual 3d City Modeling: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  7. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  8. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  9. Modeling 3D facial shape from DNA.

    PubMed

    Claes, Peter; Liberton, Denise K; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E; Pearson, Laurel N; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A; Yao, Wei; Tang, Hua; Barsh, Gregory S; Absher, Devin M; Puts, David A; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K; Boster, James S; Shriver, Mark D

    2014-03-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  10. Modeling 3D Facial Shape from DNA

    PubMed Central

    Claes, Peter; Liberton, Denise K.; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E.; Pearson, Laurel N.; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A.; Yao, Wei; Tang, Hua; Barsh, Gregory S.; Absher, Devin M.; Puts, David A.; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W.; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K.; Boster, James S.; Shriver, Mark D.

    2014-01-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  11. A new 3D dynamical biomechanical tongue model

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner

    2001-05-01

    A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.

  12. 3D PIC Modeling of Microcavity Discharge

    NASA Astrophysics Data System (ADS)

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  13. Developing and Testing a 3d Cadastral Data Model a Case Study in Australia

    NASA Astrophysics Data System (ADS)

    Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.

    2012-07-01

    Population growth, urbanization and industrialization place more pressure on land use with the need for increased space. To extend the use and functionality of the land, complex infrastructures are being built, both vertically and horizontally, layered and stacked. These three-dimensional (3D) developments affect the interests (Rights, Restrictions, and Responsibilities (RRRs)) attached to the underlying land. A 3D cadastre will assist in managing the effects of 3D development on a particular extent of land. There are many elements that contribute to developing a 3D cadastre, such as existing of 3D property legislations, 3D DBMS, 3D visualization. However, data modelling is one of the most important elements of a successful 3D cadastre. As architectural models of houses and high rise buildings help their users visualize the final product, 3D cadastre data model supports 3D cadastre users to understand the structure or behavior of the system and has a template that guides them to construct and implement the 3D cadastre. Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands) and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia) are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0). 3DCDM models both the legal

  14. 3D-model building of the jaw impression

    NASA Astrophysics Data System (ADS)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  15. 3D model-based still image object categorization

    NASA Astrophysics Data System (ADS)

    Petre, Raluca-Diana; Zaharia, Titus

    2011-09-01

    This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.

  16. Summary on Several Key Techniques in 3D Geological Modeling

    PubMed Central

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029

  17. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models.

    PubMed

    Rathnayaka, Kanchana; Momot, Konstantin I; Noser, Hansrudi; Volp, Andrew; Schuetz, Michael A; Sahama, Tony; Schmutz, Beat

    2012-04-01

    Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5 T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15 mm while the MRI-based models contained an average error of 0.23 mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.

  18. Models the Electromagnetic Response of a 3D Distribution using MP COMPUTERS

    1999-05-01

    EM3D models the electromagnetic response of a 3D distribution of conductivity, dielectric permittivity and magnetic permeability within the earth for geophysical applications using massively parallel computers. The simulations are carried out in the frequency domain for either electric or magnetic sources for either scattered or total filed formulations of Maxwell''s equations. The solution is based on the method of finite differences and includes absorbing boundary conditions so that responses can be modeled up into themore » radar range where wave propagation is dominant. Recent upgrades in the software include the incorporation of finite size sources, that in addition to dipolar source fields, and a low induction number preconditioner that can significantly reduce computational run times. A graphical user interface (GUI) is bundled with the software so that complicated 3D models can be easily constructed and simulated with the software. The GUI also allows for plotting of the output.« less

  19. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  20. Use of laser 3D surface digitizer in data collection and 3D modeling of anatomical structures

    NASA Astrophysics Data System (ADS)

    Tse, Kelly; Van Der Wall, Hans; Vu, Dzung H.

    2006-02-01

    A laser digitizer (Konica-Minolta Vivid 910) is used to obtain 3-dimensional surface scans of anatomical structures with a maximum resolution of 0.1mm. Placing the specimen on a turntable allows multiple scans allaround because the scanner only captures data from the portion facing its lens. A computer model is generated using 3D modeling software such as Geomagic. The 3D model can be manipulated on screen for repeated analysis of anatomical features, a useful capability when the specimens are rare or inaccessible (museum collection, fossils, imprints in rock formation.). As accurate measurements can be performed on the computer model, instead of taking measurements on actual specimens only at the archeological excavation site e.g., a variety of quantitative data can be later obtained on the computer model in the laboratory as new ideas come to mind. Our group had used a mechanical contact digitizer (Microscribe) for this purpose, but with the surface digitizer, we have been obtaining data sets more accurately and more quickly.

  1. Services Oriented Smart City Platform Based On 3d City Model Visualization

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.

    2014-04-01

    The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.

  2. Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development

    NASA Astrophysics Data System (ADS)

    Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir

    2016-03-01

    The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the two example tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover, results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of bar {x}+n× s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.

  3. Why 3D? The Need for Solution Based Modeling in a National Geoscience Organization.

    NASA Astrophysics Data System (ADS)

    Terrington, Ricky; Napier, Bruce; Howard, Andy; Ford, Jon; Hatton, William

    2008-05-01

    In recent years national geoscience organizations have increasingly utilized 3D model data as an output to the stakeholder community. Advances in both software and hardware have led to an increasing use of 3D depictions of geoscience data alongside the standard 2D data formats such as maps and GIS data. By characterizing geoscience data in 3D, knowledge transfer between geoscientists and stakeholders is improved as the mindset and thought processes are communicated more effectively in a 3D model than in a 2D flat file format. 3D models allow the user to understand the conceptual basis of the 2D data and aids the decision making process at local, regional and national scales. Some of these issues include foundation and engineering conditions, ground water vulnerability, aquifer recharge and flow, and resource extraction and storage. The British Geological Survey has established a mechanism and infrastructure through the Digital Geoscience Spatial Model Programme (DGSM) to produce these types of 3D geoscience outputs. This cyber-infrastructure not only allows good data and information management, it enables geoscientists to capture their know-how and implicit and tacit knowledge for their 3D interpretations. A user of this data will then have access to value-added information for the 3D dataset including the knowledge, approach, inferences, uncertainty, wider context and best practice acquired during the 3D interpretation. To complement this cyber-infrastructure, an immersive 3D Visualization Facility was constructed at the British Geological Survey offices in Keyworth, Nottingham and Edinburgh. These custom built facilities allow stereo projection of geoscience data, immersing the users and stakeholders in a wealth of 3D geological data. Successful uses of these facilities include collaborative 3D modeling, demonstrations to public stakeholders and Virtual Field Mapping Reconnaissance.

  4. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    NASA Astrophysics Data System (ADS)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  5. 3d Modeling of cultural heritage objects with a structured light system.

    NASA Astrophysics Data System (ADS)

    Akca, Devrim

    3D modeling of cultural heritage objects is an expanding application area. The selection of the right technology is very important and strictly related to the project requirements, budget and user's experience. The triangulation based active sensors, e.g. structured light systems are used for many kinds of 3D object reconstruction tasks and in particular for 3D recording of cultural heritage objects. This study presents the experiences in the results of two such projects in which a close-range structured light system is used for the 3D digitization. The paper includes the essential steps of the 3D object modeling pipeline, i.e. digitization, registration, surface triangulation, editing, texture mapping and visualization. The capabilities of the used hardware and software are addressed. Particular emphasis is given to a coded structured light system as an option for data acquisition.

  6. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance

    PubMed Central

    Itagaki, Michael W.

    2015-01-01

    Three-dimensional (3D) printing applications in medicine have been limited due to high cost and technical difficulty of creating 3D printed objects. It is not known whether patient-specific, hollow, small-caliber vascular models can be manufactured with 3D printing, and used for small vessel endoluminal testing of devices. Manufacture of anatomically accurate, patient-specific, small-caliber arterial models was attempted using data from a patient’s CT scan, free open-source software, and low-cost Internet 3D printing services. Prior to endovascular treatment of a patient with multiple splenic artery aneurysms, a 3D printed model was used preoperatively to test catheter equipment and practice the procedure. A second model was used intraoperatively as a reference. Full-scale plastic models were successfully produced. Testing determined the optimal puncture site for catheter positioning. A guide catheter, base catheter, and microcatheter combination selected during testing was used intraoperatively with success, and the need for repeat angiograms to optimize image orientation was minimized. A difficult and unconventional procedure was successful in treating the aneurysms while preserving splenic function. We conclude that creation of small-caliber vascular models with 3D printing is possible. Free software and low-cost printing services make creation of these models affordable and practical. Models are useful in preoperative planning and intraoperative guidance. PMID:26027767

  7. Assessment of the reliability and repeatability of landmarks using 3-D cephalometric software.

    PubMed

    Frongia, Gianluigi; Piancino, Maria Grazia; Bracco, Andrea Adriano; Crincoli, Vito; Debernardi, Cesare Lorenzo; Bracco, Pietro

    2012-10-01

    The aim of this study was to analyze the reliability and repeatability of identification landmarks using 3-D cephalometric software. Ten orthognathic patients were selected for this study and underwent the following protocol: 1. radiographic evaluation (CBCT technique); 2. stone casts; 3. photos; and 4. 3-D cephalometric evaluation. Twenty-one hard tissue landmarks and 14 cephalometric measurements were taken three times (T1, T2, and T3) on each patient, with an interval of one week by two experts in orthodontics (A, B). Standard deviation and Pearson's correlation coefficient were calculated to evaluate intra- and inter-observer repeatability. The results showed a strong correlation for both intra- and inter-observer Pearson's correlation coefficient (>0.7). The current preliminary study showed that the reliability and repeatability of the identification landmarks were very high if the 3-D cephalometric landmarks are defined correctly in the three planes of the space. Further evaluation is necessary to better define the 3-D cephalometric system.

  8. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  9. Multivariate 3D modelling of Scottish soil properties

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro

    2015-04-01

    Information regarding soil properties across landscapes at national or continental scales is critical for better soil and environmental management and for climate regulation and adaptation policy. The prediction of soil properties variation in space and time and their uncertainty is an important part of environmental modelling. Soil properties, and in particular the 3 fractions of soil texture, exhibit strong co-variation among themselves and therefore taking into account this correlation leads to spatially more accurate results. In this study the continuous vertical and lateral distributions of relevant soil properties in Scottish soils were modelled with a multivariate 3D-GAM+GS approach. The approach used involves 1) modelling the multivariate trend with full 3D spatial correlation, i.e., exploiting the values of the neighbouring pixels in 3D-space, and 2) 3D kriging to interpolate the residuals. The values at each cell for each of the considered depth layers were defined using a hybrid GAM-geostatistical 3D model, combining the fitting of a GAM (generalised Additive Models) to estimate multivariate trend of the variables, using a 3D smoother with related covariates. Gaussian simulations of the model residuals were used as spatial component to account for local details. A dataset of about 26,000 horizons (7,800 profiles) was used for this study. A validation set was randomly selected as 25% of the full dataset. Numerous covariates derived from globally available data, such as MODIS and SRTM, are considered. The results of the 3D-GAM+kriging showed low RMSE values, good R squared and an accurate reproduction of the spatial structure of the data for a range of soil properties. The results have an out-of-sample RMSE between 10 to 15% of the observed range when taking into account the whole profile. The approach followed allows the assessment of the uncertainty of both the trend and the residuals.

  10. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  11. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.

  12. Modeling 3-D Effects in the DIII-D Boundary

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Moyer, R. A.; Reiter, D.; Kasilov, S. V.; Runov, A. M.

    2002-11-01

    Resonant magnetic perturbations δ br from the DIII-D locked and resistive wall mode control coils (C-coil and I-coil, respectively) affect ne and Te profiles in both the pedestal and core. To understand why these δ br perturbations change the plasma profiles we first model the edge magnetic topology with a field line integration code, TRIP3D code. In general, the TRIP3D results indicate that the control coils create stochastic layers with as much as 25% edge magnetic flux connected to the divertors and walls. While heat and particle transport modeling in open stochastic layers is inherently very difficult, Monte Carlo methods appear to provide the most reasonable approach with which to address these issues. As such, we have assessed the possibility of coupling a recently developed Monte Carlo heat transport code, the E3D code, [A.M. Runov et al., Phys. Plasmas 8, 916 (2001)] to TRIP3D. We will discuss how this coupling can best be accomplished and what must be done to benchmark the TRIP3D/E3D ensemble using DIII-D experimental data. We will also discuss the analysis of proposed designs for a dedicated DIII-D stochastic boundary layer coil which produce minimal δ br core perturbations.

  13. Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Gil, Joon-Min

    2015-03-01

    The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies has led to a great deal of attention being focused on efficient remote control of manufacturing processes. SDN is a renowned paradigm for network softwarization, which has helped facilitate remote manufacturing in association with high network performance, since SDN is designed to control network paths and traffic flows, guaranteeing improved quality of services by obtaining network requests from end-applications on demand through the separated SDN controller or control plane. However, current SDN approaches are generally focused on the controls and automation of the networks, which indicates that there is a lack of management plane development designed for a reliable and fault-tolerant SDN environment. Therefore, in addition to the inherent advantage of SDN, this paper proposes a new software-defined network operations center (SD-NOC) architecture to strengthen the reliability and fault-tolerance of SDN in terms of network operations and management in particular. The cooperation and orchestration between SDN and SD-NOC are also introduced for the SDN failover processes based on four principal SDN breakdown scenarios derived from the failures of the controller, SDN nodes, and connected links. The abovementioned SDN troubles significantly reduce the network reachability to remote devices (e.g., 3D printers, super high-definition cameras, etc.) and the reliability of relevant control processes. Our performance consideration and analysis results show that the proposed scheme can shrink operations and management overheads of SDN, which leads to the enhancement of responsiveness and reliability of SDN for remote 3D printing and control processes.

  14. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    NASA Astrophysics Data System (ADS)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  15. Aortic valve and ascending aortic root modeling from 3D and 3D+t CT

    NASA Astrophysics Data System (ADS)

    Grbic, Saša; Ionasec, Razvan I.; Zäuner, Dominik; Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2010-02-01

    Aortic valve disorders are the most frequent form of valvular heart disorders (VHD) affecting nearly 3% of the global population. A large fraction among them are aortic root diseases, such as aortic root aneurysm, often requiring surgical procedures (valve-sparing) as a treatment. Visual non-invasive assessment techniques could assist during pre-selection of adequate patients, planning procedures and afterward evaluation of the same. However state of the art approaches try to model a rather short part of the aortic root, insufficient to assist the physician during intervention planning. In this paper we propose a novel approach for morphological and functional quantification of both the aortic valve and the ascending aortic root. A novel physiological shape model is introduced, consisting of the aortic valve root, leaflets and the ascending aortic root. The model parameters are hierarchically estimated using robust and fast learning-based methods. Experiments performed on 63 CT sequences (630 Volumes) and 20 single phase CT volumes demonstrated an accuracy of 1.45mm and an performance of 30 seconds (3D+t) for this approach. To the best of our knowledge this is the first time a complete model of the aortic valve (including leaflets) and the ascending aortic root, estimated from CT, has been proposed.

  16. STELLOPT Modeling of the 3D Diagnostic Response in ITER

    SciTech Connect

    Lazerson, Samuel A

    2013-05-07

    The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

  17. Potential of 3D City Models to assess flood vulnerability

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  18. Thermal 3D modeling system based on 3-view geometry

    NASA Astrophysics Data System (ADS)

    Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-11-01

    In this paper, we propose a novel thermal three-dimensional (3D) modeling system that includes 3D shape, visual, and thermal infrared information and solves a registration problem among these three types of information. The proposed system consists of a projector, a visual camera and, a thermal camera (PVT). To generate 3D shape information, we use a structured light technique, which consists of a visual camera and a projector. A thermal camera is added to the structured light system in order to provide thermal information. To solve the correspondence problem between the three sensors, we use three-view geometry. Finally, we obtain registered PVT data, which includes visual, thermal, and 3D shape information. Among various potential applications such as industrial measurements, biological experiments, military usage, and so on, we have adapted the proposed method to biometrics, particularly for face recognition. With the proposed method, we obtain multi-modal 3D face data that includes not only textural information but also data regarding head pose, 3D shape, and thermal information. Experimental results show that the performance of the proposed face recognition system is not limited by head pose variation which is a serious problem in face recognition.

  19. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  20. Quality of 3D Models Generated by SFM Technology

    NASA Astrophysics Data System (ADS)

    Marčiš, Marián

    2013-12-01

    Using various types of automation in digital photogrammetry is associated with questions such as the accuracy of a 3D model generated on various types of surfaces and textures, the financial costs of the equipment needed, and also the time costs of the processing. This topic deals with the actual technology of computer vision, which allows the automated exterior orientation of images, camera calibration, and the generation of 3D models directly from images of the object itself, based on the automatic detection of significant points. Detailed testing is done using the Agisoft PhotoScan system, and the camera configuration is solved with respect to the accuracy of the 3D model generated and the time consumption of the calculations for the different types of textures and the different settings for the processing.

  1. 3D model of amphioxus steroid receptor complexed with estradiol

    SciTech Connect

    Baker, Michael E.; Chang, David J.

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  2. A graphic user interface for efficient 3D photo-reconstruction based on free software

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael; Gómez, Jose A.

    2015-04-01

    Recently, different studies have stressed the applicability of 3D photo-reconstruction based on Structure from Motion algorithms in a wide range of geoscience applications. For the purpose of image photo-reconstruction, a number of commercial and freely available software packages have been developed (e.g. Agisoft Photoscan, VisualSFM). The workflow involves typically different stages such as image matching, sparse and dense photo-reconstruction, point cloud filtering and georeferencing. For approaches using open and free software, each of these stages usually require different applications. In this communication, we present an easy-to-use graphic user interface (GUI) developed in Matlab® code as a tool for efficient 3D photo-reconstruction making use of powerful existing software: VisualSFM (Wu, 2015) for photo-reconstruction and CloudCompare (Girardeau-Montaut, 2015) for point cloud processing. The GUI performs as a manager of configurations and algorithms, taking advantage of the command line modes of existing software, which allows an intuitive and automated processing workflow for the geoscience user. The GUI includes several additional features: a) a routine for significantly reducing the duration of the image matching operation, normally the most time consuming stage; b) graphical outputs for understanding the overall performance of the algorithm (e.g. camera connectivity, point cloud density); c) a number of useful options typically performed before and after the photo-reconstruction stage (e.g. removal of blurry images, image renaming, vegetation filtering); d) a manager of batch processing for the automated reconstruction of different image datasets. In this study we explore the advantages of this new tool by testing its performance using imagery collected in several soil erosion applications. References Girardeau-Montaut, D. 2015. CloudCompare documentation accessed at http://cloudcompare.org/ Wu, C. 2015. VisualSFM documentation access at http://ccwu.me/vsfm/doc.html#.

  3. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  4. Robust model-based 3d/3D fusion using sparse matching for minimally invasive surgery.

    PubMed

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2013-01-01

    Classical surgery is being disrupted by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm CT and C-arm fluoroscopy are routinely used for intra-operative guidance. However, intra-operative modalities have limited image quality of the soft tissue and a reliable assessment of the cardiac anatomy can only be made by injecting contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a novel sparse matching approach for fusing high quality pre-operative CT and non-contrasted, non-gated intra-operative C-arm CT by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the pre-operative CT and mapped to the intra-operative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments demonstrate that our model-based fusion approach has an average execution time of 2.9 s, while the accuracy lies within expert user confidence intervals. PMID:24505663

  5. 3D Model Generation From the Engineering Drawing

    NASA Astrophysics Data System (ADS)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  6. Space Partitioning for Privacy Enabled 3D City Models

    NASA Astrophysics Data System (ADS)

    Filippovska, Y.; Wichmann, A.; Kada, M.

    2016-10-01

    Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  7. Methods for Geometric Data Validation of 3d City Models

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  8. 3D shape decomposition and comparison for gallbladder modeling

    NASA Astrophysics Data System (ADS)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  9. Geodiversity: Exploration of 3D geological model space

    NASA Astrophysics Data System (ADS)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  10. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  11. Efficient software-hardware 3D heat equation solver with applications on the non-destructive evaluation of minefields

    NASA Astrophysics Data System (ADS)

    Pardo, F.; López, P.; Cabello, D.; Balsi, M.

    2009-11-01

    This paper targets the efficient computational solution of the heat transfer processes that take place in the soil and at the soil-air interface and its use in non-destructive evaluation (NDE) techniques. In particular, the problem of the detection of plastic antipersonnel mines is considered. To this aim we projected a 3D finite-difference (FD) thermal model of the soil on a FPGA platform using Handel-C and VHDL. A speedup factor of 34 over a purely software solution is achieved, obtaining processing times that permit the use of the system on the field.

  12. Enhanced LOD Concepts for Virtual 3d City Models

    NASA Astrophysics Data System (ADS)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  13. Teaching the geological subsurface with 3D models

    NASA Astrophysics Data System (ADS)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  14. A workflow for 3D model building in fold-thrust belts

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Bond, Clare; Butler, Rob

    2016-04-01

    3D geological models can be used in fold-thrust belts for many purposes such as analysing geometric variation in folds, kinematic modelling to restore fold surfaces, generating strain distribution maps and predicting fracture network distribution. We present a workflow for 3D model building using outcrop bedding data, geological maps, Digital Terrain Models (DTM's), air photos and field photographs. We discuss the challenges of software limitations for 3D kinematic restoration and forward modelling in fold-thrust belt settings. We then discuss the sensitivity of model building approaches to the application of 3D geological models in fold-thrust belts for further analysis e.g. changes in along strike fold geometry, restoration using kinematic and geomechanical modelling, strain prediction and Discrete Fracture Network (DFN) modelling. To create 3D models geological maps and bedding data are digitised using Move software; digitised maps and data are then draped onto DTM's. A series of closely spaced cross section lines are selected; the orientation of these is calculated by determining the average orientation of bedding dip direction. Fault and horizon line intersections, along with bedding data from within a narrow margin of the section lines are projected onto each cross section. Field photographs and sketches are integrated into the cross sections to determine thrust angles at the surface. Horizon lines are then constructed using bedding data. Displacement profiles for thrusts are plotted to ensure thrust displacements are valid with respect to neighbouring cross section interpretations; any discrepancies are alleviated by making minor adjustments to horizon and thrust lines, while ensuring that resultant cross section geometries still adhere to bedding data and other field observations. Once the cross sections have been finalised, 3D surfaces are created using the horizon and thrust line interpretations on each cross section. The simple curvature of 3D surfaces

  15. Delivery mechanisms of 3D geological models - a perspective from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Terrington, Ricky; Myers, Antony; Wood, Ben; Arora, Baneet

    2013-04-01

    The past decade has seen the British Geological Survey (BGS) construct over one hundred 3D geological models using software such as GOCAD®, GSI3D, EarthVision and Petrel across the United Kingdom and overseas. These models have been produced for different purposes and at different scales and resolutions in the shallow and deep subsurface. Alongside the construction of these models, the BGS and its collaborators have developed several options for disseminating these 3D geological models to external partners and the public. Initially, the standard formats for disseminating these 3D geological models by the BGS comprised of 2D images of cross-sections, GIS raster data and specialised visualisation software such as the LithoFrame Viewer. The LithoFrame Viewer is a thick-client software that allows the user to explore the 3D geometries of the geological units using a 3D interface, and generate synthetic cross-sections and boreholes on the fly. Despite the increased functionality of the LithoFrame Viewer over the other formats, the most popular data formats distributed remained 2D images of cross-sections, CAD based formats (e.g. DWG and DXF) and GIS raster data of surfaces and thicknesses, as these were the types of data that the external partners were most used too. Since 2009 software for delivering 3D geological models has advanced and types of data available have increased. Feature Manipulation Engine (FME) has been used to increase the number of outputs from 3D geological models. These include: • 3D PDFs (Adobe Acrobat) • KMZ/KML (GoogleEarth) • 3D shapefiles (ESRI) Alongside these later outputs, the BGS has developed other software such as GroundhogTM and Geovisionary (in collaboration with Virtalis). Groundhog is fully a web based application that allows the user to generate synthetic cross-sections, boreholes and horizontal slices from 3D geological models on the fly. Geovisionary provides some of the most advanced visualisation of 3D geological models in

  16. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  17. Software Development: 3D Animations and Creating User Interfaces for Realistic Simulations

    NASA Technical Reports Server (NTRS)

    Gordillo, Orlando Enrique

    2015-01-01

    My fall 2015 semester was spent at the Lyndon B. Johnson Space Center working in the Integrated Graphics, Operations, and Analysis Laboratory (IGOAL). My first project was to create a video animation that could tell the story of OMICS. OMICS is a term being used in the field of biomedical science to describe the collective technologies that study biological systems, such as what makes up a cell and how it functions with other systems. In the IGOAL I used a large 23 inch Wacom monitor to draw storyboards, graphics, and line art animations. I used Blender as the 3D environment to sculpt, shape, cut or modify the several scenes and models for the video. A challenge creating this video was to take a term used in biomedical science and describe it in such a way that an 8th grade student can understand. I used a line art style because it would visually set the tone for what we thought was an educational style. In order to get a handle on the perspective and overall feel for the animation without overloading my workspace, I split up the 2 minute animation into several scenes. I used Blender's python scripting capabilities which allowed for the addition of plugins to add or modify tools. The scripts can also directly interact with the objects to create naturalistic patterns or movements. After collecting the rendered scenes, I used Blender's built-in video editing workspace to output the animation. My second project was to write software that emulates a physical system's interface. The interface was to simulate a boat, ROV, and winch system. Simulations are a time and cost effective way to test complicated data and provide training for operators without having to use expensive hardware. We created the virtual controls with 3-D Blender models and 2-D graphics, and then add functionality in C# using the Unity game engine. The Unity engine provides several essential behaviors of a simulator, such as the start and update functions. A framework for Unity, which was developed in

  18. Tracking people and cars using 3D modeling and CCTV.

    PubMed

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice.

  19. Performance and Cognitive Assessment in 3-D Modeling

    ERIC Educational Resources Information Center

    Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.

    2011-01-01

    The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…

  20. Coarse-grained modeling of RNA 3D structure.

    PubMed

    Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M

    2016-07-01

    Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.

  1. Assessment of 3D Models Used in Contours Studies

    ERIC Educational Resources Information Center

    Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes

    2015-01-01

    This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…

  2. Modeling the Properties of 3D Woven Composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian N.

    1995-01-01

    An extensive study has been completed of the internal geometry, the mechanisms of failure, and the micromechanics of local failure events in graphite/epoxy composites with three dimensional (3D) woven reinforcement. This work has led to the development of models for predicting elastic constants, strength, notch sensitivity, and fatigue life. A summary is presented here.

  3. 3D Geologic Model of the Southern Great Basin

    NASA Astrophysics Data System (ADS)

    Wagoner, J. L.; Myers, S. C.

    2006-12-01

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5° to -112.6°, latitude 34.5° to 39.8°, and a depth from the surface to 150 km below sea level. Hence, the model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by geologic and geophysical studies, and the lower crust and upper mantle are constrained by geophysical studies. The upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks, and calderas. The lower crust and upper mantle are parameterized with 8 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas we scanned and hand digitized geologic maps for California and Utah. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and constrain the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m resolution DEM elsewhere. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. Variations in crustal thickness are based on receiver function analysis and a compilation of reflection/refraction studies. We used the Earthvision (Dynamic Graphics, Inc.) software to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is an integer index representing the geologic unit. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous

  4. WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture

    NASA Technical Reports Server (NTRS)

    Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.

    1998-01-01

    This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves

  5. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  6. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing.

    PubMed

    Salmi, Mika

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed.

  7. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing.

    PubMed

    Salmi, Mika

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  8. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing

    PubMed Central

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  9. 3D Geological modelling - towards a European level infrastructure

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  10. Quasi-3D Multi-scale Modeling Framework Development

    NASA Astrophysics Data System (ADS)

    Arakawa, A.; Jung, J.

    2008-12-01

    When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network

  11. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents. PMID:26530842

  12. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  13. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  14. SF3M 2.0: improvement of 3D photo-reconstruction interface based on freely available software

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael R.; Pérez, Rafael; Gómez, Jose A.

    2016-04-01

    During recent years, a number of tools based on Structure-from-Motion algorithms have been released for full image-based 3D reconstruction either freely (e.g. Bundler, PMVS2, VisualSFM, MicMac) or commercially (e.g. Agisoft PhotoScan). The SF3M interface was developed in Matlab® to use link software developments (VisualSFM, CloudCompare) and new applications to create a semi-automated workflow including reconstruction, georeferencing and point-cloud filtering, and has been tested for gully erosion assessment with terrestrial images (Castillo et al., 2015). The main aim of this work to provide an improved freely-available and easy-to-use alternative for 3D reconstruction intended for public agencies, non-profit organisations, researchers and other stakeholders interested in 3D modelling. In this communication we present SF3M 2.0, a new version of the graphical user interface. In this case, the SfM module is based on MicMac, an open-software tool (Pierrot-Deseilligny and Cléry, 2011) which provides advanced features such as camera calibration and constrained bundle adjustment using ground control points. SF3M 2.0 will be tested in two scenarios: a) using the same ground-based image set tested in Castillo et al. (2015) to compare the performance of both versions and b) using aerial images taken from a helium balloon to assess a gully network in a 40-hectares catchment. In this study we explore the advantages of SF3M 2.0, explain its operation and evaluate its accuracy and performance. This tool will be also available for free download. References Castillo, C., James, M.R., Redel-Macías, M. D., Pérez, R., and Gómez, J.A.: SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network, SOIL, 1, 583-594. Pierrot-Deseilligny, M and Cléry, I. APERO, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of a Set of Images. Proceedings of the ISPRS Commission V Symposium, Image Engineering and Vision

  15. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  16. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  17. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. PMID:25099967

  18. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  19. 3D modeling of dual-gate FinFET.

    PubMed

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-01-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493

  20. 3D cartographic modeling of the Alpine arc

    NASA Astrophysics Data System (ADS)

    Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe

    2012-12-01

    We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.

  1. Interchain coupling and 3D modeling of trans-polyacetylene

    SciTech Connect

    Bronold, F.; Saxena, A.; Bishop, A.R.

    1992-01-01

    In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH){sub x}-chains where the {pi}-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment.

  2. Interchain coupling and 3D modeling of trans-polyacetylene

    SciTech Connect

    Bronold, F.; Saxena, A.; Bishop, A.R.

    1992-09-01

    In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH){sub x}-chains where the {pi}-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment.

  3. 3-D Numerical Modeling of a Complex Salt Structure

    SciTech Connect

    House, L.; Larsen, S.; Bednar, J.B.

    2000-02-17

    Reliably processing, imaging, and interpreting seismic data from areas with complicated structures, such as sub-salt, requires a thorough understanding of elastic as well as acoustic wave propagation. Elastic numerical modeling is an essential tool to develop that understanding. While 2-D elastic modeling is in common use, 3-D elastic modeling has been too computationally intensive to be used routinely. Recent advances in computing hardware, including commodity-based hardware, have substantially reduced computing costs. These advances are making 3-D elastic numerical modeling more feasible. A series of example 3-D elastic calculations were performed using a complicated structure, the SEG/EAGE salt structure. The synthetic traces show that the effects of shear wave propagation can be important for imaging and interpretation of images, and also for AVO and other applications that rely on trace amplitudes. Additional calculations are needed to better identify and understand the complex wave propagation effects produced in complicated structures, such as the SEG/EAGE salt structure.

  4. Lattice percolation approach to 3D modeling of tissue aging

    NASA Astrophysics Data System (ADS)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  5. The 3D model control of image processing

    NASA Technical Reports Server (NTRS)

    Nguyen, An H.; Stark, Lawrence

    1989-01-01

    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.

  6. 3D root canal modeling for advanced endodontic treatment

    NASA Astrophysics Data System (ADS)

    Hong, Shane Y.; Dong, Janet

    2002-06-01

    More than 14 million teeth receive endodontic (root canal) treatment annually. Before a clinician's inspection and diagnosis, destructive access preparation by removing teeth crown and dentin is usually needed. This paper presents a non-invasive method for accessing internal tooth geometry by building 3-D tooth model from 2-D radiographic and endoscopic images to be used for an automatic prescription system of computer-aided treatment procedure planning, and for the root canal preparation by an intelligent micro drilling machine with on-line monitoring. It covers the techniques specific for dental application in the radiographic images acquirement, image enhancement, image segmentation and feature recognition, distance measurement and calibration, merging 2D image into 3D mathematical model representation and display. Included also are the methods to form references for irregular teeth geometry and to do accurately measurement with self-calibration.

  7. Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality

    NASA Astrophysics Data System (ADS)

    Lee, I.-C.; Tsai, F.

    2015-05-01

    A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The

  8. Modeling 3D faces from samplings via compressive sensing

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Tang, Yanlong; Hu, Ping

    2013-07-01

    3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.

  9. STELLOPT modeling of the 3D diagnostic response in ITER

    NASA Astrophysics Data System (ADS)

    Lazerson, S. A.; Chapman, I. T.

    2013-08-01

    The ITER three-dimensional (3D) diagnostic response to an n = 3 resonant magnetic perturbation (RMP) is modeled using the STELLOPT code. The in-vessel coils apply a RMP field which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20% changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low-field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria. Notice: This paper has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The publisher, by accepting the paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this Paper, or allow others to do so, for United States Government purposes.

  10. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    NASA Astrophysics Data System (ADS)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    containing the same object in different LoD may be combined and integrated. In this study GIS tools used for 3D modeling issues were examined. In this context, the availability of the GIS tools for obtaining different LoDs of CityGML standard. Additionally a 3D GIS application that covers a small part of the city of Istanbul was implemented for communicating the thematic information rather than photorealistic visualization by using 3D model. An abstract model was created by using a commercial GIS software modeling tools and the results of the implementation were also presented in the study.

  11. The polyGeVero® software for fast and easy computation of 3D radiotherapy dosimetry data

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr

    2015-01-01

    The polyGeVero® software package was elaborated for calculations of 3D dosimetry data such as the polymer gel dosimetry. It comprises four workspaces designed for: i) calculating calibrations, ii) storing calibrations in a database, iii) calculating dose distribution 3D cubes, iv) comparing two datasets e.g. a measured one with a 3D dosimetry with a calculated one with the aid of a treatment planning system. To accomplish calculations the software was equipped with a number of tools such as the brachytherapy isotopes database, brachytherapy dose versus distance calculation based on the line approximation approach, automatic spatial alignment of two 3D dose cubes for comparison purposes, 3D gamma index, 3D gamma angle, 3D dose difference, Pearson's coefficient, histograms calculations, isodoses superimposition for two datasets, and profiles calculations in any desired direction. This communication is to briefly present the main functions of the software and report on the speed of calculations performed by polyGeVero®.

  12. West Flank Coso, CA FORGE 3D geologic model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  13. Northern California Seismic Attenuation: 3-D Qp and Qs models

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.

    2015-12-01

    The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.

  14. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  15. 3D-printer visualization of neuron models

    PubMed Central

    McDougal, Robert A.; Shepherd, Gordon M.

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases. PMID:26175684

  16. 3D-printer visualization of neuron models.

    PubMed

    McDougal, Robert A; Shepherd, Gordon M

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  17. 3D Geologic Model of the San Diego Area

    NASA Astrophysics Data System (ADS)

    Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.

    2015-12-01

    Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.

  18. Subduction zone guided waves: 3D modelling and attenuation effects

    NASA Astrophysics Data System (ADS)

    Garth, T.; Rietbrock, A.

    2013-12-01

    Waveform modelling is an important tool for understanding complex seismic structures such as subduction zone waveguides. These structures are often simplified to 2D structures for modelling purposes to reduce computational costs. In the case of subduction zone waveguide affects, 2D models have shown that dispersed arrivals are caused by a low velocity waveguide, inferred to be subducted oceanic crust and/or hydrated outer rise normal faults. However, due to the 2D modelling limitations the inferred seismic properties such as velocity contrast and waveguide thickness are still debated. Here we test these limitations with full 3D waveform modelling. For waveguide effects to be observable the waveform must be accurately modelled to relatively high frequencies (> 2 Hz). This requires a small grid spacing due to the high seismic velocities present in subduction zones. A large area must be modelled as well due to the long propagation distances (400 - 600 km) of waves interacting with subduction zone waveguides. The combination of the large model area and small grid spacing required means that these simulations require a large amount of computational resources, only available at high performance computational centres like the UK National super computer HECTOR (used in this study). To minimize the cost of modelling for such a large area, the width of the model area perpendicular to the subduction trench (the y-direction) is made as small as possible. This reduces the overall volume of the 3D model domain. Therefore the wave field is simulated in a model ';corridor' of the subduction zone velocity structure. This introduces new potential sources of error particularly from grazing wave side reflections in the y-direction. Various dampening methods are explored to reduce these grazing side reflections, including perfectly matched layers (PML) and more traditional exponential dampening layers. Defining a corridor model allows waveguide affects to be modelled up to at least 2

  19. 3D flare particle model for ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2016-05-01

    A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.

  20. Modeling 3D soil and sediment distributions for assessing catchment structure and hydrological feedbacks

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Brück, Yasemine; Hinz, Christoph; Gerke, Horst H.

    2015-04-01

    Structural heterogeneity, namely the spatial distribution of soils and sediments (represented by mineral particles), characterizes catchment hydrological behavior. In natural catchments, local geology and the specific geomorphic processes determine the characteristics and spatial distribution of structures. In constructed catchments, structural features are determined primarily by the construction processes and the geological origin of the parent material. Objectives are scenarios of 3D catchment structures in form of complete 3D description of soil hydraulic properties generated from the knowledge of the formation processes. The constructed hydrological catchment 'Hühnerwasser' (Lower Lusatia, Brandenburg, Germany) was used for the calibration and validation of model results due to its well-known conditions. For the modelling of structural features, a structure generator was used to model i) quasi-deterministic sediment distributions using input data from a geological model of the parent material excavation site; ii) sediment distributions that are conditioned to measurement data from soil sampling; and iii) stochastic component sediment distributions. All three approaches allow a randomization within definable limits. Furthermore, the spoil cone / spoil ridge orientation, internal layering, surface compaction and internal spoil cone compaction were modified. These generated structural models were incorporated in a gridded 3D volume model constructed with the GOCAD software. For selected scenarios, the impact of structure variation was assessed by hydrological modelling with HYDRUS 2D/3D software. For that purpose, 3D distributions of soil hydraulic properties were estimated based on generated sediment properties using adapted pedotransfer functions. Results from the hydrological model were compared them to measured discharges from the catchment. The impact of structural feature variation on flow behaviour was analysed by comparing different simulation scenarios

  1. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  2. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  3. 3-D Geometric Modeling for the 21st Century.

    ERIC Educational Resources Information Center

    Ault, Holly K.

    1999-01-01

    Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)

  4. A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.

    PubMed

    Langley, Jason; Zhao, Qun

    2009-09-01

    The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI. PMID:19671967

  5. A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials

    NASA Astrophysics Data System (ADS)

    Langley, Jason; Zhao, Qun

    2009-09-01

    The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI.

  6. Modeling the GFR with RELAP5-3D

    SciTech Connect

    Cliff B. Davis; Theron D. Marshall; K. D. Weaver

    2005-09-01

    Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

  7. Testing Mercury Porosimetry with 3D Printed Porosity Models

    NASA Astrophysics Data System (ADS)

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  8. Simulation of AIMS measurements using rigorous mask 3D modeling

    NASA Astrophysics Data System (ADS)

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2015-03-01

    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  9. Exploiting Textured 3D Models for Developing Serious Games

    NASA Astrophysics Data System (ADS)

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  10. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    NASA Astrophysics Data System (ADS)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  11. 3D interactive model of lumbar spinal structures of anesthetic interest.

    PubMed

    Prats-Galino, Alberto; Reina, Miguel A; Mavar Haramija, Marija; Puigdellivol-Sánchez, Anna; Juanes Méndez, Juan A; De Andrés, José A

    2015-03-01

    A 3D model of lumbar structures of anesthetic interest was reconstructed from human magnetic resonance (MR) images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The MR images were analyzed using a specific 3D software platform for biomedical data. Models generated from manually delimited volumes of interest and selected MR images were exported to Virtual Reality Modeling Language format and were presented in a PDF document containing JavaScript-based functions. The 3D file and the corresponding instructions and license files can be downloaded freely at http://diposit.ub.edu/dspace/handle/2445/44844?locale=en. The 3D PDF interactive file includes reconstructions of the L3-L5 vertebrae, intervertebral disks, ligaments, epidural and foraminal fat, dural sac and nerve root cuffs, sensory and motor nerve roots of the cauda equina, and anesthetic approaches (epidural medial, spinal paramedial, and selective nerve root paths); it also includes a predefined sequential educational presentation. Zoom, 360° rotation, selective visualization, and transparency graduation of each structure and clipping functions are available. Familiarization requires no specialized informatics knowledge. The ease with which the document can be used could make it valuable for anatomical and anesthetic teaching and demonstration of patient information. PMID:25352014

  12. Discussion of Source Reconstruction Models Using 3D MCG Data

    NASA Astrophysics Data System (ADS)

    Melis, Massimo De; Uchikawa, Yoshinori

    In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.

  13. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  14. Modeling moving systems with RELAP5-3D

    SciTech Connect

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.

  15. 3D multispecies collisional model of Ganymede's atmosphere

    NASA Astrophysics Data System (ADS)

    Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.

    2016-10-01

    Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.

  16. Adaptive mesh refinement techniques for 3-D skin electrode modeling.

    PubMed

    Sawicki, Bartosz; Okoniewski, Michal

    2010-03-01

    In this paper, we develop a 3-D adaptive mesh refinement technique. The algorithm is constructed with an electric impedance tomography forward problem and the finite-element method in mind, but is applicable to a much wider class of problems. We use the method to evaluate the distribution of currents injected into a model of a human body through skin contact electrodes. We demonstrate that the technique leads to a significantly improved solution, particularly near the electrodes. We discuss error estimation, efficiency, and quality of the refinement algorithm and methods that allow for preserving mesh attributes in the refinement process.

  17. 3D simulation of the Cluster-Cluster Aggregation model

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xiong, Hailing

    2014-12-01

    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  18. 3D in vitro cell culture models of tube formation.

    PubMed

    Zegers, Mirjam M

    2014-07-01

    Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo. PMID:24613912

  19. A generic 3D kinetic model of gene expression

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2012-04-01

    Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.

  20. High Resolution 3d Numerical Modelling of Rockfalls

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.

    Accurate modelling of rockfall dynamics is a major issue for engineering geologists and land planners in rockfall prone areas, both for hazard assessment and the design of countermeasures. Numerical modelling of rockfalls has been generally performed in two dimensions. Thus, this is subjected to the crucial "a priori" choice of the rock- fall path and affected by a significant error due to the lateral dispersion of rockfall trajectories. In this study, an original 3D rockfall simulation program, first developed for regional scale distributed analysis, has been tested at a local scale with a very high spatial resolution, in order to show its performance in modelling site-specific prob- lems (runout definition, hazard assessment, design and verification of barriers). The code is based on a "lumped mass" kinematic algorithm allowing to simulate the free fall, impact-rebound and rolling motion of boulders on a three-dimensional topogra- phy described by a DTM. The code allows to run very detailed 3D simulations with almost no limitations in the number of modeled rockfall sources, slope elements and topographic points, using spatially distributed input data. Two case studies from the Mt. S.Martino area (Lecco, Larian Prealps) and the Gembrasca area (Valfurva, Central Alps), both from the mountainous area of the Lombardia Region (Northern Italy) are presented. Both the two examples are particularly intriguing because of the occurrence of well-known historical events (one of which causing fatalities) and the presence of valuable elements at risk (urban areas, transportation corridors) and defensive mea- sures (elasto-plastic barriers and catch walls). The Mt. S.Martino model is based on a DTM with cell size of 5 m, obtained from a 1:5.000 scale contour map, while the Gembrasca one uses an extremely detailed LIDAR-ALTM laser topography with a cell size of 1 m. The location of rockfall sources and the data used to develop and calibrate the two models have been collected

  1. Heralding a new paradigm in 3D tumor modeling.

    PubMed

    Fong, Eliza L S; Harrington, Daniel A; Farach-Carson, Mary C; Yu, Hanry

    2016-11-01

    Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D. These approaches include the development of engineered matrices and co-cultures to replicate the complexity of tumor-stroma interactions in vitro. However, the tumor engineering and cancer biology fields have traditionally relied heavily on the use of cancer cell lines as a cell source in tumor modeling. While cancer cell lines have contributed to a wealth of knowledge in cancer biology, the use of this cell source is increasingly perceived as a major contributing factor to the dismal failure rate of oncology drugs in drug development. Backing this notion is the increasing evidence that tumors possess intrinsic heterogeneity, which predominantly homogeneous cancer cell lines poorly reflect. Tumor heterogeneity contributes to therapeutic resistance in patients. To overcome this limitation, cancer cell lines are beginning to be replaced by primary tumor cell sources, in the form of patient-derived xenografts and organoids cultures. Moving forward, we propose that further advances in tumor engineering would require that tumor heterogeneity (tumor variants) be taken into consideration together with tumor complexity (tumor-stroma interactions). In this review, we provide a comprehensive overview of what has been achieved in recapitulating tumor complexity, and discuss the importance of incorporating tumor heterogeneity into 3D in vitro tumor models. This

  2. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    ERIC Educational Resources Information Center

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  3. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    NASA Astrophysics Data System (ADS)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  4. Inspection, 3D modelling, and rapid prototyping of cultural heritage by means of a 3D optical digitiser

    NASA Astrophysics Data System (ADS)

    Docchio, F.; Sansoni, G.; Trebeschi, M.

    2005-06-01

    This paper presents the activity carried out to perform the three-dimensional acquisition of the "Vittoria Alata", a 2m-high, bronze statue, symbol of our City, located at the Civici Musei di Arte e Storia (S. Giulia) of Brescia. The acquisition of the statue has been performed by using a three-dimensional vision system based on active triangulation and on the projection of non-coherent light. This system, called OPL-3D, represents one of the research products of our Laboratory, which has been active for years in the development of techniques and systems for the contactless acquisition of free-form, complex shapes. The study, originally motivated by the need to explore a new hypothesis on the origin of the "Vittoria Alata", led to its complete digitization and description in terms of both polygonal and NURBS-based models. A suite of copies of the whole statue has been obtained in the framework of the collaboration between the City Museum and the EOS Electro Optical Systems GmbH, located in Munich, Germany. As a first step, one 30 cm-high replica of the whole statue has been produced using a low-resolution triangle model of the statue (3.5 millions of triangles). As a second step, two 1:1 scale copies of the statue have been produced. For them, the Laboratory has provided the high resolution STL file (16 millions of triangles). The paper discusses in detail the hardware and the software facilities used to implement the whole process, and gives a comprehensive description of the results.

  5. Comparative 3-D Modeling of tmRNA

    PubMed Central

    Burks, Jody; Zwieb, Christian; Müller, Florian; Wower, Iwona; Wower, Jacek

    2005-01-01

    Background Trans-translation releases stalled ribosomes from truncated mRNAs and tags defective proteins for proteolytic degradation using transfer-messenger RNA (tmRNA). This small stable RNA represents a hybrid of tRNA- and mRNA-like domains connected by a variable number of pseudoknots. Comparative sequence analysis of tmRNAs found in bacteria, plastids, and mitochondria provides considerable insights into their secondary structures. Progress toward understanding the molecular mechanism of template switching, which constitutes an essential step in trans-translation, is hampered by our limited knowledge about the three-dimensional folding of tmRNA. Results To facilitate experimental testing of the molecular intricacies of trans-translation, which often require appropriately modified tmRNA derivatives, we developed a procedure for building three-dimensional models of tmRNA. Using comparative sequence analysis, phylogenetically-supported 2-D structures were obtained to serve as input for the program ERNA-3D. Motifs containing loops and turns were extracted from the known structures of other RNAs and used to improve the tmRNA models. Biologically feasible 3-D models for the entire tmRNA molecule could be obtained. The models were characterized by a functionally significant close proximity between the tRNA-like domain and the resume codon. Potential conformational changes which might lead to a more open structure of tmRNA upon binding to the ribosome are discussed. The method, described in detail for the tmRNAs of Escherichia coli, Bacillus anthracis, and Caulobacter crescentus, is applicable to every tmRNA. Conclusion Improved molecular models of biological significance were obtained. These models will guide in the design of experiments and provide a better understanding of trans-translation. The comparative procedure described here for tmRNA is easily adopted for the modeling the members of other RNA families. PMID:15958166

  6. Novel, fast and efficient image-based 3D modeling method and its application in fracture risk evaluation

    PubMed Central

    LI, DAN; XIAO, ZHITAO; WANG, GANG; ZHAO, GUOQING

    2014-01-01

    Constructing models based on computed tomography images for finite element analysis (FEA) is challenging under pathological conditions. In the present study, an innovative method was introduced that uses Siemens syngo® 3D software for processing models and Mimics software for further modeling. Compared with the slice-by-slice traditional manual margin discrimination, the new 3D modeling method utilizes automatic tissue margin determination and 3D cutting using syngo software. The modeling morphologies of the two methods were similar; however, the 3D modeling method was 8–10 times faster than the traditional method, particularly in cases with osteoporosis and osteophytes. A comparative FEA study of the lumbar spines of young and elderly patients, on the basis of the models constructed by the 3D modeling method, showed peak stress elevation in the vertebrae of elderly patients. Stress distribution was homogeneous in the entire vertebrae of young individuals. By contrast, stress redistribution in the vertebrae of the elderly was concentrated in the anterior cortex of the vertebrae, which explains the high fracture risk mechanism in elderly individuals. In summary, the new 3D modeling method is highly efficient, accurate and faster than traditional methods. The method also allows reliable FEA in pathological cases with osteoporosis and osteophytes. PMID:24926348

  7. Inverse rendering of faces with a 3D morphable model.

    PubMed

    Aldrian, Oswald; Smith, William A P

    2013-05-01

    In this paper, we present a complete framework to inverse render faces with a 3D Morphable Model (3DMM). By decomposing the image formation process into geometric and photometric parts, we are able to state the problem as a multilinear system which can be solved accurately and efficiently. As we treat each contribution as independent, the objective function is convex in the parameters and a global solution is guaranteed. We start by recovering 3D shape using a novel algorithm which incorporates generalization error of the model obtained from empirical measurements. We then describe two methods to recover facial texture, diffuse lighting, specular reflectance, and camera properties from a single image. The methods make increasingly weak assumptions and can be solved in a linear fashion. We evaluate our findings on a publicly available database, where we are able to outperform an existing state-of-the-art algorithm. We demonstrate the usability of the recovered parameters in a recognition experiment conducted on the CMU-PIE database. PMID:23520253

  8. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  9. Stochastic Modeling of Calcium in 3D Geometry

    PubMed Central

    Mazel, Tomáš; Raymond, Rebecca; Raymond-Stintz, Mary; Jett, Stephen; Wilson, Bridget S.

    2009-01-01

    Release of inflammatory mediators by mast cells in type 1 immediate-hypersensitivity allergic reactions relies on antigen-dependent increases in cytosolic calcium. Here, we used a series of electron microscopy images to build a 3D reconstruction representing a slice through a rat tumor mast cell, which then served as a basis for stochastic modeling of inositol-trisphosphate-mediated calcium responses. The stochastic approach was verified by reaction-diffusion modeling within the same geometry. Local proximity of the endoplasmic reticulum to either the plasma membrane or mitochondria is predicted to differentially impact local inositol trisphosphate receptor transport. The explicit consideration of organelle spatial relationships represents an important step toward building a comprehensive, realistic model of cellular calcium dynamics. PMID:19254531

  10. Sharing on Web 3d Models of Ancient Theatres. a Methodological Workflow

    NASA Astrophysics Data System (ADS)

    Scianna, A.; La Guardia, M.; Scaduto, M. L.

    2016-06-01

    In the last few years, the need to share on the Web the knowledge of Cultural Heritage (CH) through navigable 3D models has increased. This need requires the availability of Web-based virtual reality systems and 3D WEBGIS. In order to make the information available to all stakeholders, these instruments should be powerful and at the same time very user-friendly. However, research and experiments carried out so far show that a standardized methodology doesn't exist. All this is due both to complexity and dimensions of geometric models to be published, on the one hand, and to excessive costs of hardware and software tools, on the other. In light of this background, the paper describes a methodological approach for creating 3D models of CH, freely exportable on the Web, based on HTML5 and free and open source software. HTML5, supporting the WebGL standard, allows the exploration of 3D spatial models using most used Web browsers like Chrome, Firefox, Safari, Internet Explorer. The methodological workflow here described has been tested for the construction of a multimedia geo-spatial platform developed for three-dimensional exploration and documentation of the ancient theatres of Segesta and of Carthage, and the surrounding landscapes. The experimental application has allowed us to explore the potential and limitations of sharing on the Web of 3D CH models based on WebGL standard. Sharing capabilities could be extended defining suitable geospatial Web-services based on capabilities of HTML5 and WebGL technology.

  11. Topological order in an exactly solvable 3D spin model

    SciTech Connect

    Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.

    2011-04-15

    Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on {Omega}(R{sup 2}) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.

  12. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  13. Development of an aquifer management model AQMAN3D

    USGS Publications Warehouse

    Puig, Juan Carlos; Rolon-Collazo, L. I.; Pagan-Trinidad, Ishmael; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.

    1990-01-01

    A computer code that enables the use of the USGS Modular groundwater flow model for aquifermanagement modeling has been developed. Aquifermanagement techniques integrate groundwater flow modeling with linear quadratic optimization methods for the solution of various aquifer management problems. The model AQMAN3D, is a modified version of a previously developed two-dimensional AQMAN model. The idea of coupling the AQMAN model with the MODULAR model arose because actual groundwater flow systems behave in a three dimensional manner, therefore requiring treatment as such, and due to the widespread use of MODULAR. The use of the AQMAN3D model permits the implementation of the technique known as aquifer managementmodeling. A generalized approach to obtain an optimal solution to an aquifer management problem is proposed, and a sample test problem is presented to illustrate the use of the model. Even though the model provides the hydrologist with a new and powerful investigative tool, its applicability is limited to confined or quasiconfined systems.

  14. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  15. AFC3D: A 3D graphical tool to model assimilation and fractional crystallization with and without recharge in the R environment

    NASA Astrophysics Data System (ADS)

    Guzmán, Silvina; Carniel, Roberto; Caffe, Pablo J.

    2014-03-01

    AFC3D is an original graphical free software developed in the framework of the R scientific environment and dedicated to the modelling of assimilation and fractional crystallization without (AFC) and with (AFC-r) recharge, facilitating the search for the solutions of the equations originally proposed by DePaolo (1981, 1985) and first solved in a graphical way by Aitcheson and Forrest (1994). The software presented here allows a graphical 3D representation of ρ (mass of assimilated crust/mass of original magma) as a function of r (rate of crustal assimilation/rate of fractional crystallization) and β (recharge rate of magma replenishment / rate of assimilation) for each element/isotope, finding a coherent set of (r, β, ρ) parameter triples in a mostly automated way. Mathematically optimized solutions are derived, which can and should then be discussed and evaluated from a geological and petrological point of view by the end user. The presented contribution presents the software and a series of models published in the literature, which are discussed as case studies of application and whose solutions are sometimes enhanced based on the results provided by the software.

  16. Active Exploration of Large 3D Model Repositories.

    PubMed

    Gao, Lin; Cao, Yan-Pei; Lai, Yu-Kun; Huang, Hao-Zhi; Kobbelt, Leif; Hu, Shi-Min

    2015-12-01

    With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models. PMID:26529460

  17. 3D in vitro modeling of the central nervous system.

    PubMed

    Hopkins, Amy M; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L

    2015-02-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.

  18. 3D in vitro modeling of the central nervous system

    PubMed Central

    Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.

    2015-01-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688

  19. Gene3D: modelling protein structure, function and evolution.

    PubMed

    Yeats, Corin; Maibaum, Michael; Marsden, Russell; Dibley, Mark; Lee, David; Addou, Sarah; Orengo, Christine A

    2006-01-01

    The Gene3D release 4 database and web portal (http://cathwww.biochem.ucl.ac.uk:8080/Gene3D) provide a combined structural, functional and evolutionary view of the protein world. It is focussed on providing structural annotation for protein sequences without structural representatives--including the complete proteome sets of over 240 different species. The protein sequences have also been clustered into whole-chain families so as to aid functional prediction. The structural annotation is generated using HMM models based on the CATH domain families; CATH is a repository for manually deduced protein domains. Amongst the changes from the last publication are: the addition of over 100 genomes and the UniProt sequence database, domain data from Pfam, metabolic pathway and functional data from COGs, KEGG and GO, and protein-protein interaction data from MINT and BIND. The website has been rebuilt to allow more sophisticated querying and the data returned is presented in a clearer format with greater functionality. Furthermore, all data can be downloaded in a simple XML format, allowing users to carry out complex investigations at their own computers.

  20. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095

  1. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  2. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts

    PubMed Central

    Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt

    2016-01-01

    Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601

  3. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    PubMed Central

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  4. Polygonal Shapes Detection in 3d Models of Complex Architectures

    NASA Astrophysics Data System (ADS)

    Benciolini, G. B.; Vitti, A.

    2015-02-01

    A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering

  5. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  6. Faceless identification: a model for person identification using the 3D shape and 3D motion as cues

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Li, Haibo

    1999-02-01

    Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.

  7. Validation of a 3-D hemispheric nested air pollution model

    NASA Astrophysics Data System (ADS)

    Frohn, L. M.; Christensen, J. H.; Brandt, J.; Geels, C.; Hansen, K. M.

    2003-07-01

    Several air pollution transport models have been developed at the National Environmental Research Institute in Denmark over the last decade (DREAM, DEHM, ACDEP and DEOM). A new 3-D nested Eulerian transport-chemistry model: REGIonal high resolutioN Air pollution model (REGINA) is based on modules and parameterisations from these models as well as new methods. The model covers the majority of the Northern Hemisphere with currently one nest implemented. The horizontal resolution in the mother domain is 150 km × 150 km, and the nesting factor is three. A chemical scheme (originally 51 species) has been extended with a detailed description of the ammonia chemistry and implemented in the model. The mesoscale numerical weather prediction model MM5v2 is used as meteorological driver for the model. The concentrations of air pollutants, such as sulphur and nitrogen in various forms, have been calculated, applying zero nesting and one nest. The model setup is currently being validated by comparing calculated values of concentrations to measurements from approximately 100 stations included in the European Monitoring and Evalutation Programme (EMEP). The present paper describes the physical processes and parameterisations of the model together with the modifications of the chemical scheme. Validation of the model calculations by comparison to EMEP measurements for a summer and a winter month is shown and discussed. Furthermore, results from a sensitivity study of the model performance with respect to resolution in emission and meteorology input data is presented. Finally the future prospects of the model are discussed. The overall validation shows that the model performs well with respect to correlation for both monthly and daily mean values.

  8. Aspects of the integration of 3D buildings models with database. (Polish Title: Aspekty integracji modeli 3D budynków z bazą danych opisowych)

    NASA Astrophysics Data System (ADS)

    Kraszewski, B.

    2013-12-01

    In recent years in Poland for many cities 3D models were created. These developments mainly building models which contain only geometric information were included. However, it is advisable to extend the functionality and spectrum of applications of these models by adding to them information from existing databases. In this article the integration of 3D building models with databases were presented. Two methods of connection of both sets of data were analyzed. First was based on independent connection CAD model with database file and the second was integrated both types of data in CityGML structure. The capabilities of both methods on example 3D data were examined. The 3D data interior and exterior part of building were included. Based on analyzes it was found that the first connection methods used ODBC interface was more friendly for user, because integration could be done in CAD software usually used to 3D models creation. This method to connection used unique identifier MSLINK definited for all database records. The structure of connected database allowed to connect together individual attribute to set of date (tables) collected in different department of institution. The CityGML standard allowed saving not only descriptive information, but also describe semantic and topology of the objects. This format on creation stage request from user a knowledge about specific recording structure based on XML code. In CityGML standard default attributes for individual spatial objects were defined. The values for this attributes in specific code list were determined. In both presented methods it was allowed to add user attributes

  9. 3D model generation using an airborne swarm

    NASA Astrophysics Data System (ADS)

    Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.

    2015-03-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  10. 3-D numerical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  11. 3D model generation using an airborne swarm

    SciTech Connect

    Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  12. UCVM: An Open Source Framework for 3D Velocity Model Research

    NASA Astrophysics Data System (ADS)

    Gill, D.; Maechling, P. J.; Jordan, T. H.; Plesch, A.; Taborda, R.; Callaghan, S.; Small, P.

    2013-12-01

    Three-dimensional (3D) seismic velocity models provide fundamental input data to ground motion simulations, in the form of structured or unstructured meshes or grids. Numerous models are available for California, as well as for other parts of the United States and Europe, but models do not share a common interface. Being able to interact with these models in a standardized way is critical in order to configure and run 3D ground motion simulations. The Unified Community Velocity Model (UCVM) software, developed by researchers at the Southern California Earthquake Center (SCEC), is an open source framework designed to provide a cohesive way to interact with seismic velocity models. We describe the several ways in which we have improved the UCVM software over the last year. We have simplified the UCVM installation process by automating the installation of various community codebases, improving the ease of use.. We discuss how UCVM software was used to build velocity meshes for high-frequency (4Hz) deterministic 3D wave propagation simulations, and how the UCVM framework interacts with other open source resources, such as NetCDF file formats for visualization. The UCVM software uses a layered software architecture that transparently converts geographic coordinates to the coordinate systems used by the underlying velocity models and supports inclusion of a configurable near-surface geotechnical layer, while interacting with the velocity model codes through their existing software interfaces. No changes to the velocity model codes are required. Our recent UCVM installation improvements bundle UCVM with a setup script, written in Python, which guides users through the process that installs the UCVM software along with all the user-selectable velocity models. Each velocity model is converted into a standardized (configure, make, make install) format that is easily downloaded and installed via the script. UCVM is often run in specialized high performance computing (HPC

  13. Crashworthiness analysis using advanced material models in DYNA3D

    SciTech Connect

    Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.

    1993-10-22

    As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.

  14. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  15. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  16. Energy flow in passive and active 3D cochlear model

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Puria, Sunil; Steele, Charles

    2015-12-01

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  17. Energy flow in passive and active 3D cochlear model

    SciTech Connect

    Wang, Yanli; Steele, Charles; Puria, Sunil

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  18. 3D modeling and raytracing in RPV elbows and nozzles

    SciTech Connect

    Koshy, M.; Isenberg, J.

    1995-12-31

    Three dimensional geometric modeling and ray tracing are used to develop ultrasound inspection procedures for nozzles safe ends and elbows in nuclear reactor pressure vessels and other structures containing cracks or voids. B-spline and analytic conic sections are used to generate 3D outer surfaces and interfaces between regions of contrasting impedance. Voids representing flaws are implanted in the inspection volume. Ray tracing in comer trap or normal incidence is performed to evaluate coverage in pulse-echo or pitch-catch mode. In one scenario, the coverage obtained from search units is designed to achieve the required degree of coverage. Physical experiments have been conducted in which artificially-generated flaws in inner blend regions of reactor pressure vessels are inspected using ultrasound from 2.25 mhz transducers. Predicted and measured positions of search units from which the flaws can be detected compare favorably.

  19. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  20. Towards Automatic Semantic Labelling of 3D City Models

    NASA Astrophysics Data System (ADS)

    Rook, M.; Biljecki, F.; Diakité, A. A.

    2016-10-01

    The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

  1. 3D Model of the Tuscarora Geothermal Area

    SciTech Connect

    Faulds, James E.

    2013-12-31

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern

  2. Development of a 3D Potential Field Forward Modelling System in Python

    NASA Astrophysics Data System (ADS)

    Cole, P.

    2012-12-01

    The collection of potential field data has long been a standard part of geophysical exploration. Specifically, airborne magnetic data is collected routinely in any brown-fields area, because of the low cost and fast acquisition rate compared to other geophysical techniques. However, the interpretation of such data can be a daunting task, especially when 3D models are becoming more necessary. The current trend in modelling software is to follow either the modelling of individual profiles, which are then "joined" up into 3D sections, or to model in a full 3D using polygonal based models (Singh and Guptasarma, 2001). Unfortunately, both techniques have disadvantages. When modelling in 2.5D the impact of other profiles is not truly available on your current profile being modelled, and vice versa. The problem is not present in 3D, but 3D polygonal models, while being easy to construct the initial model, are not as easy to make fast changes to. In some cases, the entire model must be recreated from scratch. The ability to easily change a model is the very basis of forward modelling. With this is mind, the objective of the project was to: 1) Develop software which was truly modelling in 3D 2) Create a system which would allow the rapid changing of the 3D model, without the need to recreate the model. The solution was to adopt a voxel based approach, rather than a polygonal approach. The solution for a cube (Blakely 1996) was used to calculate potential field for each voxel. The voxels are then summed over the entire volume. The language used was python, because of its huge capacity for scientific development. It enables full 3D visualisation as well as complex mathematical routines. Some properties worth noting are: 1) Although 200 rows by 200 columns by 200 layers would imply 8 million calculations, in reality, since the calculation for adjacent voxels produces the same result, only 200 calculations are necessary. 2) Changes to susceptibility and density do not affect

  3. 3D multi-scale modelling of mechanical behaviour of sound and leached mortar

    SciTech Connect

    Bernard, F.; Kamali-Bernard, S. Prince, W.

    2008-04-15

    A 3D multi-scale modelling of mechanical properties of cement-based materials approach is presented. The proposed approach provides a quantitative means to estimate and predict the mechanical properties of cement-based materials taking into account the eventual changes in the micro-structure. Two numerical tools are combined. First, the NIST's 3D model (CEMHYD3D) is used to generate a realistic 3D Representative Volume Element of cement-based materials at different scales. Then, multi-scale simulations are performed by using the FE software Abaqus for the calculation of the mechanical behaviour. The approach is then successfully applied to a specific mortar in order to determine firstly its mechanical behaviour under tensile and compression loadings and secondly the evolution of its Young's modulus under the leaching phenomenon. This evolution is a key parameter since the leaching may be critical for the mechanical integrity of concrete structures such as radioactive waste storage systems in which cement-based materials may be largely used. The numerical results of the modelling are consistent with the experimental ones.

  4. Investigating the Enrichment of a 3D City Model with Various CityGML Modules

    NASA Astrophysics Data System (ADS)

    Floros, G.; Dimopoulou, E.

    2016-10-01

    Recent developments in the massive 3D acquisition area made possible the generation of dense and precise 3D data, ranging from the representation of a simple building to a whole city. Nowadays, increasing urbanization, rapid growth of urban areas, and subsequently development of mega cities, are among the most important changes occurring worldwide. Therefore, developing techniques to manage these cities seems quite necessary. The aim of this paper is to investigate the enrichment of a 3D City Model with additional attributes, via appropriate CityGML Modules. The paper focuses on addressing the challenging issues that derive from a complex virtual 3D city modeling. More specifically, the paper investigates a complex built-up area, presenting and analyzing its constituting structures. Within this framework, the following CityGML modules are investigated: Bridge, Transportation Complex, CityFurniture, Land Use and Vegetation. To this purpose, the BIM-Standard software Trimble SketchUp and the data conversion tool FME are used. The processes of both modeling and converting are analyzed in detail. General conclusions and future research considerations are presented.

  5. Modeling Electric Current Flow in 3D Fractured Media

    NASA Astrophysics Data System (ADS)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  6. A multipurpose 3-D grid of stellar models

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.

    2013-05-01

    The last two decades have produced a proliferation of stellar atmosphere grids, evolutionary tracks, and isochrones which are available to the astronomical community from different internet services. However, it is not straightforward (at least for an inexperienced user) to manipulate those models to answer questions of the type: What is the spectral energy distribution of a 9000 K giant? What about its J-band magnitude for different metallicities? What can I tell about the mass of a star if I know that its unreddened B-V color is -0.05 and its luminosity in solar units is 10^5? The answers to those questions are indeed in the models but a series of transformations and combinations involving different variables and models are required to obtain them. To make the available knowledge more user friendly, I have combined a number of state-of-the-art sources to create a 3-D (effective temperature, luminosity, and metallicity) grid of stellar models for which I provide calibrated SEDs and magnitudes as well as auxiliary variables such as mass and age. Furthermore, I have generated a grid of extinguished magnitudes using the recent Maíz Apellániz et al. (2012) extinction laws and incorporated them into the Bayesian code CHORIZOS (Maíz Apellániz 2004).

  7. 3-D Eutrophication Modeling for Lake Simcoe, Canada

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Duckett, F.; Nairn, R.; Brunton, A.

    2006-12-01

    The Lake Simcoe Region Conservation Authority (LSRCA) and the Province of Ontario are undertaking a series of studies to facilitate management of the pressures of population growth in the Lake Simcoe watershed. With rapid population growth and urban development comes additional land clearing, storm water runoff and the discharge of treated sewage, all of which are sources of increased phosphorus loading to Lake Simcoe. Depressed oxygen levels were linked to phosphorous enrichment of the lake, with the resultant stimulation of algal growth in the sunlit upper waters of the lake, and its subsequent senescence and settling into the hypolimnion where bacterial decomposition consumes oxygen from the stratified waters. This poster describes a 3-D hydrodynamic, thermal and water quality model of Lake Simcoe developed using the Danish Hydraulics Institute (DHI) MIKE3 model. The hydrodynamic module includes wind-driven circulation, temperature variation, development of the thermocline and thermal stratification, and hydraulic forcing from inflowing tributaries. This is linked to the water quality module which simulates the eutrophication processes in the response of the lake to loadings of phosphorus, such as algal growth, the growth of aquatic plants and subsequent oxygen consumption. The model has been calibrated against Acoustic Doppler Current Profiler velocity data, plus measured temperature and water quality data at MOE stations in the lake and water intakes. The model is an important assessment tool for the management of the lake and its watersheds, allowing assessment of the impacts of the urban growth and land use change on the water quality in Lake Simcoe.

  8. Planetary subsurface investigation by 3D visualization model .

    NASA Astrophysics Data System (ADS)

    Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.

    Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.

  9. Accurate, low-cost 3D-models of gullies

    NASA Astrophysics Data System (ADS)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  10. 3D Printing of Molecular Potential Energy Surface Models

    ERIC Educational Resources Information Center

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  11. 3D numerical modeling of India-Asia-like collision

    NASA Astrophysics Data System (ADS)

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B

  12. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  13. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  14. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.

    PubMed

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  15. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.

    PubMed

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.

  16. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    PubMed Central

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  17. 3D finite element modeling of sliding wear

    NASA Astrophysics Data System (ADS)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  18. ModeRNA: a tool for comparative modeling of RNA 3D structure

    PubMed Central

    Rother, Magdalena; Rother, Kristian; Puton, Tomasz; Bujnicki, Janusz M.

    2011-01-01

    RNA is a large group of functionally important biomacromolecules. In striking analogy to proteins, the function of RNA depends on its structure and dynamics, which in turn is encoded in the linear sequence. However, while there are numerous methods for computational prediction of protein three-dimensional (3D) structure from sequence, with comparative modeling being the most reliable approach, there are very few such methods for RNA. Here, we present ModeRNA, a software tool for comparative modeling of RNA 3D structures. As an input, ModeRNA requires a 3D structure of a template RNA molecule, and a sequence alignment between the target to be modeled and the template. It must be emphasized that a good alignment is required for successful modeling, and for large and complex RNA molecules the development of a good alignment usually requires manual adjustments of the input data based on previous expertise of the respective RNA family. ModeRNA can model post-transcriptional modifications, a functionally important feature analogous to post-translational modifications in proteins. ModeRNA can also model DNA structures or use them as templates. It is equipped with many functions for merging fragments of different nucleic acid structures into a single model and analyzing their geometry. Windows and UNIX implementations of ModeRNA with comprehensive documentation and a tutorial are freely available. PMID:21300639

  19. Prediction of car cabin environment by means of 1D and 3D cabin model

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  20. RVA. 3-D Visualization and Analysis Software to Support Management of Oil and Gas Resources

    SciTech Connect

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne; Vanmoer, Mark; Angrave, Lawrence; Damico, James R.; Grigsby, Nathan

    2015-12-01

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including

  1. Pros and Cons of ID vs. 3D Modeling

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2012-01-01

    Advances in computing capability have led to tremendous improvements in 3D modeling. Entire active regions are being simulated in what might be described as a first principles way, in which plasma heating is treated self consistently rather than through the specification of heating functions. There are limitations to this approach, however, as actual heating mechanisms on the Sun involve spatial scales orders of magnitude smaller than what these simulations can resolve. Other simulations begin to resolve these scales, but they only treat a tiny volume and do not include the all important coupling with larger scales or with other parts of the atmosphere, and so cannot be readily compared with observations. Finally, ID hydrodynamic models capture the field-aligned evolution of the plasma extremely well and are ideally suited for data comparison, but they treat the heating in a totally ad hoc manner. All of these approaches have important contributions to make, but we must be aware of their limitations. I will highlight some of the strengths. and weaknesses of each.

  2. Object-oriented urban 3D spatial data model organization method

    NASA Astrophysics Data System (ADS)

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  3. Flexible building primitives for 3D building modeling

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Jancosek, M.; Oude Elberink, S.; Vosselman, G.

    2015-03-01

    3D building models, being the main part of a digital city scene, are essential to all applications related to human activities in urban environments. The development of range sensors and Multi-View Stereo (MVS) technology facilitates our ability to automatically reconstruct level of details 2 (LoD2) models of buildings. However, because of the high complexity of building structures, no fully automatic system is currently available for producing building models. In order to simplify the problem, a lot of research focuses only on particular buildings shapes, and relatively simple ones. In this paper, we analyze the property of topology graphs of object surfaces, and find that roof topology graphs have three basic elements: loose nodes, loose edges, and minimum cycles. These elements have interesting physical meanings: a loose node is a building with one roof face; a loose edge is a ridge line between two roof faces whose end points are not defined by a third roof face; and a minimum cycle represents a roof corner of a building. Building primitives, which introduce building shape knowledge, are defined according to these three basic elements. Then all buildings can be represented by combining such building primitives. The building parts are searched according to the predefined building primitives, reconstructed independently, and grouped into a complete building model in a CSG-style. The shape knowledge is inferred via the building primitives and used as constraints to improve the building models, in which all roof parameters are simultaneously adjusted. Experiments show the flexibility of building primitives in both lidar point cloud and stereo point cloud.

  4. Numerical model of sonic boom in 3D kinematic turbulence

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Luquet, David; Marchiano, Régis

    2015-10-01

    stratified wind superimposed to a 3D random turbulent realization. Propagation is performed either in the case of a shadow zone or of an atmospheric waveguide. To model the turbulent ABL, the mean flow and the fluctuations are handled separately. The wind fluctuations are generated using the Random Fluctuations Generation method assuming a von Kármán spectrum and a homogeneous and isotropic turbulence. The mean stratified wind is modeled based on the Monin-Obhukov Similarity Theory (MOST). To illustrate the method, the typical case of a sunny day with a strong wind has been chosen. Statistics are obtained on several parameters. It shows the importance of turbulence, which leads to an increase of the mean maximum peak pressure in the shadow zone and to its decrease in the waveguide. Moreover, the formation of random caustics that can lead to an increase of the noise perceived locally is outlined.

  5. Development of topography in 3-D continental-collision models

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, Boris J. P.

    2015-05-01

    Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3-D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle-scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental-collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental-collision models: (I) low-amplitude homogeneous shortening, (II) high-amplitude homogeneous shortening, (III) Alpine-type topography with topographic front and low plateau, and (IV) Tibet-Himalaya-type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya-Tibet to regime (IV), whereas the Andes-Altiplano fall at the boundary between regimes (III) and (IV).

  6. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  7. West Flank Coso, CA FORGE 3D temperature model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104˚C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20˚C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73˚C/km (4˚F/100’) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20˚C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6˚C (20˚F), or one contour interval, of the

  8. 3D Simulation Modeling of the Tooth Wear Process

    PubMed Central

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942

  9. 3D Simulation Modeling of the Tooth Wear Process.

    PubMed

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  10. Extracting Semantically Annotated 3d Building Models with Textures from Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.; Poznanska, A.

    2015-03-01

    This paper proposes a method for the reconstruction of city buildings with automatically derived textures that can be directly used for façade element classification. Oblique and nadir aerial imagery recorded by a multi-head camera system is transformed into dense 3D point clouds and evaluated statistically in order to extract the hull of the structures. For the resulting wall, roof and ground surfaces high-resolution polygonal texture patches are calculated and compactly arranged in a texture atlas without resampling. The façade textures subsequently get analyzed by a commercial software package to detect possible windows whose contours are projected into the original oriented source images and sparsely ray-casted to obtain their 3D world coordinates. With the windows being reintegrated into the previously extracted hull the final building models are stored as semantically annotated CityGML "LOD-2.5" objects.

  11. 3D modeling of carbonates petro-acoustic heterogeneities

    NASA Astrophysics Data System (ADS)

    Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie

    2015-04-01

    Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (< meter) heterogeneities are often poorly constrained because of the complexity in predicting their spatial arrangement. In this study, we conducted petro-acoustic measurements on cores of different size and diameter (Ø = 1", 1.5" and 5") in order to evaluate anisotropy or heterogeneity in carbonates at different laboratory scales. Different types of heterogeneities which generally occur in carbonate reservoir units (e.g. petrographic, diagenetic, and tectonic related) were sampled. Dry / wet samples were investigated with different ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.

  12. A 3D numerical model for Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.

    2014-07-01

    We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M⊙ yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.

  13. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  14. Data based 3D modelling of the southwest African continental margin

    NASA Astrophysics Data System (ADS)

    Freymark, J.; Sippel, J.; Scheck-Wenderoth, M.; Götze, H.-J.; Reichert, C.

    2012-04-01

    The volcanic passive continental margin of southwest Africa was formed in consequence of rifting and continental break-up of Gondwana in the Late Mesozoic. Our study focusses on an area extending from the Walvis Ridge in the north to the Agulhas Falkland Fracture Zone in the south including some important petroliferous sedimentary basins such as the Walvis Basin, the Luderitz Basin, and the Orange Basin. Due to decades of industrial exploration and scientific research, some of these areas reveal a large pool of structural and geophysical data. Thus, much is known about the individual tectonic and depositional histories of several subdomains of the area. The goal of our study is to understand the margin in its entirety. We present a 3D model of the present-day configuration of the southwest African continental margin. This model integrates well information, seismic reflection and refraction data, a previously published 3D structural model (Maystrenko et al., 2011), as well as freely available global data sets on the crustal structure (e.g. crust2.0 of Bassin, Laske & Masters, 2000). To extrapolate local information on crustal thickness (respectively the depth of the Moho) across the whole margin, we perform 3D gravity modelling using the software IGMAS+ (Götze & Schmidt, 2010; Schmidt et al., 2011). As parts of the first results, we show margin-wide depth and thickness distributions of a Palaeozoic to Cenozoic sedimentary layer and a Paleoproterozoic to Mesozoic crystalline crustal layer.

  15. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.

    2015-01-01

    The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.

  16. 3D-modeling in the production of custom-made implants

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Kovalev, V. A.; Anisenya, I. I.; Mitrichenko, D. V.; Prosolov, A. B.; Khlusov, I. A.

    2016-08-01

    The goal of this work was to design, develop and test practical solutions that could become the core of computer-aided design (CAD) software, simulating to meet the challenges of preoperative preparation in the shortest time. Its basis was adapted to clinical and technical requirements of the diagnostic image processing algorithm in cancer patients with the following construction of the model and manufacture of the replacement implant on the basis of its 3D-prototype. The results are useful for preoperative planning and production of anatomically accurate individual implants and endoprosthesis.

  17. Software Model Of Software-Development Process

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Synott, Debra J.; Levary, Reuven R.

    1990-01-01

    Collection of computer programs constitutes software tool for simulation of medium- to large-scale software-development projects. Necessary to include easily identifiable and more-readily quantifiable characteristics like costs, times, and numbers of errors. Mathematical model incorporating these and other factors of dynamics of software-development process implemented in the Software Life Cycle Simulator (SLICS) computer program. Simulates dynamics of software-development process. In combination with input and output expert software systems and knowledge-based management software system, develops information for use in managing large software-development project. Intended to aid managers in planning, managing, and controlling software-development processes by reducing uncertainties in budgets, required personnel, and schedules.

  18. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists. PMID:19263096

  19. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists.

  20. Argonaute 3D: a real-time cooperative medical planning software on DSL network.

    PubMed

    Le Mer, Pascal; Soler, Luc; Pavy, Dominique; Bernard, Alain; Moreau, Johan; Mutter, Didier; Marescaux, Jacques

    2004-01-01

    Today, diagnosis of cancer and also therapeutic choice imply many specialized practitioners. They are generally located at different places and have to take the best decision as promptly as possible with the difficulty of CT-scan or MRI interpretation. Argonaute 3D is a tool that easily overcomes these issues, thanks to a cooperative solution based on virtual reality. An experimentation, where four practitioners met virtually throughout France, allowed to assess the interest of this solution.

  1. Comparative study of software techniques for 3D mapping of perforators in deep inferior epigastric artery perforator flap planning

    PubMed Central

    Hunter-Smith, David J.; Rozen, Warren Matthew

    2016-01-01

    Background Computed tomographic (CT) angiography (CTA) is widely considered the gold standard imaging modality for preoperative planning autologous breast reconstruction with deep inferior epigastric artery (DIEA) perforator (DIEP) flap. Improved anatomical understanding from CTA has translated to enhanced clinical outcomes. To achieve this, the use of appropriate CT hardware and software is vital. Various CT scanners and contrast materials have been demonstrated to consistently produce adequate scan data. However, the availability of affordable and easily accessible imaging software capable of generating 3D volume-rendered perforator images to clinically useful quality has been lacking. Osirix (Pixmeo, Geneva, Switzerland) is a free, readily available medical image processing software that shows promise. We have previously demonstrated in a case report the usefulness of Osirix in localizing perforators and their course. Methods In the current case series of 50 consecutive CTA scans, we compare the accuracy of Osirix to a commonly used proprietary 3D imaging software, Siemens Syngo InSpace 4D (Siemens, Erlangen, Germany), in identifying perforator number and location. Moreover, we compared both programs to intraoperative findings. Results We report a high rate of concordance with Osirix and Siemens Syngo InSpace 4D (99.6%). Both programs correlated closely with operative findings (92.2%). Most of the discrepancies were found in the lateral row perforators (90%). Conclusions In the current study, we report the accuracy of Osirix that is comparable to Siemens Syngo InSpace 4D, a proprietary software, in mapping perforators. However, it provides an added advantage of being free, easy-to-use, portable, and potentially a superior quality of 3D reconstructed image. PMID:27047778

  2. Numerical Results of 3-D Modeling of Moon Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity

  3. Construction of Urban 3-D Model of Hanoi, Vietnam Using FOSS Tools

    NASA Astrophysics Data System (ADS)

    Yonezawa, G.; Mitamura, M.; Sakurai, K.; Luan, T. X.; Raghavan, V.; Masumoto, S.; Nemoto, T.; Nonogaki, S.

    2013-12-01

    In this study, we investigate an urban transformation of Hanoi City, Vietnam from topographic changes in the 19-20 centuries. To analyze the relief of terrain and micro-topography for such an urban transfiguration, we need to generate the DEM (Digital Elevation Model) using the elevation survey data. DEM is a digital representation of ground surface topography and the most important element of topographic analysis for urban transfiguration. And, the three dimensional (3-D) mode of buildings which we generated from house map in Hanoi City can be also expressed apparently. It must be useful for an urban transformation because it is difficult to estimate how so many lakes and ponds disappeared by using two dimensional (2-D) spatial analysis only. We generated the DEM (8km x 8km) of Hanoi City from approximately 24,000 points data collected in 2005. This survey data was provided by Hanoi University of Mining and Geology (HUMG). Based on the surface estimation method using Cubic B-Spline Function, we generated this DEM at 2 meters resolution (Nonogaki et al., 2008). The very subtle elevation gaps which can not be distinguished on the satellite image are significantly recognizable on it. The example of the visualization of 3-D DEM is shown in Figure 1 using the NVIZ of visualization tool in GRASS GIS software. It is overlaid the Hanoi road map on the generated DEM. We generated the vector map of each block of houses in the Pho Co district in Hanoi City by using the house maps in 2005 which are provided by HUMG. It is consisted of 12,000 polygon data. These are converted the 3-D data (features) using the GIS software. This 3-D model is not only visualized the landscape in the Pho Co district accurately, but also reflected the elevation in this area. Thus, the 3-D features are built on DEM which is shown in Chapter 3. Therefore, we can create an overview of how the current urbanization is advancing in the area where the lakes and ponds existed in the past. Example of the

  4. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    NASA Astrophysics Data System (ADS)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  5. Orbiter/External Tank Mate 3-D Solid Modeling

    NASA Technical Reports Server (NTRS)

    Godfrey, G. S.; Brandt, B.; Rorden, D.; Kapr, F.

    2004-01-01

    This research and development project presents an overview of the work completed while attending a summer 2004 American Society of Engineering Education/National Aeronautics and Space Administration (ASEE/NASA) Faculty Fellowship. This fellowship was completed at the Kennedy Space Center, Florida. The scope of the project was to complete parts, assemblies, and drawings that could be used by Ground Support Equipment (GSE) personnel to simulate situations and scenarios commonplace to the space shuttle Orbiter/External Tank (ET) Mate (50004). This mate takes place in the Vehicle Assembly Building (VAB). These simulations could then be used by NASA engineers as decision-making tools. During the summer of 2004, parts were created that defined the Orbiter/ET structural interfaces. Emphasis was placed upon assemblies that included the Orbiter/ET forward attachment (EO-1), aft left thrust strut (EO-2), aft right tripod support structure (EO-3), and crossbeam and aft feedline/umbilical supports. These assemblies are used to attach the Orbiter to the ET. The Orbiter/ET Mate assembly was then used to compare and analyze clearance distances using different Orbiter hang angles. It was found that a 30-minute arc angle change in Orbiter hang angle affected distance at the bipod strut to Orbiter yoke fitting 8.11 inches. A 3-D solid model library was established as a result of this project. This library contains parts, assemblies, and drawings translated into several formats. This library contains a collection of the following files: sti for sterolithography, stp for neutral file work, shrinkwrap for compression. tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. This library was made available to NASA engineers so that they could access its contents to make angle, load, and clearance analysis studies. These decision-making tools may be used by Pro/Engineer users and non-users.

  6. Automated robust generation of compact 3D statistical shape models

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  7. Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modelling.

    PubMed

    Tavares, G; Zsigraiova, Z; Semiao, V; Carvalho, M G

    2009-03-01

    Collection of municipal solid waste (MSW) may account for more than 70% of the total waste management budget, most of which is for fuel costs. It is therefore crucial to optimise the routing network used for waste collection and transportation. This paper proposes the use of geographical information systems (GIS) 3D route modelling software for waste collection and transportation, which adds one more degree of freedom to the system and allows driving routes to be optimised for minimum fuel consumption. The model takes into account the effects of road inclination and vehicle weight. It is applied to two different cases: routing waste collection vehicles in the city of Praia, the capital of Cape Verde, and routing the transport of waste from different municipalities of Santiago Island to an incineration plant. For the Praia city region, the 3D model that minimised fuel consumption yielded cost savings of 8% as compared with an approach that simply calculated the shortest 3D route. Remarkably, this was true despite the fact that the GIS-recommended fuel reduction route was actually 1.8% longer than the shortest possible travel distance. For the Santiago Island case, the difference was even more significant: a 12% fuel reduction for a similar total travel distance. These figures indicate the importance of considering both the relief of the terrain and fuel consumption in selecting a suitable cost function to optimise vehicle routing. PMID:18835768

  8. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  9. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  10. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    PubMed Central

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  11. 3D Spherical Convection Modeling of Venusian Resurfacing Mechanisms

    NASA Astrophysics Data System (ADS)

    Prunty, A. C.; King, S. D.

    2014-12-01

    The surface of Venus is thought to have undergone a global resurfacing event approximately 750 Ma. While several variations and modifications within the proposed resurfacing models exist, two end-member mechanisms can be broadly identified: (1) catastrophic overturns of the lithosphere, and (2) global volcanic resurfacing. We perform high-resolution, 3D spherical convection calculations using CitcomS to determine the conditions in Venus' deep interior necessary for each mechanism to occur. To date, we have focused on modeling episodic overturns of the lithosphere in the stagnant lid regime following the method of van Heck and Tackley (2008), and implementing a temperature-dependent rheology and yield stress. We find in general that lithospheric yielding can occur with a Rayleigh number of the order of 105 and a yield stress of the order of 20 ­- 400 MPa, consistent with the results of van Heck and Tackley. Additionally, we find that the behavior of lithospheric overturn depends strongly on the yield stress. To see this, we systematically increase the Rayleigh number and the yield stress via a priori scaling relationships. We find that models with Rayleigh number between 105 and 108 exhibit some variation of stagnant-lid convection; however, we observe that by varying the yield stress we are able to control the degree to which the overturns consist of the subduction of large, coherent segments of lithosphere as opposed to the formation of a large number of smaller, regional delaminations. We analyze these two modes of overturn by looking at the resultant geoid and topography fields to see if they yield distinguishable signatures. Furthermore, we analyze the spherical harmonic power spectrum of the geoid and topography to determine the extent to which their signatures are contributed from lower mantle anomalies and surface features. We also test the effects of mineral phase transformations and depth­-increasing viscosity on lithospheric overturn behavior by varying

  12. Quasi-3D Resistivity Imaging - Results from Geophysical Mapping and Forward Modeling

    NASA Astrophysics Data System (ADS)

    Schwindt, D.; Kneisel, C.

    2009-04-01

    modeling software res2Dmod. Resistivities of the modeled data were geared on the 2D measurements, containing surveys with high resistivities indicating permafrost and low resistivities for unfrozen ground. The modeled 2D files were inverted and collated into a quasi-3D file with the software res2Dinv, using the array types, Wenner, Wenner-Schlumberger and Dipole-Dipole. For each array type the quasi-3D file was modeled with double, triple and quadruple parallel spacing. To test the influence of crossing transects quasi 3D-files were modeled with a transect crossing every second, third and fourth profile as well as with no transect crossing. Results from forward modeling support the assumptions drawn from the measurements. Parallel spacing between transects should be less than quadruple electrode spacing, while triple spacing has proven to be a good agreement between resolution and efficiency. Enlarging the distance between transects results in a loss of information value and a blurred illustration of resistivity anomalies. A high number of right-angled crossing transects is of importance for achieving a reliable quasi-3D Image. All tested array types provide good results in quasi-3D forward modeling. Known qualities of the different array types can be transferred from 2D ERT. Advantages of the Wenner array are low sensitivity to noise and error proneness; if applicable Wenner-Schlumberger and Dipole-Dipole arrays are recommendable for a higher resolution. As for 2D ERT choice of electrode spacing depends on site characteristics and objectives of the project. Although "real" 3D techniques provide the best information of the subsurface, 2D data acquisition techniques will remain preferable in periglacial environments due to efficiency as well as logistical reasons. Quasi-3D imaging has proven to be a promising approach for resistivity measurements in periglacial environments and enhances the possibilities of data interpretation compared to 2D resistivity tomography, e.g. in

  13. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  14. 3D Strucutural Geological Model of the Alpi Mt. Area (Southern Italy)

    NASA Astrophysics Data System (ADS)

    La Bruna, Vincenzo; Lamarche, Juliette; Viseur, Sophie; Agosta, Fabrizio; Prosser, Giacomo

    2016-04-01

    The study area is located in the inner portion of the southern Apennines fold-and-thrust belt. The Alpi Mt. is the only portion of the Apulian domain cropping in this sector. In fact, it is considered as a structural analogue of the Val d'Agri and Tempa Rossa reservoirs (Basilicata). The Alpi Mt. tectonic unit is composed of two main cronostratigraphic intervals, represented by a 2000m-thick Mesozoic carbonate succession and a Messinian mixed carbonate-terrigenous succession. The Messinian interval is made up of a Lower Messinian sedimentary cycle, wich form a paraconformity with the underlying Mesozoic carbonates, and an Upper Messinian cycle characterized by a marked unconformity at the bottom. This study aims to better understand the role exerted by the precontractional tectonic structures during the Messinian interval, wich are responsible for the development of the sedimentary angular unconformity. To reach this goal, a 3D structural geological model was build up by using the Gocad(R) software. The construction of the 3D model was gained through the integration of several results related to geological field mapping, well log analysis and seismic reflection data. Focusing on the Upper Messinian sedimentary horizon, in order to achieve the true geometry and kinematics of the high-angle extensional faults that bound the sedimentary depocenters, the model was restored through vertical line methodology. This process allows to obtain more information about location, geometry, and sedimentary depocenter orientations. Furthermore, the 3D structural model brings some important results from the 3D fault analysis that are represented by attitude, geometry and dimensional parameters of the fault network that affect the study area.

  15. Integrating airborne LiDAR dataset and photographic images towards the construction of 3D building model

    NASA Astrophysics Data System (ADS)

    Idris, R.; Latif, Z. A.; Hamid, J. R. A.; Jaafar, J.; Ahmad, M. Y.

    2014-02-01

    A 3D building model of man-made objects is an important tool for various applications such as urban planning, flood mapping and telecommunication. The reconstruction of 3D building models remains difficult. No universal algorithms exist that can extract all objects in an image successfully. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) technology have changed the conventional method of topographic mapping and increased the interest of these valued datasets towards 3D building model construction. Airborne LiDAR has proven accordingly that it can provide three dimensional (3D) information of the Earth surface with high accuracy. In this study, with the availability of open source software such as Sketch Up, LiDAR datasets and photographic images could be integrated towards the construction of a 3D building model. In order to realize the work an area comprising residential areas situated at Putrajaya in the Klang Valley region, Malaysia, covering an area of two square kilometer was chosen. The accuracy of the derived 3D building model is assessed quantitatively. It is found that the difference between the vertical height (z) of the 3D building models derived from LiDAR dataset and ground survey is approximately ± 0.09 centimeter (cm). For the horizontal component (RMSExy), the accuracy estimates derived for the 3D building models were ± 0.31m. The result also shows that the qualitative assessment of the 3D building models constructed seems feasible for the depiction in the standard of LOD 3 (Level of details).

  16. 3-D Seismic Tomographic Modelling of the North-Western Spitsbergen Area

    NASA Astrophysics Data System (ADS)

    Czuba, W.

    2015-12-01

    Deep seismic sounding measurements were performed in the continent-ocean transition zone of the north-western Svalbard continental margin in 1976 - 1999 in an international co-operation. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone systems (OBH). Data from archival and modern seismic profiles were altogether used for 3-D tomographic inversion using JIVE3D software. The modelling area was chosen to be a rectangle of 420 x 330 km (Fig.). The results are similar to the earlier 2-D modelling, supplemented by off-line information from the profiles and the SPITS permanent station, giving a 3-D image of the crustal structure and Moho interface shape. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep and in the Knipovich Ridge. The Moho interface deepens to about 30 km beneath the continental crust of Spitsbergen.

  17. 3D models automatic reconstruction of selected close range objects. (Polish Title: Automatyczna rekonstrukcja modeli 3D małych obiektów bliskiego zasiegu)

    NASA Astrophysics Data System (ADS)

    Zaweiska, D.

    2013-12-01

    Reconstruction of three-dimensional, realistic models of objects from digital images has been the topic of research in many areas of science for many years. This development is stimulated by new technologies and tools, which appeared recently, such as digital photography, laser scanners, increase in the equipment efficiency and Internet. The objective of this paper is to present results of automatic modeling of selected close range objects, with the use of digital photographs acquired by the Hasselblad H4D50 camera. The author's software tool was utilized for calculations; it performs successive stages of the 3D model creation. The modeling process was presented as the complete process which starts from acquisition of images and which is completed by creation of a photorealistic 3D model in the same software environment. Experiments were performed for selected close range objects, with appropriately arranged image geometry, creating a ring around the measured object. The Area Base Matching (CC/LSM) method, the RANSAC algorithm, with the use of tensor calculus, were utilized form automatic matching of points detected with the SUSAN algorithm. Reconstruction of the surface of model generation is one of the important stages of 3D modeling. Reconstruction of precise surfaces, performed on the basis of a non-organized cloud of points, acquired from automatic processing of digital images, is a difficult task, which has not been finally solved. Creation of poly-angular models, which may meet high requirements concerning modeling and visualization is required in many applications. The polynomial method is usually the best way to precise representation of measurement results, and, at the same time, to achieving the optimum description of the surface. Three algorithm were tested: the volumetric method (VCG), the Poisson method and the Ball pivoting method. Those methods are mostly applied to modeling of uniform grids of points. Results of experiments proved that incorrect

  18. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  19. 3D molecular models of whole HIV-1 virions generated with cellPACK

    PubMed Central

    Goodsell, David S.; Autin, Ludovic; Forli, Stefano; Sanner, Michel F.; Olson, Arthur J.

    2014-01-01

    As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology. PMID:25253262

  20. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    NASA Astrophysics Data System (ADS)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  1. Numerical Results of Earth's Core Accumulation 3-D Modelling

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  2. Radiological modeling software for underground uranium mines

    SciTech Connect

    Bjorndal, B.; Moridi, R.

    1999-07-01

    The Canadian Institute for Radiation Safety (CAIRS) has developed computer simulation software for modeling radiological parameters in underground uranium mines. The computer program, called 3d RAD, allows radiation protection professionals and mine ventilation engineers to quickly simulate radon and radon progeny activity concentrations and potential alpha energy concentrations in complex mine networks. The simulation component of 3d RAD, called RSOLVER, is an adaptation of an existing modeling program called VENTRAD, originally developed at Queen's University, Ontario. Based on user defined radiation source terms and network physical properties, radiological parameters in the network are calculated iteratively by solving Bateman's Equations in differential form. The 3d RAD user interface was designed in cooperation with the Canada Centre for Mineral and Energy Technology (CANMET) to improve program functionality and to make 3d RAD compatible with the CANMET ventilation simulation program, 3d CANVENT. The 3d RAD program was tested using physical data collected in Canadian uranium mines. 3d RAD predictions were found to agree well with theoretical calculations and simulation results obtained from other modeling programs such as VENTRAD. Agreement with measured radon and radon progeny levels was also observed. However, the level of agreement was found to depend heavily on the precision of source term data, and on the measurement protocol used to collect radon and radon progeny levels for comparison with the simulation results. The design and development of 3d RAD was carried out under contract with the Saskatchewan government.

  3. A novel alternative method for 3D visualisation in Parasitology: the construction of a 3D model of a parasite from 2D illustrations.

    PubMed

    Teo, B G; Sarinder, K K S; Lim, L H S

    2010-08-01

    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms. PMID:20962723

  4. Statistical modelling of software reliability

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1991-01-01

    During the six-month period from 1 April 1991 to 30 September 1991 the following research papers in statistical modeling of software reliability appeared: (1) A Nonparametric Software Reliability Growth Model; (2) On the Use and the Performance of Software Reliability Growth Models; (3) Research and Development Issues in Software Reliability Engineering; (4) Special Issues on Software; and (5) Software Reliability and Safety.

  5. 3D Model of Slip-Running Reconnection on Solar Sigmoidal Regions

    NASA Astrophysics Data System (ADS)

    Douglas, B.; Savcheva, A. S.; DeLuca, E. E.

    2015-12-01

    The structure of energy storing magnetic field lines on the Sun is very twisted and contorted. Some of the twist arises from photospheric foot point motion and some is due to currents carried into the corona as fields emerge. The stability of a region depends on both the energy stored (so-called "free" energy) and on the structure of the surrounding nearly potential fields. Free energy is usually contained in these S-shaped regions called sigmoids on the solar corona. The only way to reach lower energy state is to release this free energy, by changing its connectivity. This change in connectivity leads to flares and coronal mass ejections (CMEs) that can affect environments of nearby planets. For this project, we focus on a special kind of connectivity change called slip-running reconnection to create 3D numerical models of flare-producing magnetic fields. By comparing these numerical models to observational data from Atmospheric Imaging Assembly (AIA), we will be able to better explain the evolution of sigmoidal flares from active regions. We are studying a flare from Dudik et al 2014 paper (2012 July 12), and a flare from 2015 June 14. Using the Coronal Modeling System (CMS) software, we read the photospheric magnetogram for the specified date and time, compute the potential field, setup the 3D flux rope path, and then relax this flux rope over 60,000 iterations to create a nonlinear force-free field (NLFFF). Using these relaxed models we find the best-fit loops surrounding the flux rope. We then compare these models to the observations in AIA. We compare the magnetic field structure in our models with the observed slipping. For regions near our inserted flux rope, our models successfully correlate with this observation. Further modeling is required, but these initial results suggest that NLFFF modeling may be able to capture realistic 3-D magnetic structures associated with slipping reconnection.

  6. Optimization of site characterization and remediation methods using 3-D geoscience modeling and visualization techniques

    SciTech Connect

    Hedegaard, R.F.; Ho, J.; Eisert, J.

    1996-12-31

    Three-dimensional (3-D) geoscience volume modeling can be used to improve the efficiency of the environmental investigation and remediation process. At several unsaturated zone spill sites at two Superfund (CERCLA) sites (Military Installations) in California, all aspects of subsurface contamination have been characterized using an integrated computerized approach. With the aide of software such as LYNX GMS{trademark}, Wavefront`s Data Visualizer{trademark} and Gstools (public domain), the authors have created a central platform from which to map a contaminant plume, visualize the same plume three-dimensionally, and calculate volumes of contaminated soil or groundwater above important health risk thresholds. The developed methodology allows rapid data inspection for decisions such that the characterization process and remedial action design are optimized. By using the 3-D geoscience modeling and visualization techniques, the technical staff are able to evaluate the completeness and spatial variability of the data and conduct 3-D geostatistical predictions of contaminant and lithologic distributions. The geometry of each plume is estimated using 3-D variography on raw analyte values and indicator thresholds for the kriged model. Three-dimensional lithologic interpretation is based on either {open_quote}linked{close_quote} parallel cross sections or on kriged grid estimations derived from borehole data coded with permeability indicator thresholds. Investigative borings, as well as soil vapor extraction/injection wells, are sighted and excavation costs are estimated using these results. The principal advantages of the technique are the efficiency and rapidity with which meaningful results are obtained and the enhanced visualization capability which is a desirable medium to communicate with both the technical staff as well as nontechnical audiences.

  7. A Multi-wavelength 3D Model of BD+30°3639

    NASA Astrophysics Data System (ADS)

    Freeman, M. J.; Kastner, Joel H.

    2016-10-01

    We present a 3D multi-wavelength reconstruction of BD+30°3639, one of the best-studied planetary nebulae in the solar neighborhood. BD+30°3639, which hosts a [WR]-type central star, has been imaged at wavelength regimes that span the electromagnetic spectrum, from radio to X-rays. We have used the astrophysical modeling software SHAPE to construct a 3D morpho-kinematic model of BD+30°3639. This reconstruction represents the most complete 3D model of a PN to date from the standpoint of the incorporation of multi-wavelength data. Based on previously published kinematic data in optical emission lines and in lines of CO (radio) and H2 (near-IR), we were able to reconstruct BD+30's basic velocity components assuming a set of homologous velocity expansion laws combined with collimated flows along the major axis of the nebula. We confirm that the CO “bullets” in the PN lie along an axis that is slightly misaligned with respect to the major axis of the optical nebula, and that these bullets are likely responsible for the disrupted structures of the ionized and H2-emitting shells within BD+30. Given the relative geometries and thus dynamical ages of BD+30's main structural components, it is furthermore possible that the same jets that ejected the CO bullets are responsible for the generation of the X-ray-emitting hot bubble within the PN. Comparison of alternative viewing geometries for our 3D reconstruction of BD+30°3639 with imagery of NGC 40 and NGC 6720 suggests a common evolutionary path for these nebulae.

  8. Bootstrapping mixed correlators in the 3D Ising model

    NASA Astrophysics Data System (ADS)

    Kos, Filip; Poland, David; Simmons-Duffin, David

    2014-11-01

    We study the conformal bootstrap for systems of correlators involving nonidentical operators. The constraints of crossing symmetry and unitarity for such mixed correlators can be phrased in the language of semidefinite programming. We apply this formalism to the simplest system of mixed correlators in 3D CFTs with a ℤ2 global symmetry. For the leading ℤ2-odd operator σ and ℤ2-even operator ɛ, we obtain numerical constraints on the allowed dimensions (Δ σ , Δ ɛ ) assuming that σ and ɛ are the only relevant scalars in the theory. These constraints yield a small closed region in (Δ σ , Δ ɛ ) space compatible with the known values in the 3D Ising CFT.

  9. 3D numerical model for NGC 6888 Nebula

    NASA Astrophysics Data System (ADS)

    Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.

    We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.

  10. HOMER® Energy Modeling Software

    2000-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  11. Enabling Energy-Awareness in the Semantic 3d City Model of Vienna

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.

    2016-09-01

    This paper presents and discusses the first results regarding selection, analysis, preparation and eventual integration of a number of energy-related datasets, chosen in order to enrich a CityGML-based semantic 3D city model of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. The still-in-development Energy Application Domain Extension (ADE) is a CityGML extension conceived to specifically model, manage and store energy-related features and attributes for buildings. The work presented in this paper is embedded within the European Marie-Curie ITN project "CINERGY, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban data model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area in Vienna, Austria, and the available data sources, it shows and exemplifies the main data integration issues, the strategies developed to solve them in order to obtain the enriched 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  12. The 3D geological model of the Eastern Romania tectonics and structure

    NASA Astrophysics Data System (ADS)

    Necula, Nicusor; Sorin Baciu, Dorin; Niculita, Mihai; Dumitriu, Tony-Cristian

    2016-04-01

    3D geologic modelling is a modern tool which allow the conceptualization of geologic relations in an interactive environment, strengthening the ability to understand and present tectonic and structural geologic models. We integrated the data available in the literature (wells, maps, cross-sections) for the geological structure of the Eastern Romania, comprising the Eastern Carpathians Orogen and its foreland. The subducting East European plate generated the Eastern Carphatians thrusts. Under the Eastern Carpathians, beside East European plate, the Tornquist-Teysseire zone is caught. East European Craton (Proterozoic), Scythian Platform (Paleozoic), North Dobrogean Orogen (Paleozoic) and Moesian Platform (Paleozoic), all neighbor Tornquist-Teysseire zone (Paleozoic), playing the role of foreland for the Eastern Carpathian Orogen. The Eastern Carphatians Orogen has two flysch belts, the Inner Carpathian called Dacides formed in Cretacic deformations and the Outer Carpathian called Moldavides and formed in Late Badenian to Sarmatian deformations. The modelling was performed in Midland Valley's Move software. The boundaries of all the structural units presented above were modelled, together with the faults which are represented on the various osurces used. The created 3D geological model is seen as a tool to better understand and represent the tectonic and structural model of the Eastern ROmania and will also allow a better quantification of the relations between geology and landforms in Eastern Romania.

  13. 3D-printed haptic "reverse" models for preoperative planning in soft tissue reconstruction: a case report.

    PubMed

    Chae, Michael P; Lin, Frank; Spychal, Robert T; Hunter-Smith, David J; Rozen, Warren Matthew

    2015-02-01

    In reconstructive surgery, preoperative planning is essential for optimal functional and aesthetic outcome. Creating a three-dimensional (3D) model from two-dimensional (2D) imaging data by rapid prototyping has been used in industrial design for decades but has only recently been introduced for medical application. 3D printing is one such technique that is fast, convenient, and relatively affordable. In this report, we present a case in which a reproducible method for producing a 3D-printed "reverse model" representing a skin wound defect was used for flap design and harvesting. This comprised a 82-year-old man with an exposed ankle prosthesis after serial soft tissue debridements for wound infection. Soft tissue coverage and dead-space filling were planned with a composite radial forearm free flap (RFFF). Computed tomographic angiography (CTA) of the donor site (left forearm), recipient site (right ankle), and the left ankle was performed. 2D data from the CTA was 3D-reconstructed using computer software, with a 3D image of the left ankle used as a "control." A 3D model was created by superimposing the left and right ankle images, to create a "reverse image" of the defect, and printed using a 3D printer. The RFFF was thus planned and executed effectively, without complication. To our knowledge, this is the first report of a mechanism of calculating a soft tissue wound defect and producing a 3D model that may be useful for surgical planning. 3D printing and particularly "reverse" modeling may be versatile options in reconstructive planning, and have the potential for broad application.

  14. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  15. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.

    PubMed

    Meier, Armin; Söding, Johannes

    2015-10-01

    Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite. PMID:26496371

  16. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  17. ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.

    SciTech Connect

    McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon

    2005-01-01

    This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.

  18. Towards a predictive model of chromatin 3D organization.

    PubMed

    Xu, Chenhuan; Corces, Victor G

    2016-09-01

    Architectural proteins mediate interactions between distant regions in the genome to bring together different regulatory elements while establishing a specific three-dimensional organization of the genetic material. Depletion of specific architectural proteins leads to miss regulation of gene expression and alterations in nuclear organization. The specificity of interactions mediated by architectural proteins depends on the nature, number, and orientation of their binding site at individual genomic locations. Knowledge of the mechanisms and rules governing interactions among architectural proteins may provide a code to predict the 3D organization of the genome. PMID:26658098

  19. SedWorks: A 3-D visualisation software package to help students link surface processes with depositional product

    NASA Astrophysics Data System (ADS)

    Jones, M. A.; Edwards, A.; Boulton, P.

    2010-12-01

    Helping students to develop a cognitive and intuitive feel for the different temporal and spatial scales of processes through which the rock record is assembled is a primary goal of geoscience teaching. SedWorks is a 3-D virtual geoscience world that integrates both quantitative modelling and field-based studies into one interactive package. The program aims to help students acquire scientific content, cultivate critical thinking skills, and hone their problem solving ability, while also providing them with the opportunity to practice the activities undertaken by professional earth scientists. SedWorks is built upon a game development platform used for constructing interactive 3-D applications. Initially the software has been developed for teaching the sedimentology component of a Geoscience degree and consists of a series of continents or land masses each possessing sedimentary environments which the students visit on virtual field trips. The students are able to interact with the software to collect virtual field data from both the modern environment and the stratigraphic record, and to formulate hypotheses based on their observations which they can test through virtual physical experimentation within the program. The program is modular in design in order to enhance its adaptability and to allow scientific content to be updated so that the knowledge and skills acquired are at the cutting edge. We will present an example module in which students undertake a virtual field study of a 2-km long stretch of a river to observe how sediment is transported and deposited. On entering the field area students are able to observe different bedforms in different parts of the river as they move up- and down-stream, as well as in and out of the river. As they explore, students discover ‘hot spots’ at which particular tools become available to them. This includes tools for measuring the physical parameters of the flow and sediment bed (e.g. velocity, depth, grain size, bed

  20. Estimation of uncertainties in geological 3D raster layer models as integral part of modelling procedures

    NASA Astrophysics Data System (ADS)

    Maljers, Denise; den Dulk, Maryke; ten Veen, Johan; Hummelman, Jan; Gunnink, Jan; van Gessel, Serge

    2016-04-01

    The Geological Survey of the Netherlands (GSN) develops and maintains subsurface models with regional to national coverage. These models are paramount for petroleum exploration in conventional reservoirs, for understanding the distribution of unconventional reservoirs, for mapping geothermal aquifers, for the potential to store carbon, or for groundwater- or aggregate resources. Depending on the application domain these models differ in depth range, scale, data used, modelling software and modelling technique. Depth uncertainty information is available for the Geological Survey's 3D raster layer models DGM Deep and DGM Shallow. These models cover different depth intervals and are constructed using different data types and different modelling software. Quantifying the uncertainty of geological models that are constructed using multiple data types as well as geological expert-knowledge is not straightforward. Examples of geological expert-knowledge are trend surfaces displaying the regional thickness trends of basin fills or steering points that are used to guide the pinching out of geological formations or the modelling of the complex stratal geometries associated with saltdomes and saltridges. This added a-priori knowledge, combined with the assumptions underlying kriging (normality and second-order stationarity), makes the kriging standard error an incorrect measure of uncertainty for our geological models. Therefore the methods described below were developed. For the DGM Deep model a workflow has been developed to assess uncertainty by combining precision (giving information on the reproducibility of the model results) and accuracy (reflecting the proximity of estimates to the true value). This was achieved by centering the resulting standard deviations around well-tied depths surfaces. The standard deviations are subsequently modified by three other possible error sources: data error, structural complexity and velocity model error. The uncertainty workflow

  1. Simulation of 3D flows past hypersonic vehicles in FlowVision software

    NASA Astrophysics Data System (ADS)

    Aksenov, A. A.; Zhluktov, S. V.; Savitskiy, D. V.; Bartenev, G. Y.; Pokhilko, V. I.

    2015-11-01

    A new implicit velocity-pressure split method is discussed in the given presentation. The method implies using conservative velocities, obtained at the given time step, for integration of the momentum equation and other convection-diffusion equations. This enables simulation of super- and hypersonic flows with account of motion of solid boundaries. Calculations of known test cases performed in the FlowVision software are demonstrated. It is shown that the method allows one to carry out calculations at high Mach numbers with integration step essentially exceeding the explicit time step.

  2. MaxMod: a hidden Markov model based novel interface to MODELLER for improved prediction of protein 3D models.

    PubMed

    Parida, Bikram K; Panda, Prasanna K; Misra, Namrata; Mishra, Barada K

    2015-02-01

    Modeling the three-dimensional (3D) structures of proteins assumes great significance because of its manifold applications in biomolecular research. Toward this goal, we present MaxMod, a graphical user interface (GUI) of the MODELLER program that combines profile hidden Markov model (profile HMM) method with Clustal Omega program to significantly improve the selection of homologous templates and target-template alignment for construction of accurate 3D protein models. MaxMod distinguishes itself from other existing GUIs of MODELLER software by implementing effortless modeling of proteins using templates that bear modified residues. Additionally, it provides various features such as loop optimization, express modeling (a feature where protein model can be generated directly from its sequence, without any further user intervention) and automatic update of PDB database, thus enhancing the user-friendly control of computational tasks. We find that HMM-based MaxMod performs better than other modeling packages in terms of execution time and model quality. MaxMod is freely available as a downloadable standalone tool for academic and non-commercial purpose at http://www.immt.res.in/maxmod/. PMID:25636267

  3. MaxMod: a hidden Markov model based novel interface to MODELLER for improved prediction of protein 3D models.

    PubMed

    Parida, Bikram K; Panda, Prasanna K; Misra, Namrata; Mishra, Barada K

    2015-02-01

    Modeling the three-dimensional (3D) structures of proteins assumes great significance because of its manifold applications in biomolecular research. Toward this goal, we present MaxMod, a graphical user interface (GUI) of the MODELLER program that combines profile hidden Markov model (profile HMM) method with Clustal Omega program to significantly improve the selection of homologous templates and target-template alignment for construction of accurate 3D protein models. MaxMod distinguishes itself from other existing GUIs of MODELLER software by implementing effortless modeling of proteins using templates that bear modified residues. Additionally, it provides various features such as loop optimization, express modeling (a feature where protein model can be generated directly from its sequence, without any further user intervention) and automatic update of PDB database, thus enhancing the user-friendly control of computational tasks. We find that HMM-based MaxMod performs better than other modeling packages in terms of execution time and model quality. MaxMod is freely available as a downloadable standalone tool for academic and non-commercial purpose at http://www.immt.res.in/maxmod/.

  4. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    PubMed

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application.

  5. 3D-Assisted Quantitative Assessment of Orbital Volume Using an Open-Source Software Platform in a Taiwanese Population

    PubMed Central

    Shyu, Victor Bong-Hang; Hsu, Chung-En; Chen, Chih-hao; Chen, Chien-Tzung

    2015-01-01

    Orbital volume evaluation is an important part of pre-operative assessments in orbital trauma and congenital deformity patients. The availability of the affordable, open-source software, OsiriX, as a tool for preoperative planning increased the popularity of radiological assessments by the surgeon. A volume calculation method based on 3D volume rendering-assisted region-of-interest computation was used to determine the normal orbital volume in Taiwanese patients after reorientation to the Frankfurt plane. Method one utilized 3D points for intuitive orbital rim outlining. The mean normal orbital volume for left and right orbits was 24.3±1.51 ml and 24.7±1.17 ml in male and 21.0±1.21 ml and 21.1±1.30 ml in female subjects. Another method (method two) based on the bilateral orbital lateral rim was also used to calculate orbital volume and compared with method one. The mean normal orbital volume for left and right orbits was 19.0±1.68 ml and 19.1±1.45 ml in male and 16.0±1.01 ml and 16.1±0.92 ml in female subjects. The inter-rater reliability and intra-rater measurement accuracy between users for both methods was found to be acceptable for orbital volume calculations. 3D-assisted quantification of orbital volume is a feasible technique for orbital volume assessment. The normal orbital volume can be used as controls in cases of unilateral orbital reconstruction with a mean size discrepancy of less than 3.1±2.03% in females and 2.7±1.32% in males. The OsiriX software can be used reliably by the individual surgeon as a comprehensive preoperative planning and imaging tool for orbital volume measurement and computed tomography reorientation. PMID:25774683

  6. Exploration criteria for mineral target mapping based on 3D geological modeling in the Taebaek mineralized belt in Korea

    NASA Astrophysics Data System (ADS)

    Oh, H. J.; Kihm, Y. H.; Cho, S. J.

    2015-12-01

    We constructed a three-dimensional (3D) geological model based on a 1:50,000-scaled geologic map and determined the exploration criteria for skarn deposit target mapping in the Taebaek mineralized belt. All available geological and geophysical data were compiled in a 3D computing environment using GOCAD software. Twenty-four stratigraphic horizons and more than 100 fault surfaces are defined in the 3D geological model. The primary geological criteria for skarn mineralization in the Taebaek mineralized belt included the presence of an NE-oriented strike-slip fault, key stratigraphic horizons, and a high magnetic susceptibility anomaly based on 3D inversion of magnetic data. The 3D geological criteria were extracted from the 3D geological model for skarn deposit target mapping in the belt. The distance values of the three criteria (NE strike-slip fault, limestone horizon, and area of high magnetic susceptibility) were divided into four classes based on cutoff values determined by experts. The weight values for all of the geological criteria and the score value for each class of the distance criteria were also estimated based on expert knowledge. The weights and scores of geological criteria derived from expert knowledge serve as useful guides for target mapping in the Taebaek mineralized belt.

  7. Software architecture as a freedom for 3D content providers and users along with independency on purposes and used devices

    NASA Astrophysics Data System (ADS)

    Sultana, Razia; Christ, Andreas; Meyrueis, Patrick

    2014-05-01

    The improvements in the hardware and software of communication devices have allowed running Virtual Reality (VR) and Augmented Reality (AR) applications on those. Nowadays, it is possible to overlay synthetic information on real images, or even to play 3D on-line games on smart phones or some other mobile devices. Hence the use of 3D data for business and specially for education purposes is ubiquitous. Due to always available at hand and always ready to use properties of mobile phones, those are considered as most potential communication devices. The total numbers of mobile phone users are increasing all over the world every day and that makes mobile phones the most suitable device to reach a huge number of end clients either for education or for business purposes. There are different standards, protocols and specifications to establish the communication among different communication devices but there is no initiative taken so far to make it sure that the send data through this communication process will be understood and used by the destination device. Since all the devices are not able to deal with all kind of 3D data formats and it is also not realistic to have different version of the same data to make it compatible with the destination device, it is necessary to have a prevalent solution. The proposed architecture in this paper describes a device and purpose independent 3D data visibility any time anywhere to the right person in suitable format. There is no solution without limitation. The architecture is implemented in a prototype to make an experimental validation of the architecture which also shows the difference between theory and practice.

  8. 3D models mapping optimization through an integrated parameterization approach: cases studies from Ravenna

    NASA Astrophysics Data System (ADS)

    Cipriani, L.; Fantini, F.; Bertacchi, S.

    2014-06-01

    Image-based modelling tools based on SfM algorithms gained great popularity since several software houses provided applications able to achieve 3D textured models easily and automatically. The aim of this paper is to point out the importance of controlling models parameterization process, considering that automatic solutions included in these modelling tools can produce poor results in terms of texture utilization. In order to achieve a better quality of textured models from image-based modelling applications, this research presents a series of practical strategies aimed at providing a better balance between geometric resolution of models from passive sensors and their corresponding (u,v) map reference systems. This aspect is essential for the achievement of a high-quality 3D representation, since "apparent colour" is a fundamental aspect in the field of Cultural Heritage documentation. Complex meshes without native parameterization have to be "flatten" or "unwrapped" in the (u,v) parameter space, with the main objective to be mapped with a single image. This result can be obtained by using two different strategies: the former automatic and faster, while the latter manual and time-consuming. Reverse modelling applications provide automatic solutions based on splitting the models by means of different algorithms, that produce a sort of "atlas" of the original model in the parameter space, in many instances not adequate and negatively affecting the overall quality of representation. Using in synergy different solutions, ranging from semantic aware modelling techniques to quad-dominant meshes achieved using retopology tools, it is possible to obtain a complete control of the parameterization process.

  9. SCEC/CME CyberShake: Probabilistic Seismic Hazard Analysis Using 3D Seismic Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Cui, Y.; Faerman, M.; Field, E.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T. H.; Kesselman, C.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.

    2005-12-01

    Researchers on the SCEC Community Modeling Environment (SCEC/CME) Project are calculating Probabilistic Seismic Hazard Curves for several sites in the Los Angeles area. The hazard curves calculated in this study use Intensity Measure Relationships (IMRs) based on 3D ground motion simulations rather than on attenuation relationships. State-of-the-art Probabilistic Seismic Hazard Analysis (PSHA) is currently conducted using IMRs that use empirically-based attenuation relationships. These attenuation relationships represent relatively simple analytical models based on the regression of observed data. However, it is widely believed that significant improvements in SHA will rely on the use of more physics-based, waveform modeling. In fact, a more physics-based approach to PSHA was endorsed in a recent assessment of earthquake science by National Research Council (2003). In order to introduce the use of 3D seismic waveform modeling into PSHA hazard curve calculations, the SCEC/CME CyberShake group is integrating state-of-the-art PSHA software tools (OpenSHA), SCEC-developed geophysical models (SCEC CVM3.0), validated anelastic wave modeling (AWM) software, and state-of-the-art computational technologies including high performance computing and grid-based scientific workflows in an effort to develop an OpenSHA-compatible 3D waveform-based IMR component. This will allow researchers to combine a new class of waveform-based IMRs with the large number of existing PSHA components, such as Earthquake Rupture Forecasts (ERF's), that are currently implemented in the OpenSHA system. To calculate a probabilistic hazard curve for a site of interest, we use the OpenSHA implementation of the NSHMP-2002 ERF and identify all ruptures within 200km of the site of interest. For each of these ruptures, we convert the NSHMP-2002 rupture definition into one, or more, Ruptures with Slip Time History (Rupture Variations) using newly developed Rupture Generator software. Strain Green Tensors are

  10. 3D Surveying, Modeling and Geo-Information System of the New Campus of ITB-Indonesia

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Trisyanti, S. W.; Ainiyah, N.; Fajri, M. N.; Hanan, H.; Virtriana, R.; Edmarani, A. A.

    2016-10-01

    The new campus of ITB-Indonesia, which is located at Jatinangor, requires good facilities and infrastructures to supporting all of campus activities. Those can not be separated from procurement and maintenance activities. Technology for procurement and maintenance of facilities and infrastructures -based computer (information system)- has been known as Building Information Modeling (BIM). Nowadays, that technology is more affordable with some of free software that easy to use and tailored to user needs. BIM has some disadvantages and it requires other technologies to complete it, namely Geographic Information System (GIS). BIM and GIS require surveying data to visualized landscape and buildings on Jatinangor ITB campus. This paper presents the on-going of an internal service program conducted by the researcher, academic staff and students for the university. The program including 3D surveying to support the data requirements for 3D modeling of buildings in CityGML and Industry Foundation Classes (IFC) data model. The entire 3D surveying will produce point clouds that can be used to make 3D model. The 3D modeling is divided into low and high levels of detail modeling. The low levels model is stored in 3D CityGML database, and the high levels model including interiors is stored in BIM Server. 3D model can be used to visualized the building and site of Jatinangor ITB campus. For facility management of campus, an geo-information system is developed that can be used for planning, constructing, and maintaining Jatinangor ITB's facilities and infrastructures. The system uses openMAINT, an open source solution for the Property & Facility Management.

  11. 3D geological model developed to analyse the aquifer - sewer network interaction in Bucharest city

    NASA Astrophysics Data System (ADS)

    Serpescu, I.; Radu, E.; Gogu, R. G.; Priceputu, A.; Boukhemacha, M. A.; Bica, I.; Gaitanaru, D.

    2012-04-01

    Due to the fact that several important Bucharest city sewer segments drain the groundwater and provide high input flow-rates for the existing waste-water treatment plant, their rehabilitation is necessary. A hydrogeological model, currently under development, will permit to compute the groundwater-sewer network interaction allowing the simulation of distinct design solutions to prevent city disturbances. For groundwater modelling the geological model represents the fundament of understanding the aquifers system behaviour. In this respect a 3D accurate and detailed geological model, covering a region of about 75 km2 has been developed to identify its contact with the major collecting sewer conduit. The shallow aquifer stratum of quaternary formations called Colentina is made of gravels and sands. This unconfined aquifer can be found mainly in the Bucharest city region at depths up to 20 m. A clayey-marl layer is located between Colentina and a lower confined aquifer called Mostistea. This second one is located at depths between 25 m and 70 m and is made of fine and medium sands with gravel intercalations. It overlays on a very thick sequence (40 m to 150 m) of marl and clay layers with slim sandy intercalations. The geological model has been developed on the basis of a large number of geological and geotechnical boreholes. A set of 400 boreholes with depths between 5m to 200 m showing a detailed geological and lithological description stored in a geospatial database have been used. The geological analysis has been performed using a software platform that integrates the spatial database and a set of tools and methodologies developed in a GIS environment with the aim of facilitating the development of 3D geological models for sedimentary media. Taking into account the first 50 m in depth, 25 geological profiles have been interpreted on the basis of chronostratigraphycal, lithological, and sedimentological criteria to delineate the geological formations and assess

  12. Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1995-01-01

    A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.

  13. Computer-Aided Designing and Manufacturing of Lingual Fixed Orthodontic Appliance Using 2D/3D Registration Software and Rapid Prototyping

    PubMed Central

    Kwon, Soon-Yong; Kim, Ki-Beom; Chung, Kyu-Rhim; Kim (Sunny), Seong-Hun

    2014-01-01

    The availability of 3D dental model scanning technology, combined with the ability to register CBCT data with digital models, has enabled the fabrication of orthognathic surgical CAD/CAM designed splints, customized brackets, and indirect bonding systems. In this study, custom lingual orthodontic appliances were virtually designed by merging 3D model images with lateral and posterior-anterior cephalograms. By exporting design information to 3D CAD software, we have produced a stereolithographic prototype and converted it into a cobalt-chrome alloy appliance as a way of combining traditional prosthetic investment and cast techniques. While the bonding procedure of the appliance could be reinforced, CAD technology simplified the fabrication process by eliminating the soldering phase. This report describes CAD/CAM fabrication of the complex anteroposterior lingual bonded retraction appliance for intrusive retraction of the maxillary anterior dentition. Furthermore, the CAD/CAM method eliminates the extra step of determining the lever arm on the lateral cephalograms and subsequent design modifications on the study model. PMID:24899895

  14. Computer-Aided Designing and Manufacturing of Lingual Fixed Orthodontic Appliance Using 2D/3D Registration Software and Rapid Prototyping.

    PubMed

    Kwon, Soon-Yong; Kim, Yong; Ahn, Hyo-Won; Kim, Ki-Beom; Chung, Kyu-Rhim; Kim Sunny, Seong-Hun

    2014-01-01

    The availability of 3D dental model scanning technology, combined with the ability to register CBCT data with digital models, has enabled the fabrication of orthognathic surgical CAD/CAM designed splints, customized brackets, and indirect bonding systems. In this study, custom lingual orthodontic appliances were virtually designed by merging 3D model images with lateral and posterior-anterior cephalograms. By exporting design information to 3D CAD software, we have produced a stereolithographic prototype and converted it into a cobalt-chrome alloy appliance as a way of combining traditional prosthetic investment and cast techniques. While the bonding procedure of the appliance could be reinforced, CAD technology simplified the fabrication process by eliminating the soldering phase. This report describes CAD/CAM fabrication of the complex anteroposterior lingual bonded retraction appliance for intrusive retraction of the maxillary anterior dentition. Furthermore, the CAD/CAM method eliminates the extra step of determining the lever arm on the lateral cephalograms and subsequent design modifications on the study model.

  15. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  16. Detection of Disease Symptoms on Hyperspectral 3d Plant Models

    NASA Astrophysics Data System (ADS)

    Roscher, Ribana; Behmann, Jan; Mahlein, Anne-Katrin; Dupuis, Jan; Kuhlmann, Heiner; Plümer, Lutz

    2016-06-01

    We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.

  17. Development of fast patient position verification software using 2D-3D image registration and its clinical experience.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-09-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  18. Development of fast patient position verification software using 2D-3D image registration and its clinical experience

    PubMed Central

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-01-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  19. Reasoning about geological space: Coupling 3D GeoModels and topological queries as an aid to spatial data selection

    NASA Astrophysics Data System (ADS)

    Pouliot, Jacynthe; Bédard, Karine; Kirkwood, Donna; Lachance, Bernard

    2008-05-01

    Topological relationships between geological objects are of great interest for mining and petroleum exploration. Indeed, adjacency, inclusion and intersection are common relationships between geological objects such as faults, geological units, fractures, mineralized zones and reservoirs. However, in the context of 3D modeling, actual geometric data models used to store those objects are not designed to manage explicit topological relationships. For example, with Gocad© software, topological analyses are possible but they require a series of successive manipulations and are time consuming. This paper presents the development of a 3D topological query prototype, TQuery, compatible with Gocad© modeling platform. It allows the user to export Gocad© objects to a data storage model that regularizes the topological relationships between objects. The development of TQuery was oriented towards the use of volumetric objects that are composed of tetrahedrons. Exported data are then retrieved and used for 3D topological and spatial queries. One of the advantages of TQuery is that different types of objects can be queried at the same time without restricting the operations to voxel regions. TQuery allows the user to analyze data more quickly and efficiently and does not require a 3D modeling specialist to use it, which is particularly attractive in the context of a decision-making aid. The prototype was tested on a 3D GeoModel of a continental red-bed copper deposit in the Silurian Robitaille Formation (Transfiguration property, Québec, Canada).

  20. Discovery of previously unrecognised local faults in London, UK, using detailed 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Aldiss, Don; Haslam, Richard

    2013-04-01

    In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series

  1. 4D reconstruction of the past: the image retrieval and 3D model construction pipeline

    NASA Astrophysics Data System (ADS)

    Hadjiprocopis, Andreas; Ioannides, Marinos; Wenzel, Konrad; Rothermel, Mathias; Johnsons, Paul S.; Fritsch, Dieter; Doulamis, Anastasios; Protopapadakis, Eftychios; Kyriakaki, Georgia; Makantasis, Kostas; Weinlinger, Guenther; Klein, Michael; Fellner, Dieter; Stork, Andre; Santos, Pedro

    2014-08-01

    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Our main goal is to enable historians, architects, archaeolo- gists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web. This paper aims to provide an update of our progress in designing and imple- menting a pipeline for searching, filtering and retrieving photographs from Open Access Image Repositories and social media sites and using these images to build accurate 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EU- ROPEANA. We provide details of how our implemented software searches and retrieves images of archaeological sites from Flickr and Picasa repositories as well as strategies on how to filter the results, on two levels; a) based on their built-in metadata including geo-location information and b) based on image processing and clustering techniques. We also describe our implementation of a Structure from Motion pipeline designed for producing 3D models using the large collection of 2D input images (>1000) retrieved from Internet Repositories.

  2. The Mutual Effect of Reciprocally Moving Geokhod and Geological Environment Studied by the Discrete Element Method in Software PFC3D 5.00

    NASA Astrophysics Data System (ADS)

    Timofeev, V. Yu.; Kust, T. S.; Dronov, A. A.; Beloglazov, I. I.; Ikonnikov, D. A.

    2016-08-01

    A numerical experiment procedure of geokhod traverse in the geological environment, based on software PFC3D 5.00 is presented in the paper; the interpretation of numerical experiment results is provided.

  3. 3D Modelling of Inaccessible Areas using UAV-based Aerial Photography and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Obanawa, Hiroyuki; Hayakawa, Yuichi; Gomez, Christopher

    2014-05-01

    In hardly accessible areas, the collection of 3D point-clouds using TLS (Terrestrial Laser Scanner) can be very challenging, while airborne equivalent would not give a correct account of subvertical features and concave geometries like caves. To solve such problem, the authors have experimented an aerial photography based SfM (Structure from Motion) technique on a 'peninsular-rock' surrounded on three sides by the sea at a Pacific coast in eastern Japan. The research was carried out using UAS (Unmanned Aerial System) combined with a commercial small UAV (Unmanned Aerial Vehicle) carrying a compact camera. The UAV is a DJI PHANTOM: the UAV has four rotors (quadcopter), it has a weight of 1000 g, a payload of 400 g and a maximum flight time of 15 minutes. The camera is a GoPro 'HERO3 Black Edition': resolution 12 million pixels; weight 74 g; and 0.5 sec. interval-shot. The 3D model has been constructed by digital photogrammetry using a commercial SfM software, Agisoft PhotoScan Professional®, which can generate sparse and dense point-clouds, from which polygonal models and orthophotographs can be calculated. Using the 'flight-log' and/or GCPs (Ground Control Points), the software can generate digital surface model. As a result, high-resolution aerial orthophotographs and a 3D model were obtained. The results have shown that it was possible to survey the sea cliff and the wave cut-bench, which are unobservable from land side. In details, we could observe the complexity of the sea cliff that is nearly vertical as a whole while slightly overhanging over the thinner base. The wave cut bench is nearly flat and develops extensively at the base of the cliff. Although there are some evidences of small rockfalls at the upper part of the cliff, there is no evidence of very recent activity, because no fallen rock exists on the wave cut bench. This system has several merits: firstly lower cost than the existing measuring methods such as manned-flight survey and aerial laser

  4. XML-based 3D model visualization and simulation framework for dynamic models

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Fishwick, Paul A.

    2002-07-01

    Relatively recent advances in computer technology enable us to create three-dimensional (3D) dynamic models and simulate them within a 3D web environment. The use of such models is especially valuable when teaching simulation, and the concepts behind dynamic models, since the models are made more accessible to the students. Students tend to enjoy a construction process in which they are able to employ their own cultural and aesthetic forms. The challenge is to create a language that allows for a grammar for modeling, while simultaneously permitting arbitrary presentation styles. For further flexibility, we need an effective way to represent and simulate dynamic models that can be shared by modelers over the Internet. We present an Extensible Markup Language (XML)-based framework that will guide a modeler in creating personalized 3D models, visualizing its dynamic behaviors, and simulating the created models. A model author will use XML files to represent geometries and topology of a dynamic model. Model Fusion Engine, written in Extensible Stylesheet Language Transformation (XSLT), expedites the modeling process by automating the creation of dynamic models with the user-defined XML files. Modelers can also link simulation programs with a created model to analyze the characteristics of the model. The advantages of this system lie in the education of modeling and simulating dynamic models, and in the exploitation of visualizing the dynamic model behaviors.

  5. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    NASA Astrophysics Data System (ADS)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  6. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  7. 3D object retrieval with multitopic model combining relevance feedback and LDA model.

    PubMed

    Leng, Biao; Zeng, Jiabei; Yao, Ming; Xiong, Zhang

    2015-01-01

    View-based 3D model retrieval uses a set of views to represent each object. Discovering the complex relationship between multiple views remains challenging in 3D object retrieval. Recent progress in the latent Dirichlet allocation (LDA) model leads us to propose its use for 3D object retrieval. This LDA approach explores the hidden relationships between extracted primordial features of these views. Since LDA is limited to a fixed number of topics, we further propose a multitopic model to improve retrieval performance. We take advantage of a relevance feedback mechanism to balance the contributions of multiple topic models with specified numbers of topics. We demonstrate our improved retrieval performance over the state-of-the-art approaches.

  8. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    NASA Astrophysics Data System (ADS)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial

  9. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  10. CATIA-V 3D Modeling for Design Integration of the Ignitor Machine Load Assembly^*

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Parodi, B.; Gardella, F.; Coppi, B.

    2007-11-01

    In the framework of the ANSALDO industrial contribution to the Ignitor engineering design, the detailed design of all components of the machine core (Load Assembly) has been completed. The machine Central Post, Central Solenoid, and Poloidal Field Coil systems, the Plasma Chamber and First Wall system, the surrounding mechanical structures, the Vacuum Cryostat and the polyethylene boron sheets attached to it for neutron shielding, have all been analyzed to confirm that they can withstand both normal and off-normal operating loads, as well as the Plasma Chamber and First Wall baking operations, with proper safety margins, for the maximum plasma parameters scenario at 13 T/11 MA, for the reduced scenarios at 9 T/7 MA (limiter) and at 9 T/6 MA (double nul). Both 3D and 2D drawings of each individual component have been produced using the Dassault Systems CATIA-V software. After they have been all integrated into a single 3D CATIA model of the Load Assembly, the electro-fluidic and fluidic lines which supply electrical currents and helium cooling gas to the coils have been added and mechanically incorporated with the components listed above. A global seismic analysis of the Load Assembly with SSE/OBE response spectra has also been performed to verify that it is able to withstand such external events. ^*Work supported in part by ENEA of italy and by the US D.O.E.

  11. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    NASA Astrophysics Data System (ADS)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  12. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    ERIC Educational Resources Information Center

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  13. A novel 3D partitioned active shape model for segmentation of brain MR images.

    PubMed

    Zhao, Zheen; Aylward, Stephen R; Teoh, Earn Khwang

    2005-01-01

    A 3D Partitioned Active Shape Model (PASM) is proposed in this paper to address the problems of the 3D Active Shape Models (ASM). When training sets are small. It is usually the case in 3D segmentation, 3D ASMs tend to be restrictive. This is because the allowable region spanned by relatively few eigenvectors cannot capture the full range of shape variability. The 3D PASM overcomes this limitation by using a partitioned representation of the ASM. Given a Point Distribution Model (PDM), the mean mesh is partitioned into a group of small tiles. In order to constrain deformation of tiles, the statistical priors of tiles are estimated by applying Principal Component Analysis to each tile. To avoid the inconsistency of shapes between tiles, training samples are projected as curves in one hyperspace instead of point clouds in several hyperspaces. The deformed points are then fitted into the allowable region of the model by using a curve alignment scheme. The experiments on 3D human brain MRIs show that when the numbers of the training samples are limited, the 3D PASMs significantly improve the segmentation results as compared to 3D ASMs and 3D Hierarchical ASMs.

  14. A topological framework for interactive queries on 3D models in the Web.

    PubMed

    Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications.

  15. A Topological Framework for Interactive Queries on 3D Models in the Web

    PubMed Central

    Figueiredo, Mauro; Rodrigues, José I.; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236

  16. Initial Comparison Between a 3D MHD Model and the HAFv2 Kinematic 3D Model: The October/November 2003 Events from the Sun to 6 AU

    SciTech Connect

    Intriligator, Devrie S.; Detman, Thomas; Fry, Craig D.; Sun Wei; Deehr, Charles; Intriligator, James

    2005-08-01

    A first-generation 3D kinematic, space weather forecasting solar wind model (HAFv2) has been used to show the importance of solar generated disturbances in Voyager 1 and Voyager 2 observations in the outer heliosphere. We extend this work by using a 3D MHD model (HHMS) that, like HAFv2, incorporates a global, pre-event, inhomogeneous, background solar wind plasma and interplanetary magnetic field. Initial comparisons are made between the two models of the solar wind out to 6 AU and with in-situ observations at the ACE spacecraft before and after the October/November 2003 solar events.

  17. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  18. Indoor 3D Route Modeling Based On Estate Spatial Data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  19. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  20. 3-D consistency dynamic constitutive model of concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Shiyun; Li, Hongnan; Lin, Gao

    2010-06-01

    Based on the consistency-viscoplastic constitutive model, the static William-Warnke model with threeparameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then, the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures, the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally, the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model, as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses, and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.

  1. ORPHEE 3D: Static and dynamic tridimensional BHA computer models

    SciTech Connect

    Birades, M.

    1986-01-01

    Elf Aquitaine, within an ARTEP research project granted by EEC, has developed two three-dimensional mathematical models to predict the directional behavior of bottom hole assemblies (BHAs). Both models simulate BHAs by finite element methods. The first model describes dynamically their transient behavior step by step during short time intervals which are continuously adjusted to attain the required precision. Displacements and lateral forces, computed for each step, integrate friction against the borehole wall through a sophisticated shock algorithm. The second model computes a static equilibrium of the BHA while assuming simplified friction forces at the contact points between the wellbore and the BHA. The lateral forces and displacements are found to be an average of the highly varying ones computed by the dynamic model and the static computer run is much faster.

  2. A Gaussian Mixture Model-Based Continuous Boundary Detection for 3D Sensor Networks

    PubMed Central

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    This paper proposes a high precision Gaussian Mixture Model-based novel Boundary Detection 3D (BD3D) scheme with reasonable implementation cost for 3D cases by selecting a minimum number of Boundary sensor Nodes (BNs) in continuous moving objects. It shows apparent advantages in that two classes of boundary and non-boundary sensor nodes can be efficiently classified using the model selection techniques for finite mixture models; furthermore, the set of sensor readings within each sensor node’s spatial neighbors is formulated using a Gaussian Mixture Model; different from DECOMO [1] and COBOM [2], we also formatted a BN Array with an additional own sensor reading to benefit selecting Event BNs (EBNs) and non-EBNs from the observations of BNs. In particular, we propose a Thick Section Model (TSM) to solve the problem of transition between 2D and 3D. It is verified by simulations that the BD3D 2D model outperforms DECOMO and COBOM in terms of average residual energy and the number of BNs selected, while the BD3D 3D model demonstrates sound performance even for sensor networks with low densities especially when the value of the sensor transmission range (r) is larger than the value of Section Thickness (d) in TSM. We have also rigorously proved its correctness for continuous geometric domains and full robustness for sensor networks over 3D terrains. PMID:22163619

  3. Synthesis of image sequences for Korean sign language using 3D shape model

    NASA Astrophysics Data System (ADS)

    Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon

    1995-05-01

    This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.

  4. Management and services for large-scale virtual 3D urban model data based on network

    NASA Astrophysics Data System (ADS)

    He, Zhengwei; Chen, Jing; Wu, Huayi

    2008-10-01

    The buildings in modern city are complex and diverse, and the quantity is huge. These bring very big challenge for constructing 3D GIS under network circumstance and eventually realizing the Digital Earth. After analyzed the characteristic of network service about massive 3D urban building model data, this paper focuses on the organization and management of spatial data and the network services strategy, proposes a progressive network transmission schema based on the spatial resolution and the component elements of 3D building model data. Next, this paper put forward multistage-link three-dimensional spatial data organization model and encoding method of spatial index based on fully level quadtree structure. Then, a virtual earth platform, called GeoGlobe, was developed using above theory. Experimental results show that above 3D spatial data management model and service theory can availably provide network services for large-scale 3D urban model data. The application results and user experience good .

  5. Assessing a 3D smoothed seismicity model of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  6. 3D Modeling of CMEs observed with STEREO

    NASA Astrophysics Data System (ADS)

    Bosman, E.; Bothmer, V.

    2012-04-01

    From January 2007 until end of 2010, 565 typical large-scale coronal mass ejections (CMEs) have been identified in the SECCHI/COR2 synoptic movies of the STEREO Mission. A subset comprising 114 CME events, selected based on the CME's brightness appearance in the SECCHI/COR2 images, has been modeled through the Graduated Cylindrical Shell (GCS) Model developed by Thernisien et al. (2006). This study presents an overview of the GCS forward-modeling results and an interpretation of the CME characteristics in relationship to their solar source region properties and solar cycle appearances.

  7. 3D active workspace of human hand anatomical model

    PubMed Central

    Dragulescu, Doina; Perdereau, Véronique; Drouin, Michel; Ungureanu, Loredana; Menyhardt, Karoly

    2007-01-01

    Background If the model of the human hand is created with accuracy by respecting the type of motion provided by each articulation and the dimensions of articulated bones, it can function as the real organ providing the same motions. Unfortunately, the human hand is hard to model due to its kinematical chains submitted to motion constraints. On the other hand, if an application does not impose a fine manipulation it is not necessary to create a model as complex as the human hand is. But always the hand model has to perform a certain space of motions in imposed workspace architecture no matter what the practical application does. Methods Based on Denavit-Hartenberg convention, we conceived the kinematical model of the human hand, having in mind the structure and the behavior of the natural model. We obtained the kinematical equations describing the motion of every fingertip with respect to the general coordinate system, placed on the wrist. For every joint variable, a range of motion was established. Dividing these joint variables to an appropriate number of intervals and connecting them, the complex surface bordering the active hand model workspace was obtained. Results Using MATLAB 7.0, the complex surface described by fingertips, when hand articulations are all simultaneously moving, was obtained. It can be seen that any point on surface has its own coordinates smaller than the maximum length of the middle finger in static position. Therefore, a sphere having the centre in the origin of the general coordinate system and the radius which equals this length covers the represented complex surface. Conclusion We propose a human hand model that represents a new solution compared to the existing ones. This model is capable to make special movements like power grip and dexterous manipulations. During them, the fingertips do not exceed the active workspace encapsulated by determined surfaces. The proposed kinematical model can help to choose which model joints could be

  8. Automated mask creation from a 3D model using Faethm.

    SciTech Connect

    Schiek, Richard Louis; Schmidt, Rodney Cannon

    2007-11-01

    We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.

  9. UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment

    NASA Astrophysics Data System (ADS)

    Mészáros, János; Árvai, Mátyás; Kohán, Balázs; Deák, Márton; Nagy, Balázs

    2016-04-01

    Our method to present current state of a peat bog was focused on the possible use of a UAV-system and later Structure-from-motion algorithms as processing technique. The peat bog site is located on the Vinderel Plateau, Farcǎu Massif, Maramures Mountains (Romania). The peat bog (1530 m a.s.l., N47°54'11", E24°26'37") lies below Rugasu ridge (c. 1820 m a.s.l.) and the locality serves as a conservation area for fallen down coniferous trees. Peat deposits were formed in a landslide concavity on the western slope of Farcǎu Massif. Nowadays the site is surrounded by a completely deforested landscape, and Farcǎu Massif lies above the depressed treeline. The peat bog has an extraordinary geomorphological situation, because a gully reached the bog and drained the water. In the recent past sedimentological and dendrochronological researches have been initiated. However, an accurate 3D digital surface model also needed for a complex paleoenvironmental research. Last autumn the bog and its surroundings were finally surveyed by a multirotor UAV developed in-house based on an open-source flight management unit and its firmware. During this survey a lightweight action camera (mainly to decrease payload weight) was used to take aerial photographs. While our quadcopter is capable to fly automatically on a predefined flight route, several over- and sidelapping flight lines were generated prior to the actual survey on the ground using a control software running on a notebook. Despite those precautions, limited number of batteries and severe weather affected our final flights, resulting a reduced surveyed area around peat bog. Later, during the processing we looked for a reliable tool which powerful enough to process more than 500 photos taken during flights. After testing several software Agisoft PhotoScan was used to create 3D point cloud and mesh about bog and its environment. Due to large number of photographs PhotoScan had to be configured for network processing to get

  10. A new 3D finite element model of the IEC 60318-1 artificial ear

    NASA Astrophysics Data System (ADS)

    Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; DeArcas, Guillermo; Recuero, Manuel

    2008-08-01

    The artificial ear specified in IEC 60318-1 is used for the measurement of headphones and has been designed to present an acoustic load equivalent to that of normal human ears. In this respect it is specified in terms of an acoustical impedance, and modelled by a lumped parameter approach. However, this has some inherent frequency limitations and becomes less valid as the acoustic wavelength approaches the characteristic dimensions within the device. In addition, when sound propagates through structures such as narrow tubes, annular slits or over sharp corners, noticeable thermal and viscous effects take place causing further departure from the lumped parameter model. A new numerical model has therefore been developed, which gives proper consideration to the aforementioned effects. Both kinds of losses can be simulated by means of the LMS Virtual Lab acoustic software which facilitates finite and boundary element modelling of the whole artificial ear. A full 3D model of the artificial ear has therefore been developed based on key dimensional data found in IEC 60318-1. The model has been used to calculate the acoustical impedance, and the results compared with the corresponding data determined from the lumped parameter model. The numerical simulation of the artificial ear has been shown to provide realistic results, and is a powerful tool for developing a detailed understanding of the device. It is also proving valuable in the revision of IEC 60318-1 that is currently in progress.

  11. Ozone Measurements and a 3D Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Frith, Stacey; Steenrod, Steven; Polansky, Brian

    2004-01-01

    We have used our three-dimensional chemical transport model (CTM) to calculate the expected reponse of stratospheric composition over the past 30 years to forcing by chlorine and bromine compounds, solar ultraviolet, and volcanic aerosols. The CTM uses off-line winds and temperatures fiom a 50-year run of the finite volume general circulation model (FVGCM). We compare the total column ozone and the ozone profile fiom the CTM output to a variety of data sources. These include a merged total ozone data set from TOMS and SBUV using the new version 8 algorithm. Total ozone fiom the CTM are compared to ground-station measurements of total ozone at specific locations. Ozone profiles are compared to satellite meausrements fiom SBUV, SAGE, and HALOE. Profiles are also compared to ozonesondes over several locations. The results of the comparisons are quantified by using a time-series statistical analysis to determine trends, solar cycle, and volcanic reponse in both the model and in the data. Initial results indicate that the model responds to forcings in a way that is similar to the observed atmospheric response. The model does seem to be more sensitive to the chlorine and bromine perturbation ihan is the data. Further details and comparisons wiii be discussed.

  12. Inhomogeneous Media 3D EM Modeling with Integral Equation Method

    NASA Astrophysics Data System (ADS)

    di, Q.; Wang, R.; An, Z.; Fu, C.; Xu, C.

    2010-12-01

    In general, only the half space of earth is considered in electromagnetic exploration. However, for the long bipole source, because the length is close to the height of ionosphere and also most offsets between source and receivers are equal or larger than the height of ionosphere, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source. At this point the problem becomes one which should contain ionosphere, atmosphere and earth that is “earth-ionosphere” case. There are a few of literatures to report the electromagnetic field results which is including ionosphere, atmosphere and earth media at the same time. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using integral equation (IE) method for a three layers earth-ionosphere model. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale bipole source can be ignorable. The comparison of small scale three layers earth-ionosphere modeling and half space analytical resolution shows that the IE method can be used to modeling the EM fields for long bipole large offset configuration. In order to discuss EM fields’ characteristics for complicate earth-ionosphere media excited by long bipole source in the far-field and wave-guide zones, we first modeled the decay characters of electromagnetic fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields’ decay curves with given frequency show that there should be an extra wave guide zone for long bipole artificial source, and there are many different characters between this extra zone and far field zone. They are: 1) the amplitudes of EM fields decay much slower; 2) the polarization patterns change; 3) the positions better to measure Zxy and

  13. A Cartesian scheme for compressible multimaterial models in 3D

    NASA Astrophysics Data System (ADS)

    de Brauer, Alexia; Iollo, Angelo; Milcent, Thomas

    2016-05-01

    We model the three-dimensional interaction of compressible materials separated by sharp interfaces. We simulate fluid and hyperelastic solid flows in a fully Eulerian framework. The scheme is the same for all materials and can handle large deformations and frictionless contacts. Necessary conditions for hyperbolicity of the hyperelastic neohookean model in three dimensions are proved thanks to an explicit computation of the characteristic speeds. We present stiff multimaterial interactions including air-helium and water-air shock interactions, projectile-shield impacts in air and rebounds.

  14. Modeling and simulation of charge collection properties for 3D-trench electrode detector

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Chen, Jianwei; Li, Zheng; Yan, Shaoan

    2015-10-01

    3D-trench electrode detectors were simulated in this paper. Charge collection of 3D-trench electrode detector was simulated using the full 3D device simulation. The induced current and collected charge caused by drifting carriers, generated by a minimum ionizing particle (MIP) incident through the detector, have been modeled and calculated. The results indicate that the total collected charge in irradiated detector change with particle incident position and radiation fluence. In addition, we have estimated the average total collected charge generated by a MIP incident in 3D-trench electrode detector.

  15. Using semi-automated photogrammetry software to generate 3D surfaces from oblique and vertical photographs at Mount St. Helens, WA

    NASA Astrophysics Data System (ADS)

    Schilling, S.; Diefenbach, A. K.

    2012-12-01

    Photogrammetry has been used to generate contours and Digital Elevation Models (DEMs) to monitor change at Mount St. Helens, WA since the 1980 eruption. We continue to improve techniques to monitor topographic changes within the crater. During the 2004-2008 eruption, 26 DEMs were used to track volume and rates of growth of a lava dome and changes of Crater Glacier. These measurements constrained seismogenic extrusion models and were compared with geodetic deflation volume to constrain magma chamber behavior. We used photogrammetric software to collect irregularly spaced 3D points primarily by hand and, in reasonably flat areas, by automated algorithms, from commercial vertical aerial photographs. These models took days to months to complete and the areal extent of each surface was determined by visual inspection. Later in the eruption, we pioneered the use of different software to generate irregularly spaced 3D points manually from oblique images captured by a hand-held digital camera. In each case, the irregularly spaced points and intervening interpolated points formed regular arrays of cells or DEMs. Calculations using DEMs produced from the hand-held images duplicated volumetric and rate results gleaned from the vertical aerial photographs. This manual point capture technique from oblique hand-held photographs required only a few hours to generate a model over a focused area such as the lava dome, but would have taken perhaps days to capture data over the entire crater. Here, we present results from new photogrammetric software that uses robust image-matching algorithms to produce 3D surfaces automatically after inner, relative, and absolute orientations between overlapping photographs are completed. Measurements using scans of vertical aerial photographs taken August 10, 2005 produced dome volume estimates within two percent of those from a surface generated using the vertical aerial photograph manual method. The new August 10th orientations took less than 8

  16. 3D modelling of stellar auroral radio emission

    NASA Astrophysics Data System (ADS)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  17. New 3D parallel SGILD modeling and inversion

    SciTech Connect

    Xie, G.; Li, J.; Majer, E.

    1998-09-01

    In this paper, a new parallel modeling and inversion algorithm using a Stochastic Global Integral and Local Differential equation (SGILD) is presented. The authors derived new acoustic integral equations and differential equation for statistical moments of the parameters and field. The new statistical moments integral equation on the boundary and local differential equations in domain will be used together to obtain mean wave field and its moments in the modeling. The new moments global Jacobian volume integral equation and the local Jacobian differential equations in domain will be used together to update the mean parameters and their moments in the inversion. A new parallel multiple hierarchy substructure direct algorithm or direct-iteration hybrid algorithm will be used to solve the sparse matrices and one smaller full matrix from domain to the boundary, in parallel. The SGILD modeling and imaging algorithm has many advantages over the conventional imaging approaches. The SGILD algorithm can be used for the stochastic acoustic, electromagnetic, and flow modeling and inversion, and are important for the prediction of oil, gas, coal, and geothermal energy reservoirs in geophysical exploration.

  18. 3-D orbital evolution model of outer asteroid belt

    NASA Technical Reports Server (NTRS)

    Solovaya, Nina A.; Gerasimov, Igor A.; Pittich, Eduard M.

    1992-01-01

    The evolution of minor planets in the outer part of the asteroid belt is considered. In the framework of the semi-averaged elliptic restricted three-dimensional three-body model, the boundary of regions of the Hill's stability is found. As was shown in our work, the Jacobian integral exists.

  19. 3D brain atlas reconstructor service--online repository of three-dimensional models of brain structures.

    PubMed

    Majka, Piotr; Kowalski, Jakub M; Chlodzinska, Natalia; Wójcik, Daniel K

    2013-10-01

    Brain atlases are important tools of neuroscience. Traditionally prepared in paper book format, more and more commonly they take digital form which extends their utility. To simplify work with different atlases, to lay the ground for developing universal tools which could abstract from the origin of the atlas, efforts are being made to provide common interfaces to these atlases. 3D Brain Atlas Reconstructor service (3dBARs) described here is a repository of digital representations of different brain atlases in CAF format which we recently proposed and a repository of 3D models of brain structures. A graphical front-end is provided for creating and viewing the reconstructed models as well as the underlying 2D atlas data. An application programming interface (API) facilitates programmatic access to the service contents from other websites. From a typical user's point of view, 3dBARs offers an accessible way to mine publicly available atlasing data with a convenient browser based interface, without the need to install extra software. For a developer of services related to brain atlases, 3dBARs supplies mechanisms for enhancing functionality of other software. The policy of the service is to accept new datasets as delivered by interested parties and we work with the researchers who obtain original data to make them available to the neuroscience community at large. The functionality offered by the 3dBARs situates it at the core of present and future general atlasing services tying it strongly to the global atlasing neuroinformatics infrastructure. PMID:23943281

  20. 3D modelling of Mt. Talaga Bodas Crater (Indonesia) by using terrestrial laser scanner for volcano hazard mitigation

    NASA Astrophysics Data System (ADS)

    Gumilar, Irwan; Abidin, Hasanuddin Z.; Putra, Andreas D.; Haerani, Nia

    2015-04-01

    Indonesia is a country with many volcanoes. Each volcano in Indonesia typically has its own crater characteristics. One of them is the Mt.Talaga Bodas, located in Garut, West Java. Researches regarding the crater characteristics are necessary for volcanic disaster mitigation process. One of them is the modelling of the shape of the crater. One of the methods that can be used to model the volcanic crater is using Terrestrial Laser Scanner (TLS). This research aims to create a 3 dimensional (3D) model of the crater of the Mt. Talaga Bodas, that hopefully can be utilized for volcanic disaster mitigation. The methodology used in this research is by obtaining the scanning data using TLS and GPS measurements to obtain the coordinates of the reference points. The data processing methods consist of several steps, namely target to target registration, filterization, georeference, meshing point cloud, surface making, drawing, and 3D modelling. These steps were done using the Cyclone 7 software, and also using 3DS MAX for 3D modelling. The result of this data processing is a 3D model of the crater of the Mt. Talaga Bodas which is similar with the real shape. The calculation result shows that the height of the crater is 62.522 m, the diameter of the crater is 467.231 m, and the total area is 2961054.652 m2. The main obstacle in this research is the dense vegetation which becomes the noise and affects the crater model.

  1. A 3D Convective Model for the Jovian Wind Bands

    NASA Astrophysics Data System (ADS)

    Mayr, H. G.; Chan, K. L.

    2004-11-01

    In an earlier paper (Mayr et al. 1984, Earth, Moon, & Planets, 30, 245), we proposed that Jupiter's alternating wind bands are a manifestation of the global interaction between rotation and convection in a shallow layer. The model, however, was obtained from linearization of the 2D equations of motions. At HKUST/Hong Kong, we are now trying to study this problem by rigorous numerical simulation. Using a three-dimensional spectral numerical code, we compute models for the outermost layer of Jupiter's convective envelope. Two cases have been studied. In one the atmospheric pressure varies from 1 to 23 bar, and in the other from 1 to 115 bar. The physical parameters (internal energy flux, rotation rate) are chosen to be close to those expected, but solar heating, chemistry, as well as dynamical influences from deeper layers are ignored. The models generate wind field patterns that contain alternating jet streams with resemblance to the Jovian bands. Instantaneous values of the mean zonal flow at the equator reach 80 m/sec. Yet the mean meridional flows are less than 1% of such value. The meridional temperature profile at the cloud top level also shows a double hump structure of a few degrees (as observed) in the subtropics. Though there is not complete quantitative agreement (caused perhaps by neglected effects like solar radiation), these models demonstrate, in principle, the feasibility of generating a Jovian type wind pattern through the interaction of fast rotation and convection in a thin shell. KLC thanks RGC/Hong Kong for support.

  2. Multiple-Relaxation-Time Lattice Boltzmann Models in 3D

    NASA Technical Reports Server (NTRS)

    dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.

  3. 3-D model of ICME in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  4. The Martian Water Cycle Based on 3-D Modeling

    NASA Technical Reports Server (NTRS)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  5. 3D MHD modeling of twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Reale, F.; Orlando, S.; Guarrasi, M.; Mignone, A.; Peres, G.; Hood, A. W.; Priest, E. R.

    2016-10-01

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high-β chromosphere to the low-β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s‑1 fill the core of the flux tube to densities above 109 cm‑3. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  6. Elastic properties of model 3-D porous ceramics and foams

    NASA Astrophysics Data System (ADS)

    Roberts, Anthony; Garboczi, Edward

    2000-03-01

    The novel properties of many new porous materials are related to their interesting internal microstructure. Apart from simple cases, there exist no theoretical means of predicting the bulk properties of these materials. This limits our ability to guide microstructure optimization for a particular purpose. We use a large scale finite element method to demonstrate the complex relationship between microstructure and the effective properties of realistic three-dimensional model porous ceramics and foams. We find that pore-shape and interconnectivity strongly influence the properties of sintered ceramics. For porous foams we have studied the role of coordination number, random disorder, and strut shape on the Young's modulus and Poisson's ratio. We find that that Voronoi tesselations, commonly used to model solid foams, show unphysical behavior, in particular they are incompressible (rubber-like) at low densities. Deletion of just 10% of the bonds in the model reduces the bulk modulus by 75%, more in line with experimental evidence. The FEM results are generally in good agreement with experimental data for ceramics and foams, and can be used as both a predictive and interpretative tool by experimentalists.

  7. Introducing a New 3D Dynamical Model for Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Jung, Christof; Zotos, Euaggelos E.

    2015-11-01

    The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar, we introduce a new simple dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar, as well as the energy. Regions of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the rotational symmetry. First, we study in detail the dynamics in the invariant plane z = pz = 0 using the Poincaré map as a basic tool and then study the full three-dimensional case using the Smaller Alignment index method as principal tool for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations that our new bar model can realistically describe the formation and the evolution of the observed twin spiral structure in barred galaxies.

  8. Possibility of reconstruction of dental plaster cast from 3D digital study models

    PubMed Central

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330

  9. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved

  10. Blind watermark algorithm on 3D motion model based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Qi, Hu; Zhai, Lang

    2013-12-01

    With the continuous development of 3D vision technology, digital watermark technology, as the best choice for copyright protection, has fused with it gradually. This paper proposed a blind watermark plan of 3D motion model based on wavelet transform, and made it loaded into the Vega real-time visual simulation system. Firstly, put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform to change its frequency coefficients and embed watermark, finally generate 3D motion model with watermarking. In fixed affine space, achieve the robustness in translation, revolving and proportion transforms. The results show that this approach has better performances not only in robustness, but also in watermark- invisibility.