Science.gov

Sample records for 3-d numerical study

  1. Numerical study on 3D composite morphing actuators

    NASA Astrophysics Data System (ADS)

    Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru

    2015-04-01

    There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.

  2. Convective instability in sedimentation: 3-D numerical study

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2014-11-01

    To provide a probable explanation on the field observed rapid sedimentation process near river mouths, we investigate the convective sedimentation in stably stratified saltwater using 3-D numerical simulations. Guided by the linear stability analysis, this study focuses on the nonlinear interactions of several mechanisms, which lead to various sediment finger patterns, and the effective settling velocity for sediment ranging from clay (single-particle settling velocity V0 = 0.0036 and 0.0144 mm/s, or particle diameter d = 2 and 4 μm) to silt (V0 = 0.36 mm/s, or d = 20 μm). For very fine sediment with V0 = 0.0036 mm/s, the convective instability is dominated by double diffusion, characterized by millimeter-scale fingers. Gravitational settling slightly increases the growth rate; however, it has notable effect on the downward development of vertical mixing shortly after the sediment interface migrates below the salt interface. For sediment with V0 = 0.0144 mm/s, Rayleigh-Taylor instabilities become dominant before double-diffusive modes grow sufficiently large. Centimeter-scale and highly asymmetric sediment fingers are obtained due to nonlinear interactions between different modes. For sediment with V0 = 0.36 mm/s, Rayleigh-Taylor mechanism dominates and the resulting centimeter-scale sediment fingers show a plume-like structure. The flow pattern is similar to that without ambient salt stratification. Rapid sedimentation with effective settling velocity on the order of 1 cm/s is likely driven by convective sedimentation for sediment with V0 greater than 0.1 mm/s at concentration greater than 10-20 g/L.

  3. Impact of 3D root uptake on solute transport: a numerical study

    NASA Astrophysics Data System (ADS)

    Schröder, N.; Javaux, M.; Vanderborght, J.; Steffen, B.; Vereecken, H.

    2011-12-01

    Plant transpiration is an important component of the hydrological cycle. Through root water uptake, plants do not only affect the 3D soil water flow velocity distribution, but also solute movement in soil. This numerical study aims at investigating how solute fate is impacted by root uptake using the 3D biophysical model R-SWMS (Javaux et al., 2008). This model solves the Richards equation in 3D in the soil and the flow equation within the plant root xylem vessels. Furthermore, for solute transport simulations, the 3D particle tracker PARTRACE (Bechtold et al., 2011) was used. . We generated 3D virtual steady-state breakthrough curves (BTC) experiments in soils with transpiring plants. The averaged BTCs were then fitted with a 1D numerical flow model under steady-state conditions to obtain apparent CDE parameters. Two types of root architecture, a fibrous and a taprooted structure, were compared in virtual 3D experiments. The solute uptake type or the transpiration rate were also modified and we analyzed how these parameters affected apparent disperisivity and velocity profiles. Our simulation results show, that both, apparent velocity and dispersivity length are affected by water and solute root uptake. In addition, under high exclusion processes (slight or no active uptake), solute accumulates around roots and generates a long tailing to the breakthrough curves, which cannot be reproduced by 1D models that simulate root water uptake with solute exclusion. This observation may have an important impact on how to model pollutant mass transfer to groundwater at larger scales. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115. Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, P.A. Ferre, and H. Vereecken. 2011. Near-surface solute redistribution during evaporation. Submitted to Geophys. Res. Lett

  4. A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms.

    PubMed

    Zhao, Jia; Shen, Ya; Haapasalo, Markus; Wang, Zhejun; Wang, Qi

    2016-03-01

    We develop a 3D hydrodynamic model to investigate the mechanism of antimicrobial persistence in a multi-species oral biofilm and its recovery after being treated by bisbiguanide chlorhexidine gluconate (CHX). In addition to the hydrodynamic transport in the spatially heterogeneous biofilm, the model also includes mechanisms of solvent-biomass interaction, bacterial phenotype conversion, and bacteria-drug interaction. A numerical solver for the model is developed using a second order numerical scheme in 3D space and time and implemented on GPUs for high-performance computing. The model is calibrated against a set of experimental data obtained using confocal laser scan microscopy (CLSM) on multi-species oral biofilms, where a quantitative agreement is reached. Our numerical results reveal that quorum sensing molecules and growth factors in this model are instrumental in biofilm formation and recovery after the antimicrobial treatment. In particular, we show that (i) young biofilms are more susceptible to the antimicrobial treatment than the mature ones, (ii) this phenomenon is strongly correlated with volume fractions of the persister and EPS in the biofilm being treated. This suggests that antimicrobial treatment should be best administered to biofilms earlier before they mature to produce a thick protective EPS layer. In addition, the numerical study also indicates that an antimicrobial effect can be achieved should a proper mechanism be devised to minimize the conversion of susceptible bacteria to persisters during and even after the treatment. PMID:26739374

  5. Numerical 3D study of FZ growth: dependence on growth parameters and melt instability

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muižnieks, A.; Mühlbauer, A.; Raming, G.

    2001-08-01

    Three-dimensional modelling of the floating zone (needle-eye) crystal growth process is carried out to analyse numerically the stability of the melt flow and the influence of the crystal rotation rate and inductor slit width on the 3D flow field and on the grown crystal resistivity. The unsteadiness of the melt is simulated and it is found that for the considered growth parameters a steady-state flow can be a reasonable approximation to the unsteady melt motion. The parametric studies have shown that increasing the rotation rate essentially changes the flow pattern and weakens the rotational striations, while the inductor slit width has a more local influence on these characteristics.

  6. A parametric study of mucociliary transport by numerical simulations of 3D non-homogeneous mucus.

    PubMed

    Chatelin, Robin; Poncet, Philippe

    2016-06-14

    Mucociliary clearance is the natural flow of the mucus which covers and protects the lung from the outer world. Pathologies, like cystic fibrosis, highly change the biological parameters of the mucus flow leading to stagnation situations and pathogens proliferation. As the lung exhibits a complex dyadic structure, in-vivo experimental study of mucociliary clearance is almost impossible and numerical simulations can bring important knowledge about this biological flow. This paper brings a detailed study of the biological parameters influence on the mucociliary clearance, in particular for pathological situations such as cystic fibrosis. Using recent suitable numerical methods, a non-homogeneous mucus flow (including non-linearities) can be simulated efficiently in 3D, allowing the identification of the meaningful parameters involved in this biological flow. Among these parameters, it is shown that the mucus viscosity, the stiffness transition between pericilliary fluid and mucus, the pericilliary fluid height as well as both cilia length and beating frequency have a great influence on the mucociliary transport. PMID:27126985

  7. Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes

    NASA Astrophysics Data System (ADS)

    Berini, Pierre; Wu, Ke

    1995-05-01

    This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.

  8. 3D EM imaging from a single borehole; a numerical feasibility study

    SciTech Connect

    Alumbaugh, D.L.; Wilt, M.J.

    1998-07-01

    Often the drilling of an oil well is followed by a logging process to characterize the region immediately surrounding the well bore. The electromagnetic (EM) induction tool, which provides the formation resistivity, is among the most frequently run logs. A preliminary study has been conducted to analyze the feasibility of three dimensional (3D) electromagnetic (EM) imaging from a single borehole. The logging tool consists of a vertical magnetic dipole source and multiple 3 component magnetic field receivers offset at different distances from the source. Synthetic data calculated with a 3D finite difference code demonstrate that the phase of the horizontal magnetic fields provides the critical information on the three dimensionality of the medium. A 3D inversion algorithm is then employed to demonstrate the plausibility of 3D inversion using 3 component magnetic field data. Finally, problems associated with introducing biased noise into the horizontal components of the field through misalignment of the logging tool is discussed.

  9. Numerical study of elastic turbulence in a 3D curvilinear micro-channel

    NASA Astrophysics Data System (ADS)

    Zhang, Hongna; Kunugi, Tomoaki; Li, Fengchen

    2012-11-01

    Elastic turbulence is an intriguing phenomenon of viscoelastic fluid flow, and dominated by the strong nonlinear elasticity due to the existence of flexible microstructures. It implies the possibility to generate a turbulent state (so-called an elastic turbulence) in the micro-scale devices by introducing the viscoelastic fluids, which could significantly enhance the mixing efficiency therein. Several experiments have been carried out to study its characteristics and underlying physics. However, the difficulty in measuring the flow information and behaviors of the microstructures, especially in the cross section normal to the mean flow direction, limits our current understanding and controlling. In the present study, the nondimensionalization method in which the characteristic velocity is defined as the ratio of the solution viscosity to the width of the channel was adopted to simulate the elastic turbulence in the micro-scale devices. And the elastic turbulent flow was obtained numerically in the 3D curvilinear micro-channel. Therein, the characteristics of the velocity field and polymer's behavior are discussed. Moreover, the energy transfer between the kinetic energy and the polymer's elastic energy is also investigated to understand its physical mechanism. Supported by the Japan Society for the Promotion of Science research fellowship and the Ministry of Education, Culture, Sports, Science and Technology via `Energy Science in the Age of Global Warming' of Global Center of Excellence (G-COE) program (J-051).

  10. DynEarthSol3D: numerical studies of basal crevasses and calving blocks

    NASA Astrophysics Data System (ADS)

    Logan, E.; Lavier, L. L.; Choi, E.; Tan, E.; Catania, G. A.

    2014-12-01

    DynEarthSol3D (DES) is a thermomechanical model for the simulation of dynamic ice flow. We present the application of DES toward two case studies - basal crevasses and calving blocks - to illustrate the potential of the model to aid in understanding calving processes. Among the advantages of using DES are: its unstructured meshes which adaptively resolve zones of high interest; its use of multiple rheologies to simulate different types of dynamic behavior; and its explicit and parallel numerical core which both make the implementation of different boundary conditions easy and the model highly scalable. We examine the initiation and development of both basal crevasses and calving blocks through time using visco-elasto-plastic rheology. Employing a brittle-to-ductile transition zone (BDTZ) based on local strain rate shows that the style and development of brittle features like crevasses differs markedly on the rheological parameters. Brittle and ductile behavior are captured by Mohr-Coulomb elastoplasticity and Maxwell viscoelasticity, respectively. We explore the parameter spaces which define these rheologies (including temperature) as well as the BDTZ threshold (shown in the literature as 10-7 Pa s), using time-to-failure as a metric for accuracy within the model. As the time it takes for a block of ice to fail can determine an iceberg's size, this work has implications for calving laws.

  11. Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.

    2016-01-01

    We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.

  12. A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry

    SciTech Connect

    Goldberg, K.A. |; Tejnil, E.; Bokor, J. |

    1995-12-01

    A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.

  13. A numerical study of the 3D random interchange and random loop models

    NASA Astrophysics Data System (ADS)

    Barp, Alessandro; Barp, Edoardo Gabriele; Briol, François-Xavier; Ueltschi, Daniel

    2015-08-01

    We have studied numerically the random interchange model and related loop models on the three-dimensional cubic lattice. We have determined the transition time for the occurrence of long loops. The joint distribution of the lengths of long loops is Poisson-Dirichlet with parameter 1 or \\frac{1}{2}.

  14. Numerical study of 3-D inducer and impeller for pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.

    1993-01-01

    Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.

  15. Numerical simulation of 3D breaking waves

    NASA Astrophysics Data System (ADS)

    Fraunie, Philippe; Golay, Frederic

    2015-04-01

    Numerical methods dealing with two phase flows basically can be classified in two ways : the "interface tracking" methods when the two phases are resolved separately including boundary conditions fixed at the interface and the "interface capturing" methods when a single flow is considered with variable density. Physical and numerical properties of the two approaches are discussed, based on some numerical experiments performed concerning 3D breaking waves. Acknowledgements : This research was supported by the Modtercom program of Region PACA.

  16. 3D numerical study of tumor microenvironmental flow in response to vascular-disrupting treatments.

    PubMed

    Wu, Jie; Cai, Yan; Xu, Shixiong; Longs, Quan; Ding, Zurong; Dong, Cheng

    2012-06-01

    The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three groups, and disrupting vessels of lower maturity could effectively enhance fluid transport across vasculature into interstitial space. PMID:23113373

  17. Numerical and experimental study of the 3D effect on connecting arm of vertical axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin

    2016-03-01

    Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.

  18. Non-Newtonian Fluids Spreading with Surface Tension Effect: 3D Numerical Analysis Using FEM and Experimental Study

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Kieweg, Sarah

    2010-11-01

    Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.

  19. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    SciTech Connect

    Chae, Y.C.

    1998-09-01

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.

  20. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  1. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

    NASA Astrophysics Data System (ADS)

    Shigang, Ai; Rujie, He; Yongmao, Pei

    2015-12-01

    Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

  2. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  3. A 3-D numerical study of turbulent flow and solidification of a direct chill caster fitted with a channel bag

    NASA Astrophysics Data System (ADS)

    Begum, Latifa; Hasan, Mainul

    2015-06-01

    3-D CFD simulations were carried out for a vertical direct chill slab caster for an aluminum-alloy AA-1050. The code was verified with an experimental study and reasonably good agreements were obtained. The casting speed and the metal-mold contact heat transfer coefficient were varied from 40 to 100 mm/min and from 750 to 3,000 W/m2 K), respectively. The velocity field, temperature contours and important quantities for different casting speeds are predicted.

  4. A 3-D prognostic numerical model study of the Georges Bank ecosystem. Part I: physical model1

    NASA Astrophysics Data System (ADS)

    Chen, Changsheng; Beardsley, Robert; Franks, Peter J. S.

    The influence of tidal forcing and tidal and wind mixing on circulation and stratification over Georges Bank and adjacent regions in the Gulf of Maine has been examined using the 3-D semi-implicit version of the Blumberg and Mellor (1987) primitive equation ocean-circulation model. The numerical domain covered the Gulf of Maine/Georges Bank region with an open boundary starting at the New Jersey coast and ending at the Nova Scotia coast, with increased spatial resolution over Georges Bank. Numerical experiments were conducted using both smoothed and non-smoothed high-resolution (15 s) bottom topography. The model was forced by specifying the M 2 elevation and phase on the open boundary, and several forms of the bottom roughness parameter zo were used. The model provided a reasonable simulation of the M 2 tidal elevations and currents. The model, when run as an initial value problem with early summer stratification, exhibited tidal mixing fronts around the 40-60 m isobath over Georges Bank and Nantucket Shoals, and 100-m isobath on Brown Bank. The formation of these tidal mixing fronts significantly enhanced the along-isobath tidal rectified current over Georges Bank and the other two shoal regions. A cool-water band developed within the frontal zone along the eastern and southern flanks of Georges Bank and Nantucket Shoal, and it became cooler owing to wind mixing and upwelling as a mean summer wind stress was added. Tidal mixing and turbulent dissipation varied in time asymmetrically over Georges Bank. Over Georges Bank, tidal mixing was generally characterized as a local 1-D balance between turbulent shear production and dissipation. The spatial structure of the tidal residual flow and local turbulent dissipation rate depended critically on the spatial resolution of the bottom topography and the spatial distribution of z0. Analysis of the 3-D momentum balance and the residual flow over the center of Georges Bank indicates that earlier results based on a 2-D cross

  5. Progress in the Peeling-Ballooning Model of ELMs: Numerical Studies of 3D Nonlinear ELM Dynamics

    SciTech Connect

    Snyder, P B; Wilson, H R; Xu, X Q

    2004-12-13

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the non-linear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outer wall. Similarities to non-linear linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  6. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS

    SciTech Connect

    SNYDER,P.B; WILSON,H.R; XU,X.Q

    2004-11-01

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  7. Numerical study of atmospheric particulate matters: source apportionment to characterize 3D transport and transformation of precursors and secondary pollutants

    NASA Astrophysics Data System (ADS)

    Wu, Dongwei

    In recent years, Mainland China, and in particular the industrial hotbed of the Pearl River Delta (PRD) has experienced an increasingly serious problem of high concentrations of airborne particulate matter. Following the tightening-up of China's air quality policies in recent years, and with especially fine particles now added to a new air quality objective, the identification of major source regions and major types of pollutants has become critically important. In this study, a source-oriented method (Particulate Source Apportionment Technology: PSAT) implemented in 3-D Comprehensive Air Quality Model (CAMx), has been applied to analyze how different emission activities impact fine particle concentration in the PRD region. By using this method, a detailed source region and emission category contribution matrix is derived for all regions within the Hong Kong/PRD region. Source appointment results shows that, in summer and spring time, emissions inside PRD region are the major fine particle sources, contribution 70.7% (11.2 mug/m3) and 52.5% (13.1 mug/m3) to the total figure. Super-regional transports are found to be significant in autumn and winter, contribution 58.5% (20.2 mug/m3) and 64.6% (27.8 mug/m3) of the total fine particles in PRD and Hong Kong region. Another important cause of high PM levels has been the transport of fine particles between cities within the PRD region, with three different regions selected for detailed analysis. Results show that mobile vehicle and industry emission are the two major sources for fine particles. Meanwhile, over the same period in Hong Kong, marine proved to be another very significant source of particle pollutant in addition to the significant impact from motor vehicle. Results show that for the Hong Kong/PRD region local reduction of mobile sources and collaboration between different areas could have succeeded in alleviating the air pollution problem.

  8. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  9. Numerical analysis of 3-D potential flow in centrifugal turbomachines

    NASA Astrophysics Data System (ADS)

    Daiguji, H.

    1983-09-01

    A numerical method is developed for analysing a three-dimensional steady incompressible potential flow through an impeller in centrifugal turbomachines. The method is the same as the previous method which was developed for the axial flow turbomachines, except for some treatments in the downstream region. In order to clarify the validity and limitation of the method, a comparison with the existing experimental data and numerical results is made for radial flow compressor impellers. The calculated blade surface pressure distributions almost coincide with the quasi-3-D calculation by Krimerman and Adler (1978), but are different partly from the quasi-3-D calculation using one meridional flow analysis. It is suggested from this comparison that the flow through an impeller with high efficiency near the design point can be predicted by this fully 3-D numerical method.

  10. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast - A numerical study.

    PubMed

    Das, Koushik; Mishra, Subhash C

    2015-08-01

    This article reports a numerical study pertaining to simultaneous estimation of size, radial location and angular location of a malignant tumor in a 3-D human breast. The breast skin surface temperature profile is specific to a tumor of specific size and location. The temperature profiles are always the Gaussian one, though their peak magnitudes and areas differ according to the size and location of the tumor. The temperature profiles are obtained by solving the Pennes bioheat equation using the finite element method based solver COMSOL 4.3a. With temperature profiles known, simultaneous estimation of size, radial location and angular location of the tumor is done using the curve fitting method. Effect of measurement errors is also included in the study. Estimations are accurate, and since in the inverse analysis, the curve fitting method does not require solution of the governing bioheat equation, the estimation is very fast. PMID:26267509

  11. 3-D numerical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  12. Collision of continental corner from 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hai; Xu, Zhiqin; Gerya, Taras; Burg, Jean-Pierre

    2013-10-01

    Continental collision has been extensively investigated with 2-D numerical models assuming infinitely wide plates or insignificant along-strike deformation in the third dimension. However, the corners of natural collision zones normally have structural characteristics that differ from linear parts of mountain belt. We conducted 3-D high-resolution numerical simulations to study the dynamics of a continental corner (lateral continental/oceanic transition zone) during subduction/collision. The results demonstrate different modes between the oceanic subduction side (continuous subduction and retreating trench) and the continental collision side (slab break-off and topography uplift). Slab break-off occurs at a depth (⩽100 km to ˜300 km) that depends on the convergence velocity. The numerical models produce lateral extrusion of the overriding crust from the collisional side to the subduction side, which is also a phenomenon recognized around natural collision of continental corners, for instance around the western corner of the Arabia-Asia collision zone and around the eastern corner of the India-Asia collision zone. Modeling results also indicate that extrusion tectonics may be driven both from above by the topography and gravitational potentials and from below by the trench retreat and asthenospheric mantle return flow, which supports the link between deep mantle dynamics and shallower crustal deformation.

  13. 3D numerical model for NGC 6888 Nebula

    NASA Astrophysics Data System (ADS)

    Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.

    We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.

  14. The numerical measure of symmetry for 3D stick creatures.

    PubMed

    Jaśkowski, Wojciech; Komosinski, Maciej

    2008-01-01

    This work introduces a numerical, continuous measure of symmetry for 3D stick creatures and solid 3D objects. Background information about the property of symmetry is provided, and motivations for developing a symmetry measure are described. Three approaches are mentioned, and two of them are presented in detail using formal mathematical language. The best approach is used to sort a set of creatures according to their symmetry. Experiments with a mixed set of 84 individuals originating from both human design and evolution are performed to examine symmetry within these two sources, and to determine if human designers and evolutionary processes prefer symmetry or asymmetry. PMID:18573069

  15. A 3D numerical study of LO2/GH2 supercritical combustion in the ONERA-Mascotte Test-rig configuration

    NASA Astrophysics Data System (ADS)

    Benmansour, Abdelkrim; Liazid, Abdelkrim; Logerais, Pierre-Olivier; Durastanti, Jean-Félix

    2016-02-01

    Cryogenic propellants LOx/H2 are used at very high pressure in rocket engine combustion. The description of the combustion process in such application is very complex due essentially to the supercritical regime. Ideal gas law becomes invalid. In order to try to capture the average characteristics of this combustion process, numerical computations are performed using a model based on a one-phase multi-component approach. Such work requires fluid properties and a correct definition of the mixture behavior generally described by cubic equations of state with appropriated thermodynamic relations validated against the NIST data. In this study we consider an alternative way to get the effect of real gas by testing the volume-weighted-mixing-law with association of the component transport properties using directly the NIST library data fitting including the supercritical regime range. The numerical simulations are carried out using 3D RANS approach associated with two tested turbulence models, the standard k-Epsilon model and the realizable k-Epsilon one. The combustion model is also associated with two chemical reaction mechanisms. The first one is a one-step generic chemical reaction and the second one is a two-step chemical reaction. The obtained results like temperature profiles, recirculation zones, visible flame lengths and distributions of OH species are discussed.

  16. 3D numerical study of the propagation characteristics of a consequence of coronal mass ejections in a structured ambient solar wind

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.

    2015-12-01

    CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness

  17. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  18. 3-D Numerical Field Calculations of CESR's Upgraded Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Greenwald, Zipi; Greenwald, Shlomo

    1997-05-01

    A 3-D numerical code( Z. Greenwald, ``BST.c 3-D Magnetic Field Calculation Numerical Code'', Cornell University Note 96-09) was used to calculate the spatial magnetic fields generated by a current carrying wire. In particular, the code calculates the fields of wire loops wrapped on a pipe similar to superconductive magnet structures. The arrangement and dimensions of the loops can be easily modified to create dipoles, quadrupoles, skew magnets etc., and combinations of the above. In this paper we show the calculated 3-D fields of ironless superconducting quadrupole dipole combination designed for CESR phase III upgrade (which will be manufactured by TESLA). Since the magnet poles are made of loops, the fields at the edges are not only distorted but have a component, B_z, in the z direction as well. This Bz field can cause X-Y coupling of the beam. In order to calculate the coupling, the particle trajectories through the whole magnet were computed. The code is also used to calculate local fields errors due to possible manufacturing imperfections. An example of a rotational error of one pole, and an example of an error in the winding width are shown.

  19. Numerical parameter studies of 3D melt flow and interface shape for directional solidification of silicon in a traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Vizman, D.; Dadzis, K.; Friedrich, J.

    2013-10-01

    The role of various growth and process conditions (Lorentz force, temperature gradients in the melt and the crystal, steady-state crystallization velocity) in directional solidification of multicrystalline silicon in a traveling magnetic field is analyzed for a research-scale furnace (melt size of 22×22×11 cm3). The influence on the melt flow pattern, the typical melt flow velocity, the oscillation amplitude of the velocity and the temperature, the shape of the crystallization interface is determined using three-dimensional (3D) numerical calculations with the STHAMAS3D software and a local quasi steady-state model. It was found that both the interface shape and the melt flow are sensitive to the variation of the considered growth and process parameters.

  20. Numerical simulation of vortex breakdown via 3-D Euler equations

    NASA Astrophysics Data System (ADS)

    Le, T. H.; Mege, P.; Morchoisne, Y.

    1990-06-01

    The long term goal is the modeling of vortex breakdown that occurs in some aerodynamic configurations at high angle of attack, (i.e., fighters with highly swept delta wings or missiles). A numerical simulation was made based on solving the 3-D Euler equations for an usteady incompressible flow. Preliminary results were obtained using a pressure-velocity formulation with periodic boundary conditions, the Euler equations being discretized by 2nd order finite difference schemes. The continuation to this work by implementing more realistic boundary conditions and 4th order finite difference discretization schemes are presented.

  1. Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D)

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Ota, Atsuhito; Mukai, Yasuaki; Hosono, Takumi

    2012-07-01

    Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluids alone, there are high expectations for use of slush fluids as functionally thermal fluids in various applications, such as fuels for spacecraft engines, clean energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. In this research, a three-dimensional numerical simulation code (SLUSH-3D), including the gravity effect based on the thermal non-equilibrium, two-fluid model, was constructed to clarify the flow and heat-transfer characteristics of cryogenic slush fluids in a horizontal circular pipe. The calculated results of slush nitrogen flow performed using the numerical code were compared with the authors' experimental results obtained using the PIV method. As a result of these comparisons, the numerical code was verified, making it possible to analyze the flow and heat-transfer characteristics of slush nitrogen with sufficient accuracy. The numerical results obtained for the flow and heat-transfer characteristics of slush nitrogen and slush hydrogen clarified the effects of the pipe inlet velocity, solid fraction, solid particle size, and heat flux on the flow pattern, solid-fraction distribution, turbulence energy, pressure drop, and heat-transfer coefficient. Furthermore, it became clear that the difference of the flow and heat-transfer characteristics between slush nitrogen and slush hydrogen were caused to a large extent by their thermo-physical properties, such as the solid-liquid density ratio, liquid viscosity, and latent heat of fusion.

  2. 3D visualization of numeric planetary data using JMARS

    NASA Astrophysics Data System (ADS)

    Dickenshied, S.; Christensen, P. R.; Anwar, S.; Carter, S.; Hagee, W.; Noss, D.

    2013-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. In addition to visualizing multiple datasets in context with one another, significant effort has been put into on-the-fly projection of georegistered data over surface topography. This functionality allows a user to easily create and modify 3D visualizations of any regional scene where elevation data is available in JMARS. This can be accomplished through the use of global topographic maps or regional numeric data such as HiRISE or HRSC DTMs. Users can also upload their own regional or global topographic dataset and use it as an elevation source for 3D rendering of their scene. The 3D Layer in JMARS allows the user to exaggerate the z-scale of any elevation source to emphasize the vertical variance throughout a scene. In addition, the user can rotate, tilt, and zoom the scene to any desired angle and then illuminate it with an artificial light source. This scene can be easily overlain with additional JMARS datasets such as maps, images, shapefiles, contour lines, or scale bars, and the scene can be easily saved as a graphic image for use in presentations or publications.

  3. Impedance mammograph 3D phantom studies.

    PubMed

    Wtorek, J; Stelter, J; Nowakowski, A

    1999-04-20

    The results obtained using the Technical University of Gdansk Electroimpedance Mammograph (TUGEM) of a 3D phantom study are presented. The TUGEM system is briefly described. The hardware contains the measurement head and DSP-based identification modules controlled by a PC computer. A specially developed reconstruction algorithm, Regulated Correction Frequency Algebraic Reconstruction Technique (RCFART), is used to obtain 3D images. To visualize results, the Advance Visualization System (AVS) is used. It allows a powerful image processing on a fast workstation or on a high-performance computer. Results of three types of 3D conductivity perturbations used in the study (aluminum, Plexiglas, and cucumber) are shown. The relative volumes of perturbations less than 2% of the measurement chamber are easily evidenced. PMID:10372188

  4. Numerical model of sonic boom in 3D kinematic turbulence

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Luquet, David; Marchiano, Régis

    2015-10-01

    Sonic boom is one of the key issues to be considered in the development of future supersonic or hypersonic civil aircraft concepts. The classical sonic boom, typical for Concorde with an N-wave shape and a ground amplitude of the order of 100 Pa, prevents overland flight. Future concepts target carefully shaped sonic booms with low amplitude weak shocks. However, sonic boom when perceived at the ground level is influenced not only by the aircraft characteristics, but also by atmospheric propagation. In particular, the effect of atmospheric turbulence on sonic boom propagation near the ground is not well characterized. Flight tests performed as early as the 1960s demonstrated that classical sonic booms are sensitive to atmospheric turbulence. However, this sensitivity remains only partially understood. This is related to the fact that i) turbulence is a random process that requires a statistical approach, ii) standard methods used to predict sonic booms, mainly geometrical acoustics based on ray tracing, are inadequate within the turbulent planetary boundary layer. Moreover, the ray theory fails to predict the acoustical field in many areas of interest, such as caustics or shadow zones. These zones are of major interest for sonic boom acceptability (highest levels, lateral extent of zone of impact). These limitations outline the need for a numerical approach that is sufficiently efficient to perform a large number of realizations for a statistical approach, but that goes beyond the limitations of ray theory. With this in view, a 3D one-way numerical method solving a nonlinear scalar wave equation established for heterogeneous, moving and absorbing atmosphere, is used to assess the effects of a 3D kinematic turbulence on sonic boom in various configurations. First, a plane N-wave is propagated in the free field through random realizations of kinematic fluctuations. Then the case of a more realistic Atmospheric Boundary Layer (ABL) is investigated, with a mean

  5. Numerical Results of Earth's Core Accumulation 3-D Modelling

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  6. A 3D numerical model for Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.

    2014-07-01

    We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M⊙ yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.

  7. 3D numerical modeling of India-Asia-like collision

    NASA Astrophysics Data System (ADS)

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B

  8. 3-D numerical simulations of volcanic ash transport and deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  9. A 3D numerical study of the collateral capacity of the circle of Willis with anatomical variation in the posterior circulation

    PubMed Central

    2015-01-01

    Background The Circle of Willis (CoW) is the most important collateral pathway of the cerebral artery. The present study aims to investigate the collateral capacity of CoW with anatomical variation when unilateral internalcarotid artery (ICA) is occluded. Methods Basing on MRI data, we have reconstructed eight 3D models with variations in the posterior circulation of the CoW and set four different degrees of stenosis in the right ICA, namely 24%, 43%, 64% and 79%, respectively. Finally, a total of 40 models are performed with computational fluid dynamics simulations. All of the simulations share the same boundary condition with static pressure and the volume flow rate (VFR) are obtained to evaluate their collateral capacity. Results As for the middle cerebral artery (MCA) and the anterior cerebral artery (ACA), the transitional-type model possesses the best collateral capacity. But for the posterior cerebral artery (PCA), unilateral stenosis of ICA has the weakest influence on the unilateral posterior communicating artery (PCoA) absent model. We also find that the full fetal-type posterior circle of Willis is an utmost dangerous variation which must be paid more attention. Conclusion The results demonstrate that different models have different collateral capacities in coping stenosis of unilateral ICA and these differences can be reflected by different outlets. The study could be used as a reference for neurosurgeon in choosing the best treatment strategy. PMID:25603312

  10. Numerical Results of 3-D Modeling of Moon Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity

  11. Advantages of 3D FEM numerical modeling over 2D, analyzed in a case study of transient thermal-hydraulic groundwater utilization

    NASA Astrophysics Data System (ADS)

    Fuchsluger, Martin; Götzl, Gregor

    2014-05-01

    flow has been realized. In addition the effects of the basement of the building to the groundwater flow have been analyzed. The results of the 2D model show an underestimation of more than 10 % of the performance of the groundwater utilization facility and a considerable smaller groundwater table drawdown compared to the 3D simulations. This is due to the possibility of 3D modeling to consider (i) the heat distribution and storage in the adjacent layers, (ii) the climatic surface effect and (iii) vertical groundwater flow.

  12. Patient-Specific Simulations of Reactivity in Models of the Pulmonary Vasculature: A 3-D Numerical Study with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Hunter, Kendall; Zhang, Yanhang; Lanning, Craig

    2005-11-01

    Insight into the progression of pulmonary hypertension may be obtained from thorough study of vascular flow during reactivity testing, an invasive diagnostic procedure which can dramatically alter vascular hemodynamics. Diagnostic imaging methods, however, are limited in their ability to provide extensive data. Here we present detailed flow and wall deformation results from simulations of pulmonary arteries undergoing this procedure. Patient-specific 3-D geometric reconstructions of the first four branches of the pulmonary vasculature were obtained clinically and meshed for use with computational software. Transient simulations in normal and reactive states were obtained from four such models were completed with patient-specific velocity inlet conditions and flow impedance exit conditions. A microstructurally based orthotropic hyperelastic model that simulates pulmonary artery mechanics under normotensive and hypoxic hypertensive conditions treated wall constitutive changes due to pressure reactivity and arterial remodeling. Pressure gradients, velocity fields, arterial deformation, and complete topography of shear stress were obtained. These models provide richer detail of hemodynamics than can be obtained from current imaging techniques, and should allow maximum characterization of vascular function in the clinical situation.

  13. Numerical Study of Velocity Shear Stabilization of 3D and Theoretical Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited Fusion Concepts

    SciTech Connect

    Hassam, Adil

    2015-09-21

    We studied the feasibility of resonantly driving GAMs in tokamaks. A numerical simulation was carried out and showed the essential features and limitations. It was shown further that GAMs can damp by phase-mixing, from temperature gradients, or nonlinear detuning, thus broadening the resonance. Experimental implications of this were quantified. Theoretical support was provided for the Maryland Centrifugal Experiment, funded in a separate grant by DOE. Plasma diamagnetism from supersonic rotation was established. A theoretical model was built to match the data. Additional support to the experiment in terms of numerical simulation of the interchange turbulence was provided. Spectra from residual turbulence on account of velocity shear suppression were obtained and compared favorably to experiment. A new drift wave, driven solely by the thermal force, was identified.

  14. The 3-D numerical study of airflow in the compressor/combustor prediffuser and dump diffuser of an industrial gas turbine

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Yang, Tah-Teh

    1993-01-01

    This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.

  15. 3D numerical simulation analysis of passive drag near free surface in swimming

    NASA Astrophysics Data System (ADS)

    Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx

    2015-04-01

    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  16. Numerical simulation of 3-D Benard convection with gravitational modulation

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Peltier, L. J.

    1990-01-01

    In this numerical study, randomly and sinusoidally modulated gravitational fields imposed on three-dimensional Rayleigh-Benard convection are investigated in an effort to understand the effects of vibration (G-Jitter) on fluid systems. The time-dependent, Navier-Stokes equations and the energy equation with Boussinesq approximations are solved by a semi-implicit, pseudospectral procedure. An analysis of energy balances indicates that with increasing modulation amplitude, transition from synchronous to relaxation oscillation goes through the subharmonic response. Random modulations are found to be less stabilizing than sinusoidal and are shown to impose three-dimensionality on the flow for some parameter ranges both at terrestrial and zero base gravity conditions.

  17. 3D numerical simulations of vesicle and inextensible capsule dynamics

    NASA Astrophysics Data System (ADS)

    Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi

    2014-10-01

    Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.

  18. 3-D numerical evaluation of density effects on tracer tests.

    PubMed

    Beinhorn, M; Dietrich, P; Kolditz, O

    2005-12-01

    In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow. PMID:16183165

  19. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  20. Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes

    NASA Astrophysics Data System (ADS)

    Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent

    2015-12-01

    Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.

  1. Numerical solution of 3-D magnetotelluric using vector finite element method

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2015-09-01

    Magnetotelluric (MT) is a passive electromagnetic (EM) method which measure natural variations of electric and magnetic vector fields at the Earth surface to map subsurface electrical conductivity/resistivity structure. In this study, we obtained numerical solution of three-dimensional (3-D) MT using vector finite element method by solving second order Maxwell differential equation describing diffusion of plane wave through the conductive earth. Rather than the nodes of the element, the edges of the element is used as a vector basis to overcome the occurrence of nonphysical solutions that usually faced by scalar (node based) finite element method. Electric vector fields formulation was used and the resulting system of equation was solved using direct solution method to obtain the electric vector field distribution throughout the earth resistivity model structure. The resulting MT response functions was verified with 1-D layered Earth and 3-D2 COMMEMI outcropping structure. Good agreement is achieved for both structure models.

  2. Levitation Performance Study of Bulk HTSC over Monopole PMG Consider Different Cross-Section Configuration with 3D-Modeling Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Dang, Qiaohong; Liu, Minxian

    2013-10-01

    Magnetic levitation force of bulk high temperature superconductors (HTSCs) above monopole permanent magnet guideway (PMG) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E- J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTSC. By the method, the levitation performance is studied consider different cross-section configure of the monopole PMG. The simulation results show that the maximum levitation force (MLF) of the bulk HTSC will increase when the height/width of the PMG rises while fixing the width/height of the monopole PMG cross-section. The increasing trends to slow when the absolute differential value of the height and the width of the PMG cross-section become larger and larger. For a certain cross-section area of the monopole PMG, the economical levitation cost may be achieved while the ratio of height to width of the cross-section changes between 0.475 and 0.525.

  3. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  4. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2016-08-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  5. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.

    2011-11-01

    We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we

  6. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  7. Experimental Study of Electrothermal 3D Mixing using 3D microPIV

    NASA Astrophysics Data System (ADS)

    Kauffmann, Paul; Loire, Sophie; Meinhart, Carl; Mezic, Igor

    2012-11-01

    Mixing is a keystep which can greatly accelerate bio-reactions. For thirty years, dynamical system theory has predicted that chaotic mixing must involve at least 3 dimensions (either time dependent 2D flows or 3D flows). So far, 3D embedded chaotic mixing has been scarcely studied at microscale. In that regard, electrokinetics has emerged as an efficient embedded actuation to drive microflows. Physiological mediums can be driven by electrothermal flows generated by the interaction of an electric field with conductivity and permittivity gradients induced by Joule heating We present original electrothermal time dependant 3D (3D+1) mixing in microwells. The key point of our chaotic mixer is to generate overlapping asymmetric vortices, which switch periodically. When the two vortex configurations blink, flows stretch and fold, thereby generating chaotic advection. Each flow configuration is characterized by an original 3D PIV (3 Components / 3 Dimensions) based on the decomposition of the flows by Proper Orthogonal Decomposition. Velocity field distribution are then compared to COMSOL simulation and discussed. Mixing efficiency of low diffusive particles is studied using the mix-variance coefficient and shows a dramatic increase of mixing efficiency compared to steady flow.

  8. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    NASA Astrophysics Data System (ADS)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  9. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.

    PubMed

    Qureshi, Awais; Li, Bing; Tan, K T

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  10. NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Graen, Timo; Grubmüller, Helmut

    2016-01-01

    The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov's method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.

  11. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    PubMed Central

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  12. Effect of Frictions on the Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Ha-Minh, Cuong; Boussu, François; Kanit, Toufik; Crépin, David; Imad, Abdellatif

    2012-06-01

    3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2® fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.

  13. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  14. Imaging 3D geological structure of the Mygdonian basin (Northern Greece) with geological numerical modeling and geophysical methods.

    NASA Astrophysics Data System (ADS)

    Cédric, Guyonnet-Benaize; Fabrice, Hollender; Maria, Manakou; Alexandros, Savvaidis; Elena, Zargli; Cécile, Cornou; Nikolaos, Veranis; Dimitrios, Raptakis; Artemios, Atzemoglou; Pierre-Yves, Bard; Nikolaos, Theodulidis; Kyriazis, Pitilakis; Emmanuelle, Chaljub

    2013-04-01

    The Mygdonian basin, located 30 km E-NE close to Thessaloniki, is a typical active tectonic basin, trending E-NW, filled by sediments 200 to 400 m thick. This basin has been chosen as a European experimental site since 1993 (European Commission research projects - EUROSEISTEST). It has been investigated for experimental and theoretical studies on site effects. The Mygdonian basin is currently covered by a permanent seismological network and has been mainly characterized in 2D and 3D with geophysical and geotechnical studies (Bastani et al, 2011; Cadet and Savvaidis, 2011; Gurk et al, 2007; Manakou et al, 2007; Manakou et al, 2010; Pitilakis et al, 1999; Raptakis et al, 2000; Raptakis et al, 2005). All these studies allowed understanding the influence of geological structures and local site conditions on seismic site response. For these reasons, this site has been chosen for a verification exercise for numerical simulations in the framework of an ongoing international collaborative research project (Euroseistest Verification and Validation Project - E2VP). The verification phase has been made using a first 3D geophysical and geotechnical model (Manakou, 2007) about 5 km wide and 15 km long, centered on the Euroseistest site. After this verification phase, it has been decided to update, optimize and extend this model in order to obtain a more detailed model of the 3D geometry of the entire basin, especially the bedrock 3D geometry which can affect drastically the results of numerical simulations for site effect studies. In our study, we build a 3D geological model of the present-day structure of the entire Mygdonian basin. This "precise" model is 12 km wide, 65 km long and is 400 m deep in average. It has been built using geophysical, geotechnical and geological data. The database is heterogeneous and composed of hydrogeological boreholes, seismic refraction surveys, array microtremor measurements, electrical and geotechnical surveys. We propose an integrated

  15. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  16. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  17. 3D numerical analysis of crack propagation of heterogeneous notched rock under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Sloan, S. W.; Sheng, D. C.; Tang, C. A.

    2016-05-01

    Macroscopic notches play an important role in evaluating the fracture process zone (FPZ) and the strengths of a heterogeneous rock mass. Crack initiation, propagation and coalescence for unnotched, single-notched and double-notched rock specimens are numerically simulated in a 3-D numerical model (RFPA3D). A feature of the code RFPA3D is that it can numerically simulate the evolution of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. For the unnotched case, special attention is given to the complete stress-strain curve and the corresponding AE events for the failure process of rock specimen. By comparing with published experimental results, the simulation results from RFPA3D are found to be satisfactory. For the single-notched case, the effect of the length and the depth of the single notch and the thickness of the specimen on the failure mode and peak stress are evaluated. The 3D FPZ is very different from that in two dimensions. For the double-notched case, the effects of the separation distance and overlap distance of the double notches, as well as influence of the homogeneity index (m) are also investigated. As the overlap distance increases, the direction of the principal tensile stress at each notch-end changes from a perpendicular direction (tensile stress field) to a nearly parallel direction (compressive stress field), which affects the evolution of the cracks from the two notches.

  18. Improvements to the RELAP5-3D Nearly-Implicit Numerical Scheme

    SciTech Connect

    Richard A. Riemke; Walter L. Weaver; RIchard R. Schultz

    2005-05-01

    The RELAP5-3D computer program has been improved with regard to its nearly-implicit numerical scheme for twophase flow and single-phase flow. Changes were made to the nearly-implicit numerical scheme finite difference momentum equations as follows: (1) added the velocity flip-flop mass/energy error mitigation logic, (2) added the modified Henry-Fauske choking model, (3) used the new time void fraction in the horizontal stratification force terms and gravity head, and (4) used an implicit form of the artificial viscosity. The code modifications allow the nearly-implicit numerical scheme to be more implicit and lead to enhanced numerical stability.

  19. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  20. 3D numerical investigation on landslide generated tsunamis around a conical island

    NASA Astrophysics Data System (ADS)

    Montagna, Francesca; Bellotti, Giorgio

    2010-05-01

    This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we

  1. Facies distribution, heterogeneity study and numerical 3D modeling of a multilayered Rhaetian-Lower Cretaceous aquifer succession in the Höllviken Halfgraben, SW Skåne, Sweden - assessment of suitability for storage of CO2

    NASA Astrophysics Data System (ADS)

    Erlström, M.; Niemi, A.; Lindström, S.; Gunnarsson, N.; Daher, S. Bou

    2012-04-01

    llviken Halfgraben. Relatively less sand in wells away from the main faults imply a distal position and/or a lack of accumulation space. In this study special emphasis is in building a 3D site model by using the simulation software Petrel, evaluating geostatistical data as well as stochastic simulations by using different geostatistical algorithms and evaluating the benefits in this. The primary aim has been to produce a 3D model of the distribution patterns of the different facies and the porosity. The results will be used for CO2 injection simulation purposes in the continuing work of CO2 Mustang (EU Fp 7 project).

  2. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model.

    PubMed

    Huang, Qinghua; Lin, Yufeng

    2010-01-01

    Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity. PMID:20228625

  3. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model

    PubMed Central

    Huang, Qinghua; Lin, Yufeng

    2010-01-01

    Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity. PMID:20228625

  4. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  5. Wavelength selection and evolution in high-resolution 3D numerical models of multilayer detachment folding

    NASA Astrophysics Data System (ADS)

    Fernandez, N.; Kaus, B. J. P.

    2012-04-01

    Many fold-and-thrust belts are dominated by crustal scale folding that exhibits fairly regular fold spacing. For example, the Fars region in the Zagros Mountains shows a fold spacing with a normal distribution around a dominant wavelength of 14 Km ± 3 Km, yet having a wide variability of aspect ratios (length to wavelength ratios; Yamato et al., 2011). To which extend this is consistent with a crustal-scale folding instability or how the regional spacing of folding can be used to constrain regional rheological parameters are not fully resolved questions. To get insights into these problems we have investigated the dominant wavelength selection and evolution in a true multilayer system (Schmid and Podlachikov, 2006) with three different viscosities: lower salt layer (ηs), and overlying weak layers (ηw) and competent layers (ηc). This has been done by means of two tools: a semi-analytical solution and numerical models. The 2D semi-analytical approach was applied to derive mechanical phase diagrams that can be used to distinguish different folding modes using two viscosity ratios (R1= ηc/ ηs and R2= ηc/ ηw). To test the validity of the phase diagrams beyond the initial stages of folding for which the analytical approach is valid, we performed several 3D high-resolution forward numerical runs using a finite element code (LaMEM). Additionally, irregular bottom topography was implemented in the numerical runs in order to account for variable salt thickness distribution and consequently study its effect on the wavelength selection. A straight but gradual salt thickness variation, sudden thickness variations due to a basement step or an arc shaped salt basin among other cases could be investigated. It was observed that the bottom topography exerts an impact on the velocity field of the different folding modes and as a result, its influence can be observed on the resulting topography. However, not all the folding modes exhibit an initial wavelength that is dependent

  6. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  7. 3D geomechanical-numerical modelling of the absolute stress state for geothermal reservoir exploration

    NASA Astrophysics Data System (ADS)

    Reiter, Karsten; Heidbach, Oliver; Moeck, Inga

    2013-04-01

    For the assessment and exploration of a potential geothermal reservoir, the contemporary in-situ stress is of key importance in terms of well stability and orientation of possible fluid pathways. However, available data, e.g. Heidbach et al. (2009) or Zang et al. (2012), deliver only point wise information of parts of the six independent components of the stress tensor. Moreover most measurements of the stress orientation and magnitude are done for hydrocarbon industry obvious in shallow depth. Interpolation across long distances or extrapolation into depth is unfavourable, because this would ignore structural features, inhomogeneity's in the crust or other local effects like topography. For this reasons geomechanical numerical modelling is the favourable method to quantify orientations and magnitudes of the 3D stress field for a geothermal reservoir. A geomechanical-numerical modelling, estimating the 3D absolute stress state, requires the initial stress state as model constraints. But in-situ stress measurements within or close by a potential reservoir are rare. For that reason a larger regional geomechanical-numerical model is necessary, which derive boundary conditions for the wanted local reservoir model. Such a large scale model has to be tested against in-situ stress measurements, orientations and magnitudes. Other suitable and available data, like GPS measurements or fault slip rates are useful to constrain kinematic boundary conditions. This stepwise approach from regional to local scale takes all stress field factors into account, from first over second up to third order. As an example we present a large scale crustal and upper mantle 3D-geomechanical-numerical model of the Alberta Basin and the surroundings, which is constructed to describe continuously the full stress tensor. In-situ stress measurements are the most likely data, because they deliver the most direct information's of the stress field and they provide insights into different depths, a

  8. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  9. 3D flow past transonic turbine cascade SE 1050 — Experiment and numerical simulations

    NASA Astrophysics Data System (ADS)

    Šimurda, D.; Fürst, J.; Luxa, M.

    2013-08-01

    This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic ( M 2is = 0.8) and at transonic ( M 2is = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.

  10. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  11. GestAction3D: A Platform for Studying Displacements and Deformations of 3D Objects Using Hands

    NASA Astrophysics Data System (ADS)

    Lingrand, Diane; Renevier, Philippe; Pinna-Déry, Anne-Marie; Cremaschi, Xavier; Lion, Stevens; Rouel, Jean-Guilhem; Jeanne, David; Cuisinaud, Philippe; Soula*, Julien

    We present a low-cost hand-based device coupled with a 3D motion recovery engine and 3D visualization. This platform aims at studying ergonomic 3D interactions in order to manipulate and deform 3D models by interacting with hands on 3D meshes. Deformations are done using different modes of interaction that we will detail in the paper. Finger extremities are attached to vertices, edges or facets. Switching from one mode to another or changing the point of view is done using gestures. The determination of the more adequate gestures is part of the work

  12. Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl

    2015-11-01

    We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.

  13. Inheritance of pre-existing weakness in continental breakup: 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Gerya, Taras

    2013-04-01

    breakup order of crust and mantle (Huismans and Beaumont, 2011). However, the inheritance of pre-existing lithospheric weakness in the evolution of continental rifts and oceanic ridge is not well studied. We use 3D numerical modeling to study this problem, by changing the weak zone position and geometry, and the rheological structure of the model. In our study, we find that: 1).3D continental breakup and seafloor spreading patterns are controlled by (a) crust-mantle rheological coupling and (b) geometry and position of the pre-existing weak zones. 2).Three spreading patterns are obtained: (a) straight ridges, (b) curved ridges and (c) overlapping ridges. 3).When crust and mantle are decoupled, abandoned rift structures often form.

  14. Tsunamis generated by 3D deformable landslides in various scenarios: laboratory experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    McFall, B. C.; Fritz, H. M.; Horrillo, J. J.; Mohammed, F.

    2014-12-01

    Landslide generated tsunamis such as Lituya Bay, Alaska 1958 account for some of highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models. Two 3D Navier-Stokes models were tested, the commercial code FLOW-3D

  15. 2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons

    SciTech Connect

    Kelley, B. W.; Collins, B.; Larsen, E. W.

    2013-07-01

    In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)

  16. Numerical modeling of Tibetan Plateau formation: Thin-sheet versus fully 3D models

    NASA Astrophysics Data System (ADS)

    Lechmann, S. M.; Schmalholz, S. M.; Kaus, B. J. P.

    2009-04-01

    Knowledge about the tectonic evolution of the Tibetan Plateau is still incomplete and many open questions remain concerning the deformation style of the crustal thickening, causing the abnormally high elevation of the Tibetan Plateau. Different models have been suggested explaining the crustal thickening by (1) homogeneous, continuous deformation using thin-sheet models, (2) discrete movement along thrusts developing crustal wedges and (3) lateral crustal flow due to pressure gradients resulting from topography. Most existing models are not fully three-dimensional (3D) models (e.g. thin-sheet models) and assume a certain deformation style a priori, which makes it difficult to judge the applicability of such constrained models to the formation of the Tibetan Plateau. We present a comparison of deformation styles during continent indentation resulting from a fully 3D numerical model and a thin-sheet model. The rheology for both models is power-law. The 3D model consists of four layers representing a simplified lithosphere: strong upper crust, weak lower crust, strong upper mantle and weak lower mantle. From the effective viscosity distribution of the 3D model a vertically averaged effective viscosity is calculated and used for the thin-sheet model to make direct comparisons between the two models. Simulating indentation is achieved by assigning free slip at one lateral side of the model, and fixing two other sides. The boundary at which indentation is taking place, exhibits a tripartite velocity profile: Next to the free slip side a section with constant horizontal velocity is applied. The velocity then gradually decreases towards zero, applying a cosine-function. The last section of the indenting boundary next to the fixed side is also fixed. The 3D model additionally exhibits a free surface and a bottom boundary allowing free slip. The 3D code employs the finite element method with a mixed velocity-pressure formulation to simulate incompressible flow. A Lagrangian

  17. Random porous media flow on large 3-D grids: Numerics, performance, and application to homogenization

    SciTech Connect

    Ababou, R.

    1996-12-31

    Subsurface flow processes are inherently three-dimensional and heterogeneous over many scales. Taking this into account, for instance assuming random heterogeneity in 3-D space, puts heavy constraints on numerical models. An efficient numerical code has been developed for solving the porous media flow equations, appropriately generalized to account for 3-D, random-like heterogeneity. The code is based on implicit finite differences (or finite volumes), and uses specialized versions of pre-conditioned iterative solvers that take advantage of sparseness. With Diagonally Scaled Conjugate Gradients, in particular, large systems on the order of several million equations, with randomly variable coefficients, have been solved efficiently on Cray-2 and Cray-Y/MP8 machines, in serial mode as well as parallel mode (autotasking). The present work addresses, first, the numerical aspects and computational issues associated with detailed 3-D flow simulations, and secondly, presents a specific application related to the conductivity homogenization problem (identifying a macroscale conduction law, and an equivalent or effective conductivity). Analytical expressions of effective conductivities are compared with empirical values obtained from several large scale simulations conducted for single realizations of random porous media.

  18. A Numerical Analysis of 3D EM Imaging from a Single Borehole

    SciTech Connect

    Alumbaugh, David L.; Wilt, Michael J.

    1999-07-27

    In this study we analyze the feasibility of three dimensional (3D) electromagnetic (EM) imaging from a single borehole. The proposed logging tool consists of three mutually orthogonal magnetic dipole sources and multiple three component magnetic field receivers. A sensitivity analysis indicates that the most important sensor configuration for providing 3D geological information about the borehole consists of a transmitter with moment aligned parallel to the axis of the borehole, and receivers aligned perpendicular to the axis. The standard coaxial logging configuration provides the greatest depth of sensitivity compared to other configurations, but offers no information regarding 3D structure. Two other tool configurations in which both the source and receiver are aligned perpendicular to the borehole axis provide some directional information and therefore better image resolution, but not true 3D information. A 3D inversion algorithm has been employed to demonstrate the plausibility of 3D inversion using data collected with the proposed logging tool. This study demonstrates that an increase in image resolution results when three orthogonal sources are incorporated into the logging tool rather than a single axially aligned source.

  19. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  20. 3-D Numerical Modeling of MHD Flows in Variable Magnetic Field

    NASA Astrophysics Data System (ADS)

    Abdullina, K. I.; Bogovalov, S. V.

    3-D numerical simulation of the liquid metal flow affected by the electromagnetic field in the magnetohydrodynamic (MHD) devices is performed. Software package ANSYS has been used for the numerical calculations. The non-stationary problem has been solved taking into account the influence of the metal flow on the electromagnetic field and nonlinear magnetic permeability of the ferromagnetic cores. Simplified calculations with constant magnetic permeability of the ferromagnetic cores have been performed as well. Comparison of these calculations shows that the simulation of the MHD pump can be performed in the linear approximation. The pump performance curve has been derived in this approximation.

  1. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    PubMed Central

    Lee, Tong Young; Yoon, Kyoung-hye; Lee, Jin Il

    2016-01-01

    ABSTRACT The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory. PMID:26962047

  2. Numerical investigation of wave attenuation by vegetation using a 3D RANS model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Wu, Weiming

    2014-12-01

    Vegetation has been recognized as an important natural shoreline protection against storm surges and waves. Understanding of wave-vegetation interaction is essential for assessing the ability of vegetation patches, such as wetlands, to mitigate storm damages. In this study the wave attenuation by vegetation is investigated numerically using a 3-D model which solves the Reynolds-Averaged Navier-Stokes equations (RANS) by means of a finite-volume method based on collocated hexahedron mesh. A mixing length model is used for turbulence closure of the RANS equations. The water surface boundary is tracked using the Volume-of-Fluid (VOF) method with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) to solve the VOF advection equation. The presence of vegetation is taken into account by adding the vegetation drag and inertia forces to the momentum equations. The model is validated by several laboratory experiments of short wave propagation through vegetation over flat and sloping beds. The comparisons show good agreement between the measured data and calculated results, but the swaying motion of flexible vegetation which is neglected in this study can influence the accuracy of the wave height predictions. The model is then applied to one of the validation tests with different vegetation properties, revealing that the wave height attenuation by vegetation depends not only on the wave conditions, but also the vegetation characteristics such as vegetation height and density.

  3. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Baran, Ismet; Hattel, Jesper H.; Akkerman, Remko; Tutum, Cem C.

    2015-02-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D model. Moreover, the generalized plane strain model predicts the longitudinal process induced stresses more similar to the ones calculated in the 3D model as compared with the plane strain model.

  4. 3D numerical modeling of an anthropogenic sinkhole in the Marsala area of western Sicily

    NASA Astrophysics Data System (ADS)

    Bonamini, Marco; Di Maggio, Cipriano; Lollino, Piernicola; Madonia, Giuliana; Parise, Mario; Vattano, Marco

    2013-04-01

    The Marsala area (western Sicily) is characterized by the presence of a Lower Pleistocene (Calabrian) calcarenite succession (Marsala Calcarenite Fm). It can be divided into three lithofacies that show the regressive evolution of the depositional system: a) coarse to fine yellow bio- and lithoclastic calcarenites, b) sands, and c) gray sandy clays. At least 80 m-thick, this succession gently dips (5-10°) towards the south and the south-west. Locally, the Marsala Calcarenite may be covered by Middle and Upper Pleistocene marine terraced deposits. The town of Marsala presents several historical quarries for the extraction of this building material. Many of them were excavated underground, at depth ranging from a few meters to about 25 m, and are arranged in one or two levels, following the galleries and pillars excavation technique. With time, the underground quarries have been progressively abandoned due to the high costs of extraction, as well as to the dangers and difficulties encountered in working underground. Since the 1960's the quarries, as a matter of fact, have been affected by several instability processes for the decay of the physical and mechanical properties of the calcarenite rock mass and the interaction with the groundwater. Such instability processes are represented by collapses and deformations of vaults and pillars. These phenomena often propagate upward reaching the topographic surface and forming sinkholes which may likely affect and severely damage the built-up areas above. In particular, two case studies of sinkholes related to different underground quarries have been already described by the Authors in a previous contribution at EGU 2012, also integrated by a two-dimensional numerical study. The aim of the present work is to develop a three-dimensional numerical analysis aimed at describing the most significant processes and factors responsible of the instability processes, as well as to investigate the three-dimensional features of the same

  5. Aref's chaotic orbits tracked by a general ellipsoid using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Shui, Pei; Popinet, Stéphane; Govindarajan, Rama; Valluri, Prashant

    2015-11-01

    The motion of an ellipsoidal solid in an ideal fluid has been shown to be chaotic (Aref, 1993) under the limit of non-integrability of Kirchhoff's equations (Kozlov & Oniscenko, 1982). On the other hand, the particle could stop moving when the damping viscous force is strong enough. We present numerical evidence using our in-house immersed solid solver for 3D chaotic motion of a general ellipsoidal solid and suggest criteria for triggering such motion. Our immersed solid solver functions under the framework of the Gerris flow package of Popinet et al. (2003). This solver, the Gerris Immersed Solid Solver (GISS), resolves 6 degree-of-freedom motion of immersed solids with arbitrary geometry and number. We validate our results against the solution of Kirchhoff's equations. The study also shows that the translational/ rotational energy ratio plays the key role on the motion pattern, while the particle geometry and density ratio between the solid and fluid also have some influence on the chaotic behaviour. Along with several other benchmark cases for viscous flows, we propose prediction of chaotic Aref's orbits as a key benchmark test case for immersed boundary/solid solvers.

  6. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

    NASA Astrophysics Data System (ADS)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

    2015-05-01

    3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

  7. A 3D numerical simulation of stress distribution and fracture process in a zirconia-based FPD framework.

    PubMed

    Kou, Wen; Li, Decong; Qiao, Jiyan; Chen, Li; Ding, Yansheng; Sjögren, Göran

    2011-02-01

    In this study, a numerical approach to the fracture behavior in a three-unit zirconia-based fixed partial denture (FPD) framework was made under mechanical loading using a newly developed three-dimensional (3D) numerical modeling code. All the materials studied were treated heterogeneously and Weibull distribution law was applied to describe the heterogeneity. The Mohr-Coulomb failure criterion with tensile strength cut-off was utilized to judge whether the material was in an elastic or failed state. For validation, the fracture pattern obtained from the numerical modeling was compared with a laboratory test; they largely correlated with each other. Similar fracture initiation sites were detected both in the numerical simulation and in an earlier fractographic analysis. The numerical simulation applied in this study clearly described the stress distribution and fracture process of zirconia-based FPD frameworks, information that could not be gained from the laboratory tests alone. Thus, the newly developed 3D numerical modeling code seems to be an efficient tool for prediction of the fracture process in ceramic FPD frameworks. PMID:21210519

  8. Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars

    2013-04-01

    We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For

  9. Numerical simulation of internal and external inviscid and viscous 3-D flow fields

    NASA Astrophysics Data System (ADS)

    Leicher, Stefan

    1986-11-01

    A numerical method for solving the 3-D Euler equations in geometrical complex domains was developed. The approach divides the computational space into multiple blocks whose structure follows the natural lines of the conficuration. A systematic, multi-block grid generation scheme is used to produce the grid. The flow solutions are obtained by solving the Euler equations by a finite volume discretization and a Runge-Kutta time stepping scheme. The main advantage of this method is the applicability to complex geometries, for example complete aircraft configurations including wing, fuselage, canard and tail. The coupling with a 3-D boundary layer method allows to account for viscous effects. Another application for the method was the simulation of flows in the presence of a propeller.

  10. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    NASA Astrophysics Data System (ADS)

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  11. The 3D modeling of high numerical aperture imaging in thin films

    NASA Technical Reports Server (NTRS)

    Flagello, D. G.; Milster, Tom

    1992-01-01

    A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.

  12. Feature-Based Quality Evaluation of 3d Point Clouds - Study of the Performance of 3d Registration Algorithms

    NASA Astrophysics Data System (ADS)

    Ridene, T.; Goulette, F.; Chendeb, S.

    2013-08-01

    The production of realistic 3D map databases is continuously growing. We studied an approach of 3D mapping database producing based on the fusion of heterogeneous 3D data. In this term, a rigid registration process was performed. Before starting the modeling process, we need to validate the quality of the registration results, and this is one of the most difficult and open research problems. In this paper, we suggest a new method of evaluation of 3D point clouds based on feature extraction and comparison with a 2D reference model. This method is based on tow metrics: binary and fuzzy.

  13. Numerical and measured data from the 3D salt canopy physical modeling project

    SciTech Connect

    Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.

    1997-11-01

    The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.

  14. Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models

    NASA Astrophysics Data System (ADS)

    Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva

    2014-07-01

    To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.

  15. 3D Numerical simulation of high current vacuum arc in realistic magnetic fields considering anode evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Huang, Xiaolong; Jia, Shenli; Deng, Jie; Qian, Zhonghao; Shi, Zongqian; Schellenkens, H.; Godechot, X.

    2015-06-01

    A time-dependent 3D numerical model considering anode evaporation is developed for the high current vacuum arc (VA) under a realistic spatial magnetic field. The simulation work contains steady state 3D numerical simulation of high current VA considering anode evaporation at nine discrete moments of first half wave of 50 Hz AC current, transient numerical simulation of anode activity, and realistic spatial magnetic field calculation of commercial cup-shaped electrodes. In the simulation, contact opening and arc diffusion processes are also considered. Due to the effect of electrode slots, the simulation results of magnetic field and temperature of anode plate exhibit six leaves shape (SLS). During 6-8 ms, the strong evaporation of anode surface seriously influence the parameter distributions of VA. Ions emitted from anode penetrate into arc column and the axial velocity distribution on the anode side exhibits SLS. The ions emitted from anode surface have the same temperature with anode surface, which cool the arc plasma and lead to a relative low temperature area formed. The seriously evaporation of anode leads to the accumulation of ions near the anode, and then the current density is more uniform.

  16. Water cycling beneath subduction zones in 2D and 3D numerical models (Invited)

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Iyer, K. H.; Hasenclever, J.; Morgan, J.

    2013-12-01

    . Slab fluids that do flux the mantle wedge are commonly believed to trigger arc melting. Finally, the fate of these fluids and the likely mantle flow field within the mantle wedge are resolved in 3D. We find that the classical 2D corner-flow solution is only a small subset of all possible mantle wedge flow fields. In fact, a more 'natural' flow field involves 3D diapirs fuelled by low-density slab fluids rising from the slab surface. These diapirs provide a potential mechanism for decompression melting in the mantle wedge, break the classic corner flow solution, and illustrate the need for high-resolution three-dimensional subduction zones models. In summary we find that numerical models are capable to resolve the key geological processes that control the subduction zone water cycle and help us to better relate subduction input to arc output.

  17. A numerical solution of 3D inviscid rotational flow in turbines and ducts

    NASA Astrophysics Data System (ADS)

    Oktay, Erdal; Akmandor, Sinan; Üçer, Ahmet

    1998-04-01

    The numerical solutions of inviscid rotational (Euler) flows were obtained using an explicit hexahedral unstructured cell vertex finite volume method. A second-order-accurate, one-step Lax-Wendroff scheme was used to solve the unsteady governing equations discretized in conservative form. The transonic circular bump, in which the location and the strength of the captured shock are well predicted, was used as the first test case. The nozzle guide vanes of the VKI low-speed turbine facility were used to validate the Euler code in highly 3D environment. Despite the high turning and the secondary flows which develop, close agreements have been obtained with experimental and numerical results associated with these test cases.

  18. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    SciTech Connect

    Baudron, Anne-Marie; Riahi, Mohamed Kamel; Salomon, Julien

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  19. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    NASA Astrophysics Data System (ADS)

    Baudron, Anne-Marie; Lautard, Jean-Jacques; Maday, Yvon; Riahi, Mohamed Kamel; Salomon, Julien

    2014-12-01

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner benchmark.

  20. Numerical homogenization for seismic wave propagation in 3D geological media

    NASA Astrophysics Data System (ADS)

    Cupillard, P.; Capdeville, Y.; Botella, A.

    2014-12-01

    Despite the important increase of the computational power in the last decades, simulating the seismic wave propagation through realistic geological models is still a challenge. By realistic models we here mean 3D media in which a broad variety (in terms of amplitude and extent) of heterogeneities lies, including discontinuities with complex geometry such as faulted and folded horizons, intrusive geological contacts and fault systems. To perform accurate numerical simulations, these discontinuities require complicated meshes which usually contain extremely small elements, yielding large, sometimes prohibitive, computation costs. Fortunately, the recent development of the non-periodic homogenization technique now enables to overcome this problem by computing smooth equivalent models for which a coarse mesh is sufficient to get an accurate wavefield. In this work, we present an efficient implementation of the technique which now allows for the homogenization of large 3D geological models. This implementation relies on a tetrahedral finite-element solution of the elasto-static equation behind the homogenization problem. Because this equation is time-independent, solving it is numerically cheaper than solving the wave equation, but it nevertheless requires some care because of the large size of the stiffness matrix arising from the fine mesh of realistic geological structures. A domain decomposition is therefore adopted. In our strategy, the obtained sub-domains overlap but they are independent so the solution within each of them can be computed either in series or in parallel. In addition, well-balanced loads, efficient search algorithms and multithreading are implemented to speed up the computation. The resulting code enables the homogenization of 3D elastic media in a time that is neglectable with respect to the simulation time of the wave propagation within. This is illustrated through a sub-surface model of the Furfooz karstic region, Belgium.

  1. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.

    2004-01-01

    The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.

  2. 3-D-numerical approach to simulate an avalanche impact into a reservoir

    NASA Astrophysics Data System (ADS)

    Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.

    2015-06-01

    The impact of an avalanche into a reservoir induces an impulse wave, which poses a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting outflow volume over structures and dams, formulas, which base on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. The paper presents a new approach for a 3-D-numerical simulation of an avalanche impact into a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the real hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at the ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width).

  3. Case study: The Avengers 3D: cinematic techniques and digitally created 3D

    NASA Astrophysics Data System (ADS)

    Clark, Graham D.

    2013-03-01

    Marvel's THE AVENGERS was the third film Stereo D collaborated on with Marvel; it was a summation of our artistic development of what Digitally Created 3D and Stereo D's artists and toolsets affords Marvel's filmmakers; the ability to shape stereographic space to support the film and story, in a way that balances human perception and live photography. We took our artistic lead from the cinematic intentions of Marvel, the Director Joss Whedon, and Director of Photography Seamus McGarvey. In the digital creation of a 3D film from a 2D image capture, recommendations to the filmmakers cinematic techniques are offered by Stereo D at each step from pre-production onwards, through set, into post. As the footage arrives at our facility we respond in depth to the cinematic qualities of the imagery in context of the edit and story, with the guidance of the Directors and Studio, creating stereoscopic imagery. Our involvement in The Avengers was early in production, after reading the script we had the opportunity and honor to meet and work with the Director Joss Whedon, and DP Seamus McGarvey on set, and into post. We presented what is obvious to such great filmmakers in the ways of cinematic techniques as they related to the standard depth cues and story points we would use to evaluate depth for their film. Our hope was any cinematic habits that supported better 3D would be emphasized. In searching for a 3D statement for the studio and filmmakers we arrived at a stereographic style that allowed for comfort and maximum visual engagement to the viewer.

  4. A 3D measurement of the offset in paleoseismological studies

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Echeverria, Anna; Masana, Eulàlia; Martínez-Díaz, José J.; Sharp, Warren D.

    2016-05-01

    The slip rate of a seismogenic fault is a crucial parameter for establishing the contribution of the fault to the seismic hazard. It is calculated from measurements of the offset of linear landforms, such channels, produced by the fault combined with their age. The three-dimensional measurement of offset in buried paleochannels is subject to uncertainties that need to be quantitatively assessed and propagated into the slip rate. Here, we present a set of adapted scripts to calculate the net, lateral and vertical tectonic offset components caused by faults, together with their associated uncertainties. This technique is applied here to a buried channel identified in the stratigraphic record during a paleoseismological study at the El Saltador site (Alhama de Murcia fault, Iberian Peninsula). After defining and measuring the coordinates of the key points of a buried channel in the walls of eight trenches excavated parallel to the fault, we (a) adjusted a 3D straight line to these points and then extrapolated the tendency of this line onto a simplified fault plane; (b) repeated these two steps for the segment of the channel in the other side of the fault; and (c) measured the distance between the two resulting intersection points with the fault plane. In doing so, we avoided the near fault modification of the channel trace and obtained a three-dimensional measurement of offset and its uncertainty. This methodology is a substantial modification of previous procedures that require excavating progressively towards the fault, leading to possible underestimation of offset due to diffuse deformation near the fault. Combining the offset with numerical dating of the buried channel via U-series on soil carbonate, we calculated a maximum estimate of the net slip rate and its vertical and lateral components for the Alhama de Murcia fault.

  5. Studies of the 3D surface roughness height

    SciTech Connect

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris

    2013-12-16

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  6. Studies of the 3D surface roughness height

    NASA Astrophysics Data System (ADS)

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris

    2013-12-01

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings' surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  7. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  8. Terascale direct numerical simulations of turbulent combustion using S3D.

    SciTech Connect

    Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer

    2008-08-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  9. Terascale direct numerical simulations of turbulent combustion using S3D

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  10. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  11. 3D numerical simulation of the transport of chemical signature compounds from buried landmines

    NASA Astrophysics Data System (ADS)

    Irrazabal, Maik; Borrero, Ernesto; Briano, Julio G.; Castro, Miguel; Hernandez, Samuel P.

    2005-06-01

    The transport of the chemical signature compounds from buried landmines in a three-dimensional (3D) array has been numerically modeled using the finite-volume technique. Compounds such as trinitrotoluene, dinitrotoluene, and their degradation products, are semi volatile and somewhat soluble in water. Furthermore, they can strongly adsorb to the soil and undergo chemical and biological degradation. Consequently, the spatial and temporal concentration distributions of such chemicals depend on the mobility of the water and gaseous phases, their molecular and mechanical diffusion, adsorption characteristics, soil water content, compaction, and environmental factors. A 3D framework is required since two-dimensional (2D) symmetry may easily fade due to terrain topography: non-flat surfaces, soil heterogeneity, or underground fractures. The spatial and temporal distribution of the chemical-signature-compounds, in an inclined grid has been obtained. The fact that the chemicals may migrate horizontally, giving higher surface concentrations at positions not directly on top of the objects, emphasizes the need for understanding the transport mechanism when a chemical detector is used. Deformation in the concentration contours after rainfall is observed in the inclined surface and is attributed to both: the advective flux, and to the water flux at the surface caused by the slope. The analysis of the displacements in the position of the maximum concentrations at the surface, respect to the actual location of the mine, in an inclined system, is presented.

  12. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  13. Slab detachment in laterally varying subduction zones: 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Duretz, T.; Gerya, T. V.; Spakman, W.

    2014-03-01

    Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models, encompassing experimentally derived flow laws and a pseudo free surface, are employed to unravel lithospheric and topographic evolutions. First, we consider coeval subduction of adjacent continental and oceanic lithospheres (SCO). This configuration yields to two-stage slab detachment during collision, topographic buildup and extrusion, variable along-trench convergence rates, and associated trench deformation. The second setting considers a convergent margin, which is laterally limited by a transform boundary (STB). Such collisional system is affected by a single slab detachment, little trench deformation, and moderately confined upper plate topography. The effect of initial thermal slab age on SCO and STB models are explored. Similarities with natural analogs along the Arabia-Eurasia collision are discussed.

  14. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect

    Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.

    2013-11-28

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  15. Method and simulation to study 3D crosstalk perception

    NASA Astrophysics Data System (ADS)

    Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier

    2012-03-01

    To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.

  16. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  17. Landslide/reservoir interaction: 3D numerical modelling of the Vajont rockslide and generated water wave

    NASA Astrophysics Data System (ADS)

    Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.

    2012-04-01

    Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto

  18. Model studies of blood flow in basilar artery with 3D laser Doppler anemometer

    NASA Astrophysics Data System (ADS)

    Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.

    2015-03-01

    It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.

  19. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most

  20. Nature of stress accommodation in sheared granular material: Insights from 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Mair, Karen; Hazzard, James F.

    2007-07-01

    Active faults often contain distinct accumulations of granular wear material. During shear, this granular material accommodates stress and strain in a heterogeneous manner that may influence fault stability. We present new work to visualize the nature of contact force distributions during 3D granular shear. Our 3D discrete numerical models consist of granular layers subjected to normal loading and direct shear, where gouge particles are simulated by individual spheres interacting at points of contact according to simple laws. During shear, we observe the transient microscopic processes and resulting macroscopic mechanical behavior that emerge from interactions of thousands of particles. We track particle translations and contact forces to determine the nature of internal stress accommodation with accumulated slip for different initial configurations. We view model outputs using novel 3D visualization techniques. Our results highlight the prevalence of transient directed contact force networks that preferentially transmit enhanced stresses across our granular layers. We demonstrate that particle size distribution (psd) controls the nature of the force networks. Models having a narrow (i.e. relatively uniform) psd exhibit discrete pipe-like force clusters with a dominant and focussed orientation oblique to but in the plane of shear. Wider psd models (e.g. power law size distributions D = 2.6) also show a directed contact force network oblique to shear but enjoy a wider range of orientations and show more out-of-plane linkages perpendicular to shear. Macroscopic friction level, is insensitive to these distinct force network morphologies, however, force network evolution appears to be linked to fluctuations in macroscopic friction. Our results are consistent with predictions, based on recent laboratory observations, that force network morphologies are sensitive to grain characteristics such as particle size distribution of a sheared granular layer. Our numerical

  1. 3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment.

    PubMed

    Ferrara, P; Ciofini, M; Esposito, L; Hostaša, J; Labate, L; Lapucci, A; Pirri, A; Toci, G; Vannini, M; Gizzi, L A

    2014-03-10

    We present a study of Yb:YAG active media slabs, based on a ceramic layered structure with different doping levels. We developed a procedure allowing 3D numerical analysis of the slab optical properties as a consequence of the thermal load induced by the pump process. The simulations are compared with a set of experimental results in order to validate the procedure. These structured ceramics appear promising in appropriate geometrical configurations, and thus are intended to be applied in the construction of High Energy Diode Pumped Solid State Laser (DPSSL) systems working in high repetition-rate pulsed regimes. PMID:24663877

  2. 3D numerical model for a focal plane view in case of mosaic grating compressor for high energy CPA chain.

    PubMed

    Montant, S; Marre, G; Blanchot, N; Rouyer, C; Videau, L; Sauteret, C

    2006-12-11

    An important issue, mosaic grating compressor, is studied to recompress pulses for multiPetawatt, high energy laser systems. Alignment of the mosaic elements is crucial to control the focal spot and thus the intensity on target. No theoretical approach analyses the influence of compressor misalignment on spatial and temporal profiles in the focal plane. We describe a simple 3D numerical model giving access to the focal plane view after a compressor. This model is computationally inexpensive since it needs only 1D Fourier transforms to access to the temporal profile. We present simulations of monolithic and mosaic grating compressors. PMID:19529688

  3. An ALE Based FE Formulation for the 3D Numerical Simulation of Fineblanking Processes

    NASA Astrophysics Data System (ADS)

    Manopulo, Niko; Tong, Longchang; Hora, Pavel

    2010-06-01

    Fineblanking is a manufacturing process which allows the mass production of blanked products with superior surface quality. The 3D numerical simulation of this particularly precise process is however challenging. This is because quality-critical tool features such as the die clearance and the shape of the cutting edges have dimensions up to two orders of magnitude smaller than the average part dimensions. If conventional Updated Lagrange codes are used, a very high FE mesh resolution becomes a must in order to accurately represent the surface evolution along the edge, which in turn makes the computation unfeasible. The methodology presented in this paper makes use of the Arbitrary Lagrangian Eulerian FE Formulation in order to keep control over the mesh region in contact with the tools. This way an optimal FE mesh can be guaranteed throughout the computation. This not only reduces the computational cost considerably, but also avoids mesh distortion along the cutting edge, allowing an accurate representation of the tool features. This approach will be used in conjunction to the stress limit criterion delineated in order to predict material failure in fine blanked products. Numerical results will be validated against the experiments carried out with a specially designed fineblanking tool in use at our institute.

  4. Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil

    NASA Astrophysics Data System (ADS)

    Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.

    2015-01-01

    At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.

  5. A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kovaltsov, Gennady A.; Usoskin, Ilya G.

    2010-03-01

    A new quantitative model of production of the cosmogenic isotope 10Be by cosmic rays in the Earth's atmosphere is presented. The CRAC:10Be (Cosmic Ray induced Atmospheric Cascade for 10Be) model is based on a full numerical Monte-Carlo simulation of the nucleonic-electromagnetic-muon cascade induced by cosmic rays in the atmosphere and is able to compute the isotope's production rate at any given 3D location (geographical and altitude) and time, for all possible parameters including solar energetic particle events. The model was tested against the results of direct measurements of the 10Be production in a number of dedicated experiments to confirm its quantitative correctness. A set of tabulated values for the yield function is provided along with a detailed numerical recipe forming a "do-it-yourself" kit, which allows anyone interested to apply the model for any given conditions. This provides a useful tool for applying the cosmogenic isotope method in direct integration with other models, e.g., dynamical atmospheric transport.

  6. Optimising GPR modelling: A practical, multi-threaded approach to 3D FDTD numerical modelling

    NASA Astrophysics Data System (ADS)

    Millington, T. M.; Cassidy, N. J.

    2010-09-01

    The demand for advanced interpretational tools has lead to the development of highly sophisticated, computationally demanding, 3D GPR processing and modelling techniques. Many of these methods solve very large problems with stepwise methods that utilise numerically similar functions within iterative computational loops. Problems of this nature are readily parallelised by splitting the computational domain into smaller, independent chunks for direct use on cluster-style, multi-processor supercomputers. Unfortunately, the implications of running such facilities, as well as time investment needed to develop the parallel codes, means that for most researchers, the use of these advanced methods is too impractical. In this paper, we propose an alternative method of parallelisation which exploits the capabilities of the modern multi-core processors (upon which today's desktop PCs are built) by multi-threading the calculation of a problem's individual sub-solutions. To illustrate the approach, we have applied it to an advanced, 3D, finite-difference time-domain (FDTD) GPR modelling tool in which the calculation of the individual vector field components is multi-threaded. To be of practical use, the FDTD scheme must be able to deliver accurate results with short execution times and we, therefore, show that the performance benefits of our approach can deliver runtimes less than half those of the more conventional, serial programming techniques. We evaluate implementations of the technique using different programming languages (e.g., Matlab, Java, C++), which will facilitate the construction of a flexible modelling tool for use in future GPR research. The implementations are compared on a variety of typical hardware platforms, having between one and eight processing cores available, and also a modern Graphical Processing Unit (GPU)-based computer. Our results show that a multi-threaded xyz modelling approach is easy to implement and delivers excellent results when implemented

  7. A lithospheric 3D temperature study from the South Atlantic

    NASA Astrophysics Data System (ADS)

    Hirsch, K. K.; Scheck-Wenderoth, M.; Maystrenko, Y.; Sippel, J.

    2009-04-01

    The East African continental margin is a passive volcanic margin that experienced a long post-rifting history after break up in Early Cretaceous times. The break up resulted in the formation of a number of basins along the margin. The by far largest depocentre in the South Atlantic, the Orange Basin, was the location of previously performed studies. These studies of the Orange Basin have been performed to investigate the crustal structure and the temperature evolution of the basin. In this way, they gave way to new insights and to a number of questions. With 3D gravity modelling we found the crust to include high density bodies. Furthermore, a rifting model was developed which explained both the geometry and the thermal constraints of the basin. Now, this study has been extended spatially to cover a larger area and into depth to include the deep lithosphere. The main goal is to combine information on the geometry and properties of the sedimentary part of the system with data on the geometry and physical properties of the deep crust. It was also aimed to integrate both the continental and the oceanic parts of the margin into a consistent 3D structural model on a lithospheric scale. A 3D temperature model was evaluated for the passive continental margin of the South Atlantic including the lithospheric structure of the margin. We evaluate a case study for different scenarios to estimate the influence of sediments and crustal structures on the thermal field. The calculated conductive field is constrained by temperature measurements and 3D gravity modelling. At the Norwegian continental margin it has been found that a differentiation of the physical properties of the lower crust and the mantle is needed between the oceanic and continental domains to explain the observations. We aim to compare the younger setting of the Norwegian continental margin with the old passive margin in the South Atlantic. In particular, the South Atlantic is interesting since the southern half

  8. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  9. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    NASA Astrophysics Data System (ADS)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Ml<=3) for which recordings were avalaible; and (ii) two local hypothetical events (Mw=6) occuring on the so-called Belledonne Border Fault (BBF) [1]. A free-style prediction was also proposed, in which participants were allowed to vary the source and/or the model parameters and were asked to provide the resulting uncertainty in their estimation of ground motion. We received a total of 18 contributions from 14 different groups; 7 of these use 3D methods, among which 3 could handle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of

  10. Wind forcing of upland lake hydrodynamics: implementation and validation of a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Morales, L.; French, J.; Burningham, H.; Evans, C.; Battarbee, R.

    2010-12-01

    Upland lakes act as important archives of environmental change, yet inferences based on the analysis of sediment cores are frequently compromised by an incomplete understanding of the hydrodynamic processes controlling the distribution and completeness of lake sediment sequences and their linkages to wider environmental factors. Many upland lakes are characterized by complex vertical and horizontal circulation patterns induced by the action of wind on the water surface. Wind forcing is important not only for the resuspension of bottom sediments in shallow marginal areas, but may also control the broader distribution of sediment accumulation. The work presented here represents the first stage of a project aimed at elucidating the linkages between wind forcing and the distribution of bottom sediments in upland lakes and the extent to which simple 'sediment focusing' models provide an adequate basis for predicting optimal locations for the acquisition of core samples for palaeolimnological analysis. As a first step, a 3D numerical hydrodynamic model is implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. This utilises the community ocean model, FVCOM, that solves the Navier-Stokes equations in 3D on an unstructured triangular mesh using the finite volume method. A new graphical user interface has been developed for FVCOM to facilitate pre- and post-processing of lake modelling problems. At Llyn Conwy, the model is forced using local meteorological data and validated against vertical temperature profiles recorded by a long-term buoy deployment and short-term observations of vertical current structure measured using an upward-looking acoustic doppler profiler and surface circulation obtained from GPS drifters. Challenges in the application of FVCOM to a small lake include the design of a mesh that ensures numerical stability whilst resolving a complex bathymetry, and the need for careful treatment of model 'spin-up'. Once calibrated, the

  11. An approach to 3D magnetic field calculation using numerical and differential algebra methods

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.

    1992-07-17

    Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.

  12. Geological characterization of Italian reservoirs and numerical 3D modelling of CO2 storage scenarios into saline aquifers

    NASA Astrophysics Data System (ADS)

    Beretta, S.; Moia, F.; Guandalini, R.; Cappelletti, F.

    2012-04-01

    The research activities carried out by the Environment and Sustainable Development Department of RSE S.p.A. aim to evaluate the feasibility of CO2 geological sequestration in Italy, with particular reference to the storage into saline aquifers. The identification and geological characterization of the Italian potential storage sites, together with the study of the temporal and spatial evolution of the CO2 plume within the caprock-reservoir system, are performed using different modelling tools available in the Integrated Analysis Modelling System (SIAM) entirely powered in RSE. The numerical modelling approach is the only one that allows to investigate the behaviour of the injected CO2 regarding the fluid dynamic, geochemical and geomechanical aspects and effects due to its spread, in order to verify the safety of the process. The SIAM tools allow: - Selection of potential Italian storage sites through geological and geophysical data collected in the GIS-CO2 web database; - Characterization of caprock and aquifer parameters, seismic risk and environmental link for the selected site; - Creation of the 3D simulation model for the selected domain, using the modeller METHODRdS powered by RSE and the mesh generator GMSH; - Simulation of the injection and the displacement of CO2: multiphase fluid 3D dynamics is based on the modified version of TOUGH2 model; - Evaluation of geochemical reaction effects; - Evaluation of geomechanic effects, using the coupled 3D CANT-SD finite elements code; - Detailed local analysis through the use of open source auxiliary tools, such as SHEMAT and FEHM. - 3D graphic analysis of the results. These numerical tools have been successfully used for simulating the injection and the spread of CO2 into several real Italian reservoirs and have allowed to achieve accurate results in terms of effective storage capacity and safety analysis. The 3D geological models represent the high geological complexity of the Italian subsoil, where reservoirs are

  13. Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2016-06-01

    3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.

  14. 3D Numerical simulations of the C-start of a Bluegill Sunfish

    NASA Astrophysics Data System (ADS)

    Narayanan, Venkat R. T.; Borazjani, Iman; Sotiropoulos, Fotis; Tytell, Eric D.; Lauder, George V.

    2009-11-01

    Obtaining the 3D flow field, forces, and power produced during the fast start maneuvers of fish is essential for studying this behavior from the hydrodynamics perspective. During a typical fast start, which is typically referred to as the C-start, the fish initially bends its body in a C shape manner and then with a fast stroke bends out of the C shape. We carry out high-resolution, 3D simulations of a bluegill sunfish performing a C-start maneuver. The body geometry and motion during the C-start are obtained from the experimental. We used high-speed video and particle image velocimetry to quantify body motion and flows produced during the C-start. We carry out simulations both with the entire motion prescribed and by prescribing only the deformation of the body but predicting the motion of the fish center of mass via a fluid-structure interaction approach. The computed results are compared with experimental observations and analyzed to further elucidate dynamics and three-dimensional structure of the C-start flowfields.

  15. 3D numerical simulations of dispersion of volcanic ash using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    Suzuki, Yujiro; Koyaguchi, Takehiro

    2014-05-01

    Dispersion of volcanic ash largely depends on the atmospheric wind speed and eruption intensity. In general, when the atmospheric wind is weak and/or eruption intensity is strong (i.e., magma discharge rate is small), the volcanic plume is characterized by the formation of umbrella cloud and the particles (i.e., volcanic ashes) are transported by the gravity current of umbrella cloud. On the other hand, if the wind is strong and/or eruption intensity is weak, the volcanic plume tends to be distorted by wind and the particles are drifted mainly by the wind. Because these effects of gravity current and wind also change depending on the particle size, it is difficult to quantitatively predict the distributions of particles suspended in the atmosphere and those deposited on the ground. In this study, we are developing a 3-D numerical model which directly simulates the ash transport and deposition. The model is designed to simulate the injection of a mixture of solid pyroclasts and volcanic gas from a circular vent above a flat surface in a stratified atmosphere, using a combination of a pseudo-gas model for fluid motion and a Lagrangian model for particle motion. During fluid dynamics calculations, we ignore the separation of solid pyroclasts from the eruption cloud, treating an eruption cloud as a single gas with a density calculated using a mixing ratio between ejected material and entrained air (Suzuki et al., 2005, JGR). In order to calculate the location and movement of ash particles, we employ Lagrangian marker particles of various sizes and densities. The marker particles are ejected from the vent with the same velocity of the eruption cloud every 2 sec. The particles are accelerated or decelerated by the drag force on the spheres and fall to the ground with their terminal velocities. We carried out a simulation of a small-scale eruption in the strong wind fields with the magma discharge rate of 2.5 x 106 kg/s. The rising plume is largely distorted by wind and

  16. Development of a 3D numerical methodology for fast prediction of gun blast induced loading

    NASA Astrophysics Data System (ADS)

    Costa, E.; Lagasco, F.

    2014-05-01

    In this paper, the development of a methodology based on semi-empirical models from the literature to carry out 3D prediction of pressure loading on surfaces adjacent to a weapon system during firing is presented. This loading is consequent to the impact of the blast wave generated by the projectile exiting the muzzle bore. When exceeding a pressure threshold level, loading is potentially capable to induce unwanted damage to nearby hard structures as well as frangible panels or electronic equipment. The implemented model shows the ability to quickly predict the distribution of the blast wave parameters over three-dimensional complex geometry surfaces when the weapon design and emplacement data as well as propellant and projectile characteristics are available. Considering these capabilities, the use of the proposed methodology is envisaged as desirable in the preliminary design phase of the combat system to predict adverse effects and then enable to identify the most appropriate countermeasures. By providing a preliminary but sensitive estimate of the operative environmental loading, this numerical means represents a good alternative to more powerful, but time consuming advanced computational fluid dynamics tools, which use can, thus, be limited to the final phase of the design.

  17. Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Compton, William B, III

    2015-01-01

    Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.

  18. The numerical integration and 3-D finite element formulation of a viscoelastic model of glass

    SciTech Connect

    Chambers, R.S.

    1994-08-01

    The use of glasses is widespread in making hermetic, insulating seals for many electronic components. Flat panel displays and fiber optic connectors are other products utilizing glass as a structural element. When glass is cooled from sealing temperatures, residual stresses are generated due to mismatches in thermal shrinkage created by the dissimilar material properties of the adjoining materials. Because glass is such a brittle material at room temperature, tensile residual stresses must be kept small to ensure durability and avoid cracking. Although production designs and the required manufacturing process development can be deduced empirically, this is an expensive and time consuming process that does not necessarily lead to an optimal design. Agile manufacturing demands that analyses be used to reduce development costs and schedules by providing insight and guiding the design process through the development cycle. To make these gains, however, viscoelastic models of glass must be available along with the right tool to use them. A viscoelastic model of glass can be used to simulate the stress and volume relaxation that occurs at elevated temperatures as the molecular structure of the glass seeks to equilibrate to the state of the supercooled liquid. The substance of the numerical treatment needed to support the implementation of the model in a 3-D finite element program is presented herein. An accurate second-order, central difference integrator is proposed for the constitutive equations, and numerical solutions are compared to those obtained with other integrators. Inherent convergence problems are reviewed and fixes are described. The resulting algorithms are generally applicable to the broad class of viscoelastic material models. First-order error estimates are used as a basis for developing a scheme for automatic time step controls, and several demonstration problems are presented to illustrate the performance of the methodology.

  19. 3D studies of the NIF symmetry tuning targets

    NASA Astrophysics Data System (ADS)

    Milovich, J.; Jones, O.; Edwards, M.; Weber, S.; Dewald, E.; Landen, O.; Marinak, M.

    2009-11-01

    Minimizing radiation drive asymmetries is necessary for a successful ignition campaign. Since the ignition capsule symmetry is most sensitive to the foot (first 2 ns) and the peak of the laser pulse, two different targets will be fielded on the NIF: re-emit and symmetry capsules (Sym-Caps). The first measures the incoming flux asymmetries during the foot by observing the re-radiated flux of a high-Z ball in place of the ignition capsule. The Sym-Caps resemble the ignition target with the frozen DT layer replaced by an equivalent mass of ablator material, thus preserving the hydrodynamic implosion properties. By measuring the x-ray self-emission near peak compression the ignition capsule core shape can be tuned. Simulations with 2D radiation-hydrodynamic simulations codes omit 3D effects in the hohlraum such as diagnostic holes, capsule roughness, shot-to-shot variations caused by laser beam power imbalances and pointing errors. We study these effects by performing 3D simulations using HYDRA and found that tuning the laser pulse using a finite number of shots is not substantially compromised.

  20. Numerical analysis of the aeroelastic behaviour for the last turbine stage in 3D transonic flow

    NASA Astrophysics Data System (ADS)

    Gnesin, Vitaly; Kolodyazhnaya, Lyubov

    2004-11-01

    An understanding of the physics of the mutual interaction between gas flow and oscillating blades, and the development of predictive capabilities is essential for improving overall efficiency, durability and reliability. In this study presented the algorithm proposed involving the coupled solution of 3D unsteady flow through a turbine stage and dynamic problem for rotor blades motion by action of aerodynamic forces without separating outer and inner flow fluctuations. There has been performed the calculations for the last stage of the steam turbine under design and off-design regimes. It has investigated the mutual influence of both outer flow non-uniformity and blades oscillations. It has shown that amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to rotor moving one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row.

  1. Evaluation of 3-D graphics software: A case study

    NASA Technical Reports Server (NTRS)

    Lores, M. E.; Chasen, S. H.; Garner, J. M.

    1984-01-01

    An efficient 3-D geometry graphics software package which is suitable for advanced design studies was developed. The advanced design system is called GRADE--Graphics for Advanced Design. Efficiency and ease of use are gained by sacrificing flexibility in surface representation. The immediate options were either to continue development of GRADE or to acquire a commercially available system which would replace or complement GRADE. Test cases which would reveal the ability of each system to satisfy the requirements were developed. A scoring method which adequately captured the relative capabilities of the three systems was presented. While more complex multi-attribute decision methods could be used, the selected method provides all the needed information without being so complex that it is difficult to understand. If the value factors are modestly perturbed, system Z is a clear winner based on its overall capabilities. System Z is superior in two vital areas: surfacing and ease of interface with application programs.

  2. Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Schwarz, J.-O.; Enzmann, F.

    2012-04-01

    Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of

  3. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2016-04-01

    Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 ‑ 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.

  4. Geodynamic background of the 2008 Wenchuan earthquake based on 3D visco-elastic numerical modelling

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhu, Bojing; Yang, Xiaolin; Shi, Yaolin

    2016-03-01

    The 2008 Wenchuan earthquake (Mw7.9) occurred in the Longmen Shan fault zone. The stress change and crustal deformation during the accumulation period is computed using 3D finite element modelling assuming visco-elastic rheology. Our results support that the eastward movement of the Tibetan Plateau resulting from the India-Eurasia collision is obstructed at the Longmen Shan fault zone by the strong Yangtze craton. In response, the Tibetan ductile crust thickens and accumulates at the contact between the Tibetan Plateau and the Sichuan Basin. This process implies a strong uplift with the rate of about 1.8 mm/a of the upper crust and induces a stress concentration nearly at the bottom of the Longmen Shan fault zone. We believe that the stress concentration in the Longmen Shan fault zone provides a very important geodynamic background of the 2008 Wenchuan earthquake. Using numerical experiments we find that the key factor controlling this stress concentration process is the large viscosity contrast in the middle and lower crusts between the Tibetan Plateau and the Sichuan Basin. The results show that large viscosity contrast in the middle and lower crusts accelerates the stress concentration in the Longmen Shan fault zone. Fast moving lower crustal flow accelerates this stress accumulation process. During the inter-seismic period, spatially the maximum stress accumulation rate of the eastern margin of the Tibetan Plateau is located nearly at the bottom of the brittle upper crust of the Longmen Shan fault zone. The spatial distribution of the stress accumulation along the strike of the Longmen Shan fault zone is as follows: the normal stress decreases while the shear stress increases from southwest to northeast along the Longmen Shan fault zone. This stress distribution explains the thrust motion in the SW and strike-slip motion in the NE during the 2008 Wenchuan earthquake.

  5. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2015-12-01

    Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Early Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions using a plume tectonics model setup. For varying crustal structures and a mantle potential temperature increase (ΔTp, compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanics and plutonics. For an increase in mantle potential temperature ΔTp= 250 K, presumably corresponding to an Archean mantle, models show large amounts of subcrustal decompression melting and consequently large amounts of magmatism, which in turn influence the dynamics. In a first active phase (10-20 Ma) rising diapirs within the crust lead to the formation of the typical dome and keel pattern (e.g. Kaapvaal craton in South Africa, Pilbara craton in northwest Australia). A long passive phase follows with strong growth of crust and lithosphere. Both crust and lithosphere thickness are regulated by thermal-chemical instabilities assisted by lower crust eclogitization. Eclogitization depth is reached after ~80 Ma and linear or cylindrical drips originate at the crust or lithosphere bottom. Delamination of lower crust and lithosphere then occurs as one 'catastrophic' event within the next 20 Ma.

  6. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton

  7. Improved Surgery Planning Using 3-D Printing: a Case Study.

    PubMed

    Singhal, A J; Shetty, V; Bhagavan, K R; Ragothaman, Ananthan; Shetty, V; Koneru, Ganesh; Agarwala, M

    2016-04-01

    The role of 3-D printing is presented for improved patient-specific surgery planning. Key benefits are time saved and surgery outcome. Two hard-tissue surgery models were 3-D printed, for orthopedic, pelvic surgery, and craniofacial surgery. We discuss software data conversion in computed tomography (CT)/magnetic resonance (MR) medical image for 3-D printing. 3-D printed models save time in surgery planning and help visualize complex pre-operative anatomy. Time saved in surgery planning can be as much as two thirds. In addition to improved surgery accuracy, 3-D printing presents opportunity in materials research. Other hard-tissue and soft-tissue cases in maxillofacial, abdominal, thoracic, cardiac, orthodontics, and neurosurgery are considered. We recommend using 3-D printing as standard protocol for surgery planning and for teaching surgery practices. A quick turnaround time of a 3-D printed surgery model, in improved accuracy in surgery planning, is helpful for the surgery team. It is recommended that these costs be within 20 % of the total surgery budget. PMID:27303117

  8. Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.

    2012-12-01

    Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in

  9. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    SciTech Connect

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    2013-09-01

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.

  10. Numerical scheme for riser motion calculation during 3-D VIV simulation

    NASA Astrophysics Data System (ADS)

    Huang, Kevin; Chen, Hamn-Ching; Chen, Chia-Rong

    2011-10-01

    This paper presents a numerical scheme for riser motion calculation and its application to riser VIV simulations. The discretisation of the governing differential equation is studied first. The top tensioned risers are simplified as tensioned beams. A centered space and forward time finite difference scheme is derived from the governing equations of motion. Then an implicit method is adopted for better numerical stability. The method meets von Neumann criteria and is shown to be unconditionally stable. The discretized linear algebraic equations are solved using a LU decomposition method. This approach is then applied to a series of benchmark cases with known solutions. The comparisons show good agreement. Finally the method is applied to practical riser VIV simulations. The studied cases cover a wide range of riser VIV problems, i.e. different riser outer diameter, length, tensioning conditions, and current profiles. Reasonable agreement is obtained between the numerical simulations and experimental data on riser motions and cross-flow VIV a/D . These validations and comparisons confirm that the present numerical scheme for riser motion calculation is valid and effective for long riser VIV simulation.

  11. Understanding heavy mineral enrichment – Using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Schmeeckle, Mark; Huhn, Katrin

    2015-04-01

    Layered deposits of light and heavy minerals can be found in many aquatic environments. Various researchers attempted to understand the role of the enrichment process of heavy minerals in placers using flume or in situ field experiments, because of their high economic value. However, a precise quantification of the physical processes occurring at the direct vicinity and in the interior of layered deposits is often limited with such techniques. To investigate the physical processes causing heavy particle enrichment in layers at the direct vicinity and in the interior of sediment beds, a 3D numerical model as an alternative to in situ measurement was used. The 3D model simulates particle transport in water by combining a turbulence-resolving large eddy simulation (LES) with a discrete element model (DEM) prescribing the motion of individual grains. The dimensions of model domain where X = 0.12 [m], Y = 0.06 [m], and Z = 0.04 [m]. A pressure gradient and cyclic boundaries at the side walls allowed the simulation of a recycling flow. For the generation of a granular bed 0.004 [m] in height 200,000 spherical particles (D50 = 500 µm) were generated randomly and deposited under gravity at the bottom of the domain. Seven suites of experiments were designed in which the concentration of heavy i.e. 5000 [kg/m³] over light particles i.e. 2560 [kg/m³] was increased ranging from 0%, 10%, 25%, 50%, 75%, 90%, to 100% heavy particle content. All beds where tested for five seconds at a predefined flow speed of 0.35 [m/s]. The model results showed that at the direct vicinity of the bed the presence of high-vorticity turbulence structures embedded within broader high speed fluid regions caused the formation of particle sweeps or high-speed wedges. The vertical extension of the sweeps decreased when a higher amount of heavy particles was mixed to the beds, which ultimately resulted in a decrease of the bed roughness. Further, the particle flux decreased when higher quantities of

  12. 3D-radiation hydro simulations of disk-planet interactions. I. Numerical algorithm and test cases

    NASA Astrophysics Data System (ADS)

    Klahr, H.; Kley, W.

    2006-01-01

    We study the evolution of an embedded protoplanet in a circumstellar disk using the 3D-Radiation Hydro code TRAMP, and treat the thermodynamics of the gas properly in three dimensions. The primary interest of this work lies in the demonstration and testing of the numerical method. We show how far numerical parameters can influence the simulations of gap opening. We study a standard reference model under various numerical approximations. Then we compare the commonly used locally isothermal approximation to the radiation hydro simulation using an equation for the internal energy. Models with different treatments of the mass accretion process are compared. Often mass accumulates in the Roche lobe of the planet creating a hydrostatic atmosphere around the planet. The gravitational torques induced by the spiral pattern of the disk onto the planet are not strongly affected in the average magnitude, but the short time scale fluctuations are stronger in the radiation hydro models. An interesting result of this work lies in the analysis of the temperature structure around the planet. The most striking effect of treating the thermodynamics properly is the formation of a hot pressure-supported bubble around the planet with a pressure scale height of H/R ≈ 0.5 rather than a thin Keplerian circumplanetary accretion disk.

  13. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

    2005-09-01

    The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

  14. Computational study of 3-D Benard convection with gravitational modulation

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Peltier, L. J.

    1989-01-01

    In this numerical study the effects of a modulated gravitational field on three-dimensional Rayleigh-Benard convection with heating from above or from below is investigated. The full, nonlinear, time-dependent, Boussinesq Navier-Stokes equations and the energy equation are solved by a semiimplicit, pseudo-spectral procedure. This study has been motivated by the need to better understand the effects of vibration (G-Jitter) on fluids systems especially in the low gravity environment.

  15. Internal wave attractors examined using laboratory experiments and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Brouzet, C.; Sibgatullin, I. N.; Scolan, H.; Ermanyuk, E. V.; Dauxois, T.

    2016-04-01

    In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and PIV techniques. The numerical setup closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of three-dimensional calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numerically the effect of lateral walls on secondary currents and spanwise distribution of velocity amplitudes in the wave beams. Finally, we test the assumption of a bidimensional flow and estimate the error made in synthetic schlieren measurements due to this assumption.

  16. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Goetze, H.; Meyer, U.; Group, D.

    2008-12-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. Using that combined gravity dataset and DESIRE wide angle refractions seismic interpretation we modified density structures in the DSB. As results we estimated that (1) the Moho depth varies from 26 km in the Israel side to 34 km in the Jordan side. (2) The maximum thickness of the Dead Sea sediment Basin is about 15 km. (3) The salt rock with an average thickness of about 5 km is

  17. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2015-04-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions using a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a hot lower thermal boundary layer is used to introduce spontaneously developing mantle plumes. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics and/or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic to granitic depending on its source rock. For a major increase in the mantle temperature, presumably corresponding to an Archean mantle (ΔTp = 200 - 300K compared to present day conditions), models show large amounts of subcrustal decompression melting and consequently large amounts of volcanics, which in turn influence the dynamics. Mantle and crust are convecting separately. Dome-shaped felsic plutons can be observed in the crust. Between these domes elongated belts of downwelling basalt and sediments are formed. Both crust and lithosphere thickness are regulated by thermo-chemical instabilities assisted by lower crust eclogitization: linear or cylindrical drips originating at the crust or lithosphere bottom or delamination of lower crust or lithosphere. Very similar examples of dome and belt structures are still preserved in Archean cratons. One example is the Kaapvaal craton is South Africa where the elongated shape of the Barberton Greenstone Belt, mainly built from mafic rocks and sediments, is surrounded

  18. 3D Numerical Analysis of Flow Control on Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Sahni, Onkar; Karaismail, Ertan

    2011-11-01

    Wind turbine blades are exposed to unsteady and spatially-varying loadings in a real field. These loadings result in fluctuating structural forces which in turn lead to failure of blades as well as gearbox. In this study, we perform numerical analysis of flow over a wind turbine blade placed in a wind tunnel; where dynamic motions are imposed to the blade in order to emulate scenarios observed in a real field. Furthermore, we also study the effect of active flow control (via synthetic-jets) on unsteady aerodynamic characteristics of the blade under dynamic motions; the idea is to be able to control aerodynamic loads and mitigate failures. Numerical analysis is based on massively parallel simulations using hybrid turbulence models. Comparisons with experimental data will also be included.

  19. Multigrid preconditioned conjugate gradients for the numerical simulation of groundwater flow on the Cray T3D

    SciTech Connect

    Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.

    1994-09-01

    This paper discusses the numerical simulation of groundwater flow through heterogeneous porous media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to compute the hydraulic pressure head. The numerical investigation considers the effects of enlarging the domain, increasing the grid resolution, and varying the geostatistical parameters used to define the subsurface realization. The results were obtained using the PARFLOW groundwater flow simulator on the Cray T3D massively parallel computer.

  20. Elemental concentration distribution in human fingernails - A 3D study

    NASA Astrophysics Data System (ADS)

    Pineda-Vargas, C. A.; Mars, J. A.; Gihwala, D.

    2012-02-01

    The verification of pathologies has normally been based on analysis of blood (serum and plasma), and physiological tissue. Recently, nails and in particular human fingernails have become an important medium for pathological studies, especially those of environmental origin. The analytical technique of PIXE has been used extensively in the analysis of industrial samples and human tissue specimens. The application of the analytical technique to nails has been mainly to bulk samples. In this study we use micro-PIXE and -RBS, as both complementary and supplementary, to determine the elemental concentration distribution of human fingernails of individuals. We report on the 3D quantitative elemental concentration distributions (QECDs) of various elements that include C, N and O as major elements (10-20%), P, S, Cl, K and Ca as minor elements (1-10%) and Fe, Mn, Zn, Ti, Na, Mg, Cu, Ni, Cr, Rb, Br, Sr and Se as trace elements (less than 1%). For PIXE and RBS the specimens were bombarded with a 3 MeV proton beam. To ascertain any correlations in the quantitative elemental concentration distributions, a linear traverse analysis was performed across the width of the nail. Elemental distribution correlations were also obtained.

  1. A study of Forbush Decreases with a full 3-D cosmic ray modulation model

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Zhang, Ming; Potgieter, Marius

    2016-07-01

    We have constructed a 3-D numerical model for studying Forbush Decreases (FDs) in the global heliosphere. It incorporates 3-D propagation barriers, with enhanced cooling inside, into a time-dependent Parker type modulation model using a Stochastic Differential Equation (SDE) approach. This numerical model simultaneously takes into account the effect of solar wind convection with associated adiabatic energy changes; gradient, curvature and current sheet drifts; as well as parallel and perpendicular diffusion. This state-of-the-art numerical model enables us to find and study some new 3-D features for FD type events: 1. The cosmic ray intensity at Earth varies depending on the relative location of the Earth to the current sheet, and is reflected also in the amplitude of the FDs. The local modulation conditions, at a given observational point, determine the total amplitude. 2. The radial, latitudinal and longitudinal extent of a diffusion barrier significantly affects the amplitude of a FD. 3. The recovery time of a FD, at a given observational location, is determined by the modulation conditions which the corresponding propagation barrier encounters as it moves outwards in the heliosphere.

  2. Geological characterisation of complex reservoirs using 3D seismic: Case studies

    NASA Astrophysics Data System (ADS)

    Benaissa, Zahia; Benaïssa, Abdelkader; Seghir Baghaoui, Mohamed; Bendali, Mohamed; Chami, Adel; Khelifi Touhami, Médina; Ouadfeul, Sid Ali; Boudella, Amar

    2014-05-01

    3D seismic allows getting a set of numerous closely-spaced seismic lines that provide a high spatially sampled measure of subsurface reflectivity. It leads to an accurate interpretation of seismic reflection data, which is one of the most important stages of a successful hydrocarbons exploration, especially in the reservoirs characterised by complex geological setting. We present here two case studies pertaining to two Algerian hydrocarbon fields. Considering the positive results obtained from 2D seismic interpretation, several wells were drilled. Some of them have proved dry, due certainly to inaccurate seismic interpretation because of non standard geological context. For the first case, the high quality of the 3D seismic data allowed to reveal, on all the inlines and crosslines, the existence of paleovalleys under the top of the Ordovician (unit IV) reservoir. The mapping of these paleovalleys clearly showed that the dry well, contrary to the other wells, was implanted outside paleovalleys. This fact was confirmed by the analysis of well data. The second case study concerns the problem of andesitic eruptive deposits on the top of the Ordovician reservoir, which condition the geometry and continuity of this reservoir and cause uncertainties in the mapping of the Hercynian unconformity. Well data associated with 3D seismic response shows that eruptive deposits generate high impedance anomaly because of the high density and velocity of andesites. We used this information to interpret these eruptive rocks as being responsible of high impedance anomalies, inside the Ordovician reservoir, on the impedance volume generated from the 3D seismic data. A 3D extraction of the anomalies allowed an accurate localisation of the andesites. So, it appears, according to these two case studies, that for an efficient recovery of hydrocarbons, we have to rely, first of all, on an accurate seismic interpretation before we use microscopic measurements. 3D seismic, once again, remains

  3. Development of a 3D numerical code to calculate the trajectories of the blow off electrons emitted by a vacuum surface discharge: Application to the study of the electromagnetic interference induced on a spacecraft

    NASA Astrophysics Data System (ADS)

    Froger, Etienne

    1993-05-01

    A description of the electromagnetic behavior of a satellite subjected to an electric discharge is given using a specially developed numerical code. One of the particularities of vacuum discharges, obtained by irradiation of polymers, is the intense emission of electrons into the spacecraft environment. Electromagnetic radiation, associated with the trajectories of the particles around the spacecraft, is considered as the main source of the interference observed. In the absence of accurate orbital data and realistic ground tests, the assessment of these effects requires numerical simulation of the interaction between this electron source and the spacecraft. This is done by the GEODE particle code which is applied to characteristic configurations in order to estimate the spacecraft response to a discharge, which is simulated from a vacuum discharge model designed in laboratory. The spacecraft response to a current injection is simulated by the ALICE numerical three dimensional code. The comparison between discharge and injection effects, from the results given by the two codes, illustrates the representativity of electromagnetic susceptibility tests and the main parameters for their definition.

  4. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  5. Application of 3D printing technology in aerodynamic study

    NASA Astrophysics Data System (ADS)

    Olasek, K.; Wiklak, P.

    2014-08-01

    3D printing, as an additive process, offers much more than traditional machining techniques in terms of achievable complexity of a model shape. That fact was a motivation to adapt discussed technology as a method for creating objects purposed for aerodynamic testing. The following paper provides an overview of various 3D printing techniques. Four models of a standard NACA0018 aerofoil were manufactured in different materials and methods: MultiJet Modelling (MJM), Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). Various parameters of the models have been included in the analysis: surface roughness, strength, details quality, surface imperfections and irregularities as well as thermal properties.

  6. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  7. Assessment of 3D Models Used in Contours Studies

    ERIC Educational Resources Information Center

    Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes

    2015-01-01

    This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…

  8. Study, simulation and design of a 3D clinostat

    NASA Astrophysics Data System (ADS)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  9. Efficient 3D Acoustic Numerical modeling in the Logarithmic-grid using the Expanding Domain Method

    NASA Astrophysics Data System (ADS)

    Hong, B. R.; Chung, W.; Ko, H.; Bae, H. S.

    2015-12-01

    In the numerical modeling of seismic wave propagation by the use of a discrete computing domain, dispersion analysis is preceded by the determination of the spatial grid spacings in order to ensure accurate modeling results. Grid spacing is a function of wavelength, and the wavelength depends on the minimum velocity and maximum source frequency. Therefore, as the frequency increases, the number of grids increase and this leads to computational overburden. In order to reduce the computing complexity, coordinate transformation techniques such as Riemannian coordinates and logarithmic grid sets are proposed. Riemannian wave-field extrapolation is a way to reformulate the wave-field by expressing it in Riemannian coordinates. In the logarithmic grid, grid spacing changes logarithmically, so this enables us to reduce the number of grids compared to a conventional grid set. Furthermore, this could completely remove boundary reflections by extending the model dimensions. However, numerical modeling in the logarithmic grid is still inefficient because it is performed for whole model at every individual time step. In this study we applied the expanding domain method to the logarithmic modeling in order to improve computational efficiency. This method, based on amplitude comparison, excludes computations for zero wave-fields by considering a non-zero domain boundary. Numerical examples demonstrated that our new modeling method enhances computational efficiency maintaining accuracy compared with conventional modeling methods. In wider and higher-order dimensions, particularly, the efficiency of our modeling method increased. Our new modeling technique could also be applied to the generation of underwater target echo signals requiring high frequency analysis.

  10. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  11. Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber

    NASA Astrophysics Data System (ADS)

    Yuen, A.; Bombardelli, F. A.

    2014-12-01

    Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on

  12. 3D-QSAR and Docking Studies of Pyrido[2,3-d]pyrimidine Derivatives as Wee1 Inhibitors

    NASA Astrophysics Data System (ADS)

    Zeng, Guo-hua; Wu, Wen-juan; Zhang, Rong; Sun, Jun; Xie, Wen-guo; Shen, Yong

    2012-06-01

    In order to investigate the inhibiting mechanism and obtain some helpful information for designing functional inhibitors against Wee1, three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies have been performed on 45 pyrido[2,3-d] pyrimidine derivatives acting as Wee1 inhibitors. Two optimal 3D-QSAR models with significant statistical quality and satisfactory predictive ability were established, including the CoMFA model (q2=0.707, R2=0.964) and CoMSIA model (q2=0.645, R2=0.972). The external validation indicated that both CoMFA and CoMSIA models were quite robust and had high predictive power with the predictive correlation coefficient values of 0.707 and 0.794, essential parameter rm2 values of 0.792 and 0.826, the leave-one-out r2m(LOO) values of 0.781 and 0.809, r2m(overall) values of 0.787 and 0.810, respectively. Moreover, the appropriate binding orientations and conformations of these compounds interacting with Wee1 were revealed by the docking studies. Based on the CoMFA and CoMSIA contour maps and docking analyses, several key structural requirements of these compounds responsible for inhibitory activity were identified as follows: simultaneously introducing high electropositive groups to the substituents R1 and R5 may increase the activity, the substituent R2 should be smaller bulky and higher electronegative, moderate-size and strong electron-withdrawing groups for the substituent R3 is advantageous to the activity, but the substituent X should be medium-size and hydrophilic. These theoretical results help to understand the action mechanism and design novel potential Wee1 inhibitors.

  13. OB3D, a new set of 3D objects available for research: a web-based study

    PubMed Central

    Buffat, Stéphane; Chastres, Véronique; Bichot, Alain; Rider, Delphine; Benmussa, Frédéric; Lorenceau, Jean

    2014-01-01

    Studying object recognition is central to fundamental and clinical research on cognitive functions but suffers from the limitations of the available sets that cannot always be modified and adapted to meet the specific goals of each study. We here present a new set of 3D scans of real objects available on-line as ASCII files, OB3D. These files are lists of dots, each defined by a triplet of spatial coordinates and their normal that allow simple and highly versatile transformations and adaptations. We performed a web-based experiment to evaluate the minimal number of dots required for the denomination and categorization of these objects, thus providing a reference threshold. We further analyze several other variables derived from this data set, such as the correlations with object complexity. This new stimulus set, which was found to activate the Lower Occipital Complex (LOC) in another study, may be of interest for studies of cognitive functions in healthy participants and patients with cognitive impairments, including visual perception, language, memory, etc. PMID:25339920

  14. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  15. On 3D Dimension: Study cases for Archaeological sites

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Marino, C. L.; Rotondi, A.

    2014-04-01

    For more than a century the tridimensional vision has been of interest for scientists and users in several fields of application. The mathematical bases have remained substantially unchanged but only the new technologies have allowed us to make the vision really impressive. Photography opens new frontiers and has enriched of physical, mathematical, chemical, informatical and topographic notions by making the images so real to make the observer fully immersed into the represented scene. By means of active googless the 3D digital technique, commonly used for video games, makes possible animations without limitations in the dimension of the images thanks to the improved performances of the graphic processor units and related hardware components. In this paper we illustrate an experience made by the students of the MSc'degree course of Topography, active at the University of Cassino and Southern Lazio, in which the photography has been applied as an innovative technique for the surveying of cultural heritage. The tests foresee the use of traditional techniques of survey with 3D digital images and use of GPS sensors. The ultimate objective of our experience is the insertion in the web, allowing us the visualization of the 3D images equipped with all data. In conclusion these new methods of survey allow for the fusion of extremely different techniques, in such an impressive way to make them inseparable and justifying the origin of the neologism "Geomatics" coined at the Laval University (Canada) during the eighties.

  16. 3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea

    SciTech Connect

    Baumgardner, J.R.

    1992-10-01

    Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.

  17. 3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea

    SciTech Connect

    Baumgardner, J.R.

    1992-01-01

    Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.

  18. Numerical Modeling of seismic wave propagation on Etna Volcano (Italy): Construction of 3D realistic velocity structures

    NASA Astrophysics Data System (ADS)

    Trovato, Claudio; Aochi, Hideo; De Martin, Florent

    2014-05-01

    Understanding the source mechanism of long-period (LP) seismic signals on volcanoes is an important key point in volcanology and for the hazard forecasting. In the last decades, moment tensor inversions have led to various descriptions of the kinematic source mechanism. These inversions suppose a relatively simple structure of the medium. However, the seismic wave propagation in a realistic 3-D volcano model should be taken into account for understanding the complicated physical processes of magma and gas behaviors at depth. We are studying Etna volcano, Italy, to understand the volcanic processes during different stages of activity. We adopt a spectral element method (SEM), a code EFISPEC3D (De Martin, BSSA, 2011), which shows a good accuracy and numerical stability in the simulations of seismic wave propagation. First we construct the geometrical model. We use a digital elevation model (DEM) to generate finite element meshes with a spacing of 50 m on the ground surface. We aim to calculate the ground motions until 3 Hz for the shallowest layer with Vs = ~500 m/s. The minimal size of the hexahedral elements is required to be around 100 m, with a total number of elements n = ~2 10 ^ 6 for the whole model. We compare different velocity structure configurations. We start with a homogeneous medium and add complexities taking in account the shallow low velocity structure. We also introduce a velocity gradient towards depth. Simulations performed in the homogeneous medium turn in approximately 20 hours for calculations parallelized on 16 CPUs. Complex velocity models should take approximately the same time of computation. We then try to simulate the ground motion from the LP sources (0.1-1.5 Hz) obtained by the inversion for the Etna volcano in 2008 (De Barros, GRL, 2009 and De Barros, JGR, 2011). Some vertical and horizontal structures can be added to reproduce injected dikes or sills respectively.

  19. 3D tomodosimetry using long scintillating fibers: A feasibility study

    SciTech Connect

    Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc

    2013-10-15

    Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2

  20. Study of a 3D DEP-based microfluidic system for selective nanoparticle manipulation

    NASA Astrophysics Data System (ADS)

    Lungu, M.; Balasiu, S.; Bunoiu, M. O.; Neculae, A.

    2014-11-01

    Manipulation of nanoparticle using dielectrophoresis (DEP) is an emerging technique to separate particles solely according to their dielectric properties and size, used in different forms to control the position, their orientation and velocity, to filtrate chemical compounds contained in the gas resulting from combustion processes, etc. This contribution presents the results of a simulation study which aims to characterize the functionality of a 3D DEP-based microsystem for the selective manipulation of nanometric particles. The use of 3D geometry of the device represents an important improvement in the description of the behavior of a nanoparticle suspension subjected to dielectrophoretic forces. The numerical solutions of the electric potential, electric field, DEP force and particle concentration distribution for a typical interdigitated electrodes array are calculated using the COMSOL Multiphysics finite element solver. The presented results demonstrate that dielectrophoresis can be successfully used for the manipulation of nanometric particles and give important information for the optimization of the experimental setup.

  1. Laboratory Study of Magnetic Reconnection in 3D Geometry Relevant to Magnetopause and Magnetotail

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Lu, Q.; Ji, H.; Mao, A.; Wang, X.; E, P.; Wang, Z.; Xiao, Q.; Ding, W.; Zheng, J.

    2015-12-01

    Laboratory Study of Magnetic Reconnection in 3D Geometry Relevant to Magnetopause and Magnetotail Y. Ren1,2, Quaming Lu3, Hantao Ji1,2, Aohua Mao1, Xiaogang Wang1, Peng E1, Zhibin Wang1, Qingmei Xiao1, Weixing Ding4, Jinxing Zheng51 Harbin Institute of Technology, Harbin, China2 Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 3University of Science and Technology of China, Hefei, China 4University of California at Los Angeles, Los Angeles, CA, 90095 5ASIPP, Hefei, China A new magnetic reconnection experiment, Harbin reconnection eXperiment (HRX), is currently being designed as a key part of Space Plasma Environment Research Facility (SPERF) at Harbin Institute of Technology in Harbin, China. HRX aims to provide a unique experimental platform for studying reconnections in 3D geometry relevant to magnetopause and magnetotail to address: the role of electron and ion-scale dynamics in the current sheet; particle and energy transfer from magnetosheath to magnetosphere; particle energization/heating mechanisms during magnetic reconnection; 3D effects in fast reconnection, e.g. the role of 3D magnetic null point. HRX employs a unique set of coils to generate the required 3D magnetic geometry and provides a wide range of plasma parameters. Here, important motivating scientific problems are reviewed and the physics design of HRX is presented, including plasma parameters determined from Vlasov scaling law, reconnection scenarios explored using vacuum magnetic field calculations and numerical simulations of HRX using hybrid and MHD codes. Plasma diagnostics plan and engineering design of important coils will also be briefly presented.

  2. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.

    PubMed

    Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao

    2005-01-01

    The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch. PMID:16313008

  3. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    SciTech Connect

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.

  4. Validation of 3D surface reconstruction of vertebrae and spinal column using 3D ultrasound data--a pilot study.

    PubMed

    Nguyen, Duc V; Vo, Quang N; Le, Lawrence H; Lou, Edmond H M

    2015-02-01

    Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of spine associated with vertebra rotation. The Cobb angle and axial vertebral rotation are important parameters to assess the severity of scoliosis. However, the vertebral rotation is seldom measured from radiographs due to time consuming. Different techniques have been developed to extract 3D spinal information. Among many techniques, ultrasound imaging is a promising method. This pilot study reported an image processing method to reconstruct the posterior surface of vertebrae from 3D ultrasound data. Three cadaver vertebrae, a Sawbones spine phantom, and a spine from a child with AIS were used to validate the development. The in-vitro result showed the surface of the reconstructed image was visually similar to the original objects. The dimension measurement error was <5 mm and the Pearson correlation was >0.99. The results also showed a high accuracy in vertebral rotation with errors of 0.8 ± 0.3°, 2.8 ± 0.3° and 3.6 ± 0.5° for the rotation values of 0°, 15° and 30°, respectively. Meanwhile, the difference in the Cobb angle between the phantom and the image was 4° and the vertebral rotation at the apex was 2°. The Cobb angle measured from the in-vivo ultrasound image was 4° different from the radiograph. PMID:25550193

  5. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  6. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  7. Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation

    SciTech Connect

    Fedele, R.; Jovanovic, D.; De Nicola, S.; Eliasson, B.; Shukla, P. K.

    2009-11-10

    The results of recently developed investigations, that have been carried out within the framework of the controlling potential method (CPM), are reviewed. This method allows one to decompose a three dimensional (3D) Gross-Pitaevskii equation (GPE) into the pair of coupled Schroedinger-type equations. Under suitable mathematical conditions, the solutions of the 3D controlled GPE can be constructed from the solutions of a 2D linear Schroedinger equation (the transverse component of the GPE) coupled with a 1D nonlinear Schroedinger equation (the longitudinal component of the GPE). Such decomposition allows one to cast the solutions in the form of the product of the solutions of the transverse and the longitudinal components of the GPE. The coupling between these two equations is the functional of both the transverse and the longitudinal profiles. It is shown that the CPM can be used to obtain a new class of three-dimensional solitary waves solutions of the GPE, which governs the dynamics of Bose-Einstein condensates. By imposing an external controlling potential, the desired time-dependent shape of the localized BECs is obtained. The stability of the exact solutions was checked with direct simulations of the time -dependent, three-dimensional GPE. Our simulations show that the localized condensates are stable with respect to perturbed initial conditions.

  8. Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Bemporad, A.; Mackay, D. H.

    2015-10-01

    Context. Understanding the 3D structure of coronal mass ejections (CMEs) is crucial for understanding the nature and origin of solar eruptions. However, owing to the optical thinness of the solar corona we can only observe the line of sight integrated emission. As a consequence the resulting projection effects hide the true 3D structure of CMEs. To derive information on the 3D structure of CMEs from white-light (total and polarized brightness) images, the polarization ratio technique is widely used. The soon-to-be-launched METIS coronagraph on board Solar Orbiter will use this technique to produce new polarimetric images. Aims: This work considers the application of the polarization ratio technique to synthetic CME observations from METIS. In particular we determine the accuracy at which the position of the centre of mass, direction and speed of propagation, and the column density of the CME can be determined along the line of sight. Methods: We perform a 3D MHD simulation of a flux rope ejection where a CME is produced. From the simulation we (i) synthesize the corresponding METIS white-light (total and polarized brightness) images and (ii) apply the polarization ratio technique to these synthesized images and compare the results with the known density distribution from the MHD simulation. In addition, we use recent results that consider how the position of a single blob of plasma is measured depending on its projected position in the plane of the sky. From this we can interpret the results of the polarization ratio technique and give an estimation of the error associated with derived parameters. Results: We find that the polarization ratio technique reproduces with high accuracy the position of the centre of mass along the line of sight. However, some errors are inherently associated with this determination. The polarization ratio technique also allows information to be derived on the real 3D direction of propagation of the CME. The determination of this is of

  9. MESA: A 3-D Eulerian hydrocode for penetration mechanics studies

    SciTech Connect

    Mandell, D.A.; Holian, K.S.; Henninger, R.

    1991-01-01

    We describe an explicit, finite-difference hydrocode, called MESA, and compare calculations to metal and ceramic plate impacts with spall and to Taylor cylinder tests. The MESA code was developed with support from DARPA, the Army and the Marine Corps for use in armor/anti-armor problems primarily, but the code has been used for a number of other applications. MESA includes 2-D and 3-D Eulerian hydrodynamics, a number of material strength and fracture models, and a programmed burn high explosives model. 15 refs., 4 figs.

  10. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  11. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  12. Markerless 3D motion capture for animal locomotion studies

    PubMed Central

    Sellers, William Irvin; Hirasaki, Eishi

    2014-01-01

    ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869

  13. Study of failure in 3-D carbon-carbons

    SciTech Connect

    Pollock, P.B.

    1984-01-01

    A program of experiments and analysis was performed to examine failure criteria for 3-D carbon-carbon composites. Specimens from an FMI 2-2-1 weave and an AVCO 2-2-5 weave were investigated using off-axis tests in tension and compression. The stress strain responses were analyzed to provide composite stiffness and yield strength as a function of yarn angle. Estimates of the material shear stiffness were calculated. The data for yield strength versus yarn angle were fitted with Tsai-Hill and Tsai-Wu failure criteria. Values of the shear strength for yield and ultimate failure were found. The general off-axis nonlinear stress strain curves were condensed to a single equation using the theory of anisotropic plasticity. A simple criterion was found to predict the onset of yielding for 3-D weaves subjected to off-axis loading. Validation of the failure criteria and plasticity models was made by analyzing stress fields in the region of a hole and comparing with experimental data. Observations of microscopic material damage and failure surfaces were made for specimens subjected to on-axis compression and off-axis tension. The spread of damage in on-axis compression specimens is explained in detail.

  14. Study on 3D CFBG vibration sensor and its application

    NASA Astrophysics Data System (ADS)

    Nan, Qiuming; Li, Sheng

    2016-03-01

    A novel variety of three dimensional (3D) vibration sensor based on chirped fiber Bragg grating (CFBG) is developed to measure 3D vibration in the mechanical equipment field. The sensor is composed of three independent vibration sensing units. Each unit uses double matched chirped gratings as sensing elements, and the sensing signal is processed by the edge filtering demodulation method. The structure and principle of the sensor are theoretically analyzed, and its performances are obtained from some experiments and the results are as follows: operating frequency range of the sensor is 10 Hz‒500 Hz; acceleration measurement range is 2 m·s-2‒30 m·s-2; sensitivity is about 70 mV/m·s-2; crosstalk coefficient is greater than 22 dB; self-compensation for temperature is available. Eventually the sensor is applied to monitor the vibration state of radiation pump. Seen from its experiments and applications, the sensor has good sensing performances, which can meet a certain requirement for some engineering measurement.

  15. Markerless 3D motion capture for animal locomotion studies.

    PubMed

    Sellers, William Irvin; Hirasaki, Eishi

    2014-01-01

    Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869

  16. Pattern formation of down-built salt structures: insights from 3D numerical models

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris

    2015-04-01

    Many salt diapirs are thought to have formed as a result of down-building, which implies that the top of the diapir remained close to the surface during sediment deposition. This process is largely three-dimensional and in order to better understand what controls the patterns that form as a result of this down-building process, we here perform three-dimensional numerical models and compare the results with analytical models. In our models, we vary several parameters such as initial salt thickness, sedimentation rate, salt viscosity, salt-sediment viscosity contrast as well as the density of sediments. Down-building of three-dimensional diapirs only occurs for a certain range of parameters and is favored by lower sediment/salt viscosity contrasts and sedimentation rates in agreement with analytical predictions and findings from previous 2D models. However, the models show that the sedimentation rate has an additional effect on the formation and evolution of three-dimensional diapir patterns. At low sedimentation rates, salt ridges that form during early model stages remain preserved at later stages as well. For higher sedimentation rates, the initial salt ridges break up and form finger-like diapirs at the junction of salt ridges, which results in different salt exposure patterns at the surface. Once the initial pattern of diapirs is formed, higher sedimentation rate can also result in covered diapirs if the diapir extrusion velocity is insufficiently large. We quantify the effect of sedimentation rate on the number of diapirs exposed at the surface as well as on their spacing. In some cases, this final pattern is distinctly different from the initial polygonal pattern. We also study the extrusion of salt through time in the simulations, and show that it can be related to the geometries of the sedimentary layers surrounding the diapirs. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program

  17. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    ERIC Educational Resources Information Center

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  18. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  19. Integrated endoscope for real-time 3D ultrasound imaging and hyperthermia: feasibility study.

    PubMed

    Pua, Eric C; Qiu, Yupeng; Smith, S W

    2007-01-01

    The goal of this research is to determine the feasibility of using a single endoscopic probe for the combined purpose of real-time 3D (RT3D) ultrasound imaging of a target organ and the delivery of ultrasound therapy to facilitate the absorption of compounds for cancer treatment. Recent research in ultrasound therapy has shown that ultrasound-mediated drug delivery improves absorption of treatments for prostate, cervical and esophageal cancer. The ability to combine ultrasound hyperthermia and 3D imaging could improve visualization and targeting of cancerous tissues. In this study, numerical modeling and experimental measurements were developed to determine the feasibility of combined therapy and imaging with a 1 cm diameter endoscopic RT3D probe with 504 transmitters and 252 receive channels. This device operates at 5 MHz and has a 6.3 mm x 6.3 mm aperture to produce real time 3D pyramidal scans of 60-120 degrees incorporating 64 x 64 = 4096 image lines at 30 volumes/sec interleaved with a 3D steerable therapy beam. A finite-element mesh was constructed with over 128,000 elements in LS-DYNA to simulate the induced temperature rise from our transducer with a 3 cm deep focus in tissue. Quarter-symmetry of the transducer was used to reduce mesh size and computation time. Based on intensity values calculated in Field II using the transducer's array geometry, a minimum I(SPTA) of 3.6 W/cm2 is required from our endoscope probe in order to induce a temperature rise of 4 degrees C within five minutes. Experimental measurements of the array's power output capabilities were conducted using a PVDF hydrophone placed 3 cm away from the face of the transducer in a watertank. Using a PDA14 Signatec data acquisition board to capture full volumes of transmitted ultrasound data, it was determined that the probe can presently maintain intensity values up to 2.4 W/cm2 over indefinite times for therapeutic applications combined with intermittent 3D scanning to maintain targeting

  20. An algorithm for studying rigidity in disordered 3D networks

    NASA Astrophysics Data System (ADS)

    Chubynsky, M. V.; Thorpe, M. F.

    2004-03-01

    Some physical systems, such as covalent glasses and proteins, can be modeled as elastic networks, by dividing the interactions between particles into strong and weak, representing the former as constraints and neglecting the latter. For low enough connectivities, motions maintaining the constraints and thus having zero energy cost are possible. The goal of rigidity analysis is finding the number of such zero energy modes, the rigid clusters and flexible joints between them, as well as stressed bonds. For a certain class of networks there is a very fast graph-theoretical algorithm (the Pebble Game) for doing this analysis, but for more general networks, there are known counterexamples. While generalizing the Pebble Game is the ultimate goal, we propose a slower algorithm capable of doing all the same analyses as the Pebble Game but applicable to any networks. We discuss the applications of this algorithm to specific examples of 3D networks, such as diluted central force lattices, colloidal glasses and proteins.

  1. Numerical Simulation of 3D Thermo-Elastic Fatigue Crack Growth Problems Using Coupled FE-EFG Approach

    NASA Astrophysics Data System (ADS)

    Pathak, Himanshu; Singh, Akhilendra; Singh, Indra Vir

    2016-06-01

    In this work, finite element method (FEM) and element free Galerkin method (EFGM) are coupled for solving 3D crack domains subjected to cyclic thermal load of constant amplitude. Crack growth contours and fatigue life have been obtained for each of the considered numerical examples. Thermo-elastic problems are decoupled into thermal and elastic problems . Firstly, the unknown temperature field is obtained by solving heat conduction equation, then, it is used as the input load in the elastic problem to calculate the displacement and stress fields. The geometrical discontinuity across crack surface is modelled by extrinsically enriched EFGM and the remaining part of the domain is approximated by standard finite element method. At the crack interface, a ramp function based interpolation scheme has been implemented. This coupled approach combines the advantages of both EFGM and FEM. A linear successive crack increment approach is used to model crack growth. The growing crack surface is traced by level set function. Standard Paris law is used for life estimation of the three-dimensional crack models. Different cases of planar and non-planar crack problems have been solved and their results are compared with the results obtained using extended finite element method to check accuracy, efficiency and robustness of the coupled FE-EFG approach implemented in this study.

  2. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    SciTech Connect

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-12-31

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data.

  3. PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain

    NASA Astrophysics Data System (ADS)

    Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.

    2009-12-01

    A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007

  4. 3D micromanipulation at low numerical aperture with a single light beam: the focused-Bessel trap.

    PubMed

    Ayala, Yareni A; Arzola, Alejandro V; Volke-Sepúlveda, Karen

    2016-02-01

    Full-three-dimensional (3D) manipulation of individual glass beads with radii in the range of 2-8 μm is experimentally demonstrated by using a single Bessel light beam focused through a low-numerical-aperture lens (NA=0.40). Although we have a weight-assisted trap with the beam propagating upward, we obtain a stable equilibrium position well away from the walls of the sample cell, and we are able to move the particle across the entire cell in three dimensions. A theoretical analysis for the optical field and trapping forces along the lateral and axial directions is presented for the focused-Bessel trap. This trap offers advantages for 3D manipulation, such as an extended working distance, a large field of view, and reduced aberrations. PMID:26907437

  5. Numerical model of formation of a 3-D strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand

    2016-01-01

    The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.

  6. Wavelet-based adaptive numerical simulation of unsteady 3D flow around a bluff body

    NASA Astrophysics Data System (ADS)

    de Stefano, Giuliano; Vasilyev, Oleg

    2012-11-01

    The unsteady three-dimensional flow past a two-dimensional bluff body is numerically simulated using a wavelet-based method. The body is modeled by exploiting the Brinkman volume-penalization method, which results in modifying the governing equations with the addition of an appropriate forcing term inside the spatial region occupied by the obstacle. The volume-penalized incompressible Navier-Stokes equations are numerically solved by means of the adaptive wavelet collocation method, where the non-uniform spatial grid is dynamically adapted to the flow evolution. The combined approach is successfully applied to the simulation of vortex shedding flow behind a stationary prism with square cross-section. The computation is conducted at transitional Reynolds numbers, where fundamental unstable three-dimensional vortical structures exist, by well-predicting the unsteady forces arising from fluid-structure interaction.

  7. Study on portable optical 3D coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  8. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    NASA Astrophysics Data System (ADS)

    Huang, S.; Guo, J.; Yang, F. X.

    2013-12-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects.

  9. A comparative study between a rectilinear 3-D seismic survey and a concentric-circle 3-D seismic survey

    SciTech Connect

    Maldonado, B.; Hussein, H.S.

    1994-12-31

    Due to the rectilinear nature of the previous 3D seismic survey, the details necessary for proper interpretation were absent. Theoretically, concentric 3D seismic technology may provide an avenue for gaining more and higher quality data coverage. Problems associated with recording a rectilinear 3D seismic grid over the salt dome in this area have created the need to investigate the use of such procedures as the concentric-circle 3D seismic acquisition technique. The difficulty of imaging salt dome flanks with conventional rectilinear 3D seismic may be a result of the inability to precisely predict the lateral velocity-field variation adjacent to both salt and sediments. The dramatic difference in the interval velocities of salt and sediments causes the returning ray to severely deviate from being a hyperbolic path. This hampers the ability to predict imaging points near the salt/sediment interface. Perhaps the most difficult areas to image with rectilinear seismic surveys are underneath salt overhangs. Modeling suggests that a significant increase in the number of rays captured from beneath a salt overhang can be achieved with the concentric-circle method. This paper demonstrates the use of the ``circle shoot`` on a survey conducted over a salt dome in the Gulf of Mexico. A total of 80 concentric circles cover an area which is equivalent to 31,000 acres. The final post-stack data were sorted into bins with dimensions of 25 meters by 25 meters. A comparison of 3D rectilinear shooting vs. 3D concentric circle shooting over the same area will show an improvement in data quality and signal-to-noise characteristics.

  10. A Laplacian Equation Method for Numerical Generation of Boundary-Fitted 3D Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, T.; Bergeles, G. C.

    1989-06-01

    A sethod for generating boundary fitted orthogonal curvilinear grids in 3-dimensional space is described. The mapping between the curvilinear coordinates and the Cartesian coordinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, involve the components of the metric tensor and are therefore non-linear and coupled. An iterative algorithm is described, which achieves a numerical solution. Grids appropriate for the calculation of flow fields over complex topography or in complex flow passages as those found in turbomachinery, and for other engineering applications can be constructed using the proposed method. Various examples are presented and plotted in perspective, and data for the assessment of the properties of the resulting meshes is provided.

  11. Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization

    PubMed Central

    Chaumeil, Julie; Micsinai, Mariann; Skok, Jane A.

    2013-01-01

    Fluorescent in situ hybridization using DNA probes on 3-dimensionally preserved nuclei followed by 3D confocal microscopy (3D DNA FISH) represents the most direct way to visualize the location of gene loci, chromosomal sub-regions or entire territories in individual cells. This type of analysis provides insight into the global architecture of the nucleus as well as the behavior of specific genomic loci and regions within the nuclear space. Immunofluorescence, on the other hand, permits the detection of nuclear proteins (modified histones, histone variants and modifiers, transcription machinery and factors, nuclear sub-compartments, etc). The major challenge in combining immunofluorescence and 3D DNA FISH is, on the one hand to preserve the epitope detected by the antibody as well as the 3D architecture of the nucleus, and on the other hand, to allow the penetration of the DNA probe to detect gene loci or chromosome territories 1-5. Here we provide a protocol that combines visualization of chromatin modifications with genomic loci in 3D preserved nuclei. PMID:23407477

  12. A numerical investigation of the 3-D flow in shell and tube heat exchangers

    SciTech Connect

    Prithiviraj, M.; Andrews, M.J.

    1996-12-31

    A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.

  13. Numerical Modeling of 3-D Dynamics of Ultrasound Contrast Agent Microbubbles Using the Boundary Integral Method

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Manmi, Kawa; Wang, Qianxi

    2014-11-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.

  14. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    PubMed Central

    Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale

    2015-01-01

    A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678

  15. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model

    NASA Astrophysics Data System (ADS)

    Wang, Zhejiang; He, Qiaodeng; Wang, Deli

    2008-03-01

    Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wave-field simulation in the porous medium is limited to two-dimensions and two-components (2D2C) or two-dimensions and three-components (2D3C). There is no previous report on wave simulation in three-dimensions and three-components. Only through three dimensional numerical simulations can we have an overall understanding of wave field coupling relations and the spatial distribution characteristics between the solid and fluid phases in the dual-phase anisotropic medium. In this paper, based on the BISQ equation, we present elastic wave propagation in a three dimensional dual-phase anisotropic medium simulated by the staggered-grid high-order finite-difference method. We analyze the resulting wave fields and show that the results are an improvement.

  16. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.

    PubMed

    Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias

    2016-04-20

    Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution. PMID:27140083

  17. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  18. 3D Numerical Optimization Modelling of Ivancich landslides (Assisi, Italy) via integration of remote sensing and in situ observations.

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro

    2015-04-01

    The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered

  19. 3D numerical modeling of subduction dynamics: plate stagnation and segmentation, and crustal advection in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tajima, F.

    2012-04-01

    Water content in the mantle transition zone (MTZ) has been broadly debated in the Earth science community as a key issue for plate dynamics [e.g., Bercovici and Karato, 2003]. In this study, a systematic series of three-dimensional (3D) numerical simulation are performed in an attempt to verify two hypotheses for plate subduction with effects of deep water transport: (1) the small-scale behavior of subducted oceanic plate in the MTZ; and (2) the role of subducted crust in the MTZ. These hypotheses are postulated based on the seismic observations characterized by large-scale flattened high velocity anomalies (i.e., stagnant slabs) in the MTZ and discontinuity depth variations. The proposed model states that under wet conditions the subducted plate main body of peridotite (olivine rich) is abutted by subducted crustal materials (majorite rich) at the base of the MTZ. The computational domain of mantle convection is confined to 3D regional spherical-shell geometry with a thickness of 1000 km and a lateral extent of 10° × 30° in the latitudinal and longitudinal directions. A semi-dynamic model of subduction zone [Morishige et al., 2010] is applied to let the highly viscous, cold oceanic plate subduct. Weak (low-viscosity) fault zones (WFZs), which presumably correspond to the fault boundaries of large subduction earthquakes, are imposed on the top part of subducting plates. The phase transitions of olivine to wadsleyite and ringwoodite to perovskite+magnesiowüstite with Clapeyron slopes under both "dry" and "wet" conditions are considered based on recent high pressure experiments [e.g., Ohtani and Litasov, 2006]. Another recent experiment provides new evidence for lower-viscosity (weaker strength) of garnet-rich zones than the olivine dominant mantle under wet conditions [Katayama and Karato, 2008]. According to this, the effect of viscosity reduction of oceanic crust is considered under wet condition in the MTZ. Results show that there is a substantial difference

  20. 2D and 3D numerical simulations of morphodynamics structures in a large-amplitude meanders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the pioneering study of the Ishikari River, Japan, Kinoshita (Kinoshita 1957, 1961) described two types of meandering channels: (1) channel with two bars per meander wavelength (one bar per bend), and (2) channel with three or more bars per meander wavelength (multiple bars per bend). Based on th...

  1. DIY 3D printing of custom orthopaedic implants: a proof of concept study.

    PubMed

    Frame, Mark; Leach, William

    2014-03-01

    3D printing is an emerging technology that is primarily used for aiding the design and prototyping of implants. As this technology has evolved it has now become possible to produce functional and definitive implants manufactured using a 3D printing process. This process, however, previously required a large financial investment in complex machinery and professionals skilled in 3D product design. Our pilot study's aim was to design and create a 3D printed custom orthopaedic implant using only freely available consumer hardware and software. PMID:24574013

  2. 3D modelling of slow landslides: the Portalet case study (Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez-Merodo, Jose Antonio; Bru, Guadalupe; García-Davalillo, Juan Carlos; Herrera, Gerardo; Fernandez, Jose

    2014-05-01

    Slow landslide deformation evolution is generally cast using 1D or 2D numerical models. This paper aims to explore 3D effects on the kinematic behavior of a real landslide, the Portalet landslide (Central Spanish Pyrenees). This is a very well characterized and documented active paleo-landslide that has been reactivated by the construction of a parking area at the toe of the slope. The proposed 3D model is based on a time dependent hydro-mechanical finite element formulation that takes into account i) groundwater changes due to daily rainfall records and ii) viscous behavior and delayed creep deformation through a viscoplastic constitutive model based on Perzyna's theory. The model reproduces the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. Furthermore, the model is a able to catch the superficial 3D kinematics revealed by advanced in-situ monitoring like ground based SAR or DInSAR processing of satellite SAR images. References [1] Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: The Portalet case study. Engineering Geology 105: 220-230 [2] Fernández-Merodo JA, Herrera G, Mira P, Mulas J, Pastor M, Noferini L, Me-catti D and Luzi G (2008). Modelling the Portalet landslide mobility (Formigal, Spain). iEMSs 2008: International Congress on Environmental Modelling and Software. Sànchez-Marrè M, Béjar J, Comas J, Rizzoli A and Guariso G (Eds.) International Environmental Modelling and Software Society (iEMSs) [3] Fernández-Merodo JA, García-Davalillo JC, Herrera G, Mira P, Pastor M (2012). 2D visco-plastic finite element modelling of slow landslides: the Portalet case study (Spain). Landslides, DOI: 10.1007/s10346-012-0370-4

  3. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  4. Transmission of holographic 3D images using infrared transmitter(II): on a study of transmission of holographic 3D images using infrared transmitter safe to medical equipment

    NASA Astrophysics Data System (ADS)

    Takano, Kunihiko; Muto, Kenji; Tian, Lan; Sato, Koki

    2007-09-01

    An infrared transmitting technique for 3D holographic images is studied. It seems to be very effective as a transmitting technique for 3D holographic images in the places where electric wave is prohibited to be used for transmission. In this paper, we first explain our infrared transmitting system for holograms and a display system for the presentation of holographic 3D images reconstructed from the received signal. Next, we make a report on the results obtained by infrared transmission of CGH and a comparison of the real and the reconstructed 3D images in our system. As this result, it is found that reconstructed holographic 3D images do not suffer a large deterioration in the quality and highly contrasted ones can be presented.

  5. 3-D Numerical Modeling as a Tool for Managing Mineral Water Extraction from a Complex Groundwater Basin in Italy

    NASA Astrophysics Data System (ADS)

    Zanini, A.; Tanda, M.

    2007-12-01

    The groundwater in Italy plays an important role as drinking water; in fact it covers about the 30% of the national demand (70% in Northern Italy). The mineral water distribution in Italy is an important business with an increasing demand from abroad countries. The mineral water Companies have a great interest in order to increase the water extraction, but for the delicate and complex geology of the subsoil, where such very high quality waters are contained, a particular attention must be paid in order to avoid an excessive lowering of the groundwater reservoirs or great changes in the groundwater flow directions. A big water Company asked our University to set up a numerical model of the groundwater basin, in order to obtain a useful tool which allows to evaluate the strength of the aquifer and to design new extraction wells. The study area is located along Appennini Mountains and it covers a surface of about 18 km2; the topography ranges from 200 to 600 m a.s.l.. In ancient times only a spring with naturally sparkling water was known in the area, but at present the mineral water is extracted from deep pumping wells. The area is characterized by a very complex geology: the subsoil structure is described by a sequence of layers of silt-clay, marl-clay, travertine and alluvial deposit. Different groundwater layers are present and the one with best quality flows in the travertine layer; the natural flow rate seems to be not subjected to seasonal variations. The water age analysis revealed a very old water which means that the mineral aquifers are not directly connected with the meteoric recharge. The Geologists of the Company suggest that the water supply of the mineral aquifers comes from a carbonated unit located in the deep layers of the mountains bordering the spring area. The valley is crossed by a river that does not present connections to the mineral aquifers. Inside the area there are about 30 pumping wells that extract water at different depths. We built a 3

  6. A novel numerical flux for the 3D Euler equations with general equation of state

    NASA Astrophysics Data System (ADS)

    Toro, Eleuterio F.; Castro, Cristóbal E.; Lee, Bok Jik

    2015-12-01

    Here we extend the flux vector splitting approach recently proposed in E.F. Toro and M.E. Vázquez-Cendón (2012) [42]. The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.

  7. Evolution of large amplitude 3D fold patterns: A FEM study

    NASA Astrophysics Data System (ADS)

    Schmid, D. W.; Dabrowski, M.; Krotkiewski, M.

    2008-12-01

    The numerical study of three-dimensional (3D) fold patterns formation in randomly perturbed layers requires large numbers of degrees of freedom (≥100,000,000). We have developed BILAMIN, an unstructured (geometry fitted) mesh implementation of the finite element method for incompressible Stokes flow that is capable of solving such systems. All repetitive and computationally intensive steps are fully parallelized. One of the main components is the iterative solver. We chose the minimum residual method (MINRES) because it allows operating directly on the indefinite systems resulting from the incompressibility condition. We use BILAMIN in a case study of fold pattern evolution. Folds are ubiquitous in nature, and contain both mechanical and kinematic information that can be deciphered with appropriate tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three-dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton-shaped dome and basin structures resulting from folding instabilities in constriction is largely oversimplified. The fold patterns resulting in this setting are curved, elongated folds with random orientation.

  8. Numerical simulation of inhaled aerosol particle deposition within 3D realistic human upper respiratory tract

    NASA Astrophysics Data System (ADS)

    Lin, J.; Fan, J. R.; Zheng, Y. Q.; Hu, G. L.; Pan, D.

    2010-03-01

    Computational fluid dynamics (CFD) simulations of airflow and particle deposition in the upper respiratory tract (URT) were conducted in this paper. Based on the CT (Computerized Tomography) scanned images of a 19-years-old healthy boy, a realistic geometric model of URT from oral cavity to the upper six-generation bronchial is rebuilt. To investigate airflow and particle deposition in the obtained realistic human upper respiratory tract, RNG k-ɛ turbulence model was used to describe the primary flow and particle deposition under three breathing intensity such as 15 L/min, 30 L/min and 60 L/min. The particle is tracked and analyzed in the Lagrangian frame. The velocity fields of airflow under different airflow rates were computed and discussed. In order to study the characteristics of particles movement and the effect of particles diameter on the deposition pattern, eleven kinds of sphere particles with different diameters are selected as research object. The diameters of selected particles as follows: 0.1 μm, 0.5 μm, 1 μm, 2.5 μm, 3 μm, 3.5 μm, 4 μm, 4.5 μm, 5 μm, 6.5 μm and 8 μm. The variation of inhalable particles deposition in realistic human upper respiratory tract with respiratory intensity and particle size was researched and compared. Furthermore, the more real inhalable particles with Rosin-Rammler mass distribution are used to study the effect of particles size. The deposition rate of particles with the different diameter scope in the different part of upper respiratory tract was summarized. The geometrical model based images technology promises to provide more real results of airflow field and particle deposition in the URT.

  9. Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Colby, Jonathan A.; Sotiropoulos, Fotis

    2012-04-01

    We simulate three-dimensional, turbulent flow past an axial-flow marine hydrokinetic (MHK) turbine mounted on the bed of a rectangular open channel by adapting a computational framework developed for carrying out high-resolution large-eddy simulation (LES) in arbitrarily complex domains involving moving or stationary boundaries. The complex turbine geometry, including the rotor and all stationary components, is handled by employing the curvilinear immersed boundary (CURVIB) method [1,2]. Velocity boundary conditions near all solid surfaces are reconstructed using a wall model based on solving the simplified boundary layer equations [2]. To demonstrate the capabilities of the model we apply it to simulate the flow past a Gen4 axial flow MHK turbine developed by Verdant Power for the Roosevelt Island Tidal Energy (RITE) project in the East River in New York City, USA. We carry out systematic grid refinement studies, using grids with up to 185 million nodes, for only the turbine rotor placed in an infinite free stream to show that the computed torque converges to a grid insensitive value, which is in good agreement with field measurements. We also carry out LES for the complete turbine configuration, including the pylon, nacelle and rotor, mounted on the bed of a straight rectangular open channel. The computed results illustrate the complexity of the flow and show that the power output of the complete turbine is primarily dependent on the rotor geometry and tip speed ratio, and is not affected by the stationary components of the turbine and the presence of the channel bed. The complete turbine simulation also reveals that the downstream wake of the turbine consists of three main regions: (1) the outer layer with the spiral blade tip vortices rotating in the same direction as the blades; (2) the counter-rotating inner layer surrounded by the spiral tip vortices; and (3) the core layer co-rotating with respect to the tip vortices. This study is the first to report the

  10. Micronozzles: 3D numerical structural and gas dynamics modeling, fabrication, and preliminary experimental results

    NASA Astrophysics Data System (ADS)

    Borovkov, Alexei I.; Pyatishev, Evgenij N.; Lurie, Mihail S.; Korshunov, Andrey V.; Akulshin, Y. D.; Dolganov, A. G.; Sabadash, V. O.

    2001-02-01

    The tiny engines, founded on the principle of reactive thrust, are one of most perspective actuators developed by modern micromechanics. These engines can be applied for such apparent problems, as orientation and stabilization of small space objects, but also as local or distributed reactive thrust of new phylum of aerospace objects, for control of boundary layer of flying objects and in series of converting power devices of different purposes. Distinctive features of jet tiny engines are profitability (very large thrust-to-weight ratio) and high (milliseconds) response, which makes them to irreplaceable elements in control systems and, specially, in distributed power generations. These features are provided the minimum sizes, high pressure in working chambers and hypersonic velocity of propulsive jet. Topologically micronozzles are designed as the flat batch devices (3 layers as minimum). The lower and upper layers make flat walls of the nozzle and mainly influence on strength properties of the device. The mean layer reshapes geometry and determines gas dynamic characteristic of the nozzle. A special problem is the opening-up of the combustion-mixture, which is not esteemed in this work. It is necessary to allow for effect of considerable local stresses arising at the expense of static and dynamic loading at design of the jet tiny engines. Thermal gas dynamic processes in the chamber and nozzle determine the values and nature of these stresses, which are hardly studied for the microdevices. The priority is mathematical and experimental simulation of these processes. The most suitable object for initial phase of experimental simulation is the 'cold' engine. The demanded chamber static pressure is formed by external compressed air. In Laboratory of Microtechnology and MicroElectroMechanical Systems a number of such tiny engines with different shapes of the chamber's and the nozzles' surfaces were designed, made and tested. The engines were produced from photosensing

  11. Micronozzles: 3D numerical structural and gas dynamics modeling, fabrication, and preliminary experimental results

    NASA Astrophysics Data System (ADS)

    Borovkov, Alexei I.; Pyatishev, Evgenij N.; Lurie, Mihail S.; Korshunov, Andrey V.; Akulshin, Y. D.; Dolganov, A. G.; Sabadash, V. O.

    2000-02-01

    The tiny engines, founded on the principle of reactive thrust, are one of most perspective actuators developed by modern micromechanics. These engines can be applied for such apparent problems, as orientation and stabilization of small space objects, but also as local or distributed reactive thrust of new phylum of aerospace objects, for control of boundary layer of flying objects and in series of converting power devices of different purposes. Distinctive features of jet tiny engines are profitability (very large thrust-to-weight ratio) and high (milliseconds) response, which makes them to irreplaceable elements in control systems and, specially, in distributed power generations. These features are provided the minimum sizes, high pressure in working chambers and hypersonic velocity of propulsive jet. Topologically micronozzles are designed as the flat batch devices (3 layers as minimum). The lower and upper layers make flat walls of the nozzle and mainly influence on strength properties of the device. The mean layer reshapes geometry and determines gas dynamic characteristic of the nozzle. A special problem is the opening-up of the combustion-mixture, which is not esteemed in this work. It is necessary to allow for effect of considerable local stresses arising at the expense of static and dynamic loading at design of the jet tiny engines. Thermal gas dynamic processes in the chamber and nozzle determine the values and nature of these stresses, which are hardly studied for the microdevices. The priority is mathematical and experimental simulation of these processes. The most suitable object for initial phase of experimental simulation is the 'cold' engine. The demanded chamber static pressure is formed by external compressed air. In Laboratory of Microtechnology and MicroElectroMechanical Systems a number of such tiny engines with different shapes of the chamber's and the nozzles' surfaces were designed, made and tested. The engines were produced from photosensing

  12. 3D numerical calculations and synthetic observations of magnetized massive dense core collapse and fragmentation.

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Hennebelle, P.; Levrier, F.; Launhardt, R.; Henning, Th.

    2012-03-01

    I will present radiation-magneto-hydrodynamics calculations of low-mass and massive dense core collapse, focusing on the first collapse and the first hydrostatic core (first Larson core) formation. The influence of magnetic field and initial mass on the fragmentation properties will be investigated. In the first part reporting low mass dense core collapse calculations, synthetic observations of spectral energy distributions will be derived, as well as classical observational quantities such as bolometric temperature and luminosity. I will show how the dust continuum can help to target first hydrostatic cores and to state about the nature of VeLLOs. Last, I will present synthetic ALMA observation predictions of first hydrostatic cores which may give an answer, if not definitive, to the fragmentation issue at the early Class 0 stage. In the second part, I will report the results of radiation-magneto-hydrodynamics calculations in the context of high mass star formation, using for the first time a self-consistent model for photon emission (i.e. via thermal emission and in radiative shocks) and with the high resolution necessary to resolve properly magnetic braking effects and radiative shocks on scales <100 AU (Commercon, Hennebelle & Henning ApJL 2011). In this study, we investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores (M=100 M_⊙). We identify a new mechanism that inhibits initial fragmentation of massive dense cores, where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation, while moderately magnetized massive dense cores are more appropriate to form OB associations or small star clusters. Finally we will also present synthetic observations of these

  13. 3-D LDA study of a rectangular jet

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Tatterson, Gary B.; Swan, David H.

    1988-01-01

    The flow field of a rectangular jet with a 2:1 aspect ratio was studied at an axial Reynolds number of 100,000 (Mach number 0.09) using three-dimensional laser Doppler velocimetry. The flow field survey resulted in mean velocity vector field plots and contour plots of the Reynolds stress tensor components. This paper presents contour plots in the planes of the jet minor and major axes at different axial locations. These data contribute substantially to currently available data of jet flow fields and will provide a valuable database for three-dimensional modeling.

  14. 3D image guidance in radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Groh, Burkhard A.; Partridge, Mike; Hesse, Bernd M.; Bortfeld, Thomas

    2001-07-01

    Currently, one major research field in radiotheraphy is focused on patient setup verification and on detection of organ motion and deformation. A phantom study is performed to demonstrate the feasibility of image guidance in radiotherapy. Patient setup errors are simulated with a humanoid phantom, which is imaged using a linear accelerator and a therapy simulator to address megavoltage and kilovoltage (kV) computed tomography (CT), respectively. Projections are recorded by a flat panel imager. The various data sets of the humanoid phantom are compared by mutual information matching. The CT investigations show that the spatial resolution is better than 1.6 mm for high contrast objects. The uncertainties remaining after mutual information matching are found to be less than 1 mm for translations and 1 degree(s) for rotations. The phantom study indicates that the detection of patient setup errors as well as organ motion or deformation is possible with a high accuracy, especially if a kV X-ray tube could be attached to the linear accelerator. The presented method allows sophisticated quality assurance of beam delivery in each fraction and may even enable the use of new concepts of adaptive radiotherapy.

  15. 3-D laser images of splash-form tektites and their use in aerodynamic numerical simulations of tektite formation

    NASA Astrophysics Data System (ADS)

    Samson, C.; Butler, S.; Fry, C.; McCausland, P. J. A.; Herd, R. K.; Sharomi, O.; Spiteri, R. J.; Ralchenko, M.

    2014-05-01

    Ten splash-form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high-resolution laser digitizer. Despite challenges due to the samples' rounded shapes and pitted surfaces, the images were combined to create 3-D tektite models, which captured surface features with a high fidelity (≈30 voxel mm-2) and from which volume could be measured noninvasively. The laser-derived density for the tektites averaged 2.41 ± 0.11 g cm-3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm-3. In addition to their curational value, the 3-D models can be used to calculate the tektites' moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s-1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.

  16. Current loop coalescence studied by 3-D electromagnetic particle code

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Sakai, Jun-Ichi; Koide, Shinji; Buneman, O.; Neubert, T.

    1993-01-01

    Solar flare plasma data from the Yohkoh satellite is analyzed. The interactions of current loops were observed in the active regions on the Sun. This observation pointed out the importance of the idea that the solar flare is generated by the coalescence of current loops. The three dimensional electromagnetic particle simulations are to help in understanding the global interaction between two current loops including the evolution of the twist of loops due to instabilities. Associated rapid dynamics of current loop coalescence such as reconnection, shock waves and associated kinetic processes such as energy transfer, acceleration of particles, and electromagnetic emissions are to be studied by the code to complement analytical theories and magnetohydrodynamic simulations of the current loop coalescence. The simulation results show the strong interactions between two current loops, beam and whistler instabilities, and associated parallel and perpendicular particle heating.

  17. Developing and Testing a 3d Cadastral Data Model a Case Study in Australia

    NASA Astrophysics Data System (ADS)

    Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.

    2012-07-01

    and physical extent of 3D properties and associated interests. The data model extends the traditional cadastral requirements to cover other applications such as urban planning and land valuation and taxation. A demonstration of a test system on the proposed data model is also presented. The test is based on a case study in Victoria, Australia to evaluate the effectiveness of the data model.

  18. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  19. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.

    PubMed

    Tay, W B; van Oudheusden, B W; Bijl, H

    2014-09-01

    The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the

  20. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  1. Availability study of CFD-based Mask3D simulation method for next generation lithography technologies

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Kawabata, Y.; Washitani, T.; Tanaka, S.; Maeda, S.; Mimotogi, S.

    2014-03-01

    In progress of lithography technologies, the importance of Mask3D analysis has been emphasized because the influence of mask topography effects is not avoidable to be increased explosively. An electromagnetic filed simulation method, such as FDTD, RCWA and FEM, is applied to analyze those complicated phenomena. We have investigated Constrained Interpolation Profile (CIP) method, which is one of the Method of Characteristics (MoC), for Mask3D analysis in optical lithography. CIP method can reproduce the phase of propagating waves with less numerical error by using high order polynomial function. The restrictions of grid distance are relaxed with spatial grid. Therefore this method reduces the number of grid points in complex structure. In this paper, we study the feasibility of CIP scheme applying a non-uniform and spatial-interpolated grid to practical mask patterns. The number of grid points might be increased in complex layout and topological structure since these structures require a dense grid to remain the fidelity of each design. We propose a spatial interpolation method based on CIP method same as time-domain interpolation to reduce the number of grid points to be computed. The simulation results of two meshing methods with spatial interpolation are shown.

  2. Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  3. Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements

    NASA Astrophysics Data System (ADS)

    Kujawinska, Malgorzata; Jozwicka, Agata; Kozacki, Tomasz

    2008-08-01

    In order to control performance of photonics microelements it is necessary to receive 3D information about their amplitude and phase distributions. To perform this task we propose to apply tomography based on projections gather by digital holography (DH). Specifically the DH capability to register several angular views of the object during a single hologram capture is employed, which may in future shorten significantly the measurement time or even allow for tomographic analysis of dynamic media. However such a new approach brings a lot of new issues to be considered. Therefore, in this paper the method limitations, with special emphasis on holographic reconstruction process, are investigated through extensive numerical experiments with special focus on 3D refractive index distribution determination.. The main errors and means of their elimination are presented. The possibility of 3D refractive index distribution determination by means of DHT is proved numerically and experimentally.

  4. Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method

    NASA Astrophysics Data System (ADS)

    Qin, Yujie; Lu, Yiyun

    2015-09-01

    In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.

  5. Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    1996-01-01

    This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.

  6. Issues and Challenges of Teaching and Learning in 3D Virtual Worlds: Real Life Case Studies

    ERIC Educational Resources Information Center

    Pfeil, Ulrike; Ang, Chee Siang; Zaphiris, Panayiotis

    2009-01-01

    We aimed to study the characteristics and usage patterns of 3D virtual worlds in the context of teaching and learning. To achieve this, we organised a full-day workshop to explore, discuss and investigate the educational use of 3D virtual worlds. Thirty participants took part in the workshop. All conversations were recorded and transcribed for…

  7. Study of the 3D geometry of tangential discontinuities based on simultaneous STEREO and Ulysses measurements

    NASA Astrophysics Data System (ADS)

    Facsko, Gabor; Reshetnyk, Volodymyr; Agapitov, Oleksiy; Opitz, Andrea; Szabo, Adam; McComas, David

    Tangential discontinuties (TDs) are usually considered as thin planar current sheets frozen in the solar wind flow. Previous studies based on the magnetic field measurements onboard of ACE, Wind, and STEREO A, and B proved that this hypotesis is not valid. The curvature of the TDs were determined in several cases. After applying minimum variance and the cross product methods for Ulysses, ACE and STEREO A and B magnetometer measurements, numerous TDs are identified in 2008 and 2009. The time shift of the TD observations is determinated by correlation analysis of the solar wind speed and the magnetic field variations. The 3D topology of the TD is then determinated in some special cases when the four spacecraft are on the same side of the Sun. After fitting a simple model, the location of the TD formation region can be outlined.

  8. Impact of grain size evolution on the localization of deformation: 3D numerical simulations of mantle convection

    NASA Astrophysics Data System (ADS)

    Rozel, Antoine; Golabek, Gregor; Tackley, Paul

    2014-05-01

    Thermodynamically consistent models of single phase grain size evolution have been proposed in the past years [Austin and Evans (2007), Ricard and Bercovici (2009), Rozel et al. (2011), Rozel (2012)]. In a recently updated version [Bercovici and Ricard (2012), PEPI], the mechanics of two-phase grain aggregates has been formulated following the same physical approach. Several non-linear mechanisms such as dynamic recrystallization or Zener pinning are now available in a single non-equilibrium formulation of grain size distributions evolution. The self-consistent generation of localized plate boundaries is predicted in [Bercovici and Ricard (2012), EPSL] using this model, but it has not been tested in a dynamically consistent way. We propose the first set of three-dimensional numerical simulations of mantle convection incorporating this formalism using the finite volume code StagYY [Tackley (2008)]. First, we detail how the model is numerically implemented. Pressure and velocity fields are solved on a staggered grid using a SIMPLER-like method. Multigrid W-cycles and extra coarse-grid relaxations are employed to enhance the convergence of Stokes and continuity equations. The grain size is stored on a large number of tracers advected through the computational domain, which prevent numerical diffusion and allows a high resolution in the shear zones developing in the lithosphere. We also describe the physical formalism itself and propose the set of free parameters of the model. Normal growth, dynamic recrystallization and phase transitions all have a strong effect on the average grain size. We use a visco-plastic rheology in which the viscous strain rate is obtained by summation of dislocation, diffusion and grain boundary sliding creep. Second, we describe the 3D grain size distribution in the mantle and in the lithosphere. We characterize in which conditions plate margins can form, mainly investigating grain growth, recrystallization and rheology related parameters

  9. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin

    2016-04-01

    The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid

  10. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    SciTech Connect

    Nevalainen, M.; Dodds, R.H. Jr.

    1996-07-01

    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front.

  11. Numerical modelling of the aeroelastic behaviour and variable loads for the turbine stage in 3D transonic flow

    NASA Astrophysics Data System (ADS)

    Gnesin, V. I.; Kolodyazhnaya, L. V.; Rzadkowski, R.

    2005-09-01

    In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonuniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.

  12. The development of topographic plateaus in an India-Asia-like collision zone using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2014-05-01

    The Himalayas and the adjacent Tibetan Plateau represent the most remarkable feature of the Earth's surface as the largest region of elevated topography and anomalously thick crust. Understanding the formation and evolution of the Himalayan-Tibetan region has become of high interest in the scientific community and different models have emerged over the last decades. They range from wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model to the lower crustal flow model for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. While some of these models have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, delamination, channel flow or extrusion, which are thought to be important during continental convergence, since these mechanisms require the lithosphere to interact with the underlying mantle. As such, 3D numerical models prove to be powerful tools in understanding the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continental collision zones have relied on certain explicit assumptions, either focusing on crustal dynamics or slab-mantle dynamics. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and an internal free surface into account, which allows for the development of topography. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role continent subduction and collision have on the future of the subducting and overriding plates, and we discuss the implications these offer for the Asian tectonics

  13. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  14. Possibility of reconstruction of dental plaster cast from 3D digital study models

    PubMed Central

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330

  15. Genre Matters: A Comparative Study on the Entertainment Effects of 3D in Cinematic Contexts

    NASA Astrophysics Data System (ADS)

    Ji, Qihao; Lee, Young Sun

    2014-09-01

    Built upon prior comparative studies of 3D and 2D films, the current project investigates the effects of 2D and 3D on viewers' perception of enjoyment, narrative engagement, presence, involvement, and flow across three movie genres (Action/fantasy vs. Drama vs. Documentary). Through a 2 by 3 mixed factorial design, participants (n = 102) were separated into two viewing conditions (2D and 3D) and watched three 15-min film segments. Result suggested both visual production methods are equally efficient in terms of eliciting people's enjoyment, narrative engagement, involvement, flow and presence, no effects of visual production method was found. In addition, through examining the genre effects in both 3D and 2D conditions, we found that 3D works better for action movies than documentaries in terms of eliciting viewers' perception of enjoyment and presence, similarly, it improves views' narrative engagement for documentaries than dramas substantially. Implications and limitations are discussed in detail.

  16. Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha

    We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.

  17. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  18. A Sensory 3D Map of the Odor Description Space Derived from a Comparison of Numeric Odor Profile Databases.

    PubMed

    Zarzo, Manuel

    2015-06-01

    Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. PMID:25847969

  19. Study of nonlinear 3-D evolution of kinetic Alfvén wave and fluctuation spectra

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Yadav, Nitin; Sharma, R. P.

    2015-11-01

    Waves and instabilities play a very crucial role in astrophysical plasmas e.g. solar wind, Geospace etc. The main objective of current study is to investigate the importance of nonlinear processes associated with kinetic Alfvén waves (KAWs) in order to understand the physical mechanism behind the magnetopause turbulence. Numerical simulation of the coupled equations guiding the dynamics of three dimensionally propagating kinetic Alfvén wave (KAW) and slow magnetosonic wave has been performed for intermediate beta plasma (i.e. me/mi ≪ β < 1, where β is thermal to magnetic pressure ratio) applicable to the magnetopause. A simplified semi-analytical model based on paraxial approach has also been developed. We have examined the field localization and associated power spectrum of 3-D kinetic Alfvén wave for this nonlinear interaction. Governing dynamical equations of KAW and slow magnetosonic wave get coupled when the ponderomotive force arising due to pump KAW is taken into account while studying the slow magnetosonic wave dynamics. The numerical prediction of power law scaling is just consistent with the observation of THEMIS spacecraft in the magnetopause.

  20. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  1. 3D-Flow processor for a programmable Level-1 trigger (feasibility study)

    SciTech Connect

    Crosetto, D.

    1992-10-01

    A feasibility study has been made to use the 3D-Flow processor in a pipelined programmable parallel processing architecture to identify particles such as electrons, jets, muons, etc., in high-energy physics experiments.

  2. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study.

    PubMed

    Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E

    2011-01-01

    We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645

  3. Incorporating Sedimentological Observations, Hydrogeophysics and conceptual Knowledge to Constrain 3D Numerical Heterogeneity Models of Coarse Alluvial Systems

    NASA Astrophysics Data System (ADS)

    Huber, E.; Huggenberger, P.

    2012-12-01

    . Horizontal time-slices of 3D GPR provide images which allow correlations to be made between vertical and horizontal sections. We show, that true-scale map views of time slices reveal geometries in the horizontal direction more accurately. Horizontal geophysical sections (time-slices) offer an opportunity to relate vertical and horizontal information. Time-slices of 3D GPR surveys offer a possibility to derive training images and multiple point statistical analysis. Combining the data from 2D and 3D geophysical field surveys and observations from outcrops in gravel pits we develop a 3D object-based model of the main structural elements considering depositional and erosional capabilities of the structural elements depending on the dynamics of the system. The algorithm contains the definition of objects to reproduce the different sedimentary structures distinguished within the studied system in a realistic way, and generates different realizations of the defined object types. The quality of the different realisations is compared with the observation (geophysics, borehole and geological parameters). The input parameters set required for reproducing a sedimentary object is composed of qualitative data, such as global shape of the profile, and quantitative data, such as typical object dimensions and directions.

  4. Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, A.; Al-mazidi, M.

    2015-12-01

    The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.

  5. Deterministic evaluation of collapse risk for a decomissioned flooded mine system: 3D numerical modelling of subsidence, roof collapse and impulse water flow.

    NASA Astrophysics Data System (ADS)

    Castellanza, Riccardo; Fernandez Merodo, Josè Antonio; di Prisco, Claudio; Frigerio, Gabriele; Crosta, Giovanni B.; Orlandi, Gianmarco

    2013-04-01

    Aim of the study is the assessment of stability conditions for an abandoned gypsum mine (Bologna , Italy). Mining was carried out til the end of the 70s by the room and pillar method. During mining a karst cave was crossed karstic waters flowed into the mine. As a consequence, the lower level of the mining is completely flooded and portions of the mining levels show critical conditions and are structurally prone to instability. Buildings and infrastructures are located above the first and second level and a large portion of the area below the mine area, and just above of the Savena river, is urbanised. Gypsum geomechanical properties change over time; water, or even air humidity, dissolves or weaken gypsum pillars, leading progressively to collapse. The mine is located in macro-crystalline gypsum beds belonging to the Messinian Gessoso Solfifera Formation. Selenitic gypsum beds are interlayered with by centimetre to meter thick shales layers. In order to evaluate the risk related to the collapse of the flooded level (level 3) a deterministic approach based on 3D numerical analyses has been considered. The entire abandoned mine system up to the ground surface has been generated in 3D. The considered critical scenario implies the collapse of the pillars and roof of the flooded level 3. In a first step, a sequential collapse starting from the most critical pillar has been simulated by means of a 3D Finite Element code. This allowed the definition of the subsidence basin at the ground surface and the interaction with the buildings in terms of ground displacements. 3D numerical analyses have been performed with an elasto-perfectly plastic constitutive model. In a second step, the effect of a simultaneous collapse of the entire level 3 has been considered in order to evaluate the risk of a flooding due to the water outflow from the mine system. Using a 3D CFD (Continuum Fluid Dynamics) finite element code the collapse of the level 3 has been simulated and the volume of

  6. Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; White, Stuart C.

    1992-05-01

    This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.

  7. Comparison of 2D versus 3D mammography with screening cases: an observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent

    2012-02-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.

  8. On the numerical simulation of the ablative Rayleigh-Taylor instability in laser-driven ICF targets using the FastRad3D code

    NASA Astrophysics Data System (ADS)

    Bates, Jason; Schmitt, Andrew; Zalesak, Steve

    2015-11-01

    The ablative Rayleigh-Taylor (RT) instability is a key factor in the performance of directly-drive inertial-confinement-fusion (ICF) targets. Although this subject has been studied for quite some time, the accurate simulation of the ablative RT instability has proven to be a challenging task for many radiation hydrodynamics codes, particularly when it comes to capturing the ablatively-stabilized region of the linear dispersion spectrum and modeling ab initio perturbations. In this poster, we present results from recent two-dimensional numerical simulations of the ablative RT instability that were performed using the Eulerian code FastRad3D at the U.S. Naval Research Laboratory. We consider both planar and spherical geometries, low and moderate-Z target materials, different laser wavelengths and where possible, compare our findings with experiment data, linearized theory and/or results from other radiation hydrodynamics codes. Overall, we find that FastRad3D is capable of simulating the ablative RT instability quite accurately, although some uncertainties/discrepancies persist. We discuss these issues, as well as some of the numerical challenges associated with modeling this class of problems. Work supported by U.S. DOE/NNSA.

  9. Study of Multi-level Characteristics for 3D Vertical Resistive Switching Memory

    PubMed Central

    Bai, Yue; Wu, Huaqiang; Wu, Riga; Zhang, Ye; Deng, Ning; Yu, Zhiping; Qian, He

    2014-01-01

    Three-dimensional (3D) integration and multi-level cell (MLC) are two attractive technologies to achieve ultra-high density for mass storage applications. In this work, a three-layer 3D vertical AlOδ/Ta2O5-x/TaOy resistive random access memories were fabricated and characterized. The vertical cells in three layers show good uniformity and high performance (e.g. >1000X HRS/LRS windows, >1010 endurance cycles, >104 s retention times at 125°C). Meanwhile, four level MLC is demonstrated with two operation strategies, current controlled scheme (CCS) and voltage controlled scheme (VCS). The switching mechanism of 3D vertical RRAM cells is studied based on temperature-dependent transport characteristics. Furthermore, the applicability of CCS and VCS in 3D vertical RRAM array is compared using resistor network circuit simulation. PMID:25047906

  10. Study of multi-level characteristics for 3D vertical resistive switching memory.

    PubMed

    Bai, Yue; Wu, Huaqiang; Wu, Riga; Zhang, Ye; Deng, Ning; Yu, Zhiping; Qian, He

    2014-01-01

    Three-dimensional (3D) integration and multi-level cell (MLC) are two attractive technologies to achieve ultra-high density for mass storage applications. In this work, a three-layer 3D vertical AlOδ/Ta2O5-x/TaOy resistive random access memories were fabricated and characterized. The vertical cells in three layers show good uniformity and high performance (e.g. >1000X HRS/LRS windows, >10(10) endurance cycles, >10(4) s retention times at 125°C). Meanwhile, four level MLC is demonstrated with two operation strategies, current controlled scheme (CCS) and voltage controlled scheme (VCS). The switching mechanism of 3D vertical RRAM cells is studied based on temperature-dependent transport characteristics. Furthermore, the applicability of CCS and VCS in 3D vertical RRAM array is compared using resistor network circuit simulation. PMID:25047906

  11. Controlled Experimental Study Depicting Moving Objects in View-Shared Time-Resolved 3D MRA

    PubMed Central

    Mostardi, Petrice M.; Haider, Clifton R.; Rossman, Phillip J.; Borisch, Eric A.; Riederer, Stephen J.

    2010-01-01

    Various methods have been used for time-resolved contrast-enhanced MRA (CE-MRA), many involving view sharing. However, the extent to which the resultant image time series represents the actual dynamic behavior of the contrast bolus is not always clear. Although numerical simulations can be used to estimate performance, an experimental study can allow more realistic characterization. The purpose of this work was to use a computer-controlled motion phantom for study of the temporal fidelity of 3D time-resolved sequences in depicting a contrast bolus. It is hypothesized that the view order of the acquisition and the selection of views in the reconstruction can affect the positional accuracy and sharpness of the leading edge of the bolus and artifactual signal preceding the edge. Phantom studies were performed using dilute gadolinium-filled vials that were moved along tabletop tracks by a computer-controlled motor. Several view orders were tested, which use view-sharing and Cartesian sampling. Compactness of measuring the k-space center, consistency of view ordering within each reconstruction frame, and sampling the k-space center near the end of the temporal footprint were shown to be important in accurate portrayal of the leading edge of the bolus. A number of findings were confirmed in an in vivo CE-MRA study. PMID:19319897

  12. Controlled experimental study depicting moving objects in view-shared time-resolved 3D MRA.

    PubMed

    Mostardi, Petrice M; Haider, Clifton R; Rossman, Phillip J; Borisch, Eric A; Riederer, Stephen J

    2009-07-01

    Various methods have been used for time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA), many involving view sharing. However, the extent to which the resultant image time series represents the actual dynamic behavior of the contrast bolus is not always clear. Although numerical simulations can be used to estimate performance, an experimental study can allow more realistic characterization. The purpose of this work was to use a computer-controlled motion phantom for study of the temporal fidelity of three-dimensional (3D) time-resolved sequences in depicting a contrast bolus. It is hypothesized that the view order of the acquisition and the selection of views in the reconstruction can affect the positional accuracy and sharpness of the leading edge of the bolus and artifactual signal preceding the edge. Phantom studies were performed using dilute gadolinium-filled vials that were moved along tabletop tracks by a computer-controlled motor. Several view orders were tested using view-sharing and Cartesian sampling. Compactness of measuring the k-space center, consistency of view ordering within each reconstruction frame, and sampling the k-space center near the end of the temporal footprint were shown to be important in accurate portrayal of the leading edge of the bolus. A number of findings were confirmed in an in vivo CE-MRA study. PMID:19319897

  13. 3D Faulting Numerical Model Related To 2009 L'Aquila Earthquake Based On DInSAR Observations

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; Tizzani, Pietro; Solaro, Giuseppe; Pepe, Susi; Lanari, Riccardo

    2014-05-01

    We investigate the surface displacements in the area affected by the April 6, 2009 L'Aquila earthquake (Central Italy) through an advanced 3D numerical modeling approach, by exploiting DInSAR deformation velocity maps based on ENVISAT (Ascending and Descending orbits) and COSMO-SkyMed data (Ascending orbit). We benefited from the available geological and geophysical information to investigate the impact of known buried structures on the modulation of the observed ground deformation field; in this context we implemented the a priori information in a Finite Element (FE) Environment considering a structural mechanical physical approach. The performed analysis demonstrate that the displacement pattern associated with the Mw 6.3 main-shock event is consistent with the activation of several fault segments of the Paganica fault. In particular, we analyzed the seismic events in a structural mechanical context under the plane stress mode approximation to solve for the retrieved displacements. We defined the sub-domain setting of the 3D FEM model using the information derived from the CROOP M-15 seismic line. We assumed stationarity and linear elasticity of the involved materials by considering a solution of classical equilibrium mechanical equations. We evolved our model through two stages: the model compacted under the weight of the rock successions (gravity loading) until it reached a stable equilibrium. At the second stage (co-seismic), where the stresses were released through a slip along the faults, by using an optimization procedure we retrieved: (i) the active seismogenic structures responsible for the observed ground deformation, (ii) the effects of the different mechanical constraints on the ground deformation pattern and (iii) the spatial distribution of the retrieved stress field. We evaluated the boundary setting best fit configuration responsible for the observed ground deformation. To this aim, we first generated several forward structural mechanical models

  14. Why 3D Cameras are Not Popular: A Qualitative User Study on Stereoscopic Photography Acceptance

    NASA Astrophysics Data System (ADS)

    Hakala, Jussi; Westman, Stina; Salmimaa, Marja; Pölönen, Monika; Järvenpää, Toni; Häkkinen, Jukka

    2014-03-01

    Digital stereoscopic 3D cameras have entered the consumer market in recent years, but the acceptance of this novel technology has not yet been studied. The aim of this study was to identify the benefits and problems that novice users encounter in 3D photography by equipping five users with 3D cameras for a 4-week trial. We gathered data using a weekly questionnaire, an exit interview, and a stereoscopic disparity analysis of the 699 photographs taken during the trial. The results indicate that the participants took photographs at too-close distances, which caused excessive disparities. They learned to avoid the problem to some extent; the number of failed photographs due to excessive stereoscopic disparity decreased 70 % in 4 weeks. The participants also developed a preference for subjects that included clear depth differences and started to avoid photographing people because they looked unnatural in 3D photographs. They also regarded flash-induced shadows and edge violations problematic because of the unnatural effects in the photographs. We propose in-camera assistance tools for 3D cameras to make 3D photography easier.

  15. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric

  16. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    NASA Astrophysics Data System (ADS)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  17. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  18. The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Autin, Julia

    2013-11-01

    The Gulf of Aden provides an ideal setting to study oblique rifting since numerous structural data are available onshore and offshore. Recent surveys showed that the spatio-temporal evolution of the Gulf of Aden rift system is dominated by three fault orientations: displacement-orthogonal (WSW), rift-parallel (WNW) and an intermediate E-W trend. The oldest parts of the rift that are exposed onshore feature displacement-orthogonal and intermediate directions, whereas the subsequently active necking zone involves mainly rift-parallel faults. The final rift phase recorded at the distal margin is characterised by displacement-orthogonal and intermediate fault orientations. We investigate the evolution of the Gulf of Aden from rift initiation to break-up by means of 3D numerical experiments on lithospheric scale. We apply the finite element model SLIM3D which includes realistic, elasto-visco-plastic rheology and a free surface. Despite recent advances, 3D numerical experiments still require relatively coarse resolution so that individual faults are poorly resolved. We address this issue by proposing a simple post-processing method that uses the surface stress-tensor to evaluate stress regime (extensional, strike-slip, compressional) and preferred fault azimuth. The described method is applicable to any geodynamic model and easy to introduce. Our model reproduces the observed fault pattern of the Gulf of Aden and illustrates how multiple fault directions arise from the interaction of local and far-field tectonic stresses in an evolving rift system. The numerical simulations robustly feature intermediate faults during the initial rift phase, followed by rift-parallel normal faulting at the rift flanks and strike-slip faults in the central part of the rift system. Upon break-up, displacement-orthogonal as well as intermediate faults occur. This study corroborates and extends findings from previous analogue experiments of oblique rifting on lithospheric scale and allows new

  19. Effect of random coincidences for quantitative cardiac PET studies using 3D oxygen-15 water scans

    NASA Astrophysics Data System (ADS)

    Bouchareb, Y.; Thielemans, K.; Spinks, T.; Rimoldi, O.; Camici, P. G.

    2006-03-01

    The effect of random coincidences estimation methods on the quantitative accuracy of iterative and analytic reconstruction methods to determine myocardial blood flow (MBF) in PET studies using H II 15O has been investigated. Dynamic scans were acquired on the EXACT3D PET scanner on pigs after H II 15O injection (resting and dipyridamoleinduced stress). Radioactive microspheres (MS) were used to provide a "gold standard" of MBF values. The online subtraction (OS) and maximum likelihood (ML) methods for estimating randoms were combined with (i) 3D-RP, (ii) FORE + attenuation-weighted OSEM, (iii) FORE-FBP and (iv) 3D-OSEM. Factor images were generated and resliced to short axis images; 16 ROIs were defined in the left myocardium and 2 ROIs in the left and right cavities. ROIs were projected onto the dynamic images to extract time-activity-curves, which were then fitted to a single compartment model to estimate absolute MBF. Microsphere measurements were obtained in a similar way and 64 pairs of measurements were made. The ML method improved the SNR of 3D-RP, FORE-FBP, FORE-OSEM, and 3D-OSEM by 8%, 8%, 7% and 3% respectively. Compared to the OS method, the ML method improved the accuracy of coronary flow reserve values of 3DOSEM, 3D-RP, FORE-OSEM and FORE-FBP by 9%, 7%, 1% and 3% respectively. Regression analysis provided better correlation with 3D-OSEM and FORE-OSEM when combined with the ML method. We conclude that the ML method for estimating randoms combined with 3D-OSEM and FORE-OSEM delivers the best performance for absolute quantification of MBF using H II 15O when compared with microsphere measurements.

  20. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study

    PubMed Central

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018

  1. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.

    PubMed

    Markaki, Yolanda; Smeets, Daniel; Fiedler, Susanne; Schmid, Volker J; Schermelleh, Lothar; Cremer, Thomas; Cremer, Marion

    2012-05-01

    Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization. PMID:22508100

  2. Axial magnetic anomalies over slow-spreading ridge segments: insights from numerical 3-D thermal and physical modelling

    NASA Astrophysics Data System (ADS)

    Gac, Sébastien; Dyment, Jérôme; Tisseau, Chantal; Goslin, Jean

    2003-09-01

    The axial magnetic anomaly amplitude along Mid-Atlantic Ridge segments is systematically twice as high at segment ends compared with segment centres. Various processes have been proposed to account for such observations, either directly or indirectly related to the thermal structure of the segments: (1) shallower Curie isotherm at segment centres, (2) higher Fe-Ti content at segment ends, (3) serpentinized peridotites at segment ends or (4) a combination of these processes. In this paper the contribution of each of these processes to the axial magnetic anomaly amplitude is quantitatively evaluated by achieving a 3-D numerical modelling of the magnetization distribution and a magnetic anomaly over a medium-sized, 50 km long segment. The magnetization distribution depends on the thermal structure and thermal evolution of the lithosphere. The thermal structure is calculated considering the presence of a permanent hot zone beneath the segment centre. The `best-fitting' thermal structure is determined by adjusting the parameters (shape, size, depth, etc.) of this hot zone, to fit the modelled geophysical outputs (Mantle Bouguer anomaly, maximum earthquake depths and crustal thickness) to the observations. Both the thermoremanent magnetization, acquired during the thermal evolution, and the induced magnetization, which depends on the present thermal structure, are modelled. The resulting magnetic anomalies are then computed and compared with the observed ones. This modelling exercise suggests that, in the case of aligned and slightly offset segments, a combination of higher Fe-Ti content and the presence of serpentinized peridotites at segment ends will produce the observed higher axial magnetic anomaly amplitudes over the segment ends. In the case of greater offsets, the presence of serpentinized peridotites at segment ends is sufficient to account for the observations.

  3. 3D multidisciplinary numerical model of polychlorinated biphenyl dynamics on the Black Sea north-western shelf

    NASA Astrophysics Data System (ADS)

    Bagaiev, Andrii; Ivanov, Vitaliy

    2014-05-01

    The Black Sea north-western shelf plays a key role in economics of the developing countries such as Ukraine due to food supply, invaluable recreational potential and variety of the relevant maritime shipping routes. On the other hand, a shallow flat shelf is mostly affected by anthropogenic pollution, eutrophication, hypoxia and harmful algae blooms. The research is focused on modeling the transport and transformation of PCBs (PolyChlorinated Biphenyls) because they are exceedingly toxic and highly resistant to degradation, hence cumulatively affect marine ecosystems. Being lipophilic compounds, PCBs demonstrate the distinguishing sorption/desorption activity taking part in the biogeochemical fluxes via the organic matter particles and sediments. In the framework of the research, the coastal in-situ data on PCB concentration in the water column and sediments are processed, visualized and analyzed. It is concluded that the main sources of PCBs are related to the Danube discharge and resuspension from the shallow-water sediments. Developed 3D numerical model is aimed at simulation of PCB contamination of the water column and sediment. The model integrates the full physics hydrodynamic block as well as modules, which describe detritus transport and transformation and PCB dynamics. Three state variables are simulated in PCB transport module: concentration in solute, on the settling particles of detritus and in the top layer of sediments. PCB adsorption/desorption on detritus; the reversible PCB fluxes at the water-sediment boundary; destruction of detritus are taken into consideration. Formalization of PCB deposition/resuspension in the sediments is adapted from Van Rijn's model of the suspended sediment transport. The model was spun up to reconstruct the short term scenario of the instantaneous PCB release from the St. George Arm of Danube. It has been shown that PCB transport on sinking detritus represents the natural buffer mechanism damping the spreading PCB

  4. Stress field sensitivity analysis within Mesozoic successions in the Swiss Alpine foreland using 3-D-geomechanical-numerical models

    NASA Astrophysics Data System (ADS)

    Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver

    2016-04-01

    The in situ stress conditions are of key importance for the evaluation of radioactive waste repositories. In stage two of the Swiss site selection program, the three siting areas of high-level radioactive waste are located in the Alpine foreland in northern Switzerland. The sedimentary succession overlays the basement, consisting of variscan crystalline rocks as well as partly preserved Permo-Carboniferous deposits in graben structures. The Mesozoic sequence represents nearly the complete era and is covered by Cenozoic Molasse deposits as well as Quaternary sediments, mainly in the valleys. The target horizon (designated host rock) is an >100 m thick argillaceous Jurassic deposit (Opalinus Clay). To enlighten the impact of site-specific features on the state of stress within the sedimentary succession, 3-D-geomechanical-numerical models with elasto-plastic rock properties are set up for three potential siting areas. The lateral extent of the models ranges between 12 and 20 km, the vertical extent is up to a depth of 2.5 or 5 km below sea level. The sedimentary sequence plus the basement are separated into 10 to 14 rock mechanical units. The Mesozoic succession is intersected by regional fault zones; two or three of them are present in each model. The numerical problem is solved with the finite element method with a resolution of 100-150 m laterally and 10-30 m vertically. An initial stress state is established for all models taking into account the depth-dependent overconsolidation ratio in Opalinus Clay in northern Switzerland. The influence of topography, rock properties, friction on the faults as well as the impact of tectonic shortening on the state of stress is investigated. The tectonic stress is implemented with lateral displacement boundary conditions, calibrated on stress data that are compiled in Northern Switzerland. The model results indicate that the stress perturbation by the topography is significant to depths greater than the relief contrast. The

  5. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ren, Xin; Shen, Jianhu; Ghaedizadeh, Arash; Tian, Hongqi; Xie, Yi Min

    2015-09-01

    Auxetic metamaterials are synthetic materials with microstructures engineered to achieve negative Poisson’s ratios. Auxetic metamaterials are of great interest because of their unusual properties and various potential applications. However, most of the previous research has been focused on auxetic behaviour of elastomers under elastic deformation. Inspired by our recent finding of the loss of auxetic behaviour in metallic auxetic metamaterials, a systematic experimental and numerical investigation has been carried out to explore the mechanism behind this phenomenon. Using an improved methodology of generating buckling-induced auxetic metamaterials, several samples of metallic auxetic metamaterials have been fabricated using a 3D printing technique. The experiments on those samples have revealed the special features of auxetic behaviour for metallic auxetic metamaterials and proved the effectiveness of our structural modification. Parametric studies have been performed through experimentally validated finite element models to explore the auxetic performance of the designed metallic metamaterials. It is found that the auxetic performance can be tuned by the geometry of microstructures, and the strength and stiffness can be tuned by the plasticity of the base material while maintaining the auxetic performance.

  6. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.

    PubMed

    Zhu, Wei; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-01-01

    Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use. PMID:26472048

  7. Application of 3D photo-reconstruction in soil erosion studies

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael; Pérez, Rafael; Gómez, Jose Alfonso

    2014-05-01

    3D photo-reconstruction (3D-PR) has been applied successfully to obtain elevation models using uncalibrated and nonmetric cameras for a range of geoscience applications (e.g. James and Robson, 2012), including gully erosion assessment (Castillo et al., 2012). However, its application in soil erosion studies is currently at the outset. The aim of this work is to compare 3D-PR with conventional techniques that have been employed traditionally for different purposes in soil erosion studies. In this preliminary work, we tested three applications that involve volume calculations: estimation of soil bulk density (BD), quantification of soil erosion at road banks (RB) and sedimentation rates behind check dams (CD). For each analysis, a PR field survey was carried out simultaneously with a conventional method (volume of water was used for BD, and total station surveys for RB and CD). For the 3D-PR technique, the accuracy as a function of the number of pictures taken was evaluated. In this study we explore the difference in the volume estimates between 3D-PR and conventional techniques as well as the time requirements for each method in order to compare their performance and optimal field of application.

  8. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  9. Application of 3D laser scanning technology in historical building preservation: a case study of a Chinese temple

    NASA Astrophysics Data System (ADS)

    Chang, Yu Min; Lu, Nien Hua; Wu, Tsung Chiang

    2005-06-01

    This study applies 3D Laser scanning technology to develop a high-precision measuring system for digital survey of historical building. It outperformed other methods in obtaining abundant high-precision measuring points and computing data instantly. In this study, the Pei-tien Temple, a Chinese Taoism temple in southern Taiwan famous for its highly intricate architecture and more than 300-year history, was adopted as the target to proof the high accuracy and efficiency of this system. By using French made MENSI GS-100 Laser Scanner, numerous measuring points were precisely plotted to present the plane map, vertical map and 3D map of the property. Accuracies of 0.1-1 mm in the digital data have consistently been achieved for the historical heritage measurement.

  10. Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.

    2012-03-01

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.

  11. Study on Construction of 3d Building Based on Uav Images

    NASA Astrophysics Data System (ADS)

    Xie, F.; Lin, Z.; Gui, D.; Lin, H.

    2012-07-01

    Based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D)city modeling, a method of fast 3D building modeling using the images from UAV carrying four-combined camera is studied. Firstly, by contrasting and analyzing the mosaic structures of the existing four-combined cameras, a new type of four-combined camera with special design of overlap images is designed, which improves the self-calibration function to achieve the high precision imaging by automatically eliminating the error of machinery deformation and the time lag with every exposure, and further reduce the weight of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of building surfaces and the texture extraction. Finally, two tests that are aerial photography with large scale mapping of 1:1000 and 3D building construction in Shandong University of Science and Technology and aerial photography with large scale mapping of 1:500 and 3D building construction in Henan University of Urban Construction, provide authentication model for construction of 3D building based on combined wide-angle camera images from UAV system. It is demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D building production, and the technology solution in this paper offers a new, fast and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

  12. Studies of the 3D Structure of the Nucleon at JLab

    NASA Astrophysics Data System (ADS)

    Avakian, Harut

    2016-08-01

    Studies of the 3D structure of the nucleon encoded in transverse momentum dependent distribution and fragmentation functions of partons and generalized parton distributions are among the key objectives of the JLab 12 GeV upgrade and the electron ion collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  13. The 3D Numerical Simulation for the Propagation Process of Multiple Pre-existing Flaws in Rock-Like Materials Subjected to Biaxial Compressive Loads

    NASA Astrophysics Data System (ADS)

    Bi, J.; Zhou, X. P.; Qian, Q. H.

    2016-05-01

    General particle dynamics (GPD), which is a novel meshless numerical method, is proposed to simulate the initiation, propagation and coalescence of 3D pre-existing penetrating and embedded flaws under biaxial compression. The failure process for rock-like materials subjected to biaxial compressive loads is investigated using the numerical code GPD3D. Moreover, internal crack evolution processes are successfully simulated using GPD3D. With increasing lateral stress, the secondary cracks keep growing in the samples, while the growth of the wing cracks is restrained. The samples are mainly split into fragments in a shear failure mode under biaxial compression, which is different from the splitting failure of the samples subjected to uniaxial compression. For specimens with macroscopic pre-existing flaws, the simulated types of cracks, the simulated coalescence types and the simulated failure modes are in good agreement with the experimental results.

  14. Best Practices for Designing Online Learning Environments for 3D Modeling Curricula: A Delphi Study

    ERIC Educational Resources Information Center

    Mapson, Kathleen Harrell

    2011-01-01

    The purpose of this study was to develop an inventory of best practices for designing online learning environments for 3D modeling curricula. Due to the instructional complexity of three-dimensional modeling, few have sought to develop this type of course for online teaching and learning. Considering this, the study aimed to collectively aggregate…

  15. PRESAGETM - Development and optimization studies of a 3D radiochromic plastic dosimeter - Part 1

    NASA Astrophysics Data System (ADS)

    Adamovics, J.; Jordan, K.; Dietrich, J.

    2006-12-01

    This paper studies the polymerization of six different transparent plastics as potential 3D dosimeter matrices. In addition, six different leuco dyes and sixteen different free radical initiators were evaluated. Finally, the photoreactivity of the dosimeter was studied so that the effect of exposure to UV could be minimized.

  16. Carboxy-Methyl-Cellulose (CMC) hydrogel-filled 3-D scaffold: Preliminary study through a 3-D antiproliferative activity of Centella asiatica extract

    NASA Astrophysics Data System (ADS)

    Aizad, Syazwan; Yahaya, Badrul Hisham; Zubairi, Saiful Irwan

    2015-09-01

    This study focuses on the effects of using the water extract from Centella asiatica on the mortality of human lung cancer cells (A549) with the use of novel 3-D scaffolds infused with CMC hydrogel. A biodegradable polymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used in this study as 3-D scaffolds, with some modifications made by introducing the gel structure on its pore, which provides a great biomimetic microenvironment for cells to grow apart from increasing the interaction between the cells and cell-bioactive extracts. The CMC showed a good hydrophilic characteristic with mean contact angle of 24.30 ± 22.03°. To ensure the CMC gel had good attachments with the scaffolds, a surface treatment was made before the CMC gel was infused into the scaffolds. The results showed that these modified scaffolds contained 42.41 ± 0.14% w/w of CMC gel, which indicated that the gel had already filled up the entire pore of 3-D scaffolds. Besides, the infused hydrogel scaffolds took only 24 hours to be saturated when absorbing the water. The viability of cancer cells by MTS assay after being treated with Centella asiatica showed that the scaffolds infused with CMC hydrogel had the cell viability of 46.89 ± 1.20% followed by porous 3-D model with 57.30 ± 1.60% of cell viability, and the 2-D model with 67.10 ± 1.10% of cell viability. The inhibitory activity in cell viability between 2-D and 3-D models did not differ significantly (p>0.05) due to the limitation of time in incubating the extract with the cell in the 3-D model microenvironment. In conclusion, with the application of 3-D scaffolds infused with CMC hydrogel, the extracts of Centella asiatica has been proven to have the ability to kill cancer cells and have a great potential to become one of the alternative methods in treating cancer patients.

  17. Registration of 3D and multispectral data for the study of cultural heritage surfaces.

    PubMed

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  18. Theoretical study for the cubic spin-Hamiltonian parameters of 3d ions

    NASA Astrophysics Data System (ADS)

    Lei, Y.

    2009-08-01

    In this paper, the whole microscopic energy matrix elements of 3d3 and 3d7 within the molecular orbit scheme are obtained. Both the electrostatic parameters, the spin-orbit interaction of the central metal ion and the ligands, the crystal-field potential and the Tress correction, and the spin-spin interaction are considered. By means of the perturbation method, the cubic spin-Hamiltonian parameters g and u are investigated. Results show that the contribution to g due to the spin-spin interaction is negligible. However, the contribution to u due to the spin-spin interaction cannot be neglected. As some illustrations, the 3d7 energy matrix is used to study the cubic electronic paramagnetic resonance experiments of Co in ZnS and ZnSe crystals. The theoretical results agree well with the experimental findings.

  19. Numerical Solution of 3D Poisson-Nernst-Planck Equations Coupled with Classical Density Functional Theory for Modeling Ion and Electron Transport in a Confined Environment

    SciTech Connect

    Meng, Da; Zheng, Bin; Lin, Guang; Sushko, Maria L.

    2014-08-29

    We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is the number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.

  20. Project Photofly: New 3d Modeling Online Web Service (case Studies and Assessments)

    NASA Astrophysics Data System (ADS)

    Abate, D.; Furini, G.; Migliori, S.; Pierattini, S.

    2011-09-01

    During summer 2010, Autodesk has released a still ongoing project called Project Photofly, freely downloadable from AutodeskLab web site until August 1 2011. Project Photofly based on computer-vision and photogrammetric principles, exploiting the power of cloud computing, is a web service able to convert collections of photographs into 3D models. Aim of our research was to evaluate the Project Photofly, through different case studies, for 3D modeling of cultural heritage monuments and objects, mostly to identify for which goals and objects it is suitable. The automatic approach will be mainly analyzed.

  1. 3D evaluation of palatal rugae for human identification using digital study models

    PubMed Central

    Taneva, Emilia D.; Johnson, Andrew; Viana, Grace; Evans, Carla A.

    2015-01-01

    Background: While there is literature suggesting that the palatal rugae could be used for human identification, most of these studies use two-dimensional (2D) approach. Aim: The aims of this study were to evaluate palatal ruga patterns using three-dimensional (3D) digital models; compare the most clinically relevant digital model conversion techniques for identification of the palatal rugae; develop a protocol for overlay registration; determine changes in palatal ruga individual patterns through time; and investigate the efficiency and accuracy of 3D matching processes between different individuals’ patterns. Material and Methods: Five cross sections in the anteroposterior dimension and four cross sections in the transverse dimension were computed which generated 18 2D variables. In addition, 13 3D variables were defined: The posterior point of incisive papilla (IP), and the most medial and lateral end points of the palatal rugae (R1MR, R1ML, R1LR, R1LL, R2MR, R2ML, R2LR, R2LL, R3MR, R3ML, R3LR, and R3LL). The deviation magnitude for each variable was statistically analyzed in this study. Five different data sets with the same 31 landmarks were evaluated in this study. Results: The results demonstrated that 2D images and linear measurements in the anteroposterior and transverse dimensions were not sufficient for comparing different digital model conversion techniques using the palatal rugae. 3D digital models proved to be a highly effective tool in evaluating different palatal ruga patterns. The 3D landmarks showed no statistically significant mean differences over time or as a result of orthodontic treatment. No statistically significant mean differences were found between different digital model conversion techniques, that is, between OrthoCAD™ and Ortho Insight 3D™, and between Ortho Insight 3D™ and the iTero® scans, when using 12 3D palatal rugae landmarks for comparison. Conclusion: Although 12 palatal 3D landmarks could be used for human

  2. 3D Numerical Simulation on Thermal Flow Coupling Field of Stainless Steel During Twin-Roll Casting

    NASA Astrophysics Data System (ADS)

    Liu, Lianlian; Liao, Bo; Guo, Jing; Liu, Ligang; Hu, Hongyan; Zhang, Yue; Yang, Qingxiang

    2014-01-01

    The surface crack and lateral crack of the AISI 304 stainless steel thin strip produced by twin-roll casting were observed. The temperature at the center of outlet during twin-roll-casting process was determined by infrared thermometer. In order to avoid the surface cracks of the casting strip, the thermal flow coupling field of AISI 304 stainless steel during twin-roll-casting process was simulated by a 3D fluid-structure coupling model. According to the simulation result, the effect of the casting speed on thermal flow field was analyzed and the process parameters were optimized. Moreover, by studying heat flux curves, the heat transfer mechanism between molten pool and roll was analyzed. The results show that, with the increase of the casting speed, the temperature of the molten pool increases and the solidification point moves toward the outlet. Meanwhile, the whirlpool above gets larger. Based on the solidification front position, the optimized process parameters are 1500 °C and 0.37 m/s. The heat transfer mechanism between molten pool and roll contains direct contacting heat transfer and air gap heat transfer.

  3. Melt-rock reaction in the asthenospheric mantle: Perspectives from high-order accurate numerical simulations in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.

    2013-12-01

    The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales

  4. Effective Permeability of Fractured Rocks by Analytical Methods: A 3D Computational Study

    NASA Astrophysics Data System (ADS)

    Sævik, P. N.; Berre, I.; Jakobsen, M.; Lien, M.

    2013-12-01

    Analytical upscaling methods have been proposed in the literature to predict the effective hydraulic permeability of a fractured rock from its micro-scale parameters (fracture aperture, fracture orientation, fracture content, etc.). In this presentation, we put special emphasis on three effective medium methods (the symmetric and asymmetric self-consistent methods, and the differential method), and evaluate their accuracy for a wide range of parameter values. The analytical predictions are computed using our recently developed effective medium formulations, which are specifically adapted for fractured media. Compared to previous formulations, the new expressions have improved numerical stability properties, and require fewer input parameters. To assess their accuracy, the analytical predictions have been compared with 3D finite element simulations. Specifically, we generated realizations of several different fracture geometries, each consisting of 102 fractures within a unit cube. We applied unit potential difference on two opposing sides, and no-flux conditions on the remaining sides. A commercial finite-element solver was used to calculate the mean flux, from which the effective conductivity was found. This process was repeated for fracture densities up to ɛ = 1.0. Also, a wide range of fracture permeabilities was considered, from completely blocking to infinitely permeable fractures. The results were used to determine the range of applicability for each analytical method, which excels in different regions of the parameter space. For blocking fractures, the differential method is very accurate throughout the investigated parameter range. The symmetric self-consistent method also agrees well with the numerical results on sealed fractures, while the asymmetric self-consistent method is more unreliable. For permeable fractures, the performance of the methods depends on the dimensionless quantity λ = (Kfrac a)/(r Kmat ), describing the contrast between fracture and

  5. Development of a 3D numerical model to evaluate the Stromboli NW flank instability in relation to magma intrusion

    NASA Astrophysics Data System (ADS)

    Apuani, T.; Merri, A.

    2009-04-01

    A stress-strain analysis of the Stromboli volcano was performed using a three-dimensional explicit finite difference numerical code (FLAC 3D, ITASCA, 2005), to evaluate the effects associated to the presence of magma pressure in magmatic conduit and to foresee the evolution of the magmatic feeding complex. The simulations considered both the ordinary state for the Stromboli, characterized by a partial fill of the active dyke with regular emission of gas and lava fountains and the paroxysmal conditions observed during the March 2007's eruptive crisis, with the magma level in the active dyke reaching the topographic surface along the Sciara del Fuoco depression. The modeling contributes to identify the most probable directions of propagation of new dikes, and the effects of their propagation on the stability of the volcano edifice. The numerical model extends 6 x 6 x 2.6 km3, with a mesh resolution of 100 m, adjusting the grid to fit the shape of the object to be modeled. An elasto-plastic constitutive law was adopted and an homogeneous Mohr-Coulomb strength criterion was chosen for the volcanic cone, assuming one lithotechnical unit (alternation of lava and breccia layers "lava-breccia unit"- Apuani et al 2005). The dykes are represented as discontinuities of the grid, and are modeled by means of interfaces. The magmatic pressure is imposed to the model as normal pressure applied on both sides of the interfaces. The magmastatic pressure was calculated as Pm=d•h, where d is the magma unit weight assumed equal to 25 KN/m3, and h (m) is the height of the magma column. Values of overpressure between 0 and 1 MPa were added to simulate the paroxysmal eruption. The simulation was implemented in successive stages, assuming the results of the previous stages as condition for the next one. A progressive propagation of the dike was simulated, in accordance with the stress conditions identified step by step, and in accordance with the evidences detected by in situ survey, and

  6. Towards a Real Estate Registry 3d Model in Portugal: Some Illustrative Case Studies

    NASA Astrophysics Data System (ADS)

    de Almeida, J.-P.; Ellul, C.; Rodrigues-de-Carvalho, M. M.

    2013-09-01

    The 3D concept emerged as a key concept within geoinformation science. 3D geoinformation has been proved to be feasible and its added value over 2D geoinformation is widely acknowledged by researchers from various fields. Even so, 3D concept merits still need to be exploited further and more specific applications and associate products are needed - such as within real estate cadastre, our ultimate field of interest. The growing densification of urban land use is consequently increasing situations of vertical stratification of ownership rights. Traditional 2D cadastral models are not able to fully handle spatial information on those rights in the third dimension. Thus, 3D cadastre has been attracting researchers to better register and spatially represent real world overlapping situations. A centralised distributed cadastral management system, implementing a 2D cadastral model, has been conceived by the national cadastral agency in Portugal: the so-called SiNErGIC. The authors seek to show with this paper that there is room though for further investigation on the suitability of a 3D modelling approach instead, which should not be confined only to topologicalgeometric representations but should also be extended in order to be able to incorporate the legal/administrative component. This paper intends to be the first step towards the design of a prototype of a 3D cadastral model capable of handling the overall multipurpose cadastral reality in Portugal; it focuses primarily on the clear identification of some case studies that may illustrate the pertinence of such an approach in the context of this country.

  7. Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.

    PubMed

    Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul

    2014-12-01

    This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes. PMID:25194505

  8. Use of 3D numerical simulation model for impact analysis of accidental release of hazardous substance in urban environment

    SciTech Connect

    Kao, C.Y.J.; Ni-Bin Chang

    1996-12-31

    A three dimensional, time dependent, numerical model is developed for the simulation of vapor cloud of chemical substance being accidentally released in urban environment. Such a modeling technique as it would apply to chemical emergency response situation in the urban environment is considerably important due to the behavior of heavy gas diffusion and dispersion. Within the scope of this study, the distribution of chemicals being released is estimated based on the kernel density estimator along with a three-dimension wind field model in which the horizontal momentum equations, turbulence kinetic energy equation, and a set of conservation equations are integrated together. By utilizing the capability of numerical analysis, the solution of such a hydrodynamic model can be found to constitute the analytical framework in the process of pollutant transport and even transformation. Such a result is required for both short-term and long-term risk analyses in urban environment.

  9. Supporting Distributed Team Working in 3D Virtual Worlds: A Case Study in Second Life

    ERIC Educational Resources Information Center

    Minocha, Shailey; Morse, David R.

    2010-01-01

    Purpose: The purpose of this paper is to report on a study into how a three-dimensional (3D) virtual world (Second Life) can facilitate socialisation and team working among students working on a team project at a distance. This models the situation in many commercial sectors where work is increasingly being conducted across time zones and between…

  10. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  11. Testing the Effectiveness of 3D Film for Laboratory-Based Studies of Emotion

    PubMed Central

    Bride, Daniel L.; Crowell, Sheila E.; Baucom, Brian R.; Kaufman, Erin A.; O'Connor, Caitlin G.; Skidmore, Chloe R.; Yaptangco, Mona

    2014-01-01

    Research in psychology and affective neuroscience often relies on film as a standardized and reliable method for evoking emotion. However, clip validation is not undertaken regularly. This presents a challenge for research with adolescent and young adult samples who are exposed routinely to high-definition (HD) three-dimensional (3D) stimuli and may not respond to older, validated film clips. Studies with young people inform understanding of emotional development, dysregulated affect, and psychopathology, making it critical to assess whether technological advances improve the study of emotion. In the present study, we examine whether 3D film is more evocative than 2D using a tightly controlled within-subjects design. Participants (n  =  408) viewed clips during a concurrent psychophysiological assessment. Results indicate that both 2D and 3D technology are highly effective tools for emotion elicitation. However, 3D does not add incremental benefit over 2D, even when individual differences in anxiety, emotion dysregulation, and novelty seeking are considered. PMID:25170878

  12. Testing the effectiveness of 3D film for laboratory-based studies of emotion.

    PubMed

    Bride, Daniel L; Crowell, Sheila E; Baucom, Brian R; Kaufman, Erin A; O'Connor, Caitlin G; Skidmore, Chloe R; Yaptangco, Mona

    2014-01-01

    Research in psychology and affective neuroscience often relies on film as a standardized and reliable method for evoking emotion. However, clip validation is not undertaken regularly. This presents a challenge for research with adolescent and young adult samples who are exposed routinely to high-definition (HD) three-dimensional (3D) stimuli and may not respond to older, validated film clips. Studies with young people inform understanding of emotional development, dysregulated affect, and psychopathology, making it critical to assess whether technological advances improve the study of emotion. In the present study, we examine whether 3D film is more evocative than 2D using a tightly controlled within-subjects design. Participants (n  =  408) viewed clips during a concurrent psychophysiological assessment. Results indicate that both 2D and 3D technology are highly effective tools for emotion elicitation. However, 3D does not add incremental benefit over 2D, even when individual differences in anxiety, emotion dysregulation, and novelty seeking are considered. PMID:25170878

  13. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    ERIC Educational Resources Information Center

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  14. 3D SEM for surface topography quantification - a case study on dental surfaces

    NASA Astrophysics Data System (ADS)

    Glon, F.; Flys, O.; Lööf, P.-J.; Rosén, B.-G.

    2014-03-01

    3D analysis of surface topography is becoming a more used tool for industry and research. New ISO standards are being launched to assist in quantifying engineering surfaces. The traditional optical measuring instrumentation used for 3D surface characterization has been optical interferometers and confocal based instrumentation. However, the resolution here is limited in the lateral dimension to the wavelength of visible light to about 500 nm. The great advantage using the SEM for topography measurements is the high flexibility to zoom from low magnifications and locating interesting areas to high magnification of down to nanometer large surface features within seconds. This paper presents surface characterization of dental implant micro topography. 3D topography data was created from SEM images using commercial photogrammetric software. A coherence scanning interferometer was used for reference measurements to compare with the 3D SEM measurements on relocated areas. As a result of this study, measurements emphasizes that the correlation between the accepted CSI measurements and the new technology represented by photogrammetry based on SEM images for many areal characterization parameters are around or less than 20%. The importance of selecting sampling and parameter sensitivity to varying sampling is high-lighted. Future work includes a broader study of limitations of the photogrammetry technique on certified micro-geometries and more application surfaces at different scales.

  15. Effects of scatter on model parameter estimates in 3D PET studies of the human brain

    SciTech Connect

    Cherry, S.R.; Huang, S.C.

    1995-08-01

    Phantom measurements and simulated data were used to characterize the effects of scatter on 3D PET projection data, reconstructed images and model parameter estimates. Scatter distributions were estimated form studies of the 3D Hoffman brain phantom by the 2D/3D difference method. The total scatter fraction in the projection data was 40%, but reduces to 27% when only those counts within the boundary of the brain are considered. After reconstruction, the whole brain scatter fraction is 20%, averaging 10% in cortical gray matter, 21% in basal ganglia and 40% in white matter. The scatter contribution varies by almost a factor of two from the edge to the center of the brain due to the shape of the scatter distribution and the effects of attenuation correction. The effect of scatter on estimates of cerebral metabolic rate for glucose (CMRGI) and cerebral blood flow (CBF) is evaluated by simulating typical gray matter time activity curves (TAC`s) and adding a scatter component based on whole-brain activity. Both CMRGI and CBF change in a linear fashion with scatter fraction. Efforts of between 10 and 30% will typically result if 3D studies are not corrected for scatter. The authors also present results from a simple and fast scatter correction which fits a gaussian function to the scattered events outside the brain. This reduced the scatter fraction to <2% in a range of phantom studies with different activity distributions. Using this correction, quantitative errors in 3D PET studies of CMRGI and CBF can be reduced to well below 10%.

  16. Assessing pyroclastic density current dynamics and hazard of Plinian events at Campi Flegrei (Italy) by using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Neri, A.; Todesco, M.

    2012-04-01

    Campi Flegrei is a densely populated widespread caldera located near the city of Naples. Current evaluation of volcanic hazard include the probable generation of pyroclastic density currents (PDC) produced by explosive events of variable size and uncertain vent location. In this study we investigate the dynamics and hazard of PDC produced by the partial collapse of the volcanic column by using the 3D transient multiphase flow model PDAC (Esposti Ongaro et al., Parallel Computing, 2007). The model allows to describe the temporal and spatial evolution of the stratified PDC by accounting for the multiparticle nature of the flow and the complex topography of the caldera. Employed eruptive intensity and pyroclast properties are representative of magmatic phases of the Agnano Monte Spina (AMS, 4100 BP) Plinian eruption, the largest explosive event of the last cycle of activity of the caldera. Eruptive centers are supposed to be located in the north-eastern part of the caldera, the area with the largest number of past vents. Several simulations were performed considering different collapsing regimes, flow conditions at the source and vent locations. Results illustrate the complex dynamics of flow propagation in the caldera settings and quantify the associated hazards. Fountain instabilities, recycling of collapsed material into the jet caused by the caldera walls, triggering of thermals and co-ignimbrite clouds by topographic reliefs, flow decoupling between dense and dilute streams, and generation of backflows are some of the processes simulated. The areas invaded by the PDC result affected by the inner topography of the caldera and therefore largely influenced by the assumed location of the vent. PDC result mostly confined by the outer caldera rims although they appear able to overcome Posillipo Hill and affect the eastern portions of the city of Naples. Comparisons with reconstructions of the AMS event are also discussed.

  17. The mechanisms of driving lithospheric deformation in India-Asia collision zone: a perspective from 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Kaus, Boris

    2016-04-01

    The mechanism of intraplate deformation remains incompletely understood by plate tectonics theory. The India-Asia collision zone is the largest present-day example of continental collision, which makes it an ideal location to study the processes of continental deformation. Existing models of lithospheric deformation are typically quasi two-dimensional and often assume that the lithosphere is a thin viscous sheet, which deforms homogeneously as a result of the collision, or flows above a partially molten lower crust, which explains the exhumation of Himalayan units and lateral spreading of Tibetan plateau. An opposing view is that most deformation localize in shear zones separating less deformed blocks, requiring the lithosphere to have an elasto-plastic rather than a viscous rheology. In order to distinguish which model best fits the observations we develop a 3-D visco-elasto-plastic model, which can model both distributed and highly localized deformation. In our preliminary result, most of the large-scale strike-slips faults including Altyn-Tagh fault, Xianshuihe fault, Red-River fault, Sagaing fault and Jiali fault can be simulated. The topography is consistent with observations that flat plateau in central Tibet and steep, abrupt margins adjacent to Sichuan basin, and gradual topography in southeast Tibet. These models suggest that the localized large-scale strike-slip faults accommodate the continental deformation. These results show the importance of a weak lower crust and topographic effects, as well as the effect of rheology and temperature structure of the lithosphere on the deformation patterns.

  18. Impact of lithosphere rheology on 3D continental rift evolution in presence of mantle plumes: insights from numerical models

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Gerya, Taras

    2015-04-01

    We implement fully-coupled high resolution 3D thermo-mechanical numerical models to investigate the impact of the laterally heterogeneous structure and rheological stratification of the continental lithosphere on the plume-activated rifting and continental break-up processes in presence of preexisting far-field tectonic stresses. In our experiments, the "plumes" represent short-lived diapiric upwellings that have no continuous feeding from the depth. Such upwellings may be associated with "true" plumes but also with various instabilities in the convective mantle. The models demonstrate that the prerequisite of strongly anisotropic strain localization during plume-lithosphere interaction (linear rift structures instead of axisymmetric radial faulting) refers to simultaneous presence of a mantle upwelling and of (even extremely weak) directional stress field produced by far-field tectonic forces (i.e. ultra-slow far field extension at < 3 mm/y). Although in all experiments the new-formed spreading centers have similar orientations perpendicular to the direction of the main far-field axis, the models with homogeneous lithosphere show that their number and spatial location is different for various extension rates and thermo-rheological structures of the lithosphere: relatively slow extension (3 mm/year) and colder isotherm (600-700°C at Moho depth) at the crustal bottom lead to the development of single rifts, whereas "faster" external velocities (6 mm/year) and "hotter" crustal geotherm (800°C at Moho depth) result in dual (sometimes asymmetric) rift evolution. On the contrary, the models with heterogeneous lithosphere (thick cratonic block with cold and thick depleted mantle embedded into «normal» lithosphere) and the plume centered below the craton, systematically show similar behaviors: two symmetrical and coeval rifting zones embrace the cratonic micro-plate along its long sides. The experiments where the initial plume position has been laterally shifted with

  19. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  20. 3D visualization of the scoliotic spine: longitudinal studies, data acquisition, and radiation dosage constraints

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.

    1999-05-01

    Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.

  1. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS. PMID:27083978

  2. Preliminary study of the dosimetric characteristics of 3D-printed materials with megavoltage photons

    NASA Astrophysics Data System (ADS)

    Jeong, Seonghoon; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook

    2015-07-01

    These days, 3D-printers are on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of 3D-printer materials that could be used as compensators or immobilizers in radiation treatment. The cubes with length of 5 cm and different densities of 50%, 75% and 100% were printed by using a 3D-printer. Planning CT scans of the cubes were performed by using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated after a 6 MV photon beam had passed through the cube. The dose responses for the 3D-printed cube, air and water were measured by using EBT3 film and a 2D array detector. When the results of air case were normalized to 100, the dose calculated by the TPS and the measured doses to 50% and 75% cube were of the 96 ~ 99. The measured and the calculated doses to water and to 100% of the cube were 82 ~ 84. The HU values for the 50%, 75% and 100% density cases were -910, -860 and -10, respectively. The dose characteristics of the 50% and the 75% products were similar to that of air while the 100% product seemed to be similar to that of water. This information will provide guidelines for making an immobilization tool that can play the role of a compensator and for making a real human phantom that can exactly describe the inside of the human body. This study was necessary for Poly Lactic Acid (PLA) based 3D-printer users who are planning to make something related to radiation therapy.

  3. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  4. D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -

    NASA Astrophysics Data System (ADS)

    Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.

    2011-09-01

    In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to

  5. Norg underground gas storage - an integrated 3-D geological and geophysical reservoir modeling study

    SciTech Connect

    Cohen, J.; Smith, S. ); Huis, R.; Copper, J.; Whyte, S. )

    1993-09-01

    The Netherlands have an extensive gas distribution infrastructure supplying 80 x 10[sup 9] m[sup 3] per annum to the domestic and European market. The capacity requirement exceeds 600 x 10[sup 6] sm[sup 3]/d, of which 430 x 10[sup 6] sm[sup 3]/d is provided by the giant Groningen gas field. The Groningen field will soon reach a pressure at which this capacity can no longer be met without considerable investments. It will also become difficult to maintain the market gas quality, because of the increasing supply from small fields with widely varying gas qualities. Underground Gas Storage (UGS) will satisfy both capacity and gas-quality requirements. This UGS must eventually store 4.5 x 10[sup 9] m[sup 3] with injection/production capacities of 36/80-100 x 10[sup 6] sm[sup 3]/d, making it one of the largest UGS projects in the world. These extremely high-capacity requirements demand both high-matrix permeability and good understanding of vertical and lateral reservoir continuity. Matrix permeability is predictable due to the close relationship with the lithofacies defined within the primary Rotliegende depositional model. Minor faults, identified on three-dimensional (3-D) seismic attribute maps, represent potential transmissibility impairment zones, compartmentalizing the reservoir. This was initially suggested by core fracture studies and confirmed by a subsequent field shut-in and pressure buildup test. Lithofacies and seismic structural data are integrated within a computerized reservoir geological modeling system known as [open quotes]Monarch[close quotes] to provide a highly detailed 3-D permeability model that is then tranformed into a model for dynamic reservoir simulation. The results confirm the required working volume for the UGS operation and provide a basis for the initial field development planning.

  6. A 3D numerical investigation of reservoir monitoring with borehole radar and its application in smart well

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Miorali, M.; Slob, E. C.; Arts, R.

    2011-12-01

    Smart wells, a new generation of wells used in oil production, combine down-hole monitoring and control of the reservoir flow. Smart technology allows the implementation of proactive strategies that can mitigate potential problems, such as the approach of undesired fluids, before they impact production from the well. The effectiveness of the proactive strategies depends on the ability of monitoring the near-well region. We propose that borehole radar is a promising technology for this purpose. We couple 3D reservoir flow modeling with 3D radar modeling. The time-lapse analysis of the electromagnetic simulations confirms that radar can map the movement of the oil-water contact in a range of 1-10 m from the well. The comparison of the 3D reflected signals with the 2D show a good correlation, which allows cheaper simulation for a large-scale reservoir model. We use the radar results to implement a proactive control strategy in a realistic reservoir scenario. The NPV(Net Present Value) has improved by controlling the production according to the modeled radar measurements. We suggest borehole radar as a promising application in oil production optimization if an effective smart well control strategy is combined.

  7. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Jang, Jiin-Yuh

    2005-05-01

    Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

  8. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    PubMed Central

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; Schneider, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology. PMID:23300909

  9. Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.

    2006-01-01

    The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.

  10. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  11. 3D Morphometric and Posture Study of Felid Scapulae Using Statistical Shape Modelling

    PubMed Central

    Zhang, Kai Yu; Wiktorowicz-Conroy, Alexis; Hutchinson, John R.; Doube, Michael; Klosowski, Michal; Shefelbine, Sandra J.; Bull, Anthony M. J.

    2012-01-01

    We present a three dimensional (3D) morphometric modelling study of the scapulae of Felidae, with a focus on the correlations between forelimb postures and extracted scapular shape variations. Our shape modelling results indicate that the scapular infraspinous fossa becomes larger and relatively broader along the craniocaudal axis in larger felids. We infer that this enlargement of the scapular fossa may be a size-related specialization for postural support of the shoulder joint. PMID:22509335

  12. A theoretical study of the structure and stability of borohydride on 3d transition metals

    NASA Astrophysics Data System (ADS)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  13. Effects of rheology on the dynamics and development of topography in 3D numerical simulations of continental collision, with an application to the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2014-12-01

    The Himalayas and the adjacent Tibetan Plateau represent the largest region of elevated topography and anomalously thick crust on Earth. Understanding the formation and evolution of the region has been the focus of many tectonic and numerical models. While some of these models (i.e. thin sheet model) have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, channel flow or extrusion, for which fully 3D models are required. Here, we employed the 3D code LaMEM to investigate the role that subduction, continental collision and indentation play on lithosphere dynamics at convergent margins, and the implications they have for the Asian tectonics. Our model setup resembles a simplified tectonic map of the India-Asia collision zone and we performed a large number of 3D simulations to analyse the dynamics and the conditions under which large topographic plateaus, such as the Tibetan Plateau can form in an integrated lithospheric and upper-mantle scale model. Results of models with linear viscous rheologies show different modes between the oceanic subduction side (continuous subduction, trench retreat and slab roll-back) and the continental collision side (trench advance, slab detachment, topographic uplift and lateral extrusion of material). Despite the complex dynamics and the great variation in slab shape across the subduction-collision zone, which are consistent with tomographic observations, we note that slab-pull alone is insufficient to generate high topography in the upper plate. Several studies suggested that external forces (i.e. ridge push, plume push or slab suction) must be important in order to sustain the on-going convergence of India towards Eurasia. We show that external forcing and the presence of strong blocks such as the Tarim Basin within the Asian lithosphere are necessary to create and shape anomalously high topographic fronts and plateaus

  14. Two Eyes, 3D: A New Project to Study Stereoscopy in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Price, Aaron; SubbaRao, M.; Wyatt, R.

    2012-01-01

    "Two Eyes, 3D" is a 3-year NSF funded research project to study the educational impacts of using stereoscopic representations in informal settings. The project funds two experimental studies. The first is focused on how children perceive various spatial qualities of scientific objects displayed in static 2D and 3D formats. The second is focused on how adults perceive various spatial qualities of scientific objects and processes displayed in 2D and 3D movie formats. As part of the project, two brief high-definition films about variable stars will be developed. Both studies will be mixed-method and look at prior spatial ability and other demographic variables as covariates. The project is run by the American Association of Variable Star Observers, Boston Museum of Science and the Adler Planetarium and Astronomy Museum with consulting from the California Academy of Sciences. Early pilot results will be presented. All films will be released into the public domain, as will the assessment software designed to run on tablet computers (iOS or Android).

  15. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  16. Advanced Tsunami Numerical Simulations and Energy Considerations by use of 3D-2D Coupled Models: The October 11, 1918, Mona Passage Tsunami

    NASA Astrophysics Data System (ADS)

    López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio

    2015-06-01

    The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.

  17. 3D numerical modeling of the lateral transition between viscous overthrusting and folding with application to the Helvetic nappe system

    NASA Astrophysics Data System (ADS)

    Spitz, Richard; Schmalholz, Stefan; Kaus, Boris

    2016-04-01

    The Helvetic nappe system of the European Alps is generally described as a complex of fold and thrust belts. While the overall geology of the system has been studied in detail, the understanding of the tectonic development and mechanical interconnection between overthrusting and folding is still incomplete. One clue comes from the mechanical stratigraphy and the corresponding lateral transition from overthrusting to folding, which is characteristic for the Helvetic nappe system. We employ a three-dimensional numerical model with linear and non-linear viscous rheology to investigate the control of the lateral variation in the thickness of a weak detachment horizon on the transition from folding to overthrusting during continental shortening. The model configuration is based on published work based on 2D numerical simulations. The simulations are conducted with the three-dimensional staggered-grid finite difference code LaMEM (Lithosphere and Mantle Evolution Model), which allows for coupled nonlinear thermo-mechanical modeling of lithospheric deformation with visco-elasto-plastic rheology and computation on massive parallel machines. Our model configuration consists of a stiff viscous layer, with a pre-existing weak zone, resting within a weaker viscous matrix. The reference viscosity ratio μL/μM (for the same strain rate) between the layer and matrix ranges from 10 to 200. The simulations were run with several distinct initial geometries by altering the thickness of the detachment horizon below the stiff layer across the configurations. Shortening with a constant bulk rate is induced by the prescription of a horizontal velocity on one side of the model. The first results of our simulations highlight the general importance of the initial geometry on the lateral transition from overthrusting to folding. Additionally, models with a stepwise lateral variation of the detachment horizon indicate a fold development orthogonal to the main compressional axis.

  18. Study of 3D Laser Cladding for Ni85Al15 Superalloy

    NASA Astrophysics Data System (ADS)

    Kotoban, D.; Grigoriev, S.; Shishkovsky, I.

    Conditions of successful3D laser cladding for Ni based superalloy were studied. A high power Yb-YAG laser was used to create a molten pool on a stainless steel substrate into which Ni85Al15 powder stream was delivered to create 3D samples. The effect of different laser parameters on the structure and the intermetallic phase content of the manufactured samples were explored by optical metallography, microhardness, SEM, X-ray, and EDX analysis. The cladding of the Ni3A1 coating with small dilution into substrate can be obtained at the appropriate power density of about 2-8 J/mm2 under the laser scan velocity of 100-200 mm/min and the powder feed rate ∼ 3.8 g/min.

  19. Synthesis, antifeedant activity against Coleoptera and 3D QSAR study of alpha-asarone derivatives.

    PubMed

    Łozowicka, B; Kaczyński, P; Magdziarz, T; Dubis, A T

    2014-01-01

    For the first time, a set of 56 compounds representing structural derivatives of naturally occurring alpha-asarone as an antifeedants against stored product pests Sitophilus granarius L., Trogoderma granarium Ev., and Tribolium confusum Duv., were subjected to the 3D QSAR studies. Three-dimensional quantitative structure-activity relationships (3D-QSAR) for 56 compounds, including 15 newly synthesized, were performed using comparative molecular field analysis s-CoMFA and SOM-CoMSA techniques. QSAR was conducted based on a combination of biological activity (against Coleoptera larvae and beetles) and various geometrical, topological, quantum-mechanical, electronic, and chromatographic descriptors. The CoMSA formalism coupled with IVE (CoMSA-IVE) allowed us to obtain highly predictive models for Trogoderma granarium Ev. larvae. We have found that this novel method indicates a clear molecular basis for activity and lipophilicity. This investigation will facilitate optimization of the design of new potential antifeedants. PMID:24601760

  20. Numerical simulation of tip leakage vortex effect on hydrogen-combustion flow around 3D turbine blade

    NASA Astrophysics Data System (ADS)

    Miyama, Naoto; Inaba, Kazuaki; Yamamoto, Makoto

    2008-06-01

    In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ɛ turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.

  1. Estimating the subsurface temperature of Hessen/Germany based on a GOCAD 3D structural model - a comparison of numerical and geostatistical approaches

    NASA Astrophysics Data System (ADS)

    Rühaak, W.; Bär, K.; Sass, I.

    2012-04-01

    Based on a 3D structural GOCAD model of the German federal state Hessen the subsurface temperature distribution is computed. Since subsurface temperature data for greater depth are typically sparse, two different approaches for estimating the spatial subsurface temperature distribution are tested. One approach is the numerical computation of a 3D purely conductive steady state temperature distribution. This numerical model is based on measured thermal conductivity data for all relevant geological units, together with heat flow measurements and surface temperatures. The model is calibrated using continuous temperature-logs. Here only conductive heat transfer is considered as data for convective heat transport at great depth are currently not available. The other approach is by 3D ordinary Kriging; applying a modified approach where the quality of the temperature measurements is taken into account. A difficult but important part here is to derive good variograms for the horizontal and vertical direction. The variograms give necessary information about the spatial dependence. Both approaches are compared and discussed. Differences are mainly related due to convective processes, which are reflected by the interpolation result, but not by the numerical model. Therefore, a comparison of the two results is a good way to obtain information about flow processes in such great depth. This way an improved understanding of this mid enthalpy geothermal reservoir (1000 - 6000 m) is possible. Future work will be the reduction of the small but - especially for depth up to approximately 1000 m - relevant paleoclimate signal.

  2. 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir

    NASA Astrophysics Data System (ADS)

    Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.

    2015-12-01

    The impact of an avalanche in a reservoir induces impulse waves, which pose a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting overtopping volume over structures and dams, formulas, which are based on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. This paper presents a new approach for a 3-D numerical simulation of the avalanche impact in a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the actual hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width). There was a good agreement of the overtopping volume at the dam between the presented 3-D numerical approach and the literature equations. Nevertheless, an extended parameter variation as well as a comparison with natural data should be considered as further research topics.

  3. Structural and property studies on metal–organic compounds with 3-D supramolecular network

    SciTech Connect

    Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian

    2014-07-01

    Two carboxylato-bridged allomeric compounds, ([Cu{sub 2}(dbsa){sub 2}(hmt) (H{sub 2}O){sub 4}]{sub 1/2}·2H{sub 2}O){sub n} (1), ([Ni(dbsa)(H{sub 2}O){sub 2}]{sub 1/2}[Ni(dbsa)(hmt)(H{sub 2}O){sub 2}]{sub 1/2}·2H{sub 2}O){sub n} (2) (H{sub 2}dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J{sub 1}=−3.5 cm{sup −1}, J{sub 2}=−2.8 cm{sup −1} for 1, and g=2.1, J=−3.5 cm{sup −1} for 2. - Graphical abstract: Variable-temperature magnetic property studies of two 3-D supramolecular compounds reveal the existence of antiferromagnetic interactions between the metal ions, through the effective super-exchange media. - Highlights: • Two 3-D allomeric Cu(II) and Ni(II) metal–organic compounds have been prepared. • The 3-D networks were constructed by coordination bonds, weak interactions and hydrogen bond interactions. • There are antiferromagnetic super-exchange interactions between the metal ions.

  4. Imaging SPR combined with stereoscopic 3D tracking to study barnacle cyprid-surface interactions

    NASA Astrophysics Data System (ADS)

    Maleshlijski, S.; Sendra, G. H.; Aldred, N.; Clare, A. S.; Liedberg, B.; Grunze, M.; Ederth, T.; Rosenhahn, A.

    2016-01-01

    Barnacle larvae (cyprids) explore surfaces to identify suitable settlement sites. This process is selective, and cyprids respond to numerous surface cues. To better understand the settlement process, it is desirable to simultaneously monitor both the surface exploration behavior and any close interactions with the surface. Stereoscopic 3D tracking of the cyprids provides quantitative access to surface exploration and pre-settlement rituals. Imaging surface plasmon resonance (SPR) reveals any interactions with the surfaces, such as surface inspection during bipedal walking and deposition of temporary adhesives. We report on a combination of both techniques to bring together information on swimming behavior in the vicinity of the interface and physical interactions of the cyprid with the surface. The technical requirements are described, and we applied the setup to cyprids of Balanus amphitrite. Initial data shows the applicability of the combined instrument to correlate exploration and touchdown events on surfaces with different chemical termination.

  5. Simulating Seismic Wave Propagation in 3-D Structure: A Case Study For Istanbul City

    NASA Astrophysics Data System (ADS)

    Yelkenci, Seda; Aktar, Mustafa

    2013-04-01

    Investigation of the wave propagation around the Marmara Sea, in particular for the city of Istanbul is critical because this target area is identified as one of the megacities with the highest seismic risk in the world. This study makes an attempt for creating an integrated 3D seismic/geologic model and precise understanding of 3-D wave propagation in the city of Istanbul. The approach is based on generating synthetic seismograms using realistic velocity structures as well as accurate location, focal mechanism and source parameters of reference earthquakes. The modarate size reference earthquakes occured in the Marmara Sea and were recorded by the National Seismic Network of Turkey as well as the network of Istanbul Early Warning and Rapid Response System. The seismograms are simulated by means of a 3-D finite difference method operated on parallel processing environment. In the content of creating a robust velocity model; 1D velocity models which are derived fom previous crustal studies of Marmara region such as refraction seismic and receiver functions have been conducted firstly for depths greater than 1km. Velocity structure in shallower part of the study region is then derived from recent geophysical and geotechnical surveys. To construct 3-D model from the obtained 1-D model data, a variety of interpolation methods are considered. According to the observations on amplitude and arrival time based on comparison of simulated seismograms, the considered velocity model is refined the way that S delay times are compensated. Another important task of this work is an application of the finite difference method to estimate three-dimensional seismic responses for a specified basin structure including soft sediments with low shear velocities in respect of the surrounded area in the Asian part of Istanbul. The analysis performed both in the time and frequency domain, helps in understanding of the comprehensive wave propagation characteristics and the distribution of

  6. The role of 3D plating system in mandibular fractures: A prospective study

    PubMed Central

    Prasad, Rajendra; Thangavelu, Kavin; John, Reena

    2013-01-01

    Aim: The aim of our study was to evaluate the advantages and disadvantages of 3D plating system in the treatment of mandibular fractures. Patients and Methods: 20 mandibular fractures in 18 patients at various anatomic locations and were treated by open reduction and internal fixation using 3D plates. All patients were followed at regular intervals of 4th, 8th and 12th weeks respectively. Patients were assessed post-operatively for lingual splay and occlusal stability. The incidence of neurosensory deficit, infection, masticatory difficulty, non-union, malunion was also assessed. Results: A significant reduction in lingual splay (72.2%) and occlusal stability (72.2%) was seen. The overall complication rate was (16.6%) which included two patients who developed post-operative paresthesia of lip, three patients had infection and two cases of masticatory difficulty which later subsided by higher antibiotics and 4 weeks of MMF. No evidence of non-union, malunion was noted. Conclusion: A single 3D 2 mm miniplate with 2 mm × 8 mm screws is a reliable and an effective treatment modality for mandibular fracture. PMID:23946559

  7. Intracranial Catheter for Integrated 3D Ultrasound Imaging & Hyperthermia: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin Frinkley; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Dixon-Tulloch, Ellen; Shih, Timothy; Hsu, Stephen J.; Smith, Stephen W.

    2009-04-01

    In this study, we investigated the feasibility of an intracranial catheter transducer capable of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. We designed and constructed a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements, on a 0.2 mm pitch, with a total aperture size of 8.4 mm×2.3 mm. This array achieved a 3.5° C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.

  8. A 3d particle simulation code for heavy ion fusion accelerator studies

    SciTech Connect

    Friedman, A.; Bangerter, R.O.; Callahan, D.A.; Grote, D.P.; Langdon, A.B. ); Haber, I. )

    1990-06-08

    We describe WARP, a new particle-in-cell code being developed and optimized for ion beam studies in true geometry. We seek to model transport around bends, axial compression with strong focusing, multiple beamlet interaction, and other inherently 3d processes that affect emittance growth. Constraints imposed by memory and running time are severe. Thus, we employ only two 3d field arrays ({rho} and {phi}), and difference {phi} directly on each particle to get E, rather than interpolating E from three meshes; use of a single 3d array is feasible. A new method for PIC simulation of bent beams follows the beam particles in a family of rotated laboratory frames, thus straightening'' the bends. We are also incorporating an envelope calculation, an (r, z) model, and 1d (axial) model within WARP. The BASIS development and run-time system is used, providing a powerful interactive environment in which the user has access to all variables in the code database. 10 refs., 3 figs.

  9. Heritability of Face Shape in Twins: A Preliminary Study using 3D Stereophotogrammetry and Geometric Morphometrics

    PubMed Central

    Weinberg, Seth M.; Parsons, Trish E.; Marazita, Mary L.; Maher, Brion S.

    2014-01-01

    Introduction Previous research suggests that aspects of facial surface morphology are heritable. Traditionally, heritability studies have used a limited set of linear distances to quantify facial morphology and often employ statistical methods poorly designed to deal with biological shape. In this preliminary report, we use a combination of 3D photogrammetry and landmark-based morphometrics to explore which aspects of face shape show the strongest evidence of heritability in a sample of twins. Methods 3D surface images were obtained from 21 twin pairs (10 monozygotic, 11 same-sex dizygotic). Thirteen 3D landmarks were collected from each facial surface and their coordinates subjected to geometric morphometric analysis. This involved superimposing the individual landmark configurations and then subjecting the resulting shape coordinates to a principal components analysis. The resulting PC scores were then used to calculate rough narrow-sense heritability estimates. Results Three principal components displayed evidence of moderate to high heritability and were associated with variation in the breadth of orbital and nasal structures, upper lip height and projection, and the vertical and forward projection of the root of the nose due to variation in the position of nasion. Conclusions Aspects of facial shape, primarily related to variation in length and breadth of central midfacial structures, were shown to demonstrate evidence of strong heritability. An improved understanding of which facial features are under strong genetic control is an important step in the identification of specific genes that underlie normal facial variation. PMID:24501696

  10. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    SciTech Connect

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  11. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    NASA Astrophysics Data System (ADS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  12. 3D numerical simulation on fluid flow and heat transfer characteristics in multistage heat exchanger with slit fins

    NASA Astrophysics Data System (ADS)

    Tao, W. Q.; Cheng, Y. P.; Lee, T. S.

    2007-11-01

    In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit fins respectively, with a three-dimensional laminar conjugated model. The tubes are arranged in a staggered way, and heat conduction in fins is considered. In order to save the computer resource and speed up the numerical simulation, the numerical modeling is carried out stage by stage. In order to avoid the large pressure drop penalty in enhancing heat transfer, a slit fin is presented with the strip arrangement of “front coarse and rear dense” along the flow direction. The numerical simulation shows that, compared to the plain plate fin heat exchanger, the increase in the heat transfer in the slit fin heat exchanger is higher than that of the pressure drop, which proves the excellent performance of this slit fin. The fluid flow and heat transfer performance along the stages is also provided.

  13. Comparison of 2D and 3D Numerical Models with Experiments of Tsunami Flow through a Built Environment

    NASA Astrophysics Data System (ADS)

    LeVeque, R. J.; Motley, M. R.

    2015-12-01

    A series of tsunami wave basin experiments of flow through a scale model of Seaside, Oregon have been used as validation data for a 2015 benchmarking workshop hosted by the National Tsunami Mitigation Program, which focused on better understanding the ability of tsunami models to predict flow velocities and inundation depths following a coastal inundation event. As researchers begin to assess the safety of coastal infrastructures, proper assessment of tsunami-induced forces on coastal structures is critical. Hydrodynamic forces on these structures are fundamentally proportional to the local momentum flux of the fluid, and experimental data included momentum flux measurements at many instrumented gauge locations. The GeoClaw tsunami model, which solves the two-dimensional shallow water equations, was compared against other codes during the benchmarking workshop, and more recently a three-dimensional computational fluid dynamics model using the open-source OpenFOAM software has been developed and results from this model are being compared with both the experimental data and the 2D GeoClaw results. In addition, the 3D model allows for computation of fluid forces on the faces of structures, permitting an investigation of the common use of momentum flux as a proxy for these forces. This work aims to assess the potential to apply these momentum flux predictions locally within the model to determine tsunami-induced forces on critical structures. Difficulties in working with these data sets and cross-model comparisons will be discussed. Ultimately, application of the more computationally efficient GeoClaw model, informed by the 3D OpenFOAM models, to predict forces on structures at the community scale can be expected to improve the safety and resilience of coastal communities.

  14. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  15. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-d numerical modeling approach.

    PubMed

    Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant

    2014-09-16

    Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well. PMID:25144442

  16. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    SciTech Connect

    Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the

  17. Random Telegraph Signal Amplitudes in Sub 100 nm (Decanano) MOSFETs: A 3D 'Atomistic' Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    2000-01-01

    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observed a significant increase in the maximum RTS amplitude when discrete random dopants are employed in the simulations.

  18. Monte Carlo generators for studies of the 3D structure of the nucleon

    SciTech Connect

    Avakian, Harut; D'Alesio, U.; Murgia, F.

    2015-01-23

    In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.

  19. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Sternai, Pietro; Jolivet, Laurent; Guillou-Frottier, Laurent; Gerya, Taras

    2016-05-01

    Interactions between subduction dynamics and magma genesis have been intensely investigated, resulting in several conceptual models derived from geological, geochemical and geophysical data. To provide physico-chemical constraints on these conceptual models, self-consistent numerical simulations containing testable thermo-mechanical parameters are required, especially considering the three-dimensional (3D) natural complexity of subduction systems. Here, we use a 3D high-resolution petrological and thermo-mechanical numerical model to quantify the relative contribution of oceanic and continental subduction/collision, slab roll-back and tearing to magma genesis and transport processes. Our modeling results suggest that the space and time distribution and composition of magmas in the overriding plate is controlled by the 3D slab dynamics and related asthenospheric flow. Moreover, the decrease of the bulk lithospheric strength induced by mantle- and crust-derived magmas promotes the propagation of strike-slip and extensional fault zones through the overriding crust as response to slab roll-back and continental collision. Reduction of the lithosphere/asthenosphere rheological contrast by lithospheric weakening also favors the transmission of velocities from the flowing mantle to the crust. Similarities between our modeling results and the late Cenozoic tectonic and magmatic evolution across the eastern Mediterranean region suggest an efficient control of mantle flow on the magmatic activity in this region, which in turn promotes lithospheric deformation by mantle drag via melt-induced weakening effects.

  20. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. Methods: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. Results: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Conclusion: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs. PMID:25038809

  1. Improved 1D model for calculating hydraulic properties in meandering rivers: Comparisons with measurements and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Haji Mohammadi, M.; Kang, S.; Sotiropoulos, F.

    2011-12-01

    It is well-known that meander bends impose local losses of energy to the flow in rivers. These local losses should be added together with friction loss to get the total loss of energy. In this work, we strive to develop a framework that considers the effect of bends in meandering rivers for one-dimensional (1-D) homogenous equations of flow. Our objective is to develop a simple, yet physically sound, and efficient model for carrying out engineering computations of flow through meander bends. We consider several approaches for calculating 1-D hydraulic properties of meandering rivers such as friction factor and Manning coefficient. The method of Kasper et al. (2005), which is based on channel top width, aspect ratio and radius of curvature, is adopted for further calculations. In this method, a correction is implemented in terms of local energy loss, due to helical motion and secondary currents of fluid particles driven by centrifugal force, in meanders. To validate the model, several test cases are simulated and the computed results are compared with the reported data in the literature in terms of water surface elevation, shear velocity, etc. For all cases the computed results are in reasonable agreement with the experimental data. 3-D RANS turbulent flow simulations are also carried out, using the method of Kang et al. (Adv. In Water Res., vol. 34, 2011), for different geometrical parameters of Kinoshita Rivers to determine the spatial distribution of shear stress on river bed and banks, which is the key factor in scour/deposition patterns. The 3-D solutions are then cross-sectionally averaged and compared with the respective solutions from the 1-D model. The comparisons show that the improved 1D model, which incorporates the effect of local bend loss, captures key flow parameters with reasonable accuracy. Our results also underscore the range of validity and limitations of 1D models for meander bend simulations. This work was supported by NSF Grants (as part of

  2. Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes

    NASA Astrophysics Data System (ADS)

    Erlekampf, J.; Seebeck, J.; Savva, P.; Meissner, E.; Friedrich, J.; Alt, N. S. A.; Schlücker, E.; Frey, L.

    2014-10-01

    A numerical analysis of an ammonothermal synthesis process for the bulk growth of nitride crystals was performed. The analysis includes the development of a thermal model for a lab-scale ammonothermal autoclave, which was validated by in situ temperature measurements and applied to tailor the temperature field inside the autoclave. Based on the results of the global thermal 2D simulations, a local 3D model was used to include convective phenomena in the analysis. Moreover, the influence of the baffle and different baffle shapes on the flow velocity was investigated. Fluctuations of the temperature as well as the flow velocities occur, indicating that 3D considerations are essential to accurately investigate the heat and mass transport in ammonothermal systems.

  3. Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.

    2016-06-01

    Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  4. Automated 3D ultrasound elastography of the breast: a phantom validation study

    NASA Astrophysics Data System (ADS)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  5. CRISPR/Cas9 genome editing throws descriptive 3-D genome folding studies for a loop.

    PubMed

    Beagan, Jonathan A; Phillips-Cremins, Jennifer E

    2016-07-01

    CRISPR/Cas9 genome editing studies have recently shed new light into the causal link between the linear DNA sequence and 3-D chromatin architecture. Here we describe current models for the folding of genomes into a nested hierarchy of higher-order structures and discuss new insights into the organizing principles governing genome folding at each length scale. WIREs Syst Biol Med 2016, 8:286-299. doi: 10.1002/wsbm.1338 For further resources related to this article, please visit the WIREs website. PMID:27265842

  6. Simulation studies of defect textures and dynamics in 3-d cholesteric droplets

    NASA Astrophysics Data System (ADS)

    Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Selinger, Robin

    2010-03-01

    We model defect texture evolution in droplets of cholesteric liquid crystals by solving for the dynamics of the nematic director field. In order to accommodate defects in the simulated texture, we use a finite difference formulation that is explicitly independent of sign reversal of the director at any position in the sample. Textures are visualized using either the Berreman 4x4 matrix method or by mapping free energy density. We study both planar and focal conic cholesteric textures in 3-d spherical and cylindrical droplets, with the goal to optimize device geometries for bistable display applications.

  7. Simulation studies of dynamics and defect textures in 3-d cholesteric droplets

    NASA Astrophysics Data System (ADS)

    Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Selinger, Robin

    2010-04-01

    We model defect texture evolution in droplets of cholesteric liquid crystals by solving for the dynamics of the nematic director field. In order to accommodate defects in the simulated texture, we use a finite difference formulation that is explicitly independent of sign reversal of the director at any position in the sample. Textures are visualized using either the Berreman 4x4 matrix method or by mapping free energy density. We study both planar and focal conic cholesteric textures in 3-d spherical and cylindrical droplets, with the goal to optimize device geometries for bistable display applications.

  8. Automated 3D ultrasound elastography of the breast: a phantom validation study.

    PubMed

    Hendriks, Gijs A G M; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H G; de Korte, Chris L

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s(-1)) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D

  9. Constructing three-dimensional (3D) nanocrystalline models of Li4SiO4 for numerical modeling and simulation.

    PubMed

    Shen, Yanhong; Gao, Tao; Tian, Xiaofeng; Chen, Xiaojun; Xiao, ChengJian; Lu, Tiecheng

    2015-01-01

    The three-dimensional (3D) nanocrystalline models of lithium silicates with the log-normal grain size distribution are constructed by constrained Voronoi tessellation. During evolution process, the algorithm is improved. We proposed a new algorithm idea by combining Genetic Algorithm (GA) with Least Square (LS) method to make up for the disadvantages of traditional genetic algorithm which may be easily trapped in local optimal solution. In the process of modeling, it is the first time, to the best of our knowledge, that we keep the whole sample showing the charge neutrality by deleting the excess atoms on the polyhedron boundary during the modeling. By using the molecular-dynamics method, the relaxation procedure of nanostructured Li4SiO4 is carried out. The results show that the average mass density of the sample is slightly lower than the experimental data of the perfect crystal after relaxation process. In addition, boundary component proportion (BCP) and density reduction proportion (DRP) of the sample is obtained, respectively. The present results display a significantly reduced BCP but an increased DRP when increasing the mean grain size of the sample. PMID:26031562

  10. Constructing three-dimensional (3D) nanocrystalline models of Li4SiO4 for numerical modeling and simulation

    PubMed Central

    Shen, Yanhong; Gao, Tao; Tian, Xiaofeng; Chen, Xiaojun; Xiao, ChengJian; Lu, Tiecheng

    2015-01-01

    The three-dimensional (3D) nanocrystalline models of lithium silicates with the log-normal grain size distribution are constructed by constrained Voronoi tessellation. During evolution process, the algorithm is improved. We proposed a new algorithm idea by combining Genetic Algorithm (GA) with Least Square (LS) method to make up for the disadvantages of traditional genetic algorithm which may be easily trapped in local optimal solution. In the process of modeling, it is the first time, to the best of our knowledge, that we keep the whole sample showing the charge neutrality by deleting the excess atoms on the polyhedron boundary during the modeling. By using the molecular-dynamics method, the relaxation procedure of nanostructured Li4SiO4 is carried out. The results show that the average mass density of the sample is slightly lower than the experimental data of the perfect crystal after relaxation process. In addition, boundary component proportion (BCP) and density reduction proportion (DRP) of the sample is obtained, respectively. The present results display a significantly reduced BCP but an increased DRP when increasing the mean grain size of the sample. PMID:26031562

  11. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.

    PubMed

    Cook, Colin A; Huri, Pinar Y; Ginn, Brian P; Gilbert-Honick, Jordana; Somers, Sarah M; Temple, Joshua P; Mao, Hai-Quan; Grayson, Warren L

    2016-08-01

    In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a

  12. 3D elastic full waveform inversion: case study from a land seismic survey

    NASA Astrophysics Data System (ADS)

    Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon

    2016-04-01

    Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.

  13. Fluid flow pathways study from the 3D seismic data offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, L.; Chi, W. C.; Chiang, H. T.; Lin, S.

    2014-12-01

    3D seismic reflection data provide detailed information on the physical properties of the crust, which can be used for hydrocarbon exploration. Recently, scientists from Taiwan and Germany are collaborating on a project to use a portable 3D seismic system, called P-Cable, to study gas hydrates offshore southwest Taiwan. We have collected 3 cubes, covering the active and passive margins. At these three sites, there is a wide-spread bottom-simulating reflector (BSR). We use the BSR to study the shallow thermal structures of these prospect sites, and use the temperature field information to study fluid migration patterns. We have also done in-situ heat flow measurements, and found similar results, showing focused fluid flow migrations in some pathways. Some of the high temperature fields also correlate with gas chimneys found through seismic attribute analyses. Preliminary results show that there might be active fluid migration above the BSR in the gas hydrate stability zone. In September and October of 2014, we will collect additional P-Cable datasets to be incorporated into this study. Such results will be used to evaluate some proposed sites for future drilling programs.

  14. Influence of critical current density on magnetic force of HTSC bulk above PMR with 3D-modeling numerical solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Qin, Yujie

    2015-09-01

    Numerical simulations of thermo-electromagnetic properties of a high temperature superconducting (HTS) bulk levitating over a permanent magnetic guideway (PMG) are performed by resorting to the quasistatic approximation of the H-method coupling with the classical description of the heat conduction equation. The numerical resolving codes are practiced with the help of the finite element program generation system (FEPG) platform using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of HTS bulk. The simulation results show that the heat conduction and the critical current density are tightly relative to the thermal effects of the HTS bulk over the PMG. The heat intensity which responds to the heat loss of the HTS bulk is mainly distributed at the two bottom-corners of the bulk sample.

  15. Self-assembly of ABC triblock copolymers under 3D soft confinement: a Monte Carlo study.

    PubMed

    Yan, Nan; Zhu, Yutian; Jiang, Wei

    2016-01-21

    Under three-dimensional (3D) soft confinement, block copolymers can self-assemble into unique nanostructures that cannot be fabricated in an un-confined space. Linear ABC triblock copolymers containing three chemically distinct polymer blocks possess relatively complex chain architecture, which can be a promising candidate for the 3D confined self-assembly. In the current study, the Monte Carlo technique was applied in a lattice model to study the self-assembly of ABC triblock copolymers under 3D soft confinement, which corresponds to the self-assembly of block copolymers confined in emulsion droplets. We demonstrated how to create various nanostructures by tuning the symmetry of ABC triblock copolymers, the incompatibilities between different block types, and solvent properties. Besides common pupa-like and bud-like nanostructures, our simulations predicted various unique self-assembled nanostructures, including a striped-pattern nanoparticle with intertwined A-cages and C-cages, a pyramid-like nanoparticle with four Janus B-C lamellae adhered onto its four surfaces, an ellipsoidal nanoparticle with a dumbbell-like A-core and two Janus B-C lamellae and a Janus B-C ring surrounding the A-core, a spherical nanoparticle with a A-core and a helical Janus B-C stripe around the A-core, a cubic nanoparticle with a cube-shape A-core and six Janus B-C lamellae adhered onto the surfaces of the A-cube, and a spherical nanoparticle with helical A, B and C structures, from the 3D confined self-assembly of ABC triblock copolymers. Moreover, the formation mechanisms of some typical nanostructures were also examined by the variations of the contact numbers with time and a series of snapshots at different Monte Carlo times. It is found that ABC triblock copolymers usually aggregate into a loose aggregate at first, and then the microphase separation between A, B and C blocks occurs, resulting in the formation of various nanostructures. PMID:26571300

  16. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    PubMed

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  17. Mechanisms of clay smear formation in 3D - a field study

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven

    2016-04-01

    Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears

  18. 3D CFDTD PIC Simulation Study on Low-Frequency Oscillations in a Gyrotron

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Smithe, D. N.

    2011-10-01

    Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. However, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a magnetron injection gun (MIG) of a high average power gyrotron. Employing a highly parallelized computation, the model can be simulated in time domain more realistically. LFOs have been obtained in a 3D time domain simulation for the first time. From our preliminary simulation studies, it is found that not only magnetic compression profile but initial velocity or velocity ratio play an important role in the operation of a MIG electron gun. In addition, the secondary emission effects on the LFOs are also studied. Detailed results will be presented. Work supported by the U.S. Department of Energy under Grant No. DE-SC0004436.

  19. Image informatics for studying signal transduction in cells interacting with 3D matrices

    NASA Astrophysics Data System (ADS)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  20. 3D QSAR and docking study of gliptin derivatives as DPP-IV inhibitors.

    PubMed

    Agrawal, Ritesh; Jain, Pratima; Dikshit, Subodh Narayan; Bahare, Radhe Shyam

    2013-05-01

    The article describes the development of a robust pharmacophore model and the investigation of structure activity relationship analysis of 46 xanthine derivatives reported for DPP-IV inhibition using PHASE module of Schrodinger software. The present works also encompasses molecular interaction of 46 xanthine ligand through maestro 8.5 software. The QSAR study comprises AHHR.7 pharmacophore hypothesis, which elaborates the three points, e.g. one hydrogen bond acceptor (A), two hydrophobic rings (H) and one aromatic ring (R). The discrete geometries as pharmacophoric feature were developed and the generated pharmacophore model was used to derive a predictive atom-based 3D QSAR model for the studied data set. The obtained 3D QSAR model has an excellent correlation coefficient value (r(2)= 0.9995) along with good statistical significance which is indicated by high Fisher ratio (F= 8537.4). The model also exhibits good predictive power confirmed by the high value of cross validated correlation coefficient (q(2) = 0.6919). The QSAR model suggests that hydrophobic character is crucial for the DPP-IV inhibitory activity exhibited by these compounds and inclusion of hydrophobic substituents will enhance the DPP-IV inhibition. In addition to the hydrophobic character, electron withdrawing groups positively contribute to the DPP-IV inhibition potency. The findings of the QSAR study provide a set of guidelines for designing compounds with better DPP-IV inhibitory potency. PMID:23305140

  1. Reduction of Breast Density Following Tamoxifen Treatment Evaluated by 3-D MRI: Preliminary Study

    PubMed Central

    Chen, Jeon-Hor; Chang, Yeun-Chung; Chang, Daniel; Wang, Yi-Ting; Nie, Ke; Chang, Ruey-Feng; Nalcioglu, Orhan; Huang, Chiun-Sheng; Su, Min-Ying

    2010-01-01

    This study analyzed the change of breast density in women receiving tamoxifen treatment using 3-D MRI. Sixteen women were studied. Each woman received breast MRI before and after tamoxifen. The breast and the fibroglandular tissue were segmented using a computer-assisted algorithm, based on T1-weighted images. The fibroglandular tissue volume (FV) and breast volume (BV) were measured and the ratio was calculated as the percent breast density (%BD). The changes in breast volume (ΔBV), fibroglandular tissue volume (ΔFV), and percent density (Δ%BD) between two MRI studies were analyzed and correlated with treatment duration and baseline breast density. The ΔFV showed a reduction in all 16 women. The Δ%BD showed a mean reduction of 5.8%. The reduction of FV was significantly correlated with baseline FV (P<0.001) and treatment duration (P=0.03). The percentage change in FV was correlated with duration (P=0.049). The reduction in %BD was positively correlated with baseline %BD (p=0.02). Women with higher baseline %BD showed more reduction of %BD. 3D MRI may be useful for the measurement of the small changes of ΔFV and Δ%BD after tamoxifen. These changes can potentially be used to correlate with the future reduction of cancer risk. PMID:20832226

  2. The interpretation of magnetic anomalies by 3D inversion: A case study from Central Iran

    NASA Astrophysics Data System (ADS)

    Tavakoli, M.; Nejati Kalateh, A.; Ghomi, S.

    2016-03-01

    The thick sedimentary units in Central Iran contain structures that form oil traps and are underlain by a basaltic layer which is amenable for study using its magnetic susceptibility. The study and modeling of such sedimentary structures provide valuable exploratory information. In this study, we locate and interpret an underground magnetic susceptibility interface using 3D non-linear inverse modeling of magnetic data to make a better judgment in the context of hydrocarbon existence. The 3D structure is reconstructed by making it equal to a number of side by side rectangular hexahedrons or prisms and calculating their thicknesses such that the bottoms of the prisms are corresponding to the magnetic susceptibility interface. By one of the most important mathematical tool in computational science, Taylor series, the non-linear problem changes to a linear problem near to initial model. In many inverse problems, we often need to invert large size matrices. To find the inverse of these matrices we use Singular Value Decomposition (SVD) method. The algorithm by an iterative method comparing model response with actual data will modify the initial guess of model parameters. The efficiency of the method and subprograms, programmed in MATLAB, has been shown by inverse modeling of free noise and noise-contaminated synthetic data. Finally, we inverted magnetic field data from Garmsar area in Central Iran which the results were acceptable.

  3. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    PubMed Central

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-01-01

    Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

  4. How Plates Pull Transforms Apart: 3-D Numerical Models of Oceanic Transform Fault Response to Changes in Plate Motion Direction

    NASA Astrophysics Data System (ADS)

    Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.

    2015-12-01

    Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.

  5. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  6. INS3D - NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL GENERALIZED CURVILINEAR COORDINATES (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Kwak, D.

    1994-01-01

    INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far

  7. 2D and 3D-QSAR studies on antiproliferative thiazolidine analogs

    NASA Astrophysics Data System (ADS)

    Liao, Si Yan; Qian, Li; Chen, Jin Can; Lu, Hai Liang; Zheng, Kang Cheng

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationships (QSARs) of 22 thiazolidine analogs with antiproliferative activity expressed as pIC50, which is defined as the negative value of the logarithm of necessary molar concentration of these compounds to cause 50% growth inhibition against melanoma cell lines WM-164, have been studied by using a combined method of the DFT, MM2 and statistics for 2D, as well as the comparative molecular field analysis (CoMFA) method for 3D. The established 2D-QSAR model in training set comprised of random 18 compounds shows not only significant statistical quality, but also predictive ability, with the square of adjusted correlation coefficient (R2A = 0.832) and the square of the cross-validation coefficient (q2 = 0.803). The same model was further applied to predict pIC50 values of the four compounds in the test set, and the resulting R2pred reaching 0.784, further confirms that this 2D-QSAR model has high predictive ability. The 3D-QSAR model also shows good correlative and predictive capabilities in terms of R2 (0.956) and q2 (0.615) obtained from CoMFA model. Further, the robustness of the CoMFA model was verified by bootstrapping analysis (100 runs) with R2bs (0.979) and SDbs (0.056). It is very interesting to find that the results from 2D- and 3D-QSAR analyses accord with each other, and they all show that the steric interaction plays a crucial role in determining the cytotoxicities of the compounds, and that selecting a moderate-size or appropriate-hydrophobicity substituent R as well as increasing the negative charges of C4 on phenyl ring at the same time are advantageous to improving the cytotoxicity. Such results can offer some useful theoretical references for directing the molecular design and understanding the action mechanism of this kind of compound with antiproliferative activity.

  8. 3D QSAR studies of hydroxylated polychlorinated biphenyls as potential xenoestrogens.

    PubMed

    Ruiz, Patricia; Ingale, Kundan; Wheeler, John S; Mumtaz, Moiz

    2016-02-01

    Mono-hydroxylated polychlorinated biphenyls (OH-PCBs) are found in human biological samples and lack of data on their potential estrogenic activity has been a source of concern. We have extended our previous in silico 2D QSAR study through the application of advance techniques such as docking and 3D QSAR to gain insights into their estrogen receptor (ERα) binding. The results support our earlier findings that the hydroxyl group is the most important feature on the compounds; its position, orientation and surroundings in the structure are influential for the binding of OH-PCBs to ERα. This study has also revealed the following additional interactions that influence estrogenicity of these chemicals (a) the aromatic interactions of the biphenyl moieties with the receptor, (b) hydrogen bonding interactions of the p-hydroxyl group with key amino acids ARG394 and GLU353, (c) low or no electronegative substitution at para-positions of the p-hydroxyl group, (d) enhanced electrostatic interactions at the meta position on the B ring, and (e) co-planarity of the hydroxyl group on the A ring. In combination the 2D and 3D QSAR approaches have led us to the support conclusion that the hydroxyl group is the most important feature on the OH-PCB influencing the binding to estrogen receptors, and have enhanced our understanding of the mechanistic details of estrogenicity of this class of chemicals. Such in silico computational methods could serve as useful tools in risk assessment of chemicals. PMID:26598992

  9. 3-D LTCC microfluidic device as a tool for studying nanoprecipitation

    NASA Astrophysics Data System (ADS)

    Schianti, J. N.; Cerize, N. P. N.; Oliveira, A. M.; Derenzo, S.; Góngora-Rubio, M. R.

    2013-03-01

    Nanoparticles have been used to improve the properties of many cosmetic products, mainly the sunscreens materials using nanoencapsulation or nanosuspensions, improving the contact with active molecules, enhancing the sun protection effect and facilitating formulations in industrial products. Microfluidic devices offer an important possibility in producing nanoparticles in a simple way, in one step bottom up technique, continuum process with low polidispersivity, low consumption of reagents and additives. In this work, we microfabricated a 3-D LTCC microfluidic device to study the nanoprecipitation of Benzophenone-3, used as a sunscreen in pharmaceutical products. It was observed that some parameters influence the particle size related to the total fluid flow on device, the ratio between phases, and the Benzophenone-3 initial concentration. The influence of applied voltages on particle sizes was tested also. For the processing, a high voltage was applied in a Kovar tube inserted in the 3D device. The use of microfluidic device resulted in particles with 100 up to 800 nm of size, with polispersivity index below 0.3 and offering an interesting way to obtain nanoparticles. These studies are still ongoing, but early results indicate the possibility of obtaining B-3 nanostructured material.

  10. The study of craniofacial growth patterns using 3D laser scanning and geometric morphometrics

    NASA Astrophysics Data System (ADS)

    Friess, Martin

    2006-02-01

    Throughout childhood, braincase and face grow at different rates and therefore exhibit variable proportions and positions relative to each other. Our understanding of the direction and magnitude of these growth patterns is crucial for many ergonomic applications and can be improved by advanced 3D morphometrics. The purpose of this study is to investigate this known growth allometry using 3D imaging techniques. The geometry of the head and face of 840 children, aged 2 to 19, was captured with a laser surface scanner and analyzed statistically. From each scan, 18 landmarks were extracted and registered using General Procrustes Analysis (GPA). GPA eliminates unwanted variation due to position, orientation and scale by applying a least-squares superimposition algorithm to individual landmark configurations. This approach provides the necessary normalization for the study of differences in size, shape, and their interaction (allometry). The results show that throughout adolescence, boys and girls follow a different growth trajectory, leading to marked differences not only in size but also in shape, most notably in relative proportions of the braincase. These differences can be observed during early childhood, but become most noticeable after the age of 13 years, when craniofacial growth in girls slows down significantly, whereas growth in boys continues for at least 3 more years.

  11. Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists

    NASA Astrophysics Data System (ADS)

    Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua

    2013-08-01

    The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.

  12. Geometry-based vs. intensity-based medical image registration: A comparative study on 3D CT data.

    PubMed

    Savva, Antonis D; Economopoulos, Theodore L; Matsopoulos, George K

    2016-02-01

    Spatial alignment of Computed Tomography (CT) data sets is often required in numerous medical applications and it is usually achieved by applying conventional exhaustive registration techniques, which are mainly based on the intensity of the subject data sets. Those techniques consider the full range of data points composing the data, thus negatively affecting the required processing time. Alternatively, alignment can be performed using the correspondence of extracted data points from both sets. Moreover, various geometrical characteristics of those data points can be used, instead of their chromatic properties, for uniquely characterizing each point, by forming a specific geometrical descriptor. This paper presents a comparative study reviewing variations of geometry-based, descriptor-oriented registration techniques, as well as conventional, exhaustive, intensity-based methods for aligning three-dimensional (3D) CT data pairs. In this context, three general image registration frameworks were examined: a geometry-based methodology featuring three distinct geometrical descriptors, an intensity-based methodology using three different similarity metrics, as well as the commonly used Iterative Closest Point algorithm. All techniques were applied on a total of thirty 3D CT data pairs with both known and unknown initial spatial differences. After an extensive qualitative and quantitative assessment, it was concluded that the proposed geometry-based registration framework performed similarly to the examined exhaustive registration techniques. In addition, geometry-based methods dramatically improved processing time over conventional exhaustive registration. PMID:26771247

  13. Study of the tsunamigenic rupture process of the 2011 Tohoku earthquake using a 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Romano, Fabrizio; Trasatti, Elisa; Lorito, Stefano; Piromallo, Claudia; Piatanesi, Alessio; Cocco, Massimo; Murphy, Shane; Tonini, Roberto; Volpe, Manuela; Brizuela, Beatriz

    2016-04-01

    The study of the 2011 Tohoku earthquake revealed some new aspects in the rupture process of a megathrust event. Indeed, despite its magnitude Mw 9.0, this earthquake was characterized by a spatially limited rupture area and, contrary to the common view that the shallow portion of the subduction interface mainly experiences aseismic slip, the seismic rupture propagated onto the Japan trench with very large slip (> 50 m). Starting from slip distributions obtained by joint inversion of tsunami and geodetic data, we discuss the sensitivity of the tsunami impact predictions to the complexity of the modelling strategy. We use numerical tools ranging from a homogeneous half-space dislocation model (considering only vertical sea-floor displacement and tsunami propagation in the linear shallow-water approximation) to the more complex 3D-FEM model (with heterogeneous elastic parameters derived from 3D seismic tomography), including horizontal displacement and non-hydrostatic dispersive tsunami modeling. This research is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)

  14. 3D-FE study on deformation behaviors in cold pilgering of high strength TA18 titanium alloy tube

    NASA Astrophysics Data System (ADS)

    Li, Heng; Shi, Kaipeng; Yang, He

    2013-05-01

    Regarding stress/strain changing tendencies and material flow trajectories, the deformation behaviors of high strength TA18 titanium alloy tube in whole tube cold pilgering are numerically studied. Under ABAQUS/Explicit platform, 3D elastic-plastic FE model is established and validated by the law of energy conservation. Key modeling technologies are solved, such as geometry definition of variable cross-section rollers and parabola-shape mandrel, coordinate movement of tools and elimination of excessively distorted meshes. The main results show that: 1) During the whole process, 3D stresses fluctuate between tension and compression. In the instantaneous deformation zone, radial stress keeps constant along thickness. In the roller flange area, hoop and axial stresses on inner surface are larger than which on outside surface, while opposite in the roller groove bottom. (2) During the whole tube cold pilgering, Compressive radial and hoop strains decrease while tensile axial strain increases. In the instantaneous deformation zone, hoop strain keeps constant along thickness, while radial and axial strains on inner surface are slightly larger than which on outside surface. 3) With preform tube deformed into final tube, tube materials move forward along the helix trajectories, and it can be concluded that tube elongation increases linearly.

  15. Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study

    SciTech Connect

    Gerassimenko, M.

    2000-03-01

    We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.

  16. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    NASA Astrophysics Data System (ADS)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  17. Conformal 3D planned radiotherapy for pelvic lymphoceles following surgery for urological cancer: A case study

    PubMed Central

    Janssen, Stefan; Käsmann, Lukas; Cegla, Robert; Rades, Dirk

    2016-01-01

    The aim of the present study was to evaluate the outcome and toxicity of 3D conformal radiotherapy (RT) for persistent lymphoceles following surgery for urological cancer. A total of 6 patients with bladder (n=1) and prostate cancer (n=5), with persistent lymphoceles following surgery for a primary tumor were treated with total doses of 10–12 Gy (1 Gy single dose) after computed tomography (CT) based 3D planning in order to suspend secretion. No acute or chronic toxicities were observed. In 5 patients, secretion of lymph fluid resolved after RT and in 1 patient RT had no effect. After a mean follow-up of 21 months (range, 5–47 months), no patient suffered from any symptoms concerning his former lymphoceles. This is the first analysis, to the best of our knowledge, to evaluate a homogenous patient collective of urological cancer patients with persistent lymphoceles after surgery for the initial tumor. RT to lymphoceles in urological cancer patient is effective, very well-tolerated and should be offered to patients with persistent secretion following drainage.

  18. Reliability and validity of the tritrac-R3D accelerometer during backpacking: a case study.

    PubMed

    DeVoe, D; Dalleck, L

    2001-08-01

    This study investigated the utility of the Tritrac-R3D accelerometer as a reliable and valid instrument in the quantification of physical activity while backpacking in the field and to evaluate heart-rate responses and oxygen consumption to assess the feasibility of using the Tritrac-R3D to estimate caloric expenditure. Two 7-day backpacking expeditions were conducted in two consecutive years by a single subject at Grand Canyon National Park, Arizona. The average hiking heart rate ranged front 60% to 77% HRmax during the expeditions. The average rate of estimated caloric cost ranged from 6.8 to 11.7 kcals x min.(-1) (equivalent to 408 to 702 kcals x hr.(-1)), indicating a relatively moderate to high level of exertion. The Tritrac had adequate consistency and reliability in the field between the two expeditions in recorded activity counts. The Tritrac underestimated caloric expenditure during backpacking with changes in terrain, and hiking speed contributed to even greater disparity in accuracy. PMID:11693704

  19. A biofidelic 3D culture model to study the development of brain cellular systems.

    PubMed

    Ren, M; Du, C; Herrero Acero, E; Tang-Schomer, M D; Özkucur, N

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  20. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

    PubMed

    Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco

    2015-06-01

    The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications. PMID:25294368

  1. Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Farassat, F.

    1998-01-01

    In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.

  2. A biofidelic 3D culture model to study the development of brain cellular systems

    PubMed Central

    Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  3. A small animal image guided irradiation system study using 3D dosimeters

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Admovics, John; Wuu, Cheng-Shie

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  4. A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.

    2013-12-01

    The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a

  5. Numerical Simulation of Boiling Two-Phase Flow in Tight-Lattice Rod Bundle by 3-Dimensional Two-Fluid Model Code ACE-3D

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.

  6. Immersed boundary Eulerian-Lagrangian 3D simulation of pyroclastic density currents: numerical scheme and experimental validation

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico Maria; de Tullio, Marco; Pascazio, Giuseppe; Dellino, Pierfrancesco

    2010-05-01

    Pyroclastic density currents are ground hugging, hot, gas-particle flows representing the most hazardous events of explosive volcanism. Their impact on structures is a function of dynamic pressure, which expresses the lateral load that such currents exert over buildings. In this paper we show how analog experiments can be matched with numerical simulations for capturing the essential physics of the multiphase flow. We used an immersed boundary scheme for the mesh generation, which helped in reconstructing the steep velocity and particle concentration gradients near the ground surface. Results show that the calculated values of dynamic pressure agree reasonably with the experimental measurements. These outcomes encourage future application of our method for the assessment of the impact of pyroclastic density currents at the natural scale.

  7. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  8. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study

    PubMed Central

    Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  9. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study.

    PubMed

    Nomura, Kosuke; Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  10. Are There Side Effects to Watching 3D Movies? A Prospective Crossover Observational Study on Visually Induced Motion Sickness

    PubMed Central

    Solimini, Angelo G.

    2013-01-01

    Background The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. Methods and Findings A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Conclusions Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators. PMID:23418530

  11. Biological evaluation and 3D-QSAR studies of curcumin analogues as aldehyde dehydrogenase 1 inhibitors.

    PubMed

    Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi

    2014-01-01

    Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor. PMID:24840575

  12. Theoretical and Experimental Study of Bacterial Colony Growth in 3D

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian; Mugler, Andrew; Nemenman, Ilya

    2014-03-01

    Bacterial cells growing in liquid culture have been well studied and modeled. However, in nature, bacteria often grow as biofilms or colonies in physically structured habitats. A comprehensive model for population growth in such conditions has not yet been developed. Based on the well-established theory for bacterial growth in liquid culture, we develop a model for colony growth in 3D in which a homogeneous colony of cells locally consume a diffusing nutrient. We predict that colony growth is initially exponential, as in liquid culture, but quickly slows to sub-exponential after nutrient is locally depleted. This prediction is consistent with our experiments performed with E. coli in soft agar. Our model provides a baseline to which studies of complex growth process, such as such as spatially and phenotypically heterogeneous colonies, must be compared.

  13. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  14. Transport of iron oxide nanoparticles in saturated porous media: a large-scale 3D study

    NASA Astrophysics Data System (ADS)

    Velimirovic, Milica; Schmid, Doris; Micić, Vesna; Miyajima, Kumiko; Klaas, Norbert; Braun, Jürgen; Bosch, Julian; Meckenstock, Rainer; von der Kammer, Frank; Hofmann, Thilo

    2016-04-01

    Iron oxide nanoparticles (FeOxNp) have a high potential as electron acceptor for in situ microbial oxidation of a wide range of recalcitrant groundwater contaminants (Bosch et al., 2010). Tosco et al. (2012) reported on high colloidal stability of FeOxNp dispersed in water, their low deposition behavior, and consequently improved transport in column experiments compared to extensively studied zerovalent iron nanoparticles. However, determination of FeOxNp transport behavior at the field-relevant conditions has not been done before. The present work is aimed to evaluate different complementary methods for detection, quantification and transport characterization of FeOxNp in a large-scale three-dimensional (3D) model aquifer. Prior to that, batch-scale experiments were performed in order to elucidate the potential of the selected methods for direct and indirect characterization and detection of FeOxNp. Direct methods included measurements of particle size distribution, particle concentration, Fetot content and turbidity of the FeOxNp suspension. Indirect methods included measurements of particle zeta potential, as well as TOC content and pH of the FeOxNp suspension. The results of the batch experiments indicated that the most suitable approach for detecting and quantifying FeOxNp was measuring Fetot content and suspension turbidity, as well as particle size determined using dynamic light scattering principle. These complementary methods were further applied in a large-scale 3D study containing medium and coarse sand in order to 1) assess the transport of FeOxNp in saturated porous medium during injection (VFeOx = 6 m3, cparticle = 20 g/L, Qinj = 0.7 m3/h), and 2) illustrate their spatial distribution after injection. The outcomes of the large-scale 3D study confirmed that FeOxNp transport can be successfully investigated applying complementary methods. Monitoring data including Fetot content, turbidity and particle size showed the transport of particles towards the

  15. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  16. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  17. Influence of pre-existing basement faults on the structural evolution of the Zagros Simply Folded belt: 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Gerya, Taras

    2015-04-01

    The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.

  18. 3-D study of texture and elastic anisotropy on rocks from NW Italy Ivrea zone

    NASA Astrophysics Data System (ADS)

    Pros, Z.; Lokajicek, T.; Prikryl, R.; Klima, K.; Nikitin, A. N.; Ivankina, T. I.; Martinkova, M.

    2003-04-01

    The direct measurement of physical properties of lower crustal and upper mantle rocks, which can be found on the Earth's surface, could be used for the improving of our knowledge of deep rocks. These results could be used mainly for the correction of geological and geophysical models based on the indirect data. Elastic properties of rocks are one of the most important parameters studied and could be applied in many fields of Earth sciences. In this study several quite different methods were applied to determine elastic properties. P-wave ultrasonic sounding of mafic and ultrabasic rock samples in 132 independent directions at several levels of confining pressure enable to determine elastic anisotropy of P-wave velocity. The samples were collected in nearby of Balmuccia ultra basic massif (Ivrea zone, southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetric (orthorhombic vs. transversal isotropic) of elastic waves 3-D distribution, that has not been found on these rocks before. Identical samples were studied by means of neutron diffraction. Neutron diffraction provide data on CPO orientation in identical spherical samples, on which was measured P-wave velocity. Laboratory 3-D measurement of P-wave velocity thus present powerful method for detection of magmatic fabric features not visible by naked eye. One dunite sample exhibits P-wave velocity approaching to that of olivine crystal 9.8 km/s due to the strong CPO of olivine in this sample. Such observation was not done before on the natural olivine-rich rocks. It follows from the comparison of measured and calculated P-wave velocities, that these values are more reliable than data obtained from measurement in few directions only. This project was supported by Grant Agency of the Czech Republic No.: 205/01/1430.

  19. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.

    PubMed

    Emura, M; Aufderheide, M

    2016-05-01

    Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis. PMID:26951634

  20. 3D models as a platform for urban analysis and studies on human perception of space

    NASA Astrophysics Data System (ADS)

    Fisher-Gewirtzman, D.

    2012-10-01

    The objective of this work is to develop an integrated visual analysis and modelling for environmental and urban systems in respect to interior space layout and functionality. This work involves interdisciplinary research efforts that focus primarily on architecture design discipline, yet incorporates experts from other and different disciplines, such as Geoinformatics, computer sciences and environment-behavior studies. This work integrates an advanced Spatial Openness Index (SOI) model within realistic geovisualized Geographical Information System (GIS) environment and assessment using subjective residents' evaluation. The advanced SOI model measures the volume of visible space at any required view point practically, for every room or function. This model enables accurate 3D simulation of the built environment regarding built structure and surrounding vegetation. This paper demonstrates the work on a case study. A 3D model of Neve-Shaanan neighbourhood in Haifa was developed. Students that live in this neighbourhood had participated in this research. Their apartments were modelled in details and inserted into a general model, representing topography and the volumes of buildings. The visual space for each room in every apartment was documented and measured and at the same time the students were asked to answer questions regarding their perception of space and view from their residence. The results of this research work had shown potential contribution to professional users, such as researchers, designers and city planners. This model can be easily used by professionals and by non-professionals such as city dwellers, contractors and developers. This work continues with additional case studies having different building typologies and functions variety, using virtual reality tools.

  1. Study on basic problems in real-time 3D holographic display

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Liu, Juan; Wang, Yongtian; Pan, Yijie; Li, Xin

    2013-05-01

    In recent years, real-time three-dimensional (3D) holographic display has attracted more and more attentions. Since a holographic display can entirely reconstruct the wavefront of an actual 3D scene, it can provide all the depth cues for human eye's observation and perception, and it is believed to be the most promising technology for future 3D display. However, there are several unsolved basic problems for realizing large-size real-time 3D holographic display with a wide field of view. For examples, commercial pixelated spatial light modulators (SLM) always lead to zero-order intensity distortion; 3D holographic display needs a huge number of sampling points for the actual objects or scenes, resulting in enormous computational time; The size and the viewing zone of the reconstructed 3D optical image are limited by the space bandwidth product of the SLM; Noise from the coherent light source as well as from the system severely degrades the quality of the 3D image; and so on. Our work is focused on these basic problems, and some initial results are presented, including a technique derived theoretically and verified experimentally to eliminate the zero-order beam caused by a pixelated phase-only SLM; a method to enlarge the reconstructed 3D image and shorten the reconstruction distance using a concave reflecting mirror; and several algorithms to speed up the calculation of computer generated holograms (CGH) for the display.

  2. Numerical Studies of Topological phases

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott

    The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30

  3. Adding a radial dimension to the assessment of esophagogastric junction relaxation: validation studies of the 3D-eSleeve

    PubMed Central

    Pandolfino, John E.; Lin, Zhiyue; Xiao, Yinglian; Escobar, Gabriela; Kahrilas, Peter J.

    2012-01-01

    High-resolution manometry (HRM) with esophageal pressure topography (EPT) allowed for the establishment of an objective quantitative measurement of esophagogastric junction (EGJ) relaxation, the integrated relaxation pressure (IRP). This study assessed whether or not a novel 3D-HRM assembly could improve on this measurement. Twenty-five normal subjects were studied with both a standard HRM assembly and a novel hybrid assembly (3D-HRM), including a 9.0 cm 3D-HRM segment composed of 96 radially dispersed independent pressure sensors. The standard IRP was computed using each assembly and compared with a novel paradigm, the 3D-IRP, an analysis premised on finding the axial maximum and radial minimum pressure at each sensor ring along the sleeve segment. Fourteen additional subjects underwent barium swallows with 3D-HRM and concurrent videofluoroscopy to compare the electronic sleeve (eSleeve) paradigm (circumferential average) to the 3D eSleeve paradigm (radial minimum) as a predictor of transphincteric flow. The 3D-IRP was significantly less than all other calculations of IRP with the upper limit of normal being 12 mmHg vs. 17 mmHg for the standard IRP. The sensitivity (0.78) and the specificity (0.88) of the 3D-eSleeve were also better than the standard eSleeve (0.55 and 0.85, respectively) for predicting flow permissive time verified fluoroscopically. The 3D-IRP and 3D-eSleeve calculated using the radial pressure minimum lowered the normative range of EGJ relaxation (upper limit of normal 12 mmHg) and yielded intraluminal pressure gradients that better correlated with bolus flow than did analysis paradigms based on circumferentially averaged pressure. PMID:22628033

  4. Adding a radial dimension to the assessment of esophagogastric junction relaxation: validation studies of the 3D-eSleeve.

    PubMed

    Nicodème, Frédéric; Pandolfino, John E; Lin, Zhiyue; Xiao, Yinglian; Escobar, Gabriela; Kahrilas, Peter J

    2012-08-01

    High-resolution manometry (HRM) with esophageal pressure topography (EPT) allowed for the establishment of an objective quantitative measurement of esophagogastric junction (EGJ) relaxation, the integrated relaxation pressure (IRP). This study assessed whether or not a novel 3D-HRM assembly could improve on this measurement. Twenty-five normal subjects were studied with both a standard HRM assembly and a novel hybrid assembly (3D-HRM), including a 9.0 cm 3D-HRM segment composed of 96 radially dispersed independent pressure sensors. The standard IRP was computed using each assembly and compared with a novel paradigm, the 3D-IRP, an analysis premised on finding the axial maximum and radial minimum pressure at each sensor ring along the sleeve segment. Fourteen additional subjects underwent barium swallows with 3D-HRM and concurrent videofluoroscopy to compare the electronic sleeve (eSleeve) paradigm (circumferential average) to the 3D eSleeve paradigm (radial minimum) as a predictor of transphincteric flow. The 3D-IRP was significantly less than all other calculations of IRP with the upper limit of normal being 12 mmHg vs. 17 mmHg for the standard IRP. The sensitivity (0.78) and the specificity (0.88) of the 3D-eSleeve were also better than the standard eSleeve (0.55 and 0.85, respectively) for predicting flow permissive time verified fluoroscopically. The 3D-IRP and 3D-eSleeve calculated using the radial pressure minimum lowered the normative range of EGJ relaxation (upper limit of normal 12 mmHg) and yielded intraluminal pressure gradients that better correlated with bolus flow than did analysis paradigms based on circumferentially averaged pressure. PMID:22628033

  5. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements. PMID:22051087

  6. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-01

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  7. ALARA pre-job studies using the VISIPLAN 3D ALARA planning tool.

    PubMed

    Vermeersch, Fernand

    2005-01-01

    The optimisation of the radiation protection for the workers in nuclear industry is an important part of the safety culture. The application of the ALARA concept (to keep exposures as low as reasonably achievable) is not always straightforward as it is influenced by the site geometry, source distribution and work organisation. A good ALARA pre-job study must therefore be performed and should contain predicted doses for the different suggested work scenarios and provide a quantitative basis to select between various alternative work scenarios for a specific operation. In order to handle this information, SCK-CEN developed the VISIPLAN 3D ALARA planning tool. The tool makes it possible to evaluate the dose due to external gamma exposure based on the simulation of work scenarios taking into account worker positions and subsequent geometry and source distribution changes in a three-dimensional environment. PMID:16381732

  8. An isostatic study of the Karoo basin and underlying lithosphere in 3-D

    NASA Astrophysics Data System (ADS)

    Scheiber-Enslin, Stephanie E.; Ebbing, Jörg; Webb, Susan J.

    2016-08-01

    A 3-D density model of the crust and upper mantle beneath the Karoo basin is presented here. The model is constrained using potential field, borehole and seismic data. Uplift of the basin by the end of the Cretaceous has resulted in an unusually high plateau (>1000 m) covering a large portion of South Africa. Isostatic studies show the topography is largely compensated by changes in Moho depths (˜35 km on-craton and >45 km off-craton) and changes in lithospheric mantle densities between the Kaapvaal Craton and surrounding regions (˜50 kg m-3 increase from on- to off-craton). This density contrast is determined by inverted satellite gravity and gravity gradient data. The highest topography along the edge of the plateau (>1200 m) and a strong Bouguer gravity low over Lesotho, however, can only be explained by a buoyant asthenosphere with a density decrease of around 40 kg m-3.

  9. 3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects

    NASA Astrophysics Data System (ADS)

    Matsakos, T.; Chièze, J.-P.; Stehlé, C.; González, M.; Ibgui, L.; de Sá, L.; Lanz, T.; Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.

    2014-08-01

    The structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas due to the plasma confinement within flux tubes. The corresponding emission is smooth and fully distinguishable from the case of a weak magnetic field (~tenths of Gauss) where the hot slab demonstrates chaotic motion and oscillates periodically.

  10. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    SciTech Connect

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  11. 3-D crustal velocity model for Lithuania and its application to local event studies

    NASA Astrophysics Data System (ADS)

    Budraitis, M.; Kozlovskaya, E.; Janutyte, I.; Motuza, G.

    2009-12-01

    PASSEQ 2006-2008 project (PASsive Seismic Experiment in TESZ) aimed at studying the lithosphere-asthenosphere system around the TransEuropean Suture Zone (TESZ)- the transition between old Proterozoic platform of north and east Europe and younger Phanerozoic platform in central and western Europe. The experiment was a seismic array research aiming to retrieve the structure of the crust and Earth's mantle down to the mantle transition zone, including mapping of upper mantle seismic velocity variations and discontinuities (Moho, lithosphere-asthenosphere boundary, mantle transition zone) using all available techniques. During the experiment 26 seismic stations (including four broadband stations) were installed in Lithuania and operated since June, 2006 till January, 2008. One of the main reasons of PASSEQ deployment in Lithuania is identification and characterisation of the local seismic activity. During the data acquisition period a number of local seismic events was identified and preliminary event location was made using LocSat and VELEST algorithms and 1-D velocity models. These standard procedures is not enough precise for Lithuania, however, because the thickness of the crust varies significantly in the region (from 45 to 55 km). Another problem was low quality of S-wave arrivals due to thick (up to 2 km) sediments in most part of Lithuania. In order to improve event location, we compiled a 3-D seismic velocity model of the crust down to a depth of 60 km. The model, consisting of four major layers (sediments, upper crust, middle crust, lower crust and uppermost mantle) was interpolated from 2-D velocity models along previous wide-angle reflection and refraction profiles into a regular grid. The quality of the approximation was analysed using comparison of travel times of P-waves recorded by controlled source experiments and calculated travel times through the 3-D velocity model. The model was converted into a density model using a special procedure, in which

  12. 3D-QSAR and 3D-QSSR studies of thieno[2,3-d]pyrimidin-4-yl hydrazone analogues as CDK4 inhibitors by CoMFA analysis

    PubMed Central

    Cai, Bao-qin; Jin, Hai-xiao; Yan, Xiao-jun; Zhu, Peng; Hu, Gui-xiang

    2014-01-01

    Aim: To investigate the structural basis underlying potency and selectivity of a series of novel analogues of thieno[2,3-d]pyrimidin-4-yl hydrazones as cyclin-dependent kinase 4 (CDK4) inhibitors and to use this information for drug design strategies. Methods: Three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis (CoMFA) were conducted on a training set of 48 compounds. Partial least squares (PLS) analysis was employed. External validation was performed with a test set of 9 compounds. Results: The obtained 3D-QSAR model (q2=0.724, r2=0.965, r2pred=0.945) and 3D-QSSR model (q2=0.742, r2=0.923, r2pred=0.863) were robust and predictive. Contour maps with good compatibility to active binding sites provided insight into the potentially important structural features required to enhance activity and selectivity. The contour maps indicated that bulky groups at R1 position could potentially enhance CDK4 inhibitory activity, whereas bulky groups at R3 position have the opposite effect. Appropriate incorporation of bulky electropositive groups at R4 position is favorable and could improve both potency and selectivity to CDK4. Conclusion: These two models provide useful information to guide drug design strategies aimed at obtaining potent and selective CDK4 inhibitors. PMID:24122012

  13. 3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.

    NASA Astrophysics Data System (ADS)

    Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung

    2016-04-01

    Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.

  14. A systematic study of neutral and charged 3d-metal trioxides and tetraoxides

    NASA Astrophysics Data System (ADS)

    Pradhan, Kalpataru; Gutsev, Gennady L.; Weatherford, Charles A.; Jena, Purusottam

    2011-04-01

    Using density functional theory with generalized gradient approximation, we have performed a systematic study of the structure and properties of neutral and charged trioxides (MO3) and tetraoxides (MO4) of the 3d-metal atoms. The results of our calculations revealed a number of interesting features when moving along the 3d-metal series. (1) Geometrical configurations of the lowest total energy states of neutral and charged trioxides and tetraoxides are composed of oxo and/or peroxo groups, except for CuO3- and ZnO3- which possess a superoxo group, CuO4+ and ZnO4+ which possess two superoxo groups, and CuO3+, ZnO3+, and ZnO4- which possess an ozonide group. While peroxo groups are found in the early and late transition metals, all oxygen atoms bind chemically to the metal atom in the middle of the series. (2) Attachment or detachment of an electron to/from an oxide often leads to a change in the geometry. In some cases, two dissociatively attached oxygen atoms combine and form a peroxo group or a peroxo group transforms into a superoxo group and vice versa. (3) The adiabatic electron affinity of as many as two trioxides (VO3 and CoO3) and four tetraoxides (TiO4, CrO4, MnO4, and FeO4) are larger than the electron affinity of halogen atoms. All these oxides are hence superhalogens although only VO3 and MnO4 satisfy the general superhalogen formula.

  15. A systematic study of neutral and charged 3d-metal trioxides and tetraoxides.

    PubMed

    Pradhan, Kalpataru; Gutsev, Gennady L; Weatherford, Charles A; Jena, Purusottam

    2011-04-14

    Using density functional theory with generalized gradient approximation, we have performed a systematic study of the structure and properties of neutral and charged trioxides (MO(3)) and tetraoxides (MO(4)) of the 3d-metal atoms. The results of our calculations revealed a number of interesting features when moving along the 3d-metal series. (1) Geometrical configurations of the lowest total energy states of neutral and charged trioxides and tetraoxides are composed of oxo and∕or peroxo groups, except for CuO(3)(-) and ZnO(3)(-) which possess a superoxo group, CuO(4)(+) and ZnO(4)(+) which possess two superoxo groups, and CuO(3)(+), ZnO(3)(+), and ZnO(4)(-) which possess an ozonide group. While peroxo groups are found in the early and late transition metals, all oxygen atoms bind chemically to the metal atom in the middle of the series. (2) Attachment or detachment of an electron to∕from an oxide often leads to a change in the geometry. In some cases, two dissociatively attached oxygen atoms combine and form a peroxo group or a peroxo group transforms into a superoxo group and vice versa. (3) The adiabatic electron affinity of as many as two trioxides (VO(3) and CoO(3)) and four tetraoxides (TiO(4), CrO(4), MnO(4), and FeO(4)) are larger than the electron affinity of halogen atoms. All these oxides are hence superhalogens although only VO(3) and MnO(4) satisfy the general superhalogen formula. PMID:21495753

  16. 3D QSAR studies on substituted benzimidazole derivatives as angiotensin II-AT1 receptor antagonist.

    PubMed

    Vyas, Vivek K; Ghate, Manjunath; Chintha, Chetan; Patel, Paresh

    2013-09-01

    This study investigated 3D quantitative structure-activity relationships (QSAR) for a range of substituted benzimidazole derivatives as AngII-AT1 receptor antagonists by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The alignment strategy was used for these compounds by means of Distill function defined in SYBYL X 1.2. The best CoMFA and CoMSIA models were obtained for the training set compounds was statistically significant with leave-one-out (LOO) validation correlation coefficient (q²) of 0.613 and 0.622, cross validated coefficient (r²cv) of 0.617 and 0.607, respectively and conventional coefficient (r²ncv) of 0.886 and 0.859, respectively. Both the models were validated by a test set of 18 compounds giving satisfactory predicted correlation coefficient (r²pred) of 0.714 and 0.549 for CoMFA and CoMSIA models, respectively. Generated 3D QSAR models were used for the prediction of pIC50 of an external dataset of 10 compounds for predictive validation, which gave conventional r² of 0.893 for CoMFA model, and 0.774 for CoMSIA model. We identified some key features in substituted benzimidazole derivatives, such as the importance of lipophilicity and H-bonding at 2- and 5, 6, 7- position of benzimidazole ring, respectively, for good antagonistic activity. CoMFA and CoMSIA models generated in this work provide useful information for the design of new compounds and helped in prediction of antagonistic activity. PMID:24010938

  17. Study of City Landscape Heritage Using Lidar Data and 3d-City Models

    NASA Astrophysics Data System (ADS)

    Rubinowicz, P.; Czynska, K.

    2015-04-01

    In contemporary town planning protection of urban landscape is a significant issue. It regards especially those cities, where urban structures are the result of ages of evolution and layering of historical development process. Specific panoramas and other strategic views with historic city dominants can be an important part of the cultural heritage and genius loci. Other hand, protection of such expositions introduces limitations for future based city development. Digital Earth observation techniques creates new possibilities for more accurate urban studies, monitoring of urbanization processes and measuring of city landscape parameters. The paper examines possibilities of application of Lidar data and digital 3D-city models for: a) evaluation of strategic city views, b) mapping landscape absorption limits, and c) determination protection zones, where the urbanization and buildings height should be limited. In reference to this goal, the paper introduces a method of computational analysis of the city landscape called Visual Protection Surface (VPS). The method allows to emulate a virtual surface above the city including protection of a selected strategic views. The surface defines maximum height of buildings in such a way, that no new facility can be seen in any of selected views. The research includes also analyses of the quality of simulations according the form and precision of the input data: airborne Lidar / DSM model and more advanced 3D-city models (incl. semantic of the geometry, like in CityGML format). The outcome can be a support for professional planning of tall building development. Application of VPS method have been prepared by a computer program developed by the authors (C++). Simulations were carried out on an example of the city of Dresden.

  18. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    PubMed Central

    2010-01-01

    Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to

  19. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.

    PubMed

    Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M

    2015-03-01

    There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. PMID:25448267

  20. Detailed numerical simulation of shock-body interaction in 3D multicomponent flow using the RKDG numerical method and ”DiamondTorre” GPU algorithm of implementation

    NASA Astrophysics Data System (ADS)

    Korneev, Boris; Levchenko, Vadim

    2016-02-01

    Interaction between a shock wave and an inhomogeneity in fluid has complicated behavior, including vortex and turbulence generating, mixing, shock wave scattering and reflection. In the present paper we deal with the numerical simulation of the considered process. The Euler equations of unsteady inviscid compressible three-dimensional flow are used into the four-equation model of multicomponent flow. These equations are discretized using the RKDG numerical method. It is implemented with the help of the DiamondTorre algorithm, so the effective GPGPU solver is obtained having outstanding computing properties. With its use we carry out several sets of numerical experiments of shock-bubble interaction problem. The bubble deformation and mixture formation is observed.

  1. Study on the Construction and Application of 3D Geographic Information Services for the Smart City

    NASA Astrophysics Data System (ADS)

    Mao, W.-Q.

    2014-04-01

    Smart City, whose main characteristics are intelligence and interconnection capability, has become an important goal of some cities' development. This paper, based on urban three-dimensional geographic information characteristics, analyses 3D geographic information requirements in the Smart City construction and development process, proposes construction and management methods for 3D geographic information. Furthermore, this paper takes Shanghai Geographic Information Public Service Platform as an example, discusses 3D geographic information application in multiple fields, and proves that it is an effective ways to promote Intelligent City construction.

  2. 3D phase micro-object studies by means of digital holographic tomography supported by algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Bilski, B. J.; Jozwicka, A.; Kujawinska, M.

    2007-09-01

    Constant development of microelements' technology requires a creation of new instruments to determine their basic physical parameters in 3D. The most efficient non-destructive method providing 3D information is tomography. In this paper we present Digital Holographic Tomography (DHT), in which input data is provided by means of Di-git- al Holography (DH). The main advantage of DH is the capability to capture several projections with a single hologram [1]. However, these projections have uneven angular distribution and their number is significantly limited. Therefore - Algebraic Reconstruction Technique (ART), where a few phase projections may be sufficient for proper 3D phase reconstruction, is implemented. The error analysis of the method and its additional limitations due to shape and dimensions of investigated object are presented. Finally, the results of ART application to DHT method are also presented on data reconstructed from numerically generated hologram of a multimode fibre.