Science.gov

Sample records for 3-d numerical analysis

  1. Numerical analysis of 3-D potential flow in centrifugal turbomachines

    NASA Astrophysics Data System (ADS)

    Daiguji, H.

    1983-09-01

    A numerical method is developed for analysing a three-dimensional steady incompressible potential flow through an impeller in centrifugal turbomachines. The method is the same as the previous method which was developed for the axial flow turbomachines, except for some treatments in the downstream region. In order to clarify the validity and limitation of the method, a comparison with the existing experimental data and numerical results is made for radial flow compressor impellers. The calculated blade surface pressure distributions almost coincide with the quasi-3-D calculation by Krimerman and Adler (1978), but are different partly from the quasi-3-D calculation using one meridional flow analysis. It is suggested from this comparison that the flow through an impeller with high efficiency near the design point can be predicted by this fully 3-D numerical method.

  2. 3D numerical analysis of crack propagation of heterogeneous notched rock under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Sloan, S. W.; Sheng, D. C.; Tang, C. A.

    2016-05-01

    Macroscopic notches play an important role in evaluating the fracture process zone (FPZ) and the strengths of a heterogeneous rock mass. Crack initiation, propagation and coalescence for unnotched, single-notched and double-notched rock specimens are numerically simulated in a 3-D numerical model (RFPA3D). A feature of the code RFPA3D is that it can numerically simulate the evolution of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. For the unnotched case, special attention is given to the complete stress-strain curve and the corresponding AE events for the failure process of rock specimen. By comparing with published experimental results, the simulation results from RFPA3D are found to be satisfactory. For the single-notched case, the effect of the length and the depth of the single notch and the thickness of the specimen on the failure mode and peak stress are evaluated. The 3D FPZ is very different from that in two dimensions. For the double-notched case, the effects of the separation distance and overlap distance of the double notches, as well as influence of the homogeneity index (m) are also investigated. As the overlap distance increases, the direction of the principal tensile stress at each notch-end changes from a perpendicular direction (tensile stress field) to a nearly parallel direction (compressive stress field), which affects the evolution of the cracks from the two notches.

  3. 3D numerical simulation analysis of passive drag near free surface in swimming

    NASA Astrophysics Data System (ADS)

    Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx

    2015-04-01

    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  4. A Numerical Analysis of 3D EM Imaging from a Single Borehole

    SciTech Connect

    Alumbaugh, David L.; Wilt, Michael J.

    1999-07-27

    In this study we analyze the feasibility of three dimensional (3D) electromagnetic (EM) imaging from a single borehole. The proposed logging tool consists of three mutually orthogonal magnetic dipole sources and multiple three component magnetic field receivers. A sensitivity analysis indicates that the most important sensor configuration for providing 3D geological information about the borehole consists of a transmitter with moment aligned parallel to the axis of the borehole, and receivers aligned perpendicular to the axis. The standard coaxial logging configuration provides the greatest depth of sensitivity compared to other configurations, but offers no information regarding 3D structure. Two other tool configurations in which both the source and receiver are aligned perpendicular to the borehole axis provide some directional information and therefore better image resolution, but not true 3D information. A 3D inversion algorithm has been employed to demonstrate the plausibility of 3D inversion using data collected with the proposed logging tool. This study demonstrates that an increase in image resolution results when three orthogonal sources are incorporated into the logging tool rather than a single axially aligned source.

  5. Effect of Frictions on the Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Ha-Minh, Cuong; Boussu, François; Kanit, Toufik; Crépin, David; Imad, Abdellatif

    2012-06-01

    3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2® fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.

  6. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

    NASA Astrophysics Data System (ADS)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

    2015-05-01

    3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

  7. 3D Numerical Analysis of Flow Control on Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Sahni, Onkar; Karaismail, Ertan

    2011-11-01

    Wind turbine blades are exposed to unsteady and spatially-varying loadings in a real field. These loadings result in fluctuating structural forces which in turn lead to failure of blades as well as gearbox. In this study, we perform numerical analysis of flow over a wind turbine blade placed in a wind tunnel; where dynamic motions are imposed to the blade in order to emulate scenarios observed in a real field. Furthermore, we also study the effect of active flow control (via synthetic-jets) on unsteady aerodynamic characteristics of the blade under dynamic motions; the idea is to be able to control aerodynamic loads and mitigate failures. Numerical analysis is based on massively parallel simulations using hybrid turbulence models. Comparisons with experimental data will also be included.

  8. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  9. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    SciTech Connect

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.

  10. Numerical analysis of the aeroelastic behaviour for the last turbine stage in 3D transonic flow

    NASA Astrophysics Data System (ADS)

    Gnesin, Vitaly; Kolodyazhnaya, Lyubov

    2004-11-01

    An understanding of the physics of the mutual interaction between gas flow and oscillating blades, and the development of predictive capabilities is essential for improving overall efficiency, durability and reliability. In this study presented the algorithm proposed involving the coupled solution of 3D unsteady flow through a turbine stage and dynamic problem for rotor blades motion by action of aerodynamic forces without separating outer and inner flow fluctuations. There has been performed the calculations for the last stage of the steam turbine under design and off-design regimes. It has investigated the mutual influence of both outer flow non-uniformity and blades oscillations. It has shown that amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to rotor moving one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row.

  11. Numerical simulation of 3D breaking waves

    NASA Astrophysics Data System (ADS)

    Fraunie, Philippe; Golay, Frederic

    2015-04-01

    Numerical methods dealing with two phase flows basically can be classified in two ways : the "interface tracking" methods when the two phases are resolved separately including boundary conditions fixed at the interface and the "interface capturing" methods when a single flow is considered with variable density. Physical and numerical properties of the two approaches are discussed, based on some numerical experiments performed concerning 3D breaking waves. Acknowledgements : This research was supported by the Modtercom program of Region PACA.

  12. Numerical study on 3D composite morphing actuators

    NASA Astrophysics Data System (ADS)

    Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru

    2015-04-01

    There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.

  13. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  14. Non-Newtonian Fluids Spreading with Surface Tension Effect: 3D Numerical Analysis Using FEM and Experimental Study

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Kieweg, Sarah

    2010-11-01

    Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.

  15. Stress field sensitivity analysis within Mesozoic successions in the Swiss Alpine foreland using 3-D-geomechanical-numerical models

    NASA Astrophysics Data System (ADS)

    Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver

    2016-04-01

    The in situ stress conditions are of key importance for the evaluation of radioactive waste repositories. In stage two of the Swiss site selection program, the three siting areas of high-level radioactive waste are located in the Alpine foreland in northern Switzerland. The sedimentary succession overlays the basement, consisting of variscan crystalline rocks as well as partly preserved Permo-Carboniferous deposits in graben structures. The Mesozoic sequence represents nearly the complete era and is covered by Cenozoic Molasse deposits as well as Quaternary sediments, mainly in the valleys. The target horizon (designated host rock) is an >100 m thick argillaceous Jurassic deposit (Opalinus Clay). To enlighten the impact of site-specific features on the state of stress within the sedimentary succession, 3-D-geomechanical-numerical models with elasto-plastic rock properties are set up for three potential siting areas. The lateral extent of the models ranges between 12 and 20 km, the vertical extent is up to a depth of 2.5 or 5 km below sea level. The sedimentary sequence plus the basement are separated into 10 to 14 rock mechanical units. The Mesozoic succession is intersected by regional fault zones; two or three of them are present in each model. The numerical problem is solved with the finite element method with a resolution of 100-150 m laterally and 10-30 m vertically. An initial stress state is established for all models taking into account the depth-dependent overconsolidation ratio in Opalinus Clay in northern Switzerland. The influence of topography, rock properties, friction on the faults as well as the impact of tectonic shortening on the state of stress is investigated. The tectonic stress is implemented with lateral displacement boundary conditions, calibrated on stress data that are compiled in Northern Switzerland. The model results indicate that the stress perturbation by the topography is significant to depths greater than the relief contrast. The

  16. Use of 3D numerical simulation model for impact analysis of accidental release of hazardous substance in urban environment

    SciTech Connect

    Kao, C.Y.J.; Ni-Bin Chang

    1996-12-31

    A three dimensional, time dependent, numerical model is developed for the simulation of vapor cloud of chemical substance being accidentally released in urban environment. Such a modeling technique as it would apply to chemical emergency response situation in the urban environment is considerably important due to the behavior of heavy gas diffusion and dispersion. Within the scope of this study, the distribution of chemicals being released is estimated based on the kernel density estimator along with a three-dimension wind field model in which the horizontal momentum equations, turbulence kinetic energy equation, and a set of conservation equations are integrated together. By utilizing the capability of numerical analysis, the solution of such a hydrodynamic model can be found to constitute the analytical framework in the process of pollutant transport and even transformation. Such a result is required for both short-term and long-term risk analyses in urban environment.

  17. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Jang, Jiin-Yuh

    2005-05-01

    Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

  18. 3D numerical model for NGC 6888 Nebula

    NASA Astrophysics Data System (ADS)

    Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.

    We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.

  19. 3D visualization of numeric planetary data using JMARS

    NASA Astrophysics Data System (ADS)

    Dickenshied, S.; Christensen, P. R.; Anwar, S.; Carter, S.; Hagee, W.; Noss, D.

    2013-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. In addition to visualizing multiple datasets in context with one another, significant effort has been put into on-the-fly projection of georegistered data over surface topography. This functionality allows a user to easily create and modify 3D visualizations of any regional scene where elevation data is available in JMARS. This can be accomplished through the use of global topographic maps or regional numeric data such as HiRISE or HRSC DTMs. Users can also upload their own regional or global topographic dataset and use it as an elevation source for 3D rendering of their scene. The 3D Layer in JMARS allows the user to exaggerate the z-scale of any elevation source to emphasize the vertical variance throughout a scene. In addition, the user can rotate, tilt, and zoom the scene to any desired angle and then illuminate it with an artificial light source. This scene can be easily overlain with additional JMARS datasets such as maps, images, shapefiles, contour lines, or scale bars, and the scene can be easily saved as a graphic image for use in presentations or publications.

  20. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  1. Numerical Analysis of Three-Dimensional Cervical Behaviors in Posterior-Oblique Car Collisions Using 3-D Human Whole Body Finite Element Model

    NASA Astrophysics Data System (ADS)

    Kang, Yu-Bong; Jung, Duk-Young; Tanaka, Masatoshi; Yoshino, Nobuyuki; Tsutsumi, Sadami; Ikeuchi, Ken

    Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.

  2. The numerical measure of symmetry for 3D stick creatures.

    PubMed

    Jaśkowski, Wojciech; Komosinski, Maciej

    2008-01-01

    This work introduces a numerical, continuous measure of symmetry for 3D stick creatures and solid 3D objects. Background information about the property of symmetry is provided, and motivations for developing a symmetry measure are described. Three approaches are mentioned, and two of them are presented in detail using formal mathematical language. The best approach is used to sort a set of creatures according to their symmetry. Experiments with a mixed set of 84 individuals originating from both human design and evolution are performed to examine symmetry within these two sources, and to determine if human designers and evolutionary processes prefer symmetry or asymmetry. PMID:18573069

  3. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  4. 3-D Numerical Field Calculations of CESR's Upgraded Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Greenwald, Zipi; Greenwald, Shlomo

    1997-05-01

    A 3-D numerical code( Z. Greenwald, ``BST.c 3-D Magnetic Field Calculation Numerical Code'', Cornell University Note 96-09) was used to calculate the spatial magnetic fields generated by a current carrying wire. In particular, the code calculates the fields of wire loops wrapped on a pipe similar to superconductive magnet structures. The arrangement and dimensions of the loops can be easily modified to create dipoles, quadrupoles, skew magnets etc., and combinations of the above. In this paper we show the calculated 3-D fields of ironless superconducting quadrupole dipole combination designed for CESR phase III upgrade (which will be manufactured by TESLA). Since the magnet poles are made of loops, the fields at the edges are not only distorted but have a component, B_z, in the z direction as well. This Bz field can cause X-Y coupling of the beam. In order to calculate the coupling, the particle trajectories through the whole magnet were computed. The code is also used to calculate local fields errors due to possible manufacturing imperfections. An example of a rotational error of one pole, and an example of an error in the winding width are shown.

  5. Convective instability in sedimentation: 3-D numerical study

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2014-11-01

    To provide a probable explanation on the field observed rapid sedimentation process near river mouths, we investigate the convective sedimentation in stably stratified saltwater using 3-D numerical simulations. Guided by the linear stability analysis, this study focuses on the nonlinear interactions of several mechanisms, which lead to various sediment finger patterns, and the effective settling velocity for sediment ranging from clay (single-particle settling velocity V0 = 0.0036 and 0.0144 mm/s, or particle diameter d = 2 and 4 μm) to silt (V0 = 0.36 mm/s, or d = 20 μm). For very fine sediment with V0 = 0.0036 mm/s, the convective instability is dominated by double diffusion, characterized by millimeter-scale fingers. Gravitational settling slightly increases the growth rate; however, it has notable effect on the downward development of vertical mixing shortly after the sediment interface migrates below the salt interface. For sediment with V0 = 0.0144 mm/s, Rayleigh-Taylor instabilities become dominant before double-diffusive modes grow sufficiently large. Centimeter-scale and highly asymmetric sediment fingers are obtained due to nonlinear interactions between different modes. For sediment with V0 = 0.36 mm/s, Rayleigh-Taylor mechanism dominates and the resulting centimeter-scale sediment fingers show a plume-like structure. The flow pattern is similar to that without ambient salt stratification. Rapid sedimentation with effective settling velocity on the order of 1 cm/s is likely driven by convective sedimentation for sediment with V0 greater than 0.1 mm/s at concentration greater than 10-20 g/L.

  6. Numerical simulation of vortex breakdown via 3-D Euler equations

    NASA Astrophysics Data System (ADS)

    Le, T. H.; Mege, P.; Morchoisne, Y.

    1990-06-01

    The long term goal is the modeling of vortex breakdown that occurs in some aerodynamic configurations at high angle of attack, (i.e., fighters with highly swept delta wings or missiles). A numerical simulation was made based on solving the 3-D Euler equations for an usteady incompressible flow. Preliminary results were obtained using a pressure-velocity formulation with periodic boundary conditions, the Euler equations being discretized by 2nd order finite difference schemes. The continuation to this work by implementing more realistic boundary conditions and 4th order finite difference discretization schemes are presented.

  7. 3-D Experimental Fracture Analysis at High Temperature

    SciTech Connect

    John H. Jackson; Albert S. Kobayashi

    2001-09-14

    T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.

  8. Collision of continental corner from 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hai; Xu, Zhiqin; Gerya, Taras; Burg, Jean-Pierre

    2013-10-01

    Continental collision has been extensively investigated with 2-D numerical models assuming infinitely wide plates or insignificant along-strike deformation in the third dimension. However, the corners of natural collision zones normally have structural characteristics that differ from linear parts of mountain belt. We conducted 3-D high-resolution numerical simulations to study the dynamics of a continental corner (lateral continental/oceanic transition zone) during subduction/collision. The results demonstrate different modes between the oceanic subduction side (continuous subduction and retreating trench) and the continental collision side (slab break-off and topography uplift). Slab break-off occurs at a depth (⩽100 km to ˜300 km) that depends on the convergence velocity. The numerical models produce lateral extrusion of the overriding crust from the collisional side to the subduction side, which is also a phenomenon recognized around natural collision of continental corners, for instance around the western corner of the Arabia-Asia collision zone and around the eastern corner of the India-Asia collision zone. Modeling results also indicate that extrusion tectonics may be driven both from above by the topography and gravitational potentials and from below by the trench retreat and asthenospheric mantle return flow, which supports the link between deep mantle dynamics and shallower crustal deformation.

  9. 3-D numerical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  10. USJ metrology: from 0D to 3D analysis

    SciTech Connect

    Vandervorst, Wilfried

    2007-09-26

    The analysis of ultra shallow junctions is becoming a challenging task for which numerous tools and concepts are available. The requirements range from a simple 0D-analysis such as the integral dose or the sheet resistance over a simple 1D-profile (as obtained on blanket films) towards the 2D-dopant profile within a transistor. The ultimate complexity will be the analysis of a complete 3D-structure such as a FINFET, requiring a metrology tool with 3D-resolution. In each of these areas significant progress has been made in recent years and new concepts are emerging which will be discussed in this review.

  11. Numerical model of sonic boom in 3D kinematic turbulence

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Luquet, David; Marchiano, Régis

    2015-10-01

    Sonic boom is one of the key issues to be considered in the development of future supersonic or hypersonic civil aircraft concepts. The classical sonic boom, typical for Concorde with an N-wave shape and a ground amplitude of the order of 100 Pa, prevents overland flight. Future concepts target carefully shaped sonic booms with low amplitude weak shocks. However, sonic boom when perceived at the ground level is influenced not only by the aircraft characteristics, but also by atmospheric propagation. In particular, the effect of atmospheric turbulence on sonic boom propagation near the ground is not well characterized. Flight tests performed as early as the 1960s demonstrated that classical sonic booms are sensitive to atmospheric turbulence. However, this sensitivity remains only partially understood. This is related to the fact that i) turbulence is a random process that requires a statistical approach, ii) standard methods used to predict sonic booms, mainly geometrical acoustics based on ray tracing, are inadequate within the turbulent planetary boundary layer. Moreover, the ray theory fails to predict the acoustical field in many areas of interest, such as caustics or shadow zones. These zones are of major interest for sonic boom acceptability (highest levels, lateral extent of zone of impact). These limitations outline the need for a numerical approach that is sufficiently efficient to perform a large number of realizations for a statistical approach, but that goes beyond the limitations of ray theory. With this in view, a 3D one-way numerical method solving a nonlinear scalar wave equation established for heterogeneous, moving and absorbing atmosphere, is used to assess the effects of a 3D kinematic turbulence on sonic boom in various configurations. First, a plane N-wave is propagated in the free field through random realizations of kinematic fluctuations. Then the case of a more realistic Atmospheric Boundary Layer (ABL) is investigated, with a mean

  12. A 3D numerical model for Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.

    2014-07-01

    We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M⊙ yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.

  13. 3D numerical modeling of India-Asia-like collision

    NASA Astrophysics Data System (ADS)

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B

  14. Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes

    NASA Astrophysics Data System (ADS)

    Berini, Pierre; Wu, Ke

    1995-05-01

    This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.

  15. Numerical Results of 3-D Modeling of Moon Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity

  16. Numerical Results of Earth's Core Accumulation 3-D Modelling

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  17. Numerical simulation of 3-D Benard convection with gravitational modulation

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Peltier, L. J.

    1990-01-01

    In this numerical study, randomly and sinusoidally modulated gravitational fields imposed on three-dimensional Rayleigh-Benard convection are investigated in an effort to understand the effects of vibration (G-Jitter) on fluid systems. The time-dependent, Navier-Stokes equations and the energy equation with Boussinesq approximations are solved by a semi-implicit, pseudospectral procedure. An analysis of energy balances indicates that with increasing modulation amplitude, transition from synchronous to relaxation oscillation goes through the subharmonic response. Random modulations are found to be less stabilizing than sinusoidal and are shown to impose three-dimensionality on the flow for some parameter ranges both at terrestrial and zero base gravity conditions.

  18. 3D surface defect analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Yang, B.; Jia, M.; Song, G. J.; Tao, L.; Harding, K. G.

    2008-08-01

    A method is proposed for surface defect analysis and evaluation. Good 3D point clouds can now be obtained through a variety of surface profiling methods such as stylus tracers, structured light, or interferometry. In order to inspect a surface for defects, first a reference surface that represents the surface without any defects needs to be identified. This reference surface can then be fit to the point cloud. The algorithm we present finds the least square solution for the overdetermined equation set to obtain the parameters of the reference surface mathematical description. The distance between each point within the point cloud and the reference surface is then calculated using to the derived reference surface equation. For analysis of the data, the user can preset a threshold distance value. If the calculated distance is bigger than the threshold value, the corresponding point is marked as a defect point. The software then generates a color-coded map of the measured surface. Defect points that are connected together are formed into a defect-clustering domain. Each defect-clustering domain is treated as one defect area. We then use a clustering domain searching algorithm to auto-search all the defect areas in the point cloud. The different critical parameters used for evaluating the defect status of a point cloud that can be calculated are described as: P-Depth,a peak depth of all defects; Defect Number, the number of surface defects; Defects/Area, the defect number in unit area; and Defect Coverage Ratio which is a ratio of the defect area to the region of interest.

  19. 3-D numerical evaluation of density effects on tracer tests.

    PubMed

    Beinhorn, M; Dietrich, P; Kolditz, O

    2005-12-01

    In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow. PMID:16183165

  20. 3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON

    NASA Astrophysics Data System (ADS)

    Jin, BoCheng

    2011-12-01

    Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries

  1. Evaluation of Reinforcing Effects on New Facebolts using Steal Checker Pipes by Centrifuge Model Tests and 3D-Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Yokota, Yasuhiro; Yamamoto, Takuji; Date, Kensuke

    Facebolts are frequently used in order to reinforce the ground ahead of the cutting face. They are especially effective for tunnelling in poor conditions due to ground squeezlng. According to our centrifuge model tests and parametric studies with numeric alanalysis method, it demonstrated that bond strength was influential on failure pattern and ground movement. We subsequently developed new facebolts with checkered steel surface which can present much larger bond strength. Furthermore, this paper describes an actual employment of these new bolts to several site.

  2. 3D face analysis for demographic biometrics

    SciTech Connect

    Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  3. 3-D numerical simulations of volcanic ash transport and deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  4. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Baran, Ismet; Hattel, Jesper H.; Akkerman, Remko; Tutum, Cem C.

    2015-02-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D model. Moreover, the generalized plane strain model predicts the longitudinal process induced stresses more similar to the ones calculated in the 3D model as compared with the plane strain model.

  5. 3D numerical simulations of vesicle and inextensible capsule dynamics

    NASA Astrophysics Data System (ADS)

    Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi

    2014-10-01

    Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.

  6. Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes

    NASA Astrophysics Data System (ADS)

    Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent

    2015-12-01

    Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.

  7. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2016-08-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  8. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  9. 3D surface analysis and classification in neuroimaging segmentation.

    PubMed

    Zagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-06-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, together with the algorithm for estimating local 3D shape. Surface of estimated shape is analyzed and segmented according to kernel shapes. PMID:21755723

  10. Crashworthiness analysis using advanced material models in DYNA3D

    SciTech Connect

    Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.

    1993-10-22

    As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.

  11. 3D numerical simulation of the transport of chemical signature compounds from buried landmines

    NASA Astrophysics Data System (ADS)

    Irrazabal, Maik; Borrero, Ernesto; Briano, Julio G.; Castro, Miguel; Hernandez, Samuel P.

    2005-06-01

    The transport of the chemical signature compounds from buried landmines in a three-dimensional (3D) array has been numerically modeled using the finite-volume technique. Compounds such as trinitrotoluene, dinitrotoluene, and their degradation products, are semi volatile and somewhat soluble in water. Furthermore, they can strongly adsorb to the soil and undergo chemical and biological degradation. Consequently, the spatial and temporal concentration distributions of such chemicals depend on the mobility of the water and gaseous phases, their molecular and mechanical diffusion, adsorption characteristics, soil water content, compaction, and environmental factors. A 3D framework is required since two-dimensional (2D) symmetry may easily fade due to terrain topography: non-flat surfaces, soil heterogeneity, or underground fractures. The spatial and temporal distribution of the chemical-signature-compounds, in an inclined grid has been obtained. The fact that the chemicals may migrate horizontally, giving higher surface concentrations at positions not directly on top of the objects, emphasizes the need for understanding the transport mechanism when a chemical detector is used. Deformation in the concentration contours after rainfall is observed in the inclined surface and is attributed to both: the advective flux, and to the water flux at the surface caused by the slope. The analysis of the displacements in the position of the maximum concentrations at the surface, respect to the actual location of the mine, in an inclined system, is presented.

  12. Terascale direct numerical simulations of turbulent combustion using S3D.

    SciTech Connect

    Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer

    2008-08-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  13. Terascale direct numerical simulations of turbulent combustion using S3D

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  14. Accuracy of 3D scanners in tooth mark analysis.

    PubMed

    Molina, Ana; Martin-de-las-Heras, Stella

    2015-01-01

    The objective of this study was to compare the accuracy of contact and laser 3D scanners in tooth mark analysis. Ten dental casts were scanned with both 3D scanners. Seven linear measurements were made from the 3D images of dental casts and biting edges generated with DentalPrint© software (University of Granada, Granada, Spain). The uncertainty value for contact 3D scanning was 0.833 for the upper dental cast and 0.660 mm for the lower cast; similar uncertainty values were found for 3D-laser scanning. Slightly higher uncertainty values were obtained for the 3D biting edges generated. The uncertainty values for single measurements ranged from 0.1 to 0.3 mm with the exception of the intercanine distance, in which higher values were obtained. Knowledge of the error rate in the 3D scanning of dental casts and biting edges is especially relevant to be applied in practical forensic cases. PMID:25388960

  15. 3D numerical investigation on landslide generated tsunamis around a conical island

    NASA Astrophysics Data System (ADS)

    Montagna, Francesca; Bellotti, Giorgio

    2010-05-01

    This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we

  16. Improvements to the RELAP5-3D Nearly-Implicit Numerical Scheme

    SciTech Connect

    Richard A. Riemke; Walter L. Weaver; RIchard R. Schultz

    2005-05-01

    The RELAP5-3D computer program has been improved with regard to its nearly-implicit numerical scheme for twophase flow and single-phase flow. Changes were made to the nearly-implicit numerical scheme finite difference momentum equations as follows: (1) added the velocity flip-flop mass/energy error mitigation logic, (2) added the modified Henry-Fauske choking model, (3) used the new time void fraction in the horizontal stratification force terms and gravity head, and (4) used an implicit form of the artificial viscosity. The code modifications allow the nearly-implicit numerical scheme to be more implicit and lead to enhanced numerical stability.

  17. 3-D object-oriented image analysis of geophysical data

    NASA Astrophysics Data System (ADS)

    Fadel, I.; Kerle, N.; van der Meijde, M.

    2014-07-01

    Geophysical data are the main source of information about the subsurface. Geophysical techniques are, however, highly non-unique in determining specific physical parameters and boundaries of subsurface objects. To obtain actual physical information, an inversion process is often applied, in which measurements at or above the Earth surface are inverted into a 2- or 3-D subsurface spatial distribution of the physical property. Interpreting these models into structural objects, related to physical processes, requires a priori knowledge and expert analysis which is susceptible to subjective choices and is therefore often non-repeatable. In this research, we implemented a recently introduced object-based approach to interpret the 3-D inversion results of a single geophysical technique using the available a priori information and the physical and geometrical characteristics of the interpreted objects. The introduced methodology is semi-automatic and repeatable, and allows the extraction of subsurface structures using 3-D object-oriented image analysis (3-D OOA) in an objective knowledge-based classification scheme. The approach allows for a semi-objective setting of thresholds that can be tested and, if necessary, changed in a very fast and efficient way. These changes require only changing the thresholds used in a so-called ruleset, which is composed of algorithms that extract objects from a 3-D data cube. The approach is tested on a synthetic model, which is based on a priori knowledge on objects present in the study area (Tanzania). Object characteristics and thresholds were well defined in a 3-D histogram of velocity versus depth, and objects were fully retrieved. The real model results showed how 3-D OOA can deal with realistic 3-D subsurface conditions in which the boundaries become fuzzy, the object extensions become unclear and the model characteristics vary with depth due to the different physical conditions. As expected, the 3-D histogram of the real data was

  18. Wavelength selection and evolution in high-resolution 3D numerical models of multilayer detachment folding

    NASA Astrophysics Data System (ADS)

    Fernandez, N.; Kaus, B. J. P.

    2012-04-01

    on the basal salt thickness. The fold wavelength of the 3D simulations was extracted using 1D spectral analysis and its evolution and selection during deformation was tracked. Furthermore, the forward numerical simulations could be used to investigate the evolution of amplitude and aspect ratio of the folds, as well as the interaction between different individual folds. The final wavelength that is selected during strain in the performed numerical simulations is in fact in agreement with the calculated phase diagrams. Therefore, the fold spacing and other regional observations in natural examples of folded belts could be used together with 3D numerical runs and a semi-analytical approach to successfully constrain the effective viscosity structure of the deformed layers.

  19. Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil

    NASA Astrophysics Data System (ADS)

    Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.

    2015-01-01

    At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.

  20. 3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D

    SciTech Connect

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.

    2012-07-01

    As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)

  1. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

    NASA Astrophysics Data System (ADS)

    Velsink, Hiddo

    2016-03-01

    Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.

  2. SAMA: A Method for 3D Morphological Analysis

    PubMed Central

    Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M.

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama. PMID:27035711

  3. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  4. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463

  5. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  6. Wind forcing of upland lake hydrodynamics: implementation and validation of a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Morales, L.; French, J.; Burningham, H.; Evans, C.; Battarbee, R.

    2010-12-01

    Upland lakes act as important archives of environmental change, yet inferences based on the analysis of sediment cores are frequently compromised by an incomplete understanding of the hydrodynamic processes controlling the distribution and completeness of lake sediment sequences and their linkages to wider environmental factors. Many upland lakes are characterized by complex vertical and horizontal circulation patterns induced by the action of wind on the water surface. Wind forcing is important not only for the resuspension of bottom sediments in shallow marginal areas, but may also control the broader distribution of sediment accumulation. The work presented here represents the first stage of a project aimed at elucidating the linkages between wind forcing and the distribution of bottom sediments in upland lakes and the extent to which simple 'sediment focusing' models provide an adequate basis for predicting optimal locations for the acquisition of core samples for palaeolimnological analysis. As a first step, a 3D numerical hydrodynamic model is implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. This utilises the community ocean model, FVCOM, that solves the Navier-Stokes equations in 3D on an unstructured triangular mesh using the finite volume method. A new graphical user interface has been developed for FVCOM to facilitate pre- and post-processing of lake modelling problems. At Llyn Conwy, the model is forced using local meteorological data and validated against vertical temperature profiles recorded by a long-term buoy deployment and short-term observations of vertical current structure measured using an upward-looking acoustic doppler profiler and surface circulation obtained from GPS drifters. Challenges in the application of FVCOM to a small lake include the design of a mesh that ensures numerical stability whilst resolving a complex bathymetry, and the need for careful treatment of model 'spin-up'. Once calibrated, the

  7. Impact of 3D root uptake on solute transport: a numerical study

    NASA Astrophysics Data System (ADS)

    Schröder, N.; Javaux, M.; Vanderborght, J.; Steffen, B.; Vereecken, H.

    2011-12-01

    Plant transpiration is an important component of the hydrological cycle. Through root water uptake, plants do not only affect the 3D soil water flow velocity distribution, but also solute movement in soil. This numerical study aims at investigating how solute fate is impacted by root uptake using the 3D biophysical model R-SWMS (Javaux et al., 2008). This model solves the Richards equation in 3D in the soil and the flow equation within the plant root xylem vessels. Furthermore, for solute transport simulations, the 3D particle tracker PARTRACE (Bechtold et al., 2011) was used. . We generated 3D virtual steady-state breakthrough curves (BTC) experiments in soils with transpiring plants. The averaged BTCs were then fitted with a 1D numerical flow model under steady-state conditions to obtain apparent CDE parameters. Two types of root architecture, a fibrous and a taprooted structure, were compared in virtual 3D experiments. The solute uptake type or the transpiration rate were also modified and we analyzed how these parameters affected apparent disperisivity and velocity profiles. Our simulation results show, that both, apparent velocity and dispersivity length are affected by water and solute root uptake. In addition, under high exclusion processes (slight or no active uptake), solute accumulates around roots and generates a long tailing to the breakthrough curves, which cannot be reproduced by 1D models that simulate root water uptake with solute exclusion. This observation may have an important impact on how to model pollutant mass transfer to groundwater at larger scales. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115. Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, P.A. Ferre, and H. Vereecken. 2011. Near-surface solute redistribution during evaporation. Submitted to Geophys. Res. Lett

  8. 3D flow past transonic turbine cascade SE 1050 — Experiment and numerical simulations

    NASA Astrophysics Data System (ADS)

    Šimurda, D.; Fürst, J.; Luxa, M.

    2013-08-01

    This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic ( M 2is = 0.8) and at transonic ( M 2is = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.

  9. Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl

    2015-11-01

    We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.

  10. 2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons

    SciTech Connect

    Kelley, B. W.; Collins, B.; Larsen, E. W.

    2013-07-01

    In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)

  11. Numerical modeling of Tibetan Plateau formation: Thin-sheet versus fully 3D models

    NASA Astrophysics Data System (ADS)

    Lechmann, S. M.; Schmalholz, S. M.; Kaus, B. J. P.

    2009-04-01

    Knowledge about the tectonic evolution of the Tibetan Plateau is still incomplete and many open questions remain concerning the deformation style of the crustal thickening, causing the abnormally high elevation of the Tibetan Plateau. Different models have been suggested explaining the crustal thickening by (1) homogeneous, continuous deformation using thin-sheet models, (2) discrete movement along thrusts developing crustal wedges and (3) lateral crustal flow due to pressure gradients resulting from topography. Most existing models are not fully three-dimensional (3D) models (e.g. thin-sheet models) and assume a certain deformation style a priori, which makes it difficult to judge the applicability of such constrained models to the formation of the Tibetan Plateau. We present a comparison of deformation styles during continent indentation resulting from a fully 3D numerical model and a thin-sheet model. The rheology for both models is power-law. The 3D model consists of four layers representing a simplified lithosphere: strong upper crust, weak lower crust, strong upper mantle and weak lower mantle. From the effective viscosity distribution of the 3D model a vertically averaged effective viscosity is calculated and used for the thin-sheet model to make direct comparisons between the two models. Simulating indentation is achieved by assigning free slip at one lateral side of the model, and fixing two other sides. The boundary at which indentation is taking place, exhibits a tripartite velocity profile: Next to the free slip side a section with constant horizontal velocity is applied. The velocity then gradually decreases towards zero, applying a cosine-function. The last section of the indenting boundary next to the fixed side is also fixed. The 3D model additionally exhibits a free surface and a bottom boundary allowing free slip. The 3D code employs the finite element method with a mixed velocity-pressure formulation to simulate incompressible flow. A Lagrangian

  12. Random porous media flow on large 3-D grids: Numerics, performance, and application to homogenization

    SciTech Connect

    Ababou, R.

    1996-12-31

    Subsurface flow processes are inherently three-dimensional and heterogeneous over many scales. Taking this into account, for instance assuming random heterogeneity in 3-D space, puts heavy constraints on numerical models. An efficient numerical code has been developed for solving the porous media flow equations, appropriately generalized to account for 3-D, random-like heterogeneity. The code is based on implicit finite differences (or finite volumes), and uses specialized versions of pre-conditioned iterative solvers that take advantage of sparseness. With Diagonally Scaled Conjugate Gradients, in particular, large systems on the order of several million equations, with randomly variable coefficients, have been solved efficiently on Cray-2 and Cray-Y/MP8 machines, in serial mode as well as parallel mode (autotasking). The present work addresses, first, the numerical aspects and computational issues associated with detailed 3-D flow simulations, and secondly, presents a specific application related to the conductivity homogenization problem (identifying a macroscale conduction law, and an equivalent or effective conductivity). Analytical expressions of effective conductivities are compared with empirical values obtained from several large scale simulations conducted for single realizations of random porous media.

  13. 3-D Numerical Modeling of MHD Flows in Variable Magnetic Field

    NASA Astrophysics Data System (ADS)

    Abdullina, K. I.; Bogovalov, S. V.

    3-D numerical simulation of the liquid metal flow affected by the electromagnetic field in the magnetohydrodynamic (MHD) devices is performed. Software package ANSYS has been used for the numerical calculations. The non-stationary problem has been solved taking into account the influence of the metal flow on the electromagnetic field and nonlinear magnetic permeability of the ferromagnetic cores. Simplified calculations with constant magnetic permeability of the ferromagnetic cores have been performed as well. Comparison of these calculations shows that the simulation of the MHD pump can be performed in the linear approximation. The pump performance curve has been derived in this approximation.

  14. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  15. A 3D image analysis tool for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  16. Advanced Visualization and Analysis of Climate Data using DV3D and UV-CDAT

    NASA Astrophysics Data System (ADS)

    Maxwell, T. P.

    2012-12-01

    This paper describes DV3D, a Vistrails package of high-level modules for the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) interactive visual exploration system that enables exploratory analysis of diverse and rich data sets stored in the Earth System Grid Federation (ESGF). DV3D provides user-friendly workflow interfaces for advanced visualization and analysis of climate data at a level appropriate for scientists. The application builds on VTK, an open-source, object-oriented library, for visualization and analysis. DV3D provides the high-level interfaces, tools, and application integrations required to make the analysis and visualization power of VTK readily accessible to users without exposing burdensome details such as actors, cameras, renderers, and transfer functions. It can run as a desktop application or distributed over a set of nodes for hyperwall or distributed visualization applications. DV3D is structured as a set of modules which can be linked to create workflows in Vistrails. Figure 1 displays a typical DV3D workflow as it would appear in the Vistrails workflow builder interface of UV-CDAT and, on the right, the visualization spreadsheet output of the workflow. Each DV3D module encapsulates a complex VTK pipeline with numerous supporting objects. Each visualization module implements a unique interactive 3D display. The integrated Vistrails visualization spreadsheet offers multiple synchronized visualization displays for desktop or hyperwall. The currently available displays include volume renderers, volume slicers, 3D isosurfaces, 3D hovmoller, and various vector plots. The DV3D GUI offers a rich selection of interactive query, browse, navigate, and configure options for all displays. All configuration operations are saved as Vistrails provenance. DV3D's seamless integration with UV-CDAT's climate data management system (CDMS) and other climate data analysis tools provides a wide range of climate data analysis operations, e

  17. SNR analysis of 3D magnetic resonance tomosynthesis (MRT) imaging

    NASA Astrophysics Data System (ADS)

    Kim, Min-Oh; Kim, Dong-Hyun

    2012-03-01

    In conventional 3D Fourier transform (3DFT) MR imaging, signal-to-noise ratio (SNR) is governed by the well-known relationship of being proportional to the voxel size and square root of the imaging time. Here, we introduce an alternative 3D imaging approach, termed MRT (Magnetic Resonance Tomosynthesis), which can generate a set of tomographic MR images similar to multiple 2D projection images in x-ray. A multiple-oblique-view (MOV) pulse sequence is designed to acquire the tomography-like images used in tomosynthesis process and an iterative back-projection (IBP) reconstruction method is used to reconstruct 3D images. SNR analysis is performed and shows that resolution and SNR tradeoff is not governed as with typical 3DFT MR imaging case. The proposed method provides a higher SNR than the conventional 3D imaging method with a partial loss of slice-direction resolution. It is expected that this method can be useful for extremely low SNR cases.

  18. 3D numerical modeling of an anthropogenic sinkhole in the Marsala area of western Sicily

    NASA Astrophysics Data System (ADS)

    Bonamini, Marco; Di Maggio, Cipriano; Lollino, Piernicola; Madonia, Giuliana; Parise, Mario; Vattano, Marco

    2013-04-01

    The Marsala area (western Sicily) is characterized by the presence of a Lower Pleistocene (Calabrian) calcarenite succession (Marsala Calcarenite Fm). It can be divided into three lithofacies that show the regressive evolution of the depositional system: a) coarse to fine yellow bio- and lithoclastic calcarenites, b) sands, and c) gray sandy clays. At least 80 m-thick, this succession gently dips (5-10°) towards the south and the south-west. Locally, the Marsala Calcarenite may be covered by Middle and Upper Pleistocene marine terraced deposits. The town of Marsala presents several historical quarries for the extraction of this building material. Many of them were excavated underground, at depth ranging from a few meters to about 25 m, and are arranged in one or two levels, following the galleries and pillars excavation technique. With time, the underground quarries have been progressively abandoned due to the high costs of extraction, as well as to the dangers and difficulties encountered in working underground. Since the 1960's the quarries, as a matter of fact, have been affected by several instability processes for the decay of the physical and mechanical properties of the calcarenite rock mass and the interaction with the groundwater. Such instability processes are represented by collapses and deformations of vaults and pillars. These phenomena often propagate upward reaching the topographic surface and forming sinkholes which may likely affect and severely damage the built-up areas above. In particular, two case studies of sinkholes related to different underground quarries have been already described by the Authors in a previous contribution at EGU 2012, also integrated by a two-dimensional numerical study. The aim of the present work is to develop a three-dimensional numerical analysis aimed at describing the most significant processes and factors responsible of the instability processes, as well as to investigate the three-dimensional features of the same

  19. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  20. Advanced computational tools for 3-D seismic analysis

    SciTech Connect

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  1. Visualization and Analysis of 3D Gene Expression Data

    SciTech Connect

    Bethel, E. Wes; Rubel, Oliver; Weber, Gunther H.; Hamann, Bernd; Hagen, Hans

    2007-10-25

    Recent methods for extracting precise measurements ofspatial gene expression patterns from three-dimensional (3D) image dataopens the way for new analysis of the complex gene regulatory networkscontrolling animal development. To support analysis of this novel andhighly complex data we developed PointCloudXplore (PCX), an integratedvisualization framework that supports dedicated multi-modal, physical andinformation visualization views along with algorithms to aid in analyzingthe relationships between gene expression levels. Using PCX, we helpedour science stakeholders to address many questions in 3D gene expressionresearch, e.g., to objectively define spatial pattern boundaries andtemporal profiles of genes and to analyze how mRNA patterns arecontrolled by their regulatory transcription factors.

  2. A 3D numerical simulation of stress distribution and fracture process in a zirconia-based FPD framework.

    PubMed

    Kou, Wen; Li, Decong; Qiao, Jiyan; Chen, Li; Ding, Yansheng; Sjögren, Göran

    2011-02-01

    In this study, a numerical approach to the fracture behavior in a three-unit zirconia-based fixed partial denture (FPD) framework was made under mechanical loading using a newly developed three-dimensional (3D) numerical modeling code. All the materials studied were treated heterogeneously and Weibull distribution law was applied to describe the heterogeneity. The Mohr-Coulomb failure criterion with tensile strength cut-off was utilized to judge whether the material was in an elastic or failed state. For validation, the fracture pattern obtained from the numerical modeling was compared with a laboratory test; they largely correlated with each other. Similar fracture initiation sites were detected both in the numerical simulation and in an earlier fractographic analysis. The numerical simulation applied in this study clearly described the stress distribution and fracture process of zirconia-based FPD frameworks, information that could not be gained from the laboratory tests alone. Thus, the newly developed 3D numerical modeling code seems to be an efficient tool for prediction of the fracture process in ceramic FPD frameworks. PMID:21210519

  3. A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms.

    PubMed

    Zhao, Jia; Shen, Ya; Haapasalo, Markus; Wang, Zhejun; Wang, Qi

    2016-03-01

    We develop a 3D hydrodynamic model to investigate the mechanism of antimicrobial persistence in a multi-species oral biofilm and its recovery after being treated by bisbiguanide chlorhexidine gluconate (CHX). In addition to the hydrodynamic transport in the spatially heterogeneous biofilm, the model also includes mechanisms of solvent-biomass interaction, bacterial phenotype conversion, and bacteria-drug interaction. A numerical solver for the model is developed using a second order numerical scheme in 3D space and time and implemented on GPUs for high-performance computing. The model is calibrated against a set of experimental data obtained using confocal laser scan microscopy (CLSM) on multi-species oral biofilms, where a quantitative agreement is reached. Our numerical results reveal that quorum sensing molecules and growth factors in this model are instrumental in biofilm formation and recovery after the antimicrobial treatment. In particular, we show that (i) young biofilms are more susceptible to the antimicrobial treatment than the mature ones, (ii) this phenomenon is strongly correlated with volume fractions of the persister and EPS in the biofilm being treated. This suggests that antimicrobial treatment should be best administered to biofilms earlier before they mature to produce a thick protective EPS layer. In addition, the numerical study also indicates that an antimicrobial effect can be achieved should a proper mechanism be devised to minimize the conversion of susceptible bacteria to persisters during and even after the treatment. PMID:26739374

  4. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  5. Numerical simulation of internal and external inviscid and viscous 3-D flow fields

    NASA Astrophysics Data System (ADS)

    Leicher, Stefan

    1986-11-01

    A numerical method for solving the 3-D Euler equations in geometrical complex domains was developed. The approach divides the computational space into multiple blocks whose structure follows the natural lines of the conficuration. A systematic, multi-block grid generation scheme is used to produce the grid. The flow solutions are obtained by solving the Euler equations by a finite volume discretization and a Runge-Kutta time stepping scheme. The main advantage of this method is the applicability to complex geometries, for example complete aircraft configurations including wing, fuselage, canard and tail. The coupling with a 3-D boundary layer method allows to account for viscous effects. Another application for the method was the simulation of flows in the presence of a propeller.

  6. Numerical solution of 3-D magnetotelluric using vector finite element method

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2015-09-01

    Magnetotelluric (MT) is a passive electromagnetic (EM) method which measure natural variations of electric and magnetic vector fields at the Earth surface to map subsurface electrical conductivity/resistivity structure. In this study, we obtained numerical solution of three-dimensional (3-D) MT using vector finite element method by solving second order Maxwell differential equation describing diffusion of plane wave through the conductive earth. Rather than the nodes of the element, the edges of the element is used as a vector basis to overcome the occurrence of nonphysical solutions that usually faced by scalar (node based) finite element method. Electric vector fields formulation was used and the resulting system of equation was solved using direct solution method to obtain the electric vector field distribution throughout the earth resistivity model structure. The resulting MT response functions was verified with 1-D layered Earth and 3-D2 COMMEMI outcropping structure. Good agreement is achieved for both structure models.

  7. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    NASA Astrophysics Data System (ADS)

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  8. The 3D modeling of high numerical aperture imaging in thin films

    NASA Technical Reports Server (NTRS)

    Flagello, D. G.; Milster, Tom

    1992-01-01

    A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.

  9. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  10. Beam Optics Analysis — An Advanced 3D Trajectory Code

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-01

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  11. Numerical and measured data from the 3D salt canopy physical modeling project

    SciTech Connect

    Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.

    1997-11-01

    The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.

  12. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.

    2011-11-01

    We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we

  13. 3D Landslides Susceptibility Analysis in Romanian Subcarpathians

    NASA Astrophysics Data System (ADS)

    Sandric, Ionuc; Ilinca, Viorel; Chitu, Zenaida; Jurchescu, Marta

    2015-04-01

    Most of the present day studies make use the 2.5D raster data formats for the landslide susceptibility analysis at regional scales. This data format has some disadvantages when geological and lithological settings are spatial discretized, hence these disadvantages propagate in the landslides susceptibility analysis and especially where only surface lithology is used. The main disadvantage when using 3D data models for the assessment of landslide susceptibility at regional scales is represented by the quality of the geological and lithological information that is available for a depth of no more than 100m. In order to mitigate this, a sufficient number of boreholes is required and sometimes is not available. In order to overcome the lack of borehole data, our approach was to make use of the present-day geological maps at scales ranging from 1:25,000 to 1:50,000 and to generate a geological 3D model up to a depth of 100m. The geological model was generated based on expert knowledge interpretations and geological cross sections provided on these geological maps. Using the 3D geological model a more complex 3D model was generated for the landslide susceptibility analysis that also contains information from other predictor factors like slope gradient, land-cover and land-use. For the landslide susceptibility analysis instead of using map algebra equations on classic pixel based data sets, the equations were adapted for 3D data models and map algebra equations on voxels. The test sites are located in the areas of Romanian Subcarpathians. The Romanian Subcarpathians are located to the exterior of the Carpathians. They consist of a large variety of rocks, flysch-type deposits in the inner part and molasse deposits in the outer part, ranging from a Cretacic-Paleogene to a Quaternary age. While some parts of the Subcarpathians have a basic geology, with a monoclinal geological structure, other parts like the Curvature Subcarpathians, present acomplex folded and faulted

  14. Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Sinha, N.; Dash, S. M.

    1988-01-01

    Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.

  15. The 3D Radiation Dose Analysis For Satellite

    NASA Astrophysics Data System (ADS)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    hence, it is too simple to guide satellite radiation protection and ground experiments only based on the 1D radiation analysis results. To comprehend the radiation dose status of satellite adequately, it's essential to perform 3D radiation analysis for satellites. using computer software. From this 3D layout, the satellite model can be simplified appropriately. First select the point to be analyzed in the simplified satellite model, and extend many lines to the outside space, which divides the 4 space into many corresponding small areas with a certain solid angle. Then the shielding masses through the satellite equipment and structures along each direction are calculated, resulting in the shielding mass distribution in all space directions based on the satellite layout. Finally, using the relationship between radiation dose and shielding thickness from the 1D analysis, calculate the radiation dose in each area represented by each line. After we obtain the radiation dose and its space distribution for the point of interest, the 3D satellite radiation analysis is completed. radiation analysis based on satellite 3D CAD layout has larger benefit for engineering applications than the 1D analysis based on the solid sphere shielding model. With the 3D model, the analysis of space environment and its effect is combined closely with actual satellite engineering. The 3D radiation analysis not only provides valuable engineering data for satellite radiation design and protection, but also provides possibility to apply new radiation protection approaches, which expands technology horizon and broadens ways for technology development.

  16. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  17. Uncertainty Analysis for RELAP5-3D

    SciTech Connect

    Aaron J. Pawel; Dr. George L. Mesina

    2011-08-01

    In its current state, RELAP5-3D is a 'best-estimate' code; it is one of our most reliable programs for modeling what occurs within reactor systems in transients from given initial conditions. This code, however, remains an estimator. A statistical analysis has been performed that begins to lay the foundation for a full uncertainty analysis. By varying the inputs over assumed probability density functions, the output parameters were shown to vary. Using such statistical tools as means, variances, and tolerance intervals, a picture of how uncertain the results are based on the uncertainty of the inputs has been obtained.

  18. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  19. 3D Numerical simulation of high current vacuum arc in realistic magnetic fields considering anode evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Huang, Xiaolong; Jia, Shenli; Deng, Jie; Qian, Zhonghao; Shi, Zongqian; Schellenkens, H.; Godechot, X.

    2015-06-01

    A time-dependent 3D numerical model considering anode evaporation is developed for the high current vacuum arc (VA) under a realistic spatial magnetic field. The simulation work contains steady state 3D numerical simulation of high current VA considering anode evaporation at nine discrete moments of first half wave of 50 Hz AC current, transient numerical simulation of anode activity, and realistic spatial magnetic field calculation of commercial cup-shaped electrodes. In the simulation, contact opening and arc diffusion processes are also considered. Due to the effect of electrode slots, the simulation results of magnetic field and temperature of anode plate exhibit six leaves shape (SLS). During 6-8 ms, the strong evaporation of anode surface seriously influence the parameter distributions of VA. Ions emitted from anode penetrate into arc column and the axial velocity distribution on the anode side exhibits SLS. The ions emitted from anode surface have the same temperature with anode surface, which cool the arc plasma and lead to a relative low temperature area formed. The seriously evaporation of anode leads to the accumulation of ions near the anode, and then the current density is more uniform.

  20. A 3D-Video-Based Computerized Analysis of Social and Sexual Interactions in Rats

    PubMed Central

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  1. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    PubMed

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  2. Computerized 3D morphological analysis of glenoid orientation.

    PubMed

    Ghafurian, Soheil; Galdi, Balazs; Bastian, Sevag; Tan, Virak; Li, Kang

    2016-04-01

    An accurate preoperative measurement of glenoid orientation is crucial for evaluating pathologies and successful total shoulder arthroplasty. Existing methods may be labor-intensive, observer-dependent, and sensitive to the misalignment between the scapula plane and CT scanning direction. In this study, we proposed a computation framework and performed an automated analysis of the glenoid orientation based on 3D surface data. Three-dimensional models of 12 scapulae were analyzed. The glenoid cavity and external anatomical features were automatically extracted from these 3D models. Glenoid version was calculated using the scapula plane and the fulcrum axis alternatively. Glenoid inclination was measured both relative to transverse axis of the scapula and the medial pole-inferior tip axis. The mean (±SD) of the fulcrum-based glenoid version was -0.55° (±4.17°), while the scapular-plane-based glenoid version was -5.05° (±3.50°). The mean (±SD) of glenoid inclinations based on the medial pole and inferior tip was 12.75° (±5.03°) while the mean (±SD) of the glenoid inclination based on the medial pole and glenoid center was 4.63° (±4.86°). Our computational framework was able to extract the reproducible morphological measures free of inter- and intra- observer variability. For the first time in 3D, we showed that the fulcrum axis was practically perpendicular to the glenoid plane normal (radial line), and thus extended the fulcrum-based glenoid version for quantifying 3D glenoid orientation. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:692-698, 2016. PMID:26400654

  3. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    NASA Astrophysics Data System (ADS)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  4. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.

    PubMed

    Qureshi, Awais; Li, Bing; Tan, K T

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  5. NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Graen, Timo; Grubmüller, Helmut

    2016-01-01

    The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov's method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.

  6. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    PubMed Central

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  7. 3D micromanipulation at low numerical aperture with a single light beam: the focused-Bessel trap.

    PubMed

    Ayala, Yareni A; Arzola, Alejandro V; Volke-Sepúlveda, Karen

    2016-02-01

    Full-three-dimensional (3D) manipulation of individual glass beads with radii in the range of 2-8 μm is experimentally demonstrated by using a single Bessel light beam focused through a low-numerical-aperture lens (NA=0.40). Although we have a weight-assisted trap with the beam propagating upward, we obtain a stable equilibrium position well away from the walls of the sample cell, and we are able to move the particle across the entire cell in three dimensions. A theoretical analysis for the optical field and trapping forces along the lateral and axial directions is presented for the focused-Bessel trap. This trap offers advantages for 3D manipulation, such as an extended working distance, a large field of view, and reduced aberrations. PMID:26907437

  8. A numerical solution of 3D inviscid rotational flow in turbines and ducts

    NASA Astrophysics Data System (ADS)

    Oktay, Erdal; Akmandor, Sinan; Üçer, Ahmet

    1998-04-01

    The numerical solutions of inviscid rotational (Euler) flows were obtained using an explicit hexahedral unstructured cell vertex finite volume method. A second-order-accurate, one-step Lax-Wendroff scheme was used to solve the unsteady governing equations discretized in conservative form. The transonic circular bump, in which the location and the strength of the captured shock are well predicted, was used as the first test case. The nozzle guide vanes of the VKI low-speed turbine facility were used to validate the Euler code in highly 3D environment. Despite the high turning and the secondary flows which develop, close agreements have been obtained with experimental and numerical results associated with these test cases.

  9. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    SciTech Connect

    Baudron, Anne-Marie; Riahi, Mohamed Kamel; Salomon, Julien

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  10. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    NASA Astrophysics Data System (ADS)

    Baudron, Anne-Marie; Lautard, Jean-Jacques; Maday, Yvon; Riahi, Mohamed Kamel; Salomon, Julien

    2014-12-01

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner benchmark.

  11. Numerical homogenization for seismic wave propagation in 3D geological media

    NASA Astrophysics Data System (ADS)

    Cupillard, P.; Capdeville, Y.; Botella, A.

    2014-12-01

    Despite the important increase of the computational power in the last decades, simulating the seismic wave propagation through realistic geological models is still a challenge. By realistic models we here mean 3D media in which a broad variety (in terms of amplitude and extent) of heterogeneities lies, including discontinuities with complex geometry such as faulted and folded horizons, intrusive geological contacts and fault systems. To perform accurate numerical simulations, these discontinuities require complicated meshes which usually contain extremely small elements, yielding large, sometimes prohibitive, computation costs. Fortunately, the recent development of the non-periodic homogenization technique now enables to overcome this problem by computing smooth equivalent models for which a coarse mesh is sufficient to get an accurate wavefield. In this work, we present an efficient implementation of the technique which now allows for the homogenization of large 3D geological models. This implementation relies on a tetrahedral finite-element solution of the elasto-static equation behind the homogenization problem. Because this equation is time-independent, solving it is numerically cheaper than solving the wave equation, but it nevertheless requires some care because of the large size of the stiffness matrix arising from the fine mesh of realistic geological structures. A domain decomposition is therefore adopted. In our strategy, the obtained sub-domains overlap but they are independent so the solution within each of them can be computed either in series or in parallel. In addition, well-balanced loads, efficient search algorithms and multithreading are implemented to speed up the computation. The resulting code enables the homogenization of 3D elastic media in a time that is neglectable with respect to the simulation time of the wave propagation within. This is illustrated through a sub-surface model of the Furfooz karstic region, Belgium.

  12. On 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.

    1986-01-01

    Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  13. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  14. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.

    2004-01-01

    The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.

  15. 3-D-numerical approach to simulate an avalanche impact into a reservoir

    NASA Astrophysics Data System (ADS)

    Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.

    2015-06-01

    The impact of an avalanche into a reservoir induces an impulse wave, which poses a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting outflow volume over structures and dams, formulas, which base on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. The paper presents a new approach for a 3-D-numerical simulation of an avalanche impact into a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the real hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at the ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width).

  16. Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.

    2012-12-01

    Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in

  17. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

    NASA Astrophysics Data System (ADS)

    Shigang, Ai; Rujie, He; Yongmao, Pei

    2015-12-01

    Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

  18. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  19. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  20. 3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment.

    PubMed

    Ferrara, P; Ciofini, M; Esposito, L; Hostaša, J; Labate, L; Lapucci, A; Pirri, A; Toci, G; Vannini, M; Gizzi, L A

    2014-03-10

    We present a study of Yb:YAG active media slabs, based on a ceramic layered structure with different doping levels. We developed a procedure allowing 3D numerical analysis of the slab optical properties as a consequence of the thermal load induced by the pump process. The simulations are compared with a set of experimental results in order to validate the procedure. These structured ceramics appear promising in appropriate geometrical configurations, and thus are intended to be applied in the construction of High Energy Diode Pumped Solid State Laser (DPSSL) systems working in high repetition-rate pulsed regimes. PMID:24663877

  1. Uncertainty Analysis of RELAP5-3D

    SciTech Connect

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  2. Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions

    PubMed Central

    Jun, Sangmi; Zhao, Gongpu; Ning, Jiying; Gibson, Gregory A.; Watkins, Simon C.; Zhang, Peijun

    2013-01-01

    Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state1. However, direct visualization of individual viral complexes in their host cellular environment with cryoET is challenging2, due to the infrequent and dynamic nature of viral entry, particularly in the case of HIV-1. While time-lapse live-cell imaging has yielded a great deal of information about many aspects of the life cycle of HIV-13-7, the resolution afforded by live-cell microscopy is limited (~ 200 nm). Our work was aimed at developing a correlation method that permits direct visualization of early events of HIV-1 infection by combining live-cell fluorescent light microscopy, cryo-fluorescent microscopy, and cryoET. In this manner, live-cell and cryo-fluorescent signals can be used to accurately guide the sampling in cryoET. Furthermore, structural information obtained from cryoET can be complemented with the dynamic functional data gained through live-cell imaging of fluorescent labeled target. In this video article, we provide detailed methods and protocols for structural investigation of HIV-1 and host-cell interactions using 3D correlative high-speed live-cell imaging and high-resolution cryoET structural analysis. HeLa cells infected with HIV-1 particles were characterized first by confocal live-cell microscopy, and the region containing the same viral particle was then analyzed by cryo-electron tomography for 3D structural details. The correlation between two sets of imaging data, optical imaging and electron imaging, was achieved using a home-built cryo-fluorescence light microscopy stage. The approach detailed here will be valuable, not only for study of virus-host cell interactions, but also for broader applications in cell biology, such as cell signaling, membrane receptor trafficking, and many other dynamic cellular processes. PMID:23852318

  3. Error analysis of a 3D imaging system based on fringe projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Dai, Jie

    2013-12-01

    In the past few years, optical metrology has found numerous applications in scientific and commercial fields owing to its non-contact nature. One of the most popular methods is the measurement of 3D surface based on fringe projection techniques because of the advantages of non-contact operation, full-field and fast acquisition and automatic data processing. In surface profilometry by using digital light processing (DLP) projector, many factors affect the accuracy of 3D measurement. However, there is no research to give the complete error analysis of a 3D imaging system. This paper will analyze some possible error sources of a 3D imaging system, for example, nonlinear response of CCD camera and DLP projector, sampling error of sinusoidal fringe pattern, variation of ambient light and marker extraction during calibration. These error sources are simulated in a software environment to demonstrate their effects on measurement. The possible compensation methods are proposed to give high accurate shape data. Some experiments were conducted to evaluate the effects of these error sources on 3D shape measurement. Experimental results and performance evaluation show that these errors have great effect on measuring 3D shape and it is necessary to compensate for them for accurate measurement.

  4. Triangulation Based 3D Laser Imaging for Fracture Orientation Analysis

    NASA Astrophysics Data System (ADS)

    Mah, J.; Claire, S.; Steve, M.

    2009-05-01

    sets (strike/dip: 060/00, 114/86) were identified from 49 manual inclinometer measurements A stereonet of joint poles from the 3D laser data was generated using the commercial software Split-FX. Joint sets were identified successfully and their orientations correlated well with the hand measurements. However, Split-Fx overlays a simply 2D grid of equal-sized triangles onto the 3D surface and requires significant user input. In a more automated approach, we have developed a MATLAB script which directly imports the Polyworks 3D triangular mesh. A typical mesh is composed of over 1 million triangles of variable sizes: smooth regions are represented by large triangles, whereas rough surfaces are captured by several smaller triangles. Using the triangle vertices, the script computes the strike and dip of each triangle. This approach opens possibilities for statistical analysis of a large population of fracture orientation estimates, including surface texture. The methodology will be used to evaluate both synthetic and field data.

  5. Geological characterization of Italian reservoirs and numerical 3D modelling of CO2 storage scenarios into saline aquifers

    NASA Astrophysics Data System (ADS)

    Beretta, S.; Moia, F.; Guandalini, R.; Cappelletti, F.

    2012-04-01

    The research activities carried out by the Environment and Sustainable Development Department of RSE S.p.A. aim to evaluate the feasibility of CO2 geological sequestration in Italy, with particular reference to the storage into saline aquifers. The identification and geological characterization of the Italian potential storage sites, together with the study of the temporal and spatial evolution of the CO2 plume within the caprock-reservoir system, are performed using different modelling tools available in the Integrated Analysis Modelling System (SIAM) entirely powered in RSE. The numerical modelling approach is the only one that allows to investigate the behaviour of the injected CO2 regarding the fluid dynamic, geochemical and geomechanical aspects and effects due to its spread, in order to verify the safety of the process. The SIAM tools allow: - Selection of potential Italian storage sites through geological and geophysical data collected in the GIS-CO2 web database; - Characterization of caprock and aquifer parameters, seismic risk and environmental link for the selected site; - Creation of the 3D simulation model for the selected domain, using the modeller METHODRdS powered by RSE and the mesh generator GMSH; - Simulation of the injection and the displacement of CO2: multiphase fluid 3D dynamics is based on the modified version of TOUGH2 model; - Evaluation of geochemical reaction effects; - Evaluation of geomechanic effects, using the coupled 3D CANT-SD finite elements code; - Detailed local analysis through the use of open source auxiliary tools, such as SHEMAT and FEHM. - 3D graphic analysis of the results. These numerical tools have been successfully used for simulating the injection and the spread of CO2 into several real Italian reservoirs and have allowed to achieve accurate results in terms of effective storage capacity and safety analysis. The 3D geological models represent the high geological complexity of the Italian subsoil, where reservoirs are

  6. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Mcknight, R. L.

    1983-01-01

    The objective of this research is to develop an analytical tool capable of economically evaluating the cyclic time dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. The techniques developed must be capable of accommodating large excursions in temperatures with the associated variations in material properties including plasticity and creep. The overall objective of this proposed program is to develop advanced 3-D inelastic structural/stress analysis methods and solution strategies for more accurate and yet more cost effective analysis of combustors, turbine blades, and vanes. The approach will be to develop four different theories, one linear and three higher order with increasing complexities including embedded singularities.

  7. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  8. Comparative visual analysis of 3D urban wind simulations

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke

    2016-04-01

    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  9. 3D-Geomorphometrics tooth shape analysis in hypodontia

    PubMed Central

    Al-Shahrani, Ibrahim; Dirks, Wendy; Jepson, Nicholas; Khalaf, Khaled

    2014-01-01

    Assessment of tooth morphology is an important part of the diagnosis and management of hypodontia patients. Several techniques have been used to analyze tooth form in hypodontia patients and these have shown smaller tooth dimensions and anomalous tooth shapes in patients with hypodontia when compared with controls. However, previous studies have mainly used 2D images and provided limited information. In the present study, 3D surface-imaging and statistical shape analysis were used to evaluate tooth form differences between hypodontia and control patients. Eighteen anatomical landmarks were recorded on the clinical crown of the lower left first permanent molar of 3D scanned study models of hypodontia and control subjects. The study sample group comprised of 120 hypodontia patients (40 mild, 40 moderate, and 40 severe hypodontia patients) and 40 age- and sex-matched controls. Procrustes coordinates were utilized to scale and superimpose the landmark coordinate data and then were subjected to principal component analysis (PCA). Subsequently, differences in shape as well as size were tested statistically using allometric analysis and MANOVA. Significant interaction was found between the two factor variables “group” and “sex” (p < 0.002). Overall expected accuracies were 66 and 56% for females and males, respectively, in the cross-validated discriminant-analysis using the first 20 PCs. Hypodontia groups showed significant shape differences compared with the control subjects (p < 0.0001). Significant differences in tooth crown shape were also found between sexes (p < 0.0001) within groups. Furthermore, the degree of variation in tooth form was proportional to the degree of the severity of the hypodontia. Thus, quantitative measurement of tooth shape in hypodontia patients may enhance the multidisciplinary management of those patients. PMID:24795649

  10. Dynamical Systems Analysis of Fully 3D Ocean Features

    NASA Astrophysics Data System (ADS)

    Pratt, L. J.

    2011-12-01

    Dynamical systems analysis of transport and stirring processes has been developed most thoroughly for 2D flow fields. The calculation of manifolds, turnstile lobes, transport barriers, etc. based on observations of the ocean is most often conducted near the sea surface, whereas analyses at depth, usually carried out with model output, is normally confined to constant-z surfaces. At the meoscale and larger, ocean flows are quasi 2D, but smaller scale (submesoscale) motions, including mixed layer phenomena with significant vertical velocity, may be predominantly 3D. The zoology of hyperbolic trajectories becomes richer in such cases and their attendant manifolds are much more difficult to calculate. I will describe some of the basic geometrical features and corresponding Lagrangian Coherent Features expected to arise in upper ocean fronts, eddies, and Langmuir circulations. Traditional GFD models such as the rotating can flow may capture the important generic features. The dynamical systems approach is most helpful when these features are coherent and persistent and the implications and difficulties for this requirement in fully 3D flows will also be discussed.

  11. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  12. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  13. 3D ESPI and 3D shearography measurements applied to NDT and FEM analysis validation for industrial quality control

    NASA Astrophysics Data System (ADS)

    Hack, Erwin K.; Riner, Marc

    2001-10-01

    Laser interferometric methods opened the way to measure displacements and deformations of an object in a while- field, non-contact and 3D manner. Therefore, they are used in non-destructive testing and validation of 3D finite element (FE) simulation results. This paper emphasizes the fact that the process of validating an FE result comprises in turn the validation and assessment of the optical measurement method and the experimental bou8ndary condition. Application examples for FE analysis validation and NDT from machine engineering, space technology, and biomedical engineering are presented.

  14. Slab detachment in laterally varying subduction zones: 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Duretz, T.; Gerya, T. V.; Spakman, W.

    2014-03-01

    Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models, encompassing experimentally derived flow laws and a pseudo free surface, are employed to unravel lithospheric and topographic evolutions. First, we consider coeval subduction of adjacent continental and oceanic lithospheres (SCO). This configuration yields to two-stage slab detachment during collision, topographic buildup and extrusion, variable along-trench convergence rates, and associated trench deformation. The second setting considers a convergent margin, which is laterally limited by a transform boundary (STB). Such collisional system is affected by a single slab detachment, little trench deformation, and moderately confined upper plate topography. The effect of initial thermal slab age on SCO and STB models are explored. Similarities with natural analogs along the Arabia-Eurasia collision are discussed.

  15. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect

    Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.

    2013-11-28

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  16. Numerical 3D study of FZ growth: dependence on growth parameters and melt instability

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muižnieks, A.; Mühlbauer, A.; Raming, G.

    2001-08-01

    Three-dimensional modelling of the floating zone (needle-eye) crystal growth process is carried out to analyse numerically the stability of the melt flow and the influence of the crystal rotation rate and inductor slit width on the 3D flow field and on the grown crystal resistivity. The unsteadiness of the melt is simulated and it is found that for the considered growth parameters a steady-state flow can be a reasonable approximation to the unsteady melt motion. The parametric studies have shown that increasing the rotation rate essentially changes the flow pattern and weakens the rotational striations, while the inductor slit width has a more local influence on these characteristics.

  17. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  18. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  19. Landslide/reservoir interaction: 3D numerical modelling of the Vajont rockslide and generated water wave

    NASA Astrophysics Data System (ADS)

    Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.

    2012-04-01

    Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto

  20. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  1. Nature of stress accommodation in sheared granular material: Insights from 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Mair, Karen; Hazzard, James F.

    2007-07-01

    Active faults often contain distinct accumulations of granular wear material. During shear, this granular material accommodates stress and strain in a heterogeneous manner that may influence fault stability. We present new work to visualize the nature of contact force distributions during 3D granular shear. Our 3D discrete numerical models consist of granular layers subjected to normal loading and direct shear, where gouge particles are simulated by individual spheres interacting at points of contact according to simple laws. During shear, we observe the transient microscopic processes and resulting macroscopic mechanical behavior that emerge from interactions of thousands of particles. We track particle translations and contact forces to determine the nature of internal stress accommodation with accumulated slip for different initial configurations. We view model outputs using novel 3D visualization techniques. Our results highlight the prevalence of transient directed contact force networks that preferentially transmit enhanced stresses across our granular layers. We demonstrate that particle size distribution (psd) controls the nature of the force networks. Models having a narrow (i.e. relatively uniform) psd exhibit discrete pipe-like force clusters with a dominant and focussed orientation oblique to but in the plane of shear. Wider psd models (e.g. power law size distributions D = 2.6) also show a directed contact force network oblique to shear but enjoy a wider range of orientations and show more out-of-plane linkages perpendicular to shear. Macroscopic friction level, is insensitive to these distinct force network morphologies, however, force network evolution appears to be linked to fluctuations in macroscopic friction. Our results are consistent with predictions, based on recent laboratory observations, that force network morphologies are sensitive to grain characteristics such as particle size distribution of a sheared granular layer. Our numerical

  2. 3D geomechanical-numerical modelling of the absolute stress state for geothermal reservoir exploration

    NASA Astrophysics Data System (ADS)

    Reiter, Karsten; Heidbach, Oliver; Moeck, Inga

    2013-04-01

    For the assessment and exploration of a potential geothermal reservoir, the contemporary in-situ stress is of key importance in terms of well stability and orientation of possible fluid pathways. However, available data, e.g. Heidbach et al. (2009) or Zang et al. (2012), deliver only point wise information of parts of the six independent components of the stress tensor. Moreover most measurements of the stress orientation and magnitude are done for hydrocarbon industry obvious in shallow depth. Interpolation across long distances or extrapolation into depth is unfavourable, because this would ignore structural features, inhomogeneity's in the crust or other local effects like topography. For this reasons geomechanical numerical modelling is the favourable method to quantify orientations and magnitudes of the 3D stress field for a geothermal reservoir. A geomechanical-numerical modelling, estimating the 3D absolute stress state, requires the initial stress state as model constraints. But in-situ stress measurements within or close by a potential reservoir are rare. For that reason a larger regional geomechanical-numerical model is necessary, which derive boundary conditions for the wanted local reservoir model. Such a large scale model has to be tested against in-situ stress measurements, orientations and magnitudes. Other suitable and available data, like GPS measurements or fault slip rates are useful to constrain kinematic boundary conditions. This stepwise approach from regional to local scale takes all stress field factors into account, from first over second up to third order. As an example we present a large scale crustal and upper mantle 3D-geomechanical-numerical model of the Alberta Basin and the surroundings, which is constructed to describe continuously the full stress tensor. In-situ stress measurements are the most likely data, because they deliver the most direct information's of the stress field and they provide insights into different depths, a

  3. Structural analysis of tropical cyclone using INSAT-3D observations

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.

    2016-05-01

    The continuous observations from visible and thermal infrared (TIR) channels of geostationary satellites are highly useful for obtaining the features associated with the shape and dynamics of cloud structures within the tropical cyclones (TCs). As TC develops from an unstructured cloud cluster and intensifies, the cloud structures become more axisymmetric around the centre of the TC. To better understand the structure of TC during different stages of its evolution i.e. from its cyclogenesis to maturity and dissipation, the continuous satellite observations plays a key role. The high spatial and temporal resolution observations from geostationary satellites are very useful in order to analyze the cloud organization during the cyclogenesis. The gradient of the brightness temperatures measures the level of symmetry of each structure, which characterizes the degree of cloud organization of the TC. In the present work, the structural analysis of TC during its life period using the observations from Indian geostationary satellite INSAT-3D has been discussed. The visible and TIR observations from INSAT-3D satellite were used to fix the center position of the cyclone which is an input for the cyclone track and intensity prediction models. This data is also used to estimate the intensity of cyclone in the advanced Dvorak technique (ADT), and in the estimation of radius of maximum winds (Rmax) of TC which is an essential input parameter for the prediction of storm surge associated to the cyclones. The different patterns of cloud structure during the intensification stage, eye-wall formation and dissipation have been discussed. The early identification of these features helps in predicting the rapid intensification of TC which in turn improves the intensity predictions.

  4. 3D/1D Analysis of ICRF Antennas

    NASA Astrophysics Data System (ADS)

    Maggiora, Riccardo; Lancellotti, Vito; Vecchi, Giuseppe

    2003-10-01

    An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of a magnetic current (electric field) distribution on the aperture between the two regions. In the vacuum region all the calculations are executed in the spatial domain while in the plasma region an extraction in the spectral domain of some integrals is employed that permits to significantly reduce the integration support and to obtain a high numerical efficiency leading to the practical possibility of using a large number of sub-domain (rectangular or triangular) basis functions on each solid conductor of the system. The plasma enters the formalism of the plasma region via a surface impedance matrix; for this reason any plasma model can be used; at present the FELICE code has been adopted, that affords density and temperature profiles, and FLR effects. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. Calculation of field distributions (both magnetic and electric), useful for sheath considerations, is included. This tool has been implemented in a suite, called TOPICA, that is modular and applicable to ICRF antenna structures of arbitrary shape. This new simulation tool can assist during the detailed design phase and for this reason can be considered a "Virtual Prototyping Laboratory" (VPL). The TOPICA suite has been tested against assessed codes and against measurements and data of mock-ups and existing antennas. The VPL is being used in

  5. A parametric study of mucociliary transport by numerical simulations of 3D non-homogeneous mucus.

    PubMed

    Chatelin, Robin; Poncet, Philippe

    2016-06-14

    Mucociliary clearance is the natural flow of the mucus which covers and protects the lung from the outer world. Pathologies, like cystic fibrosis, highly change the biological parameters of the mucus flow leading to stagnation situations and pathogens proliferation. As the lung exhibits a complex dyadic structure, in-vivo experimental study of mucociliary clearance is almost impossible and numerical simulations can bring important knowledge about this biological flow. This paper brings a detailed study of the biological parameters influence on the mucociliary clearance, in particular for pathological situations such as cystic fibrosis. Using recent suitable numerical methods, a non-homogeneous mucus flow (including non-linearities) can be simulated efficiently in 3D, allowing the identification of the meaningful parameters involved in this biological flow. Among these parameters, it is shown that the mucus viscosity, the stiffness transition between pericilliary fluid and mucus, the pericilliary fluid height as well as both cilia length and beating frequency have a great influence on the mucociliary transport. PMID:27126985

  6. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  7. An ALE Based FE Formulation for the 3D Numerical Simulation of Fineblanking Processes

    NASA Astrophysics Data System (ADS)

    Manopulo, Niko; Tong, Longchang; Hora, Pavel

    2010-06-01

    Fineblanking is a manufacturing process which allows the mass production of blanked products with superior surface quality. The 3D numerical simulation of this particularly precise process is however challenging. This is because quality-critical tool features such as the die clearance and the shape of the cutting edges have dimensions up to two orders of magnitude smaller than the average part dimensions. If conventional Updated Lagrange codes are used, a very high FE mesh resolution becomes a must in order to accurately represent the surface evolution along the edge, which in turn makes the computation unfeasible. The methodology presented in this paper makes use of the Arbitrary Lagrangian Eulerian FE Formulation in order to keep control over the mesh region in contact with the tools. This way an optimal FE mesh can be guaranteed throughout the computation. This not only reduces the computational cost considerably, but also avoids mesh distortion along the cutting edge, allowing an accurate representation of the tool features. This approach will be used in conjunction to the stress limit criterion delineated in order to predict material failure in fine blanked products. Numerical results will be validated against the experiments carried out with a specially designed fineblanking tool in use at our institute.

  8. A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kovaltsov, Gennady A.; Usoskin, Ilya G.

    2010-03-01

    A new quantitative model of production of the cosmogenic isotope 10Be by cosmic rays in the Earth's atmosphere is presented. The CRAC:10Be (Cosmic Ray induced Atmospheric Cascade for 10Be) model is based on a full numerical Monte-Carlo simulation of the nucleonic-electromagnetic-muon cascade induced by cosmic rays in the atmosphere and is able to compute the isotope's production rate at any given 3D location (geographical and altitude) and time, for all possible parameters including solar energetic particle events. The model was tested against the results of direct measurements of the 10Be production in a number of dedicated experiments to confirm its quantitative correctness. A set of tabulated values for the yield function is provided along with a detailed numerical recipe forming a "do-it-yourself" kit, which allows anyone interested to apply the model for any given conditions. This provides a useful tool for applying the cosmogenic isotope method in direct integration with other models, e.g., dynamical atmospheric transport.

  9. Optimising GPR modelling: A practical, multi-threaded approach to 3D FDTD numerical modelling

    NASA Astrophysics Data System (ADS)

    Millington, T. M.; Cassidy, N. J.

    2010-09-01

    The demand for advanced interpretational tools has lead to the development of highly sophisticated, computationally demanding, 3D GPR processing and modelling techniques. Many of these methods solve very large problems with stepwise methods that utilise numerically similar functions within iterative computational loops. Problems of this nature are readily parallelised by splitting the computational domain into smaller, independent chunks for direct use on cluster-style, multi-processor supercomputers. Unfortunately, the implications of running such facilities, as well as time investment needed to develop the parallel codes, means that for most researchers, the use of these advanced methods is too impractical. In this paper, we propose an alternative method of parallelisation which exploits the capabilities of the modern multi-core processors (upon which today's desktop PCs are built) by multi-threading the calculation of a problem's individual sub-solutions. To illustrate the approach, we have applied it to an advanced, 3D, finite-difference time-domain (FDTD) GPR modelling tool in which the calculation of the individual vector field components is multi-threaded. To be of practical use, the FDTD scheme must be able to deliver accurate results with short execution times and we, therefore, show that the performance benefits of our approach can deliver runtimes less than half those of the more conventional, serial programming techniques. We evaluate implementations of the technique using different programming languages (e.g., Matlab, Java, C++), which will facilitate the construction of a flexible modelling tool for use in future GPR research. The implementations are compared on a variety of typical hardware platforms, having between one and eight processing cores available, and also a modern Graphical Processing Unit (GPU)-based computer. Our results show that a multi-threaded xyz modelling approach is easy to implement and delivers excellent results when implemented

  10. Tsunamis generated by 3D deformable landslides in various scenarios: laboratory experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    McFall, B. C.; Fritz, H. M.; Horrillo, J. J.; Mohammed, F.

    2014-12-01

    Landslide generated tsunamis such as Lituya Bay, Alaska 1958 account for some of highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models. Two 3D Navier-Stokes models were tested, the commercial code FLOW-3D

  11. 3D Finite Element Analysis of Particle-Reinforced Aluminum

    NASA Technical Reports Server (NTRS)

    Shen, H.; Lissenden, C. J.

    2002-01-01

    Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.

  12. Analysis of method of 3D shape reconstruction using scanning deflectometry

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Novák, Pavel; Mikš, Antonín.

    2013-04-01

    This work presents a scanning deflectometric approach to solving a 3D surface reconstruction problem, which is based on measurements of a surface gradient of optically smooth surfaces. It is shown that a description of this problem leads to a nonlinear partial differential equation (PDE) of the first order, from which the surface shape can be reconstructed numerically. The method for effective finding of the solution of this differential equation is proposed, which is based on the transform of the problem of PDE solving to the optimization problem. We describe different types of surface description for the shape reconstruction and a numerical simulation of the presented method is performed. The reconstruction process is analyzed by computer simulations and presented on examples. The performed analysis confirms a robustness of the reconstruction method and a good possibility for measurements and reconstruction of the 3D shape of specular surfaces.

  13. Image-Based 3d Reconstruction and Analysis for Orthodontia

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2012-08-01

    Among the main tasks of orthodontia are analysis of teeth arches and treatment planning for providing correct position for every tooth. The treatment plan is based on measurement of teeth parameters and designing perfect teeth arch curve which teeth are to create after treatment. The most common technique for teeth moving uses standard brackets which put on teeth and a wire of given shape which is clamped by these brackets for producing necessary forces to every tooth for moving it in given direction. The disadvantages of standard bracket technique are low accuracy of tooth dimensions measurements and problems with applying standard approach for wide variety of complex orthodontic cases. The image-based technique for orthodontic planning, treatment and documenting aimed at overcoming these disadvantages is proposed. The proposed approach provides performing accurate measurements of teeth parameters needed for adequate planning, designing correct teeth position and monitoring treatment process. The developed technique applies photogrammetric means for teeth arch 3D model generation, brackets position determination and teeth shifting analysis.

  14. Technical note: 3D representation and analysis of enthesis morphology.

    PubMed

    Noldner, Lara K; Edgar, Heather J H

    2013-11-01

    This comparison of methods for assessing the development of muscle insertion sites, or entheses, suggests that three-dimensional (3D) quantification of enthesis morphology can produce a picture of habitual muscle use patterns in a past population that is similar to one produced by ordinal scores for describing enthesis morphology. Upper limb skeletal elements (humeri, radii, and ulnae) from a sample of 24 middle-aged adult males from the Pottery Mound site in New Mexico were analyzed for both fibrous and fibrocartilaginous enthesis development with three different methods: ordinal scores, two-dimensional (2D) area measurements, and 3D surface areas. The methods were compared using tests for asymmetry and correlations among variables in each quantitative data set. 2D representations of enthesis area did not agree as closely as ordinal scores and 3D surface areas did regarding which entheses were significantly asymmetrical. There was significant correlation between 3D and 2D data, but correlation coefficients were not consistently high. Intraobserver error was also assessed for the 3D method. Cronbach's alpha values fell between 0.68 and 0.73, and error rates for all entheses fell between 10% and 15%. Marginally acceptable intraobserver error and the analytic versatility of 3D images encourage further investigation of using 3D scanning technology for quantifying enthesis development. PMID:24105032

  15. Understanding Crystal Populations; Looking Towards 3D Quantitative Analysis

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.

    2010-12-01

    In order to understand volcanic systems, the potential record held within crystal populations needs to be revealed. It is becoming increasingly clear, however, that the crystal populations that arrive at the surface in volcanic eruptions are commonly mixtures of crystals, which may be representative of simple crystallization, recycling of crystals and incorporation of alien crystals. If we can quantify the true 3D population within a sample then we will be able to separate crystals with different histories and begin to interrogate the true and complex plumbing within the volcanic system. Modeling crystal populations is one area where we can investigate the best methodologies to use when dealing with sections through 3D populations. By producing known 3D shapes and sizes with virtual textures and looking at the statistics of shape and size when such populations are sectioned, we are able to gain confidence about what our 2D information is telling us about the population. We can also use this approach to test the size of population we need to analyze. 3D imaging through serial sectioning or x-ray CT, provides a complete 3D quantification of a rocks texture. Individual phases can be identified and in principle the true 3D statistics of the population can be interrogated. In practice we need to develop strategies (as with 2D-3D transformations), that enable a true characterization of the 3D data, and an understanding of the errors and pitfalls that exist. Ultimately, the reproduction of true 3D textures and the wealth of information they hold, is now within our reach.

  16. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    NASA Astrophysics Data System (ADS)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Ml<=3) for which recordings were avalaible; and (ii) two local hypothetical events (Mw=6) occuring on the so-called Belledonne Border Fault (BBF) [1]. A free-style prediction was also proposed, in which participants were allowed to vary the source and/or the model parameters and were asked to provide the resulting uncertainty in their estimation of ground motion. We received a total of 18 contributions from 14 different groups; 7 of these use 3D methods, among which 3 could handle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of

  17. Inheritance of pre-existing weakness in continental breakup: 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Gerya, Taras

    2013-04-01

    breakup order of crust and mantle (Huismans and Beaumont, 2011). However, the inheritance of pre-existing lithospheric weakness in the evolution of continental rifts and oceanic ridge is not well studied. We use 3D numerical modeling to study this problem, by changing the weak zone position and geometry, and the rheological structure of the model. In our study, we find that: 1).3D continental breakup and seafloor spreading patterns are controlled by (a) crust-mantle rheological coupling and (b) geometry and position of the pre-existing weak zones. 2).Three spreading patterns are obtained: (a) straight ridges, (b) curved ridges and (c) overlapping ridges. 3).When crust and mantle are decoupled, abandoned rift structures often form.

  18. Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2016-06-01

    3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.

  19. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  20. Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Bemporad, A.; Mackay, D. H.

    2015-10-01

    Context. Understanding the 3D structure of coronal mass ejections (CMEs) is crucial for understanding the nature and origin of solar eruptions. However, owing to the optical thinness of the solar corona we can only observe the line of sight integrated emission. As a consequence the resulting projection effects hide the true 3D structure of CMEs. To derive information on the 3D structure of CMEs from white-light (total and polarized brightness) images, the polarization ratio technique is widely used. The soon-to-be-launched METIS coronagraph on board Solar Orbiter will use this technique to produce new polarimetric images. Aims: This work considers the application of the polarization ratio technique to synthetic CME observations from METIS. In particular we determine the accuracy at which the position of the centre of mass, direction and speed of propagation, and the column density of the CME can be determined along the line of sight. Methods: We perform a 3D MHD simulation of a flux rope ejection where a CME is produced. From the simulation we (i) synthesize the corresponding METIS white-light (total and polarized brightness) images and (ii) apply the polarization ratio technique to these synthesized images and compare the results with the known density distribution from the MHD simulation. In addition, we use recent results that consider how the position of a single blob of plasma is measured depending on its projected position in the plane of the sky. From this we can interpret the results of the polarization ratio technique and give an estimation of the error associated with derived parameters. Results: We find that the polarization ratio technique reproduces with high accuracy the position of the centre of mass along the line of sight. However, some errors are inherently associated with this determination. The polarization ratio technique also allows information to be derived on the real 3D direction of propagation of the CME. The determination of this is of

  1. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  2. 3D bicipital groove shape analysis and relationship to tendopathy.

    PubMed

    Ward, Aaron D; Hamarneh, Ghassan; Schweitzer, Mark E

    2008-06-01

    The bicipital groove of the proximal humerus is formed by the medial and lateral tuberosities and serves to retain the long biceps tendon in its proper place as the arm moves. Bicipital root and proximal tendon disorders are an important symptom generator in the shoulder. The accuracy of the diagnosis of many shoulder disorders visually without quantitative shape analysis is limited, motivating a clinical need for some ancillary method to assess the proximal biceps. In previous studies, measurements of bicipital groove shape were 2-dimensional (2D), taken from a single axial slice. Because of significant variations in groove shape from one axial slice to another in a single patient, such approaches risk overlooking shape features important to long biceps tendon pathology. In this paper, we present a study of the relationship between bicipital groove shape and long biceps tendon pathology using a novel 3-dimensional (3D) shape descriptor for the bicipital groove. In addition to providing quantitative measures of the shape of the groove and its relation to tendopathy, the new descriptor allows for intuitive, descriptive visualization of the shape of the groove. PMID:17342555

  3. Automatic 3-D grayscale volume matching and shape analysis.

    PubMed

    Guétat, Grégoire; Maitre, Matthieu; Joly, Laurène; Lai, Sen-Lin; Lee, Tzumin; Shinagawa, Yoshihisa

    2006-04-01

    Recently, shape matching in three dimensions (3-D) has been gaining importance in a wide variety of fields such as computer graphics, computer vision, medicine, and biology, with applications such as object recognition, medical diagnosis, and quantitative morphological analysis of biological operations. Automatic shape matching techniques developed in the field of computer graphics handle object surfaces, but ignore intensities of inner voxels. In biology and medical imaging, voxel intensities obtained by computed tomography (CT), magnetic resonance imagery (MRI), and confocal microscopes are important to determine point correspondences. Nevertheless, most biomedical volume matching techniques require human interactions, and automatic methods assume matched objects to have very similar shapes so as to avoid combinatorial explosions of point. This article is aimed at decreasing the gap between the two fields. The proposed method automatically finds dense point correspondences between two grayscale volumes; i.e., finds a correspondent in the second volume for every voxel in the first volume, based on the voxel intensities. Mutiresolutional pyramids are introduced to reduce computational load and handle highly plastic objects. We calculate the average shape of a set of similar objects and give a measure of plasticity to compare them. Matching results can also be used to generate intermediate volumes for morphing. We use various data to validate the effectiveness of our method: we calculate the average shape and plasticity of a set of fly brain cells, and we also match a human skull and an orangutan skull. PMID:16617625

  4. Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars

    2013-04-01

    We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For

  5. 3-D Printed Ultem 9085 Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Aguilar, Daniel; Christensen, Sean; Fox, Emmet J.

    2015-01-01

    The purpose of this document is to analyze the mechanical properties of 3-D printed Ultem 9085. This document will focus on the capabilities, limitations, and complexities of 3D printing in general, and explain the methods by which this material is tested. Because 3-D printing is a relatively new process that offers an innovative means to produce hardware, it is important that the aerospace community understands its current advantages and limitations, so that future endeavors involving 3-D printing may be completely safe. This document encompasses three main sections: a Slosh damage assessment, a destructive test of 3-D printed Ultem 9085 samples, and a test to verify simulation for the 3-D printed SDP (SPHERES Docking Port). Described below, 'Slosh' and 'SDP' refer to two experiments that are built using Ultem 9085 for use with the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) program onboard the International Space Station (ISS) [16]. The SPHERES Facility is managed out of the National Aeronautics and Space Administration (NASA) Ames Research Center in California.

  6. Development of a 3D numerical methodology for fast prediction of gun blast induced loading

    NASA Astrophysics Data System (ADS)

    Costa, E.; Lagasco, F.

    2014-05-01

    In this paper, the development of a methodology based on semi-empirical models from the literature to carry out 3D prediction of pressure loading on surfaces adjacent to a weapon system during firing is presented. This loading is consequent to the impact of the blast wave generated by the projectile exiting the muzzle bore. When exceeding a pressure threshold level, loading is potentially capable to induce unwanted damage to nearby hard structures as well as frangible panels or electronic equipment. The implemented model shows the ability to quickly predict the distribution of the blast wave parameters over three-dimensional complex geometry surfaces when the weapon design and emplacement data as well as propellant and projectile characteristics are available. Considering these capabilities, the use of the proposed methodology is envisaged as desirable in the preliminary design phase of the combat system to predict adverse effects and then enable to identify the most appropriate countermeasures. By providing a preliminary but sensitive estimate of the operative environmental loading, this numerical means represents a good alternative to more powerful, but time consuming advanced computational fluid dynamics tools, which use can, thus, be limited to the final phase of the design.

  7. DynEarthSol3D: numerical studies of basal crevasses and calving blocks

    NASA Astrophysics Data System (ADS)

    Logan, E.; Lavier, L. L.; Choi, E.; Tan, E.; Catania, G. A.

    2014-12-01

    DynEarthSol3D (DES) is a thermomechanical model for the simulation of dynamic ice flow. We present the application of DES toward two case studies - basal crevasses and calving blocks - to illustrate the potential of the model to aid in understanding calving processes. Among the advantages of using DES are: its unstructured meshes which adaptively resolve zones of high interest; its use of multiple rheologies to simulate different types of dynamic behavior; and its explicit and parallel numerical core which both make the implementation of different boundary conditions easy and the model highly scalable. We examine the initiation and development of both basal crevasses and calving blocks through time using visco-elasto-plastic rheology. Employing a brittle-to-ductile transition zone (BDTZ) based on local strain rate shows that the style and development of brittle features like crevasses differs markedly on the rheological parameters. Brittle and ductile behavior are captured by Mohr-Coulomb elastoplasticity and Maxwell viscoelasticity, respectively. We explore the parameter spaces which define these rheologies (including temperature) as well as the BDTZ threshold (shown in the literature as 10-7 Pa s), using time-to-failure as a metric for accuracy within the model. As the time it takes for a block of ice to fail can determine an iceberg's size, this work has implications for calving laws.

  8. Aref's chaotic orbits tracked by a general ellipsoid using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Shui, Pei; Popinet, Stéphane; Govindarajan, Rama; Valluri, Prashant

    2015-11-01

    The motion of an ellipsoidal solid in an ideal fluid has been shown to be chaotic (Aref, 1993) under the limit of non-integrability of Kirchhoff's equations (Kozlov & Oniscenko, 1982). On the other hand, the particle could stop moving when the damping viscous force is strong enough. We present numerical evidence using our in-house immersed solid solver for 3D chaotic motion of a general ellipsoidal solid and suggest criteria for triggering such motion. Our immersed solid solver functions under the framework of the Gerris flow package of Popinet et al. (2003). This solver, the Gerris Immersed Solid Solver (GISS), resolves 6 degree-of-freedom motion of immersed solids with arbitrary geometry and number. We validate our results against the solution of Kirchhoff's equations. The study also shows that the translational/ rotational energy ratio plays the key role on the motion pattern, while the particle geometry and density ratio between the solid and fluid also have some influence on the chaotic behaviour. Along with several other benchmark cases for viscous flows, we propose prediction of chaotic Aref's orbits as a key benchmark test case for immersed boundary/solid solvers.

  9. Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Compton, William B, III

    2015-01-01

    Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.

  10. Numerical study of elastic turbulence in a 3D curvilinear micro-channel

    NASA Astrophysics Data System (ADS)

    Zhang, Hongna; Kunugi, Tomoaki; Li, Fengchen

    2012-11-01

    Elastic turbulence is an intriguing phenomenon of viscoelastic fluid flow, and dominated by the strong nonlinear elasticity due to the existence of flexible microstructures. It implies the possibility to generate a turbulent state (so-called an elastic turbulence) in the micro-scale devices by introducing the viscoelastic fluids, which could significantly enhance the mixing efficiency therein. Several experiments have been carried out to study its characteristics and underlying physics. However, the difficulty in measuring the flow information and behaviors of the microstructures, especially in the cross section normal to the mean flow direction, limits our current understanding and controlling. In the present study, the nondimensionalization method in which the characteristic velocity is defined as the ratio of the solution viscosity to the width of the channel was adopted to simulate the elastic turbulence in the micro-scale devices. And the elastic turbulent flow was obtained numerically in the 3D curvilinear micro-channel. Therein, the characteristics of the velocity field and polymer's behavior are discussed. Moreover, the energy transfer between the kinetic energy and the polymer's elastic energy is also investigated to understand its physical mechanism. Supported by the Japan Society for the Promotion of Science research fellowship and the Ministry of Education, Culture, Sports, Science and Technology via `Energy Science in the Age of Global Warming' of Global Center of Excellence (G-COE) program (J-051).

  11. Numerical investigation of wave attenuation by vegetation using a 3D RANS model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Wu, Weiming

    2014-12-01

    Vegetation has been recognized as an important natural shoreline protection against storm surges and waves. Understanding of wave-vegetation interaction is essential for assessing the ability of vegetation patches, such as wetlands, to mitigate storm damages. In this study the wave attenuation by vegetation is investigated numerically using a 3-D model which solves the Reynolds-Averaged Navier-Stokes equations (RANS) by means of a finite-volume method based on collocated hexahedron mesh. A mixing length model is used for turbulence closure of the RANS equations. The water surface boundary is tracked using the Volume-of-Fluid (VOF) method with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) to solve the VOF advection equation. The presence of vegetation is taken into account by adding the vegetation drag and inertia forces to the momentum equations. The model is validated by several laboratory experiments of short wave propagation through vegetation over flat and sloping beds. The comparisons show good agreement between the measured data and calculated results, but the swaying motion of flexible vegetation which is neglected in this study can influence the accuracy of the wave height predictions. The model is then applied to one of the validation tests with different vegetation properties, revealing that the wave height attenuation by vegetation depends not only on the wave conditions, but also the vegetation characteristics such as vegetation height and density.

  12. The numerical integration and 3-D finite element formulation of a viscoelastic model of glass

    SciTech Connect

    Chambers, R.S.

    1994-08-01

    The use of glasses is widespread in making hermetic, insulating seals for many electronic components. Flat panel displays and fiber optic connectors are other products utilizing glass as a structural element. When glass is cooled from sealing temperatures, residual stresses are generated due to mismatches in thermal shrinkage created by the dissimilar material properties of the adjoining materials. Because glass is such a brittle material at room temperature, tensile residual stresses must be kept small to ensure durability and avoid cracking. Although production designs and the required manufacturing process development can be deduced empirically, this is an expensive and time consuming process that does not necessarily lead to an optimal design. Agile manufacturing demands that analyses be used to reduce development costs and schedules by providing insight and guiding the design process through the development cycle. To make these gains, however, viscoelastic models of glass must be available along with the right tool to use them. A viscoelastic model of glass can be used to simulate the stress and volume relaxation that occurs at elevated temperatures as the molecular structure of the glass seeks to equilibrate to the state of the supercooled liquid. The substance of the numerical treatment needed to support the implementation of the model in a 3-D finite element program is presented herein. An accurate second-order, central difference integrator is proposed for the constitutive equations, and numerical solutions are compared to those obtained with other integrators. Inherent convergence problems are reviewed and fixes are described. The resulting algorithms are generally applicable to the broad class of viscoelastic material models. First-order error estimates are used as a basis for developing a scheme for automatic time step controls, and several demonstration problems are presented to illustrate the performance of the methodology.

  13. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect

    Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  14. Water cycling beneath subduction zones in 2D and 3D numerical models (Invited)

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Iyer, K. H.; Hasenclever, J.; Morgan, J.

    2013-12-01

    . Slab fluids that do flux the mantle wedge are commonly believed to trigger arc melting. Finally, the fate of these fluids and the likely mantle flow field within the mantle wedge are resolved in 3D. We find that the classical 2D corner-flow solution is only a small subset of all possible mantle wedge flow fields. In fact, a more 'natural' flow field involves 3D diapirs fuelled by low-density slab fluids rising from the slab surface. These diapirs provide a potential mechanism for decompression melting in the mantle wedge, break the classic corner flow solution, and illustrate the need for high-resolution three-dimensional subduction zones models. In summary we find that numerical models are capable to resolve the key geological processes that control the subduction zone water cycle and help us to better relate subduction input to arc output.

  15. Computerized analysis of pelvic incidence from 3D images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaž; Janssen, Michiel M. A.; Pernuš, Franjo; Castelein, René M.; Viergever, Max A.

    2012-02-01

    The sagittal alignment of the pelvis can be evaluated by the angle of pelvic incidence (PI), which is constant for an arbitrary subject position and orientation and can be therefore compared among subjects in standing, sitting or supine position. In this study, PI was measured from three-dimensional (3D) computed tomography (CT) images of normal subjects that were acquired in supine position. A novel computerized method, based on image processing techniques, was developed to automatically determine the anatomical references required to measure PI, i.e. the centers of the femoral heads in 3D, and the center and inclination of the sacral endplate in 3D. Multiplanar image reformation was applied to obtain perfect sagittal views with all anatomical structures completely in line with the hip axis, from which PI was calculated. The resulting PI (mean+/-standard deviation) was equal to 46.6°+/-9.2° for male subjects (N = 189), 47.6°+/-10.7° for female subjects (N = 181), and 47.1°+/-10.0° for all subjects (N = 370). The obtained measurements of PI from 3D images were not biased by acquisition projection or structure orientation, because all anatomical structures were completely in line with the hip axis. The performed measurements in 3D therefore represent PI according to the actual geometrical relationships among anatomical structures of the sacrum, pelvis and hips, as observed from the perfect sagittal views.

  16. Importance of a 3D forward modeling tool for surface wave analysis methods

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville

    2016-04-01

    Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward

  17. A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.

    2016-06-01

    Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

  18. A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.

    2015-10-01

    Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

  19. Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    1996-01-01

    This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.

  20. 3D statistical failure analysis of monolithic dental ceramic crowns.

    PubMed

    Nasrin, Sadia; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I

    2016-07-01

    For adhesively retained ceramic crown of various types, it has been clinically observed that the most catastrophic failures initiate from the cement interface as a result of radial crack formation as opposed to Hertzian contact stresses originating on the occlusal surface. In this work, a 3D failure prognosis model is developed for interface initiated failures of monolithic ceramic crowns. The surface flaw distribution parameters determined by biaxial flexural tests on ceramic plates and point-to-point variations of multi-axial stress state at the intaglio surface are obtained by finite element stress analysis. They are combined on the basis of fracture mechanics based statistical failure probability model to predict failure probability of a monolithic crown subjected to single-cycle indentation load. The proposed method is verified by prior 2D axisymmetric model and experimental data. Under conditions where the crowns are completely bonded to the tooth substrate, both high flexural stress and high interfacial shear stress are shown to occur in the wall region where the crown thickness is relatively thin while high interfacial normal tensile stress distribution is observed at the margin region. Significant impact of reduced cement modulus on these stress states is shown. While the analyses are limited to single-cycle load-to-failure tests, high interfacial normal tensile stress or high interfacial shear stress may contribute to degradation of the cement bond between ceramic and dentin. In addition, the crown failure probability is shown to be controlled by high flexural stress concentrations over a small area, and the proposed method might be of some value to detect initial crown design errors. PMID:27215334

  1. A 3D moisture-stress FEM analysis for time dependent problems in timber structures

    NASA Astrophysics Data System (ADS)

    Fortino, Stefania; Mirianon, Florian; Toratti, Tomi

    2009-11-01

    This paper presents a 3D moisture-stress numerical analysis for timber structures under variable humidity and load conditions. An orthotropic viscoelastic-mechanosorptive material model is specialized on the basis of previous models. Both the constitutive model and the equations needed to describe the moisture flow across the structure are implemented into user subroutines of the Abaqus finite element code and a coupled moisture-stress analysis is performed for several types of mechanical loads and moisture changes. The presented computational approach is validated by analyzing some wood tests described in the literature and comparing the computational results with the reported experimental data.

  2. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    SciTech Connect

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    2013-09-01

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.

  3. Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Schwarz, J.-O.; Enzmann, F.

    2012-04-01

    Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of

  4. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2016-04-01

    Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 ‑ 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.

  5. Geodynamic background of the 2008 Wenchuan earthquake based on 3D visco-elastic numerical modelling

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhu, Bojing; Yang, Xiaolin; Shi, Yaolin

    2016-03-01

    The 2008 Wenchuan earthquake (Mw7.9) occurred in the Longmen Shan fault zone. The stress change and crustal deformation during the accumulation period is computed using 3D finite element modelling assuming visco-elastic rheology. Our results support that the eastward movement of the Tibetan Plateau resulting from the India-Eurasia collision is obstructed at the Longmen Shan fault zone by the strong Yangtze craton. In response, the Tibetan ductile crust thickens and accumulates at the contact between the Tibetan Plateau and the Sichuan Basin. This process implies a strong uplift with the rate of about 1.8 mm/a of the upper crust and induces a stress concentration nearly at the bottom of the Longmen Shan fault zone. We believe that the stress concentration in the Longmen Shan fault zone provides a very important geodynamic background of the 2008 Wenchuan earthquake. Using numerical experiments we find that the key factor controlling this stress concentration process is the large viscosity contrast in the middle and lower crusts between the Tibetan Plateau and the Sichuan Basin. The results show that large viscosity contrast in the middle and lower crusts accelerates the stress concentration in the Longmen Shan fault zone. Fast moving lower crustal flow accelerates this stress accumulation process. During the inter-seismic period, spatially the maximum stress accumulation rate of the eastern margin of the Tibetan Plateau is located nearly at the bottom of the brittle upper crust of the Longmen Shan fault zone. The spatial distribution of the stress accumulation along the strike of the Longmen Shan fault zone is as follows: the normal stress decreases while the shear stress increases from southwest to northeast along the Longmen Shan fault zone. This stress distribution explains the thrust motion in the SW and strike-slip motion in the NE during the 2008 Wenchuan earthquake.

  6. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2015-12-01

    Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Early Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions using a plume tectonics model setup. For varying crustal structures and a mantle potential temperature increase (ΔTp, compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanics and plutonics. For an increase in mantle potential temperature ΔTp= 250 K, presumably corresponding to an Archean mantle, models show large amounts of subcrustal decompression melting and consequently large amounts of magmatism, which in turn influence the dynamics. In a first active phase (10-20 Ma) rising diapirs within the crust lead to the formation of the typical dome and keel pattern (e.g. Kaapvaal craton in South Africa, Pilbara craton in northwest Australia). A long passive phase follows with strong growth of crust and lithosphere. Both crust and lithosphere thickness are regulated by thermal-chemical instabilities assisted by lower crust eclogitization. Eclogitization depth is reached after ~80 Ma and linear or cylindrical drips originate at the crust or lithosphere bottom. Delamination of lower crust and lithosphere then occurs as one 'catastrophic' event within the next 20 Ma.

  7. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton

  8. 3D-radiation hydro simulations of disk-planet interactions. I. Numerical algorithm and test cases

    NASA Astrophysics Data System (ADS)

    Klahr, H.; Kley, W.

    2006-01-01

    We study the evolution of an embedded protoplanet in a circumstellar disk using the 3D-Radiation Hydro code TRAMP, and treat the thermodynamics of the gas properly in three dimensions. The primary interest of this work lies in the demonstration and testing of the numerical method. We show how far numerical parameters can influence the simulations of gap opening. We study a standard reference model under various numerical approximations. Then we compare the commonly used locally isothermal approximation to the radiation hydro simulation using an equation for the internal energy. Models with different treatments of the mass accretion process are compared. Often mass accumulates in the Roche lobe of the planet creating a hydrostatic atmosphere around the planet. The gravitational torques induced by the spiral pattern of the disk onto the planet are not strongly affected in the average magnitude, but the short time scale fluctuations are stronger in the radiation hydro models. An interesting result of this work lies in the analysis of the temperature structure around the planet. The most striking effect of treating the thermodynamics properly is the formation of a hot pressure-supported bubble around the planet with a pressure scale height of H/R ≈ 0.5 rather than a thin Keplerian circumplanetary accretion disk.

  9. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  10. Error Analysis of Terrestrial Laser Scanning Data by Means of Spherical Statistics and 3D Graphs

    PubMed Central

    Cuartero, Aurora; Armesto, Julia; Rodríguez, Pablo G.; Arias, Pedro

    2010-01-01

    This paper presents a complete analysis of the positional errors of terrestrial laser scanning (TLS) data based on spherical statistics and 3D graphs. Spherical statistics are preferred because of the 3D vectorial nature of the spatial error. Error vectors have three metric elements (one module and two angles) that were analyzed by spherical statistics. A study case has been presented and discussed in detail. Errors were calculating using 53 check points (CP) and CP coordinates were measured by a digitizer with submillimetre accuracy. The positional accuracy was analyzed by both the conventional method (modular errors analysis) and the proposed method (angular errors analysis) by 3D graphics and numerical spherical statistics. Two packages in R programming language were performed to obtain graphics automatically. The results indicated that the proposed method is advantageous as it offers a more complete analysis of the positional accuracy, such as angular error component, uniformity of the vector distribution, error isotropy, and error, in addition the modular error component by linear statistics. PMID:22163461

  11. Mechanical Performance and Parameter Sensitivity Analysis of 3D Braided Composites Joints

    PubMed Central

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N. PMID:25121121

  12. An Application of the Method of Arbitrary Lines to 3D Elastic Stress Analysis

    NASA Astrophysics Data System (ADS)

    Kaminishi, Ken; Ando, Ryuma

    The MAL (Method of Arbitrary Lines) is a technique of reducing a partial differential equation to a system of ordinary differential equations. It is known that relevant use of this procedure yields high accuracy in some problems of two-dimensional elasticity and elastoplasticity. Since the basic concept of MAL is simple and based on generality, it is expected that many problems in other fields will be effectively solvable by this method. In this study, we consider the application of MAL to 3D (three-dimensional) elasticity analysis. We first give a MAL formulation of 3D elasticity problems, and demonstrate its effectiveness and accuracy for a typical problem. The reported numerical results are compared with the exact solution or that of the finite element method (FEM).

  13. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N. PMID:25121121

  14. Imaging 3D geological structure of the Mygdonian basin (Northern Greece) with geological numerical modeling and geophysical methods.

    NASA Astrophysics Data System (ADS)

    Cédric, Guyonnet-Benaize; Fabrice, Hollender; Maria, Manakou; Alexandros, Savvaidis; Elena, Zargli; Cécile, Cornou; Nikolaos, Veranis; Dimitrios, Raptakis; Artemios, Atzemoglou; Pierre-Yves, Bard; Nikolaos, Theodulidis; Kyriazis, Pitilakis; Emmanuelle, Chaljub

    2013-04-01

    The Mygdonian basin, located 30 km E-NE close to Thessaloniki, is a typical active tectonic basin, trending E-NW, filled by sediments 200 to 400 m thick. This basin has been chosen as a European experimental site since 1993 (European Commission research projects - EUROSEISTEST). It has been investigated for experimental and theoretical studies on site effects. The Mygdonian basin is currently covered by a permanent seismological network and has been mainly characterized in 2D and 3D with geophysical and geotechnical studies (Bastani et al, 2011; Cadet and Savvaidis, 2011; Gurk et al, 2007; Manakou et al, 2007; Manakou et al, 2010; Pitilakis et al, 1999; Raptakis et al, 2000; Raptakis et al, 2005). All these studies allowed understanding the influence of geological structures and local site conditions on seismic site response. For these reasons, this site has been chosen for a verification exercise for numerical simulations in the framework of an ongoing international collaborative research project (Euroseistest Verification and Validation Project - E2VP). The verification phase has been made using a first 3D geophysical and geotechnical model (Manakou, 2007) about 5 km wide and 15 km long, centered on the Euroseistest site. After this verification phase, it has been decided to update, optimize and extend this model in order to obtain a more detailed model of the 3D geometry of the entire basin, especially the bedrock 3D geometry which can affect drastically the results of numerical simulations for site effect studies. In our study, we build a 3D geological model of the present-day structure of the entire Mygdonian basin. This "precise" model is 12 km wide, 65 km long and is 400 m deep in average. It has been built using geophysical, geotechnical and geological data. The database is heterogeneous and composed of hydrogeological boreholes, seismic refraction surveys, array microtremor measurements, electrical and geotechnical surveys. We propose an integrated

  15. 3D EM imaging from a single borehole; a numerical feasibility study

    SciTech Connect

    Alumbaugh, D.L.; Wilt, M.J.

    1998-07-01

    Often the drilling of an oil well is followed by a logging process to characterize the region immediately surrounding the well bore. The electromagnetic (EM) induction tool, which provides the formation resistivity, is among the most frequently run logs. A preliminary study has been conducted to analyze the feasibility of three dimensional (3D) electromagnetic (EM) imaging from a single borehole. The logging tool consists of a vertical magnetic dipole source and multiple 3 component magnetic field receivers offset at different distances from the source. Synthetic data calculated with a 3D finite difference code demonstrate that the phase of the horizontal magnetic fields provides the critical information on the three dimensionality of the medium. A 3D inversion algorithm is then employed to demonstrate the plausibility of 3D inversion using 3 component magnetic field data. Finally, problems associated with introducing biased noise into the horizontal components of the field through misalignment of the logging tool is discussed.

  16. Understanding heavy mineral enrichment – Using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Schmeeckle, Mark; Huhn, Katrin

    2015-04-01

    Layered deposits of light and heavy minerals can be found in many aquatic environments. Various researchers attempted to understand the role of the enrichment process of heavy minerals in placers using flume or in situ field experiments, because of their high economic value. However, a precise quantification of the physical processes occurring at the direct vicinity and in the interior of layered deposits is often limited with such techniques. To investigate the physical processes causing heavy particle enrichment in layers at the direct vicinity and in the interior of sediment beds, a 3D numerical model as an alternative to in situ measurement was used. The 3D model simulates particle transport in water by combining a turbulence-resolving large eddy simulation (LES) with a discrete element model (DEM) prescribing the motion of individual grains. The dimensions of model domain where X = 0.12 [m], Y = 0.06 [m], and Z = 0.04 [m]. A pressure gradient and cyclic boundaries at the side walls allowed the simulation of a recycling flow. For the generation of a granular bed 0.004 [m] in height 200,000 spherical particles (D50 = 500 µm) were generated randomly and deposited under gravity at the bottom of the domain. Seven suites of experiments were designed in which the concentration of heavy i.e. 5000 [kg/m³] over light particles i.e. 2560 [kg/m³] was increased ranging from 0%, 10%, 25%, 50%, 75%, 90%, to 100% heavy particle content. All beds where tested for five seconds at a predefined flow speed of 0.35 [m/s]. The model results showed that at the direct vicinity of the bed the presence of high-vorticity turbulence structures embedded within broader high speed fluid regions caused the formation of particle sweeps or high-speed wedges. The vertical extension of the sweeps decreased when a higher amount of heavy particles was mixed to the beds, which ultimately resulted in a decrease of the bed roughness. Further, the particle flux decreased when higher quantities of

  17. Correction of magnetotelluric static shift by analysis of 3D forward modelling and measured test data

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wei, Wenbo; Lu, Qingtian; Wang, Huafeng; Zhang, Yawei

    2016-06-01

    To solve the problem of correction of magnetotelluric (MT) static shift, we quantise factors that influence geological environments and observation conditions and study MT static shift according to 3D MT numerical forward modelling and field tests with real data collection. We find that static shift distortions affect both the apparent resistivity and the impedance phase. The distortion results are also related to the frequency. On the basis of synthetic and real data analysis, we propose the concept of generalised static shift resistivity (GSSR) and a new method for correcting MT static shift. The approach is verified by studying 2D inversion models using synthetic and real data.

  18. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Goetze, H.; Meyer, U.; Group, D.

    2008-12-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. Using that combined gravity dataset and DESIRE wide angle refractions seismic interpretation we modified density structures in the DSB. As results we estimated that (1) the Moho depth varies from 26 km in the Israel side to 34 km in the Jordan side. (2) The maximum thickness of the Dead Sea sediment Basin is about 15 km. (3) The salt rock with an average thickness of about 5 km is

  19. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2015-04-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions using a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a hot lower thermal boundary layer is used to introduce spontaneously developing mantle plumes. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics and/or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic to granitic depending on its source rock. For a major increase in the mantle temperature, presumably corresponding to an Archean mantle (ΔTp = 200 - 300K compared to present day conditions), models show large amounts of subcrustal decompression melting and consequently large amounts of volcanics, which in turn influence the dynamics. Mantle and crust are convecting separately. Dome-shaped felsic plutons can be observed in the crust. Between these domes elongated belts of downwelling basalt and sediments are formed. Both crust and lithosphere thickness are regulated by thermo-chemical instabilities assisted by lower crust eclogitization: linear or cylindrical drips originating at the crust or lithosphere bottom or delamination of lower crust or lithosphere. Very similar examples of dome and belt structures are still preserved in Archean cratons. One example is the Kaapvaal craton is South Africa where the elongated shape of the Barberton Greenstone Belt, mainly built from mafic rocks and sediments, is surrounded

  20. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model.

    PubMed

    Huang, Qinghua; Lin, Yufeng

    2010-01-01

    Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity. PMID:20228625

  1. Multigrid preconditioned conjugate gradients for the numerical simulation of groundwater flow on the Cray T3D

    SciTech Connect

    Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.

    1994-09-01

    This paper discusses the numerical simulation of groundwater flow through heterogeneous porous media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to compute the hydraulic pressure head. The numerical investigation considers the effects of enlarging the domain, increasing the grid resolution, and varying the geostatistical parameters used to define the subsurface realization. The results were obtained using the PARFLOW groundwater flow simulator on the Cray T3D massively parallel computer.

  2. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model

    PubMed Central

    Huang, Qinghua; Lin, Yufeng

    2010-01-01

    Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity. PMID:20228625

  3. Quantitative analysis of the central-chest lymph nodes based on 3D MDCT image data

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Bascom, Rebecca; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2009-02-01

    Lung cancer is the leading cause of cancer death in the United States. In lung-cancer staging, central-chest lymph nodes and associated nodal stations, as observed in three-dimensional (3D) multidetector CT (MDCT) scans, play a vital role. However, little work has been done in relation to lymph nodes, based on MDCT data, due to the complicated phenomena that give rise to them. Using our custom computer-based system for 3D MDCT-based pulmonary lymph-node analysis, we conduct a detailed study of lymph nodes as depicted in 3D MDCT scans. In this work, the Mountain lymph-node stations are automatically defined by the system. These defined stations, in conjunction with our system's image processing and visualization tools, facilitate lymph-node detection, classification, and segmentation. An expert pulmonologist, chest radiologist, and trained technician verified the accuracy of the automatically defined stations and indicated observable lymph nodes. Next, using semi-automatic tools in our system, we defined all indicated nodes. Finally, we performed a global quantitative analysis of the characteristics of the observed nodes and stations. This study drew upon a database of 32 human MDCT chest scans. 320 Mountain-based stations (10 per scan) and 852 pulmonary lymph nodes were defined overall from this database. Based on the numerical results, over 90% of the automatically defined stations were deemed accurate. This paper also presents a detailed summary of central-chest lymph-node characteristics for the first time.

  4. Efficient 3D Acoustic Numerical modeling in the Logarithmic-grid using the Expanding Domain Method

    NASA Astrophysics Data System (ADS)

    Hong, B. R.; Chung, W.; Ko, H.; Bae, H. S.

    2015-12-01

    In the numerical modeling of seismic wave propagation by the use of a discrete computing domain, dispersion analysis is preceded by the determination of the spatial grid spacings in order to ensure accurate modeling results. Grid spacing is a function of wavelength, and the wavelength depends on the minimum velocity and maximum source frequency. Therefore, as the frequency increases, the number of grids increase and this leads to computational overburden. In order to reduce the computing complexity, coordinate transformation techniques such as Riemannian coordinates and logarithmic grid sets are proposed. Riemannian wave-field extrapolation is a way to reformulate the wave-field by expressing it in Riemannian coordinates. In the logarithmic grid, grid spacing changes logarithmically, so this enables us to reduce the number of grids compared to a conventional grid set. Furthermore, this could completely remove boundary reflections by extending the model dimensions. However, numerical modeling in the logarithmic grid is still inefficient because it is performed for whole model at every individual time step. In this study we applied the expanding domain method to the logarithmic modeling in order to improve computational efficiency. This method, based on amplitude comparison, excludes computations for zero wave-fields by considering a non-zero domain boundary. Numerical examples demonstrated that our new modeling method enhances computational efficiency maintaining accuracy compared with conventional modeling methods. In wider and higher-order dimensions, particularly, the efficiency of our modeling method increased. Our new modeling technique could also be applied to the generation of underwater target echo signals requiring high frequency analysis.

  5. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    SciTech Connect

    Chae, Y.C.

    1998-09-01

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.

  6. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  7. Customisable 3D printed microfluidics for integrated analysis and optimisation.

    PubMed

    Monaghan, T; Harding, M J; Harris, R A; Friel, R J; Christie, S D R

    2016-08-16

    The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum path length for performing Ultraviolet-visible (UV-vis) spectroscopy determined. The information gained in these trials was then used in a reaction optimisation for the formation of carvone semicarbazone. The production of high resolution surface channels (100-500 μm) means that these devices were capable of handling a wide range of concentrations (9 μM-38 mM), and are ideally suited to both analyte detection and process optimisation. This ability to tailor the chip design and its integrated features as a direct result of the reaction being assessed, at such a low time and cost penalty greatly increases the user's ability to optimise both their device and reaction. As a result of the information gained in this investigation, we are able to report the first instance of a 3D-printed LOC device with fully integrated, in-line monitoring capabilities via the use of embedded optical fibres capable of performing UV-vis spectroscopy directly inside micro channels. PMID:27452498

  8. Metrological analysis of the human foot: 3D multisensor exploration

    NASA Astrophysics Data System (ADS)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  9. Validation of 3D/1D Analysis of ICRF Antennas

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Lancellotti, V.; Kyrytsya, V.; Maggiora, R.; Vecchi, G.; Parisot, A.; Wukitch, S. J.

    2004-11-01

    An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of electromagnetic current distribution on the aperture between the two regions. The plasma enters the formalism via a surface impedance matrix for this reason any plasma model can be used. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. The suite, called TOPICA, has been used in the design of various ICRF antennas and also for the performance prediction of the ALCATOR C-MOD D and E antenna. An extensive set of comparisons between measured and simulated antenna parameters during ALCATOR C-MOD operation will be presented.

  10. Wear Analysis of Thermal Spray Coatings on 3D Surfaces

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Luo, W.; Selvadurai, U.

    2014-01-01

    Even though the application of thermal spray coatings on complex geometries gained a greater interest in the last decade, the effect of different geometrical features on the wear behavior is still ill-defined. In this study, the wear resistance of FTC-FeCSiMn coated 3D surfaces was investigated. The wear test was carried out by means of two innovative testing procedures. The first test is a Pin-on-Tubes test where the rotating motion is realized by a lathe chuck. The specimens in the second test were fixed on the table and a robot arm operated the pin. This wear test was applied on specimens with concave or convex surfaces. The residual stresses, which were determined by means of an incremental hole-drilling method, show a dependency on the substrate geometry. The obtained stresses were put in relation to the different radii. After the wear test, a 3D-profilometer determined the wear volume and the sections of the coatings were characterized by a scanning electron microscope. The results indicate that the wear resistance is strongly influenced by the geometry of the substrate.

  11. Measuring the impact of 3D data geometric modeling on spatial analysis: Illustration with Skyview factor

    NASA Astrophysics Data System (ADS)

    Brasebin, M.; Perret, J.; Mustière, S.; Weber, C.

    2012-10-01

    The increased availability of 3D urban data reflects a growing interest in 3D spatial analysis. As 3D spatial analysis often uses complex 3D data, studies of the potential gains of using more detailed 3D urban databases for specific uses is an important issue. First, more complex data implies an increase in time and memory usage for the analysis (and calls for more research on the efficiency of the algorithms used). Second, detailed 3D urban data are complex to produce, expensive and it is important to be well informed in order to decide whether of not to invest in such data. Currently, many studies have been led about the fitness for use of 2D data but they are very scarce concerning 3D data. This article presents a method to determine the influence of 3D modeling on the results of 3D analysis by isolating the potential sources of errors (such as roof modeling and geometric accuracy). This method is applied on two 3D datasets (LOD1 and LOD2) and a 3D indicator (the sky view factor or SVF). The results show that the significant influence of roof modeling is globally compensated by the difference in geometric modeling but that important local variations are noticed. Nevertheless, for 75% of the SVF processed the difference between the results using these two databases is lower than 2%.

  12. A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry

    SciTech Connect

    Goldberg, K.A. |; Tejnil, E.; Bokor, J. |

    1995-12-01

    A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.

  13. 3D numerical simulations of dispersion of volcanic ash using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    Suzuki, Yujiro; Koyaguchi, Takehiro

    2014-05-01

    Dispersion of volcanic ash largely depends on the atmospheric wind speed and eruption intensity. In general, when the atmospheric wind is weak and/or eruption intensity is strong (i.e., magma discharge rate is small), the volcanic plume is characterized by the formation of umbrella cloud and the particles (i.e., volcanic ashes) are transported by the gravity current of umbrella cloud. On the other hand, if the wind is strong and/or eruption intensity is weak, the volcanic plume tends to be distorted by wind and the particles are drifted mainly by the wind. Because these effects of gravity current and wind also change depending on the particle size, it is difficult to quantitatively predict the distributions of particles suspended in the atmosphere and those deposited on the ground. In this study, we are developing a 3-D numerical model which directly simulates the ash transport and deposition. The model is designed to simulate the injection of a mixture of solid pyroclasts and volcanic gas from a circular vent above a flat surface in a stratified atmosphere, using a combination of a pseudo-gas model for fluid motion and a Lagrangian model for particle motion. During fluid dynamics calculations, we ignore the separation of solid pyroclasts from the eruption cloud, treating an eruption cloud as a single gas with a density calculated using a mixing ratio between ejected material and entrained air (Suzuki et al., 2005, JGR). In order to calculate the location and movement of ash particles, we employ Lagrangian marker particles of various sizes and densities. The marker particles are ejected from the vent with the same velocity of the eruption cloud every 2 sec. The particles are accelerated or decelerated by the drag force on the spheres and fall to the ground with their terminal velocities. We carried out a simulation of a small-scale eruption in the strong wind fields with the magma discharge rate of 2.5 x 106 kg/s. The rising plume is largely distorted by wind and

  14. Numerical study of 3-D inducer and impeller for pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.

    1993-01-01

    Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.

  15. Analysis of patient movement during 3D USCT data acquisition

    NASA Astrophysics Data System (ADS)

    Ruiter, N. V.; Hopp, T.; Zapf, M.; Kretzek, E.; Gemmeke, H.

    2016-04-01

    In our first clinical study with a full 3D Ultrasound Computer Tomography (USCT) system patient data was acquired in eight minutes for one breast. In this paper the patient movement during the acquisition was analyzed quantitatively and as far as possible corrected in the resulting images. The movement was tracked in ten successive reflectivity reconstructions of full breast volumes acquired during 10 s intervals at different aperture positions, which were separated by 41 s intervals. The mean distance between initial and final position was 2.2 mm (standard deviation (STD) +/- 0.9 mm, max. 4.1 mm, min. 0.8 mm) and the average sum of all moved distances was 4.9 mm (STD +/- 1.9 mm, max. 8.8 mm, min. 2.7 mm). The tracked movement was corrected by summing successive images, which were transformed according to the detected movement. The contrast of these images increased and additional image content became visible.

  16. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.

    2015-03-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.

  17. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    PubMed Central

    Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale

    2015-01-01

    A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678

  18. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most

  19. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  20. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    NASA Astrophysics Data System (ADS)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  1. Systematic error analysis for 3D nanoprofiler tracing normal vector

    NASA Astrophysics Data System (ADS)

    Kudo, Ryota; Tokuta, Yusuke; Nakano, Motohiro; Yamamura, Kazuya; Endo, Katsuyoshi

    2015-10-01

    In recent years, demand for an optical element having a high degree of freedom shape is increased. High-precision aspherical shape is required for the X-ray focusing mirror etc. For the head-mounted display etc., optical element of the free-form surface is used. For such an optical device fabrication, measurement technology is essential. We have developed a high- precision 3D nanoprofiler. By nanoprofiler, the normal vector information of the sample surface is obtained on the basis of the linearity of light. Normal vector information is differential value of the shape, it is possible to determine the shape by integrating. Repeatability of sub-nanometer has been achieved by nanoprofiler. To pursue the accuracy of shapes, systematic error is analyzed. The systematic errors are figure error of sample and assembly errors of the device. This method utilizes the information of the ideal shape of the sample, and the measurement point coordinates and normal vectors are calculated. However, measured figure is not the ideal shape by the effect of systematic errors. Therefore, the measurement point coordinate and the normal vector is calculated again by feeding back the measured figure. Correction of errors have been attempted by figure re-derivation. It was confirmed theoretically effectiveness by simulation. This approach also applies to the experiment, it was confirmed the possibility of about 4 nm PV figure correction in the employed sample.

  2. Tensorial analysis of Eshelby stresses in 3D supercooled liquids.

    PubMed

    Lemaître, Anaël

    2015-10-28

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time. PMID:26520535

  3. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  4. A 3-D prognostic numerical model study of the Georges Bank ecosystem. Part I: physical model1

    NASA Astrophysics Data System (ADS)

    Chen, Changsheng; Beardsley, Robert; Franks, Peter J. S.

    The influence of tidal forcing and tidal and wind mixing on circulation and stratification over Georges Bank and adjacent regions in the Gulf of Maine has been examined using the 3-D semi-implicit version of the Blumberg and Mellor (1987) primitive equation ocean-circulation model. The numerical domain covered the Gulf of Maine/Georges Bank region with an open boundary starting at the New Jersey coast and ending at the Nova Scotia coast, with increased spatial resolution over Georges Bank. Numerical experiments were conducted using both smoothed and non-smoothed high-resolution (15 s) bottom topography. The model was forced by specifying the M 2 elevation and phase on the open boundary, and several forms of the bottom roughness parameter zo were used. The model provided a reasonable simulation of the M 2 tidal elevations and currents. The model, when run as an initial value problem with early summer stratification, exhibited tidal mixing fronts around the 40-60 m isobath over Georges Bank and Nantucket Shoals, and 100-m isobath on Brown Bank. The formation of these tidal mixing fronts significantly enhanced the along-isobath tidal rectified current over Georges Bank and the other two shoal regions. A cool-water band developed within the frontal zone along the eastern and southern flanks of Georges Bank and Nantucket Shoal, and it became cooler owing to wind mixing and upwelling as a mean summer wind stress was added. Tidal mixing and turbulent dissipation varied in time asymmetrically over Georges Bank. Over Georges Bank, tidal mixing was generally characterized as a local 1-D balance between turbulent shear production and dissipation. The spatial structure of the tidal residual flow and local turbulent dissipation rate depended critically on the spatial resolution of the bottom topography and the spatial distribution of z0. Analysis of the 3-D momentum balance and the residual flow over the center of Georges Bank indicates that earlier results based on a 2-D cross

  5. Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models

    NASA Astrophysics Data System (ADS)

    Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva

    2014-07-01

    To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.

  6. An approach to 3D magnetic field calculation using numerical and differential algebra methods

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.

    1992-07-17

    Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.

  7. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.

    PubMed

    Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao

    2005-01-01

    The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch. PMID:16313008

  8. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  9. RETRAN-3D MOD003 Peach Bottom Turbine Trip 2 Multidimensional Kinetics Analysis Models and Results

    SciTech Connect

    Mori, Michitsugu; Ogura, Katsunori; Gose, Garry C.; Wu, J.-Y

    2003-04-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip Test 2 (PB2/TT2) has been performed using RETRAN-3D MOD003. The purpose of the analysis was to investigate the PB2/TT2 overpressurization transient using the RETRAN-3D multidimensional kinetics model.

  10. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  11. Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.

    2016-01-01

    We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.

  12. Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation

    SciTech Connect

    Fedele, R.; Jovanovic, D.; De Nicola, S.; Eliasson, B.; Shukla, P. K.

    2009-11-10

    The results of recently developed investigations, that have been carried out within the framework of the controlling potential method (CPM), are reviewed. This method allows one to decompose a three dimensional (3D) Gross-Pitaevskii equation (GPE) into the pair of coupled Schroedinger-type equations. Under suitable mathematical conditions, the solutions of the 3D controlled GPE can be constructed from the solutions of a 2D linear Schroedinger equation (the transverse component of the GPE) coupled with a 1D nonlinear Schroedinger equation (the longitudinal component of the GPE). Such decomposition allows one to cast the solutions in the form of the product of the solutions of the transverse and the longitudinal components of the GPE. The coupling between these two equations is the functional of both the transverse and the longitudinal profiles. It is shown that the CPM can be used to obtain a new class of three-dimensional solitary waves solutions of the GPE, which governs the dynamics of Bose-Einstein condensates. By imposing an external controlling potential, the desired time-dependent shape of the localized BECs is obtained. The stability of the exact solutions was checked with direct simulations of the time -dependent, three-dimensional GPE. Our simulations show that the localized condensates are stable with respect to perturbed initial conditions.

  13. 3D Numerical simulations of the C-start of a Bluegill Sunfish

    NASA Astrophysics Data System (ADS)

    Narayanan, Venkat R. T.; Borazjani, Iman; Sotiropoulos, Fotis; Tytell, Eric D.; Lauder, George V.

    2009-11-01

    Obtaining the 3D flow field, forces, and power produced during the fast start maneuvers of fish is essential for studying this behavior from the hydrodynamics perspective. During a typical fast start, which is typically referred to as the C-start, the fish initially bends its body in a C shape manner and then with a fast stroke bends out of the C shape. We carry out high-resolution, 3D simulations of a bluegill sunfish performing a C-start maneuver. The body geometry and motion during the C-start are obtained from the experimental. We used high-speed video and particle image velocimetry to quantify body motion and flows produced during the C-start. We carry out simulations both with the entire motion prescribed and by prescribing only the deformation of the body but predicting the motion of the fish center of mass via a fluid-structure interaction approach. The computed results are compared with experimental observations and analyzed to further elucidate dynamics and three-dimensional structure of the C-start flowfields.

  14. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  15. Thermal analysis of 3D composites by a new fast multipole hybrid boundary node method

    NASA Astrophysics Data System (ADS)

    Miao, Yu; Wang, Qiao; Zhu, Hongping; Li, Yinping

    2014-01-01

    This paper applies the hybrid boundary node method (Hybrid BNM) for the thermal analysis of 3D composites. A new formulation is derived for the inclusion-based composites. In the new formulation, the unknowns of the interfaces are assembled only once in the final system equation, which can reduce nearly one half of degrees of freedom (DOFs) compared with the conventional multi-domain solver when there are lots of inclusions. A new version of the fast multipole method (FMM) is also coupled with the new formulation and the technique is applied to thermal analysis of composites with many inclusions. In the new fast multipole hybrid boundary node method (FM-HBNM), a diagonal form for translation operators is used and the method presented can be applied to the computation of more than 1,000,000 DOFs on a personal computer. Numerical examples are presented to analyze the thermal behavior of composites with many inclusions.

  16. 3-D geometrical analysis tool for meteoroids/debris impact risk assessment

    NASA Astrophysics Data System (ADS)

    Borde, J.; Drolshagen, G.

    1991-01-01

    It is widely appreciated that meteoroids and space debris are critical factors in the safety and reliability of future missions, especially long-term mission such as the Space Station Freedom. In this paper, enhanced a 3-D numerical analysis tool for meteoroids/debris risk evaluation is presented. It is based on presently available environment and particle/wall interaction models together with spacecraft shielding design. This provides impact probabilities and resulting damaging effects using realistic geometrical treatments. The shielding by other parts of the spacecraft is considered. It accounts for directional and geometrical effects both in the environment and in the damage evaluation. It includes the latest environment and design models and allows an easy updating of these data as they are improved upon. This tool is a new application of the ESABASE framework, a geometrical system level analysis and engineering tool developed by MATRA ESPACE for ESA/ESTEC.

  17. and 3D TOF-SIMS Imaging for Biological Analysis

    NASA Astrophysics Data System (ADS)

    Fletcher, John S.

    Secondary ion mass spectrometry (SIMS) is an established technique in the field of surface analysis but until recently has played only a very small role in the area of biological analysis. This chapter provides an overview of the application of secondary ion mass spectrometry to the analysis of biological samples including single cells, bacteria and tissue sections. The chapter will discuss how the challenges of biological analysis by SIMS have created an impetus for the development of new technology and methodology giving improved mass resolution, spatial resolution and sensitivity.

  18. Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes

    NASA Astrophysics Data System (ADS)

    Erlekampf, J.; Seebeck, J.; Savva, P.; Meissner, E.; Friedrich, J.; Alt, N. S. A.; Schlücker, E.; Frey, L.

    2014-10-01

    A numerical analysis of an ammonothermal synthesis process for the bulk growth of nitride crystals was performed. The analysis includes the development of a thermal model for a lab-scale ammonothermal autoclave, which was validated by in situ temperature measurements and applied to tailor the temperature field inside the autoclave. Based on the results of the global thermal 2D simulations, a local 3D model was used to include convective phenomena in the analysis. Moreover, the influence of the baffle and different baffle shapes on the flow velocity was investigated. Fluctuations of the temperature as well as the flow velocities occur, indicating that 3D considerations are essential to accurately investigate the heat and mass transport in ammonothermal systems.

  19. Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics.

    PubMed

    Headland, Daniel; Withayachumnankul, Withawat; Webb, Michael; Ebendorff-Heidepriem, Heike; Luiten, Andre; Abbott, Derek

    2016-07-25

    We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range. PMID:27464185

  20. Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics

    NASA Astrophysics Data System (ADS)

    Headland, Daniel; Withayachumnankul, Withawat; Webb, Michael; Ebendorff-Heidepriem, Heike; Luiten, Andre; Abbott, Derek

    2016-07-01

    We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.

  1. Reducing Non-Uniqueness in Satellite Gravity Inversion using 3D Object Oriented Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2013-12-01

    Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.

  2. An optical real-time 3D measurement for analysis of facial shape and movement

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  3. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  4. 3D Faulting Numerical Model Related To 2009 L'Aquila Earthquake Based On DInSAR Observations

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; Tizzani, Pietro; Solaro, Giuseppe; Pepe, Susi; Lanari, Riccardo

    2014-05-01

    We investigate the surface displacements in the area affected by the April 6, 2009 L'Aquila earthquake (Central Italy) through an advanced 3D numerical modeling approach, by exploiting DInSAR deformation velocity maps based on ENVISAT (Ascending and Descending orbits) and COSMO-SkyMed data (Ascending orbit). We benefited from the available geological and geophysical information to investigate the impact of known buried structures on the modulation of the observed ground deformation field; in this context we implemented the a priori information in a Finite Element (FE) Environment considering a structural mechanical physical approach. The performed analysis demonstrate that the displacement pattern associated with the Mw 6.3 main-shock event is consistent with the activation of several fault segments of the Paganica fault. In particular, we analyzed the seismic events in a structural mechanical context under the plane stress mode approximation to solve for the retrieved displacements. We defined the sub-domain setting of the 3D FEM model using the information derived from the CROOP M-15 seismic line. We assumed stationarity and linear elasticity of the involved materials by considering a solution of classical equilibrium mechanical equations. We evolved our model through two stages: the model compacted under the weight of the rock successions (gravity loading) until it reached a stable equilibrium. At the second stage (co-seismic), where the stresses were released through a slip along the faults, by using an optimization procedure we retrieved: (i) the active seismogenic structures responsible for the observed ground deformation, (ii) the effects of the different mechanical constraints on the ground deformation pattern and (iii) the spatial distribution of the retrieved stress field. We evaluated the boundary setting best fit configuration responsible for the observed ground deformation. To this aim, we first generated several forward structural mechanical models

  5. PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain

    NASA Astrophysics Data System (ADS)

    Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.

    2009-12-01

    A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007

  6. 3D geometric analysis of the aorta in 3D MRA follow-up pediatric image data

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Alrajab, Abdulsattar; Arnold, Raoul; Eichhorn, Joachim; von Tengg-Kobligk, Hendrik; Schenk, Jens-Peter; Rohr, Karl

    2014-03-01

    We introduce a new model-based approach for the segmentation of the thoracic aorta and its main branches from follow-up pediatric 3D MRA image data. For robust segmentation of vessels even in difficult cases (e.g., neighboring structures), we propose a new extended parametric cylinder model which requires only relatively few model parameters. The new model is used in conjunction with a two-step fitting scheme for refining the segmentation result yielding an accurate segmentation of the vascular shape. Moreover, we include a novel adaptive background masking scheme and we describe a spatial normalization scheme to align the segmentation results from follow-up examinations. We have evaluated our proposed approach using different 3D synthetic images and we have successfully applied the approach to follow-up pediatric 3D MRA image data.

  7. A numerical study of the 3D random interchange and random loop models

    NASA Astrophysics Data System (ADS)

    Barp, Alessandro; Barp, Edoardo Gabriele; Briol, François-Xavier; Ueltschi, Daniel

    2015-08-01

    We have studied numerically the random interchange model and related loop models on the three-dimensional cubic lattice. We have determined the transition time for the occurrence of long loops. The joint distribution of the lengths of long loops is Poisson-Dirichlet with parameter 1 or \\frac{1}{2}.

  8. Internal wave attractors examined using laboratory experiments and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Brouzet, C.; Sibgatullin, I. N.; Scolan, H.; Ermanyuk, E. V.; Dauxois, T.

    2016-04-01

    In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and PIV techniques. The numerical setup closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of three-dimensional calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numerically the effect of lateral walls on secondary currents and spanwise distribution of velocity amplitudes in the wave beams. Finally, we test the assumption of a bidimensional flow and estimate the error made in synthetic schlieren measurements due to this assumption.

  9. Numerical scheme for riser motion calculation during 3-D VIV simulation

    NASA Astrophysics Data System (ADS)

    Huang, Kevin; Chen, Hamn-Ching; Chen, Chia-Rong

    2011-10-01

    This paper presents a numerical scheme for riser motion calculation and its application to riser VIV simulations. The discretisation of the governing differential equation is studied first. The top tensioned risers are simplified as tensioned beams. A centered space and forward time finite difference scheme is derived from the governing equations of motion. Then an implicit method is adopted for better numerical stability. The method meets von Neumann criteria and is shown to be unconditionally stable. The discretized linear algebraic equations are solved using a LU decomposition method. This approach is then applied to a series of benchmark cases with known solutions. The comparisons show good agreement. Finally the method is applied to practical riser VIV simulations. The studied cases cover a wide range of riser VIV problems, i.e. different riser outer diameter, length, tensioning conditions, and current profiles. Reasonable agreement is obtained between the numerical simulations and experimental data on riser motions and cross-flow VIV a/D . These validations and comparisons confirm that the present numerical scheme for riser motion calculation is valid and effective for long riser VIV simulation.

  10. 3D neutronic/thermal-hydraulic coupled analysis of MYRRHA

    SciTech Connect

    Vazquez, M.; Martin-Fuertes, F.

    2012-07-01

    The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

  11. Numerical model of formation of a 3-D strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand

    2016-01-01

    The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.

  12. Vector algorithms for geometrically nonlinear 3D finite element analysis

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.

  13. 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Chen, P. C.; Hartle, M. S.; Huang, H. T.

    1985-01-01

    The objective is to develop analytical tools capable of economically evaluating the cyclic time dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. Three models were developed. A simple model performs time dependent inelastic analysis using the power law creep equation. The second model is the classical model of Professors Walter Haisler and David Allen of Texas A and M University. The third model is the unified model of Bodner, Partom, et al. All models were customized for linear variation of loads and temperatures with all material properties and constitutive models being temperature dependent.

  14. Image-based 3D scene analysis for navigation of autonomous airborne systems

    NASA Astrophysics Data System (ADS)

    Jaeger, Klaus; Bers, Karl-Heinz

    2001-10-01

    In this paper we describe a method for automatic determination of sensor pose (position and orientation) related to a 3D landmark or scene model. The method is based on geometrical matching of 2D image structures with projected elements of the associated 3D model. For structural image analysis and scene interpretation, a blackboard-based production system is used resulting in a symbolic description of image data. Knowledge of the approximated sensor pose measured for example by IMU or GPS enables to estimate an expected model projection used for solving the correspondence problem of image structures and model elements. These correspondences are presupposed for pose computation carried out by nonlinear numerical optimization algorithms. We demonstrate the efficiency of the proposed method by navigation update approaching a bridge scenario and flying over urban area, whereas data were taken with airborne infrared sensors in high oblique view. In doing so we simulated image-based navigation for target engagement and midcourse guidance suited for the concepts of future autonomous systems like missiles and drones.

  15. Wavelet-based adaptive numerical simulation of unsteady 3D flow around a bluff body

    NASA Astrophysics Data System (ADS)

    de Stefano, Giuliano; Vasilyev, Oleg

    2012-11-01

    The unsteady three-dimensional flow past a two-dimensional bluff body is numerically simulated using a wavelet-based method. The body is modeled by exploiting the Brinkman volume-penalization method, which results in modifying the governing equations with the addition of an appropriate forcing term inside the spatial region occupied by the obstacle. The volume-penalized incompressible Navier-Stokes equations are numerically solved by means of the adaptive wavelet collocation method, where the non-uniform spatial grid is dynamically adapted to the flow evolution. The combined approach is successfully applied to the simulation of vortex shedding flow behind a stationary prism with square cross-section. The computation is conducted at transitional Reynolds numbers, where fundamental unstable three-dimensional vortical structures exist, by well-predicting the unsteady forces arising from fluid-structure interaction.

  16. Sub aquatic 3D visualization and temporal analysis utilizing ArcGIS online and 3D applications

    EPA Science Inventory

    We used 3D Visualization tools to illustrate some complex water quality data we’ve been collecting in the Great Lakes. These data include continuous tow data collected from our research vessel the Lake Explorer II, and continuous water quality data collected from an autono...

  17. Code System for Analysis of 3-D Reinforced Concrete Structures.

    1999-11-22

    Version 00 NONSAP-C is a finite element program for determining the static and dynamic response of three-dimensional reinforced concrete structures. Long-term, or creep, behavior of concrete structures can also be analyzed. Nonlinear constitutive relations for concrete under short-term loads are incorporated in two time-independent models, a variable-modulus approach with orthotropic behavior induced in the concrete due to the development of different tangent moduli in different directions and an elastic-plastic model in which the concrete ismore » assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening-fracture material. A viscoelastic constitutive model for long-term thermal creep of concrete is included. Three-dimensional finite elements available in NONSAP-C include a truss element, a multinode tendon element for prestressed and post tensioned concrete structures, an elastic-plastic membrane element to represent the behavior of cavity liners, and a general isoparametric element with a variable number of nodes for analysis of solids and thick shells.« less

  18. Global stability analysis of turbulent 3D wakes

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Sipp, Denis; Juniper, Matthew

    2015-11-01

    At low Reynolds numbers, corresponding to laminar and transitional regimes, hydrodynamic stability theory has aided the understanding of the dynamics of bluff body wake-flows and the application of effective control strategies. However, flows of fundamental importance to many industries, in particular the transport industry, involve high Reynolds numbers and turbulent wakes. Despite their turbulence, such wake flows exhibit organisation which is manifested as coherent structures. Recent work has shown that the turbulent coherent structures retain the shape of the symmetry-breaking laminar instabilities and only those manifest as large-scale structures in the near wake (Rigas et al., JFM vol. 750:R5 2014, JFM vol. 778:R2 2015). Based on the findings of the persistence of the laminar instabilities at high Reynolds numbers, we investigate the global stability characteristics of a turbulent wake generated behind a bluff three-dimensional axisymmetric body. We perform a linear global stability analysis on the experimentally obtained mean flow and we recover the dynamic characteristics and spatial structure of the coherent structures, which are linked to the transitional instabilities. A detailed comparison of the predictions with the experimental measurements will be provided.

  19. Sexual Dimorphism Analysis and Gender Classification in 3D Human Face

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Lu, Li; Yan, Jingqi; Liu, Zhi; Shi, Pengfei

    In this paper, we present the sexual dimorphism analysis in 3D human face and perform gender classification based on the result of sexual dimorphism analysis. Four types of features are extracted from a 3D human-face image. By using statistical methods, the existence of sexual dimorphism is demonstrated in 3D human face based on these features. The contributions of each feature to sexual dimorphism are quantified according to a novel criterion. The best gender classification rate is 94% by using SVMs and Matcher Weighting fusion method.This research adds to the knowledge of 3D faces in sexual dimorphism and affords a foundation that could be used to distinguish between male and female in 3D faces.

  20. Numerical and experimental study of the 3D effect on connecting arm of vertical axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin

    2016-03-01

    Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.

  1. Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber

    NASA Astrophysics Data System (ADS)

    Yuen, A.; Bombardelli, F. A.

    2014-12-01

    Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on

  2. 3D numerical model for a focal plane view in case of mosaic grating compressor for high energy CPA chain.

    PubMed

    Montant, S; Marre, G; Blanchot, N; Rouyer, C; Videau, L; Sauteret, C

    2006-12-11

    An important issue, mosaic grating compressor, is studied to recompress pulses for multiPetawatt, high energy laser systems. Alignment of the mosaic elements is crucial to control the focal spot and thus the intensity on target. No theoretical approach analyses the influence of compressor misalignment on spatial and temporal profiles in the focal plane. We describe a simple 3D numerical model giving access to the focal plane view after a compressor. This model is computationally inexpensive since it needs only 1D Fourier transforms to access to the temporal profile. We present simulations of monolithic and mosaic grating compressors. PMID:19529688

  3. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    NASA Astrophysics Data System (ADS)

    Huang, S.; Guo, J.; Yang, F. X.

    2013-12-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects.

  4. 3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea

    SciTech Connect

    Baumgardner, J.R.

    1992-10-01

    Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.

  5. 3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea

    SciTech Connect

    Baumgardner, J.R.

    1992-01-01

    Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.

  6. A Laplacian Equation Method for Numerical Generation of Boundary-Fitted 3D Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, T.; Bergeles, G. C.

    1989-06-01

    A sethod for generating boundary fitted orthogonal curvilinear grids in 3-dimensional space is described. The mapping between the curvilinear coordinates and the Cartesian coordinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, involve the components of the metric tensor and are therefore non-linear and coupled. An iterative algorithm is described, which achieves a numerical solution. Grids appropriate for the calculation of flow fields over complex topography or in complex flow passages as those found in turbomachinery, and for other engineering applications can be constructed using the proposed method. Various examples are presented and plotted in perspective, and data for the assessment of the properties of the resulting meshes is provided.

  7. 3D numerical study of tumor microenvironmental flow in response to vascular-disrupting treatments.

    PubMed

    Wu, Jie; Cai, Yan; Xu, Shixiong; Longs, Quan; Ding, Zurong; Dong, Cheng

    2012-06-01

    The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three groups, and disrupting vessels of lower maturity could effectively enhance fluid transport across vasculature into interstitial space. PMID:23113373

  8. JULIDE: a software tool for 3D reconstruction and statistical analysis of autoradiographic mouse brain sections.

    PubMed

    Ribes, Delphine; Parafita, Julia; Charrier, Rémi; Magara, Fulvio; Magistretti, Pierre J; Thiran, Jean-Philippe

    2010-01-01

    In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool. PMID:21124830

  9. Numerical Simulation of Boiling Two-Phase Flow in Tight-Lattice Rod Bundle by 3-Dimensional Two-Fluid Model Code ACE-3D

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.

  10. User's Manual for DuctE3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic Analysis of Ducted Fans

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1997-01-01

    The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

  11. Pattern formation of down-built salt structures: insights from 3D numerical models

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris

    2015-04-01

    Many salt diapirs are thought to have formed as a result of down-building, which implies that the top of the diapir remained close to the surface during sediment deposition. This process is largely three-dimensional and in order to better understand what controls the patterns that form as a result of this down-building process, we here perform three-dimensional numerical models and compare the results with analytical models. In our models, we vary several parameters such as initial salt thickness, sedimentation rate, salt viscosity, salt-sediment viscosity contrast as well as the density of sediments. Down-building of three-dimensional diapirs only occurs for a certain range of parameters and is favored by lower sediment/salt viscosity contrasts and sedimentation rates in agreement with analytical predictions and findings from previous 2D models. However, the models show that the sedimentation rate has an additional effect on the formation and evolution of three-dimensional diapir patterns. At low sedimentation rates, salt ridges that form during early model stages remain preserved at later stages as well. For higher sedimentation rates, the initial salt ridges break up and form finger-like diapirs at the junction of salt ridges, which results in different salt exposure patterns at the surface. Once the initial pattern of diapirs is formed, higher sedimentation rate can also result in covered diapirs if the diapir extrusion velocity is insufficiently large. We quantify the effect of sedimentation rate on the number of diapirs exposed at the surface as well as on their spacing. In some cases, this final pattern is distinctly different from the initial polygonal pattern. We also study the extrusion of salt through time in the simulations, and show that it can be related to the geometries of the sedimentary layers surrounding the diapirs. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program

  12. A numerical investigation of the 3-D flow in shell and tube heat exchangers

    SciTech Connect

    Prithiviraj, M.; Andrews, M.J.

    1996-12-31

    A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.

  13. Numerical Modeling of 3-D Dynamics of Ultrasound Contrast Agent Microbubbles Using the Boundary Integral Method

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Manmi, Kawa; Wang, Qianxi

    2014-11-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.

  14. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model

    NASA Astrophysics Data System (ADS)

    Wang, Zhejiang; He, Qiaodeng; Wang, Deli

    2008-03-01

    Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wave-field simulation in the porous medium is limited to two-dimensions and two-components (2D2C) or two-dimensions and three-components (2D3C). There is no previous report on wave simulation in three-dimensions and three-components. Only through three dimensional numerical simulations can we have an overall understanding of wave field coupling relations and the spatial distribution characteristics between the solid and fluid phases in the dual-phase anisotropic medium. In this paper, based on the BISQ equation, we present elastic wave propagation in a three dimensional dual-phase anisotropic medium simulated by the staggered-grid high-order finite-difference method. We analyze the resulting wave fields and show that the results are an improvement.

  15. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.

    PubMed

    Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias

    2016-04-20

    Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution. PMID:27140083

  16. 3-D seakeeping analysis with water on deck and slamming. Part 2: Experiments and physical investigation

    NASA Astrophysics Data System (ADS)

    Greco, M.; Bouscasse, B.; Lugni, C.

    2012-08-01

    A synergic 3-D experimental and numerical investigation is conducted for wave-ship interactions involving the water-on-deck and slamming phenomena. The adopted solver has been developed in Greco and Lugni (in press) and combines (A) a weakly nonlinear external solution for the wave-vessel interactions with (B) a 2-D in-deck shallow-water approximation, which describes water shipping events, and (C) a local analytical analysis of the bottom-slamming phenomenon. This solver can handle regular and irregular sea states and vessels at rest or with limited speed. The experiments examine a patrol ship at rest or with forward speed that is free to oscillate in heave and pitch in regular and irregular waves. In this study, the head-sea regular-wave conditions are examined in terms of (1) response amplitude operators (RAOs) and relative motions, (2) occurrence, features and loads of water-on-deck, bottom-slamming and flare-slamming events and (3) added resistance in waves. A systematic and comprehensive analysis of the phenomena is made available in terms of the Froude number, incoming wavelength-to-ship length ratio and wave steepness for the examined ship geometry. The main parameters that affect the global and local quantities are identified and possible danger in terms of water-on-deck severity and structural consequences are determined. Different slamming behaviors were identified, depending on the spatial location of the impact on the vessel: single-peak, church-roof and double-peak behaviors. A bottom-slamming criterion, using the Ochi's (1964) velocity condition and the Greco and Lugni's (2012) pressure condition, is assessed. A statistical analysis of more than 100 events is needed for the bottom-slamming pressure peaks. The numerical solver is promising. The major discrepancies with the experiments are discussed, and the importance of viscous hull damping and flare impact for the most violent conditions is emphasized. Inclusion of these effects improved the

  17. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  18. A Framework for 3D Vessel Analysis using Whole Slide Images of Liver Tissue Sections

    PubMed Central

    Liang, Yanhui; Wang, Fusheng; Treanor, Darren; Magee, Derek; Roberts, Nick; Teodoro, George; Zhu, Yangyang; Kong, Jun

    2015-01-01

    Three-dimensional (3D) high resolution microscopic images have high potential for improving the understanding of both normal and disease processes where structural changes or spatial relationship of disease features are significant. In this paper, we develop a complete framework applicable to 3D pathology analytical imaging, with an application to whole slide images of sequential liver slices for 3D vessel structure analysis. The analysis workflow consists of image registration, segmentation, vessel cross-section association, interpolation, and volumetric rendering. To identify biologically-meaningful correspondence across adjacent slides, we formulate a similarity function for four association cases. The optimal solution is then obtained by constrained Integer Programming. We quantitatively and qualitatively compare our vessel reconstruction results with human annotations. Validation results indicate a satisfactory concordance as measured both by region-based and distance-based metrics. These results demonstrate a promising 3D vessel analysis framework for whole slide images of liver tissue sections. PMID:27034719

  19. 3-D Numerical Modeling as a Tool for Managing Mineral Water Extraction from a Complex Groundwater Basin in Italy

    NASA Astrophysics Data System (ADS)

    Zanini, A.; Tanda, M.

    2007-12-01

    The groundwater in Italy plays an important role as drinking water; in fact it covers about the 30% of the national demand (70% in Northern Italy). The mineral water distribution in Italy is an important business with an increasing demand from abroad countries. The mineral water Companies have a great interest in order to increase the water extraction, but for the delicate and complex geology of the subsoil, where such very high quality waters are contained, a particular attention must be paid in order to avoid an excessive lowering of the groundwater reservoirs or great changes in the groundwater flow directions. A big water Company asked our University to set up a numerical model of the groundwater basin, in order to obtain a useful tool which allows to evaluate the strength of the aquifer and to design new extraction wells. The study area is located along Appennini Mountains and it covers a surface of about 18 km2; the topography ranges from 200 to 600 m a.s.l.. In ancient times only a spring with naturally sparkling water was known in the area, but at present the mineral water is extracted from deep pumping wells. The area is characterized by a very complex geology: the subsoil structure is described by a sequence of layers of silt-clay, marl-clay, travertine and alluvial deposit. Different groundwater layers are present and the one with best quality flows in the travertine layer; the natural flow rate seems to be not subjected to seasonal variations. The water age analysis revealed a very old water which means that the mineral aquifers are not directly connected with the meteoric recharge. The Geologists of the Company suggest that the water supply of the mineral aquifers comes from a carbonated unit located in the deep layers of the mountains bordering the spring area. The valley is crossed by a river that does not present connections to the mineral aquifers. Inside the area there are about 30 pumping wells that extract water at different depths. We built a 3

  20. 3D shape analysis for early diagnosis of malignant lung nodules.

    PubMed

    El-Baz, Ayman; Nitzken, Matthew; Elnakib, Ahmed; Khalifa, Fahmi; Gimel'farb, Georgy; Falk, Robert; El-Ghar, Mohamed Abou

    2011-01-01

    An alternative method of diagnosing malignant lung nodules by their shape, rather than conventional growth rate, is proposed. The 3D surfaces of the detected lung nodules are delineated by spherical harmonic analysis that represents a 3D surface of the lung nodule supported by the unit sphere with a linear combination of special basis functions, called Spherical Harmonics (SHs). The proposed 3D shape analysis is carried out in five steps: (i) 3D lung nodule segmentation with a deformable 3D boundary controlled by a new prior visual appearance model; (ii) 3D Delaunay triangulation to construct a 3D mesh model of the segmented lung nodule surface; (iii) mapping this model to the unit sphere; (iv) computing the SHs for the surface; and (v) determining the number of the SHs to delineate the lung nodule. We describe the lung nodule shape complexity with a new shape index, the estimated number of the SHs, and use it for the K-nearest classification into malignant and benign lung nodules. Preliminary experiments on 327 lung nodules (153 malignant and 174 benign) resulted in a classification accuracy of 93.6%, showing that the proposed method is a promising supplement to current technologies for the early diagnosis of lung cancer. PMID:22003697

  1. 3D shape analysis for early diagnosis of malignant lung nodules.

    PubMed

    El-Bazl, Ayman; Nitzken, Matthew; Khalifa, Fahmi; Elnakib, Ahmed; Gimel'farb, Georgy; Falk, Robert; El-Ghar, Mohammed Abo

    2011-01-01

    An alternative method for diagnosing malignant lung nodules by their shape rather than conventional growth rate is proposed. The 3D surfaces of the detected lung nodules are delineated by spherical harmonic analysis, which represents a 3D surface of the lung nodule supported by the unit sphere with a linear combination of special basis functions, called spherical harmonics (SHs). The proposed 3D shape analysis is carried out in five steps: (i) 3D lung nodule segmentation with a deformable 3D boundary controlled by two probabilistic visual appearance models (the learned prior and the estimated current appearance one); (ii) 3D Delaunay triangulation to construct a 3D mesh model of the segmented lung nodule surface; (iii) mapping this model to the unit sphere; (iv) computing the SHs for the surface, and (v) determining the number of the SHs to delineate the lung nodule. We describe the lung nodule shape complexity with a new shape index, the estimated number of the SHs, and use it for the K-nearest classification to distinguish malignant and benign lung nodules. Preliminary experiments on 327 lung nodules (153 malignant and 174 benign) resulted in the 93.6% correct classification (for the 95% confidence interval), showing that the proposed method is a promising supplement to current technologies for the early diagnosis of lung cancer. PMID:21761703

  2. Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography

    PubMed Central

    2012-01-01

    The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics. PMID:23249477

  3. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  4. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI

    PubMed Central

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2016-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  5. Mobile 3D quality of experience evaluation: a hybrid data collection and analysis approach

    NASA Astrophysics Data System (ADS)

    Utriainen, Timo; Häyrynen, Jyrki; Jumisko-Pyykkö, Satu; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska M.

    2011-02-01

    The paper presents a hybrid approach to study the user's experienced quality of 3D visual content on mobile autostereoscopic displays. It combines extensive subjective tests with collection and objective analysis of eye-tracked data. 3D cues which are significant for mobiles are simulated in the generated 3D test content. The methodology for conducting subjective quality evaluation includes hybrid data-collection of quantitative quality preferences, qualitative impressions, and binocular eye-tracking. We present early results of the subjective tests along with eye movement reaction times, areas of interest and heatmaps obtained from raw eye-tracked data after statistical analysis. The study contributes to the question what is important to be visualized on portable auto-stereoscopic displays and how to maintain and visually enhance the quality of 3D content for such displays.

  6. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin

    2016-04-01

    The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid

  7. Localization of spots in FISH images of breast cancer using 3-D shape analysis.

    PubMed

    Les, T; Markiewicz, T; Osowski, S; Jesiotr, M; Kozlowski, W

    2016-06-01

    The fluorescence in situ (FISH) belongs to the most often used molecular cytogenetic techniques, applied in many areas of diagnosis and research. The analysis of FISH images relies on localization and counting the red and green spots in order to determine HER2 status of the breast cancer samples. The algorithm of spot localization presented in the paper is based on 3-D shape analysis of the image objects. The subsequent regions of the image are matched to the reference pattern and the results of this matching influence localization of spots. The paper compares different shapes of the reference pattern and their efficiency in spot localization. The numerical experiments have been performed on the basis of 12 cases (patients), each represented by three images. Few thousands of cells have been analysed. The quantitative analyses comparing different versions of algorithm are presented and compared to the expert results. The best version of the procedure provides the absolute relative difference to the expert results smaller than 3%. These results confirm high efficiency of the proposed approach to the spot identification. The proposed method of FISH image analysis improves the efficiency of detecting fluorescent signals in FISH images. The evaluation results are encouraging for further testing of the developed automatic system directed to application in medical practice. PMID:26694535

  8. 3D photography in the objective analysis of volume augmentation including fat augmentation and dermal fillers.

    PubMed

    Meier, Jason D; Glasgold, Robert A; Glasgold, Mark J

    2011-11-01

    The authors present quantitative and objective 3D data from their studies showing long-term results with facial volume augmentation. The first study analyzes fat grafting of the midface and the second study presents augmentation of the tear trough with hyaluronic filler. Surgeons using 3D quantitative analysis can learn the duration of results and the optimal amount to inject, as well as showing patients results that are not demonstrable with standard, 2D photography. PMID:22004863

  9. A 3D numerical investigation of reservoir monitoring with borehole radar and its application in smart well

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Miorali, M.; Slob, E. C.; Arts, R.

    2011-12-01

    Smart wells, a new generation of wells used in oil production, combine down-hole monitoring and control of the reservoir flow. Smart technology allows the implementation of proactive strategies that can mitigate potential problems, such as the approach of undesired fluids, before they impact production from the well. The effectiveness of the proactive strategies depends on the ability of monitoring the near-well region. We propose that borehole radar is a promising technology for this purpose. We couple 3D reservoir flow modeling with 3D radar modeling. The time-lapse analysis of the electromagnetic simulations confirms that radar can map the movement of the oil-water contact in a range of 1-10 m from the well. The comparison of the 3D reflected signals with the 2D show a good correlation, which allows cheaper simulation for a large-scale reservoir model. We use the radar results to implement a proactive control strategy in a realistic reservoir scenario. The NPV(Net Present Value) has improved by controlling the production according to the modeled radar measurements. We suggest borehole radar as a promising application in oil production optimization if an effective smart well control strategy is combined.

  10. Numerical modelling of the aeroelastic behaviour and variable loads for the turbine stage in 3D transonic flow

    NASA Astrophysics Data System (ADS)

    Gnesin, V. I.; Kolodyazhnaya, L. V.; Rzadkowski, R.

    2005-09-01

    In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonuniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.

  11. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    PubMed

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  12. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm

    PubMed Central

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  13. Quantitative Analysis and Modeling of 3-D TSV-Based Power Delivery Architectures

    NASA Astrophysics Data System (ADS)

    He, Huanyu

    As 3-D technology enters the commercial production stage, it is critical to understand different 3-D power delivery architectures on the stacked ICs and packages with through-silicon vias (TSVs). Appropriate design, modeling, analysis, and optimization approaches of the 3-D power delivery system are of foremost significance and great practical interest to the semiconductor industry in general. Based on fundamental physics of 3-D integration components, the objective of this thesis work is to quantitatively analyze the power delivery for 3D-IC systems, develop appropriate physics-based models and simulation approaches, understand the key issues, and provide potential solutions for design of 3D-IC power delivery architectures. In this work, a hybrid simulation approach is adopted as the major approach along with analytical method to examine 3-D power networks. Combining electromagnetic (EM) tools and circuit simulators, the hybrid approach is able to analyze and model micrometer-scale components as well as centimeter-scale power delivery system with high accuracy and efficiency. The parasitic elements of the components on the power delivery can be precisely modeled by full-wave EM solvers. Stack-up circuit models for the 3-D power delivery networks (PDNs) are constructed through a partition and assembly method. With the efficiency advantage of the SPICE circuit simulation, the overall 3-D system power performance can be analyzed and the 3-D power delivery architectures can be evaluated in a short computing time. The major power delivery issues are the voltage drop (IR drop) and voltage noise. With a baseline of 3-D power delivery architecture, the on-chip PDNs of TSV-based chip stacks are modeled and analyzed for the IR drop and AC noise. The basic design factors are evaluated using the hybrid approach, such as the number of stacked chips, the number of TSVs, and the TSV arrangement. Analytical formulas are also developed to evaluate the IR drop in 3-D chip stack in

  14. Sketch on dynamic gesture tracking and analysis exploiting vision-based 3D interface

    NASA Astrophysics Data System (ADS)

    Woo, Woontack; Kim, Namgyu; Wong, Karen; Tadenuma, Makoto

    2000-12-01

    In this paper, we propose a vision-based 3D interface exploiting invisible 3D boxes, arranged in the personal space (i.e. reachable space by the body without traveling), which allows robust yet simple dynamic gesture tracking and analysis, without exploiting complicated sensor-based motion tracking systems. Vision-based gesture tracking and analysis is still a challenging problem, even though we have witnessed rapid advances in computer vision over the last few decades. The proposed framework consists of three main parts, i.e. (1) object segmentation without bluescreen and 3D box initialization with depth information, (2) movement tracking by observing how the body passes through the 3D boxes in the personal space and (3) movement feature extraction based on Laban's Effort theory and movement analysis by mapping features to meaningful symbols using time-delay neural networks. Obviously, exploiting depth information using multiview images improves the performance of gesture analysis by reducing the errors introduced by simple 2D interfaces In addition, the proposed box-based 3D interface lessens the difficulties in both tracking movement in 3D space and in extracting low-level features of the movement. Furthermore, the time-delay neural networks lessens the difficulties in movement analysis by training. Due to its simplicity and robustness, the framework will provide interactive systems, such as ATR I-cubed Tangible Music System or ATR Interactive Dance system, with improved quality of the 3D interface. The proposed simple framework also can be extended to other applications requiring dynamic gesture tracking and analysis on the fly.

  15. 3-D laser images of splash-form tektites and their use in aerodynamic numerical simulations of tektite formation

    NASA Astrophysics Data System (ADS)

    Samson, C.; Butler, S.; Fry, C.; McCausland, P. J. A.; Herd, R. K.; Sharomi, O.; Spiteri, R. J.; Ralchenko, M.

    2014-05-01

    Ten splash-form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high-resolution laser digitizer. Despite challenges due to the samples' rounded shapes and pitted surfaces, the images were combined to create 3-D tektite models, which captured surface features with a high fidelity (≈30 voxel mm-2) and from which volume could be measured noninvasively. The laser-derived density for the tektites averaged 2.41 ± 0.11 g cm-3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm-3. In addition to their curational value, the 3-D models can be used to calculate the tektites' moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s-1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.

  16. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

    2005-09-01

    The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

  17. Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells

    PubMed Central

    Robinson, Benjamin K.; Cortes, Ernesto; Rice, Alistair J.; Sarper, Muge

    2016-01-01

    ABSTRACT Extracellular matrix (ECM) remodelling is integral to numerous physiological and pathological processes in biology, such as embryogenesis, wound healing, fibrosis and cancer. Until recently, most cellular studies have been conducted on 2D environments where mechanical cues significantly differ from physiologically relevant 3D environments, impacting cellular behaviour and masking the interpretation of cellular function in health and disease. We present an integrated methodology where cell-ECM interactions can be investigated in 3D environments via ECM remodelling. Monitoring and quantification of collagen-I structure in remodelled matrices, through designated algorithms, show that 3D matrices can be used to correlate remodelling with increased ECM stiffness observed in fibrosis. Pancreatic stellate cells (PSCs) are the key effectors of the stromal fibrosis associated to pancreatic cancer. We use PSCs to implement our methodology and demonstrate that PSC matrix remodelling capabilities depend on their contractile machinery and β1 integrin-mediated cell-ECM attachment. PMID:27170254

  18. Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method

    NASA Astrophysics Data System (ADS)

    Qin, Yujie; Lu, Yiyun

    2015-09-01

    In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.

  19. Cascaded systems analysis of the 3D NEQ for cone-beam CT and tomosynthesis

    NASA Astrophysics Data System (ADS)

    Tward, D. J.; Siewerdsen, J. H.; Fahrig, R. A.; Pineda, A. R.

    2008-03-01

    Crucial to understanding the factors that govern imaging performance is a rigorous analysis of signal and noise transfer characteristics (e.g., MTF, NPS, and NEQ) applied to a task-based performance metric (e.g., detectability index). This paper advances a theoretical framework for calculation of the NPS, NEQ, and DQE of cone-beam CT (CBCT) and tomosynthesis based on cascaded systems analysis. The model considers the 2D projection NPS propagated through a series of reconstruction stages to yield the 3D NPS, revealing a continuum (from 2D projection radiography to limited-angle tomosynthesis and fully 3D CBCT) for which NEQ and detectability index may be investigated as a function of any system parameter. Factors considered in the cascade include: system geometry; angular extent of source-detector orbit; finite number of views; log-scaling; application of ramp, apodization, and interpolation filters; back-projection; and 3D noise aliasing - all of which have a direct impact on the 3D NEQ and DQE. Calculations of the 3D NPS were found to agree with experimental measurements across a broad range of imaging conditions. The model presents a theoretical framework that unifies 3D Fourier-based performance metrology in tomosynthesis and CBCT, providing a guide to optimization that rigorously considers the system configuration, reconstruction parameters, and imaging task.

  20. 3D Analysis of the Proximal Interphalangeal Joint Kinematics during Flexion

    PubMed Central

    Fürnstahl, Philipp; Gallo, Luigi-Maria; Schweizer, Andreas

    2013-01-01

    Background. Dynamic joint motion recording combined with CT-based 3D bone and joint surface data is accepted as a helpful and precise tool to analyse joint. The purpose of this study is to demonstrate the feasibility of these techniques for quantitative motion analysis of the interphalangeal joint in 3D. Materials and Method. High resolution motion data was combined with an accurate 3D model of a cadaveric index finger. Three light-emitting diodes (LEDs) were used to record dynamic data, and a CT scan of the finger was done for 3D joint surface geometry. The data allowed performing quantitative evaluations such as finite helical axis (FHA) analysis, coordinate system optimization, and measurement of the joint distances in 3D. Results. The FHA varies by 4.9 ± 1.7° on average. On average, the rotation in adduction/abduction and internal/external rotation were 0.3 ± 0.91° and 0.1 ± 0.97°, respectively. During flexion, a translational motion between 0.06 mm and 0.73 mm was observed. Conclusions. The proposed technique and methods appear to be feasible for the accurate assessment and evaluation of the PIP joint motion in 3D. The presented method may help to gain additional insights for the design of prosthetic implants, rehabilitation, and new orthotic devices. PMID:24302972

  1. 3D video analysis of the novel object recognition test in rats.

    PubMed

    Matsumoto, Jumpei; Uehara, Takashi; Urakawa, Susumu; Takamura, Yusaku; Sumiyoshi, Tomiki; Suzuki, Michio; Ono, Taketoshi; Nishijo, Hisao

    2014-10-01

    The novel object recognition (NOR) test has been widely used to test memory function. We developed a 3D computerized video analysis system that estimates nose contact with an object in Long Evans rats to analyze object exploration during NOR tests. The results indicate that the 3D system reproducibly and accurately scores the NOR test. Furthermore, the 3D system captures a 3D trajectory of the nose during object exploration, enabling detailed analyses of spatiotemporal patterns of object exploration. The 3D trajectory analysis revealed a specific pattern of object exploration in the sample phase of the NOR test: normal rats first explored the lower parts of objects and then gradually explored the upper parts. A systematic injection of MK-801 suppressed changes in these exploration patterns. The results, along with those of previous studies, suggest that the changes in the exploration patterns reflect neophobia to a novel object and/or changes from spatial learning to object learning. These results demonstrate that the 3D tracking system is useful not only for detailed scoring of animal behaviors but also for investigation of characteristic spatiotemporal patterns of object exploration. The system has the potential to facilitate future investigation of neural mechanisms underlying object exploration that result from dynamic and complex brain activity. PMID:24991752

  2. Development of a 3D numerical model to evaluate the Stromboli NW flank instability in relation to magma intrusion

    NASA Astrophysics Data System (ADS)

    Apuani, T.; Merri, A.

    2009-04-01

    A stress-strain analysis of the Stromboli volcano was performed using a three-dimensional explicit finite difference numerical code (FLAC 3D, ITASCA, 2005), to evaluate the effects associated to the presence of magma pressure in magmatic conduit and to foresee the evolution of the magmatic feeding complex. The simulations considered both the ordinary state for the Stromboli, characterized by a partial fill of the active dyke with regular emission of gas and lava fountains and the paroxysmal conditions observed during the March 2007's eruptive crisis, with the magma level in the active dyke reaching the topographic surface along the Sciara del Fuoco depression. The modeling contributes to identify the most probable directions of propagation of new dikes, and the effects of their propagation on the stability of the volcano edifice. The numerical model extends 6 x 6 x 2.6 km3, with a mesh resolution of 100 m, adjusting the grid to fit the shape of the object to be modeled. An elasto-plastic constitutive law was adopted and an homogeneous Mohr-Coulomb strength criterion was chosen for the volcanic cone, assuming one lithotechnical unit (alternation of lava and breccia layers "lava-breccia unit"- Apuani et al 2005). The dykes are represented as discontinuities of the grid, and are modeled by means of interfaces. The magmatic pressure is imposed to the model as normal pressure applied on both sides of the interfaces. The magmastatic pressure was calculated as Pm=d•h, where d is the magma unit weight assumed equal to 25 KN/m3, and h (m) is the height of the magma column. Values of overpressure between 0 and 1 MPa were added to simulate the paroxysmal eruption. The simulation was implemented in successive stages, assuming the results of the previous stages as condition for the next one. A progressive propagation of the dike was simulated, in accordance with the stress conditions identified step by step, and in accordance with the evidences detected by in situ survey, and

  3. The development of topographic plateaus in an India-Asia-like collision zone using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2014-05-01

    The Himalayas and the adjacent Tibetan Plateau represent the most remarkable feature of the Earth's surface as the largest region of elevated topography and anomalously thick crust. Understanding the formation and evolution of the Himalayan-Tibetan region has become of high interest in the scientific community and different models have emerged over the last decades. They range from wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model to the lower crustal flow model for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. While some of these models have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, delamination, channel flow or extrusion, which are thought to be important during continental convergence, since these mechanisms require the lithosphere to interact with the underlying mantle. As such, 3D numerical models prove to be powerful tools in understanding the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continental collision zones have relied on certain explicit assumptions, either focusing on crustal dynamics or slab-mantle dynamics. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and an internal free surface into account, which allows for the development of topography. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role continent subduction and collision have on the future of the subducting and overriding plates, and we discuss the implications these offer for the Asian tectonics

  4. Mixed-Mode Fracture and Fatigue Analysis of Cracked 3D Complex Structures using a 3D SGBEM-FEM Alternating Method

    NASA Astrophysics Data System (ADS)

    Bhavanam, Sharada

    The aim of this thesis is to numerically evaluate the mixed-mode Stress Intensity Factors (SIFs) of complex 3D structural geometries with arbitrary 3D cracks using the Symmetric Galerkin Boundary Element Method-Finite Element Method (SGBEM-FEM) Alternating Method. Various structural geometries with different loading scenarios and crack configurations were examined in this thesis to understand the behavior and trends of the mixed-mode SIFs as well as the fatigue life for these complex structural geometries. Although some 3D structures have empirical and numerical solutions that are readily available in the open literature, some do not; therefore this thesis presents the results of fracture and fatigue analyses of these 3D complex structures using the SGBEM-FEM Alternating Method to serve as reference for future studies. Furthermore, there are advantages of using the SGBEM-FEM Alternating Method compared to traditional FEM methods. For example, the fatigue-crack-growth and fatigue life can be better estimated for a structure because different fatigue models (i.e. Walker, Paris, and NASGRO) can be used within the same framework of the SGBEM-FEM Alternating Method. The FEM (un-cracked structure)/BEM(crack model) meshes are modeled independently, which speeds up the computation process and reduces the cost of human labor. A simple coarse mesh can be used for all fracture and fatigue analyses of complex structures. In this thesis, simple coarse meshes were used for 3D complex structures, which were below 5000 elements as compared to traditional FEM, which require meshes where the elements range on the order of ˜250,000 to ˜106 and sometimes even more than that.

  5. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  6. Numerical analysis of bifurcations

    SciTech Connect

    Guckenheimer, J.

    1996-06-01

    This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. {copyright} {ital 1996 American Institute of Physics.}

  7. 3D-QSAR and 3D-QSSR studies of thieno[2,3-d]pyrimidin-4-yl hydrazone analogues as CDK4 inhibitors by CoMFA analysis

    PubMed Central

    Cai, Bao-qin; Jin, Hai-xiao; Yan, Xiao-jun; Zhu, Peng; Hu, Gui-xiang

    2014-01-01

    Aim: To investigate the structural basis underlying potency and selectivity of a series of novel analogues of thieno[2,3-d]pyrimidin-4-yl hydrazones as cyclin-dependent kinase 4 (CDK4) inhibitors and to use this information for drug design strategies. Methods: Three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis (CoMFA) were conducted on a training set of 48 compounds. Partial least squares (PLS) analysis was employed. External validation was performed with a test set of 9 compounds. Results: The obtained 3D-QSAR model (q2=0.724, r2=0.965, r2pred=0.945) and 3D-QSSR model (q2=0.742, r2=0.923, r2pred=0.863) were robust and predictive. Contour maps with good compatibility to active binding sites provided insight into the potentially important structural features required to enhance activity and selectivity. The contour maps indicated that bulky groups at R1 position could potentially enhance CDK4 inhibitory activity, whereas bulky groups at R3 position have the opposite effect. Appropriate incorporation of bulky electropositive groups at R4 position is favorable and could improve both potency and selectivity to CDK4. Conclusion: These two models provide useful information to guide drug design strategies aimed at obtaining potent and selective CDK4 inhibitors. PMID:24122012

  8. Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration

    2015-11-01

    The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  9. 3D finite element analysis of porous Ti-based alloy prostheses.

    PubMed

    Mircheski, Ile; Gradišar, Marko

    2016-11-01

    In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young's modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price. PMID:27015664

  10. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy.

    PubMed

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-19

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3D-MIP platform when a larger number of cores is available. PMID:24910506

  11. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl’s law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3D-MIP platform when a larger number of cores is available. PMID:24910506

  12. Visualization and analysis of 3D gene expression patterns in zebrafish using web services

    NASA Astrophysics Data System (ADS)

    Potikanond, D.; Verbeek, F. J.

    2012-01-01

    The analysis of patterns of gene expression patterns analysis plays an important role in developmental biology and molecular genetics. Visualizing both quantitative and spatio-temporal aspects of gene expression patterns together with referenced anatomical structures of a model-organism in 3D can help identifying how a group of genes are expressed at a certain location at a particular developmental stage of an organism. In this paper, we present an approach to provide an online visualization of gene expression data in zebrafish (Danio rerio) within 3D reconstruction model of zebrafish in different developmental stages. We developed web services that provide programmable access to the 3D reconstruction data and spatial-temporal gene expression data maintained in our local repositories. To demonstrate this work, we develop a web application that uses these web services to retrieve data from our local information systems. The web application also retrieve relevant analysis of microarray gene expression data from an external community resource; i.e. the ArrayExpress Atlas. All the relevant gene expression patterns data are subsequently integrated with the reconstruction data of the zebrafish atlas using ontology based mapping. The resulting visualization provides quantitative and spatial information on patterns of gene expression in a 3D graphical representation of the zebrafish atlas in a certain developmental stage. To deliver the visualization to the user, we developed a Java based 3D viewer client that can be integrated in a web interface allowing the user to visualize the integrated information over the Internet.

  13. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    NASA Astrophysics Data System (ADS)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-08-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self-consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given.

  14. Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha

    We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.

  15. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  16. A Sensory 3D Map of the Odor Description Space Derived from a Comparison of Numeric Odor Profile Databases.

    PubMed

    Zarzo, Manuel

    2015-06-01

    Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. PMID:25847969

  17. 3D analysis of eddy current loss in the permanent magnet coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.

  18. 3D shape measurement of shoeprint impression with structured illumination and fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Cao, Yiping; Xiang, Liqun; Chen, Wenjing

    2002-06-01

    The shoeprint impressions of suspect left at the crime scene can sometimes tell investigators what type of shoes to be looked for. These shoeprint impressions as one of the important evidence are useful in the detection of criminals. In this paper we propose a novel technique for identifying and analyzing the 3D characteristics of shoeprint impressions. We also design 3D shoeprint impression analysis system based on the combination the 3D shape measurement with structured illumination and fringe pattern analysis. We give a detail discussion on the principle and configuration of the system. Laboratory experiments show the technique is efficient in the detection of shoeprint and in the offering the reference for judicial evidence.

  19. 3D analysis of eddy current loss in the permanent magnet coupling.

    PubMed

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings. PMID:27475575

  20. Numerical Modeling of seismic wave propagation on Etna Volcano (Italy): Construction of 3D realistic velocity structures

    NASA Astrophysics Data System (ADS)

    Trovato, Claudio; Aochi, Hideo; De Martin, Florent

    2014-05-01

    Understanding the source mechanism of long-period (LP) seismic signals on volcanoes is an important key point in volcanology and for the hazard forecasting. In the last decades, moment tensor inversions have led to various descriptions of the kinematic source mechanism. These inversions suppose a relatively simple structure of the medium. However, the seismic wave propagation in a realistic 3-D volcano model should be taken into account for understanding the complicated physical processes of magma and gas behaviors at depth. We are studying Etna volcano, Italy, to understand the volcanic processes during different stages of activity. We adopt a spectral element method (SEM), a code EFISPEC3D (De Martin, BSSA, 2011), which shows a good accuracy and numerical stability in the simulations of seismic wave propagation. First we construct the geometrical model. We use a digital elevation model (DEM) to generate finite element meshes with a spacing of 50 m on the ground surface. We aim to calculate the ground motions until 3 Hz for the shallowest layer with Vs = ~500 m/s. The minimal size of the hexahedral elements is required to be around 100 m, with a total number of elements n = ~2 10 ^ 6 for the whole model. We compare different velocity structure configurations. We start with a homogeneous medium and add complexities taking in account the shallow low velocity structure. We also introduce a velocity gradient towards depth. Simulations performed in the homogeneous medium turn in approximately 20 hours for calculations parallelized on 16 CPUs. Complex velocity models should take approximately the same time of computation. We then try to simulate the ground motion from the LP sources (0.1-1.5 Hz) obtained by the inversion for the Etna volcano in 2008 (De Barros, GRL, 2009 and De Barros, JGR, 2011). Some vertical and horizontal structures can be added to reproduce injected dikes or sills respectively.

  1. Incorporating Sedimentological Observations, Hydrogeophysics and conceptual Knowledge to Constrain 3D Numerical Heterogeneity Models of Coarse Alluvial Systems

    NASA Astrophysics Data System (ADS)

    Huber, E.; Huggenberger, P.

    2012-12-01

    . Horizontal time-slices of 3D GPR provide images which allow correlations to be made between vertical and horizontal sections. We show, that true-scale map views of time slices reveal geometries in the horizontal direction more accurately. Horizontal geophysical sections (time-slices) offer an opportunity to relate vertical and horizontal information. Time-slices of 3D GPR surveys offer a possibility to derive training images and multiple point statistical analysis. Combining the data from 2D and 3D geophysical field surveys and observations from outcrops in gravel pits we develop a 3D object-based model of the main structural elements considering depositional and erosional capabilities of the structural elements depending on the dynamics of the system. The algorithm contains the definition of objects to reproduce the different sedimentary structures distinguished within the studied system in a realistic way, and generates different realizations of the defined object types. The quality of the different realisations is compared with the observation (geophysics, borehole and geological parameters). The input parameters set required for reproducing a sedimentary object is composed of qualitative data, such as global shape of the profile, and quantitative data, such as typical object dimensions and directions.

  2. Analysis of 3-D images of dental imprints using computer vision

    NASA Astrophysics Data System (ADS)

    Aubin, Michele; Cote, Jean; Laurendeau, Denis; Poussart, Denis

    1992-05-01

    This paper addressed two important aspects of dental analysis: (1) location and (2) identification of the types of teeth by means of 3-D image acquisition and segmentation. The 3-D images of both maxillaries are acquired using a wax wafer as support. The interstices between teeth are detected by non-linear filtering of the 3-D and grey-level data. Two operators are presented: one for the detection of the interstices between incisors, canines, and premolars and one for those between molars. Teeth are then identified by mapping the imprint under analysis on the computer model of an 'ideal' imprint. For the mapping to be valid, a set of three reference points is detected on the imprint. Then, the points are put in correspondence with similar points on the model. Two such points are chosen based on a least-squares fit of a second-order polynomial of the 3-D data in the area of canines. This area is of particular interest since the canines show a very characteristic shape and are easily detected on the imprint. The mapping technique is described in detail in the paper as well as pre-processing of the 3-D profiles. Experimental results are presented for different imprints.

  3. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  4. Ultrascale Climate Data Visualization and Analysis Using UVCDAT and DV3D (Invited)

    NASA Astrophysics Data System (ADS)

    Maxwell, T. P.; Williams, D. N.; Potter, G. L.

    2013-12-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center is developing an advanced computational infrastructure that can provide high-performance analysis and visualization capabilities to the desktops of climate scientists. In collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) development consortium, NCCS is developing climate data analysis and visualization tools for UV-CDAT, which provides data analysis capabilities for the Earth System Grid (ESG). These tools feature workflow interfaces, interactive 3D data exploration, hyperwall and stereo visualization, automated provenance generation, parallel task execution, and streaming data parallel pipelines. NASA's DV3D is a UV-CDAT package that enables exploratory analysis of diverse and rich data sets from various sources including the Earth System Grid Federation (ESGF). DV3D provides user-friendly workflow interfaces for advanced visualization and analysis of climate data at a level appropriate for scientists. DV3D's integration with CDAT's climate data management system (CDMS) and other climate data analysis tools provides a wide range of climate data analysis operations, e.g. simple arithmetic operations, regridding, conditioned comparisons, weighted averages, various statistical operations, etc. Several teams are developing parallel versions of these tools that will enable users to analyze and display large data sets that cannot currently be processed with existing desktop tools. This enables scientists to run analyses that were previously intractable due to the large size of the datasets and, using DV3D, seamlessly couple these

  5. Theoretical fast non-intrusive 3-D temperature distribution measurement within scattering medium from flame emission image analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qun-xing; Yan, Fei Wang Jian-hua; Chi, Yong

    2013-04-01

    A new approach to inverse radiation analysis is presented for non-intrusive 3-D flame temperature reconstruction using flame emission images from four CCD camera detectors installed on the furnace wall. The scattering from participating medium in the flame was considered by combining the discrete radiative transfer method with the discrete ordinate method. A modified minimum residual algorithm was employed to calculate the least squares solution of the ill-conditioned inverse problem. A numerical test problem simulating real temperature measurements in an industrial furnace was used to assess the performance of the proposed method. These assessments indicate that this method is capable of reconstructing 3-D temperature distributions fast and accurately, even with noisy flame emission data. Such a capability has potential in real-time temperature measurement for combustion optimization and pollution emission control.

  6. Ultrascale Climate Data Visualization and Analysis Using DV3D and UVCDAT.

    NASA Astrophysics Data System (ADS)

    Maxwell, T. P.; Potter, G. L.; Williams, D. N.; Doutriaux, C.; Chaudhary, A.

    2014-12-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center is developing an advanced computational infrastructure that can provide high-performance analysis and visualization capabilities to the desktops of climate scientists. In collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) development consortium, NCCS is developing climate data analysis and visualization tools for UV-CDAT, which provides data analysis capabilities for the Earth System Grid (ESG). These tools feature workflow interfaces, interactive 3D data exploration, hyperwall and stereo visualization, automated provenance generation, parallel task execution, and streaming data parallel pipelines. NASA's DV3D is a UV-CDAT package that enables exploratory analysis of diverse and rich data sets from various sources including the Earth System Grid Federation (ESGF). DV3D provides user-friendly workflow interfaces for advanced visualization and analysis of climate data at a level appropriate for scientists. DV3D's integration with CDAT's climate data management system (CDMS) and other tools provides a wide range of climate data analysis operations, e.g. simple arithmetic operations, regridding, conditioned comparisons, weighted averages, various statistical operations, etc. Several teams are developing parallel versions of these tools that will enable users to analyze and display large data sets that cannot currently be processed with existing desktop tools. This enables scientists to run analyses that were previously intractable due to the large size of the datasets and, using DV3D, seamlessly couple these analyses with advanced

  7. 3D intrathoracic region definition and its application to PET-CT analysis

    NASA Astrophysics Data System (ADS)

    Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W.; Higgins, William E.

    2014-03-01

    Recently developed integrated PET-CT scanners give co-registered multimodal data sets that offer complementary three-dimensional (3D) digital images of the chest. PET (positron emission tomography) imaging gives highly specific functional information of suspect cancer sites, while CT (X-ray computed tomography) gives associated anatomical detail. Because the 3D CT and PET scans generally span the body from the eyes to the knees, accurate definition of the intrathoracic region is vital for focusing attention to the central-chest region. In this way, diagnostically important regions of interest (ROIs), such as central-chest lymph nodes and cancer nodules, can be more efficiently isolated. We propose a method for automatic segmentation of the intrathoracic region from a given co-registered 3D PET-CT study. Using the 3D CT scan as input, the method begins by finding an initial intrathoracic region boundary for a given 2D CT section. Next, active contour analysis, driven by a cost function depending on local image gradient, gradient-direction, and contour shape features, iteratively estimates the contours spanning the intrathoracic region on neighboring 2D CT sections. This process continues until the complete region is defined. We next present an interactive system that employs the segmentation method for focused 3D PET-CT chest image analysis. A validation study over a series of PET-CT studies reveals that the segmentation method gives a Dice index accuracy of less than 98%. In addition, further results demonstrate the utility of the method for focused 3D PET-CT chest image analysis, ROI definition, and visualization.

  8. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  9. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications. PMID:17706656

  10. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate

    PubMed Central

    2015-01-01

    This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip. Optimization of the channel size significantly improves the response time of the sensor. As a proof-of-concept study, our microfluidic device was coupled to lab-built wireless potentiostats and used to monitor real-time subcutaneous glucose and lactate levels in cyclists undergoing a training regime. PMID:26070023

  11. Application of 3D X-ray CT data sets to finite element analysis

    SciTech Connect

    Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.

    1995-08-31

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.

  12. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate.

    PubMed

    Gowers, Sally A N; Curto, Vincenzo F; Seneci, Carlo A; Wang, Chu; Anastasova, Salzitsa; Vadgama, Pankaj; Yang, Guang-Zhong; Boutelle, Martyn G

    2015-08-01

    This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip. Optimization of the channel size significantly improves the response time of the sensor. As a proof-of-concept study, our microfluidic device was coupled to lab-built wireless potentiostats and used to monitor real-time subcutaneous glucose and lactate levels in cyclists undergoing a training regime. PMID:26070023

  13. 3D city models for CAAD-supported analysis and design of urban areas

    NASA Astrophysics Data System (ADS)

    Sinning-Meister, M.; Gruen, A.; Dan, H.

    A joint research project was conducted at ETH Zurich to develop a user-friendly software environment for the representation, visual manipulation, analysis and design of urban areas. Three groups were involved in the project: (1) the 'Architecture and Planning' group defined the requirements and expectations for the system; (2) the 'Photogrammetry' group acquired and processed raster and 3D vector data to form a 3D model of the urban area; and (3) the 'CAAD' (Computer Aided Architectural Design) group embedded the data into AutoCAD and implemented database functionality. Results of the photogrammetry group are presented, including the implementation of a 'topology builder' which automatically fits roof planes to manually or semi-automatically measured roof points in order to create AutoCAD-compatible 3D building models. Digital orthoimages and derived products such as perspective views, and the geometric correction of house roofs in digital orthoimages also were generated for test sites in Switzerland.

  14. A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages

    NASA Astrophysics Data System (ADS)

    Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak

    2016-01-01

    Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.

  15. Structural analysis of San Leo (RN, Italy) east and north cliffs using 3D point clouds

    NASA Astrophysics Data System (ADS)

    Spreafico, Margherita Cecilia; Bacenetti, Marco; Borgatti, Lisa; Cignetti, Martina; Giardino, Marco; Perotti, Luigi

    2013-04-01

    The town of San Leo, like many others in the historical region of Montefeltro (Northern Apennines, Italy), was built in medieval period on a calcarenite and sandstone slab, bordered by subvertical and overhanging cliffs up to 100 m high, for defense purposes. The slab and the underlying clayey substratum show widespread landslide phenomena: the first is tectonized and crossed by joints and faults, and it is affected by lateral spreading with associated rock falls, topples and tilting. Moreover, the underlying clayey substratum is involved in plastic movements, like earth flows and slides. The main cause of instability in the area, which brings about these movements, is the high deformability contrast between the plate and the underlying clays. The aim of our research is to set up a numerical model that can well describe the processes and take into account the different factors that influence the evolution of the movements. One of these factors is certainly the structural setting of the slab, characterized by several joints and faults; in order to better identify and detect the main joint sets affecting the study area a structural analysis was performed. Up to date, a series of scans of San Leo cliff taken in 2008 and 2011, with a Riegl Z420i were analyzed. Initially, we chose a test area, located in the east side of the cliff, in which analyses were performed using two different softwares: COLTOP 3D and Polyworks. We repeated the analysis using COLTOP for all the east wall and for a part of the north wall, including an area affected by a rock fall in 2006. In the test area we identified five sets with different dips and dip directions. The analysis of the east and north walls permitted to identify eight sets (seven plus the bedding) of discontinuities. We compared these results with previous ones from surveys taken by others authors in some areas and with some preliminary data from a traditional geological survey of the whole area. With traditional methods only a

  16. Towards true 3D textural analysis; using your crystal mush wisely.

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.; Pankhurst, M. J.

    2014-12-01

    The crystal cargo that is found in volcanic and plutonic rocks contains a wealth of information about magmatic mush processes, crystallisation history, crystal entrainment and recycling. Phenocryst populations predominantly record episodes of growth/nucleation and bulk geochemical changes within an evolving crystal-melt body. Ante- and xeno-crysts provide useful clues to the nature of mush interaction with wall rock and with principal magma(s). Furthermore, crystal evolutions (core to rim) record pathways through pressure, temperature and compositional space. These can often illustrate complex recycling within systems, describing the plumbing architecture. Understanding this architecture underpins our knowledge of how igneous systems can interact with the crust, grow, freeze, re-mobilise and prime for eruption. Initially, 2D studies produced corrected 3D crystal size distributions to help provide information about nucleation and residence times. It immediately became clear that crystal shape is an important factor in determining the confidence placed upon 3D reconstructions of 2D data. Additionally studies utilised serial sections of medium- to coarse-grain-size populations which allowed 3D reconstruction using modelling software to be improved, since size and shape etc. can be directly constrained. Finally the advent of textural studies using X-ray tomography has revolutionised the way in which we can inspect the crystal cargo in mushy systems, allowing us to image in great detail crystal packing arrangements, 3D CSDs, shapes and orientations etc. The latest most innovative studies use X-ray micro-computed tomography to rapidly characterise chemical populations within the crystal cargo, adding a further dimension to this approach, and implies the ability to untangle magmatic chemical components to better understand their individual and combined evolution. In this contribution key examples of the different types of textural analysis techniques in 2D and 3D

  17. Stylolite shape, roughness growth dynamics and related burial history: a 3D analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel

    2016-04-01

    Stylolites are dissolution features that develop under applied pressure and during chemical compaction. Stylolites are common in sedimentary basin, altering the chemistry and physical properties of rocks, as well as the small- to large-scale hydrological system. This contribution follows recent finding about the self-affine roughness growth properties leading to a fractal, stitch-like shape of stylolites. 3D surface scanning and X-ray computed microtomography imaging have been carried out onto numerous stylolites from the southern Permian Zechstein basin (Germany) and from the Umbria Marches fold-and-thrust belts (Italy). In these two environments stylolites have been sorted following a recent advanced classification of stylolite based on the shape and growth dynamics. This classification consists in four classes (rectangular layer type, seismogram pinning type suture/sharp peak type and simple wave-like type) and we aim to characterize the roughness properties for each of these classes. A fractal analysis has been conducted accordingly using Fourier transform and Correlation function signal analysis over roughness surfaces. These fractal analyses have been used to reconstruct the maximum burial depth recorded by each stylolite. The reconstruction of burial depths at the same place but regarding all stylolite classes returns and maximum depth evolution. This dataset is thus used 1- to understand the links between the roughness growth dynamics of stylolites and their final shape and 2- to establish a relationship linking the shape of roughness to the maximum burial depth recorded. We hope results and interpretation reported can push the community to consider stylolite as an efficient tool and reliable way to appraise burial history in sedimentary basins.

  18. Efficient curve-skeleton computation for the analysis of biomedical 3d images - biomed 2010.

    PubMed

    Brun, Francesco; Dreossi, Diego

    2010-01-01

    Advances in three dimensional (3D) biomedical imaging techniques, such as magnetic resonance (MR) and computed tomography (CT), make it easy to reconstruct high quality 3D models of portions of human body and other biological specimens. A major challenge lies in the quantitative analysis of the resulting models thus allowing a more comprehensive characterization of the object under investigation. An interesting approach is based on curve-skeleton (or medial axis) extraction, which gives basic information concerning the topology and the geometry. Curve-skeletons have been applied in the analysis of vascular networks and the diagnosis of tracheal stenoses as well as a 3D flight path in virtual endoscopy. However curve-skeleton computation is a crucial task. An effective skeletonization algorithm was introduced by N. Cornea in [1] but it lacks in computational performances. Thanks to the advances in imaging techniques the resolution of 3D images is increasing more and more, therefore there is the need for efficient algorithms in order to analyze significant Volumes of Interest (VOIs). In the present paper an improved skeletonization algorithm based on the idea proposed in [1] is presented. A computational comparison between the original and the proposed method is also reported. The obtained results show that the proposed method allows a significant computational improvement making more appealing the adoption of the skeleton representation in biomedical image analysis applications. PMID:20467122

  19. Numerical Simulation of 3D Thermo-Elastic Fatigue Crack Growth Problems Using Coupled FE-EFG Approach

    NASA Astrophysics Data System (ADS)

    Pathak, Himanshu; Singh, Akhilendra; Singh, Indra Vir

    2016-06-01

    In this work, finite element method (FEM) and element free Galerkin method (EFGM) are coupled for solving 3D crack domains subjected to cyclic thermal load of constant amplitude. Crack growth contours and fatigue life have been obtained for each of the considered numerical examples. Thermo-elastic problems are decoupled into thermal and elastic problems . Firstly, the unknown temperature field is obtained by solving heat conduction equation, then, it is used as the input load in the elastic problem to calculate the displacement and stress fields. The geometrical discontinuity across crack surface is modelled by extrinsically enriched EFGM and the remaining part of the domain is approximated by standard finite element method. At the crack interface, a ramp function based interpolation scheme has been implemented. This coupled approach combines the advantages of both EFGM and FEM. A linear successive crack increment approach is used to model crack growth. The growing crack surface is traced by level set function. Standard Paris law is used for life estimation of the three-dimensional crack models. Different cases of planar and non-planar crack problems have been solved and their results are compared with the results obtained using extended finite element method to check accuracy, efficiency and robustness of the coupled FE-EFG approach implemented in this study.

  20. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    NASA Technical Reports Server (NTRS)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  1. Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Thomas, J. L.

    2008-01-01

    Two Reynolds-averaged Navier-Stokes computer codes - one unstructured and one structured - are applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is employed. The first case uses the method of manufactured solution and is intended as a verification case. In other words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a validation case (comparison against experiment), for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured solution and with each other. In terms of order property, both codes behave as expected for the manufactured solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations for particular variables, but there are also many areas where the CFD and experimental uncertainties do not overlap.

  2. High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis

    PubMed Central

    2014-01-01

    Background Detection of microcalcifications on mammograms indicates the presence of breast lesion, and the shapes of the microcalcifications as seen by conventional mammography correlates with the probability of malignancy. This preliminary study evaluated the 3D shape of breast microcalcifications using micro-computed tomography (micro-CT) and compared the findings with those obtained using anatomopathological analysis. Methods The study analyzed breast biopsy samples from 11 women with findings of suspicious microcalcifications on routine mammograms. The samples were imaged using a micro-CT (SkyScan 1076) at a resolution of 35 μm. Images were reconstructed using filtered back-projection and analyzed in 3D using surface rendering. The samples were subsequently analyzed by the pathology service. Reconstructed 3D images were compared with the corresponding histological slices. Results Anatomopathological analysis showed that 5 of 11 patients had ductal breast carcinoma in situ. One patient was diagnosed with invasive ductal carcinoma. Individual object analysis was performed on 597 microcalcifications. Malignant microcalcifications tended to be thinner and to have a smaller volume and surface area, while their surface area-to-volume ratio was greater than that of benign microcalcifications. The structure model index values were the same for malignant and benign microcalcifications. Conclusions This is the first study to use micro-CT for quantitative 3D analysis of microcalcifications. This high-resolution imaging technique will be valuable for gaining a greater understanding of the morphologic characteristics of malignant and benign microcalcifications. The presence of many small microcalcifications can be an indication of malignancy. For the larger microcalcifications, 3D parameters confirmed the more irregular shape of malignant microcalcifications. PMID:24393444

  3. PROP3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Propellers. Version 1.0

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1996-01-01

    This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

  4. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric

  5. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  6. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    SciTech Connect

    Ammara, I.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  7. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  8. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast - A numerical study.

    PubMed

    Das, Koushik; Mishra, Subhash C

    2015-08-01

    This article reports a numerical study pertaining to simultaneous estimation of size, radial location and angular location of a malignant tumor in a 3-D human breast. The breast skin surface temperature profile is specific to a tumor of specific size and location. The temperature profiles are always the Gaussian one, though their peak magnitudes and areas differ according to the size and location of the tumor. The temperature profiles are obtained by solving the Pennes bioheat equation using the finite element method based solver COMSOL 4.3a. With temperature profiles known, simultaneous estimation of size, radial location and angular location of the tumor is done using the curve fitting method. Effect of measurement errors is also included in the study. Estimations are accurate, and since in the inverse analysis, the curve fitting method does not require solution of the governing bioheat equation, the estimation is very fast. PMID:26267509

  9. Analysis results from the Los Alamos 2D/3D program

    SciTech Connect

    Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.

    1987-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos.

  10. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  11. Integrated 3D-printed reactionware for chemical synthesis and analysis.

    PubMed

    Symes, Mark D; Kitson, Philip J; Yan, Jun; Richmond, Craig J; Cooper, Geoffrey J T; Bowman, Richard W; Vilbrandt, Turlif; Cronin, Leroy

    2012-05-01

    Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. An attractive, but unexplored, application is to use a 3D printer to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Here, using a low-cost 3D printer and open-source design software we produced reactionware for organic and inorganic synthesis, which included printed-in catalysts and other architectures with printed-in components for electrochemical and spectroscopic analysis. This enabled reactions to be monitored in situ so that different reactionware architectures could be screened for their efficacy for a given process, with a digital feedback mechanism for device optimization. Furthermore, solely by modifying reactionware architecture, reaction outcomes can be altered. Taken together, this approach constitutes a relatively cheap, automated and reconfigurable chemical discovery platform that makes techniques from chemical engineering accessible to typical synthetic laboratories. PMID:22522253

  12. A finite element analysis of a 3D auxetic textile structure for composite reinforcement

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoyang; Hu, Hong; Liu, Yanping

    2013-08-01

    This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.

  13. 3D Numerical Optimization Modelling of Ivancich landslides (Assisi, Italy) via integration of remote sensing and in situ observations.

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro

    2015-04-01

    The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered

  14. 3D numerical modeling of subduction dynamics: plate stagnation and segmentation, and crustal advection in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tajima, F.

    2012-04-01

    Water content in the mantle transition zone (MTZ) has been broadly debated in the Earth science community as a key issue for plate dynamics [e.g., Bercovici and Karato, 2003]. In this study, a systematic series of three-dimensional (3D) numerical simulation are performed in an attempt to verify two hypotheses for plate subduction with effects of deep water transport: (1) the small-scale behavior of subducted oceanic plate in the MTZ; and (2) the role of subducted crust in the MTZ. These hypotheses are postulated based on the seismic observations characterized by large-scale flattened high velocity anomalies (i.e., stagnant slabs) in the MTZ and discontinuity depth variations. The proposed model states that under wet conditions the subducted plate main body of peridotite (olivine rich) is abutted by subducted crustal materials (majorite rich) at the base of the MTZ. The computational domain of mantle convection is confined to 3D regional spherical-shell geometry with a thickness of 1000 km and a lateral extent of 10° × 30° in the latitudinal and longitudinal directions. A semi-dynamic model of subduction zone [Morishige et al., 2010] is applied to let the highly viscous, cold oceanic plate subduct. Weak (low-viscosity) fault zones (WFZs), which presumably correspond to the fault boundaries of large subduction earthquakes, are imposed on the top part of subducting plates. The phase transitions of olivine to wadsleyite and ringwoodite to perovskite+magnesiowüstite with Clapeyron slopes under both "dry" and "wet" conditions are considered based on recent high pressure experiments [e.g., Ohtani and Litasov, 2006]. Another recent experiment provides new evidence for lower-viscosity (weaker strength) of garnet-rich zones than the olivine dominant mantle under wet conditions [Katayama and Karato, 2008]. According to this, the effect of viscosity reduction of oceanic crust is considered under wet condition in the MTZ. Results show that there is a substantial difference

  15. Numerical thermal analysis

    SciTech Connect

    Ketkar, S.P.

    1999-07-01

    This new volume is written for both practicing engineers who want to refresh their knowledge in the fundamentals of numerical thermal analysis as well as for students of numerical heat transfer. it is a handy desktop reference that covers all the basics of finite difference, finite element, and control volume methods. In this volume, the author presents a unique hybrid method that combines the best features of finite element modeling and the computational efficiency of finite difference network solution techniques. It is a robust technique that is used in commercially available software. The contents include: heat conduction: fundamentals and governing equations; finite difference method; control volume method; finite element method; the hybrid method; and software selection.

  16. Axial magnetic anomalies over slow-spreading ridge segments: insights from numerical 3-D thermal and physical modelling

    NASA Astrophysics Data System (ADS)

    Gac, Sébastien; Dyment, Jérôme; Tisseau, Chantal; Goslin, Jean

    2003-09-01

    The axial magnetic anomaly amplitude along Mid-Atlantic Ridge segments is systematically twice as high at segment ends compared with segment centres. Various processes have been proposed to account for such observations, either directly or indirectly related to the thermal structure of the segments: (1) shallower Curie isotherm at segment centres, (2) higher Fe-Ti content at segment ends, (3) serpentinized peridotites at segment ends or (4) a combination of these processes. In this paper the contribution of each of these processes to the axial magnetic anomaly amplitude is quantitatively evaluated by achieving a 3-D numerical modelling of the magnetization distribution and a magnetic anomaly over a medium-sized, 50 km long segment. The magnetization distribution depends on the thermal structure and thermal evolution of the lithosphere. The thermal structure is calculated considering the presence of a permanent hot zone beneath the segment centre. The `best-fitting' thermal structure is determined by adjusting the parameters (shape, size, depth, etc.) of this hot zone, to fit the modelled geophysical outputs (Mantle Bouguer anomaly, maximum earthquake depths and crustal thickness) to the observations. Both the thermoremanent magnetization, acquired during the thermal evolution, and the induced magnetization, which depends on the present thermal structure, are modelled. The resulting magnetic anomalies are then computed and compared with the observed ones. This modelling exercise suggests that, in the case of aligned and slightly offset segments, a combination of higher Fe-Ti content and the presence of serpentinized peridotites at segment ends will produce the observed higher axial magnetic anomaly amplitudes over the segment ends. In the case of greater offsets, the presence of serpentinized peridotites at segment ends is sufficient to account for the observations.

  17. 3D cephalometric analysis obtained from computed tomography. Review of the literature

    PubMed Central

    Rossini, Giulia; Cavallini, Costanza; Cassetta, Michele; Barbato, Ersilia

    2012-01-01

    Summary Introduction The aim of this systematic review is to estimate accuracy and reproducibility of craniometric measurements and reliability of landmarks identified with computed tomography (CT) techniques in 3D cephalometric analysis. Methods Computerized and manual searches were conducted up to 2011 for studies that addressed these objectives. The selection criteria were: (1) the use of human specimen; (2) the comparison between 2D and 3D cephalometric analysis; (3) the assessment of accuracy, reproducibility of measurements and reliability of landmark identification with CT images compared with two-dimensional conventional radiographs. The Cochrane Handbook for Systematic Reviews of Interventions was used as the guideline for this article. Results Twenty-seven articles met the inclusion criteria. Most of them demonstrated high measurements accuracy and reproducibility, and landmarks reliability, but their cephalometric analysis methodology varied widely. Conclusion These differencies among the studies in making measurements don’t permit a direct comparison between them. The future developments in the knowledge of these techniques should provide a standardized method to conduct the 3D CT cephalometric analysis. PMID:22545187

  18. Statistical 3D shape analysis of gender differences in lateral ventricles

    NASA Astrophysics Data System (ADS)

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  19. 3D multidisciplinary numerical model of polychlorinated biphenyl dynamics on the Black Sea north-western shelf

    NASA Astrophysics Data System (ADS)

    Bagaiev, Andrii; Ivanov, Vitaliy

    2014-05-01

    The Black Sea north-western shelf plays a key role in economics of the developing countries such as Ukraine due to food supply, invaluable recreational potential and variety of the relevant maritime shipping routes. On the other hand, a shallow flat shelf is mostly affected by anthropogenic pollution, eutrophication, hypoxia and harmful algae blooms. The research is focused on modeling the transport and transformation of PCBs (PolyChlorinated Biphenyls) because they are exceedingly toxic and highly resistant to degradation, hence cumulatively affect marine ecosystems. Being lipophilic compounds, PCBs demonstrate the distinguishing sorption/desorption activity taking part in the biogeochemical fluxes via the organic matter particles and sediments. In the framework of the research, the coastal in-situ data on PCB concentration in the water column and sediments are processed, visualized and analyzed. It is concluded that the main sources of PCBs are related to the Danube discharge and resuspension from the shallow-water sediments. Developed 3D numerical model is aimed at simulation of PCB contamination of the water column and sediment. The model integrates the full physics hydrodynamic block as well as modules, which describe detritus transport and transformation and PCB dynamics. Three state variables are simulated in PCB transport module: concentration in solute, on the settling particles of detritus and in the top layer of sediments. PCB adsorption/desorption on detritus; the reversible PCB fluxes at the water-sediment boundary; destruction of detritus are taken into consideration. Formalization of PCB deposition/resuspension in the sediments is adapted from Van Rijn's model of the suspended sediment transport. The model was spun up to reconstruct the short term scenario of the instantaneous PCB release from the St. George Arm of Danube. It has been shown that PCB transport on sinking detritus represents the natural buffer mechanism damping the spreading PCB

  20. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  1. Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis.

    PubMed

    Meleo, Deborah; Baggi, Luigi; Di Girolamo, Michele; Di Carlo, Fabio; Pecci, Raffaella; Bedini, Rossella

    2012-01-01

    X-ray micro-tomography (micro-CT) is a miniaturized form of conventional computed axial tomography (CAT) able to investigate small radio-opaque objects at a-few-microns high resolution, in a non-destructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure). Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues. PMID:22456016

  2. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    SciTech Connect

    Data Analysis and Visualization and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  3. Microstructure analysis of the secondary pulmonary lobules by 3D synchrotron radiation CT

    NASA Astrophysics Data System (ADS)

    Fukuoka, Y.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.

    2014-03-01

    Recognition of abnormalities related to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semiautomatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule and to track small vessels running inside alveolar walls in human acinus imaged by the SRμCT. The method beains with and segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using a threshold technique and 3-D connected component analysis. 3-D air space are then conustructed separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. A graph-partitioning approach isolated acini whose stems are interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Finally, we performed vessel tracking using a non-linear sate space which captures both smoothness of the trajectories and intensity coherence along vessel orientations. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.

  4. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  5. Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J.-W.

    2001-01-01

    The formulation and implementation of an optimization method called Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) are extended from single discipline analysis (aerodynamics only) to multidisciplinary analysis - in this case, static aero-structural analysis - and applied to a simple 3-D wing problem. The method aims to reduce the computational expense incurred in performing shape optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, Finite Element Method (FEM) structural analysis and sensitivity analysis tools. Results for this small problem show that the method reaches the same local optimum as conventional optimization. However, unlike its application to the win,, (single discipline analysis), the method. as I implemented here, may not show significant reduction in the computational cost. Similar reductions were seen in the two-design-variable (DV) problem results but not in the 8-DV results given here.

  6. Impact of grain size evolution on the localization of deformation: 3D numerical simulations of mantle convection

    NASA Astrophysics Data System (ADS)

    Rozel, Antoine; Golabek, Gregor; Tackley, Paul

    2014-05-01

    Thermodynamically consistent models of single phase grain size evolution have been proposed in the past years [Austin and Evans (2007), Ricard and Bercovici (2009), Rozel et al. (2011), Rozel (2012)]. In a recently updated version [Bercovici and Ricard (2012), PEPI], the mechanics of two-phase grain aggregates has been formulated following the same physical approach. Several non-linear mechanisms such as dynamic recrystallization or Zener pinning are now available in a single non-equilibrium formulation of grain size distributions evolution. The self-consistent generation of localized plate boundaries is predicted in [Bercovici and Ricard (2012), EPSL] using this model, but it has not been tested in a dynamically consistent way. We propose the first set of three-dimensional numerical simulations of mantle convection incorporating this formalism using the finite volume code StagYY [Tackley (2008)]. First, we detail how the model is numerically implemented. Pressure and velocity fields are solved on a staggered grid using a SIMPLER-like method. Multigrid W-cycles and extra coarse-grid relaxations are employed to enhance the convergence of Stokes and continuity equations. The grain size is stored on a large number of tracers advected through the computational domain, which prevent numerical diffusion and allows a high resolution in the shear zones developing in the lithosphere. We also describe the physical formalism itself and propose the set of free parameters of the model. Normal growth, dynamic recrystallization and phase transitions all have a strong effect on the average grain size. We use a visco-plastic rheology in which the viscous strain rate is obtained by summation of dislocation, diffusion and grain boundary sliding creep. Second, we describe the 3D grain size distribution in the mantle and in the lithosphere. We characterize in which conditions plate margins can form, mainly investigating grain growth, recrystallization and rheology related parameters

  7. The 3D Numerical Simulation for the Propagation Process of Multiple Pre-existing Flaws in Rock-Like Materials Subjected to Biaxial Compressive Loads

    NASA Astrophysics Data System (ADS)

    Bi, J.; Zhou, X. P.; Qian, Q. H.

    2016-05-01

    General particle dynamics (GPD), which is a novel meshless numerical method, is proposed to simulate the initiation, propagation and coalescence of 3D pre-existing penetrating and embedded flaws under biaxial compression. The failure process for rock-like materials subjected to biaxial compressive loads is investigated using the numerical code GPD3D. Moreover, internal crack evolution processes are successfully simulated using GPD3D. With increasing lateral stress, the secondary cracks keep growing in the samples, while the growth of the wing cracks is restrained. The samples are mainly split into fragments in a shear failure mode under biaxial compression, which is different from the splitting failure of the samples subjected to uniaxial compression. For specimens with macroscopic pre-existing flaws, the simulated types of cracks, the simulated coalescence types and the simulated failure modes are in good agreement with the experimental results.

  8. A Generalized Approach to the Modeling and Analysis of 3D Surface Morphology in Organisms

    PubMed Central

    Pappas, Janice L.; Miller, Daniel J.

    2013-01-01

    The surface geometry of an organism represents the boundary of its three-dimensional (3D) form and can be used as a proxy for the phenotype. A mathematical approach is presented that describes surface morphology using parametric 3D equations with variables expressed as x, y, z in terms of parameters u, v. Partial differentiation of variables with respect to parameters yields elements of the Jacobian representing tangent lines and planes of every point on the surface. Jacobian elements provide a compact size-free summary of the entire surface, and can be used as variables in principal components analysis to produce a morphospace. Mollusk and echinoid models are generated to demonstrate that whole organisms can be represented in a common morphospace, regardless of differences in size, geometry, and taxonomic affinity. Models can be used to simulate theoretical forms, novel morphologies, and patterns of phenotypic variation, and can also be empirically-based by designing them with reference to actual forms using reverse engineering principles. Although this study uses the Jacobian to summarize models, they can also be analyzed with 3D methods such as eigensurface, spherical harmonics, wavelet analysis, and geometric morphometrics. This general approach should prove useful for exploring broad questions regarding morphological evolution and variation. PMID:24204866

  9. Shadow Effect on Photovoltaic Potentiality Analysis Using 3d City Models

    NASA Astrophysics Data System (ADS)

    Alam, N.; Coors, V.; Zlatanova, S.; Oosterom, P. J. M.

    2012-07-01

    Due to global warming, green-house effect and various other drawbacks of existing energy sources, renewable energy like Photovoltaic system is being popular for energy production. The result of photovoltaic potentiality analysis depends on data quality and parameters. Shadow rapidly decreases performance of the Photovoltaic system and it always changes due to the movement of the sun. Solar radiation incident on earth's atmosphere is relatively constant but the radiation at earth's surface varies due to absorption, scattering, reflection, change in spectral content, diffuse component, water vapor, clouds and pollution etc. In this research, it is being investigated that how efficiently real-time shadow can be detected for both direct and diffuse radiation considering reflection and other factors in contrast with the existing shadow detection methods using latest technologies and what is the minimum quality of data required for this purpose. Of course, geometric details of the building geometry and surroundings directly affect the calculation of shadows. In principle, 3D city models or point clouds, which contain roof structure, vegetation, thematically differentiated surface and texture, are suitable to simulate exact real-time shadow. This research would develop an automated procedure to measure exact shadow effect from the 3D city models and a long-term simulation model to determine the produced energy from the photovoltaic system. In this paper, a developed method for detecting shadow for direct radiation has been discussed with its result using a 3D city model to perform a solar energy potentiality analysis.

  10. Quantitative analysis and feature recognition in 3-D microstructural data sets

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  11. Spatio-temporal registration in multiplane MRI acquisitions for 3D colon motiliy analysis

    NASA Astrophysics Data System (ADS)

    Kutter, Oliver; Kirchhoff, Sonja; Berkovich, Marina; Reiser, Maximilian; Navab, Nassir

    2008-03-01

    In this paper we present a novel method for analyzing and visualizing dynamic peristaltic motion of the colon in 3D from two series of differently oriented 2D MRI images. To this end, we have defined an MRI examination protocol, and introduced methods for spatio-temporal alignment of the two MRI image series into a common reference. This represents the main contribution of this paper, which enables the 3D analysis of peristaltic motion. The objective is to provide a detailed insight into this complex motion, aiding in the diagnosis and characterization of colon motion disorders. We have applied the proposed spatio-temporal method on Cine MRI data sets of healthy volunteers. The results have been inspected and validated by an expert radiologist. Segmentation and cylindrical approximation of the colon results in a 4D visualization of the peristaltic motion.

  12. Uncertainty analysis for 3D geological modeling using the Kriging variance

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Choi, Younjung; Park, Sebeom; Um, Jeong-Gi

    2014-05-01

    The credible estimation of geological properties is critical in many geosciences fields including the geotechnical engineering, environmental engineering, mining engineering and petroleum engineering. Many interpolation techniques have been developed to estimate the geological properties from limited sampling data such as borehole logs. The Kriging is an interpolation technique that gives the best linear unbiased prediction of the intermediate values. It also provides the Kriging variance which quantifies the uncertainty of the kriging estimates. This study provides a new method to analyze the uncertainty in 3D geological modeling using the Kriging variance. The cut-off values determined by the Kriging variance were used to effectively visualize the 3D geological models with different confidence levels. This presentation describes the method for uncertainty analysis and a case study which evaluates the amount of recoverable resources by considering the uncertainty.

  13. A quantitative analysis of 3-D coronary modeling from two or more projection images.

    PubMed

    Movassaghi, B; Rasche, V; Grass, M; Viergever, M A; Niessen, W J

    2004-12-01

    A method is introduced to examine the geometrical accuracy of the three-dimensional (3-D) representation of coronary arteries from multiple (two and more) calibrated two-dimensional (2-D) angiographic projections. When involving more then two projections, (multiprojection modeling) a novel procedure is presented that consists of fully automated centerline and width determination in all available projections based on the information provided by the semi-automated centerline detection in two initial calibrated projections. The accuracy of the 3-D coronary modeling approach is determined by a quantitative examination of the 3-D centerline point position and the 3-D cross sectional area of the reconstructed objects. The measurements are based on the analysis of calibrated phantom and calibrated coronary 2-D projection data. From this analysis a confidence region (alpha degrees approximately equal to [35 degrees - 145 degrees]) for the angular distance of two initial projection images is determined for which the modeling procedure is sufficiently accurate for the applied system. Within this angular border range the centerline position error is less then 0.8 mm, in terms of the Euclidean distance to a predefined ground truth. When involving more projections using our new procedure, experiments show that when the initial pair of projection images has an angular distance in the range alpha degrees approximately equal to [35 degrees - 145 degrees], the centerlines in all other projections (gamma = 0 degrees - 180 degrees) were indicated very precisely without any additional centering procedure. When involving additional projection images in the modeling procedure a more realistic shape of the structure can be provided. In case of the concave segment, however, the involvement of multiple projections does not necessarily provide a more realistic shape of the reconstructed structure. PMID:15575409

  14. 3D kinematic and dynamic analysis of the front crawl tumble turn in elite male swimmers.

    PubMed

    Puel, F; Morlier, J; Avalos, M; Mesnard, M; Cid, M; Hellard, P

    2012-02-01

    The aim of this study was to identify kinematic and dynamic variables related to the best tumble turn times (3mRTT, the turn time from 3-m in to 3-m out, independent variable) in ten elite male swimmers using a three-dimensional (3D) underwater analysis protocol and the Lasso (least absolute shrinkage and selection operator) as statistical method. For each swimmer, the best-time turn was analyzed with five stationary and synchronized underwater cameras. The 3D reconstruction was performed using the Direct Linear Transformation algorithm. An underwater piezoelectric 3D force platform completed the set-up to compute dynamic variables. Data were smoothed by the Savitzky-Golay filtering method. Three variables were considered relevant in the best Lasso model (3mRTT=2.58-0.425 RD+0.204 VPe+0.0046 TD): the head-wall distance where rotation starts (RD), the horizontal speed at the force peak (VPe), and the 3D length of the path covered during the turn (TD). Furthermore, bivariate analysis showed that upper body (CUBei) and lower limb extension indexes at first contact (CLLei) were also linked to the turn time (r=-0.65 and p<0.05 for both variables). Thus the best turn times were associated with a long RD, slower VPe and reduced TD. By an early transverse rotation, male elite swimmers reach the wall with a slightly flexed posture that results in fast extension. These swimmers opt for a movement that is oriented forward and they focus on reducing the distance covered. PMID:22176710

  15. Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique

    NASA Astrophysics Data System (ADS)

    Li, L. C.; Tang, C. A.; Li, G.; Wang, S. Y.; Liang, Z. Z.; Zhang, Y. B.

    2012-09-01

    The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model considers strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress-axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellbore propagate in the maximum principal stress direction without branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock

  16. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.

    PubMed

    Tay, W B; van Oudheusden, B W; Bijl, H

    2014-09-01

    The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the

  17. Error analysis of 3D laser scanning system for gangue monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Xia, Yuyang; Zhang, Aiwu

    2012-01-01

    The paper put forward the system error evaluation method of 3D scanning system for gangue monitoring; analyzed system errors including integrated error which can be avoided, and measurement error which needed whole analysis; firstly established the system equation after understanding the relationship of each structure. Then, used error independent effect and spread law to set up the entire error analysis system, and simulated the trend of error changing along X, Y, Z directions. At last, it is analytic that the laser rangefinder carries some weight in system error, and the horizontal and vertical scanning angles have some influences on system error in the certain vertical and horizontal scanning parameters.

  18. Dynamic Analysis of 2D Electromagnetic Resonant Optical Scanner Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuhiro; Hong, Sara; Maeda, Kengo

    The optical scanner is a scanning device in which a laser beam is reflected by a mirror that can be rotated or oscillated. In this paper, we propose a new 2D electromagnetic resonant optical scanner that employs electromagnets and leaf springs. Torque characteristics and resonance characteristics of the scanner are analyzed using the 3D finite element method. The validity of the analysis is shown by comparing the characteristics inferred from the analysis with the characteristics of the prototype. Further, 2D resonance is investigated by introducing a superimposed-frequency current in a single coil.

  19. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  20. Quantitative analysis of accuracy of seismic wave-propagation codes in 3D random scattering media

    NASA Astrophysics Data System (ADS)

    Galis, Martin; Imperatori, Walter; Mai, P. Martin

    2013-04-01

    Several recent verification studies (e.g. Day et al., 2001; Bielak et al., 2010, Chaljub et al., 2010) have demonstrated the importance of assessing the accuracy of available numerical tools at low frequency in presence of large-scale features (basins, topography, etc.). The fast progress in high-performance computing, including efficient optimization of numerical codes on petascale supercomputers, has permitted the simulation of 3D seismic wave propagation at frequencies of engineering interest (up to 10Hz) in highly heterogeneous media (e.g. Hartzell et al, 2010; Imperatori and Mai, 2013). However, high frequency numerical simulations involving random scattering media, characterized by small-scale heterogeneities, are much more challenging for most numerical methods, and their verification may therefore be even more crucial than in the low-frequency case. Our goal is to quantitatively compare the accuracy and the behavior of three different numerical codes for seismic wave propagation in 3D random scattering media at high frequency. We deploy a point source with omega-squared spectrum, and focus on the near-source region, being of great interest in strong motion seismology. We use two codes based on finite-difference method (FD1 and FD2) and one code based on support-operator method (SO). Both FD1 and FD2 are 4-th order staggered-grid finite-difference codes (for FD1 see Olsen et al., 2009; for FD2 see Moczo et al., 2007). The FD1 and FD2 codes are characterized by slightly different medium representations, since FD1 uses point values of material parameters in each FD-cell, while FD2 uses the effective material parameters at each grid-point (Moczo et al., 2002). SO is 2-nd order support-operator method (Ely et al., 2008). We considered models with random velocity perturbations described by van Karman correlation function with different correlation lengths and different standard deviations. Our results show significant variability in both phase and amplitude as

  1. Human factors flight trial analysis for 2D/3D SVS

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick

    2004-08-01

    The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional

  2. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  3. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  4. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis

    PubMed Central

    Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  5. Numerical study of atmospheric particulate matters: source apportionment to characterize 3D transport and transformation of precursors and secondary pollutants

    NASA Astrophysics Data System (ADS)

    Wu, Dongwei

    In recent years, Mainland China, and in particular the industrial hotbed of the Pearl River Delta (PRD) has experienced an increasingly serious problem of high concentrations of airborne particulate matter. Following the tightening-up of China's air quality policies in recent years, and with especially fine particles now added to a new air quality objective, the identification of major source regions and major types of pollutants has become critically important. In this study, a source-oriented method (Particulate Source Apportionment Technology: PSAT) implemented in 3-D Comprehensive Air Quality Model (CAMx), has been applied to analyze how different emission activities impact fine particle concentration in the PRD region. By using this method, a detailed source region and emission category contribution matrix is derived for all regions within the Hong Kong/PRD region. Source appointment results shows that, in summer and spring time, emissions inside PRD region are the major fine particle sources, contribution 70.7% (11.2 mug/m3) and 52.5% (13.1 mug/m3) to the total figure. Super-regional transports are found to be significant in autumn and winter, contribution 58.5% (20.2 mug/m3) and 64.6% (27.8 mug/m3) of the total fine particles in PRD and Hong Kong region. Another important cause of high PM levels has been the transport of fine particles between cities within the PRD region, with three different regions selected for detailed analysis. Results show that mobile vehicle and industry emission are the two major sources for fine particles. Meanwhile, over the same period in Hong Kong, marine proved to be another very significant source of particle pollutant in addition to the significant impact from motor vehicle. Results show that for the Hong Kong/PRD region local reduction of mobile sources and collaboration between different areas could have succeeded in alleviating the air pollution problem.

  6. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    PubMed Central

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy. PMID:26175796

  7. 3D distribution of interstellar medium in the Galaxy: Preparation for analysis of Gaia observations

    NASA Astrophysics Data System (ADS)

    Puspitarini, Lucky; Lallement, Rosine

    2015-09-01

    Accurate and detailed three-dimensional (3D) maps of Galactic interstellar medium (ISM) are still lacking. One way to obtain such 3D descriptions is to record a large set of individual absorption or reddening measurements toward target stars located at various known distances and directions. The inversion of these measurements using a tomographic method can produce spatial distribution of the ISM. Until recently absorption data were very limited and distances to the target stars are still uncertain, but the situation will greatly improve thanks to current and future massive stellar surveys from ground, and to Gaia mission. To prepare absorption data for inversion from a huge number of stellar spectra, automated tools are needed. We have developed various spectral analysis tools adapted to different type of spectra, early- or late- type star. We also have used diffuse interstellar bands (DIBs) to trace IS structures and kinematics. Although we do not know yet their carriers, they can be a promising tool to trace distant interstellar clouds or Galactic arms. We present some examples of the interstellar fitting and show the potentiality of DIBs in tracing the ISM. We will also briefly show and comment the latest 3D map of the local ISM which reveal nearby cloud complexes and cavities.

  8. 3D distribution of interstellar medium in the Galaxy: Preparation for analysis of Gaia observations

    SciTech Connect

    Puspitarini, Lucky; Lallement, Rosine

    2015-09-30

    Accurate and detailed three-dimensional (3D) maps of Galactic interstellar medium (ISM) are still lacking. One way to obtain such 3D descriptions is to record a large set of individual absorption or reddening measurements toward target stars located at various known distances and directions. The inversion of these measurements using a tomographic method can produce spatial distribution of the ISM. Until recently absorption data were very limited and distances to the target stars are still uncertain, but the situation will greatly improve thanks to current and future massive stellar surveys from ground, and to Gaia mission. To prepare absorption data for inversion from a huge number of stellar spectra, automated tools are needed. We have developed various spectral analysis tools adapted to different type of spectra, early- or late- type star. We also have used diffuse interstellar bands (DIBs) to trace IS structures and kinematics. Although we do not know yet their carriers, they can be a promising tool to trace distant interstellar clouds or Galactic arms. We present some examples of the interstellar fitting and show the potentiality of DIBs in tracing the ISM. We will also briefly show and comment the latest 3D map of the local ISM which reveal nearby cloud complexes and cavities.

  9. 3D imaging for ballistics analysis using chromatic white light sensor

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Hildebrandt, Mario; Dittmann, Jana; Clausing, Eric; Fischer, Robert; Vielhauer, Claus

    2012-03-01

    The novel application of sensing technology, based on chromatic white light (CWL), gives a new insight into ballistic analysis of cartridge cases. The CWL sensor uses a beam of white light to acquire highly detailed topography and luminance data simultaneously. The proposed 3D imaging system combines advantages of 3D and 2D image processing algorithms in order to automate the extraction of firearm specific toolmarks shaped on fired specimens. The most important characteristics of a fired cartridge case are the type of the breech face marking as well as size, shape and location of extractor, ejector and firing pin marks. The feature extraction algorithm normalizes the casing surface and consistently searches for the appropriate distortions on the rim and on the primer. The location of the firing pin mark in relation to the lateral scratches on the rim provides unique rotation invariant characteristics of the firearm mechanisms. Additional characteristics are the volume and shape of the firing pin mark. The experimental evaluation relies on the data set of 15 cartridge cases fired from three 9mm firearms of different manufacturers. The results show very high potential of 3D imaging systems for casing-based computer-aided firearm identification, which is prospectively going to support human expertise.

  10. Diagnostic clinical benefits of digital spot and digital 3D mammography following analysis of screening findings

    NASA Astrophysics Data System (ADS)

    Lehtimaki, Mari; Pamilo, Martti; Raulisto, Leena; Roiha, Marja; Kalke, Martti; Siltanen, Samuli; Ihamäki, Timo

    2003-05-01

    The purpose of this study is to find out the impact of 3-dimensional digital mammography and digital spot imaging following analysis of the abnormal findings of screening mammograms. Over a period of eight months, digital 3-D mammography imaging TACT Tuned Aperture Computed Tomography+, digital spot imaging (DSI), screen-film mammography imaging (SFM) and diagnostic film imaging (DFM) examinations were performed on 60 symptomatic cases. All patients were recalled because it was not possible to exclude the presence of breast cancer on screening films. Abnormal findings on the screening films were non-specific tumor-like parenchymal densities, parenchymal asymmetries or distortions with or without microcalcifications or just microcalcifications. Mammography work-up (film imaging) included spot compression and microfocus magnification views. The 3-D softcopy reading in all cases was done with Delta 32 TACT mammography workstation, while the film images were read using a mammography-specific light box. During the softcopy reading only windowing tools were allowed. The result of this study indicates that the clinical diagnostic image quality of digital 3-D and digital spot images are better than in film images, even in comparison with diagnostic work-up films. Potential advantages are to define if the mammography finding is caused by a real abnormal lesion or by superimposition of normal parenchymal structures, to detect changes in breast tissue which would otherwise be missed, to verify the correct target for biopsies and to reduce the number of biopsies performed.

  11. A complete system for 3D reconstruction of roots for phenotypic analysis.

    PubMed

    Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J

    2015-01-01

    Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis. PMID:25381112

  12. Using articulated scene models for dynamic 3d scene analysis in vista spaces

    NASA Astrophysics Data System (ADS)

    Beuter, Niklas; Swadzba, Agnes; Kummert, Franz; Wachsmuth, Sven

    2010-09-01

    In this paper we describe an efficient but detailed new approach to analyze complex dynamic scenes directly in 3D. The arising information is important for mobile robots to solve tasks in the area of household robotics. In our work a mobile robot builds an articulated scene model by observing the environment in the visual field or rather in the so-called vista space. The articulated scene model consists of essential knowledge about the static background, about autonomously moving entities like humans or robots and finally, in contrast to existing approaches, information about articulated parts. These parts describe movable objects like chairs, doors or other tangible entities, which could be moved by an agent. The combination of the static scene, the self-moving entities and the movable objects in one articulated scene model enhances the calculation of each single part. The reconstruction process for parts of the static scene benefits from removal of the dynamic parts and in turn, the moving parts can be extracted more easily through the knowledge about the background. In our experiments we show, that the system delivers simultaneously an accurate static background model, moving persons and movable objects. This information of the articulated scene model enables a mobile robot to detect and keep track of interaction partners, to navigate safely through the environment and finally, to strengthen the interaction with the user through the knowledge about the 3D articulated objects and 3D scene analysis. [Figure not available: see fulltext.

  13. 3D Axon structure extraction and analysis in confocal fluorescence microscopy images.

    PubMed

    Zhang, Yong; Zhou, Xiaobo; Lu, Ju; Lichtman, Jeff; Adjeroh, Donald; Wong, Stephen T C

    2008-08-01

    The morphological properties of axons, such as their branching patterns and oriented structures, are of great interest for biologists in the study of the synaptic connectivity of neurons. In these studies, researchers use triple immunofluorescent confocal microscopy to record morphological changes of neuronal processes. Three-dimensional (3D) microscopy image analysis is then required to extract morphological features of the neuronal structures. In this article, we propose a highly automated 3D centerline extraction tool to assist in this task. For this project, the most difficult part is that some axons are overlapping such that the boundaries distinguishing them are barely visible. Our approach combines a 3D dynamic programming (DP) technique and marker-controlled watershed algorithm to solve this problem. The approach consists of tracking and updating along the navigation directions of multiple axons simultaneously. The experimental results show that the proposed method can rapidly and accurately extract multiple axon centerlines and can handle complicated axon structures such as cross-over sections and overlapping objects. PMID:18336075

  14. 3D MRI Analysis of the Lower Legs of Treated Idiopathic Congenital Talipes Equinovarus (Clubfoot)

    PubMed Central

    Duce, Suzanne L.; D’Alessandro, Mariella; Du, Yimeng; Jagpal, Baljit; Gilbert, Fiona J.; Crichton, Lena; Barker, Simon; Collinson, J. Martin; Miedzybrodzka, Zosia

    2013-01-01

    Background Idiopathic congenital talipes equinovarus (CTEV) is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI), and thus to investigate the anatomical differences between CTEV participants and controls. Methodology/Principal Findings The lower legs of six CTEV (2 bilateral, 4 unilateral) and five control young adults (age 12–28) were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA) images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed. Conclusions/Significance Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as well as

  15. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    PubMed

    Xu, Yiwen; Pickering, J Geoffrey; Nong, Zengxuan; Gibson, Eli; Arpino, John-Michael; Yin, Hao; Ward, Aaron D

    2015-01-01

    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for

  16. LEWICE3D/GlennHT Particle Analysis of the Honeywell Al502 Low Pressure Compressor

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Rigby, David L.

    2015-01-01

    A flow and ice particle trajectory analysis was performed for the booster of the Honeywell AL502 engine. The analysis focused on two closely related conditions one of which produced a rollback and another which did not rollback during testing in the Propulsion Systems Lab at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.56 ice accretion software. The flow and particle analysis used a 3D steady flow, mixing plane approach to model the transport of flow and particles through the engine. The inflow conditions for the rollback case were: airspeed, 145 ms; static pressure, 33,373 Pa; static temperature, 253.3 K. The inflow conditions for the non-roll-back case were: airspeed, 153 ms; static pressure, 34,252 Pa; static temperature, 260.1 K. Both cases were subjected to an ice particle cloud with a median volume diameter of 24 microns, an ice water content of 2.0 gm3 and a relative humidity of 100 percent. The most significant difference between the rollback and non-rollback conditions was the inflow static temperature which was 6.8 K higher for the non-rollback case.

  17. 3D time series analysis of cell shape using Laplacian approaches

    PubMed Central

    2013-01-01

    Background Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations. PMID:24090312

  18. Advanced Tsunami Numerical Simulations and Energy Considerations by use of 3D-2D Coupled Models: The October 11, 1918, Mona Passage Tsunami

    NASA Astrophysics Data System (ADS)

    López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio

    2015-06-01

    The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.

  19. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  20. ALE3D Model Predictions and Experimental Analysis of the Cookoff Response of Comp B*

    SciTech Connect

    Maienschein, J L; McClelland, M A; Wardell, J F; Reaugh, J E; Nichols, A L; Tran, T D

    2003-11-24

    ALE3D simulations are presented for the thermal explosion of Comp B (RDX,TNT) in a Scaled Thermal Explosion Experiment (STEX). Candidate models and numerical strategies are being tested using the ALE3D code which simulates the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The mechanical behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the equation of state of the solid and gas species, respectively. A gamma-law model is employed for the air in gaps, and a mixed material model is used for the interface between air and explosive. A three-step chemical kinetics model is used for each of the RDX and TNT reaction sequences during the heating and ignition phases, and a pressure-dependent deflagration model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate are employed to determine parameters in the burn front model. We compare model predictions to measurements for temperature fields, ignition temperature, and tube wall strain during the heating, ignition, and explosive phases.

  1. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  2. Semi-automated 3D Leaf Reconstruction and Analysis of Trichome Patterning from Light Microscopic Images

    PubMed Central

    Schrader, Andrea; Hülskamp, Martin; Tresch, Achim

    2013-01-01

    Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons. PMID:23637587

  3. Analysis results from the Los Alamos 2D/3D program

    SciTech Connect

    Boyack, B.E.; Cappiello, M.W.; Stumpf, H.; Shire, P.; Gilbert, J.; Hedstrom, J.

    1986-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multidimensional nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During Fiscal Year 1986, Los Alamos conducted analytical assessment activities using data from the Cylindrical Core Test Facility and the Slab Core Test Facility. Los Alamos also continued to provide support analysis for the planning of Upper Plenum Test Facility experiments. Finally, Los Alamos either completed or is currently working on three areas of TRAC modeling improvement. In this paper, Los Alamos activities during Fiscal Year 1986 are summarized; several significant accomplishments are described in more detail to illustrate the work activities at Los Alamos.

  4. 3D visualisation and analysis of single and coalescing tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, David; Gillmore, Gavin; Brown, Louise; Petford, Nick

    2010-05-01

    Exposure to radon gas (222Rn) and associated ionising decay products can cause lung cancer in humans (1). Solid state Nuclear Track Detectors (SSNTDs) can be used to monitor radon concentrations (2). Radon particles form tracks in the detectors and these tracks can be etched in order to enable 2D surface image analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (3). The aim of the study was to further investigate track angles and patterns in SSNTDs. A 'LEXT' confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 3D image datasets of five CR-39 plastic SSNTD's. The resultant 3D visualisations were analysed by eye and inclination angles assessed on selected tracks. From visual assessment, single isolated tracks as well as coalescing tracks were observed on the etched detectors. In addition varying track inclination angles were observed. Several different patterns of track formation were seen such as single isolated and double coalescing tracks. The observed track angles of inclination may help to assess the angle at which alpha particles hit the detector. Darby, S et al. Radon in homes and risk of lung cancer : collaborative analysis of individual data from 13 European case-control studies. British Medical Journal 2005; 330, 223-226. Phillips, P.S., Denman, A.R., Crockett, R.G.M., Gillmore, G., Groves-Kirkby, C.J., Woolridge, A., Comparative Analysis of Weekly vs. Three monthly radon measurements in dwellings. DEFRA Report No., DEFRA/RAS/03.006. (2004). Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in Solid State Nuclear Track Detectors. Journal of Microscopy 2010; 237: 1-6.

  5. Uncertainty analysis in 3D global models: Aerosol representation in MOZART-4

    NASA Astrophysics Data System (ADS)

    Gasore, J.; Prinn, R. G.

    2012-12-01

    The Probabilistic Collocation Method (PCM) has been proven to be an efficient general method of uncertainty analysis in atmospheric models (Tatang et al 1997, Cohen&Prinn 2011). However, its application has been mainly limited to urban- and regional-scale models and chemical source-sink models, because of the drastic increase in computational cost when the dimension of uncertain parameters increases. Moreover, the high-dimensional output of global models has to be reduced to allow a computationally reasonable number of polynomials to be generated. This dimensional reduction has been mainly achieved by grouping the model grids into a few regions based on prior knowledge and expectations; urban versus rural for instance. As the model output is used to estimate the coefficients of the polynomial chaos expansion (PCE), the arbitrariness in the regional aggregation can generate problems in estimating uncertainties. To address these issues in a complex model, we apply the probabilistic collocation method of uncertainty analysis to the aerosol representation in MOZART-4, which is a 3D global chemical transport model (Emmons et al., 2010). Thereafter, we deterministically delineate the model output surface into regions of homogeneous response using the method of Principal Component Analysis. This allows the quantification of the uncertainty associated with the dimensional reduction. Because only a bulk mass is calculated online in Mozart-4, a lognormal number distribution is assumed with a priori fixed scale and location parameters, to calculate the surface area for heterogeneous reactions involving tropospheric oxidants. We have applied the PCM to the six parameters of the lognormal number distributions of Black Carbon, Organic Carbon and Sulfate. We have carried out a Monte-Carlo sampling from the probability density functions of the six uncertain parameters, using the reduced PCE model. The global mean concentration of major tropospheric oxidants did not show a

  6. 3-D in vivo brain tumor geometry study by scaling analysis

    NASA Astrophysics Data System (ADS)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  7. 3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.

  8. CASMO5/TSUNAMI-3D spent nuclear fuel reactivity uncertainty analysis

    SciTech Connect

    Ferrer, R.; Rhodes, J.; Smith, K.

    2012-07-01

    The CASMO5 lattice physics code is used in conjunction with the TSUNAMI-3D sequence in ORNL's SCALE 6 code system to estimate the uncertainties in hot-to-cold reactivity changes due to cross-section uncertainty for PWR assemblies at various burnup points. The goal of the analysis is to establish the multiplication factor uncertainty similarity between various fuel assemblies at different conditions in a quantifiable manner and to obtain a bound on the hot-to-cold reactivity uncertainty over the various assembly types and burnup attributed to fundamental cross-section data uncertainty. (authors)

  9. Analysis of the Possibilities of Using Low-Cost Scanning System in 3d Modeling

    NASA Astrophysics Data System (ADS)

    Kedzierski, M.; Wierzbickia, D.; Fryskowska, A.; Chlebowska, B.

    2016-06-01

    The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of

  10. Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor.

    PubMed

    Herffurth, Tobias; Schröder, Sven; Trost, Marcus; Duparré, Angela; Tünnermann, Andreas

    2013-05-10

    Light scattering measurement and analysis is a powerful tool for the characterization of optical and nonoptical surfaces. A new 3D scatter measurement system based on a detector matrix is presented. A compact light-scatter sensor is used to characterize the scattering and nanostructures of surfaces and to identify the origins of anisotropic scattering features. The results from the scatter sensor are directly compared with white light interferometry to analyze surface defects as well as surface roughness and the corresponding scattering distributions. The scattering of surface defects is modeled based on the Kirchhoff integral equation and the approach of Beckmann for rough surfaces. PMID:23669841

  11. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  12. Impact of lithosphere rheology on 3D continental rift evolution in presence of mantle plumes: insights from numerical models

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Gerya, Taras

    2015-04-01

    We implement fully-coupled high resolution 3D thermo-mechanical numerical models to investigate the impact of the laterally heterogeneous structure and rheological stratification of the continental lithosphere on the plume-activated rifting and continental break-up processes in presence of preexisting far-field tectonic stresses. In our experiments, the "plumes" represent short-lived diapiric upwellings that have no continuous feeding from the depth. Such upwellings may be associated with "true" plumes but also with various instabilities in the convective mantle. The models demonstrate that the prerequisite of strongly anisotropic strain localization during plume-lithosphere interaction (linear rift structures instead of axisymmetric radial faulting) refers to simultaneous presence of a mantle upwelling and of (even extremely weak) directional stress field produced by far-field tectonic forces (i.e. ultra-slow far field extension at < 3 mm/y). Although in all experiments the new-formed spreading centers have similar orientations perpendicular to the direction of the main far-field axis, the models with homogeneous lithosphere show that their number and spatial location is different for various extension rates and thermo-rheological structures of the lithosphere: relatively slow extension (3 mm/year) and colder isotherm (600-700°C at Moho depth) at the crustal bottom lead to the development of single rifts, whereas "faster" external velocities (6 mm/year) and "hotter" crustal geotherm (800°C at Moho depth) result in dual (sometimes asymmetric) rift evolution. On the contrary, the models with heterogeneous lithosphere (thick cratonic block with cold and thick depleted mantle embedded into «normal» lithosphere) and the plume centered below the craton, systematically show similar behaviors: two symmetrical and coeval rifting zones embrace the cratonic micro-plate along its long sides. The experiments where the initial plume position has been laterally shifted with

  13. Error analysis in stereo vision for location measurement of 3D point

    NASA Astrophysics Data System (ADS)

    Li, Yunting; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Location measurement of 3D point in stereo vision is subjected to different sources of uncertainty that propagate to the final result. For current methods of error analysis, most of them are based on ideal intersection model to calculate the uncertainty region of point location via intersecting two fields of view of pixel that may produce loose bounds. Besides, only a few of sources of error such as pixel error or camera position are taken into account in the process of analysis. In this paper we present a straightforward and available method to estimate the location error that is taken most of source of error into account. We summed up and simplified all the input errors to five parameters by rotation transformation. Then we use the fast algorithm of midpoint method to deduce the mathematical relationships between target point and the parameters. Thus, the expectations and covariance matrix of 3D point location would be obtained, which can constitute the uncertainty region of point location. Afterwards, we turned back to the error propagation of the primitive input errors in the stereo system and throughout the whole analysis process from primitive input errors to localization error. Our method has the same level of computational complexity as the state-of-the-art method. Finally, extensive experiments are performed to verify the performance of our methods.

  14. Structural description and combined 3D display for superior analysis of cerebral vascularity from MRA

    NASA Astrophysics Data System (ADS)

    Szekely, Gabor; Koller, Thomas; Kikinis, Ron; Gerig, Guido

    1994-09-01

    Medical image analysis has to support the clinicians ability to identify, manipulate and quantify anatomical structures. On scalar 2D image data, a human observer is often superior to computer assisted analysis, but the interpretation of vector- valued data or data combined from different modalities, especially in 3D, can benefit from computer assistance. The problem of how to convey the complex information to the clinician is often tackled by providing colored multimodality renderings. We propose to go a step beyond by supplying a suitable modelling of anatomical and functional structures encoding important shape features and physical properties. The multiple attributes regarding geometry, topology and function are carried by the symbolic description and can be interactively queried and edited. Integrated 3D rendering of object surfaces and symbolic representation acts as a visual interface to allow interactive communication between the observer and the complex data, providing new possibilities for quantification and therapy planning. The discussion is guided by the prototypical example of investigating the cerebral vasculature in MRA volume data. Geometric, topological and flow-related information can be assessed by interactive analysis on a computer workstation, providing otherwise hidden qualitative and quantitative information. Several case studies demonstrate the potential usage for structure identification, definition of landmarks, assessment of topology for catheterization, and local simulation of blood flow.

  15. Multivariate statistical analysis as a tool for the segmentation of 3D spectral data.

    PubMed

    Lucas, G; Burdet, P; Cantoni, M; Hébert, C

    2013-01-01

    Acquisition of three-dimensional (3D) spectral data is nowadays common using many different microanalytical techniques. In order to proceed to the 3D reconstruction, data processing is necessary not only to deal with noisy acquisitions but also to segment the data in term of chemical composition. In this article, we demonstrate the value of multivariate statistical analysis (MSA) methods for this purpose, allowing fast and reliable results. Using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) coupled with a focused ion beam (FIB), a stack of spectrum images have been acquired on a sample produced by laser welding of a nickel-titanium wire and a stainless steel wire presenting a complex microstructure. These data have been analyzed using principal component analysis (PCA) and factor rotations. PCA allows to significantly improve the overall quality of the data, but produces abstract components. Here it is shown that rotated components can be used without prior knowledge of the sample to help the interpretation of the data, obtaining quickly qualitative mappings representative of elements or compounds found in the material. Such abundance maps can then be used to plot scatter diagrams and interactively identify the different domains in presence by defining clusters of voxels having similar compositions. Identified voxels are advantageously overlaid on secondary electron (SE) images with higher resolution in order to refine the segmentation. The 3D reconstruction can then be performed using available commercial softwares on the basis of the provided segmentation. To asses the quality of the segmentation, the results have been compared to an EDX quantification performed on the same data. PMID:24035679

  16. Analysis of fracture networks in a reservoir dolomite by 3D micro-imaging

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Hoyer, Stefan; Exner, Ulrike; Reuschlé, Thierry

    2013-04-01

    Narrow fractures in reservoir rocks can be of great importance when determining the hydrocarbon potential of such a reservoir. Such fractures can contribute significantly to - or even be dominant for - the porosity and permeability characteristics of such rocks. Investigating these narrow fractures is therefore important, but not always trivial. Standard laboratory measurements on sample plugs from a reservoir are not always suitable for fractured rocks. Thin section analysis can provide very important information, but mostly only in 2D. Also other sources of information have major drawbacks, such as FMI (Formation Micro-Imager) during coring (insufficient resolution) and hand specimen analysis (no internal information). 3D imaging of reservoir rock samples is a good alternative and extension to the methods mentioned above. The 3D information is in our case obtained by X-ray Micro-Computed Tomography (µCT) imaging. Our used samples are 2 and 3 cm diameter plugs of a narrowly fractured (apertures generally <200 µm) reservoir dolomite (Hauptdolomit formation) from below the Vienna Basin, Austria. µCT has the large advantage of being non-destructive to the samples, and with the chosen sample sizes and settings, the sample rocks and fractures can be imaged with sufficient quality at sufficient resolution. After imaging, the fracture networks need to be extracted (segmented) from the background. Unfortunately, available segmentation approaches in the literature do not provide satisfactory results on such narrow fractures. We therefore developed the multiscale Hessian fracture filter, with which we are able to extract the fracture networks from the datasets in a better way. The largest advantages of this technique are that it is inherently 3D, runs on desktop computers with limited resources, and is implemented in public domain software (ImageJ / FIJI). The results from the multiscale Hessian fracture filtering approach serve as input for porosity determination. Also

  17. A 3-D numerical study of turbulent flow and solidification of a direct chill caster fitted with a channel bag

    NASA Astrophysics Data System (ADS)

    Begum, Latifa; Hasan, Mainul

    2015-06-01

    3-D CFD simulations were carried out for a vertical direct chill slab caster for an aluminum-alloy AA-1050. The code was verified with an experimental study and reasonably good agreements were obtained. The casting speed and the metal-mold contact heat transfer coefficient were varied from 40 to 100 mm/min and from 750 to 3,000 W/m2 K), respectively. The velocity field, temperature contours and important quantities for different casting speeds are predicted.

  18. Development of computer program NAS3D using Vector processing for geometric nonlinear analysis of structures

    NASA Technical Reports Server (NTRS)

    Mangalgiri, P. D.; Prabhakaran, R.

    1986-01-01

    An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained.

  19. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    SciTech Connect

    Nevalainen, M.; Dodds, R.H. Jr.

    1996-07-01

    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front.

  20. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    NASA Astrophysics Data System (ADS)

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  1. Detection of ancient morphology and potential hydrocarbon traps using 3-D seismic data and attribute analysis

    SciTech Connect

    Heggland, R.

    1995-12-31

    This paper presents the use of seismic attributes on 3D data to reveal Tertiary and Cretaceous geological features in Norwegian block 9/2. Some of the features would hardly be possible to map using only 2D seismic data. The method which involves a precise interpretation of horizons, attribute analysis and manipulation of colour displays, may be useful when studying morphology, faults and hydrocarbon traps. The interval of interest in this study was from 0 to 1.5 s TWT. Horizontal displays (timeslices and attribute maps), seemed to highlight very nicely geological features such as shallow channels, fractures, karst topography and faults. The attributes used for mapping these features were amplitude, total reflection energy (a volume or time interval attribute), dip and azimuth. The choice of colour scale and manipulation of colour displays were also critical for the results. The data examples clearly demonstrate how it is possible to achieve a very detailed mapping of geological features using 3D seismic data and attribute analysis. The results of this study were useful for the understanding of hydrocarbon migration paths and hydrocarbon traps.

  2. A coordinate-free method for the analysis of 3D facial change

    NASA Astrophysics Data System (ADS)

    Mao, Zhili; Siebert, Jan Paul; Cockshott, W. Paul; Ayoub, Ashraf Farouk

    2004-05-01

    Euclidean Distance Matrix Analysis (EDMA) is widely held as the most important coordinate-free method by which to analyze landmarks. It has been used extensively in the field of medical anthropometry and has already produced many useful results. Unfortunately this method renders little information regarding the surface on which these points are located and accordingly is inadequate for the 3D analysis of surface anatomy. Here we shall present a new inverse surface flatness metric, the ratio between the Geodesic and the Euclidean inter-landmark distances. Because this metric also only reflects one aspect of three-dimensional shape, i.e. surface flatness, we have combined it with the Euclidean distance to investigate 3D facial change. The goal of this investigation is to be able to analyze three-dimensional facial change in terms of bilateral symmetry as encoded both by surface flatness and by geometric configuration. Our initial study, based on 25 models of surgically managed children (unilateral cleft lip repair) and 40 models of control children at the age of 2 years, indicates that the faces of the surgically managed group were found to be significantly less symmetric than those of the control group in terms of surface flatness, geometric configuration and overall symmetry.

  3. Photometric analysis as an aid to 3D reconstruction of indoor scenes

    NASA Astrophysics Data System (ADS)

    Serfaty, Veronique; Ackah-Miezan, Andrew; Lutton, Evelyne; Gagalowicz, Andre

    1993-06-01

    In an Image Understanding framework, our aim is to reconstruct an actual indoor scene from a (sequence of) color pair(s) of stereoscopic images. The desired (synthesis-oriented) description requires the analysis of both 3D geometric and photometric parameters in order to use the feedback provided by image synthesis to control the image analysis. The environment model is a hierarchy of polyhedral 3D objects (planar lambertian facets). Two main physical phenomena determine the image intensities: surface reflectance properties and light sources. From illumination models established in Computer Graphics, we derive the appropriate irradiance equations. Rather than use a point source located at infinity, we choose instead isotropic point sources with decreasing energy. This allows us to discriminate small irradiance gradients inside regions. For indoor scenes, such photometric models are more realistic, due to the presence of ceiling lights, desk lamps, and so on. Both a photometric reconstruction algorithm and a technique for localizing the 'dominant' light source are presented along with lighting simulations. For comparison purposes, corresponding artificial images are shown. Using this work, we wish to highlight the fruitful cooperation between the Vision and Graphics domains in order to perform a more accurate scene reconstruction, both photometrically and geometrically. The emphasis is on the illumination characterization which influences the scene interpretation.

  4. Photoemission spectroscopy and X-ray diffraction analysis of 3D topological and Kondo insulators

    NASA Astrophysics Data System (ADS)

    Shibayev, Pavel

    2015-03-01

    The advantage of studying 3D topological insulators (TIs), compounds that have attracted the attention of many in the condensed matter field, is the ability for their existence at room temperature and no magnetic fields, allowing both for resolving their band structure via angle-resolved photoemission spectroscopy (ARPES) and understanding electrical transport and other properties via X-ray diffraction (XRD) and point-contact spectroscopy (PCS). A comprehensive quantitative analysis of Bi2Se3, a 3D TI, was carried out using these methods. The Bi2Se3\\ crystals were synthesized in-house at Princeton University. A first-principles calculation based on density functional theory, DFT, was performed using the Abinit software. The band structure of the crystal was then resolved via ARPES at the Advanced Light Source in LBNL, resulting in a surprisingly stark and clear single Dirac cone. A large band gap was confirmed, suggesting an increased potential for applications. In contrast, Kondo insulators are found in rare-earth based materials with f-electron degrees of freedom. Photon energy dependent dispersion relationships and temperature dependence studies were performed on a Kondo candidate CeB6 via ARPES, showing an even number of Dirac cones and a non-TI behavior. Analysis of I-V characteristics through PCS will follow, in addition to characterization via Bruker XRD for both compounds. Research group led by Professor M. Zahid Hasan (Princeton University).

  5. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    NASA Astrophysics Data System (ADS)

    Zhuang, Ziqing; Slice, DennisE; Benson, Stacey; Lynch, Stephanie; Viscusi, DennisJ

    2010-12-01

    In 2003, the National Institute for Occupational Safety and Health (NIOSH) conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D) landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA) was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA) to identify population variation. The first four principal components (PC) account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  6. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  7. Automated analysis of 3D morphology of human red blood cells via off-axis digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Moon, Inkyu

    2013-05-01

    In this paper we overview an automated method for the analysis of clinical parameters of human red blood cells (RBCs). The digital holograms of mature RBCs are recorded by CCD camera with off-axis interferometry setup and the quantitative phase images of RBCs are formed by a numerical reconstruction technique. For automated investigation of the 3D morphology and mean corpuscular hemoglobin of RBCs, the unnecessary background in the RBCs phase images are removed by marker-controlled watershed segmentation algorithm. Then, characteristic properties of each RBC such as projected cell surface, average phase, mean corpuscular hemoglobin (MCH) and (MCH) surface density is quantitatively measured. Finally, the equality of covariance matrixes and mean vectors of these features for different kinds of RBCs are experimentally analyzed using statistical test scheme. Results show that these characteristic parameters of RBCs can be used as feature pattern to discriminate between RBC populations that differ in shape and hemoglobin content.

  8. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  9. Thermal analysis of the surrounding anatomy during 3-D MRI-guided transurethral ultrasound prostate therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous numerical simulations have shown that MRI-guided transurethral ultrasound therapy can generate highly accurate volumes of thermal coagulation conforming to 3-D human prostate geometries. The goal of this work is to simulate, quantify and evaluate the thermal impact of these treatments on the rectum, pelvic bone, neurovascular bundles (NVB) and urinary sphincters. This study used twenty 3-D anatomical models of prostate cancer patients and detailed bio-acoustic simulations incorporating an active feedback algorithm which controlled a rotating, planar ultrasound transducer (17-4×3 mm elements, 4.7/9.7 MHz, 10 Wac/cm2). Heating of the adjacent surrounding anatomy was evaluated using thermal tolerances reported in the literature. Heating of the rectum poses the most important safety concern and is influenced largely by the water temperature flowing through an endorectal cooling device; temperatures of 7-37° C are required to limit potential damage to less than 10 mm3 on the outer 1 mm layer of rectum. Significant heating of the pelvic bone was predicted in 30% of the patient models with an ultrasound frequency of 4.7 MHz; setting the frequency to 9.7 MHz when the bone is less than 10 mm away from the prostate reduced heating in all cases below the threshold for irreversible damage. Heating of the NVB was significant in 75% of the patient models in the absence of treatment planning; this proportion was reduced to 5% by using treatment margins of up to 4 mm. To avoid damaging the urinary sphincters, margins from the transducer of 2-4 mm should be used, depending on the transurethral cooling temperature. Simulations show that MRI-guided transurethral therapy can treat the entire prostate accurately. Strategies have been developed which, along with careful treatment planning, can be used to avoid causing thermal injury to the rectum, pelvic bone, NVB and urinary sphincters.

  10. Advanced methods for 3-D inelastic structural analysis for hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    Three-dimensional Inelastic Analysis Methods are described. These methods were incorporated into a series of new computer codes embodying a progression of mathematical models (mechanics of materials, specialty finite element, boundary element) for streamlined analysis of hot engine structures such as: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (displacements, frequencies, amplitudes, buckling) structural behavior of the three respective components. The methods and the three computer codes, referred to as MOMM (Mechanics Of Materials Model), MHOST (MARC-Hot Section Technology), and BEST3D (Boundary Element Stress Technology), have been developed and are briefly described.

  11. Analysis of the SL-1 Accident Using RELAPS5-3D

    SciTech Connect

    Francisco, A.D. and Tomlinson, E. T.

    2007-11-08

    On January 3, 1961, at the National Reactor Testing Station, in Idaho Falls, Idaho, the Stationary Low Power Reactor No. 1 (SL-1) experienced a major nuclear excursion, killing three people, and destroying the reactor core. The SL-1 reactor, a 3 MW{sub t} boiling water reactor, was shut down and undergoing routine maintenance work at the time. This paper presents an analysis of the SL-1 reactor excursion using the RELAP5-3D thermal-hydraulic and nuclear analysis code, with the intent of simulating the accident from the point of reactivity insertion to destruction and vaporization of the fuel. Results are presented, along with a discussion of sensitivity to some reactor and transient parameters (many of the details are only known with a high level of uncertainty).

  12. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  13. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and

  14. Novel 3D Microscopic Analysis of Human Placental Villous Trees Reveals Unexpected Significance of Branching Angles

    PubMed Central

    Haeussner, Eva; Buehlmeyer, Antonia; Schmitz, Christoph; von Koch, Franz Edler; Frank, Hans-Georg

    2014-01-01

    The villous trees of human placentas delineate the fetomaternal border and are complex three-dimensional (3D) structures. Thus far, they have primarily been analyzed as thin, two-dimensional (2D) histological sections. However, 2D sections cannot provide access to key aspects such as branching nodes and branch order. Using samples taken from 50 normal human placentas at birth, in the present study we show that analysis procedures for 3D reconstruction of neuronal dendritic trees can also be used for analyzing trees of human placentas. Nodes and their branches (e.g., branching hierarchy, branching angles, diameters, and lengths of branches) can be efficiently measured in whole-mount preparations of isolated villous trees using high-end light microscopy. Such data differ qualitatively from the data obtainable from histological sections and go substantially beyond the morphological horizon of such histological data. Unexpectedly, branching angles of terminal branches of villous trees varied inversely with the fetoplacental weight ratio, a widely used clinical parameter. Since branching angles have never before been determined in the human placenta, this result requires further detailed studies in order to fully understand its impact. PMID:25155961

  15. Comparative 3D Genome Structure Analysis of the Fission and the Budding Yeast

    PubMed Central

    Gong, Ke; Tjong, Harianto; Zhou, Xianghong Jasmine; Alber, Frank

    2015-01-01

    We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species. PMID:25799503

  16. SAFE-3D analysis of a piezoelectric transducer to excite guided waves in a rail web

    NASA Astrophysics Data System (ADS)

    Ramatlo, Dineo A.; Long, Craig S.; Loveday, Philip W.; Wilke, Daniel N.

    2016-02-01

    Our existing Ultrasonic Broken Rail Detection system detects complete breaks and primarily uses a propagating mode with energy concentrated in the head of the rail. Previous experimental studies have demonstrated that a mode with energy concentrated in the head of the rail, is capable of detecting weld reflections at long distances. Exploiting a mode with energy concentrated in the web of the rail would allow us to effectively detect defects in the web of the rail and could also help to distinguish between reflections from welds and cracks. In this paper, we will demonstrate the analysis of a piezoelectric transducer attached to the rail web. The forced response at different frequencies is computed by the Semi-Analytical Finite Element (SAFE) method and compared to a full three-dimensional finite element method using ABAQUS. The SAFE method only requires the rail track cross-section to be meshed using two-dimensional elements. The ABAQUS model in turn requires a full three-dimensional discretisation of the rail track. The SAFE approach can yield poor predictions at cut-on frequencies associated with other modes in the rail. Problematic frequencies are identified and a suitable frequency range identified for transducer design. The forced response results of the two methods were found to be in good agreement with each other. We then use a previously developed SAFE-3D method to analyse a practical transducer over the selected frequency range. The results obtained from the SAFE-3D method are in good agreement with experimental measurements.

  17. 3D optoelectronic analysis of interfractional patient setup variability in frameless extracranial stereotactic radiotherapy

    SciTech Connect

    Baroni, Guido . E-mail: guido.baroni@polimi.it; Garibaldi, Cristina; Riboldi, Marco; Spadea, Maria F.; Catalano, Gianpiero; Tagaste, Barbara B.S.; Tosi, Giampiero; Orecchia, Roberto; Pedotti, Antonio

    2006-02-01

    Purpose: To investigate size and frequency of interfractional patient setup variability in hypofractionated stereotactic extracranial radiotherapy. Methods and Materials: Infrared optical 3D tracking of surface markers was applied to quantify setup variability on 51 patients. Isocenter position repeatability was assessed by means of frameless anatomic calibration and was compared with portal image evaluation. Specific data analysis allowed for compensation of patients' breathing movements and for separation of the effects of operator-dependent misalignments and respiration-induced displacements. Effects of patient position (supine vs. prone) and treatment table configuration were investigated. Results: Patient positioning assisted by the optical tracking device allowed reducing displacements of surface control points within the 3-mm range. Errors in isocenter localization were in the range of a few millimeters. This was in agreement with the portal image evaluation. Breathing motion introduced appreciable errors, which increased control points and isocenter 3D variability. This effect was significantly higher than those related to other investigated factors. Conclusions: The role of infrared optical tracking devices for patient positioning is assessed on a large patient population. Their use in the frame of high-precision radiotherapy is emphasized by the application of related methodologies for breathing phase detection and frameless isocenter localization.

  18. 3D numerical study of the propagation characteristics of a consequence of coronal mass ejections in a structured ambient solar wind

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.

    2015-12-01

    CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness

  19. Texture analysis of the 3D collagen network and automatic classification of the physiology of articular cartilage.

    PubMed

    Duan, Xiaojuan; Wu, Jianping; Swift, Benjamin; Kirk, Thomas Brett

    2015-07-01

    A close relationship has been found between the 3D collagen structure and physiological condition of articular cartilage (AC). Studying the 3D collagen network in AC offers a way to determine the condition of the cartilage. However, traditional qualitative studies are time consuming and subjective. This study aims to develop a computer vision-based classifier to automatically determine the condition of AC tissue based on the structural characteristics of the collagen network. Texture analysis was applied to quantitatively characterise the 3D collagen structure in normal (International Cartilage Repair Society, ICRS, grade 0), aged (ICRS grade 1) and osteoarthritic cartilages (ICRS grade 2). Principle component techniques and linear discriminant analysis were then used to classify the microstructural characteristics of the 3D collagen meshwork and the condition of the AC. The 3D collagen meshwork in the three physiological condition groups displayed distinctive characteristics. Texture analysis indicated a significant difference in the mean texture parameters of the 3D collagen network between groups. The principle component and linear discriminant analysis of the texture data allowed for the development of a classifier for identifying the physiological status of the AC with an expected prediction error of 4.23%. An automatic image analysis classifier has been developed to predict the physiological condition of AC (from ICRS grade 0 to 2) based on texture data from the 3D collagen network in the tissue. PMID:24428581

  20. Estimating the subsurface temperature of Hessen/Germany based on a GOCAD 3D structural model - a comparison of numerical and geostatistical approaches

    NASA Astrophysics Data System (ADS)

    Rühaak, W.; Bär, K.; Sass, I.

    2012-04-01

    Based on a 3D structural GOCAD model of the German federal state Hessen the subsurface temperature distribution is computed. Since subsurface temperature data for greater depth are typically sparse, two different approaches for estimating the spatial subsurface temperature distribution are tested. One approach is the numerical computation of a 3D purely conductive steady state temperature distribution. This numerical model is based on measured thermal conductivity data for all relevant geological units, together with heat flow measurements and surface temperatures. The model is calibrated using continuous temperature-logs. Here only conductive heat transfer is considered as data for convective heat transport at great depth are currently not available. The other approach is by 3D ordinary Kriging; applying a modified approach where the quality of the temperature measurements is taken into account. A difficult but important part here is to derive good variograms for the horizontal and vertical direction. The variograms give necessary information about the spatial dependence. Both approaches are compared and discussed. Differences are mainly related due to convective processes, which are reflected by the interpolation result, but not by the numerical model. Therefore, a comparison of the two results is a good way to obtain information about flow processes in such great depth. This way an improved understanding of this mid enthalpy geothermal reservoir (1000 - 6000 m) is possible. Future work will be the reduction of the small but - especially for depth up to approximately 1000 m - relevant paleoclimate signal.

  1. 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir

    NASA Astrophysics Data System (ADS)

    Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.

    2015-12-01

    The impact of an avalanche in a reservoir induces impulse waves, which pose a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting overtopping volume over structures and dams, formulas, which are based on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. This paper presents a new approach for a 3-D numerical simulation of the avalanche impact in a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the actual hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width). There was a good agreement of the overtopping volume at the dam between the presented 3-D numerical approach and the literature equations. Nevertheless, an extended parameter variation as well as a comparison with natural data should be considered as further research topics.

  2. Laser Scanning for 3D Object Characterization: Infrastructure for Exploration and Analysis of Vegetation Signatures

    NASA Astrophysics Data System (ADS)

    Koenig, K.; Höfle, B.

    2012-04-01

    Mapping and characterization of the three-dimensional nature of vegetation is increasingly gaining in importance. Deeper insight is required for e.g. forest management, biodiversity assessment, habitat analysis, precision agriculture, renewable energy production or the analysis of interaction between biosphere and atmosphere. However the potential of 3D vegetation characterization has not been exploited so far and new technologies are needed. Laser scanning has evolved into the state-of-the-art technology for highly accurate 3D data acquisition. By now several studies indicated a high value of 3D vegetation description by using laser data. The laser sensors provide a detailed geometric presentation (geometric information) of scanned objects as well as a full profile of laser energy that was scattered back to the sensor (radiometric information). In order to exploit the full potential of these datasets, profound knowledge on laser scanning technology for data acquisition, geoinformation technology for data analysis and object of interest (e.g. vegetation) for data interpretation have to be joined. A signature database is a collection of signatures of reference vegetation objects acquired under known conditions and sensor parameters and can be used to improve information extraction from unclassified vegetation datasets. Different vegetation elements (leaves, branches, etc.) at different heights above ground with different geometric composition contribute to the overall description (i.e. signature) of the scanned object. The developed tools allow analyzing tree objects according to single features (e.g. echo width and signal amplitude) and to any relation of features and derived statistical values (e.g. ratio of laser point attributes). For example, a single backscatter cross section value does not allow for tree species determination, whereas the average echo width per tree segment can give good estimates. Statistical values and/or distributions (e.g. Gaussian

  3. 3D texture analysis of solitary pulmonary nodules using co-occurrence matrix from volumetric lung CT images

    NASA Astrophysics Data System (ADS)

    Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Khandelwal, Niranjan

    2013-02-01

    In this paper we have investigated a new approach for texture features extraction using co-occurrence matrix from volumetric lung CT image. Traditionally texture analysis is performed in 2D and is suitable for images collected from 2D imaging modality. The use of 3D imaging modalities provide the scope of texture analysis from 3D object and 3D texture feature are more realistic to represent 3D object. In this work, Haralick's texture features are extended in 3D and computed from volumetric data considering 26 neighbors. The optimal texture features to characterize the internal structure of Solitary Pulmonary Nodules (SPN) are selected based on area under curve (AUC) values of ROC curve and p values from 2-tailed Student's t-test. The selected texture feature in 3D to represent SPN can be used in efficient Computer Aided Diagnostic (CAD) design plays an important role in fast and accurate lung cancer screening. The reduced number of input features to the CAD system will decrease the computational time and classification errors caused by irrelevant features. In the present work, SPN are classified from Ground Glass Nodule (GGN) using Artificial Neural Network (ANN) classifier considering top five 3D texture features and top five 2D texture features separately. The classification is performed on 92 SPN and 25 GGN from Imaging Database Resources Initiative (IDRI) public database and classification accuracy using 3D texture features and 2D texture features provide 97.17% and 89.1% respectively.

  4. 3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Navard, Andrew; Spruce, Joseph

    2010-01-01

    An analytical, advanced imaging method has been developed for the initial monitoring and identification of foam debris and similar anomalies that occur post-launch in reference to the space shuttle s external tank (ET). Remote sensing technologies have been used to perform image enhancement and analysis on high-resolution, true-color images collected with the DCS 760 Kodak digital camera located in the right umbilical well of the space shuttle. Improvements to the camera, using filters, have added sharpness/definition to the image sets; however, image review/analysis of the ET has been limited by the fact that the images acquired by umbilical cameras during launch are two-dimensional, and are usually nonreferenceable between frames due to rotation translation of the ET as it falls away from the space shuttle. Use of stereo pairs of these images can enable strong visual indicators that can immediately portray depth perception of damaged areas or movement of fragments between frames is not perceivable in two-dimensional images. A stereoscopic image visualization system has been developed to allow 3D depth perception of stereo-aligned image pairs taken from in-flight umbilical and handheld digital shuttle cameras. This new system has been developed to augment and optimize existing 2D monitoring capabilities. Using this system, candidate sequential image pairs are identified for transformation into stereo viewing pairs. Image orientation is corrected using control points (similar points) between frames to place the two images in proper X-Y viewing perspective. The images are then imported into the WallView stereo viewing software package. The collected control points are used to generate a transformation equation that is used to re-project one image and effectively co-register it to the other image. The co-registered, oriented image pairs are imported into a WallView image set and are used as a 3D stereo analysis slide show. Multiple sequential image pairs can be used

  5. 3D pore-network analysis and permeability estimation of deformation bands hosted in carbonate grainstones.

    NASA Astrophysics Data System (ADS)

    Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Trias, F. Xavier; Arzilli, Fabio; Lanzafame, Gabriele; Aibibula, Nijiati

    2016-04-01

    In porous rocks strain is commonly localized in narrow Deformation Bands (DBs), where the petrophysical properties are significantly modified with respect the pristine rock. As a consequence, DBs could have an important effect on production and development of porous reservoirs representing baffles zones or, in some cases, contribute to reservoir compartmentalization. Taking in consideration that the decrease of permeability within DBs is related to changes in the porous network properties (porosity, connectivity) and the pores morphology (size distribution, specific surface area), an accurate porous network characterization is useful for understanding both the effect of deformation banding on the porous network and their influence upon fluid flow through the deformed rocks. In this work, a 3D characterization of the microstructure and texture of DBs hosted in porous carbonate grainstones was obtained at the Elettra laboratory (Trieste, Italy) by using two different techniques: phase-contrast synchrotron radiation computed microtomography (micro-CT) and microfocus X-ray micro-CT. These techniques are suitable for addressing quantitative analysis of the porous network and implementing Computer Fluid Dynamics (CFD)experiments in porous rocks. Evaluated samples correspond to grainstones highly affected by DBs exposed in San Vito Lo Capo peninsula (Sicily, Italy), Favignana Island (Sicily, Italy) and Majella Mountain (Abruzzo, Italy). For the analysis, the data were segmented in two main components porous and solid phases. The properties of interest are porosity, connectivity, a grain and/or porous textural properties, in order to differentiate host rock and DBs in different zones. Permeability of DB and surrounding host rock were estimated by the implementation of CFD experiments, permeability results are validated by comparing with in situ measurements. In agreement with previous studies, the 3D image analysis and flow simulation indicate that DBs could be constitute

  6. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-d numerical modeling approach.

    PubMed

    Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant

    2014-09-16

    Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well. PMID:25144442

  7. A novel mesh processing based technique for 3D plant analysis

    PubMed Central

    2012-01-01

    Background In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D) dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time. Result In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated. Conclusion By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length, we obtained the mean

  8. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  9. The 3D EdgeRunner Pipeline: a novel shape-based analysis for neoplasms characterization

    NASA Astrophysics Data System (ADS)

    Yepes-C, Fernando; Johnson, Rebecca; Lao, Yi; Hwang, Darryl; Coloigner, Julie; Yap, Felix; Bushan, Desai; Cheng, Phillip; Gill, Inderbir; Duddalwar, Vinay; Lepore, Natasha

    2016-03-01

    The characterization of tumors after being imaged is currently a qualitative process performed by skilled professionals. If we can aid their diagnosis by identifying quantifiable features associated with tumor classification, we may avoid invasive procedures such as biopsies and enhance efficiency. The aim of this paper is to describe the 3D EdgeRunner Pipeline which characterizes the shape of a tumor. Shape analysis is relevant as malignant tumors tend to be more lobular and benign ones tare generally more symmetrical. The method described considers the distance from each point on the edge of the tumor to the centre of a synthetically created field of view. The method then determines coordinates where the measured distances are rapidly changing (peaks) using a second derivative found by five point differentiation. The list of coordinates considered to be peaks can then be used as statistical data to compare tumors quantitatively. We have found this process effectively captures the peaks on a selection of kidney tumors.

  10. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  11. Motion error analysis of the 3D coordinates of airborne lidar for typical terrains

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Lan, Tian; Ni, Guoqiang

    2013-07-01

    A motion error model of 3D coordinates is established and the impact on coordinate errors caused by the non-ideal movement of the airborne platform is analyzed. The simulation results of the model show that when the lidar system operates at high altitude, the influence on the positioning errors derived from laser point cloud spacing is small. For the model the positioning errors obey simple harmonic vibration whose amplitude envelope gradually reduces with the increase of the vibration frequency. When the vibration period number is larger than 50, the coordinate errors are almost uncorrelated with time. The elevation error is less than the plane error and in the plane the error in the scanning direction is less than the error in the flight direction. Through the analysis of flight test data, the conclusion is verified.

  12. 3D Plasma Clusters: Analysis of dynamical evolution and individual particle interaction

    SciTech Connect

    Antonova, T.; Thomas, H. M.; Morfill, G. E.; Annaratone, B. M.

    2008-09-07

    3D plasma clusters (up to 100 particles) have been built inside small (32 mm{sup 3}) plasma volume in gravity. It has been estimated that the external confinement has a negligible influence on the processes inside the clusters. At such conditions the analysis of dynamical evolution and individual particle interactions have shown that the binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part. The tendency of the systems to approach the state with minimum energy by rearranging particles inside has been detected. The measured 63 particles' cluster vibrations are in close agreement with vibrations of a drop with surface tension. This indicates that even a 63 particle cluster already exhibits properties normally associated with the cooperative regime.

  13. Wavelet transform analysis of truncated fringe patterns in 3-D surface profilometry

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Lolla, Kameswara R.

    2005-06-01

    Wavelet transform analysis of projected fringe pattern for phase recovery in 3-D shape measurement of objects is investigated. The present communication specifically outlines and evaluates the errors that creep in to the reconstructed profiles when fringe images do not satisfy periodicity. Three specific cases that give raise to non-periodicity of fringe image are simulated and leakage effects caused by each one of them are analyzed with continuous complex Morlet wavelet transform. Same images are analyzed with FFT method to make a comparison of the reconstructed profiles with both methods. Simulation results revealed a significant advantage of wavelet transform profilometry (WTP), that the distortions that arise due to leakage are confined to the locations of discontinuity and do not spread out over the entire projection as in the case of Fourier transform profilometry (FTP).

  14. A 3-D Magnetic Analysis of a Linear Alternator For a Stirling Power System

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Niedra, Janis M.

    2000-01-01

    The NASA Glenn Research Center and the Department of Energy (DOE) are developing advanced radioisotope Stirling convertors, under contract with Stirling Technology Company (STC), for space applications. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. This paper presents a 3-D finite element method (FEM) approach for evaluating Stirling convertor linear alternators. Preliminary correlations with open-circuit voltage measurements provide an encouraging level of confidence in the model. Spatial plots of magnetic field strength (H) are presented in the region of the exciting permanent magnets. These plots identify regions of high H, where at elevated temperature and under electrical load, the potential to alter the magnetic moment of the magnets exists. This implies the need for further testing and analysis.

  15. Thermal hydraulic analysis for the Oregon State TRIGA reactor using RELAP5-3D

    SciTech Connect

    Marcum, W.R.; Woods, B.G.; Hartman, M.

    2008-07-15

    Thermal hydraulic analyses have being conducted at Oregon State University (OSU) in support of the conversion of the OSU TRIGA reactor (OSTR) core from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel as part of the Reduced Enrichment for Research and Test Reactors program. The goals of the thermal hydraulic analyses were to calculate natural circulation flow rates, coolant temperatures and fuel temperatures as a function of core power for both the HEU and LEU cores; calculate peak values of fuel temperature, cladding temperature, surface heat flux as well as departure from nuclear boiling ratio (DNBR) for steady state and pulse operation; and perform accident analyses for the accident scenarios identified in the OSTR safety analysis report. RELAP5-3D Version 2.4.2 was implemented to develop a model for the thermal hydraulic study. The OSTR core conversion is planned to take place in late 2008. (author)

  16. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.

    2006-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.

  17. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    SciTech Connect

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  18. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    NASA Astrophysics Data System (ADS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  19. 3D numerical simulation on fluid flow and heat transfer characteristics in multistage heat exchanger with slit fins

    NASA Astrophysics Data System (ADS)

    Tao, W. Q.; Cheng, Y. P.; Lee, T. S.

    2007-11-01

    In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit fins respectively, with a three-dimensional laminar conjugated model. The tubes are arranged in a staggered way, and heat conduction in fins is considered. In order to save the computer resource and speed up the numerical simulation, the numerical modeling is carried out stage by stage. In order to avoid the large pressure drop penalty in enhancing heat transfer, a slit fin is presented with the strip arrangement of “front coarse and rear dense” along the flow direction. The numerical simulation shows that, compared to the plain plate fin heat exchanger, the increase in the heat transfer in the slit fin heat exchanger is higher than that of the pressure drop, which proves the excellent performance of this slit fin. The fluid flow and heat transfer performance along the stages is also provided.

  20. Evaluation of 3D multimodality image registration using receiver operating characteristic (ROC) analysis

    NASA Astrophysics Data System (ADS)

    Holton Tainter, Kerrie S.; Robb, Richard A.; Taneja, Udita; Gray, Joel E.

    1995-04-01

    Receiver operating characteristic analysis has evolved as a useful method for evaluating the discriminatory capability and efficacy of visualization. The ability of such analysis to account for the variance in decision criteria of multiple observers, multiple reading, and a wide range of difficulty in detection among case studies makes ROC especially useful for interpreting the results of a viewing experiment. We are currently using ROC analysis to evaluate the effectiveness of using fused multispectral, or complementary multimodality imaging data in the diagnostic process. The use of multispectral image recordings, gathered from multiple imaging modalities, to provide advanced image visualization and quantization capabilities in evaluating medical images is an important challenge facing medical imaging scientists. Such capabilities would potentially significantly enhance the ability of clinicians to extract scientific and diagnostic information from images. a first step in the effective use of multispectral information is the spatial registration of complementary image datasets so that a point-to-point correspondence exists between them. We are developing a paradigm of measuring the accuracy of existing image registration techniques which includes the ability to relate quantitative measurements, taken from the images themselves, to the decisions made by observers about the state of registration (SOR) of the 3D images. We have used ROC analysis to evaluate the ability of observers to discriminate between correctly registered and incorrectly registered multimodality fused images. We believe this experience is original and represents the first time that ROC analysis has been used to evaluate registered/fused images. We have simulated low-resolution and high-resolution images from real patient MR images of the brain, and fused them with the original MR to produce colorwash superposition images whose exact SOR is known. We have also attempted to extend this analysis to

  1. UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation

    PubMed Central

    Zhu, Jinhao; Wei, Bryan; Yuan, Yuan; Mi, Yongli

    2009-01-01

    A user-friendly software system, UNIQUIMER 3D, was developed to design DNA structures for nanotechnology applications. It consists of 3D visualization, internal energy minimization, sequence generation and construction of motif array simulations (2D tiles and 3D lattices) functionalities. The system can be used to check structural deformation and design errors under scaled-up conditions. UNIQUIMER 3D has been tested on the design of both existing motifs (holiday junction, 4 × 4 tile, double crossover, DNA tetrahedron, DNA cube, etc.) and nonexisting motifs (soccer ball). The results demonstrated UNIQUIMER 3D's capability in designing large complex structures. We also designed a de novo sequence generation algorithm. UNIQUIMER 3D was developed for the Windows environment and is provided free of charge to the nonprofit research institutions. PMID:19228709

  2. 3-D stress analysis in laminated plates using a combination of ANSYS and sub-element/deficient approximation function analysis

    SciTech Connect

    Bogdanovich, A.; Pastore, C.; Kumar, V.; German, M.

    1994-12-31

    The method of combining the use of ANSYS SOLID 46 finite element and the sub-element/deficient approximation function (SEDAF) analysis is developed and demonstrated on the benchmark problem of Pagano. The algorithm incorporates a primary displacement calculation using ANSYS and the successive stress calculation using 3-D SEDAF analysis. A special mathematical procedure aimed to convert the global displacement output of the commercial finite element code into the local displacement input of the SEDAF analysis is presented. The results show a considerably higher accuracy provided by this combination compared to the original ANSYS results when calculating both the in-plane and transverse stresses, especially for their values at the interfaces. After some generalization, the presented ANSYS/SEDAF algorithm seems to be promising for obtaining a sufficiently accurate 3-D stress distributions in any structural analysis problem allowing for the application of ANSYS code.

  3. Progress in the Peeling-Ballooning Model of ELMs: Numerical Studies of 3D Nonlinear ELM Dynamics

    SciTech Connect

    Snyder, P B; Wilson, H R; Xu, X Q

    2004-12-13

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the non-linear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outer wall. Similarities to non-linear linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  4. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS

    SciTech Connect

    SNYDER,P.B; WILSON,H.R; XU,X.Q

    2004-11-01

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments