GPU-accelerated 3D neutron diffusion code based on finite difference method
Xu, Q.; Yu, G.; Wang, K.
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
Baudron, Anne-Marie; Riahi, Mohamed Kamel; Salomon, Julien
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.
3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory
Ragusa, Jean; Bangerth, Wolfgang
2011-08-01
here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the
Initial results from new 3D neutron detectors
NASA Astrophysics Data System (ADS)
Mendicino, R.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Laidani, N.
2016-11-01
In this paper we report the initial results from our second generation of 3D silicon detectors for neutrons. The devices are briefly described and the first functional characterization tests carried out in laboratory before coupling to neutron converter material are reported. Particular emphasis is given to the read-out system used for the suppression of signals induced by γ-rays, that is one of the main issues in neutron detection. Experimental results are discussed with the aid of TCAD simulations.
3D imaging of neutron tracks using confocal microscopy
NASA Astrophysics Data System (ADS)
Gillmore, Gavin; Wertheim, David; Flowers, Alan
2016-04-01
Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4
CALTRANS: A parallel, deterministic, 3D neutronics code
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
3D nonlinear complex-diffusion filter on GPU.
Rodrigues, Pedro; Serranho, Pedro; Bernardes, Rui
2012-01-01
The ramp preserving 2D nonlinear complex-diffusion filter introduced by Gilboa et al. (2004) was extended to 3D (Maduro et al., 2012). We propose a graphical processing unit implementation of the 3D filter for an overall faster processing in order to be used in a clinical setting. We perform a search for the best diffusion parameters (the number of iterations and spread of the diffusivity) for the 2D and 3D filters and compare their results resorting to synthetic spectral-domain optical coherence tomography volumetric data and several quantitative metrics. Execution time improvement of our implementation versus a single-core approach is also presented, showing that it allows for a full 3D volume to be processed under 7.5 seconds.
3-D adaptive nonlinear complex-diffusion despeckling filter.
Rodrigues, Pedro; Bernardes, Rui
2012-12-01
This work aims to improve the process of speckle noise reduction while preserving edges and other relevant features through filter expansion from 2-D to 3-D. Despeckling is very important for data visual inspection and as a preprocessing step for other algorithms, as they are usually notably influenced by speckle noise. To that intent, a 3-D approach is proposed for the adaptive complex-diffusion filter. This 3-D iterative filter was applied to spectral-domain optical coherence tomography medical imaging volumes of the human retina and a quantitative evaluation of the results was performed to allow a demonstration of the better performance of the 3-D over the 2-D filtering and to choose the best total diffusion time. In addition, we propose a fast graphical processing unit parallel implementation so that the filter can be used in a clinical setting.
Parallelization of ICF3D, a Diffusion and Hydrodynamics Code
NASA Astrophysics Data System (ADS)
Shestakov, A. I.; Milovich, J. L.
1997-11-01
We describe the parallelization of the unstructured grid ICF3D code. The strategy divides physical space into a collection of disjoint subdomains, one per processing element (PE). The subdomains may be of arbitrary shape but, for efficiency, should have small surface-to-volume ratios. The strategy is ideally suited for distributed memory computers, but also works on shared memory architectures. The hydrodynamic module, which uses a cell-based algorithm using discontinuous finite elements, is parallelized by assigning cells to different PEs. This assignment is done by a separate program and constitutes input data for ICF3D. The diffusion module, a kernel of the heat conduction and radiation diffusion packages, advances continuous fields which are discretized using a nodal finite element method. This module is parallelized by assigning points to individual PEs. The assignment is done within ICF3D. The code is in C++. Special message passing objects (MPO) determine the connectivity of the subdomains and transfer data between them by calling MPI functions. Results are presented on a variety of computers: CRAY T3D and IBM SP2 at Livermore, and Intel's ASCI RED at Sandia, Albuquerque.
1,2,3-D Diffusion Depletion Multi-Group
Milgram, Mike
1992-04-20
CITATION is designed to solve problems using the finite difference representation of neutron diffusion theory, treating up to three space dimensions with arbitrary group to group scattering. X-y-z, theta-r-z, hexagonal z, and triagonal z geometries may be treated. Depletion problems may be solved and fuel managed for multi-cycle analysis. Extensive first order perturbation results may be obtained given microscopic data and nuclide concentrations. Statics problems may be solved and perturbation results obtained with microscopic data.
Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes
Langenbuch, S.; Austregesilo, H.; Velkov, K.
1997-07-01
The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.
Rayleigh Quotient Iteration in 3D, Deterministic Neutron Transport
Slaybaugh, R; Evans, Thomas M; Davidson, Gregory G; Wilson, P.
2012-01-01
Today's "grand challenge" neutron transport problems require 3-D meshes with billions of cells, hundreds of energy groups, and accurate quadratures and scattering expansions. Leadership-class computers provide platforms on which high-fidelity fluxes can be calculated. However, appropriate methods are needed that can use these machines effectively. Such methods must be able to use hundreds of thousands of cores and have good convergence properties. Rayleigh quotient iteration (RQI) is an eigenvalue solver that has been added to the Sn code Denovo to address convergence. Rayleigh quotient iteration is an optimal shifted inverse iteration method that should converge in fewer iterations than the more common power method and other shifted inverse iteration methods for many problems of interest. Denovo's RQI uses a new multigroup Krylov solver for the fixed source solutions inside every iteration that allows parallelization in energy in addition to space and angle. This Krylov solver has been shown to scale successfully to 200,000 cores: for example one test problem scaled from 69,120 cores to 190,080 cores with 98% efficiency. This paper shows that RQI works for some small problems. However, the Krylov method upon which it relies does not always converge because RQI creates ill-conditioned systems. This result leads to the conclusion that preconditioning is needed to allow this method to be applicable to a wider variety of problems.
Diffusive smoothing of 3D segmented medical data
Patané, Giuseppe
2014-01-01
This paper proposes an accurate, computationally efficient, and spectrum-free formulation of the heat diffusion smoothing on 3D shapes, represented as triangle meshes. The idea behind our approach is to apply a (r,r)-degree Padé–Chebyshev rational approximation to the solution of the heat diffusion equation. The proposed formulation is equivalent to solve r sparse, symmetric linear systems, is free of user-defined parameters, and is robust to surface discretization. We also discuss a simple criterion to select the time parameter that provides the best compromise between approximation accuracy and smoothness of the solution. Finally, our experiments on anatomical data show that the spectrum-free approach greatly reduces the computational cost and guarantees a higher approximation accuracy than previous work. PMID:26257940
Neutrons Image Additive Manufactured Turbine Blade in 3-D
2016-04-29
The video displays the Inconel 718 Turbine Blade made by Additive Manufacturing. First a gray scale neutron computed tomogram (CT) is displays with transparency in order to show the internal structure. Then the neutron CT is overlapped with the engineering drawing that was used to print the part and a comparison of external and internal structures is possible. This provides a map of the accuracy of the printed turbine (printing tolerance). Internal surface roughness can also be observed.
Parallel deterministic neutronics with AMR in 3D
Clouse, C.; Ferguson, J.; Hendrickson, C.
1997-12-31
AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.
A killer micro attack on 3D neutron transport
Dorr, M.R.; Ferguson, J.M.
1990-11-01
We describe the deterministic solution of the neutron transport equation and the computation of the effective criticality of three-dimensional assemblies using the BBN TC2000 killer micros. We observe that the performance of our research code PTRAN running on 48 processors of the TC2000 is competitive with the partially vectorizable version running on a single Cray Y/MP processor. This performance scales well with the number of processors on real problems, including those that are not load balanced a priori. To obtain this performance, we explicitly specify and exploit data locality and data dependence using domain decomposition and dynamic job scheduling. 3 refs., 4 figs., 2 tabs.
3D neutronic/thermal-hydraulic coupled analysis of MYRRHA
Vazquez, M.; Martin-Fuertes, F.
2012-07-01
The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)
A killer micro attack on 3D neutron transport
Dorr, M.R.; Ferguson, J.M.
1990-11-16
In this paper, we describe the deterministic solution of the neutron transport equation and the computation of the effective criticality of three-dimensional assemblies using the BBN TC2000 killer micros. We observe that the performance of our research code PTRAN running on 48 processors of the TC2000 is competitive with the partially vectorizable version running on a single Cray Y/MP processor. This performance scales well with the number of processors on real problems, including those that are not load balanced a priori. To obtain this performance, we explicitly specify and exploit data locality and data dependence using domain decomposition and dynamic job scheduling. From the results obtained here, it appears that, at least for this application, a production machine based on the TC2000 architecture with more powerful processors and a commensurate increase in switch speed could yield a significant gain in our design capability. 2 refs., 5 figs., 2 tabs.
Modeling the diffusion of phosphorus in silicon in 3-D
Baker, K.R.
1994-12-31
The use of matrix preconditioning in semiconductor process simulation is examined. The simplified nonlinear single-species model for the diffusion of phosphorus into silicon is considered. The experimental three-dimensional simulator, PEPPER3, which uses finite differences and the numerical method of lines to implement the reaction-diffusion equation is modified to allow NSPCG to be called to solve the linear system in the inner Newton loop. Use of NSPCG allowed various accelerators such as Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) to be used in conjunction with preconditioners such as Richardson, Jacobi, and Incomplete Cholesky.
3D neutronic calculations: CAD-MCNP methodology applied to vessel activation in KOYO-F
NASA Astrophysics Data System (ADS)
Herreras, Y.; Lafuente, A.; Sordo, F.; Cabellos, O.; Perlado, J. M.
2008-05-01
This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modelled with a CAD program, and subsequently processed through a MCNP-CAD interface in order to generate an MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNPX program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterised by high detail levels. This procedure will be applied to the Fast Ignition Fusion Reactor KOYO-F to determine first neutron fluxes calculations along the blanket as well as the material activation in the reduced martensitic 9Cr-1Mo steel vessel.
Developing a 3D neutron tomography method for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Tang, Hong-Yue; Santamaria, Anthony; Kurniawan, Jonathan; Park, Jae Wan; Yang, Tae-Hyun; Sohn, Young-Jun
Fuel cell visualization is an ongoing challenge in the world of hydrogen-based research. Neutron tomography is a powerful tool for acquiring otherwise unattainable information about the inner workings of a proton exchange membrane fuel cell. Advanced neutron imaging methods allow for validation of both cell design and run methods. The tomography techniques discussed in this paper show how 3D visualization provides a clear view of flow channel activity for water management analysis. A brief intro to tomography is explained via its mathematical construction, outlining how 2D radiographs can be reconstructed and layered to form 3D visualizations. The low attenuation aluminum cell designs used for imaging are described focusing on how they are specifically tailored for neutron tomography. Images of the flow channel and water distributions are shown in cross-sections throughout the cell, both perpendicular and along the channel length. Finally, 3D tomography images of the cell are shown, with the bipolar aluminum plates signal subtracted revealing a 3D water distribution of both cathode and anode layers.
3D mapping of lithium in battery electrodes using neutron activation
NASA Astrophysics Data System (ADS)
He, Yuping; Downing, R. Gregory; Wang, Howard
2015-08-01
The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.
3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors
Langenbuch, S.; Velkov, K.; Lizorkin, M.
1997-07-01
This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.
3D mapping of crystallographic phase distribution using energy-selective neutron tomography.
Woracek, Robin; Penumadu, Dayakar; Kardjilov, Nikolay; Hilger, Andre; Boin, Mirko; Banhart, John; Manke, Ingo
2014-06-25
Nondestructive 3D mapping of crystallographic phases is introduced providing distribution of phase fractions within the bulk (centimeter range) of samples with micrometer-scale resolution. The novel neutron tomography based technique overcomes critical limitations of existing techniques and offers a wide range of potential applications. It is demonstrated for steel samples exhibiting phase transformation after being subjected to tensile and torsional deformation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neutron scattering signatures of the 3D hyperhoneycomb Kitaev quantum spin liquid
NASA Astrophysics Data System (ADS)
Smith, A.; Knolle, J.; Kovrizhin, D. L.; Chalker, J. T.; Moessner, R.
2015-11-01
Motivated by recent synthesis of the hyperhoneycomb material β -Li2IrO3 , we study the dynamical structure factor (DSF) of the corresponding 3D Kitaev quantum spin-liquid (QSL), whose fractionalized degrees of freedom are Majorana fermions and emergent flux loops. The properties of this 3D model are known to differ in important ways from those of its 2D counterpart—it has a finite-temperature phase transition, as well as distinct features in the Raman response. We show, however, that the qualitative behavior of the DSF is broadly dimension-independent. Characteristics of the 3D DSF include a response gap even in the gapless QSL phase and an energy dependence deriving from the Majorana fermion density of states. Since the majority of the response is from states containing a single Majorana excitation, our results suggest inelastic neutron scattering as the spectroscopy of choice to illuminate the physics of Majorana fermions in Kitaev QSLs.
3D imaging using combined neutron-photon fan-beam tomography: A Monte Carlo study.
Hartman, J; Yazdanpanah, A Pour; Barzilov, A; Regentova, E
2016-05-01
The application of combined neutron-photon tomography for 3D imaging is examined using MCNP5 simulations for objects of simple shapes and different materials. Two-dimensional transmission projections were simulated for fan-beam scans using 2.5MeV deuterium-deuterium and 14MeV deuterium-tritium neutron sources, and high-energy X-ray sources, such as 1MeV, 6MeV and 9MeV. Photons enable assessment of electron density and related mass density, neutrons aid in estimating the product of density and material-specific microscopic cross section- the ratio between the two provides the composition, while CT allows shape evaluation. Using a developed imaging technique, objects and their material compositions have been visualized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single-View 3-D Reconstruction of Correlated Gamma-Neutron Sources
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.
2017-07-01
We describe a new method of 3D image reconstruc-tion of neutron sources that emit correlated gammas (e.g. Cf-252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutron doublemore » scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). These simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less
Hsu, S Y; Chen, H Y; Chen, K N
2012-03-01
Diffusion behaviors of co-sputtered metals during thermal treatments were investigated, where these co-sputtered metals can be used as bonding materials for 3D Interconnects. In this paper, we report the diffusion behaviors and discuss the diffusion mechanisms of co-sputtered metals before and after annealing. Atom and vacancy volume, vacancy formation energy, and activation energy are proposed to explain the diffusion direction and diffusion rate among different co-sputtered metals. Based on the excellent bonding performance of this method, Cu/metal co-sputtering bonding is considered as a potential candidate for advanced bonding technology.
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu. V.; Kinsey, J. E.; Liu, D.; Heidbrink, W. W.; Taylor, G.; Bonoli, P. T.
2014-10-01
Ion distribution function calculations with CQL3D have been substantially advanced through implementation of guiding-center-orbit-based Fokker-Planck Coefficients. The resulting finite-orbit-width (FOW) calculations are carried out with a fast CQL3D-Hybrid-FOW option, and in a slower but neoclassically complete (except no Er yet) CQL3D-FOW option. Good comparison between time-dependent Fast Ion Diagnostic FIDA, NPA, and neutron signals resulting from neutral beaminjection(NBI) and high harmonic fast wave (HHFW) power injected into the NSTX spherical tokamak have been simulated with the CQL3D-Hybrid-FOW, using only the FOW effects on QL diffusion, and particle losses, direct and CX. Comparisons are also made with recent CQL3D-FOW results, as well as between the original FIDA calculation code and a recent fortran version. Supported by USDOE Grants SC0006614, ER54744, and ER44649.
Capturing 3D Water Flow in Rooted Soil by Ultra-fast Neutron Tomography.
Tötzke, Christian; Kardjilov, Nikolay; Manke, Ingo; Oswald, Sascha E
2017-07-21
Water infiltration in soil is not only affected by the inherent heterogeneities of soil, but even more by the interaction with plant roots and their water uptake. Neutron tomography is a unique non-invasive 3D tool to visualize plant root systems together with the soil water distribution in situ. So far, acquisition times in the range of hours have been the major limitation for imaging 3D water dynamics. Implementing an alternative acquisition procedure we boosted the speed of acquisition capturing an entire tomogram within 10 s. This allows, for the first time, tracking of a water front ascending in a rooted soil column upon infiltration of deuterated water time-resolved in 3D. Image quality and resolution could be sustained to a level allowing for capturing the root system in high detail. Good signal-to-noise ratio and contrast were the key to visualize dynamic changes in water content and to localize the root uptake. We demonstrated the ability of ultra-fast tomography to quantitatively image quick changes of water content in the rhizosphere and outlined the value of such imaging data for 3D water uptake modelling. The presented method paves the way for time-resolved studies of various 3D flow and transport phenomena in porous systems.
FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images
NASA Astrophysics Data System (ADS)
Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj
2005-02-01
Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.
Single-view 3D reconstruction of correlated gamma-neutron sources
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.
2017-01-05
We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less
Design of extended viewing zone at autostereoscopic 3D display based on diffusing optical element
NASA Astrophysics Data System (ADS)
Kim, Min Chang; Hwang, Yong Seok; Hong, Suk-Pyo; Kim, Eun Soo
2012-03-01
In this paper, to realize a non-glasses type 3D display as next step from the current glasses-typed 3D display, it is suggested that a viewing zone is designed for the 3D display using DOE (Diffusing Optical Element). Viewing zone of proposed method is larger than that of the current parallax barrier method or lenticular method. Through proposed method, it is shown to enable the expansion and adjustment of the area of viewing zone according to viewing distance.
O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar
2013-08-01
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface
Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di
2010-07-15
3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.
Khaled, S.M.
2015-07-01
This work presents the Verification and testing both the neutronic and thermal-hydraulics response of the positive reactivity-initiated power excursion accidents in small light water research reactors. Some research reactors have to build its own severe accidents code system. In this sense, a 3D space-time-dependent neutron diffusion models with thermal hydraulic feedback have been introduced, compared and tested both experimentally at criticality 14-cent and theoretically up to 1.5 $ with a number of similar codes. The results shows that no expected core failure or moderator boiling. (author)
Howison, Mark
2010-05-06
We compare the performance of hand-tuned CUDA implementations of bilateral and anisotropic diffusion filters for denoising 3D MRI datasets. Our tests sweep comparable parameters for the two filters and measure total runtime, memory bandwidth, computational throughput, and mean squared errors relative to a noiseless reference dataset.
3D reconstruction of carbon nanotube networks from neutron scattering experiments
NASA Astrophysics Data System (ADS)
Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa; Dadmun, Mark; Tehrani, Mehran
2015-09-01
Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first step in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.
3D reconstruction of carbon nanotube networks from neutron scattering experiments
Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa; Dadmun, Mark; Tehrani, Mehran
2015-09-03
Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first step in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.
Jeong, Eun-Kee; Kim, Seong-Eun; Kholmovski, Eugene G; Parker, Dennis L
2006-12-01
Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.
Anisotropy-resolving models for predicting separation in 3--D asymmetric diffusers
NASA Astrophysics Data System (ADS)
Jeyapaul, Elbert; Durbin, Paul
2011-11-01
All linear eddy-viscosity models are qualitatively incorrect in predicting separation in 3-D asymmetric diffusers. The failure to predict normal stress and shear stress anisotropy at high production-dissipation ratios is the cause. The Explicit algebraic Reynolds stress model (Wallin and Johansson, 2000) predicts the mean flow field in the diffuser accurately, but not the wall pressure and Reynolds stresses. Recalibrating the coefficients of the rapid part of pressure-strain model improves the wall pressure prediction. Including the convective, diffusive, streamline curvature effects on anisotropy has not been beneficial. The model has been tested using a family of diffusers having the same nominal streamwise pressure gradient, LES data is used as a reference. Professor
Multilayer Spheroids To Quantify Drug Uptake and Diffusion in 3D
2015-01-01
There is a need for new quantitative in vitro models of drug uptake and diffusion to help assess drug toxicity/efficacy as well as new more predictive models for drug discovery. We report a three-dimensional (3D) multilayer spheroid model and a new algorithm to quantitatively study uptake and inward diffusion of fluorescent calcein via gap junction intercellular communication (GJIC). When incubated with calcein-AM, a substrate of the efflux transporter P-glycoprotein (Pgp), spheroids from a variety of cell types accumulated calcein over time. Accumulation decreased in spheroids overexpressing Pgp (HEK-MDR) and was increased in the presence of Pgp inhibitors (verapamil, loperamide, cyclosporin A). Inward diffusion of calcein was negligible in spheroids that lacked GJIC (OVCAR-3, SK-OV-3) and was reduced in the presence of an inhibitor of GJIC (carbenoxolone). In addition to inhibiting Pgp, verapamil and loperamide, but not cyclosporin A, inhibited inward diffusion of calcein, suggesting that they also inhibit GJIC. The dose response curves of verapamil’s inhibition of Pgp and GJIC were similar (IC50: 8 μM). The method is amenable to many different cell types and may serve as a quantitative 3D model that more accurately replicates in vivo barriers to drug uptake and diffusion. PMID:24641346
Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.
Stout, David A; Toyjanova, Jennet; Franck, Christian
2015-06-12
The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.
Multislice diffusion mapping for 3-D evolution of cerebral ischemia in a rat stroke model.
Reith, W; Hasegawa, Y; Latour, L L; Dardzinski, B J; Sotak, C H; Fisher, M
1995-01-01
Diffusion-weighted magnetic resonance imaging (DWI) can quantitatively demonstrate cerebral ischemia within minutes after the onset of ischemia. The use of a DWI echo-planar multislice technique in this study and the mapping of the apparent diffusion coefficient (ADC) of water, a reliable indicator of ischemic regions, allow for the detection of the three-dimensional (3-D) evolution of ischemia in a rat stroke model. We evaluated 13 time points from 5 to 180 minutes after occlusion of the middle cerebral artery (MCA) and monitored the 3-D spread of ischemia. Within 5 minutes after the onset of ischemia, regions with reduced ADC values occurred. The core of the lesion, with the lowest absolute ADC values, first appeared in the lateral caudoputamen and frontoparietal cortex, then spread to adjacent areas. The volume of ischemic tissue was 224 +/- 48.5 mm3 (mean +/- SEM) after 180 minutes, ranging from 92 to 320 mm3, and this correlated well with the corrected infarct volume at postmortem (194 +/- 23.1 mm3, r = 0.72, p < 0.05). This experiment demonstrated that 3-D multislice diffusion mapping can detect ischemic regions noninvasively 5 minutes after MCA occlusion and follow the development of ischemia. The distribution of changes in absolute ADC values within the ischemic region can be followed over time, giving important information about the evolution of focal ischemia.
3D reconstruction of carbon nanotube networks from neutron scattering experiments
Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa; ...
2015-09-03
Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first stepmore » in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.« less
Development and preliminary verification of the 3D core neutronic code: COCO
Lu, H.; Mo, K.; Li, W.; Bai, N.; Li, J.
2012-07-01
As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code, the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)
(*) A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle.
Berry, David B; You, Shangting; Warner, John; Frank, Lawrence R; Chen, Shaochen; Ward, Samuel R
2017-09-01
The ability to noninvasively assess skeletal muscle microstructure, which predicts function and disease, would be of significant clinical value. One method that holds this promise is diffusion tensor magnetic resonance imaging (DT-MRI), which is sensitive to the microscopic diffusion of water within tissues and has become ubiquitous in neuroimaging as a way of assessing neuronal structure and damage. However, its application to the assessment of changes in muscle microstructure associated with injury, pathology, or age remains poorly defined, because it is difficult to precisely control muscle microstructural features in vivo. However, recent advances in additive manufacturing technologies allow precision-engineered diffusion phantoms with histology informed skeletal muscle geometry to be manufactured. Therefore, the goal of this study was to develop skeletal muscle phantoms at relevant size scales to relate microstructural features to MRI-based diffusion measurements. A digital light projection based rapid 3D printing method was used to fabricate polyethylene glycol diacrylate based diffusion phantoms with (1) idealized muscle geometry (no geometry; fiber sizes of 30, 50, or 70 μm or fiber size of 50 μm with 40% of walls randomly deleted) or (2) histology-based geometry (normal and after 30-days of denervation) containing 20% or 50% phosphate-buffered saline (PBS). Mean absolute percent error (8%) of the printed phantoms indicated high conformity to templates when "fibers" were >50 μm. A multiple spin-echo echo planar imaging diffusion sequence, capable of acquiring diffusion weighted data at several echo times, was used in an attempt to combine relaxometry and diffusion techniques with the goal of separating intracellular and extracellular diffusion signals. When fiber size increased (30-70 μm) in the 20% PBS phantom, fractional anisotropy (FA) decreased (0.32-0.26) and mean diffusivity (MD) increased (0.44 × 10(-3) mm(2)/s-0.70 × 10(-3) mm
3D Neutron Transport PWR Full-core Calculation with RMC code
NASA Astrophysics Data System (ADS)
Qiu, Yishu; She, Ding; Fan, Xiao; Wang, Kan; Li, Zeguang; Liang, Jingang; Leroyer, Hadrien
2014-06-01
Nowadays, there are more and more interests in the use of Monte Carlo codes to calculate the detailed power density distributions in full-core reactors. With the Inspur TS1000 HPC Server of Tsinghua University, several calculations have been done based on the EDF 3D Neutron Transport PWR Full-core benchmark through large-scale parallelism. To investigate and compare the results of the deterministic method and Monte Carlo method, EDF R&D and Department of Engineering Physics of Tsinghua University are having a collaboration to make code to code verification. So in this paper, two codes are used. One is the code COCAGNE developed by the EDF R&D, a deterministic core code, and the other is the Monte Carlo code RMC developed by Department of Engineering Physics in Tsinghua University. First, the full-core model is described and a 26-group calculation was performed by these two codes using the same 26-group cross-section library provided by EDF R&D. Then the parallel and tally performance of RMC is discussed. RMC employs a novel algorithm which can cut down most of the communications. It can be seen clearly that the speedup ratio almost linearly increases with the nodes. Furthermore the cell-mapping method applied by RMC consumes little time to tally even millions of cells. The results of the codes COCAGNE and RMC are compared in three ways. The results of these two codes agree well with each other. It can be concluded that both COCAGNE and RMC are able to provide 3D-transport solutions associated with detailed power density distributions calculation in PWR full-core reactors. Finally, to investigate how many histories are needed to obtain a given standard deviation for a full 3D solution, the non-symmetrized condensed 2-group fluxes of RMC are discussed.
3D MRI of non-Gaussian (3)He gas diffusion in the rat lung.
Jacob, Richard E; Laicher, Gernot; Minard, Kevin R
2007-10-01
In (3)He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted (3)He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only approximately 1 L of hyperpolarized (3)He gas. Diffusion weighting ranges from 0 s/cm(2) to 40 s/cm(2). Results show that the non-Gaussian effects of (3)He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.
3D MRI of non-Gaussian 3He gas diffusion in the rat lung
NASA Astrophysics Data System (ADS)
Jacob, Richard E.; Laicher, Gernot; Minard, Kevin R.
2007-10-01
In 3He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted 3He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only ˜1 L of hyperpolarized 3He gas. Diffusion weighting ranges from 0 s/cm 2 to 40 s/cm 2. Results show that the non-Gaussian effects of 3He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.
Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko
2011-10-01
To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.
Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI
NASA Astrophysics Data System (ADS)
Katsaloulis, P.; Ghosh, A.; Philippe, A. C.; Provata, A.; Deriche, R.
2012-05-01
In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.
Parametric estimation of 3D tubular structures for diffuse optical tomography
Larusson, Fridrik; Anderson, Pamela G.; Rosenberg, Elizabeth; Kilmer, Misha E.; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L.
2013-01-01
We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction. PMID:23411913
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2014-08-01
To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.
Parametric estimation of 3D tubular structures for diffuse optical tomography.
Larusson, Fridrik; Anderson, Pamela G; Rosenberg, Elizabeth; Kilmer, Misha E; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L
2013-02-01
We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction.
Comparison of 48-point 3-D anechoic and diffuse sound field measurements of directivity index
NASA Astrophysics Data System (ADS)
Scicluna, Ron; Killion, Mead; Haapapuro, Andy; Julstrom, Stephen
2005-09-01
The directivity index (DI) as the single best descriptor of directional hearing aid performance at a given frequency has been agreed to in ANSI Standard S3.35-2005. The standard specifies that the in situ directivity index of a hearing aid is not to be measured in a diffuse field (as in a reverberation chamber), as implied by the traditional definition, but in an anechoic chamber, where the rms average of measurements taken with the loudspeaker oriented at 48 locations spread out over an imaginary sphere is used to approximate the diffuse-field directivity index. The corresponding directivity index estimates can be labeled diffuse field and 3D, respectively. These two measurements are theoretically equivalent to within 0.2 dB for a first-order directional microphone. A round-robin series among several laboratories found three laboratories that obtained the same DI within an average of 0.13 dB between 500 and 4000 Hz. Nonetheless, no direct comparison between the 3-D and reverberation-chamber methods has been published. We will present data obtained using both methods, and speculate as to why no one likes the simpler reverberation method.
NASA Astrophysics Data System (ADS)
Lippmann-Pipke, J.; Gerasch, R.; Schikora, J.; Kulenkampff, J.
2017-04-01
The 3D diagonal anisotropic effective diffusion coefficient of Na+, Deff=(Dxx, Dyy, Dzz), was quantified in a clay material in one single experiment/simulation. That is possible due to the combination of the non-invasive observation of Na+ diffusion in Opalinus clay by means of GeoPET method (PET: positron emission tomography) followed by quantitative 3D+t data evaluation by means of the finite element numerical modelling (FEM). The extracted anisotropic effective diffusion coefficient parallel (||) and normal (⊥) to the bedding of the clay rock, Deff=(D||, D⊥, D||) are comparable to those obtained on earlier experimental studies in the same clay material but with different methods. We consider this study as benchmark for the long-standing development of our GeoPET method, that explicitly includes a resolute and physics based attenuation and Compton scatter correction algorithm (Kulenkampff, J., M. Gründig, A. Zakhnini and J. Lippmann-Pipke (2016). "Geoscientific process monitoring with positron emission tomography (GeoPET)." Solid Earth 7: 1217-1231). We suggest GeoPET based fluid flow transport visualization combined with computer based process simulation henceforth as a qualified way for the quantification of three-dimensional, effective transport parameters in geosciences.
BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations
Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul
2016-01-01
Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and decay in large 3D domains. It has been parallelized with OpenMP, allowing efficient simulations on desktop workstations or single supercomputer nodes. The code is stable even for large time steps, with linear computational cost scalings. Solutions are first-order accurate in time and second-order accurate in space. The code can be run by itself or as part of a larger simulator. Availability and implementation: BioFVM is written in C ++ with parallelization in OpenMP. It is maintained and available for download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net under the Apache License (v2.0). Contact: paul.macklin@usc.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26656933
Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W
2016-01-01
The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI’s ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781
3D structure tensor analysis of light microscopy data for validating diffusion MRI.
Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A; Kohama, Steven G; Jespersen, Sune Nørhøj; Kroenke, Christopher D
2015-05-01
Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that
3D structure tensor analysis of light microscopy data for validating diffusion MRI
Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A.; Kohama, Steven G.; Jespersen, Sune Nørhøj; Kroenke, Christopher D.
2015-01-01
Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image “stacks” acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations
Use of albedo for neutron reflector regions in reactor core 3-D simulations
NASA Astrophysics Data System (ADS)
Mohanakrishnan, P.
1989-10-01
In this paper we present two new simplified schemes for the application of the albedo concept of replacing the reflector in 3-D reactor core simulations. Both involve the numerical derivation of albedoes from the fluxes at the core- (blanket-) reflector interface obtained from sample calculations including the reflector. Diffusion theory is used for core calculations in both cases. In the first scheme a new method for "diagonalising" the albedo matrix is demonstrated. This achieves easy applicability of the albedo parameters in core simulations of a fast breeder reactor core, resulting in significant savings in computing efforts. The second scheme, applied to light water reactors, achieves better accuracy in core periphery power predictions with the use of only uniform coarse meshes throughout the core and the numerically derived albedoes.
High speed and flexible PEB 3D diffusion simulation based on Sylvester equation
NASA Astrophysics Data System (ADS)
Lin, Pei-Chun; Chen, Charlie Chung-Ping
2013-04-01
Post exposure bake (PEB) Diffusion effect is one of the most difficult issues in modeling chemically amplified resists. These model equations result in a system of nonlinear partial differential equations describing the time rate of change reaction and diffusion. Verifying such models are difficult, so numerical simulations are needed to solve the model equations. In this paper, we propose a high speed 3D resist image simulation algorithm based on a novel method to solve the PEB Diffusion equation. Our major discovery is that the matrix formulation of the diffusion equation under the Crank- Nicolson scheme can be derived into a special form, AX+XB=C, where the X matrix is a 3D resist image after diffusion effect, A and B matrices contain the diffusion coefficients and the space relationship between directions x, y and z. These matrices are sparse, symmetric and diagonal dominant. The C matrix is the last time-step resist image. The Sylvester equation can be reduced to another form as (I⊗A + BT⊗I) X =C, in which the operator ⊗ is the Kronecker product notation. Compared with a traditional convolution method, our method is more useful in a way that boundary conditions can be more flexible. From our experimental results, we see that the error of the convolution method can be as high as 30% at borders of the design pattern. Furthermore, since the PEB temperature may not be uniform at multi-zone PEB, the convolution method might not be directly applicable in this scenario. Our method is about 20 times faster than the convolution method for a single time step (2 seconds) as illustrated in the attached figure. To simulate 50 seconds of the flexible PEB diffusion process, our method only takes 210 seconds with a convolution set up for a 1240×1240 working area. We use the typical 45nm immersion lithography in our work. The exposure wavelength is set to 193nm; the NA is 1.3775; and the diffusion coefficient is 1.455×10-17m2/s at PEB temperature 150°C along with PEB
Geometrically complex 3D-printed phantoms for diffuse optical imaging.
Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C
2017-03-01
Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.
Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits
Carbone, N. A.; Baez, G. R.; García, H. A.; Waks Serra, M. V.; Di Rocco, H. O.; Iriarte, D. I.; Pomarico, J. A.; Grosenick, D.; Macdonald, R.
2014-01-01
In the present contribution we investigate the images of CW diffusely reflected light for a point-like source, registered by a CCD camera imaging a turbid medium containing an absorbing lesion. We show that detection of μa variations (absorption anomalies) is achieved if images are normalized to background intensity. A theoretical analysis based on the diffusion approximation is presented to investigate the sensitivity and the limitations of our proposal and a novel procedure to find the location of the inclusions in 3D is given and tested. An analysis of the noise and its influence on the detection capabilities of our proposal is provided. Experimental results on phantoms are also given, supporting the proposed approach. PMID:24876999
Ex Vivo 3D Diffusion Tensor Imaging and Quantification of Cardiac Laminar Structure
Helm, Patrick A.; Tseng, Hsiang-Jer; Younes, Laurent; McVeigh, Elliot R.; Winslow, Raimond L.
2007-01-01
A three-dimensional (3D) diffusion-weighted imaging (DWI) method for measuring cardiac fiber structure at high spatial resolution is presented. The method was applied to the ex vivo reconstruction of the fiber architecture of seven canine hearts. A novel hypothesis-testing method was developed and used to show that distinct populations of secondary and tertiary eigenvalues may be distinguished at reasonable confidence levels (P ≤ 0.01) within the canine ventricle. Fiber inclination and sheet angles are reported as a function of transmural depth through the anterior, lateral, and posterior left ventricle (LV) free wall. Within anisotropic regions, two consistent and dominant orientations were identified, supporting published results from histological studies and providing strong evidence that the tertiary eigenvector of the diffusion tensor (DT) defines the sheet normal. PMID:16149057
Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation
Wang, Yin; Zhang, Jun
2010-01-01
We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined with an extrapolation technique is used to approximate the sixth order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid independent convergence rate for solving convection diffusion equation with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth order compact scheme (SOC), compared with the previously published fourth order compact scheme (FOC). PMID:21151737
Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan
2013-12-01
Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively.
NASA Astrophysics Data System (ADS)
Sayah, Abdeljalil; Gijs, Martin A. M.
2016-11-01
We characterise computationally and experimentally a three-dimensional (3D) microfluidic passive mixer for various Reynolds numbers ranging from 1 to 100, corresponding to primary flow rates of 10-870 µl min-1. The 3D mixing channel is composed of multiple curved segments: circular arcs situated in the substrate plane and curved nozzle/diffuser elements normal to the substrate plane. Numerical simulation provides a detailed understanding of the mixing mechanism resulting from the geometrical topology of the mixer. These Comsol software-based simulations reveal the development of two secondary flows perpendicular to the primary flow: a swirling flow resulting from tangential injection of the flow into the nozzle holes and Dean vortices present in the circular arcs. These phenomena are particularly important at a Reynolds number larger than 30, where mixing occurs by chaotic advection. Experimentally, the 3D mixer is fabricated in a monolithic glass substrate by powder blasting machining, exploiting eroding powder beams at various angles of impact with respect to the substrate plane. Experimental mixing was characterised using two coloured dyes, showing nearly perfect mixing for a microfluidic footprint of the order of a few mm2, in good agreement with the simulations.
3D shape based reconstruction of experimental data in Diffuse Optical Tomography.
Zacharopoulos, Athanasios D; Schweiger, Martin; Kolehmainen, Ville; Arridge, Simon
2009-10-12
Diffuse optical tomography (DOT) aims at recovering three-dimensional images of absorption and scattering parameters inside diffusive body based on small number of transmission measurements at the boundary of the body. This image reconstruction problem is known to be an ill-posed inverse problem, which requires use of prior information for successful reconstruction. We present a shape based method for DOT, where we assume a priori that the unknown body consist of disjoint subdomains with different optical properties. We utilize spherical harmonics expansion to parameterize the reconstruction problem with respect to the subdomain boundaries, and introduce a finite element (FEM) based algorithm that uses a novel 3D mesh subdivision technique to describe the mapping from spherical harmonics coefficients to the 3D absorption and scattering distributions inside a unstructured volumetric FEM mesh. We evaluate the shape based method by reconstructing experimental DOT data, from a cylindrical phantom with one inclusion with high absorption and one with high scattering. The reconstruction was monitored, and we found a 87% reduction in the Hausdorff measure between targets and reconstructed inclusions, 96% success in recovering the location of the centers of the inclusions and 87% success in average in the recovery for the volumes.
3D choroid neovascularization growth prediction based on reaction-diffusion model
NASA Astrophysics Data System (ADS)
Zhu, Shuxia; Chen, Xinjian; Shi, Fei; Xiang, Dehui; Zhu, Weifang; Chen, Haoyu
2016-03-01
Choroid neovascularization (CNV) is a kind of pathology from the choroid and CNV-related disease is one important cause of vision loss. It is desirable to predict the CNV growth rate so that appropriate treatment can be planned. In this paper, we seek to find a method to predict the growth of CNV based on 3D longitudinal Optical Coherence Tomography (OCT) images. A reaction-diffusion model is proposed for prediction. The method consists of four phases: pre-processing, meshing, CNV growth modeling and prediction. We not only apply the reaction-diffusion model to the disease region, but also take the surrounding tissues into consideration including outer retinal layer, inner retinal layer and choroid layer. The diffusion in these tissues is considered as isotropic. The finite-element-method (FEM) is used to solve the partial differential equations (PDE) in the diffusion model. The curve of CNV growth with treatment are fitted and then we can predict the CNV status in a future time point. The preliminary results demonstrated that our proposed method is accurate and the validity and feasibility of our model is obvious.
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Karimabadi, H.; Daughton, W. S.
2013-12-01
Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).
Mollink, J; van Baarsen, K M; Dederen, P J W C; Foxley, S; Miller, K L; Jbabdi, S; Slump, C H; Grotenhuis, J A; Kleinnijenhuis, M; van Cappellen van Walsum, A M
2016-09-01
Diffusion-weighted imaging (DWI) tractography is a technique with great potential to characterize the in vivo anatomical position and integrity of white matter tracts. Tractography, however, remains an estimation of white matter tracts, and false-positive and false-negative rates are not available. The goal of the present study was to compare postmortem tractography of the dentatorubrothalamic tract (DRTT) by its 3D histological reconstruction, to estimate the reliability of the tractography algorithm in this specific tract. Recent studies have shown that the cerebellum is involved in cognitive, language and emotional functions besides its role in motor control. However, the exact working mechanism of the cerebellum is still to be elucidated. As the DRTT is the main output tract it is of special interest for the neuroscience and clinical community. A postmortem human brain specimen was scanned on a 7T MRI scanner using a diffusion-weighted steady-state free precession sequence. Tractography was performed with PROBTRACKX. The specimen was subsequently serially sectioned and stained for myelin using a modified Heidenhain-Woelke staining. Image registration permitted the 3D reconstruction of the histological sections and comparison with MRI. The spatial concordance between the two modalities was evaluated using ROC analysis and a similarity index (SI). ROC curves showed a high sensitivity and specificity in general. Highest measures were observed in the superior cerebellar peduncle with an SI of 0.72. Less overlap was found in the decussation of the DRTT at the level of the mesencephalon. The study demonstrates high spatial accuracy of postmortem probabilistic tractography of the DRTT when compared to a 3D histological reconstruction. This gives hopeful prospect for studying structure-function correlations in patients with cerebellar disorders using tractography of the DRTT.
Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs
NASA Astrophysics Data System (ADS)
Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.
2016-03-01
We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.
Monte carlo simulation of 3-D buffered Ca(2+) diffusion in neuroendocrine cells.
Gil, A; Segura, J; Pertusa, J A; Soria, B
2000-01-01
Buffered Ca(2+) diffusion in the cytosol of neuroendocrine cells is a plausible explanation for the slowness and latency in the secretion of hormones. We have developed a Monte Carlo simulation to treat the problem of 3-D diffusion and kinetic reactions of ions and buffers. The 3-D diffusion is modeled as a random walk process that follows the path of each ion and buffer molecule, combined locally with a stochastic treatment of the first-order kinetic reactions involved. Such modeling is able to predict [Ca(2+)] and buffer concentration time courses regardless of how low the calcium influx is, and it is therefore a convenient method for dealing with physiological calcium currents and concentrations. We study the effects of the diffusional and kinetic parameters of the model on the concentration time courses as well as on the local equilibrium of buffers with calcium. An in-mobile and fast endogenous buffer as described by, Biophys. J. 72:674-690) was able to reach local equilibrium with calcium; however, the exogenous buffers considered are displaced drastically from equilibrium at the start of the calcium pulse, particularly below the pores. The versatility of the method also allows the effect of different arrangements of calcium channels on submembrane gradients to be studied, including random distribution of calcium channels and channel clusters. The simulation shows how the particular distribution of channels or clusters can be of relevance for secretion in the case where the distribution of release granules is correlated with the channels or clusters. PMID:10620270
3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems
NASA Astrophysics Data System (ADS)
Hançerliogulları, Aybaba; Cini, Mesut
2013-10-01
In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).
NASA Astrophysics Data System (ADS)
Yu, Jhao-Ming; Chen, Liang-Yu; Pan, Min-Cheng; Hsu, Ya-Fen; Pan, Min-Chun
2015-03-01
Diffuse optical imaging (DOI) providing functional information of tissues has drawn great attention for the last two decades. Near infrared (NIR) DOI systems composed of scanning bench, opt-electrical measurement module, system control, and data processing and image reconstruction schemes are developed for the screening and diagnosis of breast tumors. Mostly, the scanning bench belonging to fixed source-and-detector configuration limits computed image resolution to an extent. To cope with the issue, we propose, design and implement a 3D prostrate ring-scanning equipment for NIR DOI with flexible combinations of illumination and detection, and with the function of radial, circular and vertical movement without hard compression of breast tissue like the imaging system using or incorporating with X-ray mammographic bench. Especially, a rotation-sliding-and-moving mechanism was designed for the guidance of source- and detection-channel movement. Following the previous justification for synthesized image reconstruction, in the paper the validation using varied phantoms is further conducted and 3D image reconstruction for their absorption and scattering coefficients is illustrated through the computation of our in-house coded schemes. The source and detection NIR data are acquired to reconstruct the 3D images through the operation of scanning bench in the movement of vertical, radial and circular directions. Rather than the fixed configuration, the addressed screening/diagnosing equipment has the flexibility for optical-channel expansion with a compromise among construction cost, operation time, and spatial resolution of reconstructed μa and μs' images.
Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system
Vasques, R.
2013-07-01
Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)
3D curve inference for diffusion MRI regularization and fibre tractography.
Savadjiev, Peter; Campbell, Jennifer S W; Pike, G Bruce; Siddiqi, Kaleem
2006-10-01
We develop a differential geometric framework for regularizing diffusion MRI data. The key idea is to model white matter fibres as 3D space curves and to then extend Parent and Zucker's 2D curve inference approach [Parent, P., Zucker, S., 1989. Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 823-839] by using a notion of co-helicity to indicate compatibility between fibre orientations at each voxel with those in a local neighborhood. We argue that this provides several advantages over earlier regularization methods. We validate the approach quantitatively on a biological phantom and on synthetic data, and qualitatively on data acquired in vivo from a human brain. We also demonstrate the use of the technique to improve the performance of a fibre tracking algorithm.
Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion
Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael
2014-01-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.
Description of a parallel, 3D, finite element, hydrodynamics-diffusion code
Milovich, J L; Prasad, M K; Shestakov, A I
1999-04-11
We describe a parallel, 3D, unstructured grid finite element, hydrodynamic diffusion code for inertial confinement fusion (ICF) applications and the ancillary software used to run it. The code system is divided into two entities, a controller and a stand-alone physics code. The code system may reside on different computers; the controller on the user's workstation and the physics code on a supercomputer. The physics code is composed of separate hydrodynamic, equation-of-state, laser energy deposition, heat conduction, and radiation transport packages and is parallelized for distributed memory architectures. For parallelization, a SPMD model is adopted; the domain is decomposed into a disjoint collection of subdomains, one per processing element (PE). The PEs communicate using MPI. The code is used to simulate the hydrodynamic implosion of a spherical bubble.
PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain
NASA Astrophysics Data System (ADS)
Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.
2009-12-01
A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007
NASA Astrophysics Data System (ADS)
Gutmann, Matthias J.
2017-03-01
A 3D profile function is presented suitable to integrate reflections arising in time-of-flight (TOF) single crystal neutron diffraction experiments. In order to account for the large asymmetry of the peak shape in the TOF direction, a 3D Gaussian ellipsoid in the pixel (x, z) and time-of-flight coordinates is convoluted with a rising and falling exponential along the time-of-flight direction. An analytic expression is derived, making it suitable for least-squares fitting. The application of this function in detector space or reciprocal space is straightforward.
Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J; Dale, Anders M; Omholt, Stig W; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H
2017-09-12
The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.
3-D Modeling of Pore Pressure Diffusion Beneath Koyna and Warna Reservoirs, Western India
NASA Astrophysics Data System (ADS)
Yadav, Amrita; Gahalaut, Kalpna; Purnachandra Rao, N.
2017-05-01
The mechanism of reservoir-triggered seismicity is well-understood and explains the earthquake occurrence at different reservoir sites. It can be attributed to the stresses due to water loading and to changes in fluid pressure in pores within the rock matrix. In the present study a 3-D fluid flow numerical model is used to investigate the pore pressure diffusion as a cause for continued seismicity in the Koyna-Warna region in western India. It is shown that reservoir water level fluctuations are sufficient to trigger earthquakes at the seismogenic depths in the region. Our numerical model suggests that a vertical fault with hydraulic conductivity in the range 2-6 m/day facilitates the diffusion of pressure at focal depths of earthquakes in the Koyna-Warna region. Also, for triggering of earthquakes a higher vertical conductivity is required for the Warna region than for the Koyna region. A lag of two months period is found between the maximum water level and the significant hydraulic head required to trigger earthquakes at the focal depth using the appropriate hydraulic conductivity for both the reservoirs.
3-D Modeling of Pore Pressure Diffusion Beneath Koyna and Warna Reservoirs, Western India
NASA Astrophysics Data System (ADS)
Yadav, Amrita; Gahalaut, Kalpna; Purnachandra Rao, N.
2017-03-01
The mechanism of reservoir-triggered seismicity is well-understood and explains the earthquake occurrence at different reservoir sites. It can be attributed to the stresses due to water loading and to changes in fluid pressure in pores within the rock matrix. In the present study a 3-D fluid flow numerical model is used to investigate the pore pressure diffusion as a cause for continued seismicity in the Koyna-Warna region in western India. It is shown that reservoir water level fluctuations are sufficient to trigger earthquakes at the seismogenic depths in the region. Our numerical model suggests that a vertical fault with hydraulic conductivity in the range 2-6 m/day facilitates the diffusion of pressure at focal depths of earthquakes in the Koyna-Warna region. Also, for triggering of earthquakes a higher vertical conductivity is required for the Warna region than for the Koyna region. A lag of two months period is found between the maximum water level and the significant hydraulic head required to trigger earthquakes at the focal depth using the appropriate hydraulic conductivity for both the reservoirs.
Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow
Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J.; Dale, Anders M.; Omholt, Stig W.; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H.
2017-01-01
The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid β that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain’s interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had 36% higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs. PMID:28847942
NASA Astrophysics Data System (ADS)
Guardiola, C.; Gómez, F.; Fleta, C.; Rodríguez, J.; Quirion, D.; Pellegrini, G.; Lousa, A.; Martínez-de-Olcoz, L.; Pombar, M.; Lozano, M.
2013-05-01
The accurate detection and dosimetry of neutrons in mixed and pulsed radiation fields is a demanding instrumental issue with great interest both for the industrial and medical communities. In recent studies of neutron contamination around medical linacs, there is a growing concern about the secondary cancer risk for radiotherapy patients undergoing treatment in photon modalities at energies greater than 6 MV. In this work we present a promising alternative to standard detectors with an active method to measure neutrons around a medical linac using a novel ultra-thin silicon detector with 3D electrodes adapted for neutron detection. The active volume of this planar device is only 10 µm thick, allowing a high gamma rejection, which is necessary to discriminate the neutron signal in the radiotherapy peripheral radiation field with a high gamma background. Different tests have been performed in a clinical facility using a Siemens PRIMUS linac at 6 and 15 MV. The results show a good thermal neutron detection efficiency around 2% and a high gamma rejection factor.
Guardiola, C; Gómez, F; Fleta, C; Rodríguez, J; Quirion, D; Pellegrini, G; Lousa, A; Martínez-de-Olcoz, L; Pombar, M; Lozano, M
2013-05-21
The accurate detection and dosimetry of neutrons in mixed and pulsed radiation fields is a demanding instrumental issue with great interest both for the industrial and medical communities. In recent studies of neutron contamination around medical linacs, there is a growing concern about the secondary cancer risk for radiotherapy patients undergoing treatment in photon modalities at energies greater than 6 MV. In this work we present a promising alternative to standard detectors with an active method to measure neutrons around a medical linac using a novel ultra-thin silicon detector with 3D electrodes adapted for neutron detection. The active volume of this planar device is only 10 µm thick, allowing a high gamma rejection, which is necessary to discriminate the neutron signal in the radiotherapy peripheral radiation field with a high gamma background. Different tests have been performed in a clinical facility using a Siemens PRIMUS linac at 6 and 15 MV. The results show a good thermal neutron detection efficiency around 2% and a high gamma rejection factor.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T.H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-12-01
A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
NASA Astrophysics Data System (ADS)
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-12-01
A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Mapping the holes: 3D ISM maps and diffuse X-ray background
NASA Astrophysics Data System (ADS)
Lallement, R.; Vergely, J.-L.; Puspitarini, L.; Snowden, S.; Galeazzi, M.; Koutroumpa, D.
3D maps of Galactic interstellar dust and gas reveal empty regions, including cavities carved by stellar winds and supernovae. Such cavities are often filled with hot gas and are sources of soft X-ray background emission. We discuss the combined analysis of the diffuse soft (0.25 keV) X-ray background and the 3D distribution of nearby (<1 kpc) dust, including studies of shadows cast by nearby clouds in the background. This analysis benefits from recent progress in the estimate of the foreground X-ray emission from the heliosphere. New and past X-ray data are found to be consistent with the maps if the ≃ 100-150 pc wide Local Bubble surrounding the Sun is filled with 106K gas with a pressure 2nT ≃ 10,000 K cm-3. On the other hand, the giant cavity found in the 3rd Galactic quadrant has a weaker volume emission than the LB and is very likely filled to a large extent with warm ionized gas. Its geometry suggests a link with the tilted Gould belt, and a potential mechanism for the formation of the whole structure has been recently proposed. According to it, the local inclination of gas and stars, the velocity pattern and enhanced star formation could have been initiated 60-70 Myr ago when a massive globular cluster crossed the Galactic Plane in the vicinity of the Sun. The destabilization of stellar orbits around the Sun may have generated enhanced asteroid falls of the Cretaceous-Tertiary (KT) extinction events. Additionally, a short gamma ray burst may have occurred in the cluster during the crossing, producing intense ionization and subsequent shock waves leading to the star formations seen today in the form of the giant ionized region and OB associations at its periphery. Gaia measurements of nearby stars and clusters should help shedding light on the local history.
Moriya, Tomohisa; Saito, Kazuhiro; Tajima, Yu; Harada, Taiyo L; Araki, Yoichi; Sugimoto, Katsutoshi; Tokuuye, Koichi
2017-01-05
To evaluate the usefulness of differentiation of histological grade in hepatocellular carcinoma (HCC) using three-dimensional (3D) analysis of apparent diffusion coefficient (ADC) histograms retrospectively. The subjects consisted of 53 patients with 56 HCCs. The subjects included 12 well-differentiated, 35 moderately differentiated, and nine poorly differentiated HCCs. Diffusion-weighted imaging (b-values of 100 and 800 s/mm(2)) were obtained within 3 months before surgery. Regions of interest (ROIs) covered the entire tumor. The data acquired from each slice were summated to derive voxel-by-voxel ADCs for the entire tumor. The following parameters were derived from the ADC histogram: mean, standard deviation, minimum, maximum, mode, percentiles (5th, 10th, 25th, 50th, 75th, and 90th), skew, and kurtosis. These parameters were analyzed according to histological grade. After eliminating steatosis lesions, these parameters were re-analyzed. A weak correlation was observed in minimum ADC and 5th percentile for each histological grade (r = -0.340 and r = -0.268, respectively). The minimum ADCs of well, moderately, and poorly differentiated HCC were 585 ± 388, 411 ± 278, and 235 ± 102 × 10(-6) mm(2)/s, respectively. Minimum ADC showed significant differences among tumor histological grades (P = 0.009). The minimum ADC of poorly differentiated HCC and that of combined well and moderately differentiated HCC were 236 ± 102 and 437 ± 299 × 10(-6) mm(2)/s. The minimum ADC of poorly differentiated HCC was significantly lower than that of combined well and moderately differentiated HCC (P = 0.001). The sensitivity and specificity, when a minimum ADC of 400 × 10(-6) mm(2)/s or lower was considered to be poorly differentiated HCC, were 100 and 54%, respectively. After exclusion of the effect of steatosis, the sensitivity and specificity did not change, although the statistical differences became strong (P < 0
Magnetic diffusivities in 3D radiative chemo-hydrodynamic simulations of protostellar collapse
NASA Astrophysics Data System (ADS)
Dzyurkevich, Natalia; Commerçon, Benoît; Lesaffre, Pierre; Semenov, Dimitry
2017-07-01
Context. Both theory and observations of star-forming clouds require simulations that combine the co-evolving chemistry, magneto-hydrodynamics, and radiative transfer in protostellar collapse simulation. A detailed knowledge of self-consistent chemical evolution for the main charge carriers (both gas species and dust grains) allows us to correctly estimate the rate and nature of magnetic dissipation in the collapsing core. This knowledge is critical to answer one of the most significant issues of star and planet formation: what is the magnitude and spatial distribution of magnetic flux as the initial condition to protoplanetary disk evolution? Aims: We use a chemo-dynamical version of RAMSES, which is described in a companion publication, to follow the chemo-dynamical evolution of collapsing dense cores with various dust properties and interpret differences that occur in magnetic diffusivity terms. These differences are crucial to circumstellar disk formation. Methods: We performed 3D chemo-dynamical simulations of 1 M⊙ isolated dense core collapse for a range in dust size assumptions. The number density of dust and its mean size affect the efficiency of charge capturing and the formation of ices. The radiative hydrodynamics and dynamical evolution of chemical abundances were used to reconstruct the magnetic diffusivity terms for clouds with various magnetisation. Results: The simulations are performed for a mean dust size ranging from 0.017 μm to 1 μm, and we adopt both a fixed dust size and a dust size distribution. The chemical abundances for this range of dust sizes are produced by RAMSES and serve as inputs to calculations of Ohmic, ambipolar, and Hall diffusivity terms. Ohmic resistivity only plays a role at the late stage of the collapse in the innermost region of the cloud where gas density is in excess of a few times 1013 cm-3. Ambipolar diffusion is a dominant magnetic diffusivity term in cases where mean dust size is a typical ISM value or larger. We
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
NASA Astrophysics Data System (ADS)
Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Diffuse optical 3D-slice imaging of bounded turbid media using a new integro-differential equation.
Pattanayak, D; Yodh, A
1999-04-12
A new integro-differential equation for diffuse photon density waves (DPDW) is derived within the diffusion approximation. The new equation applies to inhomogeneous bounded turbid media. Interestingly, it does not contain any terms involving gradients of the light diffusion coefficient. The integro-differential equation for diffusive waves is used to develop a 3D-slice imaging algorithm based the on angular spectrum representation in the parallel plate geometry. The algorithm may be useful for near infrared optical imaging of breast tissue, and is applicable to other diagnostics such as ultrasound and microwave imaging.
Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging
NASA Astrophysics Data System (ADS)
Marsden, Craig Michael
2000-12-01
This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.
Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi
2012-10-01
PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.
3D thermal modeling of TRISO fuel coupled with neutronic simulation
Hu, Jianwei; Uddin, Rizwan
2010-01-01
The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.
A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero magnetic diffusivity
NASA Astrophysics Data System (ADS)
Gala, Sadek; Ragusa, Maria Alessandra
2016-06-01
In this work, we show that a smooth solution of the 3D MHD equations with zero magnetic diffusivity in the whole space ℝ3 breaks down if and only if a certain norm of the magnetic field blows up at the same time.
Liang, Yi-Ran; Zhu, Li-Na; Gao, Jie; Zhao, Hong-Xia; Zhu, Ying; Ye, Sheng; Fang, Qun
2017-03-23
Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.
Gary W. Phillips
2000-12-20
We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.
DOE R&D Accomplishments Database
Weinberg, Alvin M.; Noderer, L. C.
1951-05-15
The large scale release of nuclear energy in a uranium fission chain reaction involves two essentially distinct physical phenomena. On the one hand there are the individual nuclear processes such as fission, neutron capture, and neutron scattering. These are essentially quantum mechanical in character, and their theory is non-classical. On the other hand, there is the process of diffusion -- in particular, diffusion of neutrons, which is of fundamental importance in a nuclear chain reaction. This process is classical; insofar as the theory of the nuclear chain reaction depends on the theory of neutron diffusion, the mathematical study of chain reactions is an application of classical, not quantum mechanical, techniques.
TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code
Cullen, D.E.
1997-11-22
TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART97 is distributed on CD. This CD contains on- line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and its data riles.
Modeling of lamps through a diffuser with 2D and 3D picket-fence backlight models
NASA Astrophysics Data System (ADS)
Belshaw, Richard J.; Wilmott, Roger; Thomas, John T.
2002-08-01
Laboratory photometric measurements are taken of a display backlight one metre away from the emission surface (diffuser) with a whole acceptance angle on the photometer of about 0.125 degrees (2.182mm spot size at emission surface). A simulation method was sought to be able to obtain the brightness uniformity (luminance peak to trough ratio from above one lamp to the null between lamps in a picket-fence backlight). A 3D raytrace BackLight model in TracePro and a 2D Mathematical model in Matlab have been developed. With a specimen backlight in the laboratory, a smooth luminance profile was measured by the photometer on the diffuser surface. Ray Trace models in both 3D and 2D take too long to produce smooth 'continuous filled' distributions. The Mathematical 2D approach, although with limitations, yielded smooth solutions in a very reasonable time frame.
3D AMR simulations of the evolution of the diffuse gas cloud G2 in the Galactic Centre
NASA Astrophysics Data System (ADS)
Schartmann, M.; Ballone, A.; Burkert, A.; Gillessen, S.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Plewa, P. M.; Ott, T.; George, E. M.; Habibi, M.
2017-01-01
With the help of 3D AMR hydrodynamical simulations we aim at understanding G2's nature, recent evolution and fate in the coming years. By exploring the possible parameter space of the diffuse cloud scenario, we find that a starting point within the disc of young stars is favoured by the observations, which may hint at G2 being the result of stellar wind interactions.
Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering
NASA Astrophysics Data System (ADS)
Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo
Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.
Lee, C. H.; Zhong, Z.; Taiwo, T.A.; Yang, W.S.; Khalil, H.S.; Smith, M.A.; Nuclear Engineering Division
2006-10-13
asymmetric absorber rods), surface-dependent discontinuity factors based on nodal equivalence theory have been introduced into the nodal diffusion theory option of the DIF3D code (DIF3D-nodal) to improve modeling accuracy. Additionally, the discontinuity factors based on the Simplified Equivalence Theory (SET) have been incorporated as an alternative and may be employed for both the DIF3D-nodal and DIF3D-VARIANT (nodal transport) solution options. Two- and three-dimensional core calculations have been performed using the routines developed and modified in this work, along with cross sections generated from single fuel block and one-dimensional or two-dimensional fuel-reflector model. Generally, REBUS-3/DIF3D results for the core multiplication factor and power distribution are found to be in good agreement with reference results (generated with MCNP continuous energy calculations) particularly when discontinuity factors are applied. The DIF3D-VARIANT option was found to provide a more accurate solution in its diffusion approximation than the DIF3D-nodal option. Control rod worths can be estimated with acceptably small errors compared to MCNP results. However, estimation of the core power tilt needs to be improved by introducing the surface-dependent discontinuity factor capability in DIF3D-VARIANT.
Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Xi Cheng; Chapman, Teresa; Wilm, Jakob; Rousseau, Francois; Studholme, Colin
2014-02-01
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and an experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to current state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function.
Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François
2014-01-01
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711
Global regularity for a 3D Boussinesq model without thermal diffusion
NASA Astrophysics Data System (ADS)
Ye, Zhuan
2017-08-01
In this paper, we consider a modified three-dimensional incompressible Boussinesq model. The model considered in this paper has viscosity in the velocity equations, but no diffusivity in the temperature equation. To bypass the difficulty caused by the absence of thermal diffusion, we make use of the maximal L_tpL_xq regularity for the heat kernel to establish the global regularity result.
Galgoczy, Roland; Pastor, Isabel; Colom, Adai; Giménez, Alicia; Mas, Francesc; Alcaraz, Jordi
2014-08-01
The design of 3D culture studies remains challenging due to the limited understanding of extracellular matrix (ECM)-dependent hindered diffusion and the lack of simple diffusivity assays. To address these limitations, we set up a cost-effective diffusivity assay based on a Transwell plate and the spectrophotometer of a Microplate Reader, which are readily accessible to cell biology groups. The spectrophotometer-based assay was used to assess the apparent diffusivity D of FITC-dextrans with molecular weight (4-70kDa) spanning the physiological range of signaling factors in a panel of acellular ECM gels including Matrigel, fibrin and type I collagen. Despite their technical differences, D data exhibited ∼15% relative difference with respect to FRAP measurements. Our results revealed that diffusion hindrance of small particles is controlled by the enhanced viscosity of the ECM gel in conformance with the Stokes-Einstein equation rather than by geometrical factors. Moreover, we provided a strong rationale that the enhanced ECM viscosity is largely contributed to by unassembled ECM macromolecules. We also reported that gels with the lowest D exhibited diffusion hindrance closest to the large physiologic hindrance of brain tissue, which has a typical pore size much smaller than ECM gels. Conversely, sparse gels (≤1mg/ml), which are extensively used in 3D cultures, failed to reproduce the hindered diffusion of tissues, thereby supporting that dense (but not sparse) ECM gels are suitable tissue surrogates in terms of macromolecular transport. Finally, the consequences of reduced diffusivity in terms of optimizing the design of 3D culture experiments were addressed in detail. Copyright © 2014 Elsevier B.V. All rights reserved.
Leddy, Holly A.; Christensen, Susan E.; Guilak, Farshid
2009-01-01
Chondrocytes (cartilage cells) are enclosed within a pericellular matrix (PCM) whose composition and structure differ from those of the extracellular matrix (ECM). Since the PCM surrounds each cell, molecules that interact with the chondrocyte must pass through the pericellular environment. A quantitative understanding of the diffusional properties of the PCM will help elucidate the PCM’s regulatory role in controlling transport to and from the chondrocyte. The diffusivity of a fluorescently-labeled 70 kDa dextran was quantified within the PCM of porcine articular cartilage using a newly-developed mathematical model of scanning microphotolysis (SCAMP). SCAMP is a rapid, line photobleaching method that accounts for out-of-plane bleaching attributable to high magnification. Data were analyzed by best-fit comparison to simulations generated using a discretization of the diffusion-reaction equation in conjunction with the microscope-specific three-dimensional excitation and detection profiles. The diffusion coefficient of dextran was significantly lower in the PCM than in the ECM in normal cartilage. In early-stage arthritic tissue, however, no significant differences in diffusivity were detectable. These results support the hypothesis that the diffusivity of the PCM is lower than that of the ECM, presumably due to differences in proteoglycan content, and that osteoarthritic changes in tissue affect the transport properties of the PCM. PMID:19045531
Mendrik, Adriënne M; Vonken, Evert-Jan; Rutten, Annemarieke; Viergever, Max A; van Ginneken, Bram
2009-10-01
Noise filtering techniques that maintain image contrast while decreasing image noise have the potential to optimize the quality of computed tomography (CT) images acquired at reduced radiation dose. In this paper, a hybrid diffusion filter with continuous switch (HDCS) is introduced, which exploits the benefits of three-dimensional edge-enhancing diffusion (EED) and coherence-enhancing diffusion (CED). Noise is filtered, while edges, tubular structures, and small spherical structures are preserved. From ten high dose thorax CT scans, acquired at clinical doses, ultra low dose ( 15 mAs ) scans were simulated and used to evaluate and compare HDCS to other diffusion filters, such as regularized Perona-Malik diffusion and EED. Quantitative results show that the HDCS filter outperforms the other filters in restoring the high dose CT scan from the corresponding simulated low dose scan. A qualitative evaluation was performed on filtered real low dose CT thorax scans. An expert observer scored artifacts as well as fine structures and was asked to choose one of three scans (two filtered (blinded), one unfiltered) for three different settings (trachea, lung, and mediastinal). Overall, the HDCS filtered scan was chosen most often.
Wahel, A.; Wellnhofer, E.; Mugaragu, I.; Sauer, H.U.; Oswald, H.; Fleck, E. |
1995-06-01
Quantitative evaluations on coronary vessel systems are of increasing importance in cardiovascular diagnosis, therapy planning, and surgical verification. Whereas local evaluations, such as stenosis analysis, are already available with sufficient accuracy, global evaluations of vessel segments or vessel subsystems are not yet common. Especially for the diagnosis of diffuse coronary artery diseases, the authors combined a 3-D reconstruction system operating on biplane angiograms with a length/volume calculation. The 3-D reconstruction results in a 3-D model of the coronary vessel system, consisting of the vessel skeleton and a discrete number of contours. To obtain an utmost accurate model, the authors focused on exact geometry determination. Several algorithms for calculating missing geometric parameters and correcting remaining geometry errors were implemented and verified. The length/volume evaluation can be performed either on single vessel segments, on a set of segments, or on subtrees. A volume model based on generalized elliptical conic sections is created for the selected segments. Volumes and lengths (measured along the vessel course) of those elements are summed up. In this way, the morphological parameters of a vessel subsystem can be set in relation to the parameters of the proximal segment supplying it. These relations allow objective assessments of diffuse coronary artery diseases.
BOX SPLINE BASED 3D TOMOGRAPHIC RECONSTRUCTION OF DIFFUSION PROPAGATORS FROM MRI DATA.
Ye, Wenxing; Portnoy, Sharon; Entezari, Alireza; Vemuri, Baba C; Blackband, Stephen J
2011-06-09
This paper introduces a tomographic approach for reconstruction of diffusion propagators, P( r ), in a box spline framework. Box splines are chosen as basis functions for high-order approximation of P( r ) from the diffusion signal. Box splines are a generalization of B-splines to multivariate setting that are particularly useful in the context of tomographic reconstruction. The X-Ray or Radon transform of a (tensor-product B-spline or a non-separable) box spline is a box spline - the space of box splines is closed under the Radon transform.We present synthetic and real multi-shell diffusion-weighted MR data experiments that demonstrate the increased accuracy of P( r ) reconstruction as the order of basis functions is increased.
3-D Spherical Convection Modeling Applied to Mercury: Dislocation Versus Diffusion Rheology
NASA Astrophysics Data System (ADS)
Robertson, S. D.; King, S. D.
2016-12-01
Mercury is the smallest among the terrestrial planets and, prior to NASA's MESSENGER mission was thought to be the least tectonically and volcanically active body. Gravity and moment of inertia from MESSENGER constrain Mercury to have a thin silicate mantle shell of approximately 400 km over a massive iron core. This mantle is thinner than previously thought and the smallest end-member in comparison with the other terrestrial planets. Although Mercury currently has a stagnant lid and the present day mantle is likely not convecting, a significant proportion of Mercury's surface features could have been derived from convection in the viscous mantle. Given Mercury's small size, the amount of volcanism and tectonic activity was a surprise. We investigate the effect of dislocation creep rheology in olivine on the dynamics of Mercury. At the pressures and temperatures of Mercury's mantle, laboratory creep studies indicate that olivine deforms by dislocation creep. Previous studies using diffusion creep rheology find that the thin mantle shell of Mercury quickly becomes diffusive and, this is difficult to reconcile with the surface observations. We use the three-dimensional spherical code, CitcomS, to compare numerical models with both dislocation and diffusion creep. We compare gravity, topography, and mantle temperature as a function of time from the models with constraints on the timing of volcanic and tectonic activity on Mercury. The results show that with the dislocation creep mechanism, there is potential for convective flow in the mantle over billions of years. In contrast, models with the diffusion creep mechanism start with a convecting mantle that transitions to global diffusive cooling within 500 Myrs. Diffusion creep rheology does not adequately produce a dynamic interior that is consistent with the historical volcanic and tectonic evolution of the planet. This research is the result of participation in GLADE, a nine-week summer REU program directed by Dave
Panebianco, Valeria; Barchetti, Flavio; Sciarra, Alessandro; Marcantonio, Andrea; Zini, Chiara; Salciccia, Stefano; Collettini, Federico; Gentile, Vincenzo; Hamm, Bernard; Catalano, Carlo
2013-10-01
To evaluate if Diffusion Tensor Imaging technique (DTI) can improve the visualization of periprostatic nerve fibers describing the location and distribution of entire neurovascular plexus around the prostate in patients who are candidates for prostatectomy. Magnetic Resonance Imaging (MRI), including a 2D T2-weighted FSE sequence in 3 planes, 3D T2-weighted and DTI using 16 gradient directions and b=0 and 1000, was performed on 36 patients. Three out of 36 patients were excluded from the analysis due to poor image quality (blurring N=2, artifact N=1). The study was approved by local ethics committee and all patients gave an informed consent. Images were evaluated by two radiologists with different experience in MRI. DTI images were analyzed qualitatively using dedicated software. Also 2D and 3D T2 images were independently considered. 3D-DTI allowed description of the entire plexus of the periprostatic nerve fibers in all directions, while 2D and 3D T2 morphological sequences depicted part of the fibers, in a plane by plane analysis of fiber courses. DTI demonstrated in all patients the dispersion of nerve fibers around the prostate on both sides including the significant percentage present in the anterior and anterolateral sectors. DTI offers optimal representation of the widely distributed periprostatic plexus. If validated, it may help guide nerve-sparing radical prostatectomy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Constrained reverse diffusion for thick slice interpolation of 3D volumetric MRI images.
Neubert, Aleš; Salvado, Olivier; Acosta, Oscar; Bourgeat, Pierrick; Fripp, Jurgen
2012-03-01
Due to physical limitations inherent in magnetic resonance imaging scanners, three dimensional volumetric scans are often acquired with anisotropic voxel resolution. We investigate several interpolation approaches to reduce the anisotropy and present a novel approach - constrained reverse diffusion for thick slice interpolation. This technique was compared to common methods: linear and cubic B-Spline interpolation and a technique based on non-rigid registration of neighboring slices. The methods were evaluated on artificial MR phantoms and real MR scans of human brain. The constrained reverse diffusion approach delivered promising results and provides an alternative for thick slice interpolation, especially for higher anisotropy factors.
Diffusion Constant and Shear Viscosity in the Charged 3D Hairy Black Hole
NASA Astrophysics Data System (ADS)
Naji, Jalil
2014-06-01
A charged hairy black hole in 3 dimensions considered to study hydrodynamics. Specially, we calculate diffusion constant and obtain the effect of black hole electric charge and scalar charge on it. This parameter help us to obtain information about black hole and will be useful to study shear viscosity of dual picture by using AdS/CFT.
NASA Technical Reports Server (NTRS)
Fletcher, Michael J.; Won, Mark J.; Cosentino, Gary B.; Te, Alexander
1993-01-01
Subsonic inlet ducts for advanced, high-performance aircraft are evolving towards complex three-dimensional shapes for reasons of overall integration and weight. These factors lead to diffuser geometries that may sacrifice inlet performance, unless careful attention to design details and boundary layer management techniques are employed. The ability of viscous computational fluid dynamic (CFD) analysis of such geometries to aid the aircraft configurator in this complex design problem is herein examined. The RANS-3D Reynolds-Averaged Navier-Stokes solver is applied to model the complex flowfield occurring in a representative diffuser geometry and the solutions are compared to experimental results from a static test of the inlet duct. The computational results are shown to compare very favorably with experimental results over a range of mass flow rates, including those involving large amounts of separation in the diffuser. In addition, a novel grid topology is presented, and two turbulence models are evaluated in this study as part of the RANS-3D code.
Holographic 3D imaging through diffuse media by compressive sampling of the mutual intensity
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Klein, Thorsten; Agour, Mostafa; Bergmann, Ralf B.
2017-05-01
We present a method for holographic imaging through a volume scattering material, which is based on selfreference and light with good spatial but limited temporal coherence. In contrast to existing techniques, we do not require a separate reference wave, thus our approach provides great advantages towards the flexibility of the measurement system. The main applications are remote sensing and investigation of moving objects through gaseous streams, bubbles or foggy water for example. Furthermore, due to the common path nature, the system is also insensitive to mechanical disturbances. The measurement result is a complex amplitude which is comparable to a phase shifted digital hologramm and therefore allows 3D imaging, numerical refocusing and quantitative phase contrast imaging. As an example of application, we present measurements of the quantitative phase contrast of the epidermis of an onion through a volume scattering material.
The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion
NASA Astrophysics Data System (ADS)
Bessaih, H.; Ferrario, B.
2017-02-01
In this paper, we study the 3D regularized Boussinesq equations. The velocity equation is regularized à la Leray through a smoothing kernel of order α in the nonlinear term and a β-fractional Laplacian; we consider the critical case α + β =5/4 and we assume 1/2 < β <5/4. The temperature equation is a pure transport equation, where the transport velocity is regularized through the same smoothing kernel of order α. We prove global well posedness when the initial velocity is in Hr and the initial temperature is in H r - β for r > max (2 β , β + 1). This regularity is enough to prove uniqueness of solutions. We also prove a continuous dependence of solutions on the initial conditions.
The AN neutron transport by nodal diffusion
Barbarino, A.; Tomatis, D.
2013-07-01
The two group diffusion model combined to a nodal approach in space is the preferred scheme for the industrial simulation of nuclear water reactors. The main selling point is the speed of computation, allowing a large number of parametric studies. Anyway, the drawbacks of the underlying diffusion equation may arise with highly heterogeneous interfaces, often encountered in modern UO{sub 2} and MO{sub x} fuel loading patterns, and boron less controlled systems. This paper aims at showing how the simplified AN transport model, equivalent to the well known SPN, can be implemented in standard diffusion codes with minor modifications. Some numerical results are illustrated. (authors)
Carrera, Germán; Gil, Amparo; Segura, Javier
2005-11-01
We present Calcium3D, a user-friendly software package for simulating calcium triggered processes in neuroendocrine cells. We use Monte Carlo methods for the simulation of the basic processes involved: entry of calcium into the cytoplasm, the diffusion of ions and mobile intracellular calcium buffers inside the intracellular medium, and the kinetics of the reaction of calcium with these buffers. The outputs of the simulation are calcium and buffer concentrations as a function of time and for different depths from the cellular membrane.
Neutron radiography determination of water diffusivity in fired clay brick.
El Abd, A; Czachor, A; Milczarek, J
2009-04-01
The real time neutron and gamma radiography station at Maria reactor, Institute of Atomic Energy, Swierk, Poland, was used to investigate the isothermal water absorption into fired clay brick samples. The investigated brick is different from the bricks reported in El Abd and Milczarek [2004. Neutron radiology study of water absorption in porous building materials: anomalous diffusing analysis. J. Phys. D: Appl. Phys. 37, 2305-2313] in density and chemical composition. Neutron radiography images were acquired regularly as the absorption time elapses. The water content, theta, along the flow direction, x, namely the water profiles theta(x,t) and the water front position as a function of the absorption time, t, were extracted from neutron radiography images. The results were discussed in terms of the macroscopic theory of water infiltration in unsaturated porous media. It was shown that the water front position followed the square root t-scaling (x(m)=phi(m) square root t) and the profiles (theta-phi) converged to a universal one master curve. The water diffusivity was analytically determined from the experimental results. It has the so-called hypo-diffusive character, namely its gradient with respect to the water content is positive. Neutron radiography is a powerful method to distinguish among the unsaturated flow in different porous construction materials.
Cooling of neutron stars with diffusive envelopes
NASA Astrophysics Data System (ADS)
Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.
2016-12-01
We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105-106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.
NASA Astrophysics Data System (ADS)
Hu, Y.; Ji, Y.; Egbert, G. D.
2015-12-01
The fictitious time domain method (FTD), based on the correspondence principle for wave and diffusion fields, has been developed and used over the past few years primarily for marine electromagnetic (EM) modeling. Here we present results of our efforts to apply the FTD approach to land and airborne TEM problems which can reduce the computer time several orders of magnitude and preserve high accuracy. In contrast to the marine case, where sources are in the conductive sea water, we must model the EM fields in the air; to allow for topography air layers must be explicitly included in the computational domain. Furthermore, because sources for most TEM applications generally must be modeled as finite loops, it is useful to solve directly for the impulse response appropriate to the problem geometry, instead of the point-source Green functions typically used for marine problems. Our approach can be summarized as follows: (1) The EM diffusion equation is transformed to a fictitious wave equation. (2) The FTD wave equation is solved with an explicit finite difference time-stepping scheme, with CPML (Convolutional PML) boundary conditions for the whole computational domain including the air and earth , with FTD domain source corresponding to the actual transmitter geometry. Resistivity of the air layers is kept as low as possible, to compromise between efficiency (longer fictitious time step) and accuracy. We have generally found a host/air resistivity contrast of 10-3 is sufficient. (3)A "Modified" Fourier Transform (MFT) allow us recover system's impulse response from the fictitious time domain to the diffusion (frequency) domain. (4) The result is multiplied by the Fourier transformation （FT） of the real source current avoiding time consuming convolutions in the time domain. (5) The inverse FT is employed to get the final full waveform and full time response of the system in the time domain. In general, this method can be used to efficiently solve most time-domain EM
Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)
1999-01-01
A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise,
Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)
2000-01-01
A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise,
Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography
NASA Astrophysics Data System (ADS)
Ludwig, N.; Teruzzi, P.
2002-06-01
Dynamical thermographic techniques like video pulse thermography are very useful for the non-destructive testing of structural components. In literature different models were proposed, which allow to describe the time evolution of the thermal contrast for materials with sub-superficial defects. In the case of circular defect the time evolution of the full width half maximum (FWHM) of the thermal contrast was studied both theoretically and experimentally. Nevertheless a mismatch in defect sizing between experimental results and theoretical simulations was found. Possible explanations of this disagreement was analysed. A factor widely neglected is the heat loss (radiation and convection). In this paper a theoretical analysis of the influence of these contributions is reported. Furthermore in order to explain the experimental evidence of FWHM time evolution we introduced a correction due to lateral heat diffusion around the defect. In this way a possible explanation for the experimental results was obtained. Brick samples with a circular flat bottom hole as defect was tested both for the interest in defect sizing in building material through NDT and for the low thermal diffusivity of this material which allows the study of the phenomenon in a slow motion.
MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model
Wang, Y; Bahng, J; Kotov, N
2014-06-15
Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF
NASA Astrophysics Data System (ADS)
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the
Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.
2008-07-02
We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.
The relevance of ambipolar diffusion for neutron star evolution
NASA Astrophysics Data System (ADS)
Passamonti, Andrea; Akgün, Taner; Pons, José A.; Miralles, Juan A.
2017-03-01
We study ambipolar diffusion in strongly magnetized neutron stars, with special focus on the effects of neutrino reaction rates and the impact of a superfluid/superconducting transition in the neutron star core. For axisymmetric magnetic field configurations, we determine the deviation from β-equilibrium induced by the magnetic force and calculate the velocity of the slow, quasi-stationary, ambipolar drift. We study the temperature dependence of the velocity pattern and clearly identify the transition to a predominantly solenoidal flow. For stars without superconducting/superfluid constituents and with a mixed poloidal-toroidal magnetic field of typical magnetar strength, we find that ambipolar diffusion proceeds fast enough to have a significant impact on the magnetic field evolution only at low core temperatures, T ≲ 1-2 × 108 K. The ambipolar diffusion time-scale becomes appreciably shorter when fast neutrino reactions are present, because the possibility to balance part of the magnetic force with pressure gradients is reduced. We also find short ambipolar diffusion time-scales in the case of superconducting cores for T ≲ 109 K, due to the reduced interaction between protons and neutrons. In the most favourable scenario, with fast neutrino reactions and superconducting cores, ambipolar diffusion results in advection velocities of several km kyr-1. This velocity can substantially reorganize magnetic fields in magnetar cores, in a way which can only be confirmed by dynamical simulations.
Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu
2011-01-01
High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426
Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation
Jamelot, Erell; Ciarlet, Patrick
2013-05-15
Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart–Thomas–Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code.
Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation
NASA Astrophysics Data System (ADS)
Jamelot, Erell; Ciarlet, Patrick
2013-05-01
Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart-Thomas-Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code. APOLLO3 is a registered trademark in France.
Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn
2016-03-04
Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up.
Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn
2016-01-01
Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up. PMID:26940661
An anatomically driven anisotropic diffusion filtering method for 3D SPECT reconstruction
NASA Astrophysics Data System (ADS)
Kazantsev, Daniil; Arridge, Simon R.; Pedemonte, Stefano; Bousse, Alexandre; Erlandsson, Kjell; Hutton, Brian F.; Ourselin, Sébastien
2012-06-01
In this study, we aim to reconstruct single-photon emission computed tomography images using anatomical information from magnetic resonance imaging as a priori knowledge about the activity distribution. The trade-off between anatomical and emission data is one of the main concerns for such studies. In this work, we propose an anatomically driven anisotropic diffusion filter (ADADF) as a penalized maximum likelihood expectation maximization optimization framework. The ADADF method has improved edge-preserving denoising characteristics compared to other smoothing penalty terms based on quadratic and non-quadratic functions. The proposed method has an important ability to retain information which is absent in the anatomy. To make our approach more stable to the noise-edge classification problem, robust statistics have been employed. Comparison of the ADADF method is performed with a successful anatomically driven technique, namely, the Bowsher prior (BP). Quantitative assessment using simulated and clinical neuroreceptor volumetric data show the advantage of the ADADF over the BP. For the modelled data, the overall image resolution, the contrast, the signal-to-noise ratio and the ability to preserve important features in the data are all improved by using the proposed method. For clinical data, the contrast in the region of interest is significantly improved using the ADADF compared to the BP, while successfully eliminating noise.
Togao, Osamu; Yamashita, Koji; Kikuchi, Kazufumi; Obara, Makoto; Yoshiura, Takashi; Honda, Hiroshi
2016-01-01
Objective: Diffusivity of pituitary adenoma has not been investigated fully. The purpose of this study was to evaluate the feasibility of turbo field echo with diffusion-sensitized driven-equilibrium (DSDE-TFE) preparation for pituitary adenoma in the sella turcica and unaffected anterior lobe of the pituitary gland. Methods: This retrospective study included 23 adult patients with pituitary adenomas. Among them, 6 each were prolactin-producing adenomas and growth hormone-producing adenomas (GH) and the remaining 11 were non-functioning adenomas (NON). The apparent diffusion coefficients (ADCs) were measured in the pituitary adenoma and in the unaffected pituitary gland using coronal reformatted plane. Results: All pituitary adenomas were clearly visualized on DSDE-TFE and ADC maps without obvious geometrical distortion. There were no statistically significant differences in ADC of the all pituitary adenoma (1.50 ± 0.61 × 10−3 mm2 s−1) and the unaffected anterior lobe of the pituitary gland (1.49 ± 0.37 × 10−3 mm2 s−1, p = 0.99). The ADC in prolactin-producing adenomas (2.04 ± 0.76 × 10−3 mm2 s−1) was significantly higher than that in GH (1.26 ± 0.47 × 10−3 mm2 s−1; p < 0.05) and NON (1.33 ± 0.42 × 10−3 mm2 s−1; p = 0.04). There was no statistically significant difference between GH and NON (p = 0.97). The intraclass correlation coefficient for ADC was 0.985 in adenomas and 0.635 in unaffected glands. Conclusion: With its insensitivity to field inhomogeneity and high spatial resolution, DSDE-TFE proved a feasible method for evaluating the diffusivity in the pituitary gland and adenoma. Advances in knowledge: DSDE-TFE could enable us to assess ADC of pituitary adenoma in the sella turcica with high resolution and few susceptibility artefacts. PMID:27187598
Dzubak, Allison L.; Krogel, Jaron T.; Reboredo, Fernando A.
2017-07-10
The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. In this paper, we estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc–Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range ofmore » fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc–Zn. The recently generated pseudopotentials of Krogel et al. reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. Finally, for the Sc–Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.« less
Elasto-plastic localised shearing and diffuse dilatation modeled around a 3D inflating magma chamber
NASA Astrophysics Data System (ADS)
Gerbault, Muriel; Hassani, Riad
2017-04-01
A three-dimensional numerical model of failure around an upper crustal magmatic chamber is presented, by applying an increasing magmatic pressure at the chamber walls. In a cylindrical geometry (equivalent to 2D plane strain), the failure domain develops first from the surface downwards then from the chamber wall upwards, and these two zones connect with increasing pressure to form a pair of connected conical blocks consistent with plastic slip line theory. In contrast in a spherical chamber, shear failure initiates and develops from the chamber's crest towards the surface, no localised shear band develops at depth, the plastic domain remains diffuse. However at the surface radial elliptic outwards patterns develop. Localised shear zones do not develop at depth in prolate chambers either. In turn in oblate chambers, shear bands develop above the central vertical axis, similarly to 2d patterns, and vanish progressively along the horizontal elongated axis. At the edge of the horizontal elongated axis outside the chamber, tensile domains develop due to the extra vertical pull induced there by the internal overpressure. The critical internal pressure for bedrock failure is, as in 2D, dependent on the state of internal fluid pressure within the bedrock, that reduces the depth-dependent component of the Coulomb yield stress. This critical overpressure and the onset of failure is compared with previous studies on the dependency on chamber shape. Furthermore from the stress field distribution, one can infer that magmatic fluids propagate out of the chamber in competition either along the sub-vertical shear zones connecting to the surface, or laterally as they flow within the deeper lateral dilation zones where porosity is created. Lateral propagation of magmatic fluids is thus favored in the case of oblate chambers, as opposed to prolate chambers where porosity is reduced by compressional stresses along the vertical walls, and thus where vertical flow (eg. diking?) is
NASA Astrophysics Data System (ADS)
Dzubak, Allison L.; Krogel, Jaron T.; Reboredo, Fernando A.
2017-07-01
The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. We estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc-Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range of fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc-Zn. The recently generated pseudopotentials of Krogel et al. [Phys. Rev. B 93, 075143 (2016)] reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. [J. Chem. Phys. 129, 164115 (2008)] by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. For the Sc-Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.
NASA Astrophysics Data System (ADS)
Dzhalandinov, A.; Tsofin, V.; Kochkin, V.; Panferov, P.; Timofeev, A.; Reshetnikov, A.; Makhotin, D.; Erak, D.; Voloschenko, A.
2016-02-01
Usually the synthesis of two-dimensional and one-dimensional discrete ordinate calculations is used to evaluate neutron fluence on VVER-1000 reactor pressure vessel (RPV) for prognosis of radiation embrittlement. But there are some cases when this approach is not applicable. For example the latest projects of VVER-1000 have upgraded surveillance program. Containers with surveillance specimens are located on the inner surface of RPV with fast neutron flux maximum. Therefore, the synthesis approach is not suitable enough for calculation of local disturbance of neutron field in RPV inner surface behind the surveillance specimens because of their complicated and heterogeneous structure. In some cases the VVER-1000 core loading consists of fuel assemblies with different fuel height and the applicability of synthesis approach is also ambiguous for these fuel cycles. Also, the synthesis approach is not enough correct for the neutron fluence estimation at the RPV area above core top. Because of these reasons only the 3D neutron transport codes seem to be satisfactory for calculation of neutron fluence on the VVER-1000 RPV. The direct 3D calculations are also recommended by modern regulations.
NASA Astrophysics Data System (ADS)
Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li
2017-08-01
We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.
NASA Astrophysics Data System (ADS)
Peng, Yingping; Xiang, Zhaoyin
2017-06-01
In this paper, we investigate the 3D Keller-Segel-Stokes (K-S-S) system with nonlinear diffusion term Δ nm (m>0) and rotational flux posed in a bounded domain Ω with smooth boundary. Under the assumption that the Frobenius norm of the tensor-valued chemotactic sensitivity S( x, n, c) satisfies |S(x,n,c)|≤ CS(1+n)^{-α }, by seeking some new functionals and using the bootstrap arguments on the regularized system, we establish the existence and boundedness of global weak solutions to K-S-S system for arbitrarily large initial data under the assumption m+2α >2 and m>3/4, which includes both the degenerate (m>1) and the singular (m<1) case.
NASA Astrophysics Data System (ADS)
Léone, Philippe; Bellitto, Carlo; Bauer, Elvira M.; Righini, Guido; André, Gilles; Bourée, Françoise
2008-11-01
The crystal and magnetic structures of the hybrid organic-inorganic layer compound Fe[(CD 3PO 3)(D 2O)] have been studied by neutron powder diffraction as a function of temperature down to 1.5 K. The neutron diffraction pattern recorded at 200 K shows that the fully deuterated compound crystallizes in one of the two known forms of the undeuterated Fe[(CH 3PO 3)(H 2O)]. The crystal structure is orthorhombic, space group Pmn2 1, with the following unit-cell parameters: a=5.7095(1) Å, b=8.8053(3) Å and c=4.7987(1) Å; Z=2. The crystal structure remains unchanged on cooling from 200 to 1.5 K. Moreover, at low temperature, Fe[(CD 3PO 3)(D 2O)] shows a commensurate magnetic structure ( k=(0,0,0)). As revealed by bulk susceptibility measurements on Fe[(CH 3PO 3)(H 2O)], the magnetic structure corresponds to a canted antiferromagnet with a critical temperature TN=25 K. Neutron powder diffraction reveals that below TN=23.5 K the iron magnetic moments in Fe[(CD 3PO 3)(D 2O)] are antiferromagnetically coupled and oriented along the b-axis, perpendicular to the inorganic layers. No ferromagnetic component is observable in the neutron powder diffraction experiment, due to its too small value (<0.1 μB).
Extrapolation techniques applied to matrix methods in neutron diffusion problems
NASA Technical Reports Server (NTRS)
Mccready, Robert R
1956-01-01
A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.
Diffusion of water in bentonite clay: Neutron scattering study
NASA Astrophysics Data System (ADS)
Sharma, V. K.; Prabhudesai, S. A.; Dessai, R. Raut; Erwin Desa, J. A.; Mitra, S.; Mukhopadhyay, R.
2013-02-01
Diffusion of water confined in natural bentonite clay is studied using the quasi-elastic neutron scattering (QENS) technique. X-ray diffraction shows a well-defined crystalline structure of the clay with an interlayer spacing of 13 Å. The QENS experiment has been carried out on hydrated as well as dehydrated clay at 300 K. Significant quasi-elastic broadening was observed in case of hydrated bentonite clay whereas dehydrated clay did not show any broadening over the instrument resolution. Analysis of QENS data reveals that diffusion of water occurs through jump diffusion characterized by random distribution of jump lengths. Diffusion of water in clay is found to be hindered vis a vis bulk water.
Clatz, Olivier; Sermesant, Maxime; Bondiau, Pierre-Yves; Delingette, Hervé; Warfield, Simon K; Malandain, Grégoire; Ayache, Nicholas
2005-10-01
We propose a new model to simulate the three-dimensional (3-D) growth of glioblastomas multiforma (GBMs), the most aggressive glial tumors. The GBM speed of growth depends on the invaded tissue: faster in white than in gray matter, it is stopped by the dura or the ventricles. These different structures are introduced into the model using an atlas matching technique. The atlas includes both the segmentations of anatomical structures and diffusion information in white matter fibers. We use the finite element method (FEM) to simulate the invasion of the GBM in the brain parenchyma and its mechanical interaction with the invaded structures (mass effect). Depending on the considered tissue, the former effect is modeled with a reaction-diffusion or a Gompertz equation, while the latter is based on a linear elastic brain constitutive equation. In addition, we propose a new coupling equation taking into account the mechanical influence of the tumor cells on the invaded tissues. The tumor growth simulation is assessed by comparing the in-silico GBM growth with the real growth observed on two magnetic resonance images (MRIs) of a patient acquired with 6 mo difference. Results show the feasibility of this new conceptual approach and justifies its further evaluation.
3D 3He diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs
Jacob, R. E.; Minard, K. R.; Laicher, G.; Timchalk, C.
2008-01-01
In this work, we investigate 3He magnetic resonance imaging as a noninvasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25 U/100 g body wt of porcine pancreatic elastase dissolved in 200 μl saline. Rats were then paired with saline-dosed controls. Nine three-dimensional (3D) 3He diffusion-weighted images were acquired at 1, 2, or 3 wk postdose, after which the lungs were harvested and prepared for histological analysis. Recently introduced indexes sensitive to the heterogeneity of the air space size distribution were calculated. These indexes, D1 and D2, were derived from the moments of the mean equivalent airway diameters. Averaged over the entire lung, it is shown that the average 3He diffusivity (Dave) correlates well with histology (R = 0.85, P < 0.0001). By matching small (0.046 cm2) regions in 3He images with corresponding regions in histological slices, Dave correlates significantly with both D1 and D2 (R = 0.88 and R = 0.90, respectively, with P < 0.0001). It is concluded that 3He MRI is a viable noninvasive morphometric tool for localized in vivo emphysema assessment. PMID:18719237
Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W
2016-04-29
The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.
NASA Astrophysics Data System (ADS)
Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.
2016-04-01
The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.
A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations
NASA Astrophysics Data System (ADS)
Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.
2017-06-01
Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical
Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M
2014-01-01
3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P < .0001), confirming the accuracy of the ADC measurement with the diffusion-sensitized driven-equilibrium sequence. The ADCs in the normal pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P < .01). We demonstrated that diffusion-sensitized driven-equilibrium turbo field echo is feasible in assessing ADC in the pituitary gland.
Dubey, Prachi; Lioutas, Vasileios-Arsenios; Bhadelia, Rafeeque; Manor, Brad; Novak, Peter; Selim, Magdy; Novak, Vera
2016-06-01
Non-infarct zone white matter wallerian degeneration is well-documented in large volume territorial infarctions. However to what extent these abnormalities exist in small volume infarction is not known, particularly since routine T2/FLAIR MR images show minimal changes in such cases. We therefore utilized DTI based quantitative 3D tractography for quantitative assessment of white matter integrity in chronic phase of small volume anterior circulation infarcts. Eleven chronic stroke subjects with small anterior circulation large vessel infarcts (≤10cm(3) volume of primary infarct) were compared with 8 age matched controls. These infarcts had negligible to mild gliosis and encephalomalacia in the primary infarct territory without obvious wallerian degeneration on conventional MRI. Quantitative Diffusion Tensor 3-D tractography was performed for CST, genu and splenium of corpus callosum. Tract based Trace and fractional anisotropy (FA) were compared with age matched controls. On univariate analysis, Chronic stroke subjects had significant elevation in Trace measurement in genu of corpus callosum (GCC), ipsilesional and contralesional CST, (p<0.05), compared to controls. After adjusting for smoking, hypertension (HTN) and non-specific white matter hyperintensities, (WMHs), there was significant elevation in trace within the ipsilesional CST (p=0.05). Contralesional CST FA correlated significantly with walking speed, r=0.67, p=0.03. Stroke subjects with small volume infarcts demonstrate significant quantitative microstructural white matter abnormalities in chronic phase, which are otherwise subthreshold for detection on routine imaging. Ability to quantify these changes provides an important marker for assessing non-infarct zone neuroaxonal integrity in the chronic phase even in the setting of small infarction. Copyright © 2016 Elsevier Inc. All rights reserved.
3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D
Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.
2012-07-01
As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)
Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.
2016-01-01
The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249
Lockwood, Sarah Y; Meisel, Jayda E; Monsma, Frederick J; Spence, Dana M
2016-02-02
The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ∼ 5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.
2000-01-01
When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain
Wang, Qifeng; Li, Tao; Lang, Jinyi; Wang, Jie; Wang, Jian; Liu, Huiming; Jia, Xitang; Liu, Bo; Wang, C-K Chris
2015-10-24
We conducted a retrospective analysis on 884 patients who were diagnosed with esophageal squamous cell carcinoma (ESCC) and treated with either the neutron brachytherapy in combination with external beam radiotherapy (NBT + EBRT) or 3-dimensional conformal radiation therapy (3D-CRT) to determine the differences in efficacy and morbidity between the two treatment groups. The 884 ESCC patients treated with either NBT + EBRT or 3D-CRT between 2002 and 2012 were retrospectively reviewed and analyzed. Multivariable Cox regression was used to compare oncologic outcomes of the two groups of patients in the context of other clinically relevant variables. The acute and chronic toxicities associated with the two groups were compared using Fisher exact and log-rank tests, respectively. Among the 884 patients, 545 received NBT + EBRT and 339 received 3D-CRT (i.e. EBRT-only). The age range is 39-95 years (median 66). The follow-up time range is 3-145 months (median 32). The analysis shows that the NBT + EBRT group has higher overall survival rate and local control rate than that of the 3D-CRT group. The acute toxicity effects were acceptable for both groups of patients with the NBT + EBRT group showing higher rates of leukopenia and thrombocytopenia and the 3D-CRT group showing higher rates on fistula and massive bleeding. The patients treated with NBT + EBRT showed better oncologic outcomes than those treated with 3D-CRT. The toxicity effects were acceptable for both groups with the NBT + EBRT group showing higher rates on the acute effects and the 3D-CRT group showing higher rates on the late effects.
Drozdowicz, K; Krynicka, E; Dabrowska, J
2003-06-01
The pulsed neutron experiment (the variable geometric buckling experiment) in spherical geometry has been simulated using the MCNP code. The time decay of the thermal neutron flux has been observed as a function of the sample size. The thermal neutron diffusion cooling coefficient C with the correction F has been determined for three basic rock minerals (quartz, calcite, dolomite) at the given specific densities. The corresponding density-removed parameters have also been obtained.
Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph; McEachern, Donald; Ougouag, Abderrafi
2014-04-30
Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...
2017-05-01
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
Calculation of the neutron diffusion equation by using Homotopy Perturbation Method
NASA Astrophysics Data System (ADS)
Koklu, H.; Ersoy, A.; Gulecyuz, M. C.; Ozer, O.
2016-03-01
The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent results consistent with the existing literature.
Calculation of the neutron diffusion equation by using Homotopy Perturbation Method
Koklu, H. Ozer, O.; Ersoy, A.; Gulecyuz, M. C.
2016-03-25
The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent results consistent with the existing literature.
NASA Technical Reports Server (NTRS)
Agrawal, Ajay K.; Yang, Tah-Teh
1993-01-01
This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.
A Numerical Model for Coupling of Neutron Diffusion and Thermomechanics in Fast Burst Reactors
Samet Y. Kadioglu; Dana A. Knoll; Cassiano De Oliveira
2008-11-01
We develop a numerical model for coupling of neutron diffusion adn termomechanics in order to stimulate transient behavior of a fast burst reactor. The problem involves solving a set of non-linear different equations which approximate neutron diffusion, temperature change, and material behavior. With this equation set we will model the transition from a supercritical to subcritical state and possible mechanical vibration.
NASA Astrophysics Data System (ADS)
Minkov, G. M.; Germanenko, A. V.; Negachev, S. A.; Rut, O. E.; Sukhorukov, Eugene V.
1998-12-01
The results of experimental and theoretical studies of zero-bias anomaly (ZBA) in the Pb-oxide- n-InAs tunnel structures in magnetic field up to 6 T are presented. A specific feature of the structures is a coexistence of the 2D and 3D states at the Fermi energy near the semiconductor surface. Experimentally observed magnetic field dependence of the amplitude of ZBA for different orientations of the magnetic field is in agreement with the proposed theoretical model. According to this model, electrons tunnel into 2D states, and move diffusively in 2D layer, whereas the main contribution to the screening comes from 3D electrons.
Karim, Alamgir; Bucknall, David; Raghavan, Dharmaraj
2015-02-23
a fundamental study that does not set out to evaluate new materials or produce devices, but rather we wish to understand from first principles how the molecular structure of polymer-fullerene mixtures determined using neutron scattering (small angle neutron scattering and neutron reflection) affects device characteristics and consequently performance. While this seems a very obvious question to ask, this critical understanding is far from being realized despite the wealth of studies into OPV’s and is severely limiting organic PV devices from achieving their theoretical potential. Despite the fundamental nature of proposed work, it is essential to remain technologically relevant and therefore to ensure we address these issues we have developed relationships on the fundamental nature of structure-processing-property paradigm as applied to future need for large area, flexible OPV devices. Nanoscale heterojunction systems consisting of fullerenes dispersed in conjugated polymers are promising materials candidates for achieving high performance organic photovoltaic (OPV) devices. In order to understand the phase behavior in these devices, neutron reflection is used to determine the behavior of model conjugated polymer-fullerene mixtures. Neutron reflection is particularly useful for these types of thin film studies since the fullerene generally have a high scattering contrast with respect to most polymers. We are studying model bulk heterojunction (BHJ) films based on mixtures of poly(3-hexyl thiophene)s (P3HT), a widely used photoconductive polymer, and different fullerenes (C60, PCBM and bis-PCBM). The characterization technique of neutron reflectivity measurements have been used to determine film morphology in a direction normal to the film surfaces. The novelty of the approach over previous studies is that the BHJ layer is sandwiched between a PEDOT/PSS and Al layers in real device configuration. Using this model system, the effect of typical thermal annealing
NASA Astrophysics Data System (ADS)
Mattauch, S.; Ioffe, A.; Lott, D.; Bottyán, L.; Daillant, J.; Markó, M.; Menelle, A.; Sajti, S.; Veres, T.
2017-01-01
The instrumental concept of HERITAGE - a reflectometer with a horizontal sample geometry - well fitted to the long pulse structure of a neutron source is presented. It is constitutes a new class of reflectometers achieving the unprecedentedly high flux for classical specular reflectometry combined with off-specular reflectometry and grazing incidence small-angle scattering (GISANS), thus resulting in a complete 3-d exploration of lateral and in depth structures in thin films. This is achieved by specially designed neutron guides. In the horizontal direction (perpendicular to the scattering plane) the guide's elliptic shape focusses the neutrons onto the sample. In the vertical direction a multichannel geometry provides a smooth divergence distribution at the sample position while accepting the entire beam from a compact high-brilliance flat moderator. The modular collimation setup of HERITAGE provides extremely high flexibility in respect to sample geometries and environments, including the possibility to study virtually all types of solid and liquid interfaces, statically or kinetically. The use of multiple beam illumination allows for reflectivity and GISANS measurements at liquid interfaces both from above and below without a need to move the sample. This concept assures the delivery of the maximum possible and usable flux to the sample in both reflectivity and GISANS measurement regimes. The presented design outperforms the flux of all present-day and already for the ESS planned reflectometers and GISANS setups in flux and in measuring time for standard samples.
Harkes, Rolf; Keizer, Veer I P; Schaaf, Marcel J M; Schmidt, Thomas
2015-01-01
Single-molecule imaging of proteins in a 2D environment like membranes has been frequently used to extract diffusive properties of multiple fractions of receptors. In a 3D environment the apparent fractions however change with observation time due to the movements of molecules out of the depth-of-field of the microscope. Here we developed a mathematical framework that allowed us to correct for the change in fraction size due to the limited detection volume in 3D single-molecule imaging. We applied our findings on the mobility of activated glucocorticoid receptors in the cell nucleus, and found a freely diffusing fraction of 0.49±0.02. Our analysis further showed that interchange between this mobile fraction and an immobile fraction does not occur on time scales shorter than 150 ms.
NASA Astrophysics Data System (ADS)
Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.; Zimin, A. A.; Kompaniets, G. V.; Nevinitsa, V. A.; Moroz, N. P.; Fomichenko, P. A.; Timoshinov, A. V.; Volkov, Yu. N.
2016-12-01
The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis of experiments on measurement of efficiency of control rods mockups and protection system (CPS).
Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.; Zimin, A. A.; Kompaniets, G. V.; Nevinitsa, V. A. Moroz, N. P.; Fomichenko, P. A.; Timoshinov, A. V.; Volkov, Yu. N.
2016-12-15
The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis of experiments on measurement of efficiency of control rods mockups and protection system (CPS).
Cullen, D.E
2000-11-22
TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.
Cullen, D E
1998-11-22
TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.
Tiwari, Anand P; Yoo, HeeJoun; Lee, JeongTaik; Kim, Doyoung; Park, Jong Hyeok; Lee, Hyoyoung
2015-07-28
We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable process applicable to mass production for synthesizing non-aggregated MoS2-intercalated 3D hybrid-nanostructured graphite based on stress induced and microwave irradiation. X-ray diffraction, X-ray photospectroscopy, Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy analyses demonstrated that the as-synthesized materials consisted of MoS2-intercalated 3D hybrid-nanostructured graphite platelets that had a multiply repeated graphite/MoS2/graphite structure. The obtained MoS2-graphite powder surpasses MoS2 as an anode material in terms of specific capacity, cyclic stability, and rate performances at high current densities for Li-ion batteries. The electrochemical impedance spectroscopy demonstrated that the graphite sheets not only reduced the contact resistance in the electrode but also facilitated electron transfer in the lithiation/delithiation processes. The superior electrochemical performances especially for the cycling stability of the Li-ion battery originate from prevention of the sulfur diffusion of the MoS2-intercalated 3D-nanostructured graphite.
Iso-geometric analysis for neutron diffusion problems
Hall, S. K.; Eaton, M. D.; Williams, M. M. R.
2012-07-01
Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry to be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)
Kamerlin, Natasha; Elvingson, Christer
2016-11-30
We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.
Bertozzi, William; Hasty, Richard; Klimenko, Alexei; Korbly, Stephen E.; Ledoux, Robert J.; Park, William
2009-03-10
Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D) uses electromagnetic scattering processes to yield a three-dimensional map of the effective-Z and the density in a container. The EZ-3D method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.
Cooperative learning of neutron diffusion and transport theories
Robinson, Michael A.
1999-04-30
A cooperative group instructional strategy is being used to teach a unit on neutron transport and diffusion theory in a first-year-graduate level, Reactor Theory course that was formerly presented in the traditional lecture/discussion style. Students are divided into groups of two or three for the duration of the unit. Class meetings are divided into traditional lecture/discussion segments punctuated by cooperative group exercises. The group exercises were designed to require the students to elaborate, summarize, or practice the material presented in the lecture/discussion segments. Both positive interdependence and individual accountability are fostered by adjusting individual grades on the unit exam by a factor dependent upon group achievement. Group collaboration was also encouraged on homework assignments by assigning each group a single grade on each assignment. The results of the unit exam have been above average in the two classes in which the cooperative group method was employed. In particular, the problem solving ability of the students has shown particular improvement. Further,the students felt that the cooperative group format was both more educationally effective and more enjoyable than the lecture/discussion format.
Braeckmans, Kevin; Remaut, Katrien; Vandenbroucke, Roosmarijn E.; Lucas, Bart; De Smedt, Stefaan C.; Demeester, Joseph
2007-01-01
We present a truly quantitative fluorescence recovery after photobleaching (FRAP) model for use with the confocal laser scanning microscope based on the photobleaching of a long line segment. The line FRAP method is developed to complement the disk FRAP method reported before. Although being more subject to the influence of noise, the line FRAP model has the advantage of a smaller bleach region, thus allowing for faster and more localized measurements of the diffusion coefficient and mobile fraction. The line FRAP model is also very well suited to examine directly the influence of the bleaching power on the effective bleaching resolution. We present the outline of the mathematical derivation, leading to a final analytical expression to calculate the fluorescence recovery. We examine the influence of the confocal aperture and the bleaching power on the measured diffusion coefficient to find the optimal experimental conditions for the line FRAP method. This will be done for R-phycoerythrin and FITC-dextrans of various molecular weights. The ability of the line FRAP method to measure correctly absolute diffusion coefficients in three-dimensional samples will be evaluated as well. Finally we show the application of the method to the simultaneous measurement of free green fluorescent protein diffusion in the cytoplasm and nucleus of living A549 cells. PMID:17208970
NASA Astrophysics Data System (ADS)
Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping
2017-03-01
A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.
NASA Astrophysics Data System (ADS)
Tiwari, Anand P.; Yoo, Heejoun; Lee, Jeongtaik; Kim, Doyoung; Park, Jong Hyeok; Lee, Hyoyoung
2015-07-01
We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable process applicable to mass production for synthesizing non-aggregated MoS2-intercalated 3D hybrid-nanostructured graphite based on stress induced and microwave irradiation. X-ray diffraction, X-ray photospectroscopy, Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy analyses demonstrated that the as-synthesized materials consisted of MoS2-intercalated 3D hybrid-nanostructured graphite platelets that had a multiply repeated graphite/MoS2/graphite structure. The obtained MoS2-graphite powder surpasses MoS2 as an anode material in terms of specific capacity, cyclic stability, and rate performances at high current densities for Li-ion batteries. The electrochemical impedance spectroscopy demonstrated that the graphite sheets not only reduced the contact resistance in the electrode but also facilitated electron transfer in the lithiation/delithiation processes. The superior electrochemical performances especially for the cycling stability of the Li-ion battery originate from prevention of the sulfur diffusion of the MoS2-intercalated 3D-nanostructured graphite.We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable process applicable to mass production for synthesizing non
Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping
2017-01-01
A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing. PMID:28304371
Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping
2017-03-17
A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.
NASA Astrophysics Data System (ADS)
Karunakaran, Deepak
Electromigration (EM) has been a serious reliability concern in microelectronics packaging for close to half a century now. Whenever the challenges of EM are overcome newer complications arise such as the demand for better performance due to increased miniaturization of semiconductor devices or the problems faced due to undesirable properties of lead-free solders. The motivation for the work is that there exists no fully computational modeling study on EM damage in lead-free solders (and also in lead-based solders). Modeling techniques such as one developed here can give new insights on effects of different grain features and offer high flexibility in varying parameters and study the corresponding effects. In this work, a new computational approach has been developed to study void nucleation and initial void growth in solders due to metal atom diffusion. It involves the creation of a 3D stochastic mesoscale model of the microstructure of a polycrystalline Tin structure. The next step was to identify regions of current crowding or 'hot-spots'. This was done through solving a finite difference scheme on top of the 3D structure. The nucleation of voids due to atomic diffusion from the regions of current crowding was modeled by diffusion from the identified hot-spot through a rejection free kinetic Monte-Carlo scheme. This resulted in the net movement of atoms from the cathode to the anode. The above steps of identifying the hotspot and diffusing the atoms at the hotspot were repeated and this lead to the initial growth of the void. This procedure was studied varying different grain parameters. In the future, the goal is to explore the effect of more grain parameters and consider other mechanisms of failure such as the formation of intermetallic compounds due to interstitial diffusion and dissolution of underbump metallurgy.
Adluru, Nagesh; Lee, Jee Eun; Lazar, Mariana; Lainhart, Janet E.; Alexander, Andrew L.
2011-01-01
We present a novel cosine series representation for encoding fiber bundles consisting of multiple 3D curves. The coordinates of curves are parameterized as coefficients of cosine series expansion. We address the issue of registration, averaging and statistical inference on curves in a unified Hilbert space framework. Unlike traditional splines, the proposed method does not have internal knots and explicitly represents curves as a linear combination of cosine basis. This simplicity in the representation enables us to design statistical models, register curves and perform subsequent analysis in a more unified statistical framework than splines. The proposed representation is applied in characterizing abnormal shape of white matter fiber tracts passing through the splenium of the corpus callosum in autistic subjects. For an arbitrary tract, a 19 degree expansion is usually found to be sufficient to reconstruct the tract with 60 parameters. PMID:23316267
NASA Astrophysics Data System (ADS)
Martelloni, Gianluca; Bagnoli, Franco; Guarino, Alessio
2017-09-01
We present a three-dimensional model of rain-induced landslides, based on cohesive spherical particles. The rainwater infiltration into the soil follows either the fractional or the fractal diffusion equations. We analytically solve the fractal partial differential equation (PDE) for diffusion with particular boundary conditions to simulate a rainfall event. We developed a numerical integration scheme for the PDE, compared with the analytical solution. We adapt the fractal diffusion equation obtaining the gravimetric water content that we use as input of a triggering scheme based on Mohr-Coulomb limit-equilibrium criterion. This triggering is then complemented by a standard molecular dynamics algorithm, with an interaction force inspired by the Lennard-Jones potential, to update the positions and velocities of particles. We present our results for homogeneous and heterogeneous systems, i.e., systems composed by particles with same or different radius, respectively. Interestingly, in the heterogeneous case, we observe segregation effects due to the different volume of the particles. Finally, we analyze the parameter sensibility both for the triggering and the propagation phases. Our simulations confirm the results of a previous two-dimensional model and therefore the feasible applicability to real cases.
Ivanov, Konstantin L. Lukzen, Nikita N.; Sadovsky, Vladimir M.
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.
2015-08-01
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
Modelling neutron transport in planetary media via analytical multigroup diffusion theory
NASA Astrophysics Data System (ADS)
Panfili, P.; Luciani, A.; Furfaro, R.; Ganapol, B. D.; Mostacci, D.
A novel analytical solution to the 1D, steady-state, multi-slab, multi-group diffusion equation is proposed as a mean to compute the energy-dependent galactic cosmic ray-induced neutron fluxes established in planetary media. More specifically, the proposed algorithm is implemented to allow fast and highly accurate determination of low-energy cosmic ray neutrons inside the Earth's surface and atmosphere. Two sets of experimental measurements have been considered to validate our model. In both cases, a good agreement between the calculated and observed neutron fluxes is achieved. Subsequently, neutron diffusion calculations have been performed for various Earth-based scenarios comprising (a) two-slab (air-soil) configuration and (b) three-slab (air-soil-ice) configuration to investigate the functional relationship between soil composition and neutron spatial distribution.
Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie
2014-11-10
Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the
NASA Technical Reports Server (NTRS)
Zhang, Jun; Ge, Lixin; Kouatchou, Jules
2000-01-01
A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.
Kim, Dae-Yeon; Seo, Jong-Wook
2015-01-26
We propose an accurate and easy-to-use three-dimensional measurement method using a diffuser plate to analyze the scattering characteristics of optical films. The far-field radiation pattern of light scattered by the optical film is obtained from the illuminance pattern created on the diffuser plate by the light. A mathematical model and calibration methods were described, and the results were compared with those obtained by a direct measurement using a luminance meter. The new method gave very precise three-dimensional polarization-dependent scattering characteristics of scattering polarizer films, and it can play an effective role in developing high performance polarization-selective screens for 3D display applications.
Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M
2017-01-01
The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time. PMID:28773156
Jayakumar, Arunkumar; Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M; Pethaiah, Sethu Sundar
2017-07-14
The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time.
3D He-3 diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs
Jacob, Rick E.; Minard, Kevin R.; Laicher, Gernot J.; Timchalk, Charles
2008-08-21
In this work, we validate 3He magnetic resonance imaging as a non-invasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25U/100g body weight of porcine pancreatic elastase dissolved in 200 μL saline. Rats were then paired with saline-dosed controls. Nine three-dimensional 3He diffusion-weighted images were acquired at one-, two-, or three-weeks post-dose, after which the lungs were harvested and prepared for histological analysis. Recently introduced indices sensitive to the heterogeneity of the airspace size distribution were calculated. These indices, D1 and D2, were derived from the moments of the mean equivalent airway diameters. Averaged over the entire lung, it is shown that the 3He diffusivity (Dave) and anisotropy (Dan) both correlate with histology (R = 0.85, p < 0.0001 and R = 0.88, p < 0.0001, respectively). By matching small (0.046 cm2) regions in 3He images with corresponding regions in histological slices, Dave and Dan each correlate significantly with both D1 and D2 (R = 0.93, p < 0.0001). It is concluded that 3He MRI is a viable non-invasive morphometric tool for localized in vivo emphysema assessment.
Guilbert, Marie; Roig, Blandine; Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier
2016-02-23
During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models.
Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier
2016-01-01
During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896
Chawla, Sanjeev; Wang, Sumei; Kim, Sungheon; Sheriff, Sulaiman; Lee, Peter; Rengan, Ramesh; Lin, Alexander; Melhem, Elias; Maudsley, Andrew; Poptani, Harish
2015-01-01
Whole brain radiation therapy (WBRT) may cause cognitive and neuropsychological impairment and hence objective assessment of adverse effects of radiation may be valuable to plan therapy. The purpose of our study was to determine the potential of echo planar spectroscopic imaging (EPSI) and diffusion tensor imaging (DTI) in detecting subacute radiation induced injury to the normal brain. Four patients with brain metastases and three patients with lung cancer underwent cranial irradiation. These patients were subjected to 3D-EPSI and DTI at two time points (pre-radiation, and 1 month post-irradiation). Parametric maps of N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), mean diffusivity (MD), and fractional anisotropy (FA) were generated and co-registered to post-contrast T1-weighted images. Normal appearing gray-matter and white-matter regions were compared between the two time points to assess sub-acute effects of radiation using independent sample t-tests. Significantly increased MD (P = .02), Cho/Cr (P = .02) and a trend towards a decrease in NAA/Cr (P = .06) was observed from the hippocampus. Significant decrease in FA (P = .02) from the centrum-semiovale and a significant increase in MD (P = .04) and Cho/Cr (P = .02) from genu of corpus-callosum was also observed. Our preliminary findings suggest that 3D-EPSI and DTI may provide quantitative measures of radiation induced injury to the normal brain. Copyright © 2013 by the American Society of Neuroimaging.
Kim, Tae-Yoo; Son, Hwa-Jin; Lim, Seung-Kyu; Song, Young-Il; Park, Hwa-Sun; Suh, Su-Jeong
2014-12-01
Electroless Ni-P films were investigated with the aim of application as barrier and seed layers in 3D interconnect technology. Different shapes of blind-via holes were fabricated with a deep reactive ion etcher and SiO2 formed on these holes as an insulating layer. The surface of the substrate has been made hydrophilic by O2 plasma treatment with 100 W of power for 20 min. Electroless Ni-P films were deposited as both a diffusion barrier and a seed layer for Cu filling process. Prior to plating, substrates were activated in a palladium chloride solution after sensitization in a tin chloride solution with various conditions in order to deposit uniform films in TSV. After the formation of the electroless barrier layer, electro Cu was plated directly on the barrier layer. Ni-P films fabricated in blind-via holes were observed by scanning electron microscope. Energy dispersive spectroscopy line scanning was carried out for evaluating the diffusion barrier properties of the Ni-P films. The electroless Ni-P layer worked well as a Cu diffusion barrier until 300 degrees C. However, Cu ions diffused into barrier layer when the annealing temperature increases over 400 degrees C.
Lee, W H; Kim, T S; Kim, Andrew T; Lee, S Y
2008-01-01
Realistic finite element (FE) head models have been successfully applied to bioelectromagnetic problems due to a realistic representation of arbitrary head geometry with inclusion of anisotropic material properties. In this paper, we propose a new automatic FE mesh generation scheme to generate a diffusion tensor MRI (DT-MRI) white matter anisotropy content-adaptive FE head model. We term this kind of mesh as wMesh. With this meshing technique, the anisotropic electrical conductivities derived from DT-MRIs can be best incorporated into the model. The influence of the white matter anisotropy on the EEG forward solutions has been studied via our wMesh head models. The scalp potentials computed from the anisotropic wMesh models against those of the isotropic models have been compared. The results describe that there are substantial changes in the scalp electrical potentials between the isotropic and anisotropic models, indicating that the inclusion of the white matter anisotropy is critical for accurate computation of E/MEG forward and inverse solutions. This fully automatic anisotropy-adaptive wMesh meshing scheme could be useful for modeling of individual-specific FE head models with better incorporation of the white matter anisotropic property towards bioelectromagnetic imaging.
Lehéricy, Stéphane; Ducros, Mathieu; Krainik, Alexandre; Francois, Chantal; Van de Moortele, Pierre-François; Ugurbil, Kamil; Kim, Dae-Shik
2004-12-01
Studies in non-human primates have shown that medial premotor projections to the striatum are characterized as a set of distinct circuits conveying different type of information. This study assesses the anatomical projections from the supplementary motor area (SMA), pre-SMA and motor cortex (MC) to the human striatum using diffusion tensor imaging (DTI) axonal tracking. Eight right-handed volunteers were studied at 1.5 T using DTI axonal tracking. A connectivity matrix was computed, which tested for connections between cortical areas (MC, SMA and pre-SMA) and subcortical areas (posterior, middle and anterior putamen and the head of the caudate nucleus) in each hemisphere. Pre-SMA projections to the striatum were located rostral to SMA projections to the striatum. The SMA and the MC were similarly connected to the posterior and middle putamen and not to the anterior striatum. These data show that the MC and SMA have connections with similar parts of the sensorimotor compartment of the human striatum, whereas the pre-SMA sends connections to more rostral parts of the striatum, including the associative compartment.
NASA Astrophysics Data System (ADS)
Shepherd, James J.; López Ríos, Pablo; Needs, Richard J.; Drummond, Neil D.; Mohr, Jennifer A.-F.; Booth, George H.; Grüneis, Andreas; Kresse, Georg; Alavi, Ali
2013-03-01
Full configuration interaction quantum Monte Carlo1 (FCIQMC) and its initiator adaptation2 allow for exact solutions to the Schrödinger equation to be obtained within a finite-basis wavefunction ansatz. In this talk, we explore an application of FCIQMC to the homogeneous electron gas (HEG). In particular we use these exact finite-basis energies to compare with approximate quantum chemical calculations from the VASP code3. After removing the basis set incompleteness error by extrapolation4,5, we compare our energies with state-of-the-art diffusion Monte Carlo calculations from the CASINO package6. Using a combined approach of the two quantum Monte Carlo methods, we present the highest-accuracy thermodynamic (infinite-particle) limit energies for the HEG achieved to date. 1 G. H. Booth, A. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009). 2 D. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 132, 041103 (2010). 3 www.vasp.at (2012). 4 J. J. Shepherd, A. Grüneis, G. H. Booth, G. Kresse, and A. Alavi, Phys. Rev. B. 86, 035111 (2012). 5 J. J. Shepherd, G. H. Booth, and A. Alavi, J. Chem. Phys. 136, 244101 (2012). 6 R. Needs, M. Towler, N. Drummond, and P. L. Ríos, J. Phys.: Condensed Matter 22, 023201 (2010).
NASA Astrophysics Data System (ADS)
Cunningham, G.; Tu, W.; Chen, Y.; Reeves, G. D.; Henderson, M. G.; Baker, D. N.; Blake, J. B.; Spence, H.
2013-12-01
During the interval October 8-9, 2012, the phase-space density (PSD) of high-energy electrons exhibited a dropout preceding an intense enhancement observed by the MagEIS and REPT instruments aboard the Van Allen Probes. The evolution of the PSD suggests heating by chorus waves, which were observed to have high intensities at the time of the enhancement [1]. Although intense chorus waves were also observed during the first Dst dip on October 8, no PSD enhancement was observed at this time. We demonstrate a quantitative reproduction of the entire event that makes use of three recent modifications to the LANL DREAM3D diffusion code: 1) incorporation of a time-dependent, low-energy, boundary condition from the MagEIS instrument, 2) use of a time-dependent estimate of the chorus wave intensity derived from observations of POES low-energy electron precipitation, and 3) use of an estimate of the last closed drift shell, beyond which electrons are assumed to have a lifetime that is proportional to their drift period around earth. The key features of the event are quantitatively reproduced by the simulation, including the dropout on October 8, and a rapid increase in PSD early on October 9, with a peak near L*=4.2. The DREAM3D code predicts the dropout on October 8 because this feature is dominated by magnetospheric compression and outward radial diffusion-the L* of the last closed drift-shell reaches a minimum value of 5.33 at 1026 UT on October 8. We find that a ';statistical' wave model based on historical CRRES measurements binned in AE* does not reproduce the enhancement because the peak wave amplitudes are only a few 10's of pT, whereas an ';event-specific' model reproduces both the magnitude and timing of the enhancement very well, a s shown in the Figure, because the peak wave amplitudes are 10x higher. [1] 'Electron Acceleration in the Heart of the Van Allen Radiation Belts', G. D. Reeves et al., Science 1237743, Published online 25 July 2013 [DOI:10.1126/science
Chen, J.; Alpan, F. A.; Fischer, G.A.; Fero, A.H.
2011-07-01
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locations and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)
Wang, Qi; He, Deyan
2017-04-11
A time-decay resistive switching memory using a 3D vertical Pt/Ta2O5-x/W device architecture is demonstrated, in which horizontal W electrodes were fabricated, and vertical Pt electrodes was formed at the sidewall after oxide was deposited. Unlike conventional resistive switching, which usually form a conductive filament connect two electrodes, a weak conductive filament was formed from bottom electrode W to near top electrode Pt. The memory can be recovered with a time scale when the electrical stimulation is removed. However, different decay behaviors were observed in one decay curve, including rapid decay and slow decay processes. This can be a good simulation of different stages of forgetting. By a combination of the current decay fitting and the conductive analysis, the rapid decay and slow decay processes correspond to ion diffusion and electron detrapping, respectively.
The effect of thermal neutron field slagging caused by cylindrical BF3 counters in diffusion media
NASA Technical Reports Server (NTRS)
Gorshkov, G. V.; Tsvetkov, O. S.; Yakovlev, R. M.
1975-01-01
Computations are carried out in transport approximation (first collision method) for the attenuation of the field of thermal neutrons formed in counters of the CHM-8 and CHMO-5 type. The deflection of the thermal neutron field is also obtained near the counters and in the air (shade effect) and in various decelerating media (water, paraffin, plexiglas) for which the calculations are carried out on the basis of diffusion theory. To verify the calculations, the distribution of the density of the thermal neutrons at various distances from the counter in the water is measured.
NASA Astrophysics Data System (ADS)
He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.
2013-03-01
Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.
NASA Astrophysics Data System (ADS)
Bergeon, N.; Mota, F. L.; Chen, L.; Tourret, D.; Debierre, J. M.; Guérin, R.; Karma, A.; Billia, B.; Trivedi, R.
2015-06-01
To clarify and characterize the fundamental physical mechanisms active in the dynamical formation of three-dimensional (3D) arrays of cells and dendrites under diffusive growth conditions, in situ monitoring of series of experiments on transparent model alloy succinonitrile - 0.24 wt% camphor was carried out under low gravity in the DECLIC Directional Solidification Insert on-board the International Space Station. These experiments offered the very unique opportunity to in situ observe and characterize the whole development of the microstructure in extended 3D patterns. The experimental methods will be first briefly described, including in particular the observation modes and the image analysis procedures developed to quantitatively characterize the patterns. Microgravity environment provided the conditions to get quantitative benchmark data: homogeneous patterns corresponding to homogeneous values of control parameters along the whole interface were obtained. The sequence of microstructure formation will be presented as well as the evolution of the primary spacing which is one of the most important pattern characteristic. Time evolution of this primary spacing during the microstructure development will be analysed to identify the mechanisms of spacing selection and adjustment; the importance of the macroscopic interfacial curvature will be pointed out.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.
Neutron Diffuse Reflectometry of Magnetic Thin Films with a 3He Analyzer
NASA Astrophysics Data System (ADS)
Chen, Wangchun; O'Donovan, Kevin; Borchers, Julie
2005-03-01
Polarized neutron reflectometry (PNR) is a powerful probe that characterizes the magnetization depth profile and magnetic domains in magnetic thin films. Although the conventionally used supermirrors are well-matched for specular PNR, they have limited angular acceptance and hence are impractical for complete characterization of the magnetic off-specular scattering where polarization analysis for diffusely reflected neutrons is required. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Here we report efficient polarization analysis of diffusely reflected neutrons in a reflectometry geometry using a polarized ^3He analyzer in conjunction with a position-sensitive detector (PSD). We obtained spin-resolved two-dimensional Qx-Qz reciprocal space maps for a patterned array of Co antidots in both the saturated and the demagnetized states. The preliminary results for a patterned amorphous bilayer, Gd40Fe60/ Tb55Fe45, measured with a ^3He analyzer and a PSD will also be discussed. Using the spin exchange optical pumping method we have achieved record high ^3He polarizations of 76% on the neutron beam line where we measured an initial analyzing efficiency of 0.97 and a neutron transmission for the desired spin state of 0.45.
NASA Astrophysics Data System (ADS)
Journaux, Baptiste; Montagnat, Maurine; Chauve, Thomas; Ouladdiaf, Bachir; Allibon, John
2015-04-01
Dynamic recrystallization (DRX) strongly affects the evolution of microstructure (grain size and shape) and texture (crystal preferred orientation) in materials during deformation at high temperature. Since texturing leads to anisotropic physical properties, predicting the effect of DRX is essential for industrial applications, for interpreting geophysical data and modeling geodynamic flows, and predicting ice sheet flow and climate evolution. A large amount of literature is available related to metallurgy, geology or glaciology, but there remains overall fundamental questions about the relationship between nucleation, grain boundary migration and texture development at the microscopic scale. Previous measurements of DRX in ice were either conducted using 2D ex-situ techniques such as AITA [1,2] or Electron Backscattering Diffraction (EBSD) [3], or using 3D statistical ex-situ [4] or in-situ [5] techniques. Nevertheless, all these techniques failed to observe at the scale of nucleation processes during DRX in full 3D. Here we present a new approach using neutron Laue diffraction, which enable to perform 3D measurements of in-situ texture evolution of strained polycrystalline H2O ice (>2% at 266 K) during annealing at the microscopic scale. Thanks the CYCLOPS instrument [6] (Institut Laue Langevin Grenoble, France) and the intrinsic low background of this setup, preliminary observations enabled us to follow, in H2O ice, the evolution of serrated grain boundaries, and kink-band during annealing. Our observations show a significant evolution of the texture and internal misorientation over the course of few hours at an annealing temperature of 268.5 K. In the contrary, ice kink-band structures seem to be very stable over time at near melting temperatures. The same samples have been analyzed ex-situ using EBSD for comparison. These results represent a first step toward in-situ microscopic measurements of dynamic recrystallization processes in ice during strain. This
NASA Astrophysics Data System (ADS)
TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.
2016-11-01
The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.
Lambda modes of the neutron diffusion equation in hexagonal geometry
Barrachina, T.; Ginestar, D.; Verdu, G.
2006-07-01
A nodal collocation method is proposed to compute the dominant Lambda modes of nuclear reactor core with a hexagonal geometry. This method is based on a triangular mesh and assumes that the neutronic flux can be approximated as a finite expansion in terms of Dubiner's polynomials. The method transforms the initial differential eigenvalue problem into a generalized algebraic one, from which the dominant modes of the reactor can be computed. The performance of the method is tested with two benchmark problems. (authors)
NASA Technical Reports Server (NTRS)
Forman, M. A.
1975-01-01
It has been shown previously (Anath et al., 1973 and Kane, 1974) that 20 to 25% of days, the diffusion component of the cosmic-ray neutron diurnal anisotropy is directed more than 30 degrees away from the ecliptic projection of the interplanetary magnetic field averaged over the same 24 hours. A number of explanations for this deviation are discussed and it is concluded that transverse gradient drifts due to gradients perpendicular to the ecliptic are likely, that diurnal variations in the diffusion component of the neutron anisotropy may affect results from single stations and that the 24 hour mean interplanetary magnetic field may not be the field appropriate to the streaming equation at neutron monitor energies.
NASA Technical Reports Server (NTRS)
Forman, M. A.
1975-01-01
It has been shown previously (Anath et al., 1973 and Kane, 1974) that 20 to 25% of days, the diffusion component of the cosmic-ray neutron diurnal anisotropy is directed more than 30 degrees away from the ecliptic projection of the interplanetary magnetic field averaged over the same 24 hours. A number of explanations for this deviation are discussed and it is concluded that transverse gradient drifts due to gradients perpendicular to the ecliptic are likely, that diurnal variations in the diffusion component of the neutron anisotropy may affect results from single stations and that the 24 hour mean interplanetary magnetic field may not be the field appropriate to the streaming equation at neutron monitor energies.
Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi
2015-01-01
Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359
Heuser, Brent J; Trinkle, Dallas R; Jalarvo, Niina; Serio, Joseph; Schiavone, Emily J; Mamontov, Eugene; Tyagi, Madhusudan
2014-07-11
The temperature-dependent diffusivity D(T) of hydrogen solute atoms trapped at dislocations-dislocation pipe diffusion of hydrogen-in deformed polycrystalline PdH(x) (x∼10(-3) [H]/[Pd]) has been quantified with quasielastic neutron scattering between 150 and 400 K. We observe diffusion coefficients for trapped hydrogen elevated by one to two orders of magnitude above bulk diffusion. Arrhenius diffusion behavior has been observed for dislocation pipe diffusion and regular bulk diffusion, the latter in well-annealed polycrystalline Pd. For regular bulk diffusion of hydrogen in Pd we find D(T)=D(0)exp(-E(a)/kT)=0.005exp(-0.23 eV/kT) cm(2)/s, in agreement with the known diffusivity of hydrogen in Pd. For hydrogen dislocation pipe diffusion we find D(T)≃10(-5)exp(-E(a)/kT) cm(2)/s, where E(a)=0.042 and 0.083 eV for concentrations of 0.52×10(-3) and 1.13×10(-3)[H]/[Pd], respectively. Ab initio computations provide a physical basis for the pipe diffusion pathway and confirm the reduced barrier height.
Diffusion of water in nano-porous polyamide membranes: Quasielastic neutron scattering study
NASA Astrophysics Data System (ADS)
Sharma, V. K.; Mitra, S.; Singh, P.; Jurányi, F.; Mukhopadhyay, R.
2010-10-01
Dynamics of water sorbed in a reverse osmosis polyamide membrane (ROPM) as studied by quasielastic neutron scattering (QENS) is reported here. The trimesoylchloride-m-phenylene diamine based ROPM is synthesized by interfacial polymerization technique. QENS data indicates that translational motion of water confined in ROPM gets modified compared to bulk water whereas rotational motion remains unaltered. Translational motion of water in ROPM is found to follow random jump diffusion with lower diffusivity compared to bulk water. Translational diffusivity does not show the Arrhenius behaviour.
Abdul-Majid, Samir
2013-04-01
Wax deposition in pipelines can be very costly for plant operation in oil industry. New techniques are needed for allocation and thickness determination of wax deposits. The timely removal of wax can make large saving in operational cost. Neutron back diffusion and neutron capture gamma rays were used in this study to measure paraffin, asphalt and polyethylene deposition thicknesses inside pipes and to enable simultaneous determination of scale and pipe corrosion. It was possible to determine a thickness change of less than one mm in 2 min. It was also possible to detect localized scale from a small region of the pipe of approximately 2 cm in diameter. Although experiments were performed in lab, the system can be made portable for field applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancy distance in the anion sublattice of the fluorite-related structure of bismuth oxide.
Stability analysis of nonlinear two-grid method for multigroup neutron diffusion problems
NASA Astrophysics Data System (ADS)
Anistratov, Dmitriy Y.; Cornejo, Luke R.; Jones, Jesse P.
2017-10-01
We present theoretical analysis of a nonlinear acceleration method for solving multigroup neutron diffusion problems. This method is formulated with two energy grids that are defined by (i) fine-energy groups structure and (ii) coarse grid with just a single energy group. The coarse-grid equations are derived by averaging of the multigroup diffusion equations over energy. The method uses a nonlinear prolongation operator. We perform stability analysis of iteration algorithms for inhomogeneous (fixed-source) and eigenvalue neutron diffusion problems. To apply Fourier analysis the equations of the method are linearized about solutions of infinite-medium problems. The developed analysis enables us to predict convergence properties of this two-grid method in different types of problems. Numerical results of problems in 2D Cartesian geometry are presented to confirm theoretical predictions.
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancy distance in the anion sublattice of the fluorite-related structure of bismuth oxide.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2017-05-01
A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.
Dynamics of silver photo-diffusion into Ge-chalcogenide films: time-resolved neutron reflectometry
NASA Astrophysics Data System (ADS)
Sakaguchi, Y.; Asaoka, H.; Uozumi, Y.; Kawakita, Y.; Ito, T.; Kubota, M.; Yamazaki, D.; Soyama, K.; Ailavajhala, M.; Latif, M. R.; Wolf, K.; Mitkova, M.; Skoda, M. W. A.
2015-06-01
Silver diffuses into an amorphous (a-) chalcogenide layer while visible light illuminates Ag/a-chalcogenide films and neutron reflectometry is a suitable technique probing time evolution of the depth profiles without damaging the sample by the probe beam itself. In this paper, we report the results of time-resolved neutron reflectivity measurements of a-Ge40Se60/Ag/ Si films taken while the films are exposed to visible light. From the measurements, we found enormous changes in the neutron reflectivity profile, including a loss of total reflection region, with continuous illumination even after forming one homogeneous layer, which occurred about 50 min after starting illumination. At this stage, a clear off-specular scattering was observed by a linear detector and a surface roughness was observed with naked eyes.
Baker, S.M.; Wu, K.; Smith, G.S.; Hubbard, K.M.; Nastasi, M.; Downing, R.G.; Lamaze, G.P.
1995-12-31
Neutron reflectometry (NR) studies of thin films of amorphous {sup 11}B/{sup 10}B on silicon indicate that a non-standard form of Fickian diffusion occurs across the boron interface upon annealing. In order to verify this observation, the samples were examined by neutron depth profiling (NDP). Comparison of the results from models of a step function, standard Fickian diffusion and Fickian diffusion with a fixed composition at the interface were made and compared to the previous NR results. The diffusion constant resulting from the non-standard Fickian model for the NDP data differs slightly from that obtained from the commonly used Fickian diffusion model and is not inconsistent with the NR results. This finding suggests that more information regarding diffusion at interfaces can be gained from these higher resolution neutron scattering techniques.
Yamamura, J.; Salomon, G.; Buchert, R.; Hohenstein, A.; Graessner, J.; Huland, H.; Graefen, M.; Adam, G.; Wedegaetner, U.
2011-01-01
Purpose. To evaluate retrospectively the impact of diffusion weighted imaging (DWI) and (3D) hydrogen 1 (1H) MR-spectroscopy (MRS) on the detection of prostatic cancer in comparison to histological examinations. Materials and Methods: 50 patients with suspicion of prostate cancer underwent a MRI examination at a 1.5T scanner. The prostate was divided into sextants. Regions of interest were placed in each sextant to evaluate the apparent diffusion coefficient (ADC)-values. The results of the DWI as well as MRS were compared retrospectively with the findings of the histological examination. Sensitivity and specificity of ADC and metabolic ratio (MET)—both separately and in combination—for identification of tumor tissue was computed for variable discrimination thresholds to evaluate its receiver operator characteristic (ROC). An association between ADC, MET and Gleason score was tested by the non-parametric Spearman ρ-test. Results. The average ADC-value was 1.65 ± 0.32mm2/s × 10−3 in normal tissue and 0.96±0.24 mm2/s × 10−3 in tumor tissue (mean ± 1 SD). MET was 0.418 ± 0.431 in normal tissue and 2.010 ± 1.649 in tumor tissue. The area under the ROC curve was 0.966 (95%-confidence interval 0.941–0.991) and 0.943 (0.918–0.968) for DWI and MRS, respectively. There was a highly significant negative correlation between ADC-value and the Gleason score in the tumor-positive tissue probes (n = 62, ρ = −0.405, P = .001). MRS did not show a significant correlation with the Gleason score (ρ = 0.117, P = .366). By using both the DWI and MRS, the regression model provided sensitivity and specificity for detection of tumor of 91.9% and 98.3%, respectively. Conclusion. The results of our study showed that both DWI and MRS should be considered as an additional and complementary tool to the T2-weighted MRI for detecting prostate cancer. PMID:22091382
Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S; Ding, Zhaohua; Gore, John C; Chen, Li Min; Landman, Bennett A; Anderson, Adam W
2016-02-27
Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey - for which the primary published atlases date from the 1960's. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas.
NASA Astrophysics Data System (ADS)
Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G.; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S.; Ding, Zhaohua; Gore, John C.; Chen, Li min; Landman, Bennett A.; Anderson, Adam W.
2016-03-01
Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey - for which the primary published atlases date from the 1960's. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas.
Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M
2016-06-01
Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward.
Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G.; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S.; Ding, Zhaohua; Gore, John C.; Chen, Li Min; Landman, Bennett A.; Anderson, Adam W.
2016-01-01
Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey – for which the primary published atlases date from the 1960’s. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas. PMID:27064328
NASA Astrophysics Data System (ADS)
Meyer, A.; Stüber, S.; Holland-Moritz, D.; Heinen, O.; Unruh, T.
2008-03-01
Conventional techniques to measure diffusion coefficients in liquid metals and alloys are hampered by buoyancy-driven convective fluid flow and chemical reactions of the liquids with container material. To overcome these obstacles we combined containerless processing via electromagnetic levitation with quasielastic neutron scattering. This combination allowed us to study the atomic self-motion in liquid nickel within a broad temperature range from 200K above to more than 200K below the melting point, in the metastable regime of an undercooled melt. Other than in liquid Sn the temperature dependence of the Ni self-diffusion coefficient is well described with an Arrhenius law.
Nanoscale Structure in AgSbTe2 Determined by Diffuse Elastic Neutron Scattering
NASA Astrophysics Data System (ADS)
Specht, E. D.; Ma, J.; Delaire, O.; Budai, J. D.; May, A. F.; Karapetrova, E. A.
2015-06-01
Diffuse elastic neutron scattering measurements have confirmed that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from this mesoscale structure is consistent with previously proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structures suggests a structural rearrangement in which hexagonal layers form a combination of ( ABC), ( ABA), and ( AAB) polytypes. Consequently, the AgCrSe2 structure is the best-fitting model for the local atomic arrangements.
Artificial Neural Network Solutions of Slab-Geometry Neutron Diffusion Problems
Brantley, P.S.
2000-06-12
Artificial neural network (ANN) methods have been researched extensively within the nuclear community for applications in systems control, diagnostics, and signal processing. We consider here the use of multilayer perceptron ANNs as an alternative to finite-difference and finite-element methods for obtaining solutions to neutron diffusion problems. This work is based on a method proposed by van Milligen et. al. to obtain solutions of the differential equations arising in plasma physics applications. This ANN method has the potential advantage of yielding an accurate, differentiable approximation to the solution of diffusion problems at all points in the spatial domain.
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Geometric Correction in Diffusive Limit of Neutron Transport Equation in 2D Convex Domains
NASA Astrophysics Data System (ADS)
Guo, Yan; Wu, Lei
2017-10-01
Consider the steady neutron transport equation with diffusive boundary condition. In Wu and Guo (Commun Math Phys 336:1473-1553, 2015) and Wu et al. (J Stat Phys 165:585-644, 2016), it was discovered that geometric correction is necessary for the Milne problem of Knudsen-layer construction in a disk or annulus. In this paper, we establish the diffusive limit for a 2D convex domain. Our contribution relies on novel weighted W^{1,∞} estimates for the Milne problem with geometric correction in the presence of a convex domain, as well as an L^{2m}-L^{∞} framework which yields stronger remainder estimates.
Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering
Specht, Eliot D; Ma, Jie; Delaire, Olivier A; Budai, John D; May, Andrew F; Karapetrova, Evguenia A.
2015-01-01
Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.
Neutron matter at zero temperature with an auxiliary field diffusion Monte Carlo method
NASA Astrophysics Data System (ADS)
Sarsa, A.; Fantoni, S.; Schmidt, K. E.; Pederiva, F.
2003-08-01
The recently developed auxiliary field diffusion Monte Carlo method is applied to compute the equation of state and the compressibility of neutron matter. By combining diffusion Monte Carlo method for the spatial degrees of freedom and auxiliary field Monte Carlo method to separate the spin-isospin operators, quantum Monte Carlo can be used to simulate the ground state of many-nucleon systems (A≲100). We use a path constraint to control the fermion sign problem. We have made simulations for realistic interactions, which include tensor and spin-orbit two-body potentials as well as three-nucleon forces. The Argonne v'8 and v'6 two-nucleon potentials plus the Urbana or Illinois three-nucleon potentials have been used in our calculations. We compare with fermion hypernetted chain results. We report on the results of a periodic box fermi hypernetted chain calculation, which is also used to estimate the finite size corrections to our quantum Monte Carlo simulations. Our auxiliary field diffusion Monte Carlo (AFDMC) results for v6 models of pure neutron matter are in reasonably good agreement with equivalent correlated basis function (CBF) calculations, providing energies per particle which are slightly lower than the CBF ones. However, the inclusion of the spin-orbit force leads to quite different results particularly at relatively high densities. The resulting equation of state from AFDMC calculations is harder than the one from previous Fermi hypernetted chain studies commonly used to determine the neutron star structure.
Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Purewal, Justin; Keith, J. Brandon; Ahn, Channing C.; Brown, Craig M.; Tyagi, Madhusudan; Fultz, Brent
2012-12-01
The graphite intercalation compound KC24 adsorbs hydrogen gas at low temperatures up to a maximum stoichiometry of KC24(H2)2, with a differential enthalpy of adsorption of approximately -9 kJ mol-1. The hydrogen molecules and potassium atoms form a two-dimensional condensed phase between the graphite layers. Steric barriers and strong adsorption potentials are expected to strongly hinder hydrogen diffusion within the host KC24 structure. In this study, self-diffusion in a KC24(H2)0.5 sample is measured experimentally by quasielastic neutron scattering and compared to values from molecular dynamics simulations. Self-diffusion coefficients are determined by fits of the experimental spectra to a honeycomb net diffusion model and found to agree well with the simulated values. The experimental H2 diffusion coefficients in KC24 vary from 3.6 × 10-9 m2 s-1 at 80 K to 8.5 × 10-9 m2 s-1 at 110 K. The measured diffusivities are roughly an order of magnitude lower that those observed on carbon adsorbents, but compare well with the rate of hydrogen self-diffusion in molecular sieve zeolites.
Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering.
Purewal, Justin; Keith, J Brandon; Ahn, Channing C; Brown, Craig M; Tyagi, Madhusudan; Fultz, Brent
2012-12-14
The graphite intercalation compound KC(24) adsorbs hydrogen gas at low temperatures up to a maximum stoichiometry of KC(24)(H(2))(2), with a differential enthalpy of adsorption of approximately -9 kJ mol(-1). The hydrogen molecules and potassium atoms form a two-dimensional condensed phase between the graphite layers. Steric barriers and strong adsorption potentials are expected to strongly hinder hydrogen diffusion within the host KC(24) structure. In this study, self-diffusion in a KC(24)(H(2))(0.5) sample is measured experimentally by quasielastic neutron scattering and compared to values from molecular dynamics simulations. Self-diffusion coefficients are determined by fits of the experimental spectra to a honeycomb net diffusion model and found to agree well with the simulated values. The experimental H(2) diffusion coefficients in KC(24) vary from 3.6 × 10(-9) m(2) s(-1) at 80 K to 8.5 × 10(-9) m(2) s(-1) at 110 K. The measured diffusivities are roughly an order of magnitude lower that those observed on carbon adsorbents, but compare well with the rate of hydrogen self-diffusion in molecular sieve zeolites.
Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling
NASA Astrophysics Data System (ADS)
McWhinney, Hylton G.; James, William D.; Schweikert, Emile A.; Williams, John R.; Hollenberg, Glen; Welsh, John; Sereatan, Washington
1993-07-01
Lithium Ceramics offer tremendous potential as a source for the production of tritium ( 3H) for fusion power reactors. Their successful application will depend to a great extent upon the diffusion properties of the 6Li within the matrix. Consequently knowledge od 6Li concentration gradients in the ceramic matrices is an important requirement in the continued development of the technology. In this investigation, the neutron depth profile (NDP) technique has been applied to the study of concentration profiles of 6Li in lithium aluminate ceramics, doped with 1.8%, 50% and 95% 6Li isotopic concentrations. Specimen for analysis were prepared at Battelle (PNL) as pellet discs. Samples for diffusion studies were arranged as diffusion couples in the following manner: 1.8% 6Li discs/85% 6Li powder. Experiments were performed at the Texas A&M Nuclear Science Center Reactor Building, utilizing 1 MW equivalent thermal neutron fluxes 3 × 10 11n/ m2s. The depth probed by the technique is approximately 15 μ.m. Diffusion coefficients are in the range of 2.1 × 10 -12 to 7.0 × 10 -11m2s-1 for 1.8% 6Li-doped ceramics annealed at 1200 and 1400° C, for 4 to 48-h anneal times.
Hydrogen diffusion in bulk and nanocrystalline palladium: A quasielastic neutron scattering study
NASA Astrophysics Data System (ADS)
Kofu, Maiko; Hashimoto, Naoki; Akiba, Hiroshi; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Tyagi, Madhusudan; Faraone, Antonio; Copley, John R. D.; Lohstroh, Wiebke; Yamamuro, Osamu
2016-08-01
The diffusion dynamics of hydrogen in bulk and nanocrystalline palladium has been examined using quasielastic neutron scattering (QENS). With respect to bulk PdH0.73, two relaxation processes were found. For both processes, the variation of the relaxation times with momentum transfer was well reproduced by a model of jump diffusion between adjacent octahedral sites. Upon cooling the fast relaxation fraction decreases. The result suggests that the slow relaxation corresponds to jumps between the ground states and the fast one between excited states. In nanocrystalline PdH0.47 with a size of 8 nm, we found a fast diffusion process with a smaller activation energy in addition to the one observed in the bulk sample. This process could be due to the motion of hydrogen atoms in the subsurface region where the potential energy surface is substantially modified by surface strain/distortion effects.
D. Scott Lucas; D. S. Lucas
2005-09-01
An LDRD (Laboratory Directed Research and Development) project is underway at the Idaho National Laboratory (INL) to apply the three-dimensional multi-group deterministic neutron transport code (Attila®) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the development of Attila models for ATR, capabilities of Attila, the generation and use of different cross-section libraries, and comparisons to ATR data, MCNP, MCNPX and future applications.
NASA Astrophysics Data System (ADS)
Castillo, F.; Reisenegger, A.; Valdivia, J. A.
2017-10-01
As another step towards understanding the long-term evolution of the magnetic field in neutron stars, we provide the first simulations of ambipolar diffusion in a spherical star. Restricting ourselves to axial symmetry, we consider a charged-particle fluid of protons and electrons carrying the magnetic flux through a motionless, uniform background of neutrons that exerts a collisional drag force on the former. We also ignore the possible impact of β decays, proton superconductivity and neutron superfluidity. All initial magnetic field configurations considered are found to evolve on the analytically expected time-scales towards 'barotropic equilibria' satisfying the 'Grad-Shafranov equation', in which the magnetic force is balanced by the degeneracy pressure gradient, so ambipolar diffusion is choked. These equilibria are so-called 'twisted torus' configurations, which include poloidal and toroidal components, the latter restricted to the toroidal volumes in which the poloidal field lines close inside the star. In axial symmetry, they appear to be stable, although they are likely to undergo non-axially symmetric instabilities.
Trantham, E C; Rorschach, H E; Clegg, J S; Hazlewood, C F; Nicklow, R M; Wakabayashi, N
1984-01-01
Results have been obtained on the quasi-elastic spectra of neutrons scattered from pure water, a 20% agarose gel (hydration four grams H2O per gram of dry solid) and cysts of the brine shrimp Artemia for hydrations between 0.10 and 1.2 grams H2O per gram of dry solids. The spectra were interpreted using a two-component model that included contributions from the covalently bonded protons and the hydration water, and a mobile water fraction. The mobile fraction was described by a jump-diffusion correlation function for the translation motion and a simple diffusive orientational correlation function. The results for the line widths gamma (Q2) for pure water were in good agreement with previous measurements. The agarose results were consistent with NMR measurements that show a slightly reduced translational diffusion for the mobile water fraction. The Artemia results show that the translational diffusion coefficient of the mobile water fraction was greatly reduced from that of pure water. The line width was determined mainly by the rotational motion, which was also substantially reduced from the pure water value as determined from dielectric relaxation studies. The translational and rotational diffusion parameters were consistent with the NMR measurements of diffusion and relaxation. Values for the hydration fraction and the mean square thermal displacement [u2] as determined from the Q-dependence of the line areas were also obtained. PMID:6733243
NASA Astrophysics Data System (ADS)
Holmes, Jesse; Zerkle, Michael; Heinrichs, David
2017-09-01
The neutron scattering properties of water ice are of interest to the nuclear criticality safety community for the transport and storage of nuclear materials in cold environments. The common hexagonal phase ice Ih has locally ordered, but globally disordered, H2O molecular orientations. A 96-molecule supercell is modeled using the VASP ab initio density functional theory code and PHONON lattice dynamics code to calculate the phonon vibrational spectra of H and O in ice Ih. These spectra are supplied to the LEAPR module of the NJOY2012 nuclear data processing code to generate thermal neutron scattering laws for H and O in ice Ih in the incoherent approximation. The predicted vibrational spectra are optimized to be representative of the globally averaged ice Ih structure by comparing theoretically calculated and experimentally measured total cross sections and inelastic neutron scattering spectra. The resulting scattering kernel is then supplied to the MC21 Monte Carlo transport code to calculate time eigenvalues for the fundamental mode decay in ice cylinders at various temperatures. Results are compared to experimental flux decay measurements for a pulsed-neutron die-away diffusion benchmark.
NASA Astrophysics Data System (ADS)
Disch, C.
2014-09-01
Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.
Ab initio modeling of quasielastic neutron scattering of hydrogen pipe diffusion in palladium
NASA Astrophysics Data System (ADS)
Schiavone, Emily J.; Trinkle, Dallas R.
2016-08-01
A recent quasielastic neutron scattering (QENS) study of hydrogen in heavily deformed fcc palladium provided the first direct measurement of hydrogen pipe diffusion, which has a significantly higher diffusivity and lower activation barrier than in bulk. While ab initio estimates of hydrogen diffusion near a dislocation corroborated the experimental values, open questions remain from the Chudley-Elliott analysis of the QENS spectra, including significant nonmonotonic changes in jump distance with temperature. We calculate the spherically averaged incoherent scattering function at different temperatures using our ab initio data for the network of site energies, jump rates, and jump vectors to directly compare to experiment. Diffusivities and jump distances are sensitive to how a single Lorentzian is fit to the scattering function. Using a logarithmic least squares fit over the range of experimentally measured energies, our diffusivities and jump distances agree well with those measured by experiment. However, these calculated quantities do not reflect barriers or distances in our dislocation geometry. This computational approach allows for validation against experiment, along with a more detailed understanding of the QENS results.
Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.
2012-07-01
The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout
How useful is neutron diffusion theory for nuclear rocket engine design
Hilsmeier, T.A.; Aithal, S.M.; Aldemir, T. )
1992-01-01
Correct modeling of neutron leakage and geometry effects is important in the design of a nuclear rocket engine because of the need for small reactor cores in space applications. In principle, there are generalized procedures that can account for these effects in a reliable manner (e.g., a three-dimensional, continuous-energy Monte Carlo calculation with all core components explicitly modeled). However, these generalized procedures are not usually suitable for parametric design studies because of the long computational times required, and the feasibility of using faster running, more approrimate neutronic modeling approaches needs to be investigated. Faster running neutronic models are also needed for simulator development to assess the engine performance during startup and power level changes. This paper investigates the potential of the few-group diffusion approach for nuclear rocket engine core design and optimization by comparing the k[sub eff] and power distributions obtained by the MCNP code against those obtained from the LEOPARD and 2DB codes for the particle bed reactor (PBR) concept described. The PBRs have been identified as one of the two near-term options for nuclear thermal propulsion by the joint National Aeronautics and Space Administration (NASA)/US Department of Energy/US Department of Defense program that was recently set up at the NASA Lewis Research Center to develop a flight-rated nuclear rocket engine by the 2020s.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Methanol Diffusion into Thin Ionomer Films: An in situ Study Using Neutron Reflectometry .
NASA Astrophysics Data System (ADS)
He, Lilin
2008-03-01
THUSITHA, N. ETAMPAWALA DVORA, PERAHIA ^ Department of Chemistry, Clemson University, Clemson, SC 29634 JAROSLAW MAJEWSKI, Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545 CHRISTOPHER J. CORNELIUS^ Sandia National Laboratories, MS 0886, Albuquerque, New Mexico 87185-0886 The penetration of solvent into a polymer that consists of incompatable groups is determined by the specific interactions with the guest molecule, where interfacial structure and dynamics of the polymer affect the onset of the process. The current work presents a neutron reflectometry study of the penetration of methanol into sulfonated polyphenlylene thin films. The ionomer films were exposed to saturated deuterated methanol vapor and reflectometry patterns were recorded until equilibrium was reached. The process incorporates two stages where the vapors first wet the surface and then penetrate into the film. Significant swelling takes place as soon as the film is exposed to the vapors. Similar to previous studied in water, the onset diffusion is Fickian followed by an anomalous diffusion process. The entire process however is faster than that observed for water.
Diffusivity of the hydrogen molecule sorbed in NaA zeolite by a neutron scattering experiment
NASA Astrophysics Data System (ADS)
Kahn, R.; Cohen De Lara, E.; Viennet, E.
1989-10-01
The diffusion of hydrogen in NaA zeolite was studied by incoherent neutron scattering. An experiment was carried out on samples loaded with 1.2 to 3.4 molecules per cavity and at several temperatures from 70 to 150 K. The angular (θ) dependence of the elastic and quasielastic intensities shows that the H2 molecule has a translational motion in a nonrestricted volume. A diffusion model where the molecule undergoes isotropic jumps of mean length l¯=3.9 Å independent of temperature and is at rest for a time τ0 between two jumps accounts for the width of the quasielastic scattering in the entire (θ,T) range (τ0=10.8 ps at T=100 K). This leads to a diffusion coefficient D(cm2/s)=6×10-4 exp(E/RT) with E=2 kJ/mol for the less loaded samples. The diffusion coefficient increases slightly with the loading.
Neto Henriques, Rafael; Correia, Marta Morgado; Nunes, Rita Gouveia; Ferreira, Hugo Alexandre
2015-05-01
Diffusion kurtosis imaging (DKI) is a diffusion-weighted technique which overcomes limitations of the commonly used diffusion tensor imaging approach. This technique models non-Gaussian behaviour of water diffusion by the diffusion kurtosis tensor (KT), which can be used to provide indices of tissue heterogeneity and a better characterisation of the spatial architecture of tissue microstructure. In this study, the geometry of the KT is elucidated using synthetic data generated from multi-compartmental models, where diffusion heterogeneity between intra- and extra-cellular media is taken into account, as well as the sensitivity of the results to each model parameter and to synthetic noise. Furthermore, based on the assumption that the maxima of the KT are distributed perpendicularly to the direction of well-aligned fibres, a novel algorithm for estimating fibre direction directly from the KT is proposed and compared to the fibre directions extracted from DKI-based orientation distribution function (ODF) estimates previously proposed in the literature. Synthetic data results showed that, for fibres crossing at high intersection angles, direction estimates extracted directly from the KT have smaller errors than the DKI-based ODF estimation approaches (DKI-ODF). Nevertheless, the proposed method showed smaller angular resolution and lower stability to changes of the simulation parameters. On real data, tractography performed on these KT fibre estimates suggests a higher sensitivity than the DKI-based ODF in resolving lateral corpus callosum fibres reaching the pre-central cortex when diffusion acquisition is performed with five b-values. Using faster acquisition schemes, KT-based tractography did not show improved performance over the DKI-ODF procedures. Nevertheless, it is shown that direct KT fibre estimates are more adequate for computing a generalised version of radial kurtosis maps. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pei, Du; Ye, Ke
2016-11-01
We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
NASA Astrophysics Data System (ADS)
Krimer, Daniel; Costa, Fidel
2017-01-01
Volcano petrologists and geochemists increasingly use time-scale determinations of magmatic processes from modeling the chemical zoning patterns in crystals. Most determinations are done using one-dimensional traverses across a two-dimensional crystal section. However, crystals are three-dimensional objects with complex shapes, and diffusion and re-equilibration occurs in multiple dimensions. Given that we can mainly study the crystals in two-dimensional petrographic thin sections, the determined time-scales could be in error if multiple dimensional and geometrical effects are not identified and accounted for. Here we report the results of a numerical study where we investigate the role of multiple dimensions, geometry, and initial conditions of Fe-Mg diffusion in an orthopyroxene crystal with the view towards proper determinations of time scales from modeling natural crystals. We found that merging diffusion fronts (i.e. diffusion from multiple directions) causes 'additional' diffusion that has the greatest influence close to the crystal's corners (i.e. where two crystal faces meet), and with longer times the affected area widens. We also found that the one-dimensional traverses that can lead to the most accurate calculated time-scales from natural crystals are along the b- crystallographic axis on the ab-plane when model inputs (concentration and zoning geometry) are taken as measured (rather than inferred from other observations). More specifically, accurate time-scales are obtained if the compositional traverses are highly symmetrical and contain a concentration plateau measured through the crystal center. On the other hand, for two-dimensional models the ab- and ac-planes are better suited if the initial (pre-diffusion) concentration and zoning geometry inputs are known or can be estimated, although these are a priory unknown, and thus, may be difficult to use in practical terms. We also found that under certain conditions, a combined one-dimensional and two
NASA Astrophysics Data System (ADS)
Fillaux, François; Cousson, Alain
2012-08-01
In the crystal of K3H(SO4)2 or K3D(SO4)2, dimers SO4ṡṡṡHṡṡṡSO4 or SO4ṡṡṡDṡṡṡSO4 are linked by strong centrosymmetric hydrogen or deuterium bonds whose OṡṡṡO length is ≈2.50 Å. We address two open questions. (i) Are H or D sites split or not? (ii) Is there any structural counterpart to the phase transition observed for K3D(SO4)2 at Tc ≈ 85.5 K, which does not exist for K3H(SO4)2? Neutron diffraction by single-crystals at cryogenic or room temperature reveals no structural transition and no resolvable splitting of H or D sites. However, the width of the probability densities suggest unresolved splitting of the wavefunctions suggesting rigid entities HL1/2 -HR1/2 or DL1/2 -DR1/2 whose separation lengths are lH ≈ 0.16 Å or lD ≈ 0.25 Å. The vibrational eigenstates for the center of mass of HL1/2 -HR1/2 revealed by inelastic neutron scattering are amenable to a square-well and we suppose the same potential holds for DL1/2 -DR1/2. In order to explain dielectric and calorimetric measurements of mixed crystals K3D(1 - ρ)Hρ(SO4)2 (0 ⩽ ρ ⩽ 1), we replace the classical notion of order-disorder by the quantum notion of discernible (e.g., DL1/2 -DR1/2) or indiscernible (e.g., HL1/2 -HR1/2) components depending on the separation length of the split wavefunction. The discernible-indiscernible isostructural transition at finite temperatures is induced by a thermal pure quantum state or at 0 K by ρ.
Fillaux, François; Cousson, Alain
2012-08-21
In the crystal of K(3)H(SO(4))(2) or K(3)D(SO(4))(2), dimers SO(4)···H···SO(4) or SO(4)···D···SO(4) are linked by strong centrosymmetric hydrogen or deuterium bonds whose O···O length is ≈2.50 Å. We address two open questions. (i) Are H or D sites split or not? (ii) Is there any structural counterpart to the phase transition observed for K(3)D(SO(4))(2) at T(c) ≈ 85.5 K, which does not exist for K(3)H(SO(4))(2)? Neutron diffraction by single-crystals at cryogenic or room temperature reveals no structural transition and no resolvable splitting of H or D sites. However, the width of the probability densities suggest unresolved splitting of the wavefunctions suggesting rigid entities H(L1/2)-H(R1/2) or D(L1/2)-D(R1/2) whose separation lengths are l(H) ≈ 0.16 Å or l(D) ≈ 0.25 Å. The vibrational eigenstates for the center of mass of H(L1/2)-H(R1/2) revealed by inelastic neutron scattering are amenable to a square-well and we suppose the same potential holds for D(L1/2)-D(R1/2). In order to explain dielectric and calorimetric measurements of mixed crystals K(3)D((1-ρ))H(ρ)(SO(4))(2) (0 ≤ ρ ≤ 1), we replace the classical notion of order-disorder by the quantum notion of discernible (e.g., D(L1/2)-D(R1/2)) or indiscernible (e.g., H(L1/2)-H(R1/2)) components depending on the separation length of the split wavefunction. The discernible-indiscernible isostructural transition at finite temperatures is induced by a thermal pure quantum state or at 0 K by ρ.
Chapiro, Julius; Wood, Laura D.; Lin, MingDe; Duran, Rafael; Cornish, Toby; Lesage, David; Charu, Vivek; Schernthaner, Rüdiger; Wang, Zhijun; Tacher, Vania; Savic, Lynn Jeanette; Kamel, Ihab R.
2014-01-01
Purpose To evaluate the diagnostic performance of three-dimensional (3Dthree-dimensional) quantitative enhancement-based and diffusion-weighted volumetric magnetic resonance (MR) imaging assessment of hepatocellular carcinoma (HCChepatocellular carcinoma) lesions in determining the extent of pathologic tumor necrosis after transarterial chemoembolization (TACEtransarterial chemoembolization). Materials and Methods This institutional review board–approved retrospective study included 17 patients with HCChepatocellular carcinoma who underwent TACEtransarterial chemoembolization before surgery. Semiautomatic 3Dthree-dimensional volumetric segmentation of target lesions was performed at the last MR examination before orthotopic liver transplantation or surgical resection. The amount of necrotic tumor tissue on contrast material–enhanced arterial phase MR images and the amount of diffusion-restricted tumor tissue on apparent diffusion coefficient (ADCapparent diffusion coefficient) maps were expressed as a percentage of the total tumor volume. Visual assessment of the extent of tumor necrosis and tumor response according to European Association for the Study of the Liver (EASLEuropean Association for the Study of the Liver) criteria was performed. Pathologic tumor necrosis was quantified by using slide-by-slide segmentation. Correlation analysis was performed to evaluate the predictive values of the radiologic techniques. Results At histopathologic examination, the mean percentage of tumor necrosis was 70% (range, 10%–100%). Both 3Dthree-dimensional quantitative techniques demonstrated a strong correlation with tumor necrosis at pathologic examination (R2 = 0.9657 and R2 = 0.9662 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively) and a strong intermethod agreement (R2 = 0.9585). Both methods showed a significantly lower discrepancy with pathologically measured necrosis (residual
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
NASA Astrophysics Data System (ADS)
Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark
2017-04-01
We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S^{3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere S_{b}^{3}. This enables us to see clearly, at the level of partition function, to what extent G_{C} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.
A Systematic Solution Approach for Neutron Transport Problems in Diffuse Regimes
NASA Technical Reports Server (NTRS)
Manteuffel, T. A.; Ressel, K. J.
1996-01-01
A systematic solution approach for the neutron transport equation, based on a least-squares finite-element discretization, is presented. This approach includes the theory for the existence and uniqueness of the analytical as well as of the discrete solution, bounds for the discretization error, and guidance for the development of an efficient multigrid solver for the resulting discrete problem. To guarantee the accuracy of the discrete solution for diffusive regimes, a scaling transformation is applied to the transport operator prior to the discretization. The key result is the proof of the V-ellipticity and continuity of the scaled least-squares bilinear form with constants that are independent of the total cross section and the absorption cross section. For a variety of least-squares finite-element discretizations this leads to error bounds that remain valid in diffusive regimes. Moreover, for problems in slab geometry a full multigrid solver is presented with V(1, 1)-cycle convergence rates approximately equal to 0.1, independent of the size of the total cross section and the absorption cross section.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
2004-08-20
This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
Diffuse magnetic neutron scattering in the highly frustrated double perovskite Ba2YRuO6
Nilsen, Gøran. J.; Thompson, Corey M.; Ehlers, Georg; ...
2015-02-23
Here we investigated diffuse magnetic scattering in the highly frustrated double perovskite Ba2YRuO6 using polarized neutrons. Consistent with previous reports, the material shows two apparent transitions at 47 and 36 K to an eventual type I face-centered-cubic magnetic ground state. The (100) magnetic reflection shows different behavior from the five other observed reflections upon heating from 1.8 K, with the former broadening well beyond the resolution limit near 36 K. Closer examination of the latter group reveals a small, but clear, increase in peak widths between 36 and 47 K, indicating that this regime is dominated by short-range spin correlations.more » Diffuse magnetic scattering persists above 47 K near the position of (100) to at least 200 K, consistent with strong frustration. Reverse Monte Carlo (RMC) modeling of the diffuse scattering from 45 to 200 K finds that the spin-spin correlations between nearest and next-nearest neighbors are antiferromagnetic and ferromagnetic, respectively, at temperatures near the upper ordering temperature, but both become antiferromagnetic and of similar magnitude above 100 K. The significance of this unusual crossover is discussed in light of the super-superexchange interactions between nearest and next-nearest neighbors in this material and the demands of type I order. The dimensionality of the correlations is addressed by reconstructing the scattering in the (hk0) plane using the RMC spin configurations. This indicates that one-dimensional spin correlations dominate at temperatures close to the first transition. In addition, a comparison between mean-field calculations and (hk0) scattering implies that further neighbor couplings play a significant role in the selection of the ground state. Finally, the results and interpretation are compared with those recently published for monoclinic Sr2YRuO6, and similarities and differences are emphasized.« less
Cervantes, Barbara; Kirschke, Jan S; Klupp, Elizabeth; Kooijman, Hendrik; Börnert, Peter; Haase, Axel; Rummeny, Ernst J; Karampinos, Dimitrios C
2017-03-05
To design a preparation module for vessel signal suppression in MR neurography of the extremities, which causes minimal attenuation of nerve signal and is highly insensitive to eddy currents and motion. The orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation was proposed, based on the improved motion- and diffusion-sensitized driven equilibrium methods (iMSDE and FC-DSDE, respectively), with specific gradient design and orientation. OC-MDSDE was desensitized against eddy currents using appropriately designed gradient prepulses. The motion sensitivity and vessel signal suppression capability of OC-MDSDE and its components were assessed in vivo in the knee using 3D turbo spin echo (TSE). Nerve-to-vessel signal ratios were measured for iMSDE and OC-MDSDE in 7 subjects. iMSDE was shown to be highly sensitive to motion with increasing flow sensitization. FC-DSDE showed robustness against motion, but resulted in strong nerve signal loss with diffusion gradients oriented parallel to the nerve. OC-MDSDE showed superior vessel suppression compared to iMSDE and FC-DSDE and maintained high nerve signal. Mean nerve-to-vessel signal ratios in 7 subjects were 0.40 ± 0.17 for iMSDE and 0.63 ± 0.37 for OC-MDSDE. OC-MDSDE combined with 3D TSE in the extremities allows high-near-isotropic-resolution imaging of peripheral nerves with reduced vessel contamination and high nerve signal. Magn Reson Med, 2017. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.
Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.
2010-01-01
The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.
GPU-Accelerated Denoising in 3D (GD3D)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.
GPU-Accelerated Denoising in 3D (GD3D)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.
2011-01-01
In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)
1997-07-13
Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.
2015-09-16
NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.
Spong, Donald A
2016-06-20
AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.
Radiation Effects in 3D Integrated SOl SRAM Circuits
2011-08-23
Comparing Neutrons and Protons Data Monoenergetic neutrons and protons are used to characterize single event effects in electronics circuits, and are...for proton irradiation with energies between 4.8 and 500 MeV. Results are compared with 14-MeV neutron irradiation. Single event upset cross-section...fabricating circuits for space applications. singIe event effects, SOl, fully depleted, 3D integration, neutron , protons, upset cross-section U U U U SAR
Hüger, E; Rahn, J; Stahn, J; Geue, T; Heitjans, P; Schmidt, H
2014-02-28
The self-diffusion of lithium in congruent LiNbO3 single crystals was investigated at low temperatures between 379 and 523 K by neutron reflectometry. From measurements on (6)LiNbO3 (amorphous film)/(nat)LiNbO3 (single crystal) samples, Li self-diffusivities were determined in single crystals down to extremely low values of 1 × 10(-25) m(2) s(-1) on small length scales of 1-10 nm. The measured diffusivities are in excellent agreement with (extrapolated) literature data obtained by experiments based on Secondary Ion Mass Spectrometry and Impedance Spectroscopy. The tracer diffusivities can be described by a single Arrhenius line over ten orders of magnitude with an activation enthalpy of 1.33 eV, which corresponds to the migration energy of a single Li vacancy. A deviation from the Arrhenius behaviour at low temperatures, e.g., due to defect cluster formation is not observed.
NASA Astrophysics Data System (ADS)
Al-Chalabi, Rifat M. Khalil
1997-09-01
Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system
Shapiro, A.; Huria, H.C.; Cho, K.W. )
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.
Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem
Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul; Lee, Deokjung
2015-12-01
In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also noted that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
NASA Astrophysics Data System (ADS)
Moore, Gregory F.
2009-05-01
This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C_{T}. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Furlow, Bryant
2017-05-01
Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.
NASA Technical Reports Server (NTRS)
Plaut, Jeffrey J.
1993-01-01
Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.
NASA Astrophysics Data System (ADS)
Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc
2014-02-01
Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.
NASA Astrophysics Data System (ADS)
Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.
2010-06-01
Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of
NASA Astrophysics Data System (ADS)
Alonso-Vargas, G.
A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K(sub e)ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K(sub e)ff is nearly completely concordant with those obtained by utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor.
NASA Astrophysics Data System (ADS)
Pfeilsticker, K.; Davis, A.; Marshak, A.; Suszcynsky, D. M.; Buldryrev, S.; Barker, H.
2001-12-01
2-stream RT models, as used in all current GCMs, are mathematically equivalent to standard diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. In other words, after the conventional van de Hulst rescaling by 1/(1-g) in R3 and also by (1-g) in t, solar photons follow convoluted fractal trajectories in the atmosphere. For instance, we know that transmitted light is typically scattered about (1-g)τ 2 times while reflected light is scattered on average about τ times, where τ is the optical depth of the column. The space/time spread of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows from directly from first principles (the RT equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the '1-g' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as anomalous diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics to investigate a wide variety of
NASA Astrophysics Data System (ADS)
Buldyrev, S.; Davis, A.; Marshak, A.; Stanley, H. E.
2001-12-01
Two-stream radiation transport models, as used in all current GCM parameterization schemes, are mathematically equivalent to ``standard'' diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. The space/time spread (technically, the Green function) of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows directly from first principles (the radiative transfer equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the ``1-g'' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as ``anomalous'' diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics literature to investigate a wide variety of systems with strongly nonlinear dynamics; these applications range from random advection in turbulent fluids to the erratic behavior of financial time-series and, most recently, self-regulating ecological systems. We will briefly survey the state
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
Carpenter, D.C.
1997-04-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions.
Monoclinic β-Li2TiO3: Neutron diffraction study and estimation of Li diffusion pathways
NASA Astrophysics Data System (ADS)
Monchak, M.; Dolotko, O.; Mühlbauer, M. J.; Baran, V.; Senyshyn, A.; Ehrenberg, H.
2016-11-01
A neutron powder diffraction study on lithium titanate Li2TiO3 was performed at low temperatures. The monoclinic β-phase has been found to be stable over the whole investigated range of temperatures (4 K-300 K). A smooth and nonlinear increase of the lattice parameters has been observed upon heating and correlated to the behavior of interatomic distances. Lithium diffusion pathways in Li2TiO3 were estimated theoretically on the basis of the obtained structural data using bond-valence modeling. Experimentally diffusion pathways were evaluated by analysis of the negative nuclear scattering densities at 1073 K, which were reconstructed using a maximum entropy method. Although the bond-valence mismatch map indicated a possible Li diffusion either in ab plane or along c direction, analysis of the experimental data revealed that Li migration is thermodynamically less feasible in latter case.
González Sánchez, Fátima; Gimmi, Thomas; Jurányi, Fanni; Van Loon, Luc; Diamond, Larryn W
2009-05-15
Diffusion of water and solutes through compacted clays or claystones is important when assessing the barrier function of engineered or geological barriers in waste disposal. The shape and the connectivity of the pore network as well as electrostatic interactions between the diffusant and the charged clay surfaces or cations compensating negative surface charges affect the resistance of the porous medium to diffusion. Comparing diffusion measurements performed at different spatial or time scales allows identification and extraction of the different factors. We quantified the electrostatic constraint q for five different highly compacted clays (rhob = 1.85 +/- 0.05 g/cm3) using quasielastic neutron scattering (QENS) data. We then compared the QENS data with macroscopic diffusion data for the same clays and could derive the true geometric tortuosities G of the samples. Knowing the geometric and electrostatic factors for the different clays is essential when trying to predict diffusion coefficients for other conditions. We furthermore compared the activation energies Ea for diffusion at the two measurement scales. Because Ea is mostly influenced by the local, pore scale surroundings of the water, we expected the results to be similar at both scales. This was indeed the case for the nonswelling clays kaolinite and illite, which had Ea values lower than that of bulk water, but not for montmorillonite, which had values lower than that in bulk water at the microscopic scale, but larger at the macroscopic scale. The differences could be connected to the strongly temperature dependent mobility of the cations in the clays, which may act as local barriers in the narrow pores at low temperatures.
NASA Astrophysics Data System (ADS)
Connors, M. G.; Schofield, I. S.
2012-12-01
Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.
Trantham, E.C.; Rorschach, H.E.; Clegg, J.S.; Hazlewood, C.F.; Nicklow, R.M.; Wakabayashi, N.
1984-05-01
Results have been obtained on the quasi-elastic spectra of neutrons scattered from pure water, 20% agarose gel (hydration four grams H/sub 2/O per gram of dry solid) and cysts of the brine shrimp Artemia for hydrations between 0.10 and 1.2 grams H/sub 2/O per gram of dry solids. The spectra were interpreted using a two-component model that included contributions from the covalently bonded protons and the hydration water, and a mobile water fraction. The mobile fraction was described by a jump-diffusion correlation function for the translation motion and a simple diffusive orientational correlation function. The results for the line widths ..gamma..(Q/sup 2/) for pure water were in good agreement with previous measurements. The agarose results were consistent with NMR measurements that show a slightly reduced translational diffusion for the mobile water fraction. The Artemia results show that the translational diffusion coefficient of the mobile water fraction was greatly reduced from that of pure water. The line width was determined mainly by the rotational motion, which was also substantially reduced from the pure water value as determined from dielectric relaxation studies. The translational and rotational diffusion parameters were consistent with the NMR measurements of diffusion and relaxation. Values for the hydration fraction and the mean square thermal displacement as determined from the Q-dependence of line areas were also obtained.
NASA Astrophysics Data System (ADS)
Bhardwaj, Lakshya
2017-05-01
This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.
Neutronics calculation of RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.
2017-01-01
Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
NASA Technical Reports Server (NTRS)
1997-01-01
The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.
The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Astrophysics Data System (ADS)
Fung, Y. C.
1995-05-01
This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
NASA Technical Reports Server (NTRS)
1997-01-01
An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
1997-01-01
An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Neutron Diffusion in a Space Lattice of Fissionable and Absorbing Materials
DOE R&D Accomplishments Database
Feynman, R. P.; Welton, T. A.
1946-08-27
Methods are developed for estimating the effect on a critical assembly of fabricating it as a lattice rather than in the more simply interpreted homogeneous manner. An idealized case is discussed supposing an infinite medium in which fission, elastic scattering and absorption can occur, neutrons of only one velocity present, and the neutron m.f.p. independent of position and equal to unity with the unit of length used.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
NASA Astrophysics Data System (ADS)
Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th
2017-06-01
We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.
NASA Technical Reports Server (NTRS)
Applegate, J. H.; Hogan, Craig J.; Scherrer, R. J.
1988-01-01
A simple one-dimensional model is used to describe the evolution of neutron density before and during nucleosynthesis in a high-entropy bubble left over from the cosmic quark-hadron phase transition. It is shown why cosmic nucleosynthesis in such a neutron-rich environment produces a surfeit of elements heavier than lithium. Analytical and numerical techniques are used to estimate the abundances of carbon, nitrogen, and heavier elements up to Ne-22. A high-density neutron-rich region produces enough primordial N-14 to be observed in stellar atmospheres. It shown that very heavy elements may be created in a cosmological r-process; the neutron exposure in the neutron-rich regions is large enough for the Ne-22 to trigger a catastrophic r-process runaway in which the quantity of heavy elements doubles in much less than an expansion time due to fission cycling. A primordial abundance of r-process elements is predicted to appear as an excess of rare earth elements in extremely metal-poor stars.
NASA Technical Reports Server (NTRS)
Applegate, J. H.; Hogan, Craig J.; Scherrer, R. J.
1988-01-01
A simple one-dimensional model is used to describe the evolution of neutron density before and during nucleosynthesis in a high-entropy bubble left over from the cosmic quark-hadron phase transition. It is shown why cosmic nucleosynthesis in such a neutron-rich environment produces a surfeit of elements heavier than lithium. Analytical and numerical techniques are used to estimate the abundances of carbon, nitrogen, and heavier elements up to Ne-22. A high-density neutron-rich region produces enough primordial N-14 to be observed in stellar atmospheres. It shown that very heavy elements may be created in a cosmological r-process; the neutron exposure in the neutron-rich regions is large enough for the Ne-22 to trigger a catastrophic r-process runaway in which the quantity of heavy elements doubles in much less than an expansion time due to fission cycling. A primordial abundance of r-process elements is predicted to appear as an excess of rare earth elements in extremely metal-poor stars.
NASA Technical Reports Server (NTRS)
1997-01-01
Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
2015-10-23
Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032
NASA Astrophysics Data System (ADS)
Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther
2007-09-01
Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
3D Printing and 3D Bioprinting in Pediatrics
Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng
2017-01-01
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542
3D Printing and 3D Bioprinting in Pediatrics.
Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng
2017-07-13
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.
NASA Astrophysics Data System (ADS)
Vacik, J.; Hnatowicz, V.; Attar, F. M. D.; Mathakari, N. L.; Dahiwale, S. S.; Dhole, S. D.; Bhoraskar, V. N.
2014-10-01
Diffusion of lithium from a LiCl aqueous solution into polyether ether ketone (PEEK) and polyimide (PI) assisted by in situ irradiation with 6.5 MeV electrons was studied by the neutron depth profiling method. The number of the Li atoms was found to be roughly proportional to the diffusion time. Regardless of the diffusion time, the measured depth profiles in PEEK exhibit a nearly exponential form, indicating achievement of a steady-state phase of a diffusion-reaction process specified in the text. The form of the profiles in PI is more complex and it depends strongly on the diffusion time. For the longer diffusion time, the profile consists of near-surface bell-shaped part due to Fickian-like diffusion and deeper exponential part.
NASA Astrophysics Data System (ADS)
Smuda, Christoph; Busch, Sebastian; Gemmecker, Gerd; Unruh, Tobias
2008-07-01
A systematic time-of-flight quasielastic neutron scattering (TOF-QENS) study on diffusion of n-alkanes in a melt is presented for the first time. As another example of a medium-chain molecule, coenzyme Q10 is investigated in the same way. The data were evaluated both in the frequency and in the time domain. TOF-QENS data can be satisfactorily described by different models, and it turned out that the determined diffusion coefficients are largely independent of the applied model. The derived diffusion coefficients are compared with values measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR). With increasing chain length, an increasing difference between the TOF-QENS diffusion coefficient and the PFG-NMR diffusion coefficient is observed. This discrepancy in the diffusion coefficients is most likely due to a change of the diffusion mechanism on a nanometer length scale for molecules of medium-chain length.
NASA Astrophysics Data System (ADS)
González Sánchez, Fátima; Jurányi, Fanni; Gimmi, Thomas; Van Loon, Luc; Unruh, Tobias; Diamond, Larryn W.
2008-11-01
The water diffusion in four different, highly compacted clays [montmorillonite in the Na- and Ca-forms, illite in the Na- and Ca-forms, kaolinite, and pyrophyllite (bulk dry density ρb=1.85±0.05g/cm3)] was studied at the atomic level by means of quasielastic neutron scattering. The experiments were performed on two time-of-flight spectrometers and at three different energy resolutions [FOCUS at SINQ, PSI (3.65 and 5.75Å), and TOFTOF at FRM II (10Å)] for reliable data analysis and at temperatures between 27 and 95°C. Two different jump diffusion models were used to describe the translational motion. Both models describe the data equally well and give the following ranking of diffusion coefficients: Na-montmorillonite⩽Ca-montmorillonite
González Sánchez, Fátima; Jurányi, Fanni; Gimmi, Thomas; Van Loon, Luc; Unruh, Tobias; Diamond, Larryn W
2008-11-07
The water diffusion in four different, highly compacted clays [montmorillonite in the Na- and Ca-forms, illite in the Na- and Ca-forms, kaolinite, and pyrophyllite (bulk dry density rho(b)=1.85+/-0.05 gcm(3))] was studied at the atomic level by means of quasielastic neutron scattering. The experiments were performed on two time-of-flight spectrometers and at three different energy resolutions [FOCUS at SINQ, PSI (3.65 and 5.75 A), and TOFTOF at FRM II (10 A)] for reliable data analysis and at temperatures between 27 and 95 degrees C. Two different jump diffusion models were used to describe the translational motion. Both models describe the data equally well and give the following ranking of diffusion coefficients: Na-montmorillonite
Hydrogen jump diffusion in C14-type ZrMn2H3 : Quasielastic neutron scattering study
NASA Astrophysics Data System (ADS)
Skripov, A. V.; Udovic, T. J.; Rush, J. J.
2007-09-01
In order to study the mechanism and parameters of hydrogen diffusion in the hexagonal (C14-type) Laves-phase ZrMn2 , we have performed quasielastic neutron scattering measurements for ZrMn2H3 over the temperature range 10-390K . It is found that the diffusive motion of hydrogen in this system can be described in terms of at least two jump processes: a fast localized H motion with the jump rate τl-1 and a slower process with the rate τd-1 associated with H jumps leading to long-range diffusion. The temperature dependence of τd-1 in the range 225-390K follows the Arrhenius law with the activation energy of 124±4meV . In the same range, the temperature dependence of τl-1 deviates from the Arrhenius behavior and is considerably weaker than that of τd-1 . The Q dependence of the elastic incoherent structure factor (studied up to Qmax≈3.8Å-1 ) suggests that the fast localized H motion in ZrMn2H3 corresponds to two-site jumps within pairs of closely spaced interstitial Zr2Mn2 sites.
NASA Astrophysics Data System (ADS)
Palit, Swomitra; He, Lilin; Hamilton, William A.; Yethiraj, Arun; Yethiraj, Anand
2017-03-01
The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c⋆. Above c⋆, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c⋆ in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.
Palit, Swomitra; He, Lilin; Hamilton, William A; Yethiraj, Arun; Yethiraj, Anand
2017-03-03
The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c^{⋆}. Above c^{⋆}, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c^{⋆} in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.
Improvement of advanced nodal method used in 3D core design system
Rauck, S.; Dall'Osso, A.
2006-07-01
This paper deals with AREVA NP progress in the modelling of neutronic phenomena, evaluated through 3D determinist core codes and using 2-group diffusion theory. Our report highlights the advantages of taking into account the assembly environment in the process used for the building of the 2-group collapsed neutronic parameters, such as cross sections or discontinuity factors. The interest of the present method, developed in order to account for the impact of the environment on the above mentioned parameters, resides (i) in the very definition of a global correlation between collapsed neutronic data calculated in an infinite medium and those calculated in a 3D-geometry, and (ii) in the use of a re-homogenization method. Using this approach, computations match better with actual measurements on control rod worth. They also present smaller differences on pin by pin power values compared to the ones computed with another code considered as a reference since it relies on multigroup transport theory. (authors)
NASA Astrophysics Data System (ADS)
Aurbach, D.; Gnanaraj, J. S.; Levi, M. D.; Levi, E. A.; Fischer, J. E.; Claye, A.
This work relates to a rigorous study of the correlation among surface chemistry (FTIR, XPS), 3D structure (X-ray and neutron scattering), morphology (SEM, AFM), and electrochemical and impedance behavior of lithiated carbon electrodes in commonly used liquid electrolyte solutions. Four different types of carbons were explored in a single study. These included, for comparison, two types of disordered carbons, single-wall carbon nanotubes (SWNT), and synthetic graphite powder as a reference system. All four types of carbons develop a similar surface chemistry in alkyl carbonate solutions which is dominated by solvent reduction. The differences in the 3D structure of these carbons leads to pronounced differences in the mechanisms of Li-insertion into them. The effect of the carbons' 3D structure on the solid-state diffusion of Li-ions is demonstrated and discussed.
Evenson, Zach; Yang, Fan; Meyer, Andreas; Simeoni, Giovanna G.
2016-03-21
We use incoherent quasielastic neutron scattering to study the atomic dynamics of gold in a eutectic Au{sub 81}Si{sub 19} melt. Despite the glass-forming nature of this system, the gold self-diffusivity displays an Arrhenius behavior with a low activation energy characteristic of simple liquids. At high temperatures, long-range transport of gold atoms is well described by hydrodynamic theory with a simple exponential decay of the self-correlation function. On cooling towards the melting temperature, structural relaxation crosses over to a highly stretched exponential behavior. This suggests the onset of a heterogeneous dynamics, even in the equilibrium melt, and is indicative of a very fragile liquid.
Ougouag, Abderrafi Mohammed-El-Ami; Terry, William Knox
2002-04-01
The usual strategy for solving the neutron diffusion equation in two or three dimensions by nodal methods is to reduce the multidimensional partial differential equation to a set of ordinary differential equations (ODEs) in the separate spatial coordinates. This reduction is accomplished by “transverse integration” of the equation.1 For example, in three-dimensional Cartesian coordinates, the three-dimensional equation is first integrated over x and y to obtain an ODE in z, then over x and z to obtain an ODE in y, and finally over y and z to obtain an ODE in x. Then the ODEs are solved to obtain onedimensional solutions for the neutron fluxes averaged over the other two dimensions. These solutions are found in regions (“nodes”) small enough for the material properties and cross sections in them to be adequately represented by average values. Because the solution in each node is an exact analytical solution, the nodes can be much larger than the mesh elements used in finite-difference solutions. Then the solutions in the different nodes are coupled by applying interface conditions, ultimately fixing the solutions to the external boundary conditions.
Diffusion, diffraction des neutrons en temps réel et études réalisées in situ
NASA Astrophysics Data System (ADS)
Isnard, O.
2003-02-01
La diffusion des neutrons est une technique particulièrement efficace pour l'analyse en temps réel des processus réactionnels dans la matière. La diffraction de neutrons in situ a été développée très tôt sur les sources à haut flux tel que l'Institut Laue Langevin. Ces études nécessitent un flux de neutrons important et un détecteur couvrant un domaine angulaire le plus grand possible. Les neutrons offrent la spécificité d'être très peu absorbés par nombre de matériaux, cette faible absorption fait de la diffusion neutronique un excellent outil pour sonder la matière en volume et de manière non destructive. Cela permet en particulier d'utiliser des environnements d'échantillons complexes tout en conservant un flux raisonnable. La diffusion de neutrons en temps réel est donc très largement utilisée par diverses communautés scientifiques : sciences des matériaux, physiciens, chimistes... L'objet de ce cours est de donner les paramètres importants pour ce type d'étude et d'illustrer le propos à l'aide d'exemples pris dans des domaines scientifiques divers : électrochimie, magnétisme, métallurgie, chimie du solide. Après avoir présenté quelques repères méthodologiques sur les méthodes d'acquisition de données, des exemples montreront le fort potentiel de la diffusion neutronique en temps réel pour l'étude de la matière dans des conditions dynamiques. Enfin, nous donnerons aussi quelques conseils pour la visualisation, le dépouillement et l'analyse de ce type d'expérience. La diffusion des neutrons sur poudre est actuellement très bien adaptée aux études réalisées in situ. Cependant, nous verrons que la faisabilité d'études in situ s'étend à d'autres techniques expérimentales telles que la diffusion des neutrons aux petits angles et même la diffusion sur monocristal qui est en plein renouveau.
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
Spherical 3D isotropic wavelets
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-04-14
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
Chu, Xiang-Qiang; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey A; Wang, Wei; Wesolowski, David J
2011-01-01
Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO{sub 2}) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components. All of the probed components were present in the studied temperature range of 230-320 K, providing, at a first sight, no evidence of discontinuity in the hydration water dynamics. However, a qualitative change in the elastic scattering between 240 and 250 K suggested a surface freezing-melting transition, when the motions that were localized at lower temperatures became delocalized at higher temperatures. On the basis of our previous molecular dynamics simulations of this system, we argue that interpretation of QENS data from such a complex interfacial system requires at least qualitative input from simulations, particularly when comparing results from spectrometers with very different energy resolutions and dynamic ranges.
NASA Astrophysics Data System (ADS)
Yamamuro, O.; Kofu, M.
2017-05-01
Glass transition is one of the central research issues of ionic liquids (ILs). In particular, the most typical ILs, imidazolium-basedones (ImILs) are readily supercooled and exhibit glass transitions below room temperature. We have measured the heat capacities of several ImILs, encoded as CnmimX (n: alkyl carbon number, n = 2-8, X: anion, X = Cl, I, FeCl4, TFSI) using an adiabatic calorimeter. We found that most of ImILs exhibit glass transitions with large Cp jumps in a temperature range between 170 K and 230 K. The large Cp jumps reflect that these ILs are fragile liquids that exhibit large structural change depending on temperature near the glass transition temperature T g. It is also revealed that T g does not depend much on n but on the anion radius. We have investigated the dynamics of CnmimX (n = 2-8, X = Cl, NO3, PF6, TF, FSI, TFSI) by means of a quasielastic neutron scattering (QENS) technique. It was clarified that the ionic diffusion is directly associated with the viscosity and glass transition. The activation energy ΔE a of the ionic diffusion increases with decreasing anion size but remains almost unchanged with n as found for T g. These systematic change of T g and ΔE a can be explained well by taking account the nano-domain structure which is the most characteristic feature of ImILs.
A microfluidic device for 2D to 3D and 3D to 3D cell navigation
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Amirifar, Leyla
2016-01-01
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.
Odyssey over Martian Sunrise, 3-D
NASA Technical Reports Server (NTRS)
2003-01-01
NASA's Mars Odyssey spacecraft passes above a portion of the planet that is rotating into the sunlight in this artist's concept illustration. This red-blue anaglyph artwork can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue (cyan) 3-D glasses.
The spacecraft has been orbiting Mars since October 24, 2001.
NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for the NASA Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency and Institute for Space Research, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Odyssey over Martian Sunrise, 3-D
NASA Technical Reports Server (NTRS)
2003-01-01
NASA's Mars Odyssey spacecraft passes above a portion of the planet that is rotating into the sunlight in this artist's concept illustration. This red-blue anaglyph artwork can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue (cyan) 3-D glasses.
The spacecraft has been orbiting Mars since October 24, 2001.
NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for the NASA Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency and Institute for Space Research, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Growth of bacteria in 3-d colonies
Mugler, Andrew; Kim, Justin
2017-01-01
The dynamics of growth of bacterial populations has been extensively studied for planktonic cells in well-agitated liquid culture, in which all cells have equal access to nutrients. In the real world, bacteria are more likely to live in physically structured habitats as colonies, within which individual cells vary in their access to nutrients. The dynamics of bacterial growth in such conditions is poorly understood, and, unlike that for liquid culture, there is not a standard broadly used mathematical model for bacterial populations growing in colonies in three dimensions (3-d). By extending the classic Monod model of resource-limited population growth to allow for spatial heterogeneity in the bacterial access to nutrients, we develop a 3-d model of colonies, in which bacteria consume diffusing nutrients in their vicinity. By following the changes in density of E. coli in liquid and embedded in glucose-limited soft agar, we evaluate the fit of this model to experimental data. The model accounts for the experimentally observed presence of a sub-exponential, diffusion-limited growth regime in colonies, which is absent in liquid cultures. The model predicts and our experiments confirm that, as a consequence of inter-colony competition for the diffusing nutrients and of cell death, there is a non-monotonic relationship between total number of colonies within the habitat and the total number of individual cells in all of these colonies. This combined theoretical-experimental study reveals that, within 3-d colonies, E. coli cells are loosely packed, and colonies produce about 2.5 times as many cells as the liquid culture from the same amount of nutrients. We verify that this is because cells in liquid culture are larger than in colonies. Our model provides a baseline description of bacterial growth in 3-d, deviations from which can be used to identify phenotypic heterogeneities and inter-cellular interactions that further contribute to the structure of bacterial
Perception of 3D spatial relations for 3D displays
NASA Astrophysics Data System (ADS)
Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.
2004-05-01
We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
None
2016-07-12
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
NASA Astrophysics Data System (ADS)
van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin
2014-03-01
We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.
2013-10-30
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
Diallo, S. O.; Vlcek, L.; Mamontov, E.; ...
2015-02-17
When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (~150K), leading to a metastable liquid state with remarkable physical properties. In this study, we have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ~11.6Å, with primarily slit-like pores) from temperature T=280 K in its stable liquid state down to T=230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower thanmore » those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time <τ> when compared to previous findings indicate that it is the width of the slit pores—not their curvature—that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. Also, we find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q(Q ≤ 0.9Å-1). At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. Lastly, the best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I(Q,t).« less
Diallo, S. O.; Vlcek, L.; Mamontov, E.; Keum, J. K.; Chen, Jihua; Hayes, J. S.; Chialvo, A. A.
2015-02-17
When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (~150 K), leading to a metastable liquid state with remarkable physical properties. Here we have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ~11.6 Å, with primarily slit-like pores) from temperature T = 280 K in its stable liquid state down to T = 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time (${{\\tau}}$) when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q (Q ≤ 0.9 Å^{-1)}. At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I (Q,t).
Diallo, S O; Vlcek, L; Mamontov, E; Keum, J K; Chen, Jihua; Hayes, J S; Chialvo, A A
2015-02-01
When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (∼150K), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ∼11.6Å, with primarily slit-like pores) from temperature T=280 K in its stable liquid state down to T=230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time 〈τ〉 when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q(Q≤0.9Å(-1)). At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I(Q,t).
NASA Astrophysics Data System (ADS)
Walsh, J. R.
2004-02-01
The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.
NASA Astrophysics Data System (ADS)
Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad
2009-02-01
In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Gutmann, Matthias J.; Graziano, Gabriella; Mukhopadhyay, Sanghamitra; Refson, Keith; von Zimmerman, Martin
2015-01-01
Direct phonon excitation in a neutron time-of-flight single-crystal Laue diffraction experiment has been observed in a single crystal of NaCl. At room temperature both phonon emission and excitation leave characteristic features in the diffuse scattering and these are well reproduced using ab initio phonons from density functional theory (DFT). A measurement at 20 K illustrates the effect of thermal population of the phonons, leaving the features corresponding to phonon excitation and strongly suppressing the phonon annihilation. A recipe is given to compute these effects combining DFT results with the geometry of the neutron experiment. PMID:26306090
3D reconstruction of tensors and vectors
Defrise, Michel; Gullberg, Grant T.
2005-02-17
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
A Dynamic Density Functional Theory Approach to Diffusion in White Dwarfs and Neutron Star Envelopes
NASA Astrophysics Data System (ADS)
Diaw, A.; Murillo, M. S.
2016-09-01
We develop a multicomponent hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.
A nodal expansion method for the neutron diffusion equation in cylindrical geometry
Komlev, O.G.; Suslov, I.R.
1995-12-31
A polynomial nodal expansion method (NEM) is applied to solve multigroup diffusion equations in cylindrical R-Z geometry, Fourth-order polynomials are used to approximate one dimensional (1D) transverse integrated fluxes. The special set of the basis functions is used in R-direction. The transverse integrated leakages are approximated by both constant and quadratic polynomials. Preliminary efficiency evaluation of the NEM is carried out for a fast breeder reactor (FBR) model problem. Results indicate computational efficiency of NEM in comparison with finite-difference method (FDM).
Unassisted 3D camera calibration
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Stanton, M M; Samitier, J; Sánchez, S
2015-08-07
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.
2007-11-02
AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems
1997-07-13
The Atmospheric Structure Instrument/Meteorology Package ASI/MET is the mast and windsocks at the center of this stereo image from NASA Mars Pathfinder. 3D glasses are necessary to identify surface detail.
This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.
Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik
2011-01-01
We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.
Rich, D.O.; Pope, S.C.; DeLapp, J.G.
1994-10-01
In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.
[Tridimensional (3D) endoscopic ultrasonography].
Varas Lorenzo, M J; Muñoz Agel, F; Abad Belando, R
2007-01-01
A review and update on 3D endoscopic ultrasonography is included regarding all of this technique s aspects, technical details, and current indications. Images from our own clinical experience are presented.
NASA Astrophysics Data System (ADS)
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Combinatorial 3D Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
NASA Astrophysics Data System (ADS)
Hensel, W.; Hoinkis, E.
1995-09-01
The 137Cs core release rate of High Temperature Reactors (HTR) is effected by the interactions of cesium with the graphitic material used as a matrix for the coated fuel particles. The migration of 137Cs in the graphitic matrix A3-3 at a fast neutron flux of 2 × 10 17 m -2 s -1 was studied in short-term experiments using the thin-film technique. The penetration profiles did not satisfy Fick's second law. The diffusion/trapping/re-emission model was applied to determine the diffusion coefficient D and the trapping coefficient μ for four profiles produced at 1088 and 1166 K. D, μ and the reemission coefficient b at 1293 K were determined for two profiles. Compared to laboratory conditions no effect of the fast neutron irradiation on the 137Cs migration in matrix A3-3 was observed.
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
Smith, M. A.; Lee, C. H.; Hill, R. N.
2016-12-15
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problems with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further
NASA Astrophysics Data System (ADS)
Nuttin, A.; Capellan, N.; David, S.; Doligez, X.; El Mhari, C.; Méplan, O.
2014-06-01
Safety analysis of innovative reactor designs requires three dimensional modeling to ensure a sufficiently realistic description, starting from steady state. Actual Monte Carlo (MC) neutron transport codes are suitable candidates to simulate large complex geometries, with eventual innovative fuel. But if local values such as power densities over small regions are needed, reliable results get more difficult to obtain within an acceptable computation time. In this scope, NEA has proposed a performance test of full PWR core calculations based on Monte Carlo neutron transport, which we have used to define an optimal detail level for convergence of steady state coupled neutronics. Coupling between MCNP for neutronics and the subchannel code COBRA for thermal-hydraulics has been performed using the C++ tool MURE, developed for about ten years at LPSC and IPNO. In parallel with this study and within the same MURE framework, a simplified code of nodal kinetics based on two-group and few-point diffusion equations has been developed and validated on a typical CANDU LOCA. Methods for the computation of necessary diffusion data have been defined and applied to NU (Nat. U) and Th fuel CANDU after assembly evolutions by MURE. Simplicity of CANDU LOCA model has made possible a comparison of these two fuel behaviours during such a transient.
NASA Astrophysics Data System (ADS)
Boufraqech, A.
1991-02-01
Two methods for determining the diffusion parameters of thermal neutrons for non-moderator and non-multiplicator media have been developed. The first one, which is a pulsed method, is based on thermal neutrons relaxation coefficients measurement in a moderator, with and without the medium of interest that plays the role of reflector. For the experimental results interpretation using the diffusion theory, a corrective factor which takes into account the neutron cooling by diffusion has been introduced. Its dependence on the empirically obtained relaxation coefficients is in a good agreement with the calculations made in P3L2 approximation. The difference between linear extrapolation lengths of the moderator and the reflector has been taken into account, by developing the scalar fluxes in Bessel function series which automatically satisfy the boundary conditions at the extrapolated surfaces of the two media. The obtained results for iron are in a good agreement with those in the literature. The second method is time independent, based on the 'flux albedo' measurements interpretation (concept introduced by Amaldi and Fermi) by P3 approximation in the one group transport theory. The independent sources are introduced in the Marshak boundary conditions. An angular albedo matrix has been used to deal with multiple reflections and to take into account the distortion of the current vector when entering a medium, after being reflected by this latter. The results obtained by this method are slightly different from those given in the literature. The analysis of the possible sources causing this discrepancy, particulary the radial distribution of flux in cylindrical geometry and the flux depression at medium-black body interface, has shown that the origin of this discrepancy is the neutron heating by diffusion.
LASTRAC.3d: Transition Prediction in 3D Boundary Layers
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.
NASA Astrophysics Data System (ADS)
Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen
2008-02-01
Automated Explosive Detection Systems utilizing Computed Tomography perform a series X-ray scans of passenger bags being checked in at the airport, and produce various 2-D projection images and 3-D volumetric images of the bag. The determination as to whether the passenger bag contains an explosive and needs to be searched manually is performed through trained Transportation Security Administration screeners following an approved protocol. In order to keep the screeners vigilant with regards to screening quality, the Transportation Security Administration has mandated the use of Threat Image Projection on 2-D projection X-ray screening equipment used at all US airports. These algorithms insert visual artificial threats into images of the normal passenger bags in order to test the screeners with regards to their screening efficiency and their screening quality at determining threats. This technology for 2-D X-ray system is proven and is widespread amongst multiple manufacturers of X-ray projection systems. Until now, Threat Image Projection has been unsuccessful at being introduced into 3-D Automated Explosive Detection Systems for numerous reasons. The failure of these prior attempts are mainly due to imaging queues that the screeners pickup on, and therefore make it easy for the screeners to discern the presence of the threat image and thus defeating the intended purpose. This paper presents a novel approach for 3-D Threat Image Projection for 3-D Automated Explosive Detection Systems. The method presented here is a projection based approach where both the threat object and the bag remain in projection sinogram space. Novel approaches have been developed for projection based object segmentation, projection based streak reduction used for threat object isolation along with scan orientation independence and projection based streak generation for an overall realistic 3-D image. The algorithms are prototyped in MatLab and C++ and demonstrate non discernible 3-D threat
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
NASA Astrophysics Data System (ADS)
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
A highly heterogeneous 3D PWR core benchmark: deterministic and Monte Carlo method comparison
NASA Astrophysics Data System (ADS)
Jaboulay, J.-C.; Damian, F.; Douce, S.; Lopez, F.; Guenaut, C.; Aggery, A.; Poinot-Salanon, C.
2014-06-01
Physical analyses of the LWR potential performances with regards to the fuel utilization require an important part of the work dedicated to the validation of the deterministic models used for theses analyses. Advances in both codes and computer technology give the opportunity to perform the validation of these models on complex 3D core configurations closed to the physical situations encountered (both steady-state and transient configurations). In this paper, we used the Monte Carlo Transport code TRIPOLI-4®; to describe a whole 3D large-scale and highly-heterogeneous LWR core. The aim of this study is to validate the deterministic CRONOS2 code to Monte Carlo code TRIPOLI-4®; in a relevant PWR core configuration. As a consequence, a 3D pin by pin model with a consistent number of volumes (4.3 millions) and media (around 23,000) is established to precisely characterize the core at equilibrium cycle, namely using a refined burn-up and moderator density maps. The configuration selected for this analysis is a very heterogeneous PWR high conversion core with fissile (MOX fuel) and fertile zones (depleted uranium). Furthermore, a tight pitch lattice is selcted (to increase conversion of 238U in 239Pu) that leads to harder neutron spectrum compared to standard PWR assembly. In these conditions two main subjects will be discussed: the Monte Carlo variance calculation and the assessment of the diffusion operator with two energy groups for the core calculation.
Freehand 3D ultrasound breast tumor segmentation
NASA Astrophysics Data System (ADS)
Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao
2007-12-01
It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.
3D Printed Bionic Nanodevices.
Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C
2016-06-01
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the
Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.
2016-01-01
Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with
Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique
2011-01-01
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work
Spin fluctuations in 3d paramagnetic metals
NASA Astrophysics Data System (ADS)
Wysocki, Aleksander; Kutepov, Andrey; Antropov, Vladimir
Spin fluctuations (SFs) in 3d paramagnetic metals were investigated using the linear response formalism within the time dependent density functional theory. An efficient scheme of frequency integration using the Matsubara technique has been implemented and tested. The SFs spectrum in 3d paramagnets is analyzed in real and reciprocal spaces as a function of frequency and temperature. For all materials the SFs are characterized by the coexistence of low and high energy branches which originate from different regions of the Brillouin zone. The low-energy ones can be measured by neutron scattering experiments while the high-energy SFs appear to be more localized. Further, we studied the nature of square of fluctuating magnetic moment in these materials. This work was supported, in part, by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), and by the Office of Basic Energy Science, Division of Materials Science and Engineering. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Neutron removal cross section as a measure of neutron skin
Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.
2010-04-15
We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
2010-02-23
This anaglyph from images captured by NASA Cassini spacecraft shows a dramatic, 3-D view of one of the deep fractures nicknamed tiger stripes on Saturn moon Enceladus which are located near the moon south pole, spray jets of water ice.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
1999-06-25
Ganges Chasma is part of the Valles Marineris trough system that stretches nearly 5,000 kilometers 3,000 miles across the western equatorial region of Mars. This stereo anaglyph is from NASA Mars Global Surveyor. 3D glasses are necessary.
2004-02-02
This is a three-dimensional stereo anaglyph of an image taken by the front hazard-identification camera onboard NASA Mars Exploration Rover Opportunity, showing the rover arm in its extended position. 3D glasses are necessary to view this image.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
ERIC Educational Resources Information Center
Mayshark, Robin K.
1991-01-01
Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)
2014-11-21
A 3D image shows what it would look like to fly over the surface of comet 67P/Churyumov-Gerasimenko. The image was generated by data collected by ESA Philae spacecraft during the decent to the spacecraft initial touchdown on the comet Nov. 12, 2014.
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
Homogeneous free-form directional backlight for 3D display
NASA Astrophysics Data System (ADS)
Krebs, Peter; Liang, Haowen; Fan, Hang; Zhang, Aiqin; Zhou, Yangui; Chen, Jiayi; Li, Kunyang; Zhou, Jianying
2017-08-01
Realization of a near perfect homogeneous secondary emission source for 3D display is proposed and demonstrated. The light source takes advantage of an array of free-form emission surface with a specially tailored light guiding structure, a light diffuser and Fresnel lens. A seamless and homogeneous directional emission is experimentally obtained which is essential for a high quality naked-eye 3D display.
NASA Astrophysics Data System (ADS)
Cohen De Lara, Evelyne; Kahn, Rémi
1992-01-01
The diffusion of HD in NaA is studied by incoherent neutron scattering, in order to be compared with H2. The behavior of HD is similar to the one of H2: Translational motion in a nonrestricted volume and liquidlike diffusivity. The diffusion model which fits the width of the quasielastic scattering in the entire (q,T) range gives a mean length for the isotropic jump l¯=3.3 Å, shorter than the one of H2 (3.9 Å), and equivalent values of the time τ0 between jumps. The comparison of the Arrhenius plots of DH2 and DHD leads to the conclusion that quantum effects have to be taken into account.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.
1994-06-01
NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.
Forensic 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.
2000-05-01
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
Forensic 3D Scene Reconstruction
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Technical Reports Server (NTRS)
Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)
2003-01-01
A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.
van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib
2012-01-01
In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.
Belenkov, E. A. Ali-Pasha, V. A.
2011-01-15
The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.
DREAM3D simulations of inner-belt dynamics
Cunningham, Gregory Scott
2015-05-26
A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
Embedding objects during 3D printing to add new functionalities
2016-01-01
A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning® Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning® Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication. These
Embedding objects during 3D printing to add new functionalities.
Yuen, Po Ki
2016-07-01
A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated
Rubinson, Kenneth A; Faraone, Antonio
2016-05-14
X-ray and neutron scattering have been used to provide insight into the structures of ionic solutions for over a century, but the probes have covered distances shorter than 8 Å. For the non-hydrolyzing salt SrI2 in aqueous solution, a locally ordered lattice of ions exists that scatters slow neutrons coherently down to at least 0.1 mol L(-1) concentration, where the measured average distance between scatterers is over 18 Å. To investigate the motions of these scatterers, coherent quasielastic neutron scattering (CQENS) data on D2O solutions with SrI2 at 1, 0.8, 0.6, and 0.4 mol L(-1) concentrations was obtained to provide an experimental measure of the diffusive transport rate for the motion between pairs of ions relative to each other. Because CQENS measures the motion of one ion relative to another, the frame of reference is centered on an ion, which is unique among all diffusion measurement methods. We call the measured quantity the pairwise diffusive transport rate Dp. In addition to this ion centered frame of reference, the diffusive transport rate can be measured as a function of the momentum transfer q, where q = (4π/λ)sin θ with a scattering angle of 2θ. Since q is related to the interion distance (d = 2π/q), for the experimental range 0.2 Å(-1)≤q≤ 1.0 Å(-1), Dp is, then, measured over interion distances from 40 Å to ≈6 Å. We find the measured diffusional transport rates increase with increasing distance between scatterers over the entire range covered and interpret this behavior to be caused by dynamic coupling among the ions. Within the model of Fickian diffusion, at the longer interionic distances Dp is greater than the Nernst-Hartley value for an infinitely dilute solution. For these nm-distance diffusional transport rates to conform with the lower, macroscopically measured diffusion coefficients, we propose that local, coordinated counter motion of at least pairs of ions is part of the transport process.
Reaction induced fractures in 3D
NASA Astrophysics Data System (ADS)
Ulven, Ole Ivar; Malthe-Sørenssen, Anders
2014-05-01
The process of fracture formation due to volume changing processes has been studied numerically in a variety of different settings, e.g. fracture initiation in general volume increasing reactions by Ulven et al.[4], weathering of dolerites by Røyne et al.[2], and volume reduction during chemical decomposition prosesses by Malthe-Sørenssen et al.[1]. Common to many previous works is that the simulations were performed in a 2D setting, due to computational limitations. Fractures observed both in field studies and in experiments are in many cases three dimensional. It remains an open question in what cases the simplification to 2D systems is applicable, and when a full 3D simulation is necessary. In this study, we use a newly developed 3D code combining elements from the discrete element model (DEM) with elements from Peridynamics[3]. We study fracture formation in fully three dimensional simulations, and compare them with simulation results from 2D DEM, thus gaining insight in both qualitative and quantitative differences between results from 2D and 3D simulations. References [1] Malthe-Sørenssen, A., Jamtveit, B., and Meakin, P., 'Fracture Patterns Generated by Diffusion Controlled Volume Changing Reactions,' Phys. Rev. Lett. 96, 2006, pp. 245501-1 - 245501-4. [2] Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., 'Controls on rock weathering rates by reaction-induced hierarchial fracturing,' Earth Planet. Sci. Lett. 275, 2008, pp. 364 - 369. [3] Silling, S. A., 'Reformulation of elasticity theory for discontinuities and long-range forces,' J. Mech. Phys. Solids, 48, Issue 1, 2000, pp. 175 - 209 [4] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A., 'Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration', Earth Planet. Sci. Lett. 389C, 2014, pp. 132 - 142.
Dissipation mechanism in 3D magnetic reconnection
Fujimoto, Keizo
2011-11-15
Dissipation processes responsible for fast magnetic reconnection in collisionless plasmas are investigated using 3D electromagnetic particle-in-cell simulations. The present study revisits the two simulation runs performed in the previous study (Fujimoto, Phys. Plasmas 16, 042103 (2009)); one with small system size in the current density direction, and the other with larger system size. In the case with small system size, the reconnection processes are almost the same as those in 2D reconnection, while in the other case a kink mode evolves along the current density and deforms the current sheet structure drastically. Although fast reconnection is achieved in both the cases, the dissipation mechanism is very different between them. In the case without kink mode, the electrons transit the electron diffusion region without thermalization, so that the magnetic dissipation is supported by the inertia resistivity alone. On the other hand, in the kinked current sheet, the electrons are not only accelerated in bulk, but they are also partly scattered and thermalized by the kink mode, which results in the anomalous resistivity in addition to the inertia resistivity. It is demonstrated that in 3D reconnection the thickness of the electron current sheet becomes larger than the local electron inertia length, consistent with the theoretical prediction in Fujimoto and Sydora (Phys. Plasmas 16, 112309 (2009)).
Reactor transient analyses with KIN3D/PARTISN
Gabrielli, F.; Rineiski, A.; Maschek, W.; Marchetti, M.
2013-07-01
Efforts are going on at the Karlsruhe Institute of Technology (KIT) to extend the kinetics capability of the PARTISN code in order to run in parallel two- and three-dimensional transient analyses with the quasistatic method, while taking into account delayed neutrons. In the original code version, time-dependent transport problems are solved by employing a semi-implicit direct kinetics option, the delayed neutrons being not taken into account. The PARTISN 5.97 code has been extended and then coupled with KIN3D, a time-dependent model embedded in the ERANOS code system. In the coupled code, PARTISN 5.97 is used as neutron transport solver to perform transient analyses while employing direct and quasi-static kinetics options of KIN3D. The coupled code can be also applied for first-order and exact perturbation theory calculations. In the paper, the PARTISN 5.97 extensions and coupling procedure are described and the performances of the KIN3D/PARTISN coupled code are investigated by analyzing transients induced by a source-jerk in a three-dimensional ADS model driven by an external source. (authors)
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
Love, Lonnie
2015-01-09
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
Implementation of active-type Lamina 3D display system.
Yoon, Sangcheol; Baek, Hogil; Min, Sung-Wook; Park, Soon-Gi; Park, Min-Kyu; Yoo, Seong-Hyeon; Kim, Hak-Rin; Lee, Byoungho
2015-06-15
Lamina 3D display is a new type of multi-layer 3D display, which utilizes the polarization state as a new dimension of depth information. Lamina 3D display system has advanced properties - to reduce the data amount representing 3D image, to be easily made using the conventional projectors, and to have a potential being applied to the many applications. However, the system might have some limitations in depth range and viewing angle due to the properties of the expressive volume components. In this paper, we propose the volume using the layers of switchable diffusers to implement the active-type Lamina 3D display system. Because the diffusing rate of the layers has no relation with the polarization state, the polarizer wheel is applied to the proposed system in purpose of making the sectioned image synchronized with the diffusing layer at the designated location. The imaging volume of the proposed system consists of five layers of polymer dispersed liquid crystal and the total size of the implemented volume is 24x18x12 mm^{3}(3). The proposed system can achieve the improvements of viewing qualities such as enhanced depth expression and widened viewing angle.
3D analysis of the reactivity insertion accident in VVER-1000
Abdullayev, A. M.; Zhukov, A. I.; Slyeptsov, S. M.
2012-07-01
Fuel parameters such as peak enthalpy and temperature during rod ejection accident are calculated. The calculations are performed by 3D neutron kinetics code NESTLE and 3D thermal-hydraulic code VIPRE-W. Both hot zero power and hot full power cases were studied for an equilibrium cycle with Westinghouse hex fuel in VVER-1000. It is shown that the use of 3D methodology can significantly increase safety margins for current criteria and met future criteria. (authors)
Positional Awareness Map 3D (PAM3D)
NASA Technical Reports Server (NTRS)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.
2013-01-01
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
3D Printable Graphene Composite
NASA Astrophysics Data System (ADS)
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
3D medical thermography device
NASA Astrophysics Data System (ADS)
Moghadam, Peyman
2015-05-01
In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.
3D acoustic atmospheric tomography
NASA Astrophysics Data System (ADS)
Rogers, Kevin; Finn, Anthony
2014-10-01
This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.
3D structured illumination microscopy
NASA Astrophysics Data System (ADS)
Dougherty, William M.; Goodwin, Paul C.
2011-03-01
Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
3D Protein Dynamics in the Cell Nucleus.
Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E
2017-01-10
The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line.
Larry Lawrence; Bruce Miller
2004-09-01
The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data
Non-isothermal 3D SDPD Simulations
NASA Astrophysics Data System (ADS)
Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos
2012-11-01
The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.
Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon
2016-07-28
Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients.
Neutronic calculation of fast reactors by the EUCLID/V1 integrated code
NASA Astrophysics Data System (ADS)
Koltashev, D. A.; Stakhanova, A. A.
2017-01-01
This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.
Alejandro Leon-Escamilla, E.; Dervenagas, Panagiotis; Stassis, Constantine; Corbett, John D.
2010-01-15
The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub a}pprox{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of beta-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures. - Graphical abstract: The structure of Ca{sub 5}Bi{sub 3}H{sub 0.93} occurs in the novel Ca{sub 5}Sb{sub 3}F structure type with D centered in the shaded calcium tetrahedra.
Love, Lonnie
2016-11-02
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energyâs Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a âplug-n-playâ laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
Quasi 3D dispersion experiment
NASA Astrophysics Data System (ADS)
Bakucz, P.
2003-04-01
This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.
Sinclair, Michael B
2012-01-05
ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.
Review of recent advances in radiochromic materials for 3D dosimetry
NASA Astrophysics Data System (ADS)
Jordan, Kevin
2010-11-01
Recent papers concerning radiochromic films, plastics and hydrogels for 3D dosimetry are summarized. The utility of Presage", a radiochromic plastic, with optical CT readout was demonstrated for the following applications: motion and gated treatment delivery, commissioning of small fields for radiosurgery, 192Ir high dose rate brachytherapy source commissioning and as a 3D insert for IMRT credentialing tests with Radiological Physics Centre (RPC) phantoms. Preliminary performance for characterizing microbeams from a synchrotron with optic projection tomography readout demonstrated resolution of an 83 micron diameter beam. Hydrogel chemistries based on nonionic micelles for leuco malachite green and leuco crystal violet demonstrated that low diffusion gels can be designed by choosing product dyes that are poorly soluble and water and tend to remain in the micelles. Turnbull blue chemistry has been successfully adapted to form a non-difffusing gel as well. The performance of ferrous xylenol orange hydrogel layers doped with boron to form neutron dosimeters demonstrated another practical application. Polymerization hydrogels are alternate materials that can be read with optical CT scanners. High dose gradient applications in brachytherapy with 90Sr/90Y sources and proton dosimetry are presented for comparison.
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-06
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.
NASA Astrophysics Data System (ADS)
Zanotti, J.-M.
2005-11-01
Le présent document ne se veut pas un article de revue mais plutôt un élément d'initiation à une technique encore marginale en Biologie. Le lecteur est supposé être un non spécialiste de la diffusion de neutrons poursuivant une thématique à connotation biologique ou biophysique mettant en jeu des phénomènes dynamiques. En raison de la forte section de diffusion incohérente de l'atome d'hydrogène et de l'abondance de cet élément dans les protéines, la diffusion incohérente inélastique de neutrons est une technique irremplaçable pour sonder la dynamique interne des macromolécules biologiques. Après un rappel succinct des éléments théoriques de base, nous décrivons le fonctionnement de différents types de spectromètres inélastiques par temps de vol sur source continue ou pulsée et discutons leurs mérites respectifs. Les deux alternatives utilisées pour décrire la dynamique des protéines sont abordées: (i)l'une en termes de physique statistique, issue de la physique des verres, (ii) la seconde est une interprétation mécanistique. Nous montrons dans ce cas, comment mettre à profit les complémentarités de domaines en vecteur de diffusion et de résolution en énergie de différents spectromètres inélastiques de neutrons (temps de vol, backscattering et spin-écho) pour accéder, à l'aide d'un modèle physique simple, à la dynamique des protéines sur une échelle de temps allant d'une fraction de picoseconde à quelques nanosecondes.
The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses
NASA Astrophysics Data System (ADS)
Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart
2012-01-01
This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.
McCall, R.C.
1981-01-01
Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)
NASA Astrophysics Data System (ADS)
Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.
2013-03-01
Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
NASA Astrophysics Data System (ADS)
Hermanns, Maria
The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
NIF Ignition Target 3D Point Design
Jones, O; Marinak, M; Milovich, J; Callahan, D
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.
3-D Cavern Enlargement Analyses
EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.
2002-03-01
Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.
America's National Parks 3d (4)
Atmospheric Science Data Center
2017-04-11
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 4) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (3)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 3) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (2)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 2) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (1)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 1) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
3D ultrasound in fetal spina bifida.
Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B
2008-12-01
3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.
An interactive multiview 3D display system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui
2013-03-01
The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.
[3D emulation of epicardium dynamic mapping].
Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang
2005-03-01
In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.
3-D Extensions for Trustworthy Systems
2011-01-01
modifications to the floor planning stage of the 3-D design flow that are necessary to support our design approach. We strongly recommend that the 3-D EDA ...and we outline problems, challenges, attacks, solutions, and topics for future research. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...Requirements for automated 3-D IC design tools for the physical layout of components. Since fully automated Electronic Design Automation ( EDA ) for 3-D
True 3d Images and Their Applications
NASA Astrophysics Data System (ADS)
Wang, Z.; wang@hzgeospace., zheng.
2012-07-01
A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.
Microfabricating 3D Structures by Laser Origami
2011-11-09
10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can
Laser Based 3D Volumetric Display System
1993-03-01
Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
Expanding Geometry Understanding with 3D Printing
ERIC Educational Resources Information Center
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
Imaging a Sustainable Future in 3D
NASA Astrophysics Data System (ADS)
Schuhr, W.; Lee, J. D.; Kanngieser, E.
2012-07-01
It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.
Expanding Geometry Understanding with 3D Printing
ERIC Educational Resources Information Center
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
3D Printing and Its Urologic Applications
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997
NASA Astrophysics Data System (ADS)
Engle, Rob
2008-02-01
This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
3-D Perspective Pasadena, California
NASA Technical Reports Server (NTRS)
2000-01-01
This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency
CQL3D-Hybrid-FOW modeling of the temporal dynamics of NSTX NBI+HHFW discharges
Harvey, R. W.; Petrov, Yu. V.; Liu, D.; Heidbrink, W. W.; Taylor, G.; Bonoli, P. T.
2014-02-12
The CQL3D Fokker-Planck code[1] has been upgraded to include physics of finite-orbit-width (FOW) guiding-center orbits[2,3], as compared with the previous zero-orbit-width (ZOW) model, and a recent first-order orbit calculation[2]. The Fast Ion Diagnostic FIDA[4,5] signal resulting from neutral beam (NBI) and high harmonic fast wave (HHFW) RF power injected into the NSTX spherical tokamak can now be modeled quite accurately, using ion distributions from the CQL3D-Hybrid-FOW code, a rapidly executing variant that includes FOW+gyro-orbit losses to the plasma edge, FOW effects on NBI injection and HHFW diffusion, but does not include neoclassical radial diffusion. Accurate simulation of prompt fast ion (FI) losses is a key feature of the marked modeling improvement relative to previous ZOW results. By comparing NBI-only and NBI+HHFW shots, independent confirmation of the usual 35% edge loss of HHFW in NSTX is obtained. Further, HHFW prompt losses from the plasma core are shown to be 3X as large (>25%) as the NBI-only case. The modulated NBI and time-dependent background plasma variations and charge exchange losses of fast ions are accounted for, and the temporal neutron variation is in approximate agreement with NSTX observations.
CQL3D-Hybrid-FOW modeling of the temporal dynamics of NSTX NBI+HHFW discharges
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu. V.; Liu, D.; Heidbrink, W. W.; Taylor, G.; Bonoli, P. T.
2014-02-01
The CQL3D Fokker-Planck code[1] has been upgraded to include physics of finite-orbit-width (FOW) guiding-center orbits[2,3], as compared with the previous zero-orbit-width (ZOW) model, and a recent first-order orbit calculation[2]. The Fast Ion Diagnostic FIDA[4,5] signal resulting from neutral beam (NBI) and high harmonic fast wave (HHFW) RF power injected into the NSTX spherical tokamak can now be modeled quite accurately, using ion distributions from the CQL3D-Hybrid-FOW code, a rapidly executing variant that includes FOW+gyro-orbit losses to the plasma edge, FOW effects on NBI injection and HHFW diffusion, but does not include neoclassical radial diffusion. Accurate simulation of prompt fast ion (FI) losses is a key feature of the marked modeling improvement relative to previous ZOW results. By comparing NBI-only and NBI+HHFW shots, independent confirmation of the usual 35% edge loss of HHFW in NSTX is obtained. Further, HHFW prompt losses from the plasma core are shown to be 3X as large (>25%) as the NBI-only case. The modulated NBI and time-dependent background plasma variations and charge exchange losses of fast ions are accounted for, and the temporal neutron variation is in approximate agreement with NSTX observations.
Real Time Quantitative 3-D Imaging of Diffusion Flame Species
NASA Technical Reports Server (NTRS)
Kane, Daniel J.; Silver, Joel A.
1997-01-01
A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode lasers, the possibility now exists to obtain reactant and product concentrations and temperatures non-intrusively in microgravity combustion studies. Over the past ten years, Southwest Sciences has focused its research on the high sensitivity, quantitative detection of gas phase species using diode lasers. Our research approach combines three innovations in an experimental system resulting in a new capability for nonintrusive measurement of major combustion species. FM spectroscopy or high frequency Wavelength Modulation Spectroscopy (WMS) have recently been applied to sensitive absorption measurements at Southwest Sciences and in other laboratories using GaAlAs or InGaAsP diode lasers in the visible or near-infrared as well as lead-salt lasers in the mid-infrared spectral region. Because these lasers exhibit essentially no source noise at the high detection frequencies employed with this technique, the achievement of sensitivity approaching the detector shot noise limit is possible.
Real Time Quantitative 3-D Imaging of Diffusion Flame Species
NASA Technical Reports Server (NTRS)
Kane, Daniel J.; Silver, Joel A.
1997-01-01
A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode lasers, the possibility now exists to obtain reactant and product concentrations and temperatures non-intrusively in microgravity combustion studies. Over the past ten years, Southwest Sciences has focused its research on the high sensitivity, quantitative detection of gas phase species using diode lasers. Our research approach combines three innovations in an experimental system resulting in a new capability for nonintrusive measurement of major combustion species. FM spectroscopy or high frequency Wavelength Modulation Spectroscopy (WMS) have recently been applied to sensitive absorption measurements at Southwest Sciences and in other laboratories using GaAlAs or InGaAsP diode lasers in the visible or near-infrared as well as lead-salt lasers in the mid-infrared spectral region. Because these lasers exhibit essentially no source noise at the high detection frequencies employed with this technique, the achievement of sensitivity approaching the detector shot noise limit is possible.
NASA Astrophysics Data System (ADS)
Lauter, Valeria; Ambaye, H.; Zhu, T.; Yang, Y.; Yu, R. C.; Xiao, J. Q.
2013-03-01
The current-induced spin transfer torque (STT) plays an important role in spintronic devices. However, the level of current density needed to reorient the magnetization is presently too high for most commercial applications, and reducing the current density is the challenging basis for recent research in spintronics. The magnetic tunnel junction (MTJ) with a perpendicular magnetic anisotropy (PMA) enables a small critical current density for current-induced magnetization switching and provides a pathway for such STT devices. We investigated the origin of PMA in CoFeB sandwiched by MgO and Ti layers using the anomalous Hall effect (AHE) and polarized neutron reflectometry (PNR). It is found that the PMA properties of CoFeB layers deposited above and under MgO layer are different and PNR measurements confirmed that a large PMA in the CoFeB above MgO layer is related to its low magnetization. From PNR experiments, we obtained the details of the magnetic and structural depth profiles inside the film. Using the sensitivity of neutrons to the absorption cross-section of boron, we unambiguously determined the depth profile of the boron distribution and showed that after annealing, most of the boron diffused to form a 2-nm-thick interface layer between the CoFeB and tantalum layers. Research at ORNL SNS was sponsored by BES and DOE.
ARIANI, IMELDA
2004-04-21
Version 04 NESTLE solves the few-group neutron diffusion equation utilizing the NEM. The NESTLE code can solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- or four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) if desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed.