Numerical study on 3D composite morphing actuators
NASA Astrophysics Data System (ADS)
Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru
2015-04-01
There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.
Impact of 3D root uptake on solute transport: a numerical study
NASA Astrophysics Data System (ADS)
Schröder, N.; Javaux, M.; Vanderborght, J.; Steffen, B.; Vereecken, H.
2011-12-01
Plant transpiration is an important component of the hydrological cycle. Through root water uptake, plants do not only affect the 3D soil water flow velocity distribution, but also solute movement in soil. This numerical study aims at investigating how solute fate is impacted by root uptake using the 3D biophysical model R-SWMS (Javaux et al., 2008). This model solves the Richards equation in 3D in the soil and the flow equation within the plant root xylem vessels. Furthermore, for solute transport simulations, the 3D particle tracker PARTRACE (Bechtold et al., 2011) was used. . We generated 3D virtual steady-state breakthrough curves (BTC) experiments in soils with transpiring plants. The averaged BTCs were then fitted with a 1D numerical flow model under steady-state conditions to obtain apparent CDE parameters. Two types of root architecture, a fibrous and a taprooted structure, were compared in virtual 3D experiments. The solute uptake type or the transpiration rate were also modified and we analyzed how these parameters affected apparent disperisivity and velocity profiles. Our simulation results show, that both, apparent velocity and dispersivity length are affected by water and solute root uptake. In addition, under high exclusion processes (slight or no active uptake), solute accumulates around roots and generates a long tailing to the breakthrough curves, which cannot be reproduced by 1D models that simulate root water uptake with solute exclusion. This observation may have an important impact on how to model pollutant mass transfer to groundwater at larger scales. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115. Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, P.A. Ferre, and H. Vereecken. 2011. Near-surface solute redistribution during evaporation. Submitted to Geophys. Res. Lett
A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms.
Zhao, Jia; Shen, Ya; Haapasalo, Markus; Wang, Zhejun; Wang, Qi
2016-03-07
We develop a 3D hydrodynamic model to investigate the mechanism of antimicrobial persistence in a multi-species oral biofilm and its recovery after being treated by bisbiguanide chlorhexidine gluconate (CHX). In addition to the hydrodynamic transport in the spatially heterogeneous biofilm, the model also includes mechanisms of solvent-biomass interaction, bacterial phenotype conversion, and bacteria-drug interaction. A numerical solver for the model is developed using a second order numerical scheme in 3D space and time and implemented on GPUs for high-performance computing. The model is calibrated against a set of experimental data obtained using confocal laser scan microscopy (CLSM) on multi-species oral biofilms, where a quantitative agreement is reached. Our numerical results reveal that quorum sensing molecules and growth factors in this model are instrumental in biofilm formation and recovery after the antimicrobial treatment. In particular, we show that (i) young biofilms are more susceptible to the antimicrobial treatment than the mature ones, (ii) this phenomenon is strongly correlated with volume fractions of the persister and EPS in the biofilm being treated. This suggests that antimicrobial treatment should be best administered to biofilms earlier before they mature to produce a thick protective EPS layer. In addition, the numerical study also indicates that an antimicrobial effect can be achieved should a proper mechanism be devised to minimize the conversion of susceptible bacteria to persisters during and even after the treatment.
Numerical and experimental study of gas flows in 2D and 3D microchannels
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Chihyung; Alexeenko, Alina; Sullivan, John
2008-02-01
In the experiments conducted at Purdue, the air flow in rectangular cross-section microchannels was investigated using pressure sensitive paint. The high resolution pressure measurements were obtained for inlet-to-outlet pressure ratios from 1.76 to 20 with the outlet Knudsen numbers in the range from 0.003 to 0.4 based on the hydraulic diameter of 151.7 µm and the length-to-height ratio of about 50. In the slip flow regime, the air flow was simulated by the 2D and 3D Navier-Stokes equations with no-slip and slip boundary conditions. For various pressure ratios, the entrance flow development, compressibility and rarefaction effects were observed in both experiments and numerical simulations. It was found that the accurate modeling of gas flows in finite-length channels requires the inlet and outlet reservoirs to be included in computations. Effects of entrance geometry on the friction factor were studied for 3D cases. In both experiments and numerical modeling, significant pressure drop was found starting at the inlet chamber. The numerical modeling also predicted an apparent temperature drop at the channel exit.
3D Numerical Study of the Shear Rheology of a Semi-dilute Viscoelastic Suspension
NASA Astrophysics Data System (ADS)
Yang, Mengfei; Krishnan, Sreenath; Shaqfeh, Eric
2016-11-01
The stress in suspensions of rigid particles in polymer solutions is of considerable interest in applications such as manufacturing processes and fracturing technologies. Deriving an analytic expression for the material functions of a viscoelastic suspension under shear is difficult due to the nonlinear particle-fluid and particle-particle interactions, and theoretical studies have been limited to dilute suspensions at low shear Weissenberg number (Wi) or low polymer concentrations. Previously, we performed 3D single-particle simulations and showed that the results agreed well with the existing theories in the appropriate parameter regimes. We found that suspensions in constant-viscosity elastic fluids shear-thicken over a range of Wi and their material properties plateau at higher Wi. However, discrepancies between simulation and existing experimental measurements for volume fractions as low as 2.5% suggested that interparticle hydrodynamic interactions could not be neglected. We now present 3D high fidelity numerical simulations of multiple spheres freely suspended in a sheared viscoelastic fluid using an immersed boundary framework to study the relationship between hydrodynamic interactions, particle structure formation, and the bulk rheology of viscoelastic suspensions. We observe that in a non-shear thinning elastic fluid, particles do not "chain", but their interactions induce additional polymer stresses in the fluid which contribute to a stronger particle effect than predicted in the dilute limit.
NASA Astrophysics Data System (ADS)
Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei
2016-11-01
An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.
Compressive Behavior of 3D Woven Composite Stiffened Panels: Experimental and Numerical Study
NASA Astrophysics Data System (ADS)
Zhou, Guangming; Pan, Ruqin; Li, Chao; Cai, Deng'an; Wang, Xiaopei
2016-10-01
The structural behavior and damage propagation of 3D woven composite stiffened panels with different woven patterns under axial-compression are here investigated. The panel is 2.5D interlock woven composites (2.5DIWC), while the straight-stiffeners are 3D woven orthogonal composites (3DWOC). They are coupled together with the Z-fibers from the stiffener passing straight thought the thickness of the panel. A "T-shape" model, in which the fiber bundle structure and resin matrix are drawn out to simulate the real situation of the connection area, is established to predict elastic constants and strength of the connection region. Based on Hashin failure criterion, a progressive damage model is carried out to simulate the compressive behavior of the stiffened panel. The 3D woven composite stiffened panels are manufactured using RTM process and then tested. A good agreement between experimental results and numerical predicted values for the compressive failure load is obtained. From initial damage to final collapse, the panel and stiffeners will not separate each other in the connection region. The main failure mode of 3D woven composite stiffened panels is compressive failure of fiber near the loading end corner.
Zig-Zag Thermal-Chemical 3-D Instabilities in the Mantle Wedge: Numerical Study
NASA Astrophysics Data System (ADS)
Zhu, G.; Gerya, T. V.; Arcay, D.; Yuen, D. A.
2008-12-01
To understand the plume initiation and propagation it is important to understand whether small-scale convection is occurring under the back-arc in the Low Viscosity Wedge(LVW) and its implication on the island-arc volcanism. Honda et al. [Honda and Saito, 2003; Honda, et al., 2007]) already deployed small- scale convection in the Low Viscosity Wedge (LVW) above a subducting slab with kinematically imposed velocity boundary condition. They have suggested that a roll (finger)-like pattern of hot and cold anomalies emerges in the mantle wedge above the subducting slab. Here, we perform three-dimensional coupled petrological-thermomechanical numerical simulations of intraoceanic one-sided subduction with spontaneously bending retreating slab characterized by weak hydrated upper interface by using multigrid approach combined with characteristics-based marker-in-cell method with conservative finite difference schemes[Gerya and Yuen, 2003a], to investigate the 3D instabilities above the slab and lateral variation along the arc. Our results show that water released from subducting slab through dehydration reactions may lower the viscosity of the mantle. It allows the existence of wave-like small-scale convection in the LVW, which is shown as roll-like structure in 2D petrological-thermomechanical numerical experiments [Gorczyk et al., 2006] using in-situ rock properties computed on the basis of Gibbs free energy minimization. However, in our 3D cases, the rolls aligning with the arc mainly occur earlier , while zig-zag small-scale thermal-chemical instabilities may episodically form above the slab at later stages, which is different from the aligning finger-like pattern in purely thermal models (Honda et al,2003;2007). Also in contrast to thermal convection chemically buoyant hydrated plumes rising from the slab in our models are actually colder then the mantle wedge [Gerya and Yuen 2003b] which also strongly modify both the convection pattern and the seismic structure in
An experimental and numerical study of 3-D braided structural textile composites
Abusafieh, A.; Kalidindi, S.R.; Franco, E.
1994-12-31
It has been reported in literature that isostrain models (also known as Fabric Geometry Models) provide good predictions of the elastic moduli of three-dimensional textile composites. This study reports a critical evaluation of the accuracy of the isostrain models by comparing the predictions against experimental measurements as well as finite element simulations of representative unit cells of the 3-D braided composites, over a range of braid angles and volume fractions. The accuracy of the isostrain model is found to be highly sensitive to the braid angles and the fraction of lay-in axial fibers in the composite system. Good correlations between isostrain model predictions of elastic moduli and measurements were observed when the loading direction is oriented along one of the fiber directions and is significantly away from the other fiber systems in the unit cell. In other situations, however, the isostrain model predictions were in significant errors. This study also reports on the influence of various modeling parameters in the development of finite element models for the simulation of the 3-D textile composite unit cells.
Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.
2016-01-01
We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.
Goldberg, K.A. |; Tejnil, E.; Bokor, J. |
1995-12-01
A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.
A 3D Numerical Study of Gravitational Instabilities in Young Circumbinary Disks
NASA Astrophysics Data System (ADS)
Cai, Kai; Michael, Scott; Durisen, Richard
2013-07-01
Gravitational instabilities (GIs) in protoplanetary disks have been suggested as one of the major formation mechanisms of giant planets. Theoretical and computational studies have indicated that certain family of GIs can be excited in a circumbinary disk, which could lead to enhanced protoplanet formation (e.g., Sellwood & Lin 1989, Boss 2006). We have carried out a 3D simulation of a gravitationally unstable circumbinary disk around a young Sun-like star and a 0.02-Msun companion, both inside the central hole of the disk. Here we present a preliminary comparison between this simulation and a similarly simulated circumstellar disk around a solar-mass star but without the low-mass companion. The GIs stimulated by the binary and those that arise spontaneously are quite different in structure and strength. However, no fragmentation is observed, even after many orbital periods as measured in the outer disk.
3D Numerical Study of Typical CME Event: The 2010-04-03 Event
NASA Astrophysics Data System (ADS)
Zhou, Y.; Feng, X. S.; Zhao, X.
2014-12-01
The coronal mass ejection (CME) event on April 3, 2010 is the first fast CME observed by STEREO SECCHI/HI for the full Sun-Earth line. Such an event provides us a good opportunity to study the propagation and evolution of CME from the Sun up to 1 AU. In this paper, we study the time-dependent evolution and propagation of this event from the Sun to Earth using the 3D SIP-CESE MHD model. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We find that the results can successfully reproduce the observations in the STEREO A/B COR1 and COR2 field of view and generate many basic structures of the in situ measurement: such as the similar curves of the plasma density and velocity, an increase in the magnetic field magnitude, the large-scale smooth magnetic field rotation and prolonged southward IMF (a well known source of magnetic storms). The MHD model gives the shock arrival time at Earth with an error of ˜ 1.5 hours. Finally, we analyze in detail the propagation velocity, the spread angle, the trajectory of CME. The speed of the CME rapidly increases from near the Sun, then decreases due to interaction with the solar wind ambient. The spread angle of the CME quickly increases due to lateral material expansion by the pressure gradients within the realistic solar wind background, then the expansion decreases with distance and ends until a pressure equilibrium is established. We also study the CME deflection and find that the CME almost does not deflects in the latitudinal and longitudinal direction during its propagation from the Sun to 1 AU.
Numerical study of 3-D inducer and impeller for pump model development
NASA Astrophysics Data System (ADS)
Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.
1993-07-01
Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.
Numerical study of 3-D inducer and impeller for pump model development
NASA Technical Reports Server (NTRS)
Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.
1993-01-01
Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.
3D numerical study of tumor microenvironmental flow in response to vascular-disrupting treatments.
Wu, Jie; Cai, Yan; Xu, Shixiong; Longs, Quan; Ding, Zurong; Dong, Cheng
2012-06-01
The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three groups, and disrupting vessels of lower maturity could effectively enhance fluid transport across vasculature into interstitial space.
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study
Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris
2017-01-01
In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study.
Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris
2017-02-24
In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head's liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts' quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation.
The numerical study of the cavitation-structure interaction around 3D flexible hydrofoil
NASA Astrophysics Data System (ADS)
Shi-liang, Hu; Ying, Chen; Chuan-jing, Lu
2015-12-01
The closely coupled approach combined the Finite Volume Method (FVM) solver and the Finite Element Method (FEM) solver is applied to simulation the cavitation-structure interaction of a 3D cantilevered flexible hydrofoil in water tunnel. In the cavitating flow, the elastic hydrofoil would deform or vibrate in bending and twisting mode. And the motion of the foil would affect the characteristics of the cavity and the hydrodynamic load on the foil in turn. With smaller cavitation numbers (σv=2.15), the frequency spectrum of the lift on the foil would contain two frequencies which are associated to the cavity shedding and the first bend frequency of the hydrofoil. With larger cavitation number (σv=2.55), the frequency of the lift is completely dominated by the natural frequency of the foil.
NASA Astrophysics Data System (ADS)
Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin
2016-03-01
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
NASA Astrophysics Data System (ADS)
Hu, Bin; Kieweg, Sarah
2010-11-01
Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.
Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL
Chae, Y.C.
1998-09-01
A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.
3D Numerical simulations of oblique subduction
NASA Astrophysics Data System (ADS)
Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.
2012-04-01
In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins
NASA Astrophysics Data System (ADS)
Ren, Z.; Huang, X. Y.; Liu, H. S.
2016-07-01
In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.
A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature
NASA Astrophysics Data System (ADS)
Shigang, Ai; Rujie, He; Yongmao, Pei
2015-12-01
Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS
SNYDER,P.B; WILSON,H.R; XU,X.Q
2004-11-01
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.
NASA Astrophysics Data System (ADS)
Benhamouche, Mehdi; Bernard, Laurent; Serhir, Mohammed; Pichon, Lionel; Lesselier, Dominique
2013-11-01
This paper proposes a criterion for locating obstacles by time reversal (TR) of electromagnetic (EM) waves based on the analysis of the density of EM energy map in time domain. Contrarily to a monochromatic study of the TR, the wide-band approach requires to determine the instant of the wave focus. This enables us to locate the focal spots that are indicative of the positions. The criterion proposed is compared to the inverse of the minimum entropy criterion as used in the literature [X. Xu, E.L. Miller, C.M. Rappaport, IEEE Trans. Geosci. Remote Sens. 41, 1804 (2003)]. An application for the localization of 3D metal targets is proposed using finite integration technique (FIT) as computational tool at the modeling stage. An experimental validation is presented for canonical three-dimensional configurations with two kinds of metal objects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.
Numerical Investigation of 3-D Separation: DNS, LES and URANS
2010-05-01
Final Report Numerical Investigation of 3-D Separation: DNS, LES and URANS Office of Naval Research Contract number: N00014-07-1-0401 Program...COVERED (From - To) 12/11/2006-12/31/2009 4. TITLE AND SUBTITLE Numerical Investigation of 3-D Separation: DNS, LES and URANS 5a. CONTRACT NUMBER
Baez, M L; Borzi, R A
2017-02-08
We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along [Formula: see text], and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases ≈0.4 K for the parameters corresponding to the best known spin ice materials, [Formula: see text] and [Formula: see text]. This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of 'strings' of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along [Formula: see text] there are only three different stable phases at zero temperature.
NASA Astrophysics Data System (ADS)
Baez, M. L.; Borzi, R. A.
2017-02-01
We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.
NASA Astrophysics Data System (ADS)
Sun, Yongle; Li, Q. M.; Withers, P. J.
2015-09-01
Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to
NASA Astrophysics Data System (ADS)
Sanjuan, A. S.; Reyes, M. A. H.; Minzoni, A. A.; Geffroy, E.
2017-01-01
This work focuses on a three-dimensional analysis of the deformation of a drop — immersed in a Newtonian fluid— generated by a 2D elongational flow with vorticity. The study of steady-state deformations of the cross-section of the drop shows a prevalent non-circular shape. The axisymmetric idealization of the ellipsoid is not observed nor the linear dependency between capillary number and deformation of the drop, as Taylor and Cox theory predicted. Our numerical results are consistent with experiments and other numerical simulations. However, in the latter cases, measurements of the cross section of the drop are few while a limited class of flows is applied. In this work, deformations induced by general two-dimensional flows upon the 3D drop shape are presented with special emphasis about the length scale along the third axis —perpendicular to the plane of the applied flow field.
NASA Astrophysics Data System (ADS)
Chang, Chenliang; Qi, Yijun; Wu, Jun; Yuan, Caojin; Nie, Shouping; Xia, Jun
2017-03-01
A method of calculating computer-generated hologram (CGH) for color holographic 3D projection is proposed. A color 3D object is decomposed into red, green and blue components. For each color component, a virtual wavefront recording plane (WRP) is established which is nonuniformly sampled according to the depth map of the 3D object. The hologram of each color component is calculated from the nonuniform sampled WRP using the shifted Fresnel diffraction algorithm. Finally three holograms of RGB components are encoded into one single CGH based on the multiplexing encoding method. The computational cost of CGH generation is reduced by converting diffraction calculation from huge 3D voxels to three 2D planar images. Numerical experimental results show that the CGH generated by our method is capable to project zoomable color 3D object with clear quality.
Das, Koushik; Mishra, Subhash C
2015-08-01
This article reports a numerical study pertaining to simultaneous estimation of size, radial location and angular location of a malignant tumor in a 3-D human breast. The breast skin surface temperature profile is specific to a tumor of specific size and location. The temperature profiles are always the Gaussian one, though their peak magnitudes and areas differ according to the size and location of the tumor. The temperature profiles are obtained by solving the Pennes bioheat equation using the finite element method based solver COMSOL 4.3a. With temperature profiles known, simultaneous estimation of size, radial location and angular location of the tumor is done using the curve fitting method. Effect of measurement errors is also included in the study. Estimations are accurate, and since in the inverse analysis, the curve fitting method does not require solution of the governing bioheat equation, the estimation is very fast.
3-D numerical modeling of plume-induced subduction initiation
NASA Astrophysics Data System (ADS)
Baes, Marzieh; Gerya, taras; Sobolev, Stephan
2016-04-01
Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.
The numerical measure of symmetry for 3D stick creatures.
Jaśkowski, Wojciech; Komosinski, Maciej
2008-01-01
This work introduces a numerical, continuous measure of symmetry for 3D stick creatures and solid 3D objects. Background information about the property of symmetry is provided, and motivations for developing a symmetry measure are described. Three approaches are mentioned, and two of them are presented in detail using formal mathematical language. The best approach is used to sort a set of creatures according to their symmetry. Experiments with a mixed set of 84 individuals originating from both human design and evolution are performed to examine symmetry within these two sources, and to determine if human designers and evolutionary processes prefer symmetry or asymmetry.
NASA Astrophysics Data System (ADS)
Benmansour, Abdelkrim; Liazid, Abdelkrim; Logerais, Pierre-Olivier; Durastanti, Jean-Félix
2016-02-01
Cryogenic propellants LOx/H2 are used at very high pressure in rocket engine combustion. The description of the combustion process in such application is very complex due essentially to the supercritical regime. Ideal gas law becomes invalid. In order to try to capture the average characteristics of this combustion process, numerical computations are performed using a model based on a one-phase multi-component approach. Such work requires fluid properties and a correct definition of the mixture behavior generally described by cubic equations of state with appropriated thermodynamic relations validated against the NIST data. In this study we consider an alternative way to get the effect of real gas by testing the volume-weighted-mixing-law with association of the component transport properties using directly the NIST library data fitting including the supercritical regime range. The numerical simulations are carried out using 3D RANS approach associated with two tested turbulence models, the standard k-Epsilon model and the realizable k-Epsilon one. The combustion model is also associated with two chemical reaction mechanisms. The first one is a one-step generic chemical reaction and the second one is a two-step chemical reaction. The obtained results like temperature profiles, recirculation zones, visible flame lengths and distributions of OH species are discussed.
Using 3-D Numerical Weather Data in Piloted Simulations
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.
2016-01-01
This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.
3D EFT imaging with planar electrode array: Numerical simulation
NASA Astrophysics Data System (ADS)
Tuykin, T.; Korjenevsky, A.
2010-04-01
Electric field tomography (EFT) is the new modality of the quasistatic electromagnetic sounding of conductive media recently investigated theoretically and realized experimentally. The demonstrated results pertain to 2D imaging with circular or linear arrays of electrodes (and the linear array provides quite poor quality of imaging). In many applications 3D imaging is essential or can increase value of the investigation significantly. In this report we present the first results of numerical simulation of the EFT imaging system with planar array of electrodes which allows 3D visualization of the subsurface conductivity distribution. The geometry of the system is similar to the geometry of our EIT breast imaging system providing 3D conductivity imaging in form of cross-sections set with different depth from the surface. The EFT principle of operation and reconstruction approach differs from the EIT system significantly. So the results of numerical simulation are important to estimate if comparable quality of imaging is possible with the new contactless method. The EFT forward problem is solved using finite difference time domain (FDTD) method for the 8×8 square electrodes array. The calculated results of measurements are used then to reconstruct conductivity distributions by the filtered backprojections along electric field lines. The reconstructed images of the simple test objects are presented.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Feng, X. S.
2015-12-01
CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness
3D Numerical Simulations of the Breakout Model
NASA Astrophysics Data System (ADS)
Choe, G. S.; Cheng, C. Z.; Lee, J.; Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2005-05-01
We present the continuing progress of the numerical simulations of the breakout model for coronal mass ejection initiation. To validate the 3D spherical ARMS code we have run the 2.5D breakout problem and compare the eruption to the published 2D results. The ARMS 2.5D CME also forms a large magnetic island ahead of the erupting plasmoid due to the code's excellent maintenance of equatorial symmetry. Progress on the fully 3D breakout problem is also discussed. To build up enough magnetic free energy for an eruption the active region field must be strong with a steep gradient near the polarity inversion line and the shear must be highly concentrated there. This requires adaptive griding techniques. In the current simulation, the active region to background field ratio is 20-to-1 and the neutral line is long compared to the active region width. We present the evolution of this topology under Br-conserving shearing flow and discuss implications for a 3D eruption. This work is supported by NASA and ONR. BJL is supported by NASA GSRP grant NGT5-50453.
CASTOR3D: linear stability studies for 2D and 3D tokamak equilibria
NASA Astrophysics Data System (ADS)
Strumberger, E.; Günter, S.
2017-01-01
The CASTOR3D code, which is currently under development, is able to perform linear stability studies for 2D and 3D, ideal and resistive tokamak equilibria in the presence of ideal and resistive wall structures and coils. For these computations ideal equilibria represented by concentric nested flux surfaces serve as input (e.g. computed with the NEMEC code). Solving an extended eigenvalue problem, the CASTOR3D code takes simultaneously plasma inertia and wall resistivity into account. The code is a hybrid of the CASTOR_3DW stability code and the STARWALL code. The former is an extended version of the CASTOR and CASTOR_FLOW code, respectively. The latter is a linear 3D code computing the growth rates of resistive wall modes in the presence of multiply-connected wall structures. The CASTOR_3DW code, and some parts of the STARWALL code have been reformulated in a general 3D flux coordinate representation that allows to choose between various types of flux coordinates. Furthermore, the implemented many-valued current potentials in the STARWALL part allow a correct treatment of the m = 0, n = 0 perturbation. In this paper, we outline the theoretical concept, and present some numerical results which illustrate the present status of the code and demonstrate its numerous application possibilities.
3D Numerical Simulation on the Rockslide Generated Tsunamis
NASA Astrophysics Data System (ADS)
Chuang, M.; Wu, T.; Wang, C.; Chu, C.
2013-12-01
The rockslide generated tsunami is one of the most devastating nature hazards. However, the involvement of the moving obstacle and dynamic free-surface movement makes the numerical simulation a difficult task. To describe both the fluid motion and solid movement at the same time, we newly developed a two-way fully-coupled moving solid algorithm with 3D LES turbulent model. The free-surface movement is tracked by volume of fluid (VOF) method. The two-step projection method is adopted to solve the Navier-Stokes type government equations. In the new moving solid algorithm, a fictitious body force is implicitly prescribed in MAC correction step to make the cell-center velocity satisfied with the obstacle velocity. We called this method the implicit velocity method (IVM). Because no extra terms are added to the pressure Poission correction, the pressure field of the fluid part is stable, which is the key of the two-way fluid-solid coupling. Because no real solid material is presented in the IVM, the time marching step is not restricted to the smallest effective grid size. Also, because the fictitious force is implicitly added to the correction step, the resulting velocity is accurate and fully coupled with the resulting pressure field. We validated the IVM by simulating a floating box moving up and down on the free-surface. We presented the time-history obstacle trajectory and compared it with the experimental data. Very accurate result can be seen in terms of the oscillating amplitude and the period (Fig. 1). We also presented the free-surface comparison with the high-speed snapshots. At the end, the IVM was used to study the rock-slide generated tsunamis (Liu et al., 2005). Good validations on the slide trajectory and the free-surface movement will be presented in the full paper. From the simulation results (Fig. 2), we observed that the rockslide generated waves are manly caused by the rebounding waves from two sides of the sliding rock after the water is dragging
Numerical model of sonic boom in 3D kinematic turbulence
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Luquet, David; Marchiano, Régis
2015-10-01
Sonic boom is one of the key issues to be considered in the development of future supersonic or hypersonic civil aircraft concepts. The classical sonic boom, typical for Concorde with an N-wave shape and a ground amplitude of the order of 100 Pa, prevents overland flight. Future concepts target carefully shaped sonic booms with low amplitude weak shocks. However, sonic boom when perceived at the ground level is influenced not only by the aircraft characteristics, but also by atmospheric propagation. In particular, the effect of atmospheric turbulence on sonic boom propagation near the ground is not well characterized. Flight tests performed as early as the 1960s demonstrated that classical sonic booms are sensitive to atmospheric turbulence. However, this sensitivity remains only partially understood. This is related to the fact that i) turbulence is a random process that requires a statistical approach, ii) standard methods used to predict sonic booms, mainly geometrical acoustics based on ray tracing, are inadequate within the turbulent planetary boundary layer. Moreover, the ray theory fails to predict the acoustical field in many areas of interest, such as caustics or shadow zones. These zones are of major interest for sonic boom acceptability (highest levels, lateral extent of zone of impact). These limitations outline the need for a numerical approach that is sufficiently efficient to perform a large number of realizations for a statistical approach, but that goes beyond the limitations of ray theory. With this in view, a 3D one-way numerical method solving a nonlinear scalar wave equation established for heterogeneous, moving and absorbing atmosphere, is used to assess the effects of a 3D kinematic turbulence on sonic boom in various configurations. First, a plane N-wave is propagated in the free field through random realizations of kinematic fluctuations. Then the case of a more realistic Atmospheric Boundary Layer (ABL) is investigated, with a mean
Numerical Results of Earth's Core Accumulation 3-D Modelling
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
Impedance mammograph 3D phantom studies.
Wtorek, J; Stelter, J; Nowakowski, A
1999-04-20
The results obtained using the Technical University of Gdansk Electroimpedance Mammograph (TUGEM) of a 3D phantom study are presented. The TUGEM system is briefly described. The hardware contains the measurement head and DSP-based identification modules controlled by a PC computer. A specially developed reconstruction algorithm, Regulated Correction Frequency Algebraic Reconstruction Technique (RCFART), is used to obtain 3D images. To visualize results, the Advance Visualization System (AVS) is used. It allows a powerful image processing on a fast workstation or on a high-performance computer. Results of three types of 3D conductivity perturbations used in the study (aluminum, Plexiglas, and cucumber) are shown. The relative volumes of perturbations less than 2% of the measurement chamber are easily evidenced.
Nallana, A.; Kincaid, D.R.
1996-05-01
We carry out a performance study using the Cray T3D parallel supercomputer to illustrate some important features of this machine. Timing experiments show the speed of various basic operations while more complicated operations give some measure of its parallel performance.
3D numerical modeling of India-Asia-like collision
NASA Astrophysics Data System (ADS)
-Erika Püsök, Adina; Kaus, Boris; Popov, Anton
2013-04-01
above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B
20 and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
2D and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
3-D numerical simulations of volcanic ash transport and deposition
NASA Astrophysics Data System (ADS)
Suzuki, Y. J.; Koyaguchi, T.
2012-12-01
During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker
Numerical Results of 3-D Modeling of Moon Accumulation
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
NASA Astrophysics Data System (ADS)
Fuchsluger, Martin; Götzl, Gregor
2014-05-01
flow has been realized. In addition the effects of the basement of the building to the groundwater flow have been analyzed. The results of the 2D model show an underestimation of more than 10 % of the performance of the groundwater utilization facility and a considerable smaller groundwater table drawdown compared to the 3D simulations. This is due to the possibility of 3D modeling to consider (i) the heat distribution and storage in the adjacent layers, (ii) the climatic surface effect and (iii) vertical groundwater flow.
NASA Astrophysics Data System (ADS)
Hunter, Kendall; Zhang, Yanhang; Lanning, Craig
2005-11-01
Insight into the progression of pulmonary hypertension may be obtained from thorough study of vascular flow during reactivity testing, an invasive diagnostic procedure which can dramatically alter vascular hemodynamics. Diagnostic imaging methods, however, are limited in their ability to provide extensive data. Here we present detailed flow and wall deformation results from simulations of pulmonary arteries undergoing this procedure. Patient-specific 3-D geometric reconstructions of the first four branches of the pulmonary vasculature were obtained clinically and meshed for use with computational software. Transient simulations in normal and reactive states were obtained from four such models were completed with patient-specific velocity inlet conditions and flow impedance exit conditions. A microstructurally based orthotropic hyperelastic model that simulates pulmonary artery mechanics under normotensive and hypoxic hypertensive conditions treated wall constitutive changes due to pressure reactivity and arterial remodeling. Pressure gradients, velocity fields, arterial deformation, and complete topography of shear stress were obtained. These models provide richer detail of hemodynamics than can be obtained from current imaging techniques, and should allow maximum characterization of vascular function in the clinical situation.
Hassam, Adil
2015-09-21
We studied the feasibility of resonantly driving GAMs in tokamaks. A numerical simulation was carried out and showed the essential features and limitations. It was shown further that GAMs can damp by phase-mixing, from temperature gradients, or nonlinear detuning, thus broadening the resonance. Experimental implications of this were quantified. Theoretical support was provided for the Maryland Centrifugal Experiment, funded in a separate grant by DOE. Plasma diamagnetism from supersonic rotation was established. A theoretical model was built to match the data. Additional support to the experiment in terms of numerical simulation of the interchange turbulence was provided. Spectra from residual turbulence on account of velocity shear suppression were obtained and compared favorably to experiment. A new drift wave, driven solely by the thermal force, was identified.
Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish
NASA Astrophysics Data System (ADS)
Xin, ZhiQiang; Wu, ChuiJie
2012-02-01
Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study, with a 3D computational fluid dynamics package, which includes the immersed boundary method and the volume of fluid method, the adaptive multi-grid finite volume method, and the control strategy of fish swimming. Firstly, the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory. With the change of swimming speed, the contributions of the fish body and caudal fin to thrust are analyzed quantitatively. The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper. Finally, the 3D wake structure of self-propelled swimming of 3D bionic fish is presented. The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.
NASA Astrophysics Data System (ADS)
Engle, Rob
2008-02-01
This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.
3D Geo-Information in Urban Climate Studies
NASA Astrophysics Data System (ADS)
Petrescu, F.; Aldea, M.; Luca, O.; Iacoboaea, C.; Gaman, F.; Parlow, E.
2016-10-01
3D geo-information is essential for urban climate studies. It is obvious that both natural environment and built-up environment play the fundamental role in defining the climatic conditions for urban areas, which affect the quality of human life and human comfort. The paper presents the main categories of 3D geo-information used in urban climate studies and roles in creating and operating the numerical models specially designed to simulate urban planning scenarios and improvement of the urban climate situation.
NASA Technical Reports Server (NTRS)
Agrawal, Ajay K.; Yang, Tah-Teh
1993-01-01
This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.
Numerical simulation of 3-D Benard convection with gravitational modulation
NASA Technical Reports Server (NTRS)
Biringen, S.; Peltier, L. J.
1990-01-01
In this numerical study, randomly and sinusoidally modulated gravitational fields imposed on three-dimensional Rayleigh-Benard convection are investigated in an effort to understand the effects of vibration (G-Jitter) on fluid systems. The time-dependent, Navier-Stokes equations and the energy equation with Boussinesq approximations are solved by a semi-implicit, pseudospectral procedure. An analysis of energy balances indicates that with increasing modulation amplitude, transition from synchronous to relaxation oscillation goes through the subharmonic response. Random modulations are found to be less stabilizing than sinusoidal and are shown to impose three-dimensionality on the flow for some parameter ranges both at terrestrial and zero base gravity conditions.
3D numerical simulation analysis of passive drag near free surface in swimming
NASA Astrophysics Data System (ADS)
Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx
2015-04-01
The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.
3D numerical simulations of vesicle and inextensible capsule dynamics
NASA Astrophysics Data System (ADS)
Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi
2014-10-01
Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
Numerical grid generation in 3D Euler-flow simulation
NASA Astrophysics Data System (ADS)
Boerstoel, J. W.
1988-04-01
The technical problems with grid generation are analyzed and an overview of proposed solutions is given. The usefulness of grid-generation techniques, for the numerical simulation of Euler (and Navier-Stokes) flows around complex three-dimensional aerodynamic configurations, is illustrated. It is shown that the core of the grid-generation problem is a topology problem. The following remarks are sketched: grid generation is a subtask in a numerical simulation of a flow in industrial and research environments; the design requirements of a grid generation concern the geometrical imput, the desired grid as output, the technical means to control grid resolution and quality and turnaround time performance; the construction of a blocked grid can be subdivided in a block-decomposition task and a grid-point distribution task. A technique for using connectivity relations to define conventions about local coordinate systems in edges, faces and blocks is presented. Experiences are reported and an example concerning a 96-blocked grid around a complex aerodynamic configuration is given. Concepts for improvements in the presented technique are discussed.
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv
2007-05-17
Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.
NASA Astrophysics Data System (ADS)
Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang
2017-02-01
Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.
Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion
NASA Astrophysics Data System (ADS)
Handy Turner, Tara
2010-02-01
From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.
Towards more realistic 2D & 3D numerical models of Earth's mantle
NASA Astrophysics Data System (ADS)
Ghias, Sanaz
2011-12-01
There are a number of simplifying assumptions in modeling Earth's deep interior. These are mostly simplifying assumptions that make the mathematics simpler either for less complicated modeling or for numerical efficiency purposes. The aim of this study is to investigate the effects of some of these simplifying assumptions on 2D and 3D mantle convection models. In particular, the cases with variable coefficients of thermal expansion, alpha, and the inclusion of mineral phase transitions and viscosity stratification have been studied. The coefficient of thermal expansion is temperature- and depth-dependent in Earth. But for simplicity, it has been considered as constant in most mantle convection models and only depth-dependent in others. 2D mantle convection models (2D Cartesian and 2D cylindrical) have been created based on an existing model from Jarvis [1992] to investigate the effects of temperature- and depth-dependent alpha on mantle convection compared with the simplified cases. Also an existing version of a 3D parallel mantle convection model, MC3D, from Lowman et al. [2001] have been modified to include the temperature- and depth-dependent alpha. In the 3D study it has also been investigated that how the effects of temperature- and depth-dependent alpha vary with or without lithospheric plates. There are at least two mineral phase transitions in Earth. There is an exothermic phase boundary at 410km below the surface and an endothermic phase boundary at 660km below the surface. For simplicity, most mantle convection models do not consider any of the phase boundaries. Some consider only the endothermic phase boundary. A 2D cylindrical model from Shahnas and Jarvas [2005] has been employed to investigate the effects of considering both phase boundaries compared to models with either no, or one, phase boundary. Different viscosity stratifications have been used in addition to the phase boundaries.
NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation
NASA Astrophysics Data System (ADS)
Graen, Timo; Grubmüller, Helmut
2016-01-01
The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov's method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
NASA Astrophysics Data System (ADS)
Qureshi, Awais; Li, Bing; Tan, K. T.
2016-06-01
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.
Volatile transport on inhomogeneous surfaces: II. Numerical calculations (VT3D)
NASA Astrophysics Data System (ADS)
Young, Leslie A.
2017-03-01
Several distant icy worlds have atmospheres that are in vapor-pressure equilibrium with their surface volatiles, including Pluto, Triton, and, probably, several large KBOs near perihelion. Studies of the volatile and thermal evolution of these have been limited by computational speed, especially for models that treat surfaces that vary with both latitude and longitude. In order to expedite such work, I present a new numerical model for the seasonal behavior of Pluto and Triton which (i) uses initial conditions that improve convergence, (ii) uses an expedient method for handling the transition between global and non-global atmospheres, (iii) includes local conservation of energy and global conservation of mass to partition energy between heating, conduction, and sublimation or condensation, (iv) uses time-stepping algorithms that ensure stability while allowing larger timesteps, and (v) can include longitudinal variability. This model, called VT3D, has been used in Young (2012a, 2012b), Young (2013), Olkin et al. (2015), Young and McKinnon (2013), and French et al. (2015). Many elements of VT3D can be used independently. For example, VT3D can also be used to speed up thermophysical models (Spencer et al., 1989) for bodies without volatiles. Code implementation is included in the supplemental materials and is available from the author.
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
Qureshi, Awais; Li, Bing; Tan, K. T.
2016-01-01
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828
Effect of Frictions on the Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis
NASA Astrophysics Data System (ADS)
Ha-Minh, Cuong; Boussu, François; Kanit, Toufik; Crépin, David; Imad, Abdellatif
2012-06-01
3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2® fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.
Implementation of a 3d numerical model of a folded multilayer carbonate aquifer
NASA Astrophysics Data System (ADS)
Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta
2016-04-01
The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and
NASA Astrophysics Data System (ADS)
Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.
2016-10-01
Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.
NASA Astrophysics Data System (ADS)
Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico
2007-05-01
Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.
NASA Astrophysics Data System (ADS)
Cédric, Guyonnet-Benaize; Fabrice, Hollender; Maria, Manakou; Alexandros, Savvaidis; Elena, Zargli; Cécile, Cornou; Nikolaos, Veranis; Dimitrios, Raptakis; Artemios, Atzemoglou; Pierre-Yves, Bard; Nikolaos, Theodulidis; Kyriazis, Pitilakis; Emmanuelle, Chaljub
2013-04-01
The Mygdonian basin, located 30 km E-NE close to Thessaloniki, is a typical active tectonic basin, trending E-NW, filled by sediments 200 to 400 m thick. This basin has been chosen as a European experimental site since 1993 (European Commission research projects - EUROSEISTEST). It has been investigated for experimental and theoretical studies on site effects. The Mygdonian basin is currently covered by a permanent seismological network and has been mainly characterized in 2D and 3D with geophysical and geotechnical studies (Bastani et al, 2011; Cadet and Savvaidis, 2011; Gurk et al, 2007; Manakou et al, 2007; Manakou et al, 2010; Pitilakis et al, 1999; Raptakis et al, 2000; Raptakis et al, 2005). All these studies allowed understanding the influence of geological structures and local site conditions on seismic site response. For these reasons, this site has been chosen for a verification exercise for numerical simulations in the framework of an ongoing international collaborative research project (Euroseistest Verification and Validation Project - E2VP). The verification phase has been made using a first 3D geophysical and geotechnical model (Manakou, 2007) about 5 km wide and 15 km long, centered on the Euroseistest site. After this verification phase, it has been decided to update, optimize and extend this model in order to obtain a more detailed model of the 3D geometry of the entire basin, especially the bedrock 3D geometry which can affect drastically the results of numerical simulations for site effect studies. In our study, we build a 3D geological model of the present-day structure of the entire Mygdonian basin. This "precise" model is 12 km wide, 65 km long and is 400 m deep in average. It has been built using geophysical, geotechnical and geological data. The database is heterogeneous and composed of hydrogeological boreholes, seismic refraction surveys, array microtremor measurements, electrical and geotechnical surveys. We propose an integrated
Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric
2009-10-01
A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.
NASA Astrophysics Data System (ADS)
Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.
2014-01-01
A new approach was proposed for simulation of unsteady cavitating flow in the flow passage of a hydraulic power plant. 1D hydro-acoustics equations are solved in the penstock domain. 3D equations of turbulent flow of isothermal compressible liquid-vapor mixture are solved in the turbine domain. Cavitation is described by a transfer equation for liquid phase with a source term which is responsible for evaporation and condensation. The developed method was applied for simulation of pulsations in pressure, discharge, and total energy propagating along the flow conduit of the hydraulic power plant. Simulation results are in qualitative and quantitative agreement with experiment. The influence of key physical and numerical parameters like discharge, cavitation number, penstock length, time step, and vapor density on simulation results was studied.
Improvements to the RELAP5-3D Nearly-Implicit Numerical Scheme
Richard A. Riemke; Walter L. Weaver; RIchard R. Schultz
2005-05-01
The RELAP5-3D computer program has been improved with regard to its nearly-implicit numerical scheme for twophase flow and single-phase flow. Changes were made to the nearly-implicit numerical scheme finite difference momentum equations as follows: (1) added the velocity flip-flop mass/energy error mitigation logic, (2) added the modified Henry-Fauske choking model, (3) used the new time void fraction in the horizontal stratification force terms and gravity head, and (4) used an implicit form of the artificial viscosity. The code modifications allow the nearly-implicit numerical scheme to be more implicit and lead to enhanced numerical stability.
3D numerical investigation on landslide generated tsunamis around a conical island
NASA Astrophysics Data System (ADS)
Montagna, Francesca; Bellotti, Giorgio
2010-05-01
This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we
Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling
NASA Astrophysics Data System (ADS)
Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge
2014-09-01
The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.
Huang, Qinghua; Lin, Yufeng
2010-01-01
Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity.
2D vs. 3D mammography observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
NASA Astrophysics Data System (ADS)
Reiter, Karsten; Heidbach, Oliver; Moeck, Inga
2013-04-01
For the assessment and exploration of a potential geothermal reservoir, the contemporary in-situ stress is of key importance in terms of well stability and orientation of possible fluid pathways. However, available data, e.g. Heidbach et al. (2009) or Zang et al. (2012), deliver only point wise information of parts of the six independent components of the stress tensor. Moreover most measurements of the stress orientation and magnitude are done for hydrocarbon industry obvious in shallow depth. Interpolation across long distances or extrapolation into depth is unfavourable, because this would ignore structural features, inhomogeneity's in the crust or other local effects like topography. For this reasons geomechanical numerical modelling is the favourable method to quantify orientations and magnitudes of the 3D stress field for a geothermal reservoir. A geomechanical-numerical modelling, estimating the 3D absolute stress state, requires the initial stress state as model constraints. But in-situ stress measurements within or close by a potential reservoir are rare. For that reason a larger regional geomechanical-numerical model is necessary, which derive boundary conditions for the wanted local reservoir model. Such a large scale model has to be tested against in-situ stress measurements, orientations and magnitudes. Other suitable and available data, like GPS measurements or fault slip rates are useful to constrain kinematic boundary conditions. This stepwise approach from regional to local scale takes all stress field factors into account, from first over second up to third order. As an example we present a large scale crustal and upper mantle 3D-geomechanical-numerical model of the Alberta Basin and the surroundings, which is constructed to describe continuously the full stress tensor. In-situ stress measurements are the most likely data, because they deliver the most direct information's of the stress field and they provide insights into different depths, a
Image based 3D city modeling : Comparative study
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-06-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city
Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining
1993-01-01
A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
M3D project for simulation studies of plasmas
Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.
1998-12-31
The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.
NASA Astrophysics Data System (ADS)
McFall, B. C.; Fritz, H. M.; Horrillo, J. J.; Mohammed, F.
2014-12-01
Landslide generated tsunamis such as Lituya Bay, Alaska 1958 account for some of highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models. Two 3D Navier-Stokes models were tested, the commercial code FLOW-3D
Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer
NASA Astrophysics Data System (ADS)
Reese, Daniel; Weber, Christopher
2016-11-01
A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D.
Autonomous surgical robotics using 3-D ultrasound guidance: feasibility study.
Whitman, John; Fronheiser, Matthew P; Ivancevich, Nikolas M; Smith, Stephen W
2007-10-01
The goal of this study was to test the feasibility of using a real-time 3D (RT3D) ultrasound scanner with a transthoracic matrix array transducer probe to guide an autonomous surgical robot. Employing a fiducial alignment mark on the transducer to orient the robot's frame of reference and using simple thresholding algorithms to segment the 3D images, we tested the accuracy of using the scanner to automatically direct a robot arm that touched two needle tips together within a water tank. RMS measurement error was 3.8% or 1.58 mm for an average path length of 41 mm. Using these same techniques, the autonomous robot also performed simulated needle biopsies of a cyst-like lesion in a tissue phantom. This feasibility study shows the potential for 3D ultrasound guidance of an autonomous surgical robot for simple interventional tasks, including lesion biopsy and foreign body removal.
NASA Astrophysics Data System (ADS)
Bogdanov, V. R.; Sulim, G. T.
2016-03-01
We develop a technique for calculating the plastic strain and fracture toughness fields of a material by solving dynamical 3D problems of determining the stress-strain state in the elastoplastic statement with possible unloading of the material taken into account. The numerical solution was obtained by a finite difference scheme applied to the three-point shock bending tests of parallelepiped-shaped bars made of different materials with plane crack-notches in the middle. The fracture toughness coefficient was determined for reactor steel. The numerically calculated stress tensor components, mean stresses, the Odquist parameter characterizing the accumulated plastic strain, and the fracture toughness are illustrated by graphs.
A Preliminary Study of 3D Printing on Rock Mechanics
NASA Astrophysics Data System (ADS)
Jiang, Chao; Zhao, Gao-Feng
2015-05-01
3D printing is an innovative manufacturing technology that enables the printing of objects through the accumulation of successive layers. This study explores the potential application of this 3D printing technology for rock mechanics. Polylactic acid (PLA) was used as the printing material, and the specimens were constructed with a "3D Touch" printer that employs fused deposition modelling (FDM) technology. Unconfined compressive strength (UCS) tests and direct tensile strength (DTS) tests were performed to determine the Young's modulus ( E) and Poisson's ratio ( υ) for these specimens. The experimental results revealed that the PLA specimens exhibited elastic to brittle behaviour in the DTS tests and exhibited elastic to plastic behaviour in the UCS tests. The influence of structural changes in the mechanical response of the printed specimen was investigated; the results indicated that the mechanical response is highly influenced by the input structures, e.g., granular structure, and lattice structure. Unfortunately, our study has demonstrated that the FDM 3D printing with PLA is unsuitable for the direct simulation of rock. However, the ability for 3D printing on manufactured rock remains appealing for researchers of rock mechanics. Additional studies should focus on the development of an appropriate substitution for the printing material (brittle and stiff) and modification of the printing technology (to print 3D grains with arbitrary shapes).
NASA Astrophysics Data System (ADS)
Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.
2015-12-01
Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.
NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D
Lee, Tong Young; Yoon, Kyoung-hye; Lee, Jin Il
2016-01-01
ABSTRACT The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory. PMID:26962047
NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D.
Lee, Tong Young; Yoon, Kyoung-Hye; Lee, Jin Il
2016-04-15
The nematodeCaenorhabditiselegansis one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however,C. elegansis found in three dimensional environments such as rotting fruit. To investigate the biology ofC. elegansin a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory.
3D numerical modeling of an anthropogenic sinkhole in the Marsala area of western Sicily
NASA Astrophysics Data System (ADS)
Bonamini, Marco; Di Maggio, Cipriano; Lollino, Piernicola; Madonia, Giuliana; Parise, Mario; Vattano, Marco
2013-04-01
The Marsala area (western Sicily) is characterized by the presence of a Lower Pleistocene (Calabrian) calcarenite succession (Marsala Calcarenite Fm). It can be divided into three lithofacies that show the regressive evolution of the depositional system: a) coarse to fine yellow bio- and lithoclastic calcarenites, b) sands, and c) gray sandy clays. At least 80 m-thick, this succession gently dips (5-10°) towards the south and the south-west. Locally, the Marsala Calcarenite may be covered by Middle and Upper Pleistocene marine terraced deposits. The town of Marsala presents several historical quarries for the extraction of this building material. Many of them were excavated underground, at depth ranging from a few meters to about 25 m, and are arranged in one or two levels, following the galleries and pillars excavation technique. With time, the underground quarries have been progressively abandoned due to the high costs of extraction, as well as to the dangers and difficulties encountered in working underground. Since the 1960's the quarries, as a matter of fact, have been affected by several instability processes for the decay of the physical and mechanical properties of the calcarenite rock mass and the interaction with the groundwater. Such instability processes are represented by collapses and deformations of vaults and pillars. These phenomena often propagate upward reaching the topographic surface and forming sinkholes which may likely affect and severely damage the built-up areas above. In particular, two case studies of sinkholes related to different underground quarries have been already described by the Authors in a previous contribution at EGU 2012, also integrated by a two-dimensional numerical study. The aim of the present work is to develop a three-dimensional numerical analysis aimed at describing the most significant processes and factors responsible of the instability processes, as well as to investigate the three-dimensional features of the same
Numerical investigations on cavitation intensity for 3D homogeneous unsteady viscous flows
NASA Astrophysics Data System (ADS)
Leclercq, C.; Archer, A.; Fortes-Patella, R.
2016-11-01
The cavitation erosion remains an industrial issue. In this paper, we deal with the cavitation intensity which can be described as the aggressiveness - or erosive capacity - of a cavitating flow. The estimation of this intensity is a challenging problem both in terms of modelling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a model was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. An intensity model based on pressure and void fraction derivatives was developped and applied to a NACA 65012 hydrofoil tested at LMH-EPFL (École Polytechnique Fédérale de Lausanne) [1]. 2D and 3D unsteady cavitating simulations were performed using a homogeneous model with void fraction transport equation included in Code_Saturne with cavitating module [2]. The article presents a description of the numerical code and the physical approach considered. Comparisons between 2D and 3D simulations, as well as between numerical and experimental results obtained by pitting tests, are analyzed in the paper.
Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.
Gómez, Manuel; Recasens, Joan; Russo, Beniamino; Martínez-Gomariz, Eduardo
2016-10-01
Inlet efficiency is a requirement for characterizing the flow transfers between surface and sewer flow during rain events. The dual drainage approach is based on the joint analysis of both upper and lower drainage levels, and the flow transfer is one of the relevant elements to define properly this joint behaviour. This paper presents the results of an experimental and numerical investigation about the inlet efficiency definition. A full scale (1:1) test platform located in the Technical University of Catalonia (UPC) reproduces both the runoff process in streets and the water entering the inlet. Data from tests performed on this platform allow the inlet efficiency to be estimated as a function of significant hydraulic and geometrical parameters. A reproduction of these tests through a numerical three-dimensional code (Flow-3D) has been carried out simulating this type of flow by solving the RANS equations. The aim of the work was to reproduce the hydraulic performance of a previously tested grated inlet under several flow and geometric conditions using Flow-3D as a virtual laboratory. This will allow inlet efficiencies to be obtained without previous experimental tests. Moreover, the 3D model allows a better understanding of the hydraulics of the flow interception and the flow patterns approaching the inlet.
Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation
NASA Astrophysics Data System (ADS)
Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab
2015-05-01
3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.
3D Numeric modeling of slab-plume interaction in Kamchatka
NASA Astrophysics Data System (ADS)
Constantin Manea, Vlad; Portnyagin, Maxim; Manea, Marina
2010-05-01
Volcanic rocks located in the central segment of the Eastern Volcanic Belt of Kamchatka show a high variability, both in age as well as in the geochemical composition. Three principal groups have been identified, an older group (7-12 my) represented by rich alkaline and transitional basalts, a 7-8 my group exemplified by alkaline basalts of extreme plume type, and a younger group (3-8 my) characterized by calc-alkaline andesites and dacites rocks. Moreover, the younger group shows an adakitic signature. The magmas are assumed to originate from two principle sources: from a subduction modified Pacific MORB-type and from plume-type mantle. In this paper we study the interaction of a cold subducting slab and a hot plume by means of 3D numeric modeling integrated 30 my back in time. Our preliminary modeling results show a short episode of plume material inflowing into the mantle wedge at ~10 my consistent with the second rocks group (plume like). Also our models predict slab edge melting consistent with the youngest group.
Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars
2013-04-01
We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For
The Vajont disaster: a 3D numerical simulation for the slide and the waves
NASA Astrophysics Data System (ADS)
Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum
2016-04-01
A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.
The 3D modeling of high numerical aperture imaging in thin films
NASA Technical Reports Server (NTRS)
Flagello, D. G.; Milster, Tom
1992-01-01
A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.
Numerical and measured data from the 3D salt canopy physical modeling project
Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.
1997-11-01
The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.
NASA Astrophysics Data System (ADS)
Smirnov, E. M.; Smirnovsky, A. A.; Schur, N. A.; Zaitsev, D. K.; Smirnov, P. E.
2016-09-01
The contribution covers results of numerical study of air flow and heat transfer past a backward-facing step at the Reynolds number of 28,000. The numerical simulation was carried out under conditions of the experiments of Vogel&Eaton (1985), where nominally 2D fluid dynamics and heat transfer in a channel with expansion ratio of 1.25 was investigated. Two approaches were used for turbulence modelling. First, the Menter SST turbulence model was used to perform refined 2D and 3D RANS steady-state computations. The 3D analysis was undertaken to evaluate effects of boundary layers developing on the sidewalls of the experimental channel. Then, 3D time-dependent computations were carried out using the vortex-resolving IDDES method and applying the spanwise-periodicity conditions. Comparative computations were performed using an in-house finite-volume code SINF/Flag-S and the ANSYS Fluent. The codes produced practically identical RANS solutions, showing in particular a difference of 4% in the central-line peak Stanton number calculated in 2D and 3D cases. The IDDES results obtained with two codes are in a satisfactory agreement. Comparing with the experimental data, the IDDES produces the best agreement for the wall friction, whereas the RANS solutions show superiority in predictions of the local Stanton number distribution.
Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models
NASA Astrophysics Data System (ADS)
Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva
2014-07-01
To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.
Study of capabilities and limitations of 3D printing technology
NASA Astrophysics Data System (ADS)
Lemu, H. G.
2012-04-01
3D printing is one of the developments in rapid prototyping technology. The inception and development of the technology has highly assisted the product development phase of product design and manufacturing. The technology is particularly important in educating product design and 3D modeling because it helps students to visualize their design idea, to enhance their creative design process and enables them to touch and feel the result of their innovative work. The availability of many 3D printers on the market has created a certain level of challenge for the user. Among others, complexity of part geometry, material type, compatibility with 3D CAD models and other technical aspects still need in-depth study. This paper presents results of the experimental work on the capabilities and limitations of the Z510 3D printer from Z-corporation. Several parameters such as dimensional and geometrical accuracy, surface quality and strength as a function of model size, orientation and file exchange format are closely studied.
Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine
NASA Astrophysics Data System (ADS)
Fiereder, R.; Riemann, S.; Schilling, R.
2010-08-01
This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.
Numerical simulations of Rock Avalanches with DAN-3D: from real case to analogue models
NASA Astrophysics Data System (ADS)
Longchamp, Céline; Penna, Ivanna; Sauthier, Claire; Jaboyedoff, Michel
2013-04-01
Rock avalanches are rapid events with capacity to develop long and unexpected runouts, which can evolve into catastrophic events difficult to predict. In order to better understand unusual travel distances, analogue and numerical modeling are often used. The comparison between real case, and analogue and dynamics models is key to constrain and understand parameters governing rock avalanches run outs. In the Pampeanas range (Argentina), the Potrero de Leyes rock avalanche involved 0.23 km3 of highly fractured metamorphic rocks that spread in the piedmont area without any topographical constrain, resulting in a runout of 4.8 km. In this study we first attempt to apply analogue models to replicate the rock avalanche deposit. The analogue modeling consists into the release of a granular material (calibrated and angular carborundum sand) along a slope, creating similar landscape conditions that the real case. The material is not constrained laterally and spread freely on a flat deposition surface. For a volume of 50 cm3, the runout is 50 cm, the deposit has as length of 10 cm and a width of 19 cm. For a volume of 100 cm3, the runout is 65 cm, the deposit has as length of 25 cm and a width of 30 cm. In a further step we model both the real case and the result of the analogue models. Dynamics models are carried out with DAN-3D, a dynamic model for the prediction of the run out of rapid landslide (O. Hungr, 1995; O. Hugr & S.G. Evans, 1996). The result of the simulations for both volumes tested with the analogue model give satisfactory results. In fact, for the volume of 50 cm3, the deposit has as length of 10 cm and a width of 20 cm and for the volume of 100 cm3, the deposit has as length of 25 cm and a width of 50 cm. The shape and the thickness of the deposit obtained with DAN-3D are also similar with those got with the analogue models.
Numerical simulation of the 3D unsteady turbulent flow in a combustion chamber
NASA Astrophysics Data System (ADS)
Stuparu, Adrian; Holotescu, Sorin
2011-06-01
The influence of turbulence models on the 3D unsteady flow in a combustion chamber with a central bluff body is analyzed. Three different turbulence models are used (realizable k-ɛ, Reynolds Stress Model and Large Eddy Simulation) and a comparison is made on the evolution of the velocity field over time. The numerical simulation of the gas flow in the combustion chamber was performed using FLUENT 6.3 software and the computational geometry, consisting of a structured mesh with 810,000 cells, was built using the pre-processor GAMBIT 2.4. The extent of the recirculation region behind the bluff body was determined for each turbulence model.
Numerical simulation of the 3D unsteady turbulent flow in a combustion chamber
NASA Astrophysics Data System (ADS)
Stuparu, Adrian; Holotescu, Sorin
2011-06-01
The influence of turbulence models on the 3D unsteady flow in a combustion chamber with a central bluff body is analyzed. Three different turbulence models are used ( realizable k-ɛ, Reynolds Stress Model and Large Eddy Simulation) and a comparison is made on the evolution of the velocity field over time. The numerical simulation of the gas flow in the combustion chamber was performed using FLUENT 6.3 software and the computational geometry, consisting of a structured mesh with 810,000 cells, was built using the pre-processor GAMBIT 2.4. The extent of the recirculation region behind the bluff body was determined for each turbulence model.
Photogrammetric 3D skull/photo superimposition: A pilot study.
Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco
2017-04-01
The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
Baudron, Anne-Marie; Riahi, Mohamed Kamel; Salomon, Julien
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.
Case study: The Avengers 3D: cinematic techniques and digitally created 3D
NASA Astrophysics Data System (ADS)
Clark, Graham D.
2013-03-01
Marvel's THE AVENGERS was the third film Stereo D collaborated on with Marvel; it was a summation of our artistic development of what Digitally Created 3D and Stereo D's artists and toolsets affords Marvel's filmmakers; the ability to shape stereographic space to support the film and story, in a way that balances human perception and live photography. We took our artistic lead from the cinematic intentions of Marvel, the Director Joss Whedon, and Director of Photography Seamus McGarvey. In the digital creation of a 3D film from a 2D image capture, recommendations to the filmmakers cinematic techniques are offered by Stereo D at each step from pre-production onwards, through set, into post. As the footage arrives at our facility we respond in depth to the cinematic qualities of the imagery in context of the edit and story, with the guidance of the Directors and Studio, creating stereoscopic imagery. Our involvement in The Avengers was early in production, after reading the script we had the opportunity and honor to meet and work with the Director Joss Whedon, and DP Seamus McGarvey on set, and into post. We presented what is obvious to such great filmmakers in the ways of cinematic techniques as they related to the standard depth cues and story points we would use to evaluate depth for their film. Our hope was any cinematic habits that supported better 3D would be emphasized. In searching for a 3D statement for the studio and filmmakers we arrived at a stereographic style that allowed for comfort and maximum visual engagement to the viewer.
A 3D measurement of the offset in paleoseismological studies
NASA Astrophysics Data System (ADS)
Ferrater, Marta; Echeverria, Anna; Masana, Eulàlia; Martínez-Díaz, José J.; Sharp, Warren D.
2016-05-01
The slip rate of a seismogenic fault is a crucial parameter for establishing the contribution of the fault to the seismic hazard. It is calculated from measurements of the offset of linear landforms, such channels, produced by the fault combined with their age. The three-dimensional measurement of offset in buried paleochannels is subject to uncertainties that need to be quantitatively assessed and propagated into the slip rate. Here, we present a set of adapted scripts to calculate the net, lateral and vertical tectonic offset components caused by faults, together with their associated uncertainties. This technique is applied here to a buried channel identified in the stratigraphic record during a paleoseismological study at the El Saltador site (Alhama de Murcia fault, Iberian Peninsula). After defining and measuring the coordinates of the key points of a buried channel in the walls of eight trenches excavated parallel to the fault, we (a) adjusted a 3D straight line to these points and then extrapolated the tendency of this line onto a simplified fault plane; (b) repeated these two steps for the segment of the channel in the other side of the fault; and (c) measured the distance between the two resulting intersection points with the fault plane. In doing so, we avoided the near fault modification of the channel trace and obtained a three-dimensional measurement of offset and its uncertainty. This methodology is a substantial modification of previous procedures that require excavating progressively towards the fault, leading to possible underestimation of offset due to diffuse deformation near the fault. Combining the offset with numerical dating of the buried channel via U-series on soil carbonate, we calculated a maximum estimate of the net slip rate and its vertical and lateral components for the Alhama de Murcia fault.
Studies of the 3D surface roughness height
Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris
2013-12-16
Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.
NASA Astrophysics Data System (ADS)
Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; De Arcas, Guillermo; Alonso, Jesus
2012-12-01
In part I, the feasibility of using three-dimensional (3D) finite elements (FEs) to model the acoustic behaviour of the IEC 60318-1 artificial ear was studied and the numerical approach compared with classical lumped elements modelling. It was shown that by using a more complex acoustic model that took account of thermo-viscous effects, geometric shapes and dimensions, it was possible to develop a realistic model. This model then had clear advantages in comparison with the models based on equivalent circuits using lumped parameters. In fact results from FE modelling produce a better understanding about the physical phenomena produced inside ear simulator couplers, facilitating spatial and temporal visualization of the sound fields produced. The objective of this study (part II) is to extend the investigation by validating the numerical calculations against measurements on an ear simulator conforming to IEC 60318-1. For this purpose, an appropriate commercially available device is taken and a complete 3D FE model developed for it. The numerical model is based on key dimensional data obtained with a non-destructive x-ray inspection technique. Measurements of the acoustic transfer impedance have been carried out on the same device at a national measurement institute using the method embodied in IEC 60318-1. Having accounted for the actual device dimensions, the thermo-viscous effects inside narrow slots and holes and environmental conditions, the results of the numerical modelling were found to be in good agreement with the measured values.
3D Regression Heat Map Analysis of Population Study Data.
Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard
2016-01-01
Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.
Terascale direct numerical simulations of turbulent combustion using S3D
NASA Astrophysics Data System (ADS)
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2016-10-01
Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.
3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes
NASA Astrophysics Data System (ADS)
Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min
2016-06-01
A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.
NASA Astrophysics Data System (ADS)
Suzuki, Y. J.; Koyaguchi, T.
2011-12-01
During an explosive volcanic eruption, a mixture of volcanic gas and solid pyroclasts are ejected from a volcanic vent with a high temperature. As it rises, the mixture entrains ambient air owing to turbulent mixing. The entrained air expands by heating from the hot pyroclasts, and the eruption cloud (i.e., the ejected material plus the entrained air) rises as a buoyant plume. Because the plume height is principally determined by the balance between the thermal energy ejected at the vent and the work done in transporting the ejected material plus entrained air through the atmospheric stratification, it is controlled by the efficiency of turbulent mixing; as the amount of entrained air increases, the plume height decreases. In the 1-D models of eruption column (e.g., Woods, 1988), the plume height is calculated on the assumption that the mean inflow velocity across the edge of turbulent jet and/or plume is proportional to the mean vertical velocity (Morton et al., 1956). Experimental studies suggest that the proportionality constant (i.e., entrainment coefficient, k), which represents the efficiency of turbulent mixing, is about 0.10 for pure plumes when there is no wind. When an environmental wind is present, however, the interaction between a buoyant plume and the wind may enhance the entrainment of air and can significantly decrease the plume height (Bursik, 2001). In order to investigate the effects of wind on the vortical structures and the efficiency of turbulent mixing in an eruption cloud, we have carried out 3-D numerical simulations of eruption column which is ejected in a wind field. The simulation results indicate that a buoyant plume vertically rises as a "strong plume" (e.g., Bonadonna et al., 2003) when the wind velocity is low: the cloud reaches the neutral buoyancy level and overshoots until the upward momentum is exhausted. In this case, the plume height is consistent with prediction by the 1-D model with k~0.10. When the wind velocity is high, on
Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling
Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.
2013-11-28
We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.
Slab detachment in laterally varying subduction zones: 3-D numerical modeling
NASA Astrophysics Data System (ADS)
Duretz, T.; Gerya, T. V.; Spakman, W.
2014-03-01
Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models, encompassing experimentally derived flow laws and a pseudo free surface, are employed to unravel lithospheric and topographic evolutions. First, we consider coeval subduction of adjacent continental and oceanic lithospheres (SCO). This configuration yields to two-stage slab detachment during collision, topographic buildup and extrusion, variable along-trench convergence rates, and associated trench deformation. The second setting considers a convergent margin, which is laterally limited by a transform boundary (STB). Such collisional system is affected by a single slab detachment, little trench deformation, and moderately confined upper plate topography. The effect of initial thermal slab age on SCO and STB models are explored. Similarities with natural analogs along the Arabia-Eurasia collision are discussed.
Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, B.; Popov, A.
2013-12-01
The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and
Method and simulation to study 3D crosstalk perception
NASA Astrophysics Data System (ADS)
Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier
2012-03-01
To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.
3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking
NASA Astrophysics Data System (ADS)
Zhang, Lin; Wu, Tso-Ren
2016-04-01
In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most
The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit
NASA Astrophysics Data System (ADS)
Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka
2014-10-01
The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case
3-D Numerical Simulation of Hydrostatic Tests of Porous Rocks Using Adapted Constitutive Model
NASA Astrophysics Data System (ADS)
Chemenda, A. I.; Daniel, M.
2014-12-01
The high complexity and poor knowledge of the constitutive properties of porous rocks are principal obstacles for the modeling of their deformation. Normally, the constitutive lows are to be derived from the experimental data (nominal strains and stresses). They are known, however, to be sensitive to the mechanical instabilities within the rock specimen and the boundary (notably friction) conditions at its ends. To elucidate the impact of these conditions on the measured mechanical response we use 3-D finite-difference simulations of experimental tests. Modeling of hydrostatic tests was chosen because it does not typically involve deformation instabilities. The ends of the cylindrical 'rock sample' are in contact with the 'steel' elastic platens through the frictional interfaces. The whole system is subjected to a normal stress Pc applied to the external model surface. A new constitutive model of porous rocks with the cap-type yield function is used. This function is quadratic in the mean stress σm and depends on the inelastic strain γp in a way to generate strain softening at small σm and strain-hardening at high σm. The corresponding material parameters are defined from the experimental data and have clear interpretation in terms of the geometry of the yield surface. The constitutive model with this yield function and the Drucker-Prager plastic potential has been implemented in 3-D dynamic explicit code Flac3D. The results of an extensive set of numerical simulations at different model parameters will be presented. They show, in particular, that the shape of the 'numerical' hydrostats is very similar to that obtained from the experimental tests and that it is practically insensitive to the interface friction. On the other hand, the stress and strain fields within the specimen dramatically depend on this parameter. The inelastic deformation at the specimen's ends starts well before reaching the grain crushing pressure P* and evolves heterogeneously with Pc
Model studies of blood flow in basilar artery with 3D laser Doppler anemometer
NASA Astrophysics Data System (ADS)
Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.
2015-03-01
It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.
Montant, S; Marre, G; Blanchot, N; Rouyer, C; Videau, L; Sauteret, C
2006-12-11
An important issue, mosaic grating compressor, is studied to recompress pulses for multiPetawatt, high energy laser systems. Alignment of the mosaic elements is crucial to control the focal spot and thus the intensity on target. No theoretical approach analyses the influence of compressor misalignment on spatial and temporal profiles in the focal plane. We describe a simple 3D numerical model giving access to the focal plane view after a compressor. This model is computationally inexpensive since it needs only 1D Fourier transforms to access to the temporal profile. We present simulations of monolithic and mosaic grating compressors.
NASA Astrophysics Data System (ADS)
Ruh, Jonas B.; Sallarès, Valentí; Ranero, César R.; Gerya, Taras
2016-09-01
Seamounts or submarine volcanoes frequently collide with the overriding crust along presently active subduction zones locally modifying stress and permanent deformation patterns. Dynamics of this process is not fully understood, and several end-member scenarios of seamount-crust interaction are proposed. Here we use high-resolution 3-D numerical models to investigate evolution of crustal deformation and stress distribution within the upper plate induced by the underthrusting of subducting seamounts. The dynamical effects of the upper plate strength, subduction interface strength, and strain weakening of the crust are investigated. Experiment results demonstrate that characteristic crustal fracturing patterns formed in response to different seamount-crust interaction scenarios. Indenting seamounts strongly deform the overriding plate along a corridor as wide as the underthrusting seamount by constantly shifting subvertical shear zones rooted at the seamount extensions. A reentrant develops during initial seamount collision. A topographic bulge atop the seamount and lateral ridges emerge from further seamount subduction. Obtained stress pattern shows areas of large overpressure above the rearward and large underpressure above the trenchward flank of the seamount. Results of numerical experiments are consistent with seismic reflection images and seismic velocity models of the upper plate in areas of seamount subduction along the Middle America Trench and give important insights into the long-lasting question, whether subducting seamounts and rough seafloor act as barriers or asperities for megathrust earthquakes.
Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil
NASA Astrophysics Data System (ADS)
Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.
2015-01-01
At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.
NASA Astrophysics Data System (ADS)
Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.
2008-12-01
Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial
3-D Numerical Investigation of the Tsaoling Landslide Induced by Chi-Chi Earthquake, Taiwan.
NASA Astrophysics Data System (ADS)
Tang, C.; Hu, J.
2004-12-01
Large landslides occurred in the mountainous area near the epicenter of the Sept. 21st, 1999, Chi-Chi earthquake in central Taiwan. These landslides were triggered by the Mw = 7.6 earthquake, which resulted in more than 2,400 human casualties and widespread damage. The 1999 Chi-Chi earthquake triggered a catastrophic Tsaloing landslide, which mobilized about 0.125 km3 of rock and soil that slid across the Chingshui River and created a 5 km long natural dam. One fifth of the landslide mass dropped into the Chingshui River, the rest jumped over the river. At least five large landslides occurred in Tsaoling area are induced by big earthquake and heavy rainfalls since 1862 to 1999. Geological investigation shows that the prevailing attitude of sedimentary formation is about N45W with a dipping angle of 12S. First we used Remark Method to calculate the stability of slope. The bottom of slope has been eroded by Chingshui stream, and the PGA (Peak Ground Acceleration) in Chi-Chi earthquake was exceeded the yield acceleration along the sliding surface. The landslide mechanism may be including flowing, rolling, bouncing and sliding. The rock on the fault plane during faulting can generate pseudotachylyte resulted from melted rock by frictional heat energy along the sliding surface. The frictional melted rocks were found out in the Chiu-Fen-Erh-Shan collapses. However, we didn¡¦t found out the frictional melted rock in Tsaoling area. If we calculated the kinetic energy which was converted to heat energy, the increase of temperature was enough to melt the rocks on sliding surface. When the rocks on the sliding surface had been melted, the friction on the sliding surface must be decrease. Therefore, the 0.125 km3 debris had sufficient kinetic energy to across Chingshui River to the other side of the river. Using 3D distinct-element modeling (PFC3d code), we try to simulate kinematic process of Tsaoling landslide. Our numerical model was compose of about 10,000 spherical
Wind forcing of upland lake hydrodynamics: implementation and validation of a 3D numerical model
NASA Astrophysics Data System (ADS)
Morales, L.; French, J.; Burningham, H.; Evans, C.; Battarbee, R.
2010-12-01
Upland lakes act as important archives of environmental change, yet inferences based on the analysis of sediment cores are frequently compromised by an incomplete understanding of the hydrodynamic processes controlling the distribution and completeness of lake sediment sequences and their linkages to wider environmental factors. Many upland lakes are characterized by complex vertical and horizontal circulation patterns induced by the action of wind on the water surface. Wind forcing is important not only for the resuspension of bottom sediments in shallow marginal areas, but may also control the broader distribution of sediment accumulation. The work presented here represents the first stage of a project aimed at elucidating the linkages between wind forcing and the distribution of bottom sediments in upland lakes and the extent to which simple 'sediment focusing' models provide an adequate basis for predicting optimal locations for the acquisition of core samples for palaeolimnological analysis. As a first step, a 3D numerical hydrodynamic model is implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. This utilises the community ocean model, FVCOM, that solves the Navier-Stokes equations in 3D on an unstructured triangular mesh using the finite volume method. A new graphical user interface has been developed for FVCOM to facilitate pre- and post-processing of lake modelling problems. At Llyn Conwy, the model is forced using local meteorological data and validated against vertical temperature profiles recorded by a long-term buoy deployment and short-term observations of vertical current structure measured using an upward-looking acoustic doppler profiler and surface circulation obtained from GPS drifters. Challenges in the application of FVCOM to a small lake include the design of a mesh that ensures numerical stability whilst resolving a complex bathymetry, and the need for careful treatment of model 'spin-up'. Once calibrated, the
NASA Astrophysics Data System (ADS)
Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad
2016-12-01
Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.
3D numerical simulations of dense water cascading in an idealised laboratory setting
NASA Astrophysics Data System (ADS)
Wobus, F.; Shapiro, G. I.; Maqueda, M. A. M.; Huthnance, J. M.
2012-04-01
The sinking of dense waters flowing from shelf seas down the continental slope "cascading" contributes to ocean ventilation and water mass formation (notably in the Antarctic) and hence ocean circulation. It is also deemed to affect carbon cycling by providing an efficient mechanism of export of carbon-rich surface waters to a greater depth thus contributing to the "carbon pump". Cascading occurs where dense water - formed by cooling, evaporation or ice-formation with brine rejection over the shallow continental shelf - spills over the shelf edge and descends the continental slope as a near-bottom gravity current. During its descent, the plume is modified by mixing and entrainment, and detaches off the slope when reaching its neutral buoyancy level. Cascading over steep bottom topography is studied here in numerical experiments using POLCOMS, a 3D ocean circulation model which utilizes a terrain-following s-coordinate system (Wobus et al, 2011). The model setup is based on a previously conducted (Shapiro and Zatsepin, 1997) laboratory experiment of a continuous dense water flow from a central source on a conical slope in a rotating tank. The governing parameters of the experiments are the density difference between plume and ambient water, the flow rate, the speed of rotation and (in the model) diffusivity and viscosity. The descent of the dense flow as characterised by the length of the plume as a function of time is studied for a range of physical and model parameters. Very good agreement between the model and the laboratory results is shown in dimensional and non-dimensional variables. It is confirmed that a hydrostatic model is capable of reproducing the essential physics of cascading on a very steep slope if the model correctly resolves velocity veering in the bottom boundary layer. Experiments changing the height of the bottom Ekman layer (by changing viscosity) and modifying the plume from a 2-layer system to a stratified regime (by enhancing diapycnal
An approach to 3D magnetic field calculation using numerical and differential algebra methods
Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.
1992-07-17
Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.
3D ultrasound computer tomography: update from a clinical study
NASA Astrophysics Data System (ADS)
Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.
2016-04-01
Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Lu, Bingjuan; Ge, Yunwang; Chen, Wenqing
Numerical electromagnetic field simulations of high-temperature superconductors (HTSC) bulk were carried out to calculate the magnetic force between the HTSC bulk and the permanent magnet railway (PMR). A 3D-modeling numerical calculation method is proposed using the finite element method. The model is formulated with the magnetic field vector (H-method). The resulting code was written with FORTRAN language. The electric field intensity E and the current density J constitutive relation of HTSC were described with E-J power law. The Kim macro-model is used to describe critical current density Jc of HTSC bulk. Two virtual HTSC bulks were used to solve the critical current density Jc anisotropic properties of HTSC materials. A superconducting levitation system composed of one HTSC bulk and PMR is successfully investigated using the proposed method. By this method, the influence of critical current density on magnetic levitation force of the superconducting levitation system is mathematically studied.
NASA Astrophysics Data System (ADS)
Beretta, S.; Moia, F.; Guandalini, R.; Cappelletti, F.
2012-04-01
The research activities carried out by the Environment and Sustainable Development Department of RSE S.p.A. aim to evaluate the feasibility of CO2 geological sequestration in Italy, with particular reference to the storage into saline aquifers. The identification and geological characterization of the Italian potential storage sites, together with the study of the temporal and spatial evolution of the CO2 plume within the caprock-reservoir system, are performed using different modelling tools available in the Integrated Analysis Modelling System (SIAM) entirely powered in RSE. The numerical modelling approach is the only one that allows to investigate the behaviour of the injected CO2 regarding the fluid dynamic, geochemical and geomechanical aspects and effects due to its spread, in order to verify the safety of the process. The SIAM tools allow: - Selection of potential Italian storage sites through geological and geophysical data collected in the GIS-CO2 web database; - Characterization of caprock and aquifer parameters, seismic risk and environmental link for the selected site; - Creation of the 3D simulation model for the selected domain, using the modeller METHODRdS powered by RSE and the mesh generator GMSH; - Simulation of the injection and the displacement of CO2: multiphase fluid 3D dynamics is based on the modified version of TOUGH2 model; - Evaluation of geochemical reaction effects; - Evaluation of geomechanic effects, using the coupled 3D CANT-SD finite elements code; - Detailed local analysis through the use of open source auxiliary tools, such as SHEMAT and FEHM. - 3D graphic analysis of the results. These numerical tools have been successfully used for simulating the injection and the spread of CO2 into several real Italian reservoirs and have allowed to achieve accurate results in terms of effective storage capacity and safety analysis. The 3D geological models represent the high geological complexity of the Italian subsoil, where reservoirs are
Controlled architectural and chemotactic studies of 3D cell migration.
Tayalia, Prakriti; Mazur, Eric; Mooney, David J
2011-04-01
Chemotaxis plays a critical role in tissue development and wound repair, and is widely studied using ex vivo model systems in applications such as immunotherapy. However, typical chemotactic models employ 2D systems that are less physiologically relevant or use end-point assays, that reveal little about the stepwise dynamics of the migration process. To overcome these limitations, we developed a new model system using microfabrication techniques, sustained drug delivery approaches, and theoretical modeling of chemotactic agent diffusion. This model system allows us to study the effects of 3D architecture and chemotactic agent gradient on immune cell migration in real time. We find that dendritic cell migration is characterized by a strong interplay between matrix architecture and chemotactic gradients, and migration is also influenced dramatically by the cell activation state. Our results indicate that Lipopolysaccharide-activated dendritic cells studied in a traditional transwell system actually exhibit anomalous migration behavior. Such a 3D ex vivo system lends itself for analyzing cell migratory behavior in response to single or multiple competitive cues and could prove useful in vaccine development.
Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Cappello, S.; Chacon, L.
2010-11-01
A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)
Development of a 3D numerical methodology for fast prediction of gun blast induced loading
NASA Astrophysics Data System (ADS)
Costa, E.; Lagasco, F.
2014-05-01
In this paper, the development of a methodology based on semi-empirical models from the literature to carry out 3D prediction of pressure loading on surfaces adjacent to a weapon system during firing is presented. This loading is consequent to the impact of the blast wave generated by the projectile exiting the muzzle bore. When exceeding a pressure threshold level, loading is potentially capable to induce unwanted damage to nearby hard structures as well as frangible panels or electronic equipment. The implemented model shows the ability to quickly predict the distribution of the blast wave parameters over three-dimensional complex geometry surfaces when the weapon design and emplacement data as well as propellant and projectile characteristics are available. Considering these capabilities, the use of the proposed methodology is envisaged as desirable in the preliminary design phase of the combat system to predict adverse effects and then enable to identify the most appropriate countermeasures. By providing a preliminary but sensitive estimate of the operative environmental loading, this numerical means represents a good alternative to more powerful, but time consuming advanced computational fluid dynamics tools, which use can, thus, be limited to the final phase of the design.
Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment
NASA Technical Reports Server (NTRS)
Compton, William B, III
2015-01-01
Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
Early Earth tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2014-12-01
Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton
NASA Astrophysics Data System (ADS)
Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; Moretti, Roberto; Orsi, Giovanni; Gasparini, Paolo
2016-12-01
We illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions that simulate magma rise from a deep (≥ 8 km depth) to shallow (2-6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. The simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).
Evaluation of 3-D graphics software: A case study
NASA Technical Reports Server (NTRS)
Lores, M. E.; Chasen, S. H.; Garner, J. M.
1984-01-01
An efficient 3-D geometry graphics software package which is suitable for advanced design studies was developed. The advanced design system is called GRADE--Graphics for Advanced Design. Efficiency and ease of use are gained by sacrificing flexibility in surface representation. The immediate options were either to continue development of GRADE or to acquire a commercially available system which would replace or complement GRADE. Test cases which would reveal the ability of each system to satisfy the requirements were developed. A scoring method which adequately captured the relative capabilities of the three systems was presented. While more complex multi-attribute decision methods could be used, the selected method provides all the needed information without being so complex that it is difficult to understand. If the value factors are modestly perturbed, system Z is a clear winner based on its overall capabilities. System Z is superior in two vital areas: surfacing and ease of interface with application programs.
3D numerical simulations of a LOVA reproduction inside the new facility STARDUST-UPGRADE
NASA Astrophysics Data System (ADS)
Ciparisse, J. F.; Malizia, A.; Poggi, L. A.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.
2017-02-01
A loss of vacuum in a vessel, containing or not dust, is the typical case study considered in the STARDUST-UPGRADE facility of the Quantum Electronics and Plasma Group of the university of Rome Tor Vergata. This kind of accident was simulated numerically, without including the presence of dust, for two mass flow rates and three different inlet ports (C, E and F). Numerical settings are explained and the results obtained in each case are shown and discussed. At the end of the work, conclusions about what seen and further foreseen developments of this research are presented.
Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling
NASA Astrophysics Data System (ADS)
Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.
2012-12-01
Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in
Improved Surgery Planning Using 3-D Printing: a Case Study.
Singhal, A J; Shetty, V; Bhagavan, K R; Ragothaman, Ananthan; Shetty, V; Koneru, Ganesh; Agarwala, M
2016-04-01
The role of 3-D printing is presented for improved patient-specific surgery planning. Key benefits are time saved and surgery outcome. Two hard-tissue surgery models were 3-D printed, for orthopedic, pelvic surgery, and craniofacial surgery. We discuss software data conversion in computed tomography (CT)/magnetic resonance (MR) medical image for 3-D printing. 3-D printed models save time in surgery planning and help visualize complex pre-operative anatomy. Time saved in surgery planning can be as much as two thirds. In addition to improved surgery accuracy, 3-D printing presents opportunity in materials research. Other hard-tissue and soft-tissue cases in maxillofacial, abdominal, thoracic, cardiac, orthodontics, and neurosurgery are considered. We recommend using 3-D printing as standard protocol for surgery planning and for teaching surgery practices. A quick turnaround time of a 3-D printed surgery model, in improved accuracy in surgery planning, is helpful for the surgery team. It is recommended that these costs be within 20 % of the total surgery budget.
Understanding heavy mineral enrichment – Using a 3D numerical model
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Schmeeckle, Mark; Huhn, Katrin
2015-04-01
Layered deposits of light and heavy minerals can be found in many aquatic environments. Various researchers attempted to understand the role of the enrichment process of heavy minerals in placers using flume or in situ field experiments, because of their high economic value. However, a precise quantification of the physical processes occurring at the direct vicinity and in the interior of layered deposits is often limited with such techniques. To investigate the physical processes causing heavy particle enrichment in layers at the direct vicinity and in the interior of sediment beds, a 3D numerical model as an alternative to in situ measurement was used. The 3D model simulates particle transport in water by combining a turbulence-resolving large eddy simulation (LES) with a discrete element model (DEM) prescribing the motion of individual grains. The dimensions of model domain where X = 0.12 [m], Y = 0.06 [m], and Z = 0.04 [m]. A pressure gradient and cyclic boundaries at the side walls allowed the simulation of a recycling flow. For the generation of a granular bed 0.004 [m] in height 200,000 spherical particles (D50 = 500 µm) were generated randomly and deposited under gravity at the bottom of the domain. Seven suites of experiments were designed in which the concentration of heavy i.e. 5000 [kg/m³] over light particles i.e. 2560 [kg/m³] was increased ranging from 0%, 10%, 25%, 50%, 75%, 90%, to 100% heavy particle content. All beds where tested for five seconds at a predefined flow speed of 0.35 [m/s]. The model results showed that at the direct vicinity of the bed the presence of high-vorticity turbulence structures embedded within broader high speed fluid regions caused the formation of particle sweeps or high-speed wedges. The vertical extension of the sweeps decreased when a higher amount of heavy particles was mixed to the beds, which ultimately resulted in a decrease of the bed roughness. Further, the particle flux decreased when higher quantities of
Malapaka, Shiva Kumar; Mueller, Wolf-Christian
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
Computational study of 3-D Benard convection with gravitational modulation
NASA Technical Reports Server (NTRS)
Biringen, S.; Peltier, L. J.
1989-01-01
In this numerical study the effects of a modulated gravitational field on three-dimensional Rayleigh-Benard convection with heating from above or from below is investigated. The full, nonlinear, time-dependent, Boussinesq Navier-Stokes equations and the energy equation are solved by a semiimplicit, pseudo-spectral procedure. This study has been motivated by the need to better understand the effects of vibration (G-Jitter) on fluids systems especially in the low gravity environment.
Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.
1994-09-01
This paper discusses the numerical simulation of groundwater flow through heterogeneous porous media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to compute the hydraulic pressure head. The numerical investigation considers the effects of enlarging the domain, increasing the grid resolution, and varying the geostatistical parameters used to define the subsurface realization. The results were obtained using the PARFLOW groundwater flow simulator on the Cray T3D massively parallel computer.
Spent Fuel Ratio Estimates from Numerical Models in ALE3D
Margraf, J. D.; Dunn, T. A.
2016-08-02
Potential threat of intentional sabotage of spent nuclear fuel storage facilities is of significant importance to national security. Paramount is the study of focused energy attacks on these materials and the potential release of aerosolized hazardous particulates into the environment. Depleted uranium oxide (DUO_{2}) is often chosen as a surrogate material for testing due to the unreasonable cost and safety demands for conducting full-scale tests with real spent nuclear fuel. To account for differences in mechanical response resulting in changes to particle distribution it is necessary to scale the DUO_{2} results to get a proper measure for spent fuel. This is accomplished with the spent fuel ratio (SFR), the ratio of respirable aerosol mass released due to identical damage conditions between a spent fuel and a surrogate material like depleted uranium oxide (DUO_{2}). A very limited number of full-scale experiments have been carried out to capture this data, and the oft-questioned validity of the results typically leads to overly-conservative risk estimates. In the present work, the ALE3D hydrocode is used to simulate DUO_{2} and spent nuclear fuel pellets impacted by metal jets. The results demonstrate an alternative approach to estimate the respirable release fraction of fragmented nuclear fuel.
A 3D numerical simulation of different phases of friction stir welding
NASA Astrophysics Data System (ADS)
Guerdoux, S.; Fourment, L.
2009-10-01
An adaptive arbitrary Lagrangian-Eulerian formulation is developed to compute the material flow and the temperature evolution during the three phases of the friction stir welding (FSW) process. It follows a splitting approach: after the calculations of the velocity/pressure and temperature fields, the mesh velocity is derived from the domain boundary evolution and from an adaptive refinement criterion provided by error estimation, and finally state variables are remapped. In this way, the unilateral contact conditions between the plate and the tool are accurately taken into account, so allowing one to model various instabilities that may occur during the process, such as the role played by the plunge depth of the tool on the formations of flashes, the possible appearance of non-steady voids or tunnel holes and the influence of the threads on the material flow, the temperature field and the welding efforts. This formulation is implemented in the 3D Forge3 FE software with automatic remeshing. The non-steady phases of FSW can so be simulated, as well as the steady welding phase. The study of different process conditions shows that the main phenomena taking place during FSW can be simulated with the right sensitivities.
Numerical non-LTE 3D radiative transfer using a multigrid method
NASA Astrophysics Data System (ADS)
Bjørgen, Johan P.; Leenaarts, Jorrit
2017-03-01
Context. 3D non-LTE radiative transfer problems are computationally demanding, and this sets limits on the size of the problems that can be solved. So far, multilevel accelerated lambda iteration (MALI) has been the method of choice to perform high-resolution computations in multidimensional problems. The disadvantage of MALI is that its computing time scales as O(n2), with n the number of grid points. When the grid becomes finer, the computational cost increases quadratically. Aims: We aim to develop a 3D non-LTE radiative transfer code that is more efficient than MALI. Methods: We implement a non-linear multigrid, fast approximation storage scheme, into the existing Multi3D radiative transfer code. We verify our multigrid implementation by comparing with MALI computations. We show that multigrid can be employed in realistic problems with snapshots from 3D radiative magnetohydrodynamics (MHD) simulations as input atmospheres. Results: With multigrid, we obtain a factor 3.3-4.5 speed-up compared to MALI. With full-multigrid, the speed-up increases to a factor 6. The speed-up is expected to increase for input atmospheres with more grid points and finer grid spacing. Conclusions: Solving 3D non-LTE radiative transfer problems using non-linear multigrid methods can be applied to realistic atmospheres with a substantial increase in speed.
Elemental concentration distribution in human fingernails - A 3D study
NASA Astrophysics Data System (ADS)
Pineda-Vargas, C. A.; Mars, J. A.; Gihwala, D.
2012-02-01
The verification of pathologies has normally been based on analysis of blood (serum and plasma), and physiological tissue. Recently, nails and in particular human fingernails have become an important medium for pathological studies, especially those of environmental origin. The analytical technique of PIXE has been used extensively in the analysis of industrial samples and human tissue specimens. The application of the analytical technique to nails has been mainly to bulk samples. In this study we use micro-PIXE and -RBS, as both complementary and supplementary, to determine the elemental concentration distribution of human fingernails of individuals. We report on the 3D quantitative elemental concentration distributions (QECDs) of various elements that include C, N and O as major elements (10-20%), P, S, Cl, K and Ca as minor elements (1-10%) and Fe, Mn, Zn, Ti, Na, Mg, Cu, Ni, Cr, Rb, Br, Sr and Se as trace elements (less than 1%). For PIXE and RBS the specimens were bombarded with a 3 MeV proton beam. To ascertain any correlations in the quantitative elemental concentration distributions, a linear traverse analysis was performed across the width of the nail. Elemental distribution correlations were also obtained.
Numerical Investigation of 3D multichannel analysis of surface wave method
NASA Astrophysics Data System (ADS)
Wang, Limin; Xu, Yixian; Luo, Yinhe
2015-08-01
Multichannel analysis of surface wave (MASW) method is an efficient tool to obtain near-surface S-wave velocity, and it has gained popularity in engineering practice. Up to now, most examples of using the MASW technique are focused on 2D models or data from a 1D linear receiver spread. We propose a 3D MASW scheme. A finite-difference (FD) method is used to investigate the method using linear and fan-shaped receiver spreads. Results show that the 3D topography strongly affects propagation of Rayleigh waves. The energy concentration of dispersion image is distorted and bifurcated because of the influence of free-surface topography. These effects are reduced with the 3D MASW method. Lastly we investigate the relation between the array size and the resolution of dispersion measurement.
The 3-D numerical simulation research of vacuum injector for linear induction accelerator
NASA Astrophysics Data System (ADS)
Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing
2017-01-01
Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.
Filoux, Erwan; Callé, Samuel; Lou-Moeller, Rasmus; Lethiecq, Marc; Levassort, Franck
2010-05-01
The transient analysis of piezoelectric transducers is often performed using finite-element or finite-difference time-domain methods, which efficiently calculate the vibration of the structure but whose numerical dispersion prevents the modeling of waves propagating over large distances. A second analytical or numerical simulation is therefore often required to calculate the pressure field in the propagating medium (typically water) to deduce many important characteristics of the transducer, such as spatial resolutions and side lobe levels. This is why a hybrid algorithm was developed, combining finite- difference and pseudo-spectral methods in the case of 2-D configurations to simulate accurately both the generation of acoustic waves by the piezoelectric transducer and their propagation in the surrounding media using a single model. The algorithm was redefined in this study to take all three dimensions into account and to model single-element transducers, which usually present axisymmetrical geometry. This method was validated through comparison of its results with those of finite-element software, and was used to simulate the behavior of planar and lens-focused transducers. A high-frequency (30 MHz) transducer based on a screen-printed piezoelectric thick film was fabricated and characterized. The numerical results of the hybrid algorithm were found to be in good agreement with the experimental measurements of displacements at the surface of the transducer and of pressure radiated in water in front of the transducer.
NASA Astrophysics Data System (ADS)
Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.
2016-03-01
This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.
Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software
NASA Astrophysics Data System (ADS)
Roşu, Şerban; Ianeş, Emilia; Roşu, Doina
2010-09-01
This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.
Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.
Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter
2014-02-07
This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.
Application of 3D printing technology in aerodynamic study
NASA Astrophysics Data System (ADS)
Olasek, K.; Wiklak, P.
2014-08-01
3D printing, as an additive process, offers much more than traditional machining techniques in terms of achievable complexity of a model shape. That fact was a motivation to adapt discussed technology as a method for creating objects purposed for aerodynamic testing. The following paper provides an overview of various 3D printing techniques. Four models of a standard NACA0018 aerofoil were manufactured in different materials and methods: MultiJet Modelling (MJM), Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). Various parameters of the models have been included in the analysis: surface roughness, strength, details quality, surface imperfections and irregularities as well as thermal properties.
Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging
NASA Astrophysics Data System (ADS)
Buljac, Ante; Shakoor, Modesar; Neggers, Jan; Bernacki, Marc; Bouchard, Pierre-Olivier; Helfen, Lukas; Morgeneyer, Thilo F.; Hild, François
2017-03-01
A combined computational-experimental framework is introduced herein to validate numerical simulations at the microscopic scale. It is exemplified for a flat specimen with central hole made of cast iron and imaged via in-situ synchrotron laminography at micrometer resolution during a tensile test. The region of interest in the reconstructed volume, which is close to the central hole, is analyzed by digital volume correlation (DVC) to measure kinematic fields. Finite element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements. Gray level residuals for DVC measurements and FE simulations are assessed for validation purposes.
Assessment of 3D Models Used in Contours Studies
ERIC Educational Resources Information Center
Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes
2015-01-01
This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…
Study, simulation and design of a 3D clinostat
NASA Astrophysics Data System (ADS)
Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria
High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g
Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber
NASA Astrophysics Data System (ADS)
Yuen, A.; Bombardelli, F. A.
2014-12-01
Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on
Nonlinear Numerical Modeling of Shape Control in IGNITOR in the Presence of 3D Structures
NASA Astrophysics Data System (ADS)
Albanese, R.; Ambrosino, G.; de Tommasi, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.; Coppi, B.
2014-10-01
IGNITOR is a high field compact machine designed for the investigation of fusion burning plasmas at or close to ignition. The integrated plasma position, shape and current control plays an important role in its safe operation. The analysis of its behavior taking into account nonlinear and 3D effects can be of great interest for assessing its performances. In fact, the system was designed on the basis of an axisymmetric linearized model. To this purpose, we use a computational tool, called CarMa0NL, with the unprecedented capability of simultaneously considering three-dimensional effects of conductors surrounding the plasma and the inherent nonlinearity of the plasma behaviour itself, in the presence of the complex set of circuit equations describing the control system. Preliminary results already lead to the conclusion that the vertical position response is not much influenced by nonlinear and 3D effects, as the vertical stabilization controller is able to ``hide'' the differences in open-loop models. Here we assess the performance of the shape controller, by coupling the nonlinear plasma evolution in the presence of the 3D vessel with ports to the complex circuit dynamics simulating the integrated closed loop control system.
OB3D, a new set of 3D objects available for research: a web-based study
Buffat, Stéphane; Chastres, Véronique; Bichot, Alain; Rider, Delphine; Benmussa, Frédéric; Lorenceau, Jean
2014-01-01
Studying object recognition is central to fundamental and clinical research on cognitive functions but suffers from the limitations of the available sets that cannot always be modified and adapted to meet the specific goals of each study. We here present a new set of 3D scans of real objects available on-line as ASCII files, OB3D. These files are lists of dots, each defined by a triplet of spatial coordinates and their normal that allow simple and highly versatile transformations and adaptations. We performed a web-based experiment to evaluate the minimal number of dots required for the denomination and categorization of these objects, thus providing a reference threshold. We further analyze several other variables derived from this data set, such as the correlations with object complexity. This new stimulus set, which was found to activate the Lower Occipital Complex (LOC) in another study, may be of interest for studies of cognitive functions in healthy participants and patients with cognitive impairments, including visual perception, language, memory, etc. PMID:25339920
NASA Astrophysics Data System (ADS)
Horrillo, J.; Wood, A.; Kim, G.-B.; Parambath, A.
2013-12-01
A simplified three-dimensional Navier-Stokes (3-D NS) model for two fluids, water and landslide material (mudslide) is presented and validated with standard laboratory experiments. Dubbed TSUNAMI3D (Tsunami Solution Using Navier-Stokes Algorithm with Multiple Interfaces) is applied to a 3-D full-scale landslide scenario in the Gulf of Mexico (GOM), i.e., the East-Breaks underwater landslide. The simplified 3-D NS model is conceived to be computationally efficient for tsunami calculations. The simplification is derived from the large aspect ratio of the tsunami waves (wavelength/wave-height) and the selected computational grid that has a smaller aspect ratio. This allows us to assume a horizontal fluid surface in each individual cell containing the interface (air-water, air-mudslide, and water-mudslide). The tracking of fluid interfaces is based on the Volume of Fluid method and the surfaces are obtained by integrating the fluxes of each individual fluid cell along the water column. In the momentum equation, the pressure term is split into two components, hydrostatic and nonhydrostatic. The internal friction is solved in a simplified manner by adjusting the viscosity coefficient. Despite the simplification to get an efficient solution, the numerical results agree fairly well with standard landslide laboratory experiments required by the National Tsunami Hazard Mitigation Program for tsunami model validation. The numerical effect caused by using a sharp versus a diffusive water-mudslide interface for a full-scale landslide-tsunami scenario is also investigated. Observations from this experiment indicated that choosing a sharp or diffusive interface seems to have no remarkable effect at early stages of the tsunami wave propagation. Last, a large scale 3-D numerical simulation is carried out for the ancient GOM's East-Breaks landslide by using the simplified model to calculate the early stages of the tsunami wave propagation.
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Numerical Methods for 3D Magneto-Rotational Core-Collapse Supernova Simulation with Jet Formation
NASA Astrophysics Data System (ADS)
Käppeli, R. Y.
2013-12-01
The work presented in this thesis is devoted to the development of a numerical model for the three dimensional simulation of magneto-rotational core-collapse supernovae (MHD-CCSNe) with jet formation. The numerical model then suggests that MHD-CCSNe naturally provide a possible site for the strong rapid neutron capture process in agreement with observations of the early Galactic chemical evolution. In the first part of this thesis, we develop several numerical methods and describe thoroughly their efficient implementations on current high-performance computer architectures. We develop a fast and simple computer code texttt{FISH} that solves the equations of magnetohydrodynamics. The code is parallelized with an optimal combination of shared and distributed memory paradigms and scales to several thousands processes on high-performance computer clusters. We develop a novel well-balanced numerical scheme for the Euler equations with gravitational source terms to preserve a discrete hydrostatic equilibrium exactly. Being able to accurately represent hydrostatic equilibria is of particular interest for the simulation of CCSN, because a large part of the newly forming neutron star evolves in a quasi-hydrostatic manner. We include an approximate and computationally efficient treatment of neutrino physics in the form of a spectral leakage scheme. It enables us to capture approximately the most important neutrino cooling effects, which are responsible for the shock stall and for the neutronisation of matter behind the shock. The latter is crucial for the nucleosynthesis yields. To fit into our multidimensional MHD-CCSN model, the spectral leakage scheme is implemented in a ray-by-ray approach. In the second part of this thesis, we apply our three-dimensional numerical model to the study of the MHD-CCSN explosion mechanism. We investigate a series of models with poloidal magnetic field and varying initial angular momentum distribution through the collapse, bounce and jet
3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea
Baumgardner, J.R.
1992-01-01
Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.
3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea
Baumgardner, J.R.
1992-10-01
Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.
On 3D Dimension: Study cases for Archaeological sites
NASA Astrophysics Data System (ADS)
D'Urso, M. G.; Marino, C. L.; Rotondi, A.
2014-04-01
For more than a century the tridimensional vision has been of interest for scientists and users in several fields of application. The mathematical bases have remained substantially unchanged but only the new technologies have allowed us to make the vision really impressive. Photography opens new frontiers and has enriched of physical, mathematical, chemical, informatical and topographic notions by making the images so real to make the observer fully immersed into the represented scene. By means of active googless the 3D digital technique, commonly used for video games, makes possible animations without limitations in the dimension of the images thanks to the improved performances of the graphic processor units and related hardware components. In this paper we illustrate an experience made by the students of the MSc'degree course of Topography, active at the University of Cassino and Southern Lazio, in which the photography has been applied as an innovative technique for the surveying of cultural heritage. The tests foresee the use of traditional techniques of survey with 3D digital images and use of GPS sensors. The ultimate objective of our experience is the insertion in the web, allowing us the visualization of the 3D images equipped with all data. In conclusion these new methods of survey allow for the fusion of extremely different techniques, in such an impressive way to make them inseparable and justifying the origin of the neologism "Geomatics" coined at the Laval University (Canada) during the eighties.
NASA Astrophysics Data System (ADS)
Yang, Si-Tong; Wei, Jiu-Chuan; Cheng, Jiu-Long; Shi, Long-Qing; Wen, Zhi-Jie
2016-12-01
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity V x, V y, and V z for the same node in 3-D staggered-grid finite difference models by calculating the average value of V y, and V z of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways
Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao
2005-01-01
The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
3D numerical thermal stress analysis of the high power target for the SLC Positron Source
Reuter, E.M.; Hodgson, J.A.
1991-05-01
The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.
3D tomodosimetry using long scintillating fibers: A feasibility study
Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc
2013-10-15
Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2
Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.
1997-12-31
The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.
Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation
NASA Astrophysics Data System (ADS)
Fedele, R.; Jovanović, D.; De Nicola, S.; Eliasson, B.; Shukla, P. K.
2009-11-01
The results of recently developed investigations, that have been carried out within the framework of the controlling potential method (CPM), are reviewed. This method allows one to decompose a three dimensional (3D) Gross-Pitaevskii equation (GPE) into the pair of coupled Schrödinger-type equations. Under suitable mathematical conditions, the solutions of the 3D controlled GPE can be constructed from the solutions of a 2D linear Schrödinger equation (the transverse component of the GPE) coupled with a 1D nonlinear Schrödinger equation (the longitudinal component of the GPE). Such decomposition allows one to cast the solutions in the form of the product of the solutions of the transverse and the longitudinal components of the GPE. The coupling between these two equations is the functional of both the transverse and the longitudinal profiles. It is shown that the CPM can be used to obtain a new class of three-dimensional solitary waves solutions of the GPE, which governs the dynamics of Bose-Einstein condensates. By imposing an external controlling potential, the desired time-dependent shape of the localized BECs is obtained. The stability of the exact solutions was checked with direct simulations of the time -dependent, three-dimensional GPE. Our simulations show that the localized condensates are stable with respect to perturbed initial conditions.
Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition
Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.
2012-01-01
We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.
Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation
Fedele, R.; Jovanovic, D.; De Nicola, S.; Eliasson, B.; Shukla, P. K.
2009-11-10
The results of recently developed investigations, that have been carried out within the framework of the controlling potential method (CPM), are reviewed. This method allows one to decompose a three dimensional (3D) Gross-Pitaevskii equation (GPE) into the pair of coupled Schroedinger-type equations. Under suitable mathematical conditions, the solutions of the 3D controlled GPE can be constructed from the solutions of a 2D linear Schroedinger equation (the transverse component of the GPE) coupled with a 1D nonlinear Schroedinger equation (the longitudinal component of the GPE). Such decomposition allows one to cast the solutions in the form of the product of the solutions of the transverse and the longitudinal components of the GPE. The coupling between these two equations is the functional of both the transverse and the longitudinal profiles. It is shown that the CPM can be used to obtain a new class of three-dimensional solitary waves solutions of the GPE, which governs the dynamics of Bose-Einstein condensates. By imposing an external controlling potential, the desired time-dependent shape of the localized BECs is obtained. The stability of the exact solutions was checked with direct simulations of the time -dependent, three-dimensional GPE. Our simulations show that the localized condensates are stable with respect to perturbed initial conditions.
Qiu, Bing; Liu, Fei; Tang, Bensen; Deng, Biyong; Liu, Fang; Zhu, Weimin; Zhen, Dong; Xue, Mingyuan; Zhang, Mingjiao
2017-01-25
Patient-specific instrumentation (PSI) was designed to improve the accuracy of preoperative planning and postoperative prosthesis positioning in total knee arthroplasty (TKA). However, better understanding needs to be achieved due to the subtle nature of the PSI systems. In this study, 3D printing technique based on the image data of computed tomography (CT) has been utilized for optimal controlling of the surgical parameters. Two groups of TKA cases have been randomly selected as PSI group and control group with no significant difference of age and sex (p > 0.05). The PSI group is treated with 3D printed cutting guides whereas the control group is treated with conventional instrumentation (CI). By evaluating the proximal osteotomy amount, distal osteotomy amount, valgus angle, external rotation angle, and tibial posterior slope angle of patients, it can be found that the preoperative quantitative assessment and intraoperative changes can be controlled with PSI whereas CI is relied on experience. In terms of postoperative parameters, such as hip-knee-ankle (HKA), frontal femoral component (FFC), frontal tibial component (FTC), and lateral tibial component (LTC) angles, there is a significant improvement in achieving the desired implant position (p < 0.05). Assigned from the morphology of patients' knees, the PSI represents the convergence of congruent designs with current personalized treatment tools. The PSI can achieve less extremity alignment and greater accuracy of prosthesis implantation compared against control method, which indicates potential for optimal HKA, FFC, and FTC angles.
3-D Numerical Modeling of Rupture Sequences of Large Shallow Subduction Earthquakes
NASA Astrophysics Data System (ADS)
Liu, Y.; Rice, J. R.
2003-12-01
We study the rupture behavior of large earthquakes on a 3-D shallow subduction fault governed by a rate and state friction law, and loaded by imposed slip at rate Vpl far downdip along the thrust interface. Friction properties are temperature, and hence depth, dependent, so that sliding is stable ( a - b > 0) at depths below about 30 km. To perturb the system into a nonuniform slip mode, if such a solution exists, we introduce small along-strike variations in either the constitutive parameters a and (a - b), or the effective normal stress, or the initial conditions. Our results do show complex, nonuniform slip behavior over the thousands of simulation years. Large events of multiple magnitudes occur at various along-strike locations, with different recurrence intervals, like those of natural interplate earthquakes. In the model, a large event usually nucleates in a less well locked gap region (slipping at order of 0.1 to 1 times the plate convergence rate Vpl) between more firmly locked regions (slipping at 10-4 to 10-2 Vpl) which coincide with the rupture zones of previous large events. It then propagates in both the dip and strike directions. Along-strike propagation slows down as the rupture front encounters neighboring locked zones, whose sizes and locking extents affect further propagation. Different propagation speeds at two fronts results in an asymmetric coseismic slip distribution, as is consistent with the slip inversion results of some large subduction earthquakes [e.g., Chlieh et al., 2003]. Current grid resolution is dictated by limitations of available computers and algorithms, and forces us to use constitutive length scales that are much larger than realistic lab values; that causes nucleation sizes to be in the several kilometers (rather than several meters) range. Thus there is a tentativeness to present conclusions. But with current resolution, we observe that the heterogeneous slip at seismogenic depths (i.e., where a - b < 0 ) is sometimes
A direct numerical reconstruction algorithm for the 3D Calderón problem
NASA Astrophysics Data System (ADS)
Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim
2011-04-01
In three dimensions Calderón's problem was addressed and solved in theory in the 1980s in a series of papers, but only recently the numerical implementation of the algorithm was initiated. The main ingredients in the solution of the problem are complex geometrical optics solutions to the conductivity equation and a (non-physical) scattering transform. The resulting reconstruction algorithm is in principle direct and addresses the full non-linear problem immediately. In this paper we will outline the theoretical reconstruction method and describe how the method can be implemented numerically. We will give three different implementations, and compare their performance on a numerical phantom.
MESA: A 3-D Eulerian hydrocode for penetration mechanics studies
Mandell, D.A.; Holian, K.S.; Henninger, R.
1991-01-01
We describe an explicit, finite-difference hydrocode, called MESA, and compare calculations to metal and ceramic plate impacts with spall and to Taylor cylinder tests. The MESA code was developed with support from DARPA, the Army and the Marine Corps for use in armor/anti-armor problems primarily, but the code has been used for a number of other applications. MESA includes 2-D and 3-D Eulerian hydrodynamics, a number of material strength and fracture models, and a programmed burn high explosives model. 15 refs., 4 figs.
Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup
NASA Astrophysics Data System (ADS)
Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.
2014-11-01
We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.
ERIC Educational Resources Information Center
Sack, Jacqueline J.
2013-01-01
This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…
Pattern formation of down-built salt structures: insights from 3D numerical models
NASA Astrophysics Data System (ADS)
Fernandez, Naiara; Kaus, Boris
2015-04-01
Many salt diapirs are thought to have formed as a result of down-building, which implies that the top of the diapir remained close to the surface during sediment deposition. This process is largely three-dimensional and in order to better understand what controls the patterns that form as a result of this down-building process, we here perform three-dimensional numerical models and compare the results with analytical models. In our models, we vary several parameters such as initial salt thickness, sedimentation rate, salt viscosity, salt-sediment viscosity contrast as well as the density of sediments. Down-building of three-dimensional diapirs only occurs for a certain range of parameters and is favored by lower sediment/salt viscosity contrasts and sedimentation rates in agreement with analytical predictions and findings from previous 2D models. However, the models show that the sedimentation rate has an additional effect on the formation and evolution of three-dimensional diapir patterns. At low sedimentation rates, salt ridges that form during early model stages remain preserved at later stages as well. For higher sedimentation rates, the initial salt ridges break up and form finger-like diapirs at the junction of salt ridges, which results in different salt exposure patterns at the surface. Once the initial pattern of diapirs is formed, higher sedimentation rate can also result in covered diapirs if the diapir extrusion velocity is insufficiently large. We quantify the effect of sedimentation rate on the number of diapirs exposed at the surface as well as on their spacing. In some cases, this final pattern is distinctly different from the initial polygonal pattern. We also study the extrusion of salt through time in the simulations, and show that it can be related to the geometries of the sedimentary layers surrounding the diapirs. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program
Study on 3D CFBG vibration sensor and its application
NASA Astrophysics Data System (ADS)
Nan, Qiuming; Li, Sheng
2016-03-01
A novel variety of three dimensional (3D) vibration sensor based on chirped fiber Bragg grating (CFBG) is developed to measure 3D vibration in the mechanical equipment field. The sensor is composed of three independent vibration sensing units. Each unit uses double matched chirped gratings as sensing elements, and the sensing signal is processed by the edge filtering demodulation method. The structure and principle of the sensor are theoretically analyzed, and its performances are obtained from some experiments and the results are as follows: operating frequency range of the sensor is 10 Hz‒500 Hz; acceleration measurement range is 2 m·s-2‒30 m·s-2; sensitivity is about 70 mV/m·s-2; crosstalk coefficient is greater than 22 dB; self-compensation for temperature is available. Eventually the sensor is applied to monitor the vibration state of radiation pump. Seen from its experiments and applications, the sensor has good sensing performances, which can meet a certain requirement for some engineering measurement.
Markerless 3D motion capture for animal locomotion studies
Sellers, William Irvin; Hirasaki, Eishi
2014-01-01
ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869
A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes.
Yohe, Stefan T; Freedman, Jonathan D; Falde, Eric J; Colson, Yolonda L; Grinstaff, Mark W
2013-08-07
Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate- co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications.
Parallel 3D Finite Element Numerical Modelling of DC Electron Guns
Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC
2008-02-04
In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.
Numerical modeling of cutting processes for elastoplastic materials in 3D-statement
NASA Astrophysics Data System (ADS)
Kukudzhanov, V. N.; Levitin, A. L.
2008-06-01
In the present paper, we use the finite element method to perform the three-dimensional modeling of unsteady process of cutting an elastoplastic plate (slab) by an absolutely rigid cutting tool moving at a constant velocity V 0 at different inclinations α of the tool face (Fig. 1). The modeling was based on the coupled thermomechanical model of an elastoviscoplastic material. The adiabatic process of cutting was compared with the regime in which the slab material heat conduction is taken into account. The cutting process was parametrically studied for variations in the slab and cutting tool geometry, in the rate and depth of cutting, and in the properties of the processed material. The slab thickness was varied in the direction of the axis z. The stressed state varied from the plane-stressed bar H = H/L≪ 1 (thin plate) to the plane-strained bar H ≫ 1 (wide plate), where H is the slab thickness and L is the slab length. The problem was solved on a moving adaptive Lagrange-Euler grid by the finite element method with splitting, by using the explicit-implicit integration schemes for equations [13]. It was shown that the numerical modeling of the problem in the three-dimensional statement permits studying the cutting processes with continuous chip formation and with chip destruction into separate pieces. The mechanism of this phenomenon in the case of orthogonal cutting ( α = 0) can be explained by the thermal softening with formation of adiabatic shear strips without using the damage models. In cutting by a sharper tool (the angle α is large), it is necessary to use the coupled model of thermal and structural softening. We obtain dependences of the force acting on the tool for different geometric and physical parameters of the problem. We also show that the quasimonotone and oscillating operation modes are possible and explain them from the physical standpoint.
Interplate deformation at early-stage oblique subduction: 3-D thermomechanical numerical modeling
NASA Astrophysics Data System (ADS)
Malatesta, Cristina; Gerya, Taras; Crispini, Laura; Federico, Laura; Capponi, Giovanni
2016-07-01
Oblique subduction zones are complex settings where the simultaneous action of trench-normal and trench-parallel components of convergence can produce heterogeneous deformational pattern of the upper plate and affect the accretional/erosional behavior of the plate margin. Here we present three-dimensional thermomechanical numerical models that highlight some processes occurring in the early history (15-20 Myr) of intraoceanic oblique subduction zones, which so far represent the less studied case. These models have been compared with a simulation of a slab sinking under a continental plate. We test subduction starting in oceans floored by two classes of lithosphere: layered (fast spreading oceans) and serpentinite rich (slow to ultraslow spreading oceans). Two main domains develop along the margin of both type of oceanic plates: (a) a domain with a mostly stable trench, a shortening upper plate, characterized by the formation of a topographic relief, and (b) a domain with retreating trench and extending upper plate. In general, we observed that varying the subduction obliquity, the margin could either (i) record an erosional to a balanced accretion/erosion regime or (ii) be characterized by a predominant balanced accretion/erosion regime. In both cases, even where the sediment amount in the trench is high, the upper plate experiences tectonic erosion. We suggest that the formation of topographic reliefs on the fore arc is possibly related to the low amount of sediment in the trench, affecting interplate friction and promoting the upper plate indentation against the slab. The Puysegur subduction zone and the central Andes can be possibly natural examples of such a regime.
ERIC Educational Resources Information Center
Lau, Kung Wong
2015-01-01
Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…
Sultan, E; Pourrezaei, K; Ghandjbakhche, A; Daryoush, A S
2014-03-01
Modeling behavior of broadband (30-1000 MHz) frequency modulated near infrared photons through a multilayer phantom is of interest to optical bio-imaging research. Photon dynamics in phantom are predicted using three-dimension (3D) finite element numerical simulation and are related to the measured insertion loss and phase for a given human head geometry in this paper based on three layers of phantom each with distinct optical parameter properties. Simulation and experimental results are achieved for single, two, and three layers solid phantoms using COMSOL (COMSOL AB, Tegnérgatan 23, SE-111 40, Stockholm, Sweden) (for FEM) simulation and custom-designed broadband free space optical transmitter (Tx) and receiver (Rx) modules that are developed for photon migration at wavelengths of 680, 795, and 850 nm. Standard error is used to compute error between two-dimension and 3D FE modeling along with experimental results by fitting experimental data to the functional form of afrequency+b. Error results are shown at narrowband and broadband frequency modulation. Confidence in numerical modeling of the photonic behavior using 3D FEM for human head has been established here by comparing the reflection mode's experimental results with the predictions made by COMSOL for known commercial solid brain phantoms.
Hou, Hui-Hsiung; Tsai, Chien-Hsiung; Fu, Lung-Ming; Yang, Ruey-Jen
2009-07-01
This study presents a novel 3-D hydrodynamic focusing technique for micro-flow cytometers. In the proposed approach, the sample stream is compressed initially in the horizontal direction by a set of sheath flows such that it is constrained to the central region of the microchannel and is then focused in the vertical direction by a second pair of sheath flows. Thereafter, the focused sample stream passes over a micro-weir structure positioned directly beneath an optical detection system to capture polystyrene beads fluorescent signal. The microchannel configuration and operational parameters are optimized by performing a series of numerical simulations. An experimental investigation is then performed using a micro-flow cytometer fabricated using conventional micro-electro-mechanical systems techniques and an isotropic wet etching method. The results indicate that the two sets of sheath flows successfully constrain the sample stream within a narrow, well-defined region of the microchannel. Furthermore, the micro-weir structure prompts the separation of a mixed sample of 5 and 10 microm polystyrene beads in the vertical direction and ensures that the beads flow through the detection region of the microchannel in a sequential fashion and can therefore be reliably detected and counted.
PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain
NASA Astrophysics Data System (ADS)
Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.
2009-12-01
A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007
NASA Astrophysics Data System (ADS)
Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram
2017-02-01
A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.
NASA Astrophysics Data System (ADS)
van Velden, Floris H. P.; Kloet, Reina W.; van Berckel, Bart N. M.; Wolfensberger, Saskia P. A.; Lammertsma, Adriaan A.; Boellaard, Ronald
2008-06-01
The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.
Numerical model of formation of a 3-D strike-slip fault system
NASA Astrophysics Data System (ADS)
Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand
2016-01-01
The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.
NASA Astrophysics Data System (ADS)
Fernandez, Naiara; Kaus, Boris J. P.
2015-08-01
Many salt diapirs are thought to have formed as a result of down-building, which implies that the top of the diapir remained close to the surface during syn-halokinetic sediment deposition. Down-building is largely a 3-D process and in order to better understand what controls the patterns of the diapirs that form by this process, we here perform 3-D numerical models of down-built diapirs initiated by the gravity instability in linear viscous materials and compare the results with analytical models. We vary several parameters of the numerical models such as initial salt thickness, sedimentation rate, salt viscosity, salt-sediment viscosity ratio as well as the density of sediments. Down-building of 3-D diapirs only occurs for a certain range of parameters and is favoured by lower sediment/salt viscosity contrasts and sedimentation rates in agreement with analytical predictions and findings from previous 2-D models. However, the models show that the sedimentation rate has an additional effect on the formation and evolution of 3-D diapir patterns. At low sedimentation rates, salt ridges that form during early model stages remain preserved at later stages as well. For higher sedimentation rates, the initial salt ridges are covered up and finger-like diapirs form at their junctions, which results in different salt exposure patterns at the surface. Once the initial pattern of diapirs is formed, higher sedimentation rate can also result in covered diapirs if the diapir extrusion velocity is insufficiently large. We quantify the effect of sedimentation rate on the number of diapirs exposed at the surface as well as on their spacing and we explain the observations with analytical predictions using thick-plate analytical models. In some cases, this final pattern is distinctly different from the initial polygonal pattern.
A numerical method for the inverse problem of cell traction in 3D
NASA Astrophysics Data System (ADS)
Vitale, G.; Preziosi, L.; Ambrosi, D.
2012-09-01
Force traction microscopy is an inversion method that allows us to obtain the stress field applied by a living cell on the environment on the basis of a pointwise knowledge of the displacement produced by the cell itself. This classical biophysical problem, usually addressed in terms of Green’s functions, can be alternatively tackled in a variational framework. In such a case, a variation of the error functional under suitable regularization is operated in view of its minimization. This setting naturally suggests the introduction of a new equation, based on the adjoint operator of the elasticity problem. In this paper, we illustrate a numerical strategy of the inversion method that discretizes the partial differential equations associated with the optimal control problem by finite elements. A detailed discussion of the numerical approximation of a test problem (with known solution) that contains most of the mathematical difficulties of the real one allows a precise evaluation of the degree of confidence that one can achieve in the numerical results.
A real-time emergency response workstation using a 3-D numerical model initialized with sodar
Lawver, B.S.; Sullivan, T.J.; Baskett, R.L.
1993-01-28
Many emergency response dispersion modeling systems provide simple Gaussian models driven by single meteorological tower inputs to estimate the downwind consequences from accidental spills or stack releases. Complex meteorological or terrain settings demand more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion. Mountain valleys and sea breeze flows are two common examples of such settings. To address these complexities, the authors have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on a workstation for use in real-time emergency response modeling. MATHEW/ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy`s Atmospheric Release Advisory Capability (ARAC) project. The models are initialized using an array of surface wind measurements from meteorological towers coupled with vertical profiles from an acoustic sounder (sodar). The workstation automatically acquires the meteorological data every 15 minutes. A source term is generated using either defaults or a real-time stack monitor. Model outputs include contoured isopleths displayed on site geography or plume densities shown over 3-D color shaded terrain. The models are automatically updated every 15 minutes to provide the emergency response manager with a continuous display of potentially hazardous ground-level conditions if an actual release were to occur. Model run time is typically less than 2 minutes on 6 megaflop ({approximately}30 MIPS) workstations. Data acquisition, limited by dial-up modem communications, requires 3 to 5 minutes.
NASA Astrophysics Data System (ADS)
Dittrich, André; Weinmann, Martin; Hinz, Stefan
2017-04-01
In photogrammetry, remote sensing, computer vision and robotics, a topic of major interest is represented by the automatic analysis of 3D point cloud data. This task often relies on the use of geometric features amongst which particularly the ones derived from the eigenvalues of the 3D structure tensor (e.g. the three dimensionality features of linearity, planarity and sphericity) have proven to be descriptive and are therefore commonly involved for classification tasks. Although these geometric features are meanwhile considered as standard, very little attention has been paid to their accuracy and robustness. In this paper, we hence focus on the influence of discretization and noise on the most commonly used geometric features. More specifically, we investigate the accuracy and robustness of the eigenvalues of the 3D structure tensor and also of the features derived from these eigenvalues. Thereby, we provide both analytical and numerical considerations which clearly reveal that certain features are more susceptible to discretization and noise whereas others are more robust.
Maldonado, B.; Hussein, H.S.
1994-12-31
Due to the rectilinear nature of the previous 3D seismic survey, the details necessary for proper interpretation were absent. Theoretically, concentric 3D seismic technology may provide an avenue for gaining more and higher quality data coverage. Problems associated with recording a rectilinear 3D seismic grid over the salt dome in this area have created the need to investigate the use of such procedures as the concentric-circle 3D seismic acquisition technique. The difficulty of imaging salt dome flanks with conventional rectilinear 3D seismic may be a result of the inability to precisely predict the lateral velocity-field variation adjacent to both salt and sediments. The dramatic difference in the interval velocities of salt and sediments causes the returning ray to severely deviate from being a hyperbolic path. This hampers the ability to predict imaging points near the salt/sediment interface. Perhaps the most difficult areas to image with rectilinear seismic surveys are underneath salt overhangs. Modeling suggests that a significant increase in the number of rays captured from beneath a salt overhang can be achieved with the concentric-circle method. This paper demonstrates the use of the ``circle shoot`` on a survey conducted over a salt dome in the Gulf of Mexico. A total of 80 concentric circles cover an area which is equivalent to 31,000 acres. The final post-stack data were sorted into bins with dimensions of 25 meters by 25 meters. A comparison of 3D rectilinear shooting vs. 3D concentric circle shooting over the same area will show an improvement in data quality and signal-to-noise characteristics.
3-D numerical simulations of a growing planet with the core formation by the impact
NASA Astrophysics Data System (ADS)
Furuichi, M.; Nakagawa, T.
2011-12-01
The formation of a metallic core is widely accepted as the biggest differentiation event during the final stage of the planetary formation [e.g. Stevenson, 1990]. The early Earth hypothesis also suggested that the core formation process would be an important for understanding the initial condition (both thermal and chemical) of mantle convection [Labrosse et al., 2007]. Although the formation process of metallic core is still not clear, it is clear that the different time-scale of dynamics in solid and liquid contribute to that. Here, we assume the scenario that the planetesimal impact induces a significant volume of melt which laterally spreads over the global (magma ocean) or regional area (magma pond) in the short crystallization time scale (~300yr) [Reese and Solomatov, 2006]. After the solidification of magma ocean/pond, hot metallic and silicate rich layers are created [e.g. Senshu et al., 2002]. Since the heavy metal rich material causes the gravitational instability in the viscous planet's interior, the planetary core would form with sinking the metallic material into the center. The silicate layer which floods from the magma pond, deforms as a viscous flow on the planetary surface due to the isostatic adjustment. A series of event on the core formation would have the time-scale of ~100 Mys at the maximum. In order to investigate the scenario described above, we developed the simulation code to solve the Stokes flow with the free surface under the self-gravitating field in 3-D, designed for the massively parallel/vector supercomputer system Earth Simulator 2(ES2) [Furuichi, 2011]. Expressing the free surface motion, a stick air layer, which is the low viscosity layer surrounding the planetary surface, is assumed [e.g. Furuichi et al, 2009]. An ill conditioned Stokes problem of the finite difference discretization on a staggered grid, is solved by iterative Stokes flow solver, robust to large viscosity jumps, using a strong Schur complement preconditioner
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants
Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale
2015-01-01
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678
A numerical investigation of the 3-D flow in shell and tube heat exchangers
Prithiviraj, M.; Andrews, M.J.
1996-12-31
A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.
NASA Astrophysics Data System (ADS)
Calvisi, Michael; Manmi, Kawa; Wang, Qianxi
2014-11-01
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.
Holzner, Felix; Hagmeyer, Britta; Schütte, Julia; Kubon, Massimo; Angres, Brigitte; Stelzle, Martin
2011-09-01
This research is part of a program aiming at the development of a fluidic microsystem for in vitro drug testing. For this purpose, primary cells need to be assembled to form cellular aggregates in such a way as to resemble the basic functional units of organs. By providing for in vivo-like cellular contacts, proper extracellular matrix interaction and medium perfusion it is expected that cells will retain their phenotype over prolonged periods of time. In this way, in vitro test systems exhibiting in vivo type predictivity in drug testing are envisioned. Towards this goal a 3-D microstructure micro-milled in a cyclic olefin copolymer (COC) was designed in such a way as to assemble liver cells via insulator-based dielectrophoresis (iDEP) in a sinusoid-type fashion. First, numeric modelling and simulation of dielectrophoretic and hydrodynamic forces acting on cells in this microsystem was performed. In particular, the problem of the discontinuity of the electric field at the interface between the fluid media in the system and the polymer materials it consists of was addressed. It was shown that in certain cases, the material of the microsystem may be neglected altogether without introducing considerable error into the numerical solution. This simplification enabled the simulation of 3-D cell trajectories in complex chip geometries. Secondly, the assembly of HepG2 cells by insulator-based dielectrophoresis in this device is demonstrated. Finally, theoretical results were validated by recording 3-D cell trajectories and the Clausius-Mossotti factor of liver cells was determined by combining results obtained from both simulation and experiment.
NASA Astrophysics Data System (ADS)
Ariyoshi, K.; Matsuzawa, T.; Hino, R.; Hasegawa, A.; Hori, T.; Kaneda, Y.
2007-12-01
We investigated depth dependence of the slip velocity of small repeating earthquakes using 3-D numerical simulations for a subduction zone involving large and small asperities based on a rate- and state-dependent friction law. In this study, we examined slip at small asperity located at depth of 5, 10 and 15 km. Our results reveal that the postseismic slip of a large earthquake trigger 'slow' slip (with slip velocity lower than that of the spontaneous rupture of the small asperity) rupture of the small asperity located at a depth of 15 km, whereas 'rapid' slip (with higher slip velocity) one at a depth of 5 km where the small asperity usually occur slow repeating earthquakes. In case of the small asperity at a depth of 10 km, all of events are seismic and recurrence intervals are temporally shorter in the passage of postseismic slip. Uchida et al. [2003; GRL] showed that the repeating earthquakes in the NE Japan subduction zones occur constantly, conforming with the rate of the plate convergence in the depth range of > ~40 km. On the other hand, shallow (< ~10 km) focus repeating earthquakes tend to be activated only in the postseismic period of nearby large interplate earthquakes and cumulative slip estimated from them is less than that expected from the plate convergence rate. In general, asperities in the shallower part are more stable than deeper ones because of low effective normal stress. Thus, most of the observed shallow repeating earthquakes may be 'rapid' slip events triggered by the postseismic slip of the neighboring large asperities, and the corresponding small asperities give rise to (aseismic) slow slip events usually.
Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments
NASA Astrophysics Data System (ADS)
Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras
2016-04-01
Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the
NASA Technical Reports Server (NTRS)
Harris, Julius E.; Iyer, Venkit; Radwan, Samir
1987-01-01
The application of stability theory in Laminar Flow Control (LFC) research requires that density and velocity profiles be specified throughout the viscous flow field of interest. These profile values must be as numerically accurate as possible and free of any numerically induced oscillations. Guidelines for the present research project are presented: develop an efficient and accurate procedure for solving the 3-D boundary layer equation for aerospace configurations; develop an interface program to couple selected 3-D inviscid programs that span the subsonic to hypersonic Mach number range; and document and release software to the LFC community. The interface program was found to be a dependable approach for developing a user friendly procedure for generating the boundary-layer grid and transforming an inviscid solution from a relatively coarse grid to a sufficiently fine boundary-layer grid. The boundary-layer program was shown to be fourth-order accurate in the direction normal to the wall boundary and second-order accurate in planes parallel to the boundary. The fourth-order accuracy allows accurate calculations with as few as one-fifth the number of grid points required for conventional second-order schemes.
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro
2015-04-01
The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered
2D and 3D numerical simulations of morphodynamics structures in a large-amplitude meanders
Technology Transfer Automated Retrieval System (TEKTRAN)
In the pioneering study of the Ishikari River, Japan, Kinoshita (Kinoshita 1957, 1961) described two types of meandering channels: (1) channel with two bars per meander wavelength (one bar per bend), and (2) channel with three or more bars per meander wavelength (multiple bars per bend). Based on th...
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
NASA Astrophysics Data System (ADS)
Savin, Daniel
Molecules play an important role in the modern universe where they are a key component for a wide range of sources including diffuse, translucent, and dense molecular clouds; hot cores; photon dominated regions (PDRs); protostellar disks; protoplanetary disks; planetary and satellite ionospheres; cometary comae; and circumstellar envelopes around dying stars. As we strive to improve our understanding of these objects, it is necessary to be able to model and interpret their chemical composition, charge balance, emission and/or absorption spectra, and thermal structure. This, in turn, requires reliable knowledge of the underlying molecular collisions which control these properties. Of particular astrophysical importance is dissociative recombination (DR) which is the primary neutralizing reaction for molecules in cosmic plasmas. For chemical networks involving ion-molecule reactions, this process is often the terminating step for particular synthesis pathways. Knowing branching ratios for final products is critical as they can determine the viability of the pathway in question as well as whether or not a compound can be produced in the gas phase or if unknown surface chemistry must be invoked. The end products of DR may be energetic, in which case they can collisionally heat the plasma. Or they may be in excited states, in which case they can cool the gas through radiative relaxation. Here we propose a series of DR studies for selected ions of importance to the various NASA Astrophysics missions. Our work is designed to improve the DR data used in astrophysical and astrochemical models for the molecular objects listed above and thereby improve our understanding of these sources. We will deepen our understanding of halogen chemistry in the cold interstellar medium (ISM). This will enable the development of new proxies for H2 abundance determinations in the cold ISM. Based on knowledge gained from our previous DR studies, we will extend current models for ISM heating
A novel numerical flux for the 3D Euler equations with general equation of state
NASA Astrophysics Data System (ADS)
Toro, Eleuterio F.; Castro, Cristóbal E.; Lee, Bok Jik
2015-12-01
Here we extend the flux vector splitting approach recently proposed in E.F. Toro and M.E. Vázquez-Cendón (2012) [42]. The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.
Towards a collaborative and interoperable 3D Building database - A case study in Walloon region
NASA Astrophysics Data System (ADS)
Hajji, R.; Billen, R.
2012-10-01
The definition of a 3D Reference model is the prerequisite for increasing data interoperability and facing regional, national and international challenges around geographic information. Such action requires investigation of 3D user requirements and a collaborative framework to reach a consensus on common 3D data specifications. The paper presents premise reflexions about relevant issues to shape efforts towards a methodological and generic approach for dealing with a collaborative 3D reference model as a fundamental building block of 3D GIS collaborative solution. As a pilot project, we demonstrate, through a case study of the Liege city in Belgium, how data collected from different providers in Walloon region can be reengineered and then integrated in a 3D collaborative interoperable database compatible with CityGML.
NASA Astrophysics Data System (ADS)
Zanini, A.; Tanda, M.
2007-12-01
The groundwater in Italy plays an important role as drinking water; in fact it covers about the 30% of the national demand (70% in Northern Italy). The mineral water distribution in Italy is an important business with an increasing demand from abroad countries. The mineral water Companies have a great interest in order to increase the water extraction, but for the delicate and complex geology of the subsoil, where such very high quality waters are contained, a particular attention must be paid in order to avoid an excessive lowering of the groundwater reservoirs or great changes in the groundwater flow directions. A big water Company asked our University to set up a numerical model of the groundwater basin, in order to obtain a useful tool which allows to evaluate the strength of the aquifer and to design new extraction wells. The study area is located along Appennini Mountains and it covers a surface of about 18 km2; the topography ranges from 200 to 600 m a.s.l.. In ancient times only a spring with naturally sparkling water was known in the area, but at present the mineral water is extracted from deep pumping wells. The area is characterized by a very complex geology: the subsoil structure is described by a sequence of layers of silt-clay, marl-clay, travertine and alluvial deposit. Different groundwater layers are present and the one with best quality flows in the travertine layer; the natural flow rate seems to be not subjected to seasonal variations. The water age analysis revealed a very old water which means that the mineral aquifers are not directly connected with the meteoric recharge. The Geologists of the Company suggest that the water supply of the mineral aquifers comes from a carbonated unit located in the deep layers of the mountains bordering the spring area. The valley is crossed by a river that does not present connections to the mineral aquifers. Inside the area there are about 30 pumping wells that extract water at different depths. We built a 3
A 3D optical study of Low Surface Brightness galaxies
NASA Astrophysics Data System (ADS)
Chemin, L.; Amram, P.; Carignan, C.; Balkowski, C.; van Driel, W.; Cayatte, V.; Hernandez, O.
2004-12-01
Integral field spectroscopy observations of the ionized gas in Low Surface Brightness Galaxies (LSBs) are presented. The goal of this study is to map their kinematics at high angular resolution and to study their dark matter (DM) distribution. For that purpose, we have used Fabry-Perot observations obtained at the CFH and ESO 3.6m telescopes. The new contribution of highly resolved velocity fields is crucial to study the role of non-circular motions on the dynamics of LSBs, and particularly on the shape of their DM halo profile (cusp- or core- dominated halo). Here are shown some examples of galaxies in which such motions exist in their central parts and prevent from determining the accurate shape of their DM halo.
DIY 3D printing of custom orthopaedic implants: a proof of concept study.
Frame, Mark; Leach, William
2014-03-01
3D printing is an emerging technology that is primarily used for aiding the design and prototyping of implants. As this technology has evolved it has now become possible to produce functional and definitive implants manufactured using a 3D printing process. This process, however, previously required a large financial investment in complex machinery and professionals skilled in 3D product design. Our pilot study's aim was to design and create a 3D printed custom orthopaedic implant using only freely available consumer hardware and software.
NASA Astrophysics Data System (ADS)
Moczo, P.; Kristek, J.; Galis, M.; Chaljub, E.; Chen, X.; Zhang, Z.
2012-04-01
Numerical modeling of earthquake ground motion in sedimentary basins and valleys often has to account for the P-wave to S-wave speed ratios (VP/VS) as large as five and even larger, mainly in sediments below groundwater level. The ratio can attain values larger than 10 - the unconsolidated lake sediments in Ciudad de México are a good example. At the same time, accuracy of the numerical schemes with respect to VP/VS has not been sufficiently analyzed. The numerical schemes are often applied without adequate check of the accuracy. We present theoretical analysis and numerical comparison of 18 3D numerical time-domain explicit schemes for modeling seismic motion for their accuracy with the varying VP/VS. The schemes are based on the finite-difference, spectral-element, finite-element and discontinuous-Galerkin methods. All schemes are presented in a unified form. Theoretical analysis compares accuracy of the schemes in terms of local errors in amplitude and vector difference. In addition to the analysis we compare numerically simulated seismograms with exact solutions for canonical configurations. We compare accuracy of the schemes in terms of the local errors, grid dispersion and full wavefield simulations with respect to the structure of the numerical schemes.
Riazi, Z; Afarideh, H; Sadighi-Bonabi, R
2011-09-01
Based on the determination of protons fluence at the phantom's surface, a 3D dose distribution is calculated inside a water phantom using a fast method. The dose contribution of secondary particles, originating from inelastic nuclear interactions, is also taken into account. This is achieved by assuming that 60% of the energy transferred to secondary particles is locally absorbed. Secondary radiation delivers approximately 16.8% of the total dose in the plateau region of the Bragg curve for monoenergetic protons of energy 190 MeV. The physical dose beyond the Bragg peak is obtained for a proton beam of 190 MeV using a Geant4 simulation. It is found that the dose beyond the Bragg peak is <0.02% of the maximum dose and is mainly delivered by protons produced via reactions of the secondary neutrons. The relative dose profile is also calculated by simulation of the proposed beam line in Geant4 code. The dose profile produced by our method agrees, within 2%, with the results predicted by the Fermi Eyges distribution function and the results of the Geant4 simulation. It is expected that the fast numerical approach proposed herein may be utilised in 3D deterministic treatment planning programs, to model proton propagation in order to analyse the effect of modifying the beam line.
3D MHD Study of Helias and Heliotron
1992-09-01
Loss and Radial Electric Field in Wendelstein VII-A Stellarator ; Oct. 1991 N IFS-i 18 Y. Kondoh and Y. Hosaka, Kernel Optimum Nearly-analytical...30 September -- 7 October 1992 IAEA-CN-56/D-1 -4 31) MIlD Study or Ielias and lIfliotron 1’. Hayashi. T. Sato, W. Lotz. P. Merkel, J. Nuifirenbyerg...AGENCY Ŕ •JI" " FOURTEENTH INTERNATIONAL CONFERENCE ON PLASMA Zo PHYSICS AND CONTROLLED NUCLEAR FUSION RESEARCH Wirzburg, Germany, 30 September - 7
Scalable nanohelices for predictive studies and enhanced 3D visualization.
Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P
2014-11-12
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for
Scalable Nanohelices for Predictive Studies and Enhanced 3D Visualization
Meagher, Kwyn A.; Doblack, Benjamin N.; Ramirez, Mercedes; Davila, Lilian P.
2014-01-01
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO2) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of “bulk” silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices
Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
Tay, W B; van Oudheusden, B W; Bijl, H
2014-09-01
The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the
3D numerical model of the southern polar giant impact for the formation of the Martian dichotomy
NASA Astrophysics Data System (ADS)
Leone, Giovanni; Tackley, Paul J.; Gerya, Taras; May, David A.; Zhu, Guizhi
2013-04-01
Lack of volcanism and/or crustal flows in the northern lowlands poses serious problems to the hypothesis of formation of the Borealis basin by giant impact in the Northern Polar region of Mars. We use numerical modeling integrated with a geologic and volcanologic study of the surface of Mars to investigate an alternative process of formation that involves a giant impact on the South Pole, resulting in a hemispherical magma pond and resulting thicker crust. We have performed 3D simulations of Martian evolution from the immediate post-impact stage to the present day for different combinations of impactor sizes and compositions, ranging from 900 km radius and sideritic composition (up to 80% radius iron) to 1750 km radius and mesosiderite-type composition (50% radius iron; nickel neglected at the moment). The main reason for considering siderites is the presence of M-type asteroids like 16 Psyche (and several others) in the asteroid belt, the likely remnants of larger parent bodies in the 1-2 AU range which then migrated to their current position after giant impacts with protoplanets. We assume an impactor speed similar to the escape velocity of the target body, consistent with N-body simulations. Our results show that this is a viable formation hypothesis for the southern highlands. Our preferred scenario is of a lunar sized impactor of 1600 km radius with a 70% iron (by radius) fraction, hitting the south Pole at a speed of 5 km/s (the escape velocity of Mars), melting much of the interior and 1/2 of the planetary surface with the creation of a magma ocean that formed the highlands upon cooling and solidification. Regarding timing, we find that this should have happened after 4 Ma after CAI, because before this the strong heating from short-lived radiogenic elements coupled with the thermal anomaly generated by the giant impact would erase by re-melting any newly formed crust. Using a combination of I3ELVIS (immediate post-impact and core formation) and STAGYY (long
Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1996-01-01
This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.
NASA Astrophysics Data System (ADS)
Starodubtsev, Y. V.; Gogolev, I. G.; Solodov, V. G.
2005-06-01
The paper describes 3D numerical Reynolds Averaged Navier-Stokes (RANS) model and approximate sector approach for viscous turbulent flow through flow path of one stage axial supercharge gas turbine of marine diesel engine. Computational data are tested by comparison with experimental data. The back step flow path opening and tip clearance jet are taken into account. This approach could be applied for variety of turbine theory and design tasks: for offer optimal design in order to minimize kinetic energy stage losses; for solution of partial supply problem; for analysis of flow pattern in near extraction stages; for estimation of rotational frequency variable forces on blades; for sector vane adjustment (with thin leading edges mainly), for direct flow modeling in the turbine etc. The development of this work could be seen in the direction of unsteady stage model application.
NASA Astrophysics Data System (ADS)
Stamps, S.; Bangerth, W.; Hager, B. H.
2014-12-01
The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin
2016-04-01
The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid
High pressure system for 3-D study of elastic anisotropy
NASA Astrophysics Data System (ADS)
Lokajicek, T.; Pros, Z.; Klima, K.
2003-04-01
New high pressure system was designed for the study of elastic anisotropy of condensed matter under high confining pressure up to 700 MPa. Simultaneously could be measured dynamic and static parameters: a) dynamic parameters by ultrasonic sounding, b) static parameters by measuring of spherical sample deformation. The measurement is carried out on spherical samples diameter 50 +/- 0.01 mm. Higher value of confining pressure was reached due to the new construction of sample positioning unit. The positioning unit is equipped with two Portecap step motors, which are located inside the vessel and make possible to rotate with the sphere and couple of piezoceramic transducers. Sample deformation is measured in the same direction as ultrasonic signal travel time. Only electric leads connects inner part of high pressure vessel with surrounding environment. Experimental set up enables: - simultaneous P-wave ultrasonic sounding, - measurement of current sample deformation at sounding points, - measurement of current value of confining pressure and - measurement of current stress media temperature. Air driven high pressure pump Haskel is used to produce high value of confining pressure up to 700 MPa. Ultrasonic signals are recorded by digital scope Agilent 54562 with sampling frequency 100 MHz. Control and measuring software was developed under Agilent VEE software environment working under MS Win 2000 operating system. Measuring set up was tested by measurement of monomineral spherical samples of quartz and corundum. Both of them have trigonal symmetry. The measurement showed that the P-wave velocity range of quartz was between 5.7-7.0 km/sec. and velocity range of corundum was between 9.7-10.9 km/sec. High pressure resistant LVDT transducers Mesing together with Intronix electronic unit were used to monitor sample deformation. Sample deformation is monitored with the accuracy of 0.1 micron. All test measurements proved the good accuracy of the whole measuring set up. This
Making Faranoff-Riley I radio sources. I. Numerical hydrodynamic 3D simulations of low-power jets
NASA Astrophysics Data System (ADS)
Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A.
2016-11-01
Context. Extragalactic radio sources have been classified into two classes, Fanaroff-Riley I and II, which differ in morphology and radio power. Strongly emitting sources belong to the edge-brightened FR II class, and weakly emitting sources to the edge-darkened FR I class. The origin of this dichotomy is not yet fully understood. Numerical simulations are successful in generating FR II morphologies, but they fail to reproduce the diffuse structure of FR Is. Aims: By means of hydro-dynamical 3D simulations of supersonic jets, we investigate how the displayed morphologies depend on the jet parameters. Bow shocks and Mach disks at the jet head, which are probably responsible for the hot spots in the FR II sources, disappear for a jet kinetic power ℒkin ≲ 1043 erg s-1. This threshold compares favorably with the luminosity at which the FR I/FR II transition is observed. Methods: The problem is addressed by numerical means carrying out 3D HD simulations of supersonic jets that propagate in a non-homogeneous medium with the ambient temperature that increases with distance from the jet origin, which maintains constant pressure. Results: The jet energy in the lower power sources, instead of being deposited at the terminal shock, is gradually dissipated by the turbulence. The jets spread out while propagating, and they smoothly decelerate while mixing with the ambient medium and produce the plumes characteristic of FR I objects. Conclusions: Three-dimensionality is an essential ingredient to explore the FR I evolution becausethe properties of turbulence in two and three dimensions are very different, since there is no energy cascade to small scales in two dimensions, and two-dimensional simulations with the same parameters lead to FRII-like behavior.
NASA Astrophysics Data System (ADS)
Kujawinska, Malgorzata; Jozwicka, Agata; Kozacki, Tomasz
2008-08-01
In order to control performance of photonics microelements it is necessary to receive 3D information about their amplitude and phase distributions. To perform this task we propose to apply tomography based on projections gather by digital holography (DH). Specifically the DH capability to register several angular views of the object during a single hologram capture is employed, which may in future shorten significantly the measurement time or even allow for tomographic analysis of dynamic media. However such a new approach brings a lot of new issues to be considered. Therefore, in this paper the method limitations, with special emphasis on holographic reconstruction process, are investigated through extensive numerical experiments with special focus on 3D refractive index distribution determination.. The main errors and means of their elimination are presented. The possibility of 3D refractive index distribution determination by means of DHT is proved numerically and experimentally.
RF study and 3-D simulations of a side-coupling thermionic RF-gun
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.
2014-02-01
A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.
Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.
2011-06-01
High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Developing and Testing a 3d Cadastral Data Model a Case Study in Australia
NASA Astrophysics Data System (ADS)
Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.
2012-07-01
and physical extent of 3D properties and associated interests. The data model extends the traditional cadastral requirements to cover other applications such as urban planning and land valuation and taxation. A demonstration of a test system on the proposed data model is also presented. The test is based on a case study in Victoria, Australia to evaluate the effectiveness of the data model.
Experimental Studies on the 3D Macro- and Microphysics of Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Jara-Almonte, J.; Ji, H.; Yamada, M.; Yoo, J.; Fox, W. R., II
2015-12-01
Magnetic reconnection has been extensively studied in 2D geometries for many decades and considerable progress has been made in understating 2D reconnection physics, yet in real plasmas reconnection is fundamentally 3D in nature. Only recently has it become possible to study 3D reconnection using simulations, however some initial results have suggested that the inclusion of 3D effects does not strongly affect the basic properties of reconnection (e.g. reconnection rate or particle acceleration). Yet on the other hand, previous experiments, without direct 3D measurements, have implied that 3D effects could be important even in a quasi-2D system. Here we experimentally study both the (1) macro- and (2) microphysics of 3D reconnection in order to directly test the importance of 3D effects in a quasi-2D experiment. Using fully simultaneous 3D measurements, it is shown that during highly driven reconnection the macroscopic structure of the current sheet can become strongly 3D despite an essentially 2D upstream region. The correlation length along the current sheet is measured to be far shorter than suggested by kinetic simulations. Results from new experiments with stronger reconnection drive and diagnostics designed to estimate the 3D reconnection rate will be discussed. With regards to (2), the 3D microphysics, new diagnostics capable of measuring fluctuations at frequencies up to the electron cyclotron frequency (~ 300 MHz) have been developed and have identified the presence of very high frequency waves (~ 100 MHz) during asymmetric reconnection, localized to the low-density side. The detailed properties of these waves, including the measured power spectra and dispersion relation, will be discussed and compared with both previous satellite observations of high-frequency waves as well as with theoretical predictions on the generation of whistler waves during reconnection.
Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth
2009-10-07
A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris; Popov, Anton
2014-05-01
The Himalayas and the adjacent Tibetan Plateau represent the most remarkable feature of the Earth's surface as the largest region of elevated topography and anomalously thick crust. Understanding the formation and evolution of the Himalayan-Tibetan region has become of high interest in the scientific community and different models have emerged over the last decades. They range from wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model to the lower crustal flow model for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. While some of these models have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, delamination, channel flow or extrusion, which are thought to be important during continental convergence, since these mechanisms require the lithosphere to interact with the underlying mantle. As such, 3D numerical models prove to be powerful tools in understanding the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continental collision zones have relied on certain explicit assumptions, either focusing on crustal dynamics or slab-mantle dynamics. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and an internal free surface into account, which allows for the development of topography. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role continent subduction and collision have on the future of the subducting and overriding plates, and we discuss the implications these offer for the Asian tectonics
Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study
NASA Astrophysics Data System (ADS)
Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.
2016-06-01
Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.
Possibility of reconstruction of dental plaster cast from 3D digital study models
2013-01-01
Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330
Kamiya, Tetsu; Toyama, Yoshio; Michiwaki, Yukihiro; Kikuchi, Takahiro
2013-01-01
The aim of this study was to develop and evaluate the accuracy of a three-dimensional (3D) numerical simulator of the swallowing action using the 3D moving particle simulation (MPS) method, which can simulate splashes and rapid changes in the free surfaces of food materials. The 3D numerical simulator of the swallowing action using the MPS method was developed based on accurate organ models, which contains forced transformation by elapsed time. The validity of the simulation results were evaluated qualitatively based on comparisons with videofluorography (VF) images. To evaluate the validity of the simulation results quantitatively, the normalized brightness around the vallecula was used as the evaluation parameter. The positions and configurations of the food bolus during each time step were compared in the simulated and VF images. The simulation results corresponded to the VF images during each time step in the visual evaluations, which suggested that the simulation was qualitatively correct. The normalized brightness of the simulated and VF images corresponded exactly at all time steps. This showed that the simulation results, which contained information on changes in the organs and the food bolus, were numerically correct. Based on these results, the accuracy of this simulator was high and it could be used to study the mechanism of disorders that cause dysphasia. This simulator also calculated the shear rate at a specific point and the timing with Newtonian and non-Newtonian fluids. We think that the information provided by this simulator could be useful for development of food products, medicines, and in rehabilitation facilities.
3D high-resolution two-photon crosslinked hydrogel structures for biological studies.
Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Giustina, Gioia Della; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna
2017-03-25
Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5 µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures.
Improving Assistive Technology Service by Using 3D Printing: Three Case Studies.
Watanabe, Takashi; Hatakeyama, Takuro; Tomiita, Mitsuru
2015-01-01
Assistive technology services are essential for adapting assistive devices to the individual needs of users with disabilities. In this study, we attempted to apply three-dimensional (3D) printing technology to three actual cases, and to study its use, effectiveness, and future applications. We assessed the usefulness of 3D printing technology by categorizing its utilization after reviewing the outcomes of these case studies. In future work, we aim to gather additional case studies and derive information on using 3D printing technology that will enable its effective application in the process of assistive technology services.
NASA Astrophysics Data System (ADS)
Zhang, Lisha
We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.
Development of a numerical procedure to map a general 3-d body onto a near-circle
NASA Technical Reports Server (NTRS)
Hommel, M. J.
1986-01-01
Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.
Genre Matters: A Comparative Study on the Entertainment Effects of 3D in Cinematic Contexts
NASA Astrophysics Data System (ADS)
Ji, Qihao; Lee, Young Sun
2014-09-01
Built upon prior comparative studies of 3D and 2D films, the current project investigates the effects of 2D and 3D on viewers' perception of enjoyment, narrative engagement, presence, involvement, and flow across three movie genres (Action/fantasy vs. Drama vs. Documentary). Through a 2 by 3 mixed factorial design, participants (n = 102) were separated into two viewing conditions (2D and 3D) and watched three 15-min film segments. Result suggested both visual production methods are equally efficient in terms of eliciting people's enjoyment, narrative engagement, involvement, flow and presence, no effects of visual production method was found. In addition, through examining the genre effects in both 3D and 2D conditions, we found that 3D works better for action movies than documentaries in terms of eliciting viewers' perception of enjoyment and presence, similarly, it improves views' narrative engagement for documentaries than dramas substantially. Implications and limitations are discussed in detail.
3-D Flow Field Diagnostics and Validation Studies using Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung Stephen; Ramachandran, Narayanan; Whitaker, Ann F. (Technical Monitor)
2002-01-01
The measurement of 3-D three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields. The effort includes diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. The advantages of STV stems from the system simplicity for building compact hardware and in software efficiency for continual near-real-time process monitoring. It also has illumination flexibility for observing volumetric flow fields from arbitrary directions. STV is based on stereoscopic CCD observations of particles seeded in a flow. Neural networks are used for data analysis. The developed diagnostic tool is tested with a simple directional solidification apparatus using Succinonitrile. The 3-D velocity field in the liquid phase is measured and compared with results from detailed numerical computations. Our theoretical, numerical, and experimental effort has shown STV to be a viable candidate for reliably quantifying the 3-D flow field in materials processing and fluids experiments.
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow
NASA Astrophysics Data System (ADS)
Wohletz, K. H.; Ogden, D. E.
2008-12-01
An essential element of explosive volcanic eruptions is the effect of the evolving conduit and vent on the erupting multiphase flow and the effect of the flow upon the conduit and vent rocks, a 3D geological nozzle problem. This coupling of the host rock solid mechanics with the fluid dynamics of an erupting multiphase fluid has never been directly simulated and is poorly understood. We apply a library of computer codes called CFDLib, which has been developed by the Theoretical Division at Los Alamos National Laboratory. This code provides the unique capability of being able to solve the interaction of an Eulerian fluid with a Lagrangian solid in 3D while treating multiphase turbulence that this interaction generates. Our previous work with CFDLib has been directed at validating results with laboratory experiments, verification against analytical models, and free-jet decompression. This work demonstrated the importance of vent overpressure in determining the characteristics of an erupted column of gas and tephra. However, eruption of an overpressured jet is strongly coupled to the dynamics of the vent shape that in turn is dependent upon conduit dynamics. For this reason most previous computer simulations of volcanic eruptions have assumed pressure-balanced conditions of flow from the vent. Here we demonstrate our progress in simulating vent evolution during eruption of an overpressured multiphase (steam and magma/rock) fluid. With increasing overpressure the evolved vent radius increases with the formation of a crater. The Mach Stem structure of the erupted jet resembles those of our previous simulations from a fixed vent, but the evolving vent nozzle and contributions of eroded material to the jet make its structure more complicated and variable with time. Future work will focus on study of the effects of host rock properties and 3D conduit shape.
NASA Astrophysics Data System (ADS)
Riauka, Terence A.; Hooper, H. Richard; Gortel, Zbigniew W.
1996-07-01
Experimental tests for non-uniform attenuating media are performed to validate theoretical expressions for the photon detection kernel, obtained from a recently proposed analytical theory of photon propagation and detection for SPECT. The theoretical multi-dimensional integral expressions for the photon detection kernel, which are computed numerically, describe the probability that a photon emitted from a given source voxel will trigger detection of a photon at a particular projection pixel. The experiments were performed using a cylindrical water-filled phantom with large cylindrical air-filled inserts to simulate inhomogeneity of the medium. A point-like, a short thin cylindrical and a large cylindrical radiation source of were placed at various positions within the phantom. The values numerically calculated from the theoretical kernel expressions are in very good agreement with the experimentally measured data. The significance of Compton-scattered photons in planar image formation is discussed and highlighted by these results. Using both experimental measurements and the calculated values obtained from the theory, the kernel's size is investigated. This is done by determining the square pixel neighbourhood of the gamma camera that must be connected to a particular radiation source voxel to account for a specific fraction of all counts recorded at all camera pixels. It is shown that the kernel's size is primarily dependent upon the source position and the properties of the attenuating medium through Compton scattering events, with 3D depth-dependent collimator resolution playing an important but secondary role, at least for imaging situations involving parallel hole collimation. By considering small point-like sources within a non-uniform elliptical phantom, approximating the human thorax, it is demonstrated
3D-Flow processor for a programmable Level-1 trigger (feasibility study)
Crosetto, D.
1992-10-01
A feasibility study has been made to use the 3D-Flow processor in a pipelined programmable parallel processing architecture to identify particles such as electrons, jets, muons, etc., in high-energy physics experiments.
Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, A.; Al-mazidi, M.
2015-12-01
The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.
Three-dimensional (3D) printed endovascular simulation models: a feasibility study
Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob
2017-01-01
Background Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. Methods This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. Results A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Conclusions Initial data supports the value of 3D printed endovascular models although further educational validation is required. PMID:28251121
Differentiating bladder carcinoma from bladder wall using 3D textural features: an initial study
NASA Astrophysics Data System (ADS)
Xu, Xiaopan; Zhang, Xi; Liu, Yang; Tian, Qiang; Zhang, Guopeng; Lu, Hongbing
2016-03-01
Differentiating bladder tumors from wall tissues is of critical importance for the detection of invasion depth and cancer staging. The textural features embedded in bladder images have demonstrated their potentials in carcinomas detection and classification. The purpose of this study was to investigate the feasibility of differentiating bladder carcinoma from bladder wall using three-dimensional (3D) textural features extracted from MR bladder images. The widely used 2D Tamura features were firstly wholly extended to 3D, and then different types of 3D textural features including 3D features derived from gray level co-occurrence matrices (GLCM) and grey level-gradient co-occurrence matrix (GLGCM), as well as 3D Tamura features, were extracted from 23 volumes of interest (VOIs) of bladder tumors and 23 VOIs of patients' bladder wall. Statistical results show that 30 out of 47 features are significantly different between cancer tissues and wall tissues. Using these features with significant differences between these two types of tissues, classification performance with a supported vector machine (SVM) classifier demonstrates that the combination of three types of selected 3D features outperform that of using only one type of features. All the observations demonstrate that significant textural differences exist between carcinomatous tissues and bladder wall, and 3D textural analysis may be an effective way for noninvasive staging of bladder cancer.
Oxygen ingress study of 3D printed gaseous radiation detector enclosures
Steer, Christopher A.; Durose, Aaron
2015-07-01
As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasing as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)
A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Suzuki, K.; Inoue, T.; Nakajima, T. Y.; Okamoto, H.
2017-01-01
This study evaluates 3-D cloud effects on the radiation budget with a combined use of active sensor cloud profiling radar/CloudSat and imager Moderate Resolution Imaging Spectroradiometer/Aqua data on the A-train. An algorithm is devised for constructing 3-D cloud fields based on satellite-observed cloud information. The 3-D cloud fields thus constructed are used to calculate the broadband solar and thermal radiative fluxes with a 3-D radiative transfer code developed by the authors. The aim of this study is to investigate the effects of cloud morphology on solar radiative transfer in cloudy atmosphere. For this purpose, 3-D cloud fields are constructed with the new satellite-based method, to which full 3D-RT (radiative transfer) simulations are applied. The simulated 3-D radiation fields are then used to examine and quantify errors of existing typical plane-parallel approximations, i.e., Plane-Parallel Approximation, Independent Pixel Approximation and Tilted Independent Pixel Approximation. Such 3D-RT simulations also serve to address another objective of this study, i.e., to devise an accurate approximation and to characterize the observed specific 3D-RT effects by the cloud morphology based on knowledge of idealized 3D-RT effects. We introduce a modified approach based on an optimum value of diffusivity factor to better approximate the radiative fluxes for arbitrary solar zenith angle determined from the results of 3-D radiative transfer simulations to redeem the overcorrections of these approximations for large solar zenith angles (SZAs). This new approach, called Slant path Independent Pixel Approximation, is found to be better than other approximations when SZA is large for some cloud cases. Based on the SZA dependence of the errors of these approximations relative to 3-D computations, satellite-observed real cloud cases are found to fall into either of three types of different morphologies, i.e., isolated cloud type, upper cloud-roughened type and lower
NASA Astrophysics Data System (ADS)
Zwaan, Frank; Schreurs, Guido; Naliboff, John; Buiter, Susanne J. H.
2016-12-01
Continental rifts often develop from linkage of distinct rift segments under varying degrees of extension obliquity. These rift segments arise from rift initiation at non-aligned crustal heterogeneities and need to interact to develop a full-scale rift system. Here, we test the effects of 1) oblique extension and 2) initial heterogeneity (seed) offset on continental rift interaction with the use of an improved analogue model set-up. X-ray computer tomography (CT) techniques are used to analyse the 3D models through time and the results are compared with additional numerical models and natural examples. The experimental results reveal that increasing extension obliquity strongly changes rift segment structures from wide rifts in orthogonal settings to narrower rifts with oblique internal structures under oblique extension conditions to narrow strike-slip dominated systems towards the strike-slip domain. We also find that both decreasing seed offset and increasing extension obliquity promote hard linkage of rift segments through the formation of continuous rift boundary faults at the surface. (Initial) soft linkage through the formation of relay ramps is more likely when seed offset increases or extension is more orthogonal. Rather than linking at depth, the rift boundary faults curve around each other at depth and merge towards the surface to form a continuous trough. Orthogonal extension promotes the formation of intra-rift horsts, which may provide hydrocarbon traps in nature.
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Zalesak, Steve
2015-11-01
The ablative Rayleigh-Taylor (RT) instability is a key factor in the performance of directly-drive inertial-confinement-fusion (ICF) targets. Although this subject has been studied for quite some time, the accurate simulation of the ablative RT instability has proven to be a challenging task for many radiation hydrodynamics codes, particularly when it comes to capturing the ablatively-stabilized region of the linear dispersion spectrum and modeling ab initio perturbations. In this poster, we present results from recent two-dimensional numerical simulations of the ablative RT instability that were performed using the Eulerian code FastRad3D at the U.S. Naval Research Laboratory. We consider both planar and spherical geometries, low and moderate-Z target materials, different laser wavelengths and where possible, compare our findings with experiment data, linearized theory and/or results from other radiation hydrodynamics codes. Overall, we find that FastRad3D is capable of simulating the ablative RT instability quite accurately, although some uncertainties/discrepancies persist. We discuss these issues, as well as some of the numerical challenges associated with modeling this class of problems. Work supported by U.S. DOE/NNSA.
NASA Astrophysics Data System (ADS)
Rodríguez-González, J.; Billen, M. I.; Negredo, A. M.
2012-12-01
Forces driving plate tectonics are reasonably well known but some factors controlling the dynamics and the geometry of subduction processes are still poorly understood. The effect of the thermal state of the subducting and overriding plates on the slab dip have been systematically studied in previous works by means of 2D and 3D numerical modeling. These models showed that kinematically-driven slabs subducting under a cold overriding plate are affected by an increased hydrodynamic suction, due to the lower temperature of the mantle wedge, which leads to a lower subduction angle, and eventually to the formation of flat slab segments. In these models the subduction is achieved by imposing a constant velocity at the top of the overriding plate, which may lead to unrealistic results. Here we present the results of 3D non-Newtonian thermo-mechanical numerical models, considering a dynamically-driven self-sustained subduction, to test the influence of a non-uniform overriding plate. Variations of the thermal state of the overriding plate along the trench cause variation in the hydrodynamic suction, which lead to variations of the slab dip along strike (Fig. 1) and a significant trench-parallel flow. When the material can flow around the edges of the slab, through the addition of lateral plates, the trench parallel flow is enhanced (Fig. 2), whereas the variations on the slab dip are diminished.; Effect of a non-uniform overriding plate on slab-dip. 3D view of the 1000 C isosurface. ; Effect of a non-uniform overriding plate on trench-parallel flow. Map view of the slab at different depths and times, showing the viscosity (colormap) and the velocity (arrows).
Comparison of 2D versus 3D mammography with screening cases: an observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent
2012-02-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric
Yang, Renhuan; Li, Xu; Liu, Jun; He, Bin
2011-01-01
It is of importance to image electrical activity and properties of biological tissues. Recently hybrid imaging modality combing ultrasound scanning and source imaging through the acousto-electric (AE) effect has generated considerable interest. Such modality has the potential to provide high spatial resolution current density imaging by utilizing the pressure induced AE resistivity change confined at the ultrasound focus. In this study, we investigate a novel 3-dimensional (3D) ultrasound current source density imaging (UCSDI) approach using unipolar ultrasound pulses. Utilizing specially designed unipolar ultrasound pulses and by combining AE signals associated to the local resistivity changes at the focusing point, we are able to reconstruct the 3D current density distribution with the boundary voltage measurements obtained while performing a 3D ultrasound scan. We have shown in computer simulation that using the present method, it is feasible to image with high spatial resolution an arbitrary 3D current density distribution in an inhomogeneous conductive media. PMID:21628774
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin
2016-04-01
The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously
Why 3D Cameras are Not Popular: A Qualitative User Study on Stereoscopic Photography Acceptance
NASA Astrophysics Data System (ADS)
Hakala, Jussi; Westman, Stina; Salmimaa, Marja; Pölönen, Monika; Järvenpää, Toni; Häkkinen, Jukka
2014-03-01
Digital stereoscopic 3D cameras have entered the consumer market in recent years, but the acceptance of this novel technology has not yet been studied. The aim of this study was to identify the benefits and problems that novice users encounter in 3D photography by equipping five users with 3D cameras for a 4-week trial. We gathered data using a weekly questionnaire, an exit interview, and a stereoscopic disparity analysis of the 699 photographs taken during the trial. The results indicate that the participants took photographs at too-close distances, which caused excessive disparities. They learned to avoid the problem to some extent; the number of failed photographs due to excessive stereoscopic disparity decreased 70 % in 4 weeks. The participants also developed a preference for subjects that included clear depth differences and started to avoid photographing people because they looked unnatural in 3D photographs. They also regarded flash-induced shadows and edge violations problematic because of the unnatural effects in the photographs. We propose in-camera assistance tools for 3D cameras to make 3D photography easier.
NASA Astrophysics Data System (ADS)
Spichak, V. V.
2011-01-01
Possibilities for three-dimensional (3D) magnetotelluric (MT) sounding of local objects contained in the Earth's crust are estimated in a case study of the magma chamber of the Vesuvius volcano. Stochastic inversion of the model MT data by the Markov Chain Monte Carlo (MCMC) method has shown that the most efficient approach is not simultaneous but successive estimation of the geometry and the depth of the anomaly and the assessment of the conductivity distribution within the anomalous region. A zone of equivalence is revealed between the a priori estimate of the depth of the anomalous zone and the a posteriori distribution of electric conductivity within it. Based on the present estimation and previous results, an algorithm for determination of the parameters of local crustal anomaly is proposed.
The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models
NASA Astrophysics Data System (ADS)
Sutrisno, Prajitno, Purnomo, W., Setyawan B.
2016-06-01
Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.
Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study
He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu
2015-01-01
The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018
Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.
He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu
2015-01-01
The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.
Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.
Fang, Cheng; Xiao, Zhiyan
2016-01-01
Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.
NASA Astrophysics Data System (ADS)
Bischoff, S. H.; Flesch, L. M.
2015-12-01
Piecing together the uplift and growth of the Tibetan Plateau requires a robust understanding of the present-day dynamics of the India-Eurasia collision zone. To aid in the understanding of mountain building and plateau growth, we developed a 3D finite element model of the Tibetan Plateau following Flesch and Bendick (2012). Our model is based on the vast collection of published geophysical data and employs COMSOL Multiphysics (www.comsol.com). We assume model material properties from the wide variety of published seismic and MT studies, incorporated with an updated, vertically averaged, effective viscosity distribution from Flesch et al. (2001). We test potential relationships between conductance/seismic velocity and strength (viscosity) by modeling strength difference contacts at imaged interfaces. We quantify fitness of candidate 3D viscosity functions by comparing solved model surface velocities to observed surface velocities inferred from GPS and Quaternary fault slip rates. The model geometry incorporates Earth curvature and extends eastward from 65° to 110°E, northward from 15° to 45°N, and vertically down to 100 km below sea level. The physics of deformation is governed by the Stokes equations describing incompressible Newtonian fluid flow. Boundary conditions consist of free slip across the bottom surface (representing the lithosphere-asthenosphere boundary) and moving edge walls constrained by a GPS-derived, continuous velocity field. Model results indicate a tradeoff between crust and mantle dominant strength. Best-fit models are achieved by a combination of strong crust/upper mantle with additional strain accommodation in localized weak zones.
Jungreuthmayer, Christian; Birnbaumer, Gerald M; Zanghellini, Juergen; Ertl, Peter
2011-04-07
Interdigital electrode structures (IDES) play a major role in many technical and analytical applications. In particular, they are a key technology in modern lab-on-a-chip (LOC) devices. As high sensitivity is a key component of any (bio)analytical method, the presented work is aimed at designing a novel dielectric sensing system, which exhibits maximum sensor sensitivity using passivated dielectric microsensors. Although the implementation of high-ε(r) dielectric passivation materials such as tantalum oxide or titanium oxide showed increased sensor sensitivity by a factor of 5, simulations revealed that sensor sensitivity is ultimately determined by the dielectric properties of the analyte. Ideally, dielectric properties of the passivation material need to be adjusted to the dielectric properties of the material under investigation and any deviations (e.g. higher or lower dielectric constants) will result in significant loss of sensitivity. To address these shortcomings we have developed a novel dielectric sensing concept based on a dual-material passivation geometry. The novel design consists of electric flux barriers that are layered between the finger electrodes, as well as electric flux guides which are located above the electrode structures that direct the entire generated electric flux to the object under investigation. Our 3D numerical results clearly show that the novel design offers two main advantages: firstly, the measurement sensitivity is further increased by more than a factor of two in comparison to a homogeneous passivation material sensing strategy. Secondly, maximum sensitivity for a given set of finger geometries can be achieved using a single sensor design regardless of the frequency-dependent dielectric properties of the measured objects. Hence, the novel approach is capable of reducing design and manufacturing costs of lab-on-a-chip devices.
NASA Astrophysics Data System (ADS)
Bagaiev, Andrii; Ivanov, Vitaliy
2014-05-01
The Black Sea north-western shelf plays a key role in economics of the developing countries such as Ukraine due to food supply, invaluable recreational potential and variety of the relevant maritime shipping routes. On the other hand, a shallow flat shelf is mostly affected by anthropogenic pollution, eutrophication, hypoxia and harmful algae blooms. The research is focused on modeling the transport and transformation of PCBs (PolyChlorinated Biphenyls) because they are exceedingly toxic and highly resistant to degradation, hence cumulatively affect marine ecosystems. Being lipophilic compounds, PCBs demonstrate the distinguishing sorption/desorption activity taking part in the biogeochemical fluxes via the organic matter particles and sediments. In the framework of the research, the coastal in-situ data on PCB concentration in the water column and sediments are processed, visualized and analyzed. It is concluded that the main sources of PCBs are related to the Danube discharge and resuspension from the shallow-water sediments. Developed 3D numerical model is aimed at simulation of PCB contamination of the water column and sediment. The model integrates the full physics hydrodynamic block as well as modules, which describe detritus transport and transformation and PCB dynamics. Three state variables are simulated in PCB transport module: concentration in solute, on the settling particles of detritus and in the top layer of sediments. PCB adsorption/desorption on detritus; the reversible PCB fluxes at the water-sediment boundary; destruction of detritus are taken into consideration. Formalization of PCB deposition/resuspension in the sediments is adapted from Van Rijn's model of the suspended sediment transport. The model was spun up to reconstruct the short term scenario of the instantaneous PCB release from the St. George Arm of Danube. It has been shown that PCB transport on sinking detritus represents the natural buffer mechanism damping the spreading PCB
NASA Astrophysics Data System (ADS)
Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver
2016-04-01
The in situ stress conditions are of key importance for the evaluation of radioactive waste repositories. In stage two of the Swiss site selection program, the three siting areas of high-level radioactive waste are located in the Alpine foreland in northern Switzerland. The sedimentary succession overlays the basement, consisting of variscan crystalline rocks as well as partly preserved Permo-Carboniferous deposits in graben structures. The Mesozoic sequence represents nearly the complete era and is covered by Cenozoic Molasse deposits as well as Quaternary sediments, mainly in the valleys. The target horizon (designated host rock) is an >100 m thick argillaceous Jurassic deposit (Opalinus Clay). To enlighten the impact of site-specific features on the state of stress within the sedimentary succession, 3-D-geomechanical-numerical models with elasto-plastic rock properties are set up for three potential siting areas. The lateral extent of the models ranges between 12 and 20 km, the vertical extent is up to a depth of 2.5 or 5 km below sea level. The sedimentary sequence plus the basement are separated into 10 to 14 rock mechanical units. The Mesozoic succession is intersected by regional fault zones; two or three of them are present in each model. The numerical problem is solved with the finite element method with a resolution of 100-150 m laterally and 10-30 m vertically. An initial stress state is established for all models taking into account the depth-dependent overconsolidation ratio in Opalinus Clay in northern Switzerland. The influence of topography, rock properties, friction on the faults as well as the impact of tectonic shortening on the state of stress is investigated. The tectonic stress is implemented with lateral displacement boundary conditions, calibrated on stress data that are compiled in Northern Switzerland. The model results indicate that the stress perturbation by the topography is significant to depths greater than the relief contrast. The
Protein-protein interaction networks studies and importance of 3D structure knowledge.
Lu, Hui-Chun; Fornili, Arianna; Fraternali, Franca
2013-12-01
Protein-protein interaction networks (PPINs) are a powerful tool to study biological processes in living cells. In this review, we present the progress of PPIN studies from abstract to more detailed representations. We will focus on 3D interactome networks, which offer detailed information at the atomic level. This information can be exploited in understanding not only the underlying cellular mechanisms, but also how human variants and disease-causing mutations affect protein functions and complexes' stability. Recent studies have used structural information on PPINs to also understand the molecular mechanisms of binding partner selection. We will address the challenges in generating 3D PPINs due to the restricted number of solved protein structures. Finally, some of the current use of 3D PPINs will be discussed, highlighting their contribution to the studies in genotype-phenotype relationships and in the optimization of targeted studies to design novel chemical compounds for medical treatments.
Beitnes, Jan Otto; Klæboe, Lars Gunnar; Karlsen, Jørn Skaarud; Urheim, Stig
2015-02-01
The aim of the present study was to test the feasibility of analyzing 3D ultrasound data on a novel holographic display. An increasing number of mini-invasive procedures for mitral valve repair require more effective visualization to improve patient safety and speed of procedures. A novel 3D holographic display has been developed and may have the potential to guide interventional cardiac procedures in the near future. Forty patients with degenerative mitral valve disease were analyzed. All had complete 2D transthoracic (TTE) and transoesophageal (TEE) echocardiographic examinations. In addition, 3D TTE of the mitral valve was obtained and recordings were converted from the echo machine to the holographic screen. Visual inspection of the mitral valve during surgery or TEE served as the gold standard. 240 segments were analyzed by 2 independent observers. A total of 53 segments were prolapsing. The majority included P2 (31), the remaining located at A2 (8), A3 (6), P3 (5), P1 (2) and A1 (1). The sensitivity and specificity of the 3D display was 87 and 99 %, respectively (observer I), and for observer II 85 and 97 %, respectively. The accuracies and precisions were 96.7 and 97.9 %, respectively, (observer I), 94.3 and 88.2 % (observer II), and inter-observer agreement was 0.954 with Cohen's Kappa 0.86. We were able to convert 3D ultrasound data to the holographic display. A very high accuracy and precision was shown, demonstrating the feasibility of analyzing 3D echo of the mitral valve on the holographic screen.
NASA Astrophysics Data System (ADS)
Ren, Xin; Shen, Jianhu; Ghaedizadeh, Arash; Tian, Hongqi; Xie, Yi Min
2015-09-01
Auxetic metamaterials are synthetic materials with microstructures engineered to achieve negative Poisson’s ratios. Auxetic metamaterials are of great interest because of their unusual properties and various potential applications. However, most of the previous research has been focused on auxetic behaviour of elastomers under elastic deformation. Inspired by our recent finding of the loss of auxetic behaviour in metallic auxetic metamaterials, a systematic experimental and numerical investigation has been carried out to explore the mechanism behind this phenomenon. Using an improved methodology of generating buckling-induced auxetic metamaterials, several samples of metallic auxetic metamaterials have been fabricated using a 3D printing technique. The experiments on those samples have revealed the special features of auxetic behaviour for metallic auxetic metamaterials and proved the effectiveness of our structural modification. Parametric studies have been performed through experimentally validated finite element models to explore the auxetic performance of the designed metallic metamaterials. It is found that the auxetic performance can be tuned by the geometry of microstructures, and the strength and stiffness can be tuned by the plasticity of the base material while maintaining the auxetic performance.
Cancer Cytokines and the Relevance of 3D Cultures for Studying those Implicated in Human Cancers.
Maddaly, Ravi; Subramaniyan, Aishwarya; Balasubramanian, Harini
2017-03-06
Cancers are complex conditions and involving several factors for oncogenesis and progression. Of the various factors influencing the physiology of cancers, cytokines are known to play significant roles as mediators of functions. Intricate cytokine networks have been identified in cancers and interest in cytokines associated with cancers has been gaining ground. Of late, some of these cytokines are even identified as potential targets for cancer therapy apart from a few others such as IL-6 being identified as markers for disease prognosis. Of the major contributors to cancer research, cancer cell lines occupy the top slot as the most widely used material in vitro. In vitro cell cultures have seen significant evolution by the introduction of 3 dimensional (3D) culture systems. 3D cell cultures are now widely accepted as excellent material for cancer research which surpasses the traditional monolayer cultures. Cancer research has benefitted from 3D cell cultures for understanding the various hallmarks of cancers. However, the potential of these culture systems are still unexploited for cancer cytokine research compared to the other aspects of cancers such as gene expression changes, drug-induced toxicity, morphology, angiogenesis and invasion. Considering the importance of cancer cytokines, 3D cell cultures can be better utilized in understanding their roles and functions. Some of the possibilities where 3D cell cultures can contribute to cancer cytokine research arise from the distinct morphology of the tumor spheroids, the extracellular matrix (ECM), and the spontaneous occurrence of nutrient and oxygen gradients. Also, the 3D culture models enable one to co-culture different types of cells as a simulation of in vivo conditions, enhancing their utility to study cancer cytokines. We review here the cancer associated cytokines the contributions of 3D cancer cell cultures for studying cancer cytokines. This article is protected by copyright. All rights reserved.
1992-03-01
COSATI CODES 18 SuBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROlP Underwater Explosion 19. ABSTRACT...Continue on reverse if necessary and dentify by block number) Nonlinear 3-D Dynamic Analysis Code (VEC/DYNA3D) has been interfaced with Underwater...whipping mode. Large plastic strains occurred at the center of the cylinder on the reverse side to the explosive and near the ends of the cylinder on
Application of 3D photo-reconstruction in soil erosion studies
NASA Astrophysics Data System (ADS)
Castillo, Carlos; James, Michael; Pérez, Rafael; Gómez, Jose Alfonso
2014-05-01
3D photo-reconstruction (3D-PR) has been applied successfully to obtain elevation models using uncalibrated and nonmetric cameras for a range of geoscience applications (e.g. James and Robson, 2012), including gully erosion assessment (Castillo et al., 2012). However, its application in soil erosion studies is currently at the outset. The aim of this work is to compare 3D-PR with conventional techniques that have been employed traditionally for different purposes in soil erosion studies. In this preliminary work, we tested three applications that involve volume calculations: estimation of soil bulk density (BD), quantification of soil erosion at road banks (RB) and sedimentation rates behind check dams (CD). For each analysis, a PR field survey was carried out simultaneously with a conventional method (volume of water was used for BD, and total station surveys for RB and CD). For the 3D-PR technique, the accuracy as a function of the number of pictures taken was evaluated. In this study we explore the difference in the volume estimates between 3D-PR and conventional techniques as well as the time requirements for each method in order to compare their performance and optimal field of application.
Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.
2012-03-01
High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.
Comparative studies on gravisensitive protists on ground (2D and 3D clinostats) and in microgravity
NASA Astrophysics Data System (ADS)
Hemmersbach, Ruth; Strauch, Sebastian M.; Seibt, Dieter; Schuber, Marianne
2006-09-01
In order to prepare and support space experiments, 2D and 3D clinostats are widely applied to study the influence of simulated weightlessness on biological systems. In order to evaluate the results a comparison between the data obtained in simulation experiments and in real microgravity is necessary. We are currently analyzing the gravity-dependent behavior of the protists Paramecium biaurelia (ciliate) and Euglena gracilis (photosynthetic flagellate) on these different experimental platforms. So far, first results are presented concerning the behaviour of Euglena on a 2D fast rotating clinostat and a 3D clinostat as well as under real microgravity conditions (TEXUS sounding rocket flight), of Paramecium on a 2D clinostat and in microgravity. Our data show similar results during 2D and 3D clinorotation compared to real microgravity with respect to loss of orientation (gravitaxis) of Paramecium and Euglena and a decrease of linearity of the cell tracks of Euglena. However, the increase of the mean swimming velocities, especially during 3D clinorotation (Euglena) and 2D clinorotation of Paramecium might indicate a persisting mechanostimulation of the cells. Further studies including long-term 2D and 3D clinostat exposition will enable us to demonstrate the qualification of the applied simulation methods.
Studies of the 3D Structure of the Nucleon at Jlab
Avakian, Harut
2016-07-01
Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.
NASA Astrophysics Data System (ADS)
Huang, Bormin; Huang, Hung-Lung; Chen, Hao; Ahuja, Alok; Baggett, Kevin; Schmit, Timothy J.; Heymann, Roger W.
2004-02-01
The next-generation NOAA/NESDIS GOES-R hyperspectral sounder, now referred to as the HES (Hyperspectral Environmental Suite), will have hyperspectral resolution (over one thousand channels with spectral widths on the order of 0.5 wavenumber) and high spatial resolution (less than 10 km). Hyperspectral sounder data is a particular class of data requiring high accuracy for useful retrieval of atmospheric temperature and moisture profiles, surface characteristics, cloud properties, and trace gas information. Hence compression of these data sets is better to be lossless or near lossless. Given the large volume of three-dimensional hyperspectral sounder data that will be generated by the HES instrument, the use of robust data compression techniques will be beneficial to data transfer and archive. In this paper, we study lossless data compression for the HES using 3D integer wavelet transforms via the lifting schemes. The wavelet coefficients are processed with the 3D set partitioning in hierarchical trees (SPIHT) scheme followed by context-based arithmetic coding. SPIHT provides better coding efficiency than Shapiro's original embedded zerotree wavelet (EZW) algorithm. We extend the 3D SPIHT scheme to take on any size of 3D satellite data, each of whose dimensions need not be divisible by 2N, where N is the levels of the wavelet decomposition being performed. The compression ratios of various kinds of wavelet transforms are presented along with a comparison with the JPEG2000 codec.
NASA Astrophysics Data System (ADS)
Huang, Bormin; Huang, Hung-Lung; Chen, Hao; Ahuja, Alok; Baggett, Kevin; Schmit, Timothy J.; Heymann, Roger W.
2003-09-01
Hyperspectral sounder data is a particular class of data that requires high accuracy for useful retrieval of atmospheric temperature and moisture profiles, surface characteristics, cloud properties, and trace gas information. Therefore compression of these data sets is better to be lossless or near lossless. The next-generation NOAA/NESDIS GOES-R hyperspectral sounder, now referred to as the HES (Hyperspectral Environmental Suite), will have hyperspectral resolution (over one thousand channels with spectral widths on the order of 0.5 wavenumber) and high spatial resolution (less than 10 km). Given the large volume of three-dimensional hyperspectral sounder data that will be generated by the HES instrument, the use of robust data compression techniques will be beneficial to data transfer and archive. In this paper, we study lossless data compression for the HES using 3D integer wavelet transforms via the lifting schemes. The wavelet coefficients are then processed with the 3D embedded zerotree wavelet (EZW) algorithm followed by context-based arithmetic coding. We extend the 3D EZW scheme to take on any size of 3D satellite data, each of whose dimensions need not be divisible by 2N, where N is the levels of the wavelet decomposition being performed. The compression ratios of various kinds of wavelet transforms are presented along with a comparison with the JPEG2000 codec.
NASA Astrophysics Data System (ADS)
Aizad, Syazwan; Yahaya, Badrul Hisham; Zubairi, Saiful Irwan
2015-09-01
This study focuses on the effects of using the water extract from Centella asiatica on the mortality of human lung cancer cells (A549) with the use of novel 3-D scaffolds infused with CMC hydrogel. A biodegradable polymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used in this study as 3-D scaffolds, with some modifications made by introducing the gel structure on its pore, which provides a great biomimetic microenvironment for cells to grow apart from increasing the interaction between the cells and cell-bioactive extracts. The CMC showed a good hydrophilic characteristic with mean contact angle of 24.30 ± 22.03°. To ensure the CMC gel had good attachments with the scaffolds, a surface treatment was made before the CMC gel was infused into the scaffolds. The results showed that these modified scaffolds contained 42.41 ± 0.14% w/w of CMC gel, which indicated that the gel had already filled up the entire pore of 3-D scaffolds. Besides, the infused hydrogel scaffolds took only 24 hours to be saturated when absorbing the water. The viability of cancer cells by MTS assay after being treated with Centella asiatica showed that the scaffolds infused with CMC hydrogel had the cell viability of 46.89 ± 1.20% followed by porous 3-D model with 57.30 ± 1.60% of cell viability, and the 2-D model with 67.10 ± 1.10% of cell viability. The inhibitory activity in cell viability between 2-D and 3-D models did not differ significantly (p>0.05) due to the limitation of time in incubating the extract with the cell in the 3-D model microenvironment. In conclusion, with the application of 3-D scaffolds infused with CMC hydrogel, the extracts of Centella asiatica has been proven to have the ability to kill cancer cells and have a great potential to become one of the alternative methods in treating cancer patients.
PRESAGETM - Development and optimization studies of a 3D radiochromic plastic dosimeter - Part 1
NASA Astrophysics Data System (ADS)
Adamovics, J.; Jordan, K.; Dietrich, J.
2006-12-01
This paper studies the polymerization of six different transparent plastics as potential 3D dosimeter matrices. In addition, six different leuco dyes and sixteen different free radical initiators were evaluated. Finally, the photoreactivity of the dosimeter was studied so that the effect of exposure to UV could be minimized.
Best Practices for Designing Online Learning Environments for 3D Modeling Curricula: A Delphi Study
ERIC Educational Resources Information Center
Mapson, Kathleen Harrell
2011-01-01
The purpose of this study was to develop an inventory of best practices for designing online learning environments for 3D modeling curricula. Due to the instructional complexity of three-dimensional modeling, few have sought to develop this type of course for online teaching and learning. Considering this, the study aimed to collectively aggregate…
NASA Astrophysics Data System (ADS)
Xu, Ting; You, Xue-yi
2017-04-01
A 3D sediment transport model based on the modified environmental fluid dynamics code (EFDC) and the nearshore waves simulation model (SWAN) is developed to study the change of suspended sediment concentration and bottom shear stress under the actions of pure current and wave-current. After being validated by the field measured data, the proposed sediment transport model is applied in the Oujiang River Estuary, China. The results show that the ratios of both bottom shear stress and suspended sediment concentration of pure current to those of wave-current show a gradually increase from shallow nearshore water to deep open sea. The results also show that the proportion of wave contributions on bottom shear stress and sediment concentration are above 60%, approximately 20-30% and less than 10% for the water depth of less than 5 m, 5-10 m and more than 20 m, respectively. For the waters among islands, the proportion of wave contribution to bottom shear stress and sediment concentration is reduced to 10-20% for -5 m water depth and this is more obvious for the waves of large amplitude. The bottom stress and suspended sediment concentration between islands are mainly controlled by tidal current, and the effect of wave is not significant.
Meng, Da; Zheng, Bin; Lin, Guang; Sushko, Maria L.
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is the number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.
3D electrical structure of porphyry copper deposit: A case study of Shaxi copper deposit
NASA Astrophysics Data System (ADS)
Chen, Xiang-Bin; Lü, Qing-Tian; Yan, Jia-Yong
2012-06-01
Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kriging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area.
NASA Astrophysics Data System (ADS)
Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.
2013-12-01
The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales
Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives.
Ou, Lili; Han, Shuang; Ding, Wenbo; Chen, Zhe; Ye, Ziqi; Yang, Hongyu; Zhang, Goulin; Lou, Yijia; Chen, Jian-Zhong; Yu, Yongping
2011-08-01
Three series of flavonoid derivatives were designed and synthesized. All synthesized compounds were evaluated for cytotoxic activities against five human cancer cell lines, including K562, PC-3, MCF-7, A549, and HO8910. Among the compounds tested, compound 9 d exhibited the most potent cytotoxic activity with IC(50) values of 2.76-6.98 μM. Further comparative molecular field analysis was performed to conduct a 3D quantitative structure-activity relationship study. The generated 3D-QSAR model could be used for further rational design of novel flavonoid analogs as highly potent cytotoxic agents.
A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning
NASA Astrophysics Data System (ADS)
Wang, Jin; Huang, Xing; Qian, Wei
2017-01-01
The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.
3D evaluation of palatal rugae for human identification using digital study models
Taneva, Emilia D.; Johnson, Andrew; Viana, Grace; Evans, Carla A.
2015-01-01
Background: While there is literature suggesting that the palatal rugae could be used for human identification, most of these studies use two-dimensional (2D) approach. Aim: The aims of this study were to evaluate palatal ruga patterns using three-dimensional (3D) digital models; compare the most clinically relevant digital model conversion techniques for identification of the palatal rugae; develop a protocol for overlay registration; determine changes in palatal ruga individual patterns through time; and investigate the efficiency and accuracy of 3D matching processes between different individuals’ patterns. Material and Methods: Five cross sections in the anteroposterior dimension and four cross sections in the transverse dimension were computed which generated 18 2D variables. In addition, 13 3D variables were defined: The posterior point of incisive papilla (IP), and the most medial and lateral end points of the palatal rugae (R1MR, R1ML, R1LR, R1LL, R2MR, R2ML, R2LR, R2LL, R3MR, R3ML, R3LR, and R3LL). The deviation magnitude for each variable was statistically analyzed in this study. Five different data sets with the same 31 landmarks were evaluated in this study. Results: The results demonstrated that 2D images and linear measurements in the anteroposterior and transverse dimensions were not sufficient for comparing different digital model conversion techniques using the palatal rugae. 3D digital models proved to be a highly effective tool in evaluating different palatal ruga patterns. The 3D landmarks showed no statistically significant mean differences over time or as a result of orthodontic treatment. No statistically significant mean differences were found between different digital model conversion techniques, that is, between OrthoCAD™ and Ortho Insight 3D™, and between Ortho Insight 3D™ and the iTero® scans, when using 12 3D palatal rugae landmarks for comparison. Conclusion: Although 12 palatal 3D landmarks could be used for human
Antonova, N; Dong, X; Tosheva, P; Kaliviotis, E; Velcheva, I
2014-01-01
The results for blood flow in the carotid artery bifurcation on the basis of numerical simulation of Navier-Stokes equations are presented in this study. Four cases of carotid bifurcation are considered: common carotid artery (CCA) bifurcation without stenoses and cases with one, two and three stenoses are also presented. The results are obtained by performing numerical simulations considering one pulse wave period based on the finite volume discretization of Navier-Stokes equations. The structures of the flow around the bifurcation are obtained and the deformation of the pulse wave from common carotid artery (CCA) to the internal carotid artery (ICA) and external carotid artery (ECA) is traced. The axial velocity and wall shear stress (WSS) distribution and contours are presented considering the characteristic time points. The results of the WSS distribution around the bifurcation allow a prediction of the probable sites of stenosis growth.
Paper/PMMA Hybrid 3D Cell Culture Microfluidic Platform for the Study of Cellular Crosstalk.
Lei, Kin Fong; Chang, Chih-Hsuan; Chen, Ming-Jie
2017-04-06
Studying cellular crosstalk is important for understanding tumor initiation, progression, metastasis, and therapeutic resistance. Moreover, a three-dimensional (3D) cell culture model can provide a more physiologically meaningful culture microenvironment. However, studying cellular crosstalk in a 3D cell culture model involves tedious processing. In this study, a paper/poly(methyl methacrylate) (PMMA) hybrid 3D cell culture microfluidic platform was successfully developed for the study of cellular crosstalk. The platform was a paper substrate with culture microreactors placed on a PMMA substrate with hydrogel-infused channels. Different types of cells were directly seeded and cultured in the microreactors. Aberrant cell proliferation of the affected cells was induced by secretions from transfected cells, and the proliferation ratios were investigated using a colorimetric method. The results showed that the responses of cellular crosstalk were different in different types of cells. Moreover, neutralizing and competitive assays were performed to show the functionality of the platform. Additionally, the triggered signaling pathways of the affected cells were directly analyzed by a subsequent immunoassay. The microfluidic platform provides a simple method for studying cellular crosstalk and the corresponding signaling pathways in a 3D culture model.
3-D Magnetotelluric studies of Pre-Cambrian basement beneath southern Alberta
NASA Astrophysics Data System (ADS)
Nieuwenhuis, G.; Unsworth, M.; Pana, D.; Craven, J.
2012-12-01
The Pre-Cambrian basement rocks beneath Alberta record the tectonic events that led to the assembly of Laurentia in the Proterozoic. Since these rocks are covered with younger sedimentary rocks, they must be investigated with geophysical methods. In the 1990s, these basement rocks were studied with a number of long-period magnetotelluric (MT) profiles collected by the Lithoprobe project. Dimensionality analysis of these data show that they appear to be two dimensional (2-D) in the period band 1-1000 s. However 2-D inversion models were unable to reproduce these MT data with a realistic resistivity model. The inversion models were very rough and characterized by many closely spaced conductors. Since the Lithoprobe data gave indications of 3-D resistivity structure, especially in the Archean Loverna block, additional MT data were collected by the University of Alberta from 2006-2010 using NIMS instruments. The goal was to develop an array that would constrain a fully 3-D model of crustal and upper mantle resistivity. The data at periods 1-10,000 s were inverted using a 3-D inversion algorithm. Comparisons between 2-D and 3-D inversions show that both models fit the measured MT data equally well. The 3-D model shows that the structure is dominated by an upper mantle conductor beneath the Loverna Block (the Loverna conductor). This conductor was previously imaged by the 2-D inversion of the Lithoprobe data. Our 3-D model shows that the Loverna conductor extends throughout the Archean Loverna block (part of the Hearne Domain) and is bounded to the south by a potential field anomaly known as the Vulcan Structure. Initial interpretations of the Vulcan Structure explained it as an intracontinental rift zone, while more recent studies show that it is more likely a north dipping subduction zone between two Archean blocks. This interpretation is supported by our 3-D resistivity model, which shows a good correlation between north dipping reflectors and the top of conductivity
Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.
Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul
2014-12-01
This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes.
Supporting Distributed Team Working in 3D Virtual Worlds: A Case Study in Second Life
ERIC Educational Resources Information Center
Minocha, Shailey; Morse, David R.
2010-01-01
Purpose: The purpose of this paper is to report on a study into how a three-dimensional (3D) virtual world (Second Life) can facilitate socialisation and team working among students working on a team project at a distance. This models the situation in many commercial sectors where work is increasingly being conducted across time zones and between…
Segmented images and 3D images for studying the anatomical structures in MRIs
NASA Astrophysics Data System (ADS)
Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun
2004-05-01
For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.
NASA Astrophysics Data System (ADS)
Yang, Jianfeng; Kaus, Boris
2016-04-01
The mechanism of intraplate deformation remains incompletely understood by plate tectonics theory. The India-Asia collision zone is the largest present-day example of continental collision, which makes it an ideal location to study the processes of continental deformation. Existing models of lithospheric deformation are typically quasi two-dimensional and often assume that the lithosphere is a thin viscous sheet, which deforms homogeneously as a result of the collision, or flows above a partially molten lower crust, which explains the exhumation of Himalayan units and lateral spreading of Tibetan plateau. An opposing view is that most deformation localize in shear zones separating less deformed blocks, requiring the lithosphere to have an elasto-plastic rather than a viscous rheology. In order to distinguish which model best fits the observations we develop a 3-D visco-elasto-plastic model, which can model both distributed and highly localized deformation. In our preliminary result, most of the large-scale strike-slips faults including Altyn-Tagh fault, Xianshuihe fault, Red-River fault, Sagaing fault and Jiali fault can be simulated. The topography is consistent with observations that flat plateau in central Tibet and steep, abrupt margins adjacent to Sichuan basin, and gradual topography in southeast Tibet. These models suggest that the localized large-scale strike-slip faults accommodate the continental deformation. These results show the importance of a weak lower crust and topographic effects, as well as the effect of rheology and temperature structure of the lithosphere on the deformation patterns.
ERIC Educational Resources Information Center
Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.
2009-01-01
This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…
3D SEM for surface topography quantification - a case study on dental surfaces
NASA Astrophysics Data System (ADS)
Glon, F.; Flys, O.; Lööf, P.-J.; Rosén, B.-G.
2014-03-01
3D analysis of surface topography is becoming a more used tool for industry and research. New ISO standards are being launched to assist in quantifying engineering surfaces. The traditional optical measuring instrumentation used for 3D surface characterization has been optical interferometers and confocal based instrumentation. However, the resolution here is limited in the lateral dimension to the wavelength of visible light to about 500 nm. The great advantage using the SEM for topography measurements is the high flexibility to zoom from low magnifications and locating interesting areas to high magnification of down to nanometer large surface features within seconds. This paper presents surface characterization of dental implant micro topography. 3D topography data was created from SEM images using commercial photogrammetric software. A coherence scanning interferometer was used for reference measurements to compare with the 3D SEM measurements on relocated areas. As a result of this study, measurements emphasizes that the correlation between the accepted CSI measurements and the new technology represented by photogrammetry based on SEM images for many areal characterization parameters are around or less than 20%. The importance of selecting sampling and parameter sensitivity to varying sampling is high-lighted. Future work includes a broader study of limitations of the photogrammetry technique on certified micro-geometries and more application surfaces at different scales.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.
Cassereau, Luke; Miroshnikova, Yekaterina A; Ou, Guanqing; Lakins, Johnathon; Weaver, Valerie M
2015-01-10
Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype.
3D Gravity Inversion of Northern Sinai Peninsula: A Case Study
NASA Astrophysics Data System (ADS)
Khalil, Mohamed A.; Santos, Fernando M.
2014-07-01
The Sinai Peninsula has attracted the attention of many geological and geophysical studies as it is influenced and bounded by major tectonic events. Those are (1) the Mesozoic to Early Cenozoic tectonically active opening of the Tethys, (2) the Late Cretaceous to Early Tertiary (Laramide) Syrian arc system, due to closing of the Tethys (3) the Oligo-Miocene Gulf of Suez rifted basin, and (4) the Late Miocene to Recent transform Dead Sea-Gulf of Aqaba rift. Additionally, the shear zones inside Sinai such as the Ragabet El-Naam and Minsherah-Abu Kandu Shear Zones. Each of these major tectonic events has affected dramatically the structure evolution of the northern Sinai area. The present paper estimates the 3D density contrast model using the gravity data of northern Sinai. The estimated 3D density contrast model elucidated the peculiarities of the main structural elements in the region. The estimated 3D density contrast model showed the high and low gravity anomalies that form the main mountains and main valleys in northern Sinai. The estimated low density zones are in agreement with the inferred faults resulting from the first horizontal derivative. Comparing the 3D model with the tectonic history of the region and the results of the first horizontal derivative and least square separation increased the reliability of the model.
Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang
2016-07-01
This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS.
NASA Technical Reports Server (NTRS)
Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark
2006-01-01
Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.
3D Echo Pilot Study of Geometric Left Ventricular Changes after Acute Myocardial Infarction
Vieira, Marcelo Luiz Campos; Oliveira, Wercules Antonio; Cordovil, Adriana; Rodrigues, Ana Clara Tude; Mônaco, Cláudia Gianini; Afonso, Tânia; Lira Filho, Edgar Bezerra; Perin, Marco; Fischer, Cláudio Henrique; Morhy, Samira Saady
2013-01-01
Background Left ventricular remodeling (LVR) after AMI characterizes a factor of poor prognosis. There is little information in the literature on the LVR analyzed with three-dimensional echocardiography (3D ECHO). Objective To analyze, with 3D ECHO, the geometric and volumetric modifications of the left ventricle (VE) six months after AMI in patients subjected to percutaneous primary treatment. Methods Prospective study with 3D ECHO of 21 subjects (16 men, 56 ± 12 years-old), affected by AMI with ST segment elevation. The morphological and functional analysis (LV) with 3D ECHO (volumes, LVEF, 3D sphericity index) was carried out up to seven days and six months after the AMI. The LVR was considered for increase > 15% of the end diastolic volume of the LV (LVEDV) six months after the AMI, compared to the LVEDV up to seven days from the event. Results Eight (38%) patients have presented LVR. Echocardiographic measurements (n = 21 patients): I- up to seven days after the AMI: 1- LVEDV: 92.3 ± 22.3 mL; 2- LVEF: 0.51 ± 0.01; 3- sphericity index: 0.38 ± 0.05; II- after six months: 1- LVEDV: 107.3 ± 26.8 mL; 2- LVEF: 0.59 ± 0.01; 3- sphericity index: 0.31 ± 0.05. Correlation coefficient (r) between the sphericity index up to seven days after the AMI and the LVEDV at six months (n = 8) after the AMI: r: 0.74, p = 0.0007; (r) between the sphericity index six months after the AMI and the LVEDV at six months after the AMI: r: 0.85, p < 0.0001. Conclusion In this series, LVR has been observed in 38% of the patients six months after the AMI. The three-dimensional sphericity index has been associated to the occurrence of LVR. PMID:23740401
3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study.
Jung, Soo Yeon; Lee, Sang Jin; Kim, Ha Yeong; Park, Hae Sang; Wang, Zhan; Kim, Hyun Jun; Yoo, James J; Chung, Sung Min; Kim, Han Su
2016-10-27
A ready-made, acellular patch-type prosthesis is desirable in repairing partial tracheal defects in the clinical setting. However, many of these prostheses may not show proper biological integration and biomechanical function when they are transplanted. In this study, we developed a novel 3D printed polyurethane (PU) tracheal scaffold with micro-scale architecture to allow host tissue infiltration and adequate biomechanical properties to withstand physiological tracheal condition. A half-pipe shaped PU scaffold (1.8 cm of height, 0.18 cm thickness, and 2 cm of diameter) was fabricated by 3D printing of PU 200 μm PU beam. The 3D printed tracheal scaffolds consisted of a porous inner microstructure with 200 × 200 × 200 μm(3) sized pores and a non-porous outer layer. The mechanical properties of the scaffolds were 3.21 ± 1.02 MPa of ultimate tensile strength, 2.81 ± 0.58 MPa of Young's modulus, and 725% ± 41% of elongation at break. To examine the function of the 3D printed tracheal scaffolds in vivo, the scaffolds were implanted into 1.0 × 0.7 cm(2) sized anterior tracheal defect of rabbits. After implantation, bronchoscopic examinations revealed that the implanted tracheal scaffolds were patent for a 16 week-period. Histologic findings showed that re-epithelialization after 4 weeks of implantation and ciliated respiratory epithelium with ciliary beating after 8 weeks of implantation were observed at the lumen of the implanted tracheal scaffolds. The ingrowth of the connective tissue into the scaffolds was observed at 4 weeks after implantation. The biomechanical properties of the implanted tracheal scaffolds were continually maintained for 16 week-period. The results demonstrated that 3D printed tracheal scaffold could provide an alternative solution as a therapeutic treatment for partial tracheal defects.
Adaptive clutter rejection for 3D color Doppler imaging: preliminary clinical study.
Yoo, Yang Mo; Sikdar, Siddhartha; Karadayi, Kerem; Kolokythas, Orpheus; Kim, Yongmin
2008-08-01
In three-dimensional (3D) ultrasound color Doppler imaging (CDI), effective rejection of flash artifacts caused by tissue motion (clutter) is important for improving sensitivity in visualizing blood flow in vessels. Since clutter characteristics can vary significantly during volume acquisition, a clutter rejection technique that can adapt to the underlying clutter conditions is desirable for 3D CDI. We have previously developed an adaptive clutter rejection (ACR) method, in which an optimum filter is dynamically selected from a set of predesigned clutter filters based on the measured clutter characteristics. In this article, we evaluated the ACR method with 3D in vivo data acquired from 37 kidney transplant patients clinically indicated for a duplex ultrasound examination. We compared ACR against a conventional clutter rejection method, down-mixing (DM), using a commonly-used flow signal-to-clutter ratio (SCR) and a new metric called fractional residual clutter area (FRCA). The ACR method was more effective in removing the flash artifacts while providing higher sensitivity in detecting blood flow in the arcuate arteries and veins in the parenchyma of transplanted kidneys. ACR provided 3.4 dB improvement in SCR over the DM method (11.4 +/- 1.6 dB versus 8.0 +/- 2.0 dB, p < 0.001) and had lower average FRCA values compared with the DM method (0.006 +/- 0.003 versus 0.036 +/- 0.022, p < 0.001) for all study subjects. These results indicate that the new ACR method is useful for removing nonstationary tissue motion while improving the image quality for visualizing 3D vascular structure in 3D CDI.
D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -
NASA Astrophysics Data System (ADS)
Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.
2011-09-01
In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to
3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight
2016-06-07
3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight Kevin B. Smith Code PH/Sk, Department of Physics Naval Postgraduate...properties and measured transmission loss. Results from this analysis will be considered in the context of geoacoustic inversions . OBJECTIVES To...bathymetric features and ocean fronts near the shelf break of the mid-Atlantic Bight, and use of various data for geoacoutic inversion studies. The results
Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.
2006-01-01
The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.
In vitro systems to study nephropharmacology: 2D versus 3D models.
Sánchez-Romero, Natalia; Schophuizen, Carolien M S; Giménez, Ignacio; Masereeuw, Rosalinde
2016-11-05
The conventional 2-dimensional (2D) cell culture is an invaluable tool in, amongst others, cell biology and experimental pharmacology. However, cells cultured in 2D, on the top of stiff plastic plates lose their phenotypical characteristics and fail in recreating the physiological environment found in vivo. This is a fundamental requirement when the goal of the study is to get a rigorous predictive response of human drug action and safety. Recent approaches in the field of renal cell biology are focused on the generation of 3D cell culture models due to the more bona fide features that they exhibit and the fact that they are more closely related to the observed physiological conditions, and better predict in vivo drug handling. In this review, we describe the currently available 3D in vitro models of the kidney, and some future directions for studying renal drug handling, disease modeling and kidney regeneration.
NASA Astrophysics Data System (ADS)
Spitz, Richard; Schmalholz, Stefan; Kaus, Boris
2016-04-01
The Helvetic nappe system of the European Alps is generally described as a complex of fold and thrust belts. While the overall geology of the system has been studied in detail, the understanding of the tectonic development and mechanical interconnection between overthrusting and folding is still incomplete. One clue comes from the mechanical stratigraphy and the corresponding lateral transition from overthrusting to folding, which is characteristic for the Helvetic nappe system. We employ a three-dimensional numerical model with linear and non-linear viscous rheology to investigate the control of the lateral variation in the thickness of a weak detachment horizon on the transition from folding to overthrusting during continental shortening. The model configuration is based on published work based on 2D numerical simulations. The simulations are conducted with the three-dimensional staggered-grid finite difference code LaMEM (Lithosphere and Mantle Evolution Model), which allows for coupled nonlinear thermo-mechanical modeling of lithospheric deformation with visco-elasto-plastic rheology and computation on massive parallel machines. Our model configuration consists of a stiff viscous layer, with a pre-existing weak zone, resting within a weaker viscous matrix. The reference viscosity ratio μL/μM (for the same strain rate) between the layer and matrix ranges from 10 to 200. The simulations were run with several distinct initial geometries by altering the thickness of the detachment horizon below the stiff layer across the configurations. Shortening with a constant bulk rate is induced by the prescription of a horizontal velocity on one side of the model. The first results of our simulations highlight the general importance of the initial geometry on the lateral transition from overthrusting to folding. Additionally, models with a stepwise lateral variation of the detachment horizon indicate a fold development orthogonal to the main compressional axis.
NASA Astrophysics Data System (ADS)
López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio
2015-06-01
The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.
NASA Astrophysics Data System (ADS)
Miyama, Naoto; Inaba, Kazuaki; Yamamoto, Makoto
2008-06-01
In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ɛ turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.
Two Eyes, 3D: A New Project to Study Stereoscopy in Astronomy Education
NASA Astrophysics Data System (ADS)
Price, Aaron; SubbaRao, M.; Wyatt, R.
2012-01-01
"Two Eyes, 3D" is a 3-year NSF funded research project to study the educational impacts of using stereoscopic representations in informal settings. The project funds two experimental studies. The first is focused on how children perceive various spatial qualities of scientific objects displayed in static 2D and 3D formats. The second is focused on how adults perceive various spatial qualities of scientific objects and processes displayed in 2D and 3D movie formats. As part of the project, two brief high-definition films about variable stars will be developed. Both studies will be mixed-method and look at prior spatial ability and other demographic variables as covariates. The project is run by the American Association of Variable Star Observers, Boston Museum of Science and the Adler Planetarium and Astronomy Museum with consulting from the California Academy of Sciences. Early pilot results will be presented. All films will be released into the public domain, as will the assessment software designed to run on tablet computers (iOS or Android).
Bottenus, Danny; Jubery, Talukder Zaki; Dutta, Prashanta; Ivory, Cornelius F
2011-02-01
This paper describes both the experimental application and 3-D numerical simulation of isotachophoresis (ITP) in a 3.2 cm long "cascade" poly(methyl methacrylate) (PMMA) microfluidic chip. The microchip includes 10 × reductions in both the width and depth of the microchannel, which decreases the overall cross-sectional area by a factor of 100 between the inlet (cathode) and outlet (anode). A 3-D numerical simulation of ITP is outlined and is a first example of an ITP simulation in three dimensions. The 3-D numerical simulation uses COMSOL Multiphysics v4.0a to concentrate two generic proteins and monitor protein migration through the microchannel. In performing an ITP simulation on this microchip platform, we observe an increase in concentration by over a factor of more than 10,000 due to the combination of ITP stacking and the reduction in cross-sectional area. Two fluorescent proteins, green fluorescent protein and R-phycoerythrin, were used to experimentally visualize ITP through the fabricated microfluidic chip. The initial concentration of each protein in the sample was 1.995 μg/mL and, after preconcentration by ITP, the final concentrations of the two fluorescent proteins were 32.57 ± 3.63 and 22.81 ± 4.61 mg/mL, respectively. Thus, experimentally the two fluorescent proteins were concentrated by over a factor of 10,000 and show good qualitative agreement with our simulation results.
A porous 3D cell culture micro device for cell migration study.
Ma, Liang; Zhou, Changchun; Lin, Biaoyang; Li, Wei
2010-08-01
Cell migration under chemoattractant is an important biological step in cancer metastasis that causes the spread of malignant tumor cells. Porous polymeric materials are widely used to mimic the extracellular matrix (ECM) environment for applications such as three dimensional (3D) cell culturing and tissue engineering. In this paper we report a novel 3D cell culture device based on porous polymeric material to study cancer migration. We fabricated a porous channel on a polymeric chip using a selective ultrasonic foaming method. We demonstrate that a chemical concentration gradient could be established through the porous channel due to the slow diffusion process. We show that significant cell migration could be observed through the porous channel within 1-2 weeks of cell culturing when metastatic M4A4-GFP breast cancer cells were induced by 20% fetal bovine serum (FBS).We also developed a mathematical model to evaluate the diffusivity and concentration gradient through the fabricated porous structure.
3D Ultrasound Guidance of Autonomous Robotic Breast Biopsy: Feasibility Study
Liang, Kaicheng; Rogers, Albert J.; Light, Edward D.; von Allmen, Daniel; Smith, Stephen W.
2009-01-01
Feasibility studies of autonomous robot biopsies in tissue have been conducted using real time 3D ultrasound combined with simple thresholding algorithms. The robot first autonomously processed 3D image volumes received from the ultrasound scanner to locate a metal rod target embedded in turkey breast tissue simulating a calcification, and in a separate experiment, the center of a water-filled void in the breast tissue simulating a cyst. In both experiments the robot then directed a needle to the desired target, with no user input required. Separate needle-touch experiments performed by the image-guided robot in a water tank yielded an rms error of 1.15 mm. PMID:19900753
3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study.
Zhou, Xuan; Zhu, Wei; Nowicki, Margaret; Miao, Shida; Cui, Haitao; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace
2016-11-09
Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts or MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA). When BrCa cells were introduced into the stromal cell-laden bioprinted matrices, we found that the growth of BrCa cells was enhanced by the presence of osteoblasts or MSCs, whereas the proliferation of the osteoblasts or MSCs was inhibited by the BrCa cells. The BrCa cells co-cultured with MSCs or osteoblasts presented increased vascular endothelial growth factor (VEGF) secretion in comparison to that of monocultured BrCa cells. Additionally, the alkaline phosphatase activity of MSCs or osteoblasts was reduced after BrCa cell co-culture. These results demonstrate that the 3D bioprinted matrix, with BrCa cells and bone stromal cells, provides a suitable model with which to study the interactive effects of cells in the context of an artificial bone microenvironment and thus may serve as a valuable tool for the investigation of postmetastatic breast cancer progression in bone.
An Experimental Study of Mixing Dynamics in 3D Granular Flows
NASA Astrophysics Data System (ADS)
Zaman, Zafir
Compared with the mixing of fluids, the mixing and segregation of granular materials remains one of the big questions of science. Unlike fluids, granular materials segregate based on differences in particle properties, such as density and size. For 2D granular flows, a dynamical systems framework has been effective in describing regions of mixing and segregation. However, computational and theoretical results are just starting to form a framework for 3D granular flows, such as the bi-axial spherical tumbler (BST) flow. This thesis builds on this emerging framework through a series of experimental studies with theoretical and model support with the goal of better understanding 3D mixing. The first study tests the commonly used assumption in continuum models of granular flow that single axis tumbler flow is two dimensional. Utilizing both surface and destructive subsurface imaging, this study shows that weak 3D deviations occur in the form of an axial drift within single axis tumbler flow of varying material spanwise depth. Afterward, this thesis focuses on the development of a custom-built X-ray imaging system to non-destructively visualize the tumbler subsurface. The second study revisits the axial drift and demonstrates that wall roughness impacts the curvature and overall displacement of particle trajectories throughout the tumbler domain using subsurface particle trajectories provided by the X-ray imaging system. Finally, mixing in the fully 3D BST flow is studied. In particular, 3D persistent mixing barriers that are predicted by the dynamical systems framework are shown to exist. Some barriers are remarkably persistent for as much as 500 protocol iterations despite the presence of collisional diffusion. The structures arise from two competing effects, the cutting and shuffling action of the protocol and the stretching from the flowing layer. The tumbling protocol controls the mixing behavior as well as the types of non-mixing barriers observed. Supplementary
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-10-28
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
NASA Astrophysics Data System (ADS)
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-10-01
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Chung, C K; Shih, T R; Chen, T C; Wu, B H
2008-10-01
A planar micromixer with rhombic microchannels and a converging-diverging element has been systematically investigated by the Taguchi method, CFD-ACE simulations and experiments. To reduce the footprint and extend the operation range of Reynolds number, Taguchi method was used to numerically study the performance of the micromixer in a L(9) orthogonal array. Mixing efficiency is prominently influenced by geometrical parameters and Reynolds number (Re). The four factors in a L(9) orthogonal array are number of rhombi, turning angle, width of the rhombic channel and width of the throat. The degree of sensitivity by Taguchi method can be ranked as: Number of rhombi > Width of the rhombic channel > Width of the throat > Turning angle of the rhombic channel. Increasing the number of rhombi, reducing the width of the rhombic channel and throat and lowering the turning angle resulted in better fluid mixing efficiency. The optimal design of the micromixer in simulations indicates over 90% mixing efficiency at both Re > or = 80 and Re < or = 0.1. Experimental results in the optimal simulations are consistent with the simulated one. This planar rhombic micromixer has simplified the complex fabrication process of the multi-layer or three-dimensional micromixers and improved the performance of a previous rhombic micromixer at a reduced footprint and lower Re.
Intracranial Catheter for Integrated 3D Ultrasound Imaging & Hyperthermia: Feasibility Study
NASA Astrophysics Data System (ADS)
Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin Frinkley; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Dixon-Tulloch, Ellen; Shih, Timothy; Hsu, Stephen J.; Smith, Stephen W.
2009-04-01
In this study, we investigated the feasibility of an intracranial catheter transducer capable of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. We designed and constructed a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements, on a 0.2 mm pitch, with a total aperture size of 8.4 mm×2.3 mm. This array achieved a 3.5° C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.
Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study
NASA Astrophysics Data System (ADS)
Raine-Fenning, N. J.; Ramnarine, K. V.; Nordin, N. M.; Campbell, B. K.
2004-01-01
Three-dimensional (3D) power Doppler data is increasingly used to assess and quantify blood flow and tissue perfusion. The objective of this study was to assess the validity of common 3D power Doppler vascularity indices by quantification in well characterised in-vitro flow models. A computer driven gear pump was used to circulate a steady flow of a blood mimicking fluid through various well characterised flow phantoms to investigate the effect of the number of flow channels, flow rate, depth dependent tissue attenuation, blood mimic scatter particle concentration and ultrasound settings. 3D Power Doppler data were acquired with a Voluson 530D scanner and 7.5 MHz transvaginal transducer (GE Kretz). Virtual Organ Computer-aided Analysis software (VOCAL) was used to quantify the vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). The vascular indices were affected by many factors, some intuitive and some with more complex or unexpected relationships (e.g. VI increased linearly with an increase in flow rate, blood mimic scatter particle concentration and number of flow channels, and had a complex dependence on pulse repetition frequency). Use of standardised settings and appropriate calibration are required in any attempt at relating vascularity indices with flow.
NASA Astrophysics Data System (ADS)
LeVeque, R. J.; Motley, M. R.
2015-12-01
A series of tsunami wave basin experiments of flow through a scale model of Seaside, Oregon have been used as validation data for a 2015 benchmarking workshop hosted by the National Tsunami Mitigation Program, which focused on better understanding the ability of tsunami models to predict flow velocities and inundation depths following a coastal inundation event. As researchers begin to assess the safety of coastal infrastructures, proper assessment of tsunami-induced forces on coastal structures is critical. Hydrodynamic forces on these structures are fundamentally proportional to the local momentum flux of the fluid, and experimental data included momentum flux measurements at many instrumented gauge locations. The GeoClaw tsunami model, which solves the two-dimensional shallow water equations, was compared against other codes during the benchmarking workshop, and more recently a three-dimensional computational fluid dynamics model using the open-source OpenFOAM software has been developed and results from this model are being compared with both the experimental data and the 2D GeoClaw results. In addition, the 3D model allows for computation of fluid forces on the faces of structures, permitting an investigation of the common use of momentum flux as a proxy for these forces. This work aims to assess the potential to apply these momentum flux predictions locally within the model to determine tsunami-induced forces on critical structures. Difficulties in working with these data sets and cross-model comparisons will be discussed. Ultimately, application of the more computationally efficient GeoClaw model, informed by the 3D OpenFOAM models, to predict forces on structures at the community scale can be expected to improve the safety and resilience of coastal communities.
Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant
2014-09-16
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.
Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie
2014-11-10
Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the
An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis.
Janani, G; Pillai, Mamatha M; Selvakumar, R; Bhattacharyya, Amitava; Sabarinath, C
2017-02-07
The study of breast cancer metastasis is limited due to poor knowledge of molecular progression of breast tumor and varied heterogeneity. For a better understanding of tumor metastasis, a reliable 3D in vitro model bridging the gap between 2D cultures and in vivo animal model studies is essential. Our study is focused on two key points: (i) designing a 3D microenvironment for studying metastasis and (ii) simulating the metastasis milieu by inducing epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). An electrospun gelatin nanofiber matrix (EGNF) was fabricated using electrospinning and further dip coated with different concentrations of collagen to obtain surface complexity and mechanical properties, similar to connective tissues. Nanofiber matrices were physically characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and field-emission scanning electron microscopy (FESEM). The FTIR, AFM, and FESEM results indicated the crosslinking and confirmed the presence of pores in the nanofiber matrices. Comparative studies on biocompatibility, cell attachment, and the proliferation of MCF-7 cells on EGNF and collagen coated gelatin nanofibrous matrix (CCGM) revealed higher cellular attachment and proliferation in CCGM. CCGM with human metastatic breast cancer cell line (MCF-7) was taken to study breast cancer metastasis using estrogen (induces EMT) and progesterone (induces MET) hormones for 24 h. Quantitative real-time PCR was used for quantifying the expression of metastasis related genes, and fluorescence microscopy for verifying the invasion of cells to the matrices. The expression of E-cadherin and matrix metalloproteinase 2 (MMP 2) confirmed the occurrence of EMT and MET. Live cell imaging and cellular attachment showed significant increase of cellular invasion in crosslinked 0.15% CCGM that serves as a suitable non-toxic, biocompatible, and affordable scaffold for studying breast cancer
Ragno, Rino; Simeoni, Silvia; Valente, Sergio; Massa, Silvio; Mai, Antonello
2006-01-01
Docking simulation and three-dimensional quantitative structure-activity relationships (3D-QSARs) analyses were conducted on four series of HDAC inhibitors. The studies were performed using the GRID/GOLPE combination using structure-based alignment. Twelve 3-D QSAR models were derived and discussed. Compared to previous studies on similar inhibitors, the present 3-D QSAR investigation proved to be of higher statistical value, displaying for the best global model r2, q2, and cross-validated SDEP values of 0.94, 0.83, and 0.41, respectively. A comparison of the 3-D QSAR maps with the structural features of the binding site showed good correlation. The results of 3D-QSAR and docking studies validated each other and provided insight into the structural requirements for anti-HDAC activity. To our knowledge this is the first 3-D QSAR application on a broad molecular diversity training set of HDACIs.
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2015-01-01
Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L
NASA Astrophysics Data System (ADS)
Guillen, Ph.; Borrel, M.; Dormieux, M.
1990-10-01
A numerical scheme of the MUSCL type used for the numerical simulation of gas flow of different types around complex configurations is described. Approximate Riemann solvers of the Van Leer, Roc, and Osher types, developed for perfect gas flows are used. These solvers have been extended to non-reactive mixtures of two species and real gas flows by Abgrall, Montagne and Vinokur. The architecture of the code, dictated by constraints in geometrical considerations, computational aspects, the specific nature of the flow, and ergonomy, is described.
NASA Astrophysics Data System (ADS)
Menant, Armel; Sternai, Pietro; Jolivet, Laurent; Guillou-Frottier, Laurent; Gerya, Taras
2016-05-01
Interactions between subduction dynamics and magma genesis have been intensely investigated, resulting in several conceptual models derived from geological, geochemical and geophysical data. To provide physico-chemical constraints on these conceptual models, self-consistent numerical simulations containing testable thermo-mechanical parameters are required, especially considering the three-dimensional (3D) natural complexity of subduction systems. Here, we use a 3D high-resolution petrological and thermo-mechanical numerical model to quantify the relative contribution of oceanic and continental subduction/collision, slab roll-back and tearing to magma genesis and transport processes. Our modeling results suggest that the space and time distribution and composition of magmas in the overriding plate is controlled by the 3D slab dynamics and related asthenospheric flow. Moreover, the decrease of the bulk lithospheric strength induced by mantle- and crust-derived magmas promotes the propagation of strike-slip and extensional fault zones through the overriding crust as response to slab roll-back and continental collision. Reduction of the lithosphere/asthenosphere rheological contrast by lithospheric weakening also favors the transmission of velocities from the flowing mantle to the crust. Similarities between our modeling results and the late Cenozoic tectonic and magmatic evolution across the eastern Mediterranean region suggest an efficient control of mantle flow on the magmatic activity in this region, which in turn promotes lithospheric deformation by mantle drag via melt-induced weakening effects.
Monte Carlo generators for studies of the 3D structure of the nucleon
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study
NASA Astrophysics Data System (ADS)
Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.
2017-04-01
Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.
2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study
NASA Astrophysics Data System (ADS)
Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.
2017-01-01
Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.
NASA Astrophysics Data System (ADS)
Kaus, B. J.
2007-12-01
The processes that generate stress in the lithosphere are incompletely understood. Whereas it is obvious that lithospheric deformation (and topography) is ultimately caused by cooling of the Earth from the time of formation, it is less clear how lithospheric deformation is coupled to mantle flow and how this affect stresses. Part of this is due to the somewhat complicated rheology of the lithosphere, which varies from brittle (elastoplastic) to ductile (viscous). In addition, vertical layering of the lithosphere may give rise to instabilities which affect its dynamics and stress evolution in a non-trivial manner. Obtaining a better insight in these processes thus requires numerical tools that can model the mantle-lithosphere system in a self-consistent manner (i.e. in a single computational domain) including topographic effects (i.e. free surface) and viscoelastoplastic rheologies. I have recently developed 2-D and 3-D numerical tools that incorporate the above mentioned features. Here I focus on a number of case studies to illustrate how differences in rheology and boundary conditions alter the dynamics and in particular the stress evolution of the lithosphere. Instabilities such as bending or buckling of compressed lithosphere reduce the average stress ('structural weakening"). Viscoelasticity results in time- dependencies, which are particularly pronounced in highly viscous parts of the lithosphere (e.g. the mantle lithosphere). Strong parts of the lithospere thus don't necessarily have large differential stresses (and earthquakes). The Christmas-tree approximation should therefore be used with care to infer stress levels in the lithosphere. Finally I will illustrate differences in stresses between "kinematically-driven" and "internally-driven" lithospheric- scale deformation models.
NASA Astrophysics Data System (ADS)
Mutter, Kussay N.; Jafri, Zubir M.; Tan, Kok Chooi
2016-04-01
In this paper, the simulation and design of a waveguide for water turbidity sensing are presented. The structure of the proposed sensor uses a 2x2 array of multimode interference (MMI) coupler based on micro graphene waveguide for high sensitivity. The beam propagation method (BPM) are used to efficiently design the sensor structure. The structure is consist of an array of two by two elements of sensors. Each element has three sections of single mode for field input tapered to MMI as the main core sensor without cladding which is graphene based material, and then a single mode fiber as an output. In this configuration MMI responses to any change in the environment. We validate and present the results by implementing the design on a set of sucrose solution and showing how these samples lead to a sensitivity change in the sensor based on the MMI structures. Overall results, the 3D design has a feasible and effective sensing by drawing topographical distribution of suspended particles in the water.
Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study
NASA Astrophysics Data System (ADS)
Herman, L.; Stachoň, Z.
2016-06-01
Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Qin, Yujie
2015-09-01
Numerical simulations of thermo-electromagnetic properties of a high temperature superconducting (HTS) bulk levitating over a permanent magnetic guideway (PMG) are performed by resorting to the quasistatic approximation of the H-method coupling with the classical description of the heat conduction equation. The numerical resolving codes are practiced with the help of the finite element program generation system (FEPG) platform using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of HTS bulk. The simulation results show that the heat conduction and the critical current density are tightly relative to the thermal effects of the HTS bulk over the PMG. The heat intensity which responds to the heat loss of the HTS bulk is mainly distributed at the two bottom-corners of the bulk sample.
Automated 3D ultrasound elastography of the breast: a phantom validation study
NASA Astrophysics Data System (ADS)
Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.
2016-04-01
In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound
NASA Astrophysics Data System (ADS)
Kitsakis, K.; Alabey, P.; Kechagias, J.; Vaxevanidis, N.
2016-11-01
Low cost 3D printing' is a terminology that referred to the fused filament fabrication (FFF) technique, which constructs physical prototypes, by depositing material layer by layer using a thermal nozzle head. Nowadays, 3D printing is widely used in medical applications such as tissue engineering as well as supporting tool in diagnosis and treatment in Neurosurgery, Orthopedic and Dental-Cranio-Maxillo-Facial surgery. 3D CAD medical models are usually obtained by MRI or CT scans and then are sent to a 3D printer for physical model creation. The present paper is focused on a brief overview of benefits and limitations of 3D printing applications in the field of medicine as well as on a dimensional accuracy study of low-cost 3D printing technique.
Does the mitral annulus shrink or enlarge during systole? A real-time 3D echocardiography study.
Kwan, Jun; Jeon, Min-Jae; Kim, Dae-Hyeok; Park, Keum-Soo; Lee, Woo-Hyung
2009-04-01
This study was conducted to explore the geometrical changes of the mitral annulus during systole. The 3D shape of the mitral annulus was reconstructed in 13 normal subjects who had normal structure of the mitral apparatus using real-time 3D echocardiography (RT3DE) and 3D computer software. The two orthogonal (antero-posterior and commissure-commissure) dimensions, the areas (2D projected and 3D surface) and the non-planarity of the mitral annulus were estimated during early, mid and late systole. We demonstrated that the MA had a "saddle shape" appearance and it consistently enlarged mainly in the antero-posterior direction from early to late systole with lessening of its non-planarity, as was determined by 3D reconstruction using RT3DE and 3D computer software.
3D elastic full waveform inversion: case study from a land seismic survey
NASA Astrophysics Data System (ADS)
Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon
2016-04-01
Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.
NASA Astrophysics Data System (ADS)
Wang, Yu-Feng; Xu, Qiang; Cheng, Qian-Gong; Li, Yan; Luo, Zhong-Xu
2016-11-01
Aiming to understand the propagation and deposit behaviours of a granular avalanche along a 3D complex basal terrain, a new 3D experimental platform in 1/400 scale was developed according to the natural terrain of the Xiejiadianzi rock avalanche, with a series of laboratory experiments being conducted. Through the conduction of these tests, parameters, including the morphological evolution of sliding mass, run-outs and velocities of surficial particles, thickness contour and centre of final deposit, equivalent frictional coefficient, and energy dissipation, are documented and analysed, with the geomorphic control effect, material grain size effect, drop angle effect, and drop distance effect on rock avalanche mobility being discussed primarily. From the study, some interesting conclusions for a better understanding of rock avalanche along a 3D complex basal topography are reached. (1) For the granular avalanche tested in this study, great differences between the evolutions of the debris along the right and left branch valleys were observed, with an obvious geomorphic control effect on avalanche mobility presented. In addition, some other interesting features, including groove-like trough and superelevation, were also observed under the control of the topographic interferences. (2) The equivalent frictional coefficients of the granular avalanches tested here range from 0.48 to 0.57, which is lower than that reached with a set-up composed of an inclined chute and horizontal plate and higher than that reached using a set-up composed of only an inclined chute. And the higher the drop angle and fine particle content, the higher the equivalent frictional coefficient. The effect of drop distance on avalanche mobility is minor. (3) For a granular avalanche, momentum transfer plays an important role in the motion of mass, which can accelerate the mobility of the front part greatly through delivering the kinetic energy of the rear part to the front.
NASA Astrophysics Data System (ADS)
Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.
2015-12-01
Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.
NASA Astrophysics Data System (ADS)
Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.
2013-02-01
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
NASA Technical Reports Server (NTRS)
Kwak, D.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far
NASA Technical Reports Server (NTRS)
Biyabani, S. R.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far
3D virtual human atria: A computational platform for studying clinical atrial fibrillation.
Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui
2011-10-01
Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi
Mechanisms of clay smear formation in 3D - a field study
NASA Astrophysics Data System (ADS)
Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven
2016-04-01
Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears
Sensitivity Studies of 3D Geothermal Reservoir Simulation: A Case Study in I-Lan Plain, Taiwan
NASA Astrophysics Data System (ADS)
Kuo, C. W.; Song, S. R.
2015-12-01
A large scale geothermal project conducted by Ministry of Science and Technology is initiated recently in I-Lan south area, northeastern Taiwan. The ultimate goal of this national project is to increase the percentage of renewable energy (ex. geothermal energy) to generate electricity. An integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature gradient and distribution, hydrology, geochemistry, and heat source study etc. The geothermal gradient measured at one drilling well (1200m deep) is up to 50˚C/km and the prediction of temperature based on fluid inclusion analysis could be up to 300˚C. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. A 3D subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The preliminary results from all the investigations are integrated and used as input parameters to create a realistic numerical reservoir model. Numerical simulator TOUGH2 is used to study the geothermal energy potential. The initial state of temperature distribution is simulated and compared to the high resolution of magnetotelluric (MT) data. Simulation results show that they have similar pattern and therefore the prediction of geothermal potential in this area would be more reliable. Based on the realistic initial state, sensitivity studies are performed to investigate effects of relevant parameters on temperature distribution.
Image informatics for studying signal transduction in cells interacting with 3D matrices
NASA Astrophysics Data System (ADS)
Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.
2014-03-01
Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.
NASA Astrophysics Data System (ADS)
Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio
2016-03-01
We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.
3-D LTCC microfluidic device as a tool for studying nanoprecipitation
NASA Astrophysics Data System (ADS)
Schianti, J. N.; Cerize, N. P. N.; Oliveira, A. M.; Derenzo, S.; Góngora-Rubio, M. R.
2013-03-01
Nanoparticles have been used to improve the properties of many cosmetic products, mainly the sunscreens materials using nanoencapsulation or nanosuspensions, improving the contact with active molecules, enhancing the sun protection effect and facilitating formulations in industrial products. Microfluidic devices offer an important possibility in producing nanoparticles in a simple way, in one step bottom up technique, continuum process with low polidispersivity, low consumption of reagents and additives. In this work, we microfabricated a 3-D LTCC microfluidic device to study the nanoprecipitation of Benzophenone-3, used as a sunscreen in pharmaceutical products. It was observed that some parameters influence the particle size related to the total fluid flow on device, the ratio between phases, and the Benzophenone-3 initial concentration. The influence of applied voltages on particle sizes was tested also. For the processing, a high voltage was applied in a Kovar tube inserted in the 3D device. The use of microfluidic device resulted in particles with 100 up to 800 nm of size, with polispersivity index below 0.3 and offering an interesting way to obtain nanoparticles. These studies are still ongoing, but early results indicate the possibility of obtaining B-3 nanostructured material.
Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists
NASA Astrophysics Data System (ADS)
Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua
2013-08-01
The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.
Study of 3D printing method for GRIN micro-optics devices
NASA Astrophysics Data System (ADS)
Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.
2016-03-01
Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.
3D-QSAR and docking studies of pentacycloundecylamines at the sigma-1 (σ1) receptor.
Geldenhuys, Werner J; Novotny, Nicholas; Malan, Sarel F; Van der Schyf, Cornelis J
2013-03-15
Pentacycloundecylamine (PCU) derived compounds have been shown to be promising lead structures for the development of novel drug candidates aimed at a variety of neurodegenerative and psychiatric diseases. Here we show for the first time a 3D quantitative structure-activity relationship (3D-QSAR) for a series of aza-PCU-derived compounds with activity at the sigma-1 (σ1) receptor. A comparative molecular field analysis (CoMFA) model was developed with a partial least squares cross validated (q(2)) regression value of 0.6, and a non-cross validated r(2) of 0.9. The CoMFA model was effective at predicting the sigma-1 activities of a test set with an r(2) >0.7. We also describe here the docking of the PCU-derived compounds into a homology model of the sigma-1 (σ1) receptor, which was developed to gain insight into binding of these cage compounds to the receptor. Based on docking studies we evaluated in a [(3)H]pentazocine binding assay an oxa-PCU, NGP1-01 (IC50=1.78μM) and its phenethyl derivative (IC50=1.54μM). Results from these studies can be used to develop new compounds with specific affinity for the sigma-1(σ1) receptor.
The study of craniofacial growth patterns using 3D laser scanning and geometric morphometrics
NASA Astrophysics Data System (ADS)
Friess, Martin
2006-02-01
Throughout childhood, braincase and face grow at different rates and therefore exhibit variable proportions and positions relative to each other. Our understanding of the direction and magnitude of these growth patterns is crucial for many ergonomic applications and can be improved by advanced 3D morphometrics. The purpose of this study is to investigate this known growth allometry using 3D imaging techniques. The geometry of the head and face of 840 children, aged 2 to 19, was captured with a laser surface scanner and analyzed statistically. From each scan, 18 landmarks were extracted and registered using General Procrustes Analysis (GPA). GPA eliminates unwanted variation due to position, orientation and scale by applying a least-squares superimposition algorithm to individual landmark configurations. This approach provides the necessary normalization for the study of differences in size, shape, and their interaction (allometry). The results show that throughout adolescence, boys and girls follow a different growth trajectory, leading to marked differences not only in size but also in shape, most notably in relative proportions of the braincase. These differences can be observed during early childhood, but become most noticeable after the age of 13 years, when craniofacial growth in girls slows down significantly, whereas growth in boys continues for at least 3 more years.
Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill
Clement, R.; Oxarango, L.; Descloitres, M.
2011-03-15
Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequently applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.
Geometry-based vs. intensity-based medical image registration: A comparative study on 3D CT data.
Savva, Antonis D; Economopoulos, Theodore L; Matsopoulos, George K
2016-02-01
Spatial alignment of Computed Tomography (CT) data sets is often required in numerous medical applications and it is usually achieved by applying conventional exhaustive registration techniques, which are mainly based on the intensity of the subject data sets. Those techniques consider the full range of data points composing the data, thus negatively affecting the required processing time. Alternatively, alignment can be performed using the correspondence of extracted data points from both sets. Moreover, various geometrical characteristics of those data points can be used, instead of their chromatic properties, for uniquely characterizing each point, by forming a specific geometrical descriptor. This paper presents a comparative study reviewing variations of geometry-based, descriptor-oriented registration techniques, as well as conventional, exhaustive, intensity-based methods for aligning three-dimensional (3D) CT data pairs. In this context, three general image registration frameworks were examined: a geometry-based methodology featuring three distinct geometrical descriptors, an intensity-based methodology using three different similarity metrics, as well as the commonly used Iterative Closest Point algorithm. All techniques were applied on a total of thirty 3D CT data pairs with both known and unknown initial spatial differences. After an extensive qualitative and quantitative assessment, it was concluded that the proposed geometry-based registration framework performed similarly to the examined exhaustive registration techniques. In addition, geometry-based methods dramatically improved processing time over conventional exhaustive registration.
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study
Gerassimenko, M.
2000-03-01
We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.
Hambach, Lothar; Buser, Andreas; Vermeij, Marcel; Pouw, Nadine; van der Kwast, Theo; Goulmy, Els
2016-01-01
Cellular immunotherapy targeting human tumor antigens is a promising strategy to treat solid tumors. Yet clinical results of cellular immunotherapy are disappointing. Moreover, the currently available in vitro human tumor models are not designed to study the optimization of T-cell therapies of solid tumors. Here, we describe a novel assay for multiparametric in situ analysis of therapeutic effects on individual human three-dimensional (3D) tumors. In this assay, tumors of several millimeter diameter are generated from human cancer cell lines of different tumor entities in a collagen type I microenvironment. A newly developed approach for efficient morphological analysis reveals that these in vitro tumors resemble many characteristics of the corresponding clinical cancers such as histological features, immunohistochemical staining patterns, distinct tumor growth compartments and heterogeneous protein expression. To assess the response to therapy with tumor antigen specific T-cells, standardized protocols are described to determine T-cell infiltration and tumor destruction by monitoring soluble factors and tumor growth. Human tumors engineered in 3D collagen scaffolds are excellent in vitro surrogates for avascular tumor stages allowing integrated analyses of the antitumor efficacy of cancer specific immunotherapy in situ.
Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco
2015-06-01
The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications.
A biofidelic 3D culture model to study the development of brain cellular systems.
Ren, M; Du, C; Herrero Acero, E; Tang-Schomer, M D; Özkucur, N
2016-04-26
Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems.
Reliability and validity of the tritrac-R3D accelerometer during backpacking: a case study.
DeVoe, D; Dalleck, L
2001-08-01
This study investigated the utility of the Tritrac-R3D accelerometer as a reliable and valid instrument in the quantification of physical activity while backpacking in the field and to evaluate heart-rate responses and oxygen consumption to assess the feasibility of using the Tritrac-R3D to estimate caloric expenditure. Two 7-day backpacking expeditions were conducted in two consecutive years by a single subject at Grand Canyon National Park, Arizona. The average hiking heart rate ranged front 60% to 77% HRmax during the expeditions. The average rate of estimated caloric cost ranged from 6.8 to 11.7 kcals x min.(-1) (equivalent to 408 to 702 kcals x hr.(-1)), indicating a relatively moderate to high level of exertion. The Tritrac had adequate consistency and reliability in the field between the two expeditions in recorded activity counts. The Tritrac underestimated caloric expenditure during backpacking with changes in terrain, and hiking speed contributed to even greater disparity in accuracy.
A small animal image guided irradiation system study using 3D dosimeters
NASA Astrophysics Data System (ADS)
Qian, Xin; Admovics, John; Wuu, Cheng-Shie
2015-01-01
In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies.
A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.
Martini, Roberto; Balit, Yanis; Barthelat, Francois
2017-03-16
Flexible natural armors from fish, alligators or armadillo are attracting an increasing amount of attention for their unique combinations of hardness, flexibility and light weight. The extreme contrast of stiffness between hard scales and surrounding soft tissues gives rise to unusual and attractive mechanisms, which now serve as models for the design of bio-inspired armors. Despite this growing interest, there is little guideline for the choice of materials, optimum thickness, size, shape and arrangement for the protective scales. In this work, we explore how the geometry and arrangement of hard scales can be tailored to promote scale-scale interactions. We use 3D printing to fabricate arrays of scales with increasingly complex geometries and arrangements, from simple squares with no overlap to complex ganoid-scales with overlaps and interlocking features. We performed puncture tests and flexural tests on each of the 3D printed materials, and we report the puncture resistance - compliance characteristics of each design on an Ashby chart. The interactions between the scales can significantly increase the resistance to puncture, and these interactions can be maximized by tuning the geometry and arrangement of the scales. Interestingly, the designs that offer the best combinations of puncture resistance and flexural compliance are similar to the geometry and arrangement of natural teleost and ganoid scales, which suggests that natural evolution has shaped these systems to maximize flexible protection. This study yields new insights into the mechanisms of natural dermal armor, and also suggests new designs for personal protective systems.
A biofidelic 3D culture model to study the development of brain cellular systems
Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.
2016-01-01
Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667
Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Farassat, F.
1998-01-01
In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.
Synthesis, in vitro antitubercular activity and 3D-QSAR study of 1,4-dihydropyridines.
Manvar, Atul T; Pissurlenkar, Raghuvir R S; Virsodia, Vijay R; Upadhyay, Kuldip D; Manvar, Dinesh R; Mishra, Arun K; Acharya, Hrishikesh D; Parecha, Alpesh R; Dholakia, Chintan D; Shah, Anamik K; Coutinho, Evans C
2010-05-01
In continuation of our research program on new antitubercular agents, this article is a report of the synthesis of 97 various symmetrical, unsymmetrical, and N-substituted 1,4-dihydropyridines. The synthesized molecules were tested for their activity against M. tuberculosis H (37)Rv strain with rifampin as the standard drug. The percentage inhibition was found in the range 3-93%. In an effort to understand the relationship between structure and activity, 3D-QSAR studies were also carried out on a subset that is representative of the molecules synthesized. For the generation of the QSAR models, a training set of 35 diverse molecules representing the synthesized molecules was utilized. The molecules were aligned using the atom-fit technique. The CoMFA and CoMSIA models generated on the molecules aligned by the atom-fit method show a correlation coefficient (r (2)) of 0.98 and 0.95 with cross-validated r (2)(q (2)) of 0.56 and 0.62, respectively. The 3D-QSAR models were externally validated against a test set of 19 molecules (aligned previously with the training set) for which the predictive r(2)(r(r)(pred)) is recorded as 0.74 and 0.69 for the CoMFA and CoMSIA models, respectively. The models were checked for chance correlation through y-scrambling. The QSAR models revealed the importance of the conformational flexibility of the substituents in antitubercular activity.
A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.
2013-12-01
The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness,
Age Dependence of Wind Properties for Solar-type Stars: A 3D Study
NASA Astrophysics Data System (ADS)
Réville, Victor; Folsom, Colin P.; Strugarek, Antoine; Brun, Allan Sacha
2016-12-01
Young and rapidly rotating stars are known for intense, dynamo-generated magnetic fields. Spectropolarimetric observations of those stars in precisely aged clusters are key input for gyrochronology and magnetochronology. We use Zeeman Doppler imaging maps of several young K-type stars of similar mass and radius but with various ages and rotational periods to perform three-dimensional (3D) numerical MHD simulations of their coronae and follow the evolution of their magnetic properties with age. Those simulations yield the coronal structure as well as the instant torque exerted by the magnetized, rotating wind on the star. As stars get older, we find that the angular momentum loss decreases with {{{Ω }}}\\star 3, which is the reason for the convergence on the Skumanich law. For the youngest stars of our sample, the angular momentum loss shows signs of saturation around 8{{{Ω }}}⊙ , which is a common value used in spin evolution models for K-type stars. We compare these results to semianalytical models and existing braking laws. We observe a complex wind-speed distribution for the youngest stars with slow, intermediate, and fast wind components, which are the result of interaction with intense and nonaxisymmetric magnetic fields. Consequently, in our simulations, the stellar wind structure in the equatorial plane of young stars varies significantly from a solar configuration, delivering insight about the past of the solar system interplanetary medium.
Procedural 3d Modelling for Traditional Settlements. The Case Study of Central Zagori
NASA Astrophysics Data System (ADS)
Kitsakis, D.; Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2017-02-01
Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects' detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.
3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study.
Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne
2016-08-01
The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.
NASA Astrophysics Data System (ADS)
Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.
2015-02-01
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet
Numerical Investigation of 3-D Transient Combusting Flow in a 1.2MWth Pilot Power Plant
NASA Astrophysics Data System (ADS)
Nikolopoulos, A.; Rampldls, I.; Nlkelopoules, N.; Grammells, P.; Kakaras, E.
As industrial Circulating Fluidized bed Combustors (CFBCs) tend to be scaled up, numerous design and operating problems emerge. At the same time uncertainties which concern hydrodynamics, combustion and pollutants formation mechanisms, come in to sight. Along with experience, CFD analysis can play crucial role providing further insight on the complex multiphase combusting flow occurring in CFBCs. This work aims to present a methodology for CFBCs comprehensive modeling, taking into consideration the coupling of hydrodynamics — heat transfer — chemical phenomena that take place in the bed. A combination of acceptable accuracy with high computational efficiency was also an objective. For this purpose, a simple combustion mechanism was integrated in an isothermal model and applied on a 1.2 MWth pilot plant. In this comprehensive model gas, inert-material and fuel are taken into consideration, as three discrete, pure eulerian phases. Solids inventory in the riser as well as temperature of the bed were predicted with satisfactory accuracy. Moreover, major chemical components as O2 and CO2 concentrations were predicted along the bed with acceptable accuracy. Concluding, the developed CFD model is capable of efficiently modeling a CFBC. However in order to further increase total accuracy, the need for improved closure equations for the set ofPartial Differential Equations solved was made obvious. Finally, the computational cost for such modeling was found extremely high but not prohibitive for large scale CFBC simulations.
NASA Astrophysics Data System (ADS)
Rey, P. F.; Mondy, L. S.; Duclaux, G.; Teyssier, C. P.; Whitney, D. L.
2015-12-01
We have used Underworld to perform a series of numerical experiments involving a 256 x 256 x 128 km domain, at a grid resolution of 1.33 km. The kinematic boundary conditions simulate a lithospheric-scale pull-apart setting. We compare the structural and thermal evolution of a model involving a crust of thickness 40 km (TMoho=540ºC) with a model with a crust of thickness 60 km (TMoho=830ºC). We show that in the thick, hot crust model the flow in the pull-apart region is strongly partitioned between the strong upper crust and the weak lower crust. The weak, deep crust flows toward the pull-apart region to isostatically compensate the stretching and thinning of the upper crust. In contrast, the velocity field in the upper crust remains parallel to the imposed direction of extension. In the pull-apart region a transdome, made of two parallel foliation folds (or sub-domes), forms. In the dome, fabrics evolve from strong vertical flattening in between the two sub-domes, to shallow dipping constriction roughly parallel to the direction of extension in the upper part of the transdome.
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves
2013-04-01
Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of
Solimini, Angelo G.
2013-01-01
Background The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. Methods and Findings A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Conclusions Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators. PMID:23418530
A 2D 3D registration with low dose radiographic system for in vivo kinematic studies.
Jerbi, T; Burdin, V; Stindel, E; Roux, C
2011-01-01
The knowledge of the poses and the positions of the knee bones and prostheses is of a great interest in the orthopedic and biomechanical applications. In this context, we use an ultra low dose bi-planar radiographic system called EOS to acquire two radiographs of the studied bones in each position. In this paper, we develop a new method for 2D 3D registration based on the frequency domain to determine the poses and the positions during quasi static motion analysis for healthy and prosthetic knees. Data of two healthy knees and four knees with unicompartimental prosthesis performing three different poses (full extension, 30° and 60° of flexion) were used in this work. The results we obtained are in concordance with the clinical accuracy and with the accuracy reported in other previous studies.
Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.
Estrada-Salas, Rubén E; Valladares, Ariel A
2009-09-24
Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.
Feasibility of a 3D human airway epithelial model to study respiratory absorption.
Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke
2014-03-01
The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (<5%). Results indicate that the 3D human airway epithelial model used in this study is able to differentiate between substances with low and high absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.
NASA Astrophysics Data System (ADS)
Ruh, Jonas B.; Gerya, Taras; Burg, Jean-Pierre
2013-04-01
mechanics and dynamics of thin-skinned compressible thrust wedges with prescribed offsets in the backstop, i.e., transfer zones, are investigated using a three-dimensional finite difference numerical model with a visco-brittle/plastic rheology. The main questions addressed are as follows: (i) What is the influence of the initial length of the backstop offset and (ii) what is the effect of the frictional strength of the main décollement on the structural evolution of the brittle wedges along such transfer zones? Results show that the shorter the backstop offset, the earlier these two thrust planes connect, forming a curved frontal thrust along the entire width of the model. Younger, in-sequence thrusts are formed parallel to this curved shape. Long backstop offsets produce strongly curved thrust faults around the indenting corner. Simulations with a weak basal friction evolve toward almost linear frontal thrusts orthogonal to the bulk shortening direction. Increased basal drag in models with a strong décollement favors propagation of the backstop offset into a transfer zone up to the frontal thrust. These simulations revealed that surface tapers of the wedge in front of the backstop promontory are larger than what the critical wedge theory predicts, whereas the tapers on the other side of the transfer zone are smaller than analytical values. This difference is amplified with increasing length of the backstop offset and/or strength of the décollement. Modeled surface elevation schemes reproduce well the topographic patterns of natural orogenic systems such as the topographic low along the Minab-Zendan transform/transfer fault between the Zagros and Makran.
Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring
NASA Astrophysics Data System (ADS)
Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang
2016-10-01
3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.
Roughness receptivity studies in a 3-D boundary layer - Flight tests and computations
NASA Astrophysics Data System (ADS)
Carpenter, Andrew L.; Saric, William S.; Reed, Helen L.
The receptivity of 3-D boundary layers to micron-sized, spanwise-periodic Discrete Roughness Elements (DREs) was studied. The DREs were applied to the leading edge of a 30-degree swept-wing at the wavelength of the most unstable disturbance. In this case, calibrated, multi-element hotfilm sensors were used to measure disturbance wall shear stress. The roughness height was varied from 0 to 50 microns. Thus, the disturbance-shear-stress amplitude variations were determined as a function of modulated DRE heights. The computational work was conducted parallel to the flight experiments. The complete viscous flowfield over the O-2 aircraft with the SWIFT model mounted on the port wing store pylon was successfully modeled and validated with the flight data. This highly accurate basic-state solution was incorporated into linear stability calculations and the wave growth associated with the crossflow instability was calculated.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.
2015-04-08
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.
An isostatic study of the Karoo basin and underlying lithosphere in 3-D
NASA Astrophysics Data System (ADS)
Scheiber-Enslin, Stephanie E.; Ebbing, Jörg; Webb, Susan J.
2016-08-01
A 3-D density model of the crust and upper mantle beneath the Karoo basin is presented here. The model is constrained using potential field, borehole and seismic data. Uplift of the basin by the end of the Cretaceous has resulted in an unusually high plateau (>1000 m) covering a large portion of South Africa. Isostatic studies show the topography is largely compensated by changes in Moho depths (˜35 km on-craton and >45 km off-craton) and changes in lithospheric mantle densities between the Kaapvaal Craton and surrounding regions (˜50 kg m-3 increase from on- to off-craton). This density contrast is determined by inverted satellite gravity and gravity gradient data. The highest topography along the edge of the plateau (>1200 m) and a strong Bouguer gravity low over Lesotho, however, can only be explained by a buoyant asthenosphere with a density decrease of around 40 kg m-3.
Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R
2012-02-01
Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements.
Structural and property studies on metal-organic compounds with 3-D supramolecular network
NASA Astrophysics Data System (ADS)
Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian
2014-07-01
Two carboxylato-bridged allomeric compounds, {[Cu2(dbsa)2(hmt) (H2O)4]1/2·2H2O}n (1), {[Ni(dbsa)(H2O)2]1/2[Ni(dbsa)(hmt)(H2O)2]1/2·2H2O}n (2) (H2dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J1=-3.5 cm-1, J2=-2.8 cm-1 for 1, and g=2.1, J=-3.5 cm-1 for 2.
NASA Astrophysics Data System (ADS)
Bates, J. W.; Schmitt, A. J.; Karasik, M.; Zalesak, S. T.
2016-12-01
The ablative Rayleigh-Taylor (RT) instability is a central issue in the performance of laser-accelerated inertial-confinement-fusion targets. Historically, the accurate numerical simulation of this instability has been a challenging task for many radiation hydrodynamics codes, particularly when it comes to capturing the ablatively stabilized region of the linear dispersion spectrum and modeling ab initio perturbations. Here, we present recent results from two-dimensional numerical simulations of the ablative RT instability in planar laser-ablated foils that were performed using the Eulerian code FastRad3D. Our study considers polystyrene, (cryogenic) deuterium-tritium, and beryllium target materials, quarter- and third-micron laser light, and low and high laser intensities. An initial single-mode surface perturbation is modeled in our simulations as a small modulation to the target mass density and the ablative RT growth-rate is calculated from the time history of areal-mass variations once the target reaches a steady-state acceleration. By performing a sequence of such simulations with different perturbation wavelengths, we generate a discrete dispersion spectrum for each of our examples and find that in all cases the linear RT growth-rate γ is well described by an expression of the form γ = α [ k g / ( 1 + ɛ k L m ) ] 1 / 2 - β k V a , where k is the perturbation wavenumber, g is the acceleration of the target, Lm is the minimum density scale-length, Va is the ablation velocity, and ɛ is either one or zero. The dimensionless coefficients α and β in the above formula depend on the particular target and laser parameters and are determined from two-dimensional simulation results through the use of a nonlinear curve-fitting procedure. While our findings are generally consistent with those of Betti et al. (Phys. Plasmas 5, 1446 (1998)), the ablative RT growth-rates predicted in this investigation are somewhat smaller than the values previously reported for the
Djordjevic, Jelena; Zhurov, Alexei I.; Richmond, Stephen
2016-01-01
Introduction Facial phenotype is influenced by genes and environment; however, little is known about their relative contributions to normal facial morphology. The aim of this study was to assess the relative genetic and environmental contributions to facial morphological variation using a three-dimensional (3D) population-based approach and the classical twin study design. Materials and Methods 3D facial images of 1380 female twins from the TwinsUK Registry database were used. All faces were landmarked, by manually placing 37 landmark points, and Procrustes registered. Three groups of traits were extracted and analysed: 19 principal components (uPC) and 23 principal components (sPC), derived from the unscaled and scaled landmark configurations respectively, and 1275 linear distances measured between 51 landmarks (37 manually identified and 14 automatically calculated). The intraclass correlation coefficients, rMZ and rDZ, broad-sense heritability (h2), common (c2) and unique (e2) environment contributions were calculated for all traits for the monozygotic (MZ) and dizygotic (DZ) twins. Results Heritability of 13 uPC and 17 sPC reached statistical significance, with h2 ranging from 38.8% to 78.5% in the former and 30.5% to 84.8% in the latter group. Also, 1222 distances showed evidence of genetic control. Common environment contributed to one PC in both groups and 53 linear distances (4.3%). Unique environment contributed to 17 uPC and 20 sPC and 1245 distances. Conclusions Genetic factors can explain more than 70% of the phenotypic facial variation in facial size, nose (width, prominence and height), lips prominence and inter-ocular distance. A few traits have shown potential dominant genetic influence: the prominence and height of the nose, the lower lip prominence in relation to the chin and upper lip philtrum length. Environmental contribution to facial variation seems to be the greatest for the mandibular ramus height and horizontal facial asymmetry. PMID
Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations
NASA Astrophysics Data System (ADS)
Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.
2016-10-01
A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.
Study of City Landscape Heritage Using Lidar Data and 3d-City Models
NASA Astrophysics Data System (ADS)
Rubinowicz, P.; Czynska, K.
2015-04-01
In contemporary town planning protection of urban landscape is a significant issue. It regards especially those cities, where urban structures are the result of ages of evolution and layering of historical development process. Specific panoramas and other strategic views with historic city dominants can be an important part of the cultural heritage and genius loci. Other hand, protection of such expositions introduces limitations for future based city development. Digital Earth observation techniques creates new possibilities for more accurate urban studies, monitoring of urbanization processes and measuring of city landscape parameters. The paper examines possibilities of application of Lidar data and digital 3D-city models for: a) evaluation of strategic city views, b) mapping landscape absorption limits, and c) determination protection zones, where the urbanization and buildings height should be limited. In reference to this goal, the paper introduces a method of computational analysis of the city landscape called Visual Protection Surface (VPS). The method allows to emulate a virtual surface above the city including protection of a selected strategic views. The surface defines maximum height of buildings in such a way, that no new facility can be seen in any of selected views. The research includes also analyses of the quality of simulations according the form and precision of the input data: airborne Lidar / DSM model and more advanced 3D-city models (incl. semantic of the geometry, like in CityGML format). The outcome can be a support for professional planning of tall building development. Application of VPS method have been prepared by a computer program developed by the authors (C++). Simulations were carried out on an example of the city of Dresden.
3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.
NASA Astrophysics Data System (ADS)
Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung
2016-04-01
Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.
2010-01-01
Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to
Wu, Ai-Min; Wang, Sheng; Weng, Wan-Qing; Shao, Zhen-Xuan; Yang, Xin-Dong; Wang, Jian-Shun; Xu, Hua-Zi; Chi, Yong-Long
2014-12-01
Anterior occiput-to-axis screw fixation is more suitable than a posterior approach for some patients with a history of posterior surgery. The complex osseous anatomy between the occiput and the axis causes a high risk of injury to neurological and vascular structures, and it is important to have an accurate screw trajectory to guide anterior occiput-to-axis screw fixation. Thirty computed tomography (CT) scans of upper cervical spines were obtained for three-dimensional (3D) reconstruction. Cylinders (1.75 mm radius) were drawn to simulate the trajectory of an anterior occiput-to-axis screw. The imitation screw was adjusted to 4 different angles and measured, as were the values of the maximized anteroposterior width and the left-right width of the occiput (C0) to the C1 and C1 to C2 joints. Then, the 3D models were printed, and an angle guide device was used to introduce the screws into the 3D models referring to the angles calculated from the 3D images. We found the screw angle ranged from α1 (left: 4.99±4.59°; right: 4.28±5.45°) to α2 (left: 20.22±3.61°; right: 19.63±4.94°); on the lateral view, the screw angle ranged from β1 (left: 13.13±4.93°; right: 11.82±5.64°) to β2 (left: 34.86±6.00°; right: 35.01±5.77°). No statistically significant difference was found between the data of the left and right sides. On the 3D printed models, all of the anterior occiput-to-axis screws were successfully introduced, and none of them penetrated outside of the cortex; the mean α4 was 12.00±4.11 (left) and 12.25±4.05 (right), and the mean β4 was 23.44±4.21 (left) and 22.75±4.41 (right). No significant difference was found between α4 and β4 on the 3D printed models and α3 and β3 calculated from the 3D digital images of the left and right sides. Aided with the angle guide device, we could achieve an optimal screw trajectory for anterior occiput-to-axis screw fixation on 3D printed C0 to C2 models.
Numerical Studies of Topological phases
NASA Astrophysics Data System (ADS)
Geraedts, Scott
The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey; Costa, Antonio; Chiodini, Giovanni
2015-06-01
Hydrothermal activity at Campi Flegrei caldera is simulated by using the multiphase code MUFITS. We first provide a brief description of the simulator covering the mathematical formulation and its applicability at elevated supercritical temperatures. Then we apply, for the first time, the code to hydrothermal systems investigating the Campi Flegrei caldera case. We consider both shallow subcritical regions and deep supercritical regions of the hydrothermal system. We impose sophisticated boundary conditions at the surface to provide a better description of the reservoir interactions with the atmosphere and the sea. Finally we carry out a parametric study and compare the simulation results with gas temperature and composition, gas and heat fluxes, and temperature measurements in the wells of that area. Results of the parametric study show that flow rate, composition, and temperature of the hot gas mixture injected at depth, and the initial geothermal gradient strongly control parameters monitored at Solfatara. The results suggest that the best guesses conditions for the gas mixture injected at 5 km depth correspond to a temperature of ~ 700 °C, a fluid mass flow rate of about 50-100 kg/s, and an initial geothermal gradient of ~ 120 °C/km.
Study on the Construction and Application of 3D Geographic Information Services for the Smart City
NASA Astrophysics Data System (ADS)
Mao, W.-Q.
2014-04-01
Smart City, whose main characteristics are intelligence and interconnection capability, has become an important goal of some cities' development. This paper, based on urban three-dimensional geographic information characteristics, analyses 3D geographic information requirements in the Smart City construction and development process, proposes construction and management methods for 3D geographic information. Furthermore, this paper takes Shanghai Geographic Information Public Service Platform as an example, discusses 3D geographic information application in multiple fields, and proves that it is an effective ways to promote Intelligent City construction.
The applicability of 3D Doppler tomography to studies of polars
NASA Astrophysics Data System (ADS)
Kononov, D. A.; Agafonov, M. I.; Sharova, O. I.; Bisikalo, D. V.; Zhilkin, A. G.; Sidorov, M. Yu.
2014-12-01
The applicability of 3D Doppler tomography to mapping gas flows in polars is considered. Synthetic profiles of emission lines are calculated using solutions (for the densities, temperatures, and velocity components) obtained from 3D MHD modeling, which are then used to construct 3D Doppler tomograms in the velocity space ( V x , V y , V z ). Subsequent analysis of these tomograms applying observational constraints (the signal-to-noise ratio, number of input profiles, etc.) enables evaluation of limits to the method's applicability.
NASA Astrophysics Data System (ADS)
Sandbach, S. D.; Lane, S. N.; Hardy, R. J.; Amsler, M. L.; Ashworth, P. J.; Best, J. L.; Nicholas, A. P.; Orfeo, O.; Parsons, D. R.; Reesink, A. J. H.; Szupiany, R. N.
2012-12-01
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh- or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These "subgrid" elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to "unmeasured" topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers.
NASA Astrophysics Data System (ADS)
Timofeev, V. Yu.; Kust, T. S.; Dronov, A. A.; Beloglazov, I. I.; Ikonnikov, D. A.
2016-08-01
A numerical experiment procedure of geokhod traverse in the geological environment, based on software PFC3D 5.00 is presented in the paper; the interpretation of numerical experiment results is provided.
NASA Astrophysics Data System (ADS)
Jutzi, Martin; Benz, Willy; Michel, Patrick
2008-11-01
In this paper, we extend our Smooth Particle Hydrodynamics (SPH) impact code to include the effect of porosity at a sub-resolution scale by adapting the so-called P-alpha model. Many small bodies in the different populations of asteroids and comets are believed to contain a high degree of porosity and the determination of both their collisional evolution and the outcome of their disruption requires that the effect of porosity is taken into account in the computation of those processes. Here, we present our model and show how porosity interfaces with the elastic-perfectly plastic material description and the brittle fracture model generally used to simulate the fragmentation of non-porous rocky bodies. We investigate various compaction models and discuss their suitability to simulate the compaction of (highly) porous material. Then, we perform simple test cases where we compare results of the simulations to the theoretical solutions. We also present a Deep Impact-like simulation to show the effect of porosity on the outcome of an impact. Detailed validation tests will be presented in a next paper by comparison with high-velocity laboratory experiments on porous materials [Jutzi et al., in preparation]. Once validated at small scales, our new impact code can then be used at larger scales to study impacts and collisions involving brittle solids including porosity, such as the parent bodies of C-type asteroid families or cometary materials, both in the strength- and in the gravity-dominated regime.
NASA Astrophysics Data System (ADS)
Yihdego, Yohannes; Al-Weshah, Radwan A.
2016-12-01
The transport groundwater modelling has been undertaken to assess potential remediation scenarios and provide an optimal remediation options for consideration. The purpose of the study was to allow 50 years of predictive remediation simulation time. The results depict the likely total petroleum hydrocarbon migration pattern in the area under the worst-case scenario. The remediation scenario simulations indicate that do nothing approach will likely not achieve the target water quality within 50 years. Similarly, complete source removal approach will also likely not achieve the target water quality within 50 years. Partial source removal could be expected to remove a significant portion of the contaminant mass, but would increase the rate of contaminant recharge in the short to medium term. The pump-treat-reinject simulation indicates that the option appears feasible and could achieve a reduction in the area of the 0.01 mg/L TPH contour area for both Raudhatain and Umm Al-Aish by 35 and 30%, respectively, within 50 years. The rate of improvement and the completion date would depend on a range of factors such as bore field arrangements, pumping rates, reinjection water quality and additional volumes being introduced and require further optimisation and field pilot trials.
NASA Astrophysics Data System (ADS)
Fortier, R.; Allard, M.; Gagnon, O.
2002-12-01
survey aims at providing information on the geological and geotechnical characteristics of permafrost. Thermistor cables in deep boreholes, meteorological stations, dataloggers for the measurement of surface temperature, and thermal probes have been also installed in the valley. Air photographs will be used to produce a digital terrain model of the valley. This integrated multi-technique approach is essential for properly assessing the permafrost conditions in the valley. The study will provide the data needed for the development of a 3D model of permafrost conditions in the valley. A 3D numerical simulation of the geothermal field of permafrost in the valley will be then undertaken. This simulation is a major challenge giving the size of the thermal field and the variability in permafrost conditions. The impacts of climate warming on the thermal field of permafrost will be simulated and predicted by forcing the surface temperature to increase following different scenarios of climate warming. It is planned to combine the geotechnical properties and the simulation of the geothermal field of permafrost in order to define threshold values of permafrost strength and slope instability and set a pre-warning scheme of permafrost temperature in case of further warming in the coming years. The monitoring of permafrost temperature will be continued in the future. If the scheme is reached, actions can be then undertaken to mitigate the impacts of climate warming on the infrastructures and protect the population of Salluit.
Evolution of 3-D geologic framework modeling and its application to groundwater flow studies
Blome, Charles D.; Smith, David V.
2012-01-01
In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.
3-D QSARS FOR RANKING AND PRIORITIZATION OF LARGE CHEMICAL DATASETS: AN EDC CASE STUDY
The COmmon REactivity Pattern (COREPA) approach is a three-dimensional structure activity (3-D QSAR) technique that permits identification and quantification of specific global and local steroelectronic characteristics associated with a chemical's biological activity. It goes bey...
EMPulse, a new 3-D simulation code for electromagnetic pulse studies
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Eng, Chester; Farmer, William; Friedman, Alex; Grote, David; Kruger, Hans; Larson, David
2016-10-01
EMPulse is a comprehensive and modern 3-D simulation code for electro-magnetic pulse (EMP) formation and propagation studies, being developed at LLNL as part of a suite of codes to study E1 EMP originating from prompt gamma rays. EMPulse builds upon the open-source Warp particle-in-cell code framework developed by members of this team and collaborators at other institutions. The goal of this endeavor is a new tool enabling the detailed and self-consistent study of multi-dimensional effects in geometries that have typically been treated only approximately. Here we present an overview of the project, the models and methods that have been developed and incorporated into EMPulse, tests of these models, comparisons to simulations undertaken in CHAP-lite (derived from the legacy code CHAP due to C. Longmire and co-workers), and some approaches to increased computational efficiency being studied within our project. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Study on the Before Cavity Interaction in a Second Harmonic Gyrotron Using 3D CFDTD PIC Simulations
NASA Astrophysics Data System (ADS)
Lin, M. C.; Illy, S.; Thumm, M.; Jelonnek, J.
2016-10-01
A computational study on before cavity interaction (BCI) in a 28 GHz second harmonic (SH) gryotron for industrial applications has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. On the contrary to the after cavity interaction (ACI), i.e. beam wave interaction in the non-linear uptaper after the cavity, which has been widely investigated, the BCI, i.e. beam wave interaction in the non-linear downtaper before the cavity connected to the beam tunnel with an entrance, is less noticed and discussed. Usually the BCI might be considered easy to be eliminated. However, this is not always the case. As the SH gyrotron had been designed for SH TE12 mode operation, the first harmonic (FH) plays the main competition. In the 3-D CFDTD PIC simulations, a port boundary has been employed for the gyro-beam entrance of the gyrotron cavity instead of a metallic short one which is not reflecting a realistic situation as an FH backward wave oscillation (BWO) is competing with the desired SH generation. A numerical instability has been found and identified as a failure of the entrance port boundary caused by an evanescent wave or mode conversion. This indicates the entrance and downtaper are not fully cut-off for some oscillations. A further study shows that the undesired oscillation is the FH TE11 BWO mode concentrated around the beam tunnel entrance and downtaper. A mitigation strategy has been found to suppress this undesired BCI and avoid possible damage to the gun region.
NASA Astrophysics Data System (ADS)
Castellanza, R.; Orlandi, G. M.; di Prisco, C.; Frigerio, G.; Flessati, L.; Fernandez Merodo, J. A.; Agliardi, F.; Grisi, S.; Crosta, G. B.
2015-09-01
After the abandonment occurred in the '70s, the mining system (rooms and pillars) located in S. Lazzaro di Savena (BO, Italy), grown on three levels with the method rooms and pillars, has been progressively more and more affected by degradation processes due to water infiltration. The mine is located underneath a residential area causing significant concern to the local municipality. On the basis of in situ surveys, laboratory and in situ geomechanical tests, some critical scenarios were adopted in the analyses to simulate the progressive collapse of pillars and of roofs in the most critical sectors of the mine. A first set of numerical analyses using 3D geotechnical FEM codes were performed to predict the extension of the subsidence area and its interaction with buildings. Secondly 3D CFD analyses were used to evaluated the amount of water that could be eventually ejected outside the mine and eventually flooding the downstream village. The predicted extension of the subsidence area together with the predicted amount of the ejected water have been used to design possible remedial measurements.
NASA Astrophysics Data System (ADS)
Torfeh, Tarraf; Beaumont, Stéphane; Guédon, Jeanpierre; Benhdech, Yassine
2010-04-01
Mechanical stability of a medical LINear ACcelerator (LINAC), particularly the quality of the gantry, collimator and table rotations and the accuracy of the isocenter position, are crucial for the radiation therapy process, especially in stereotactic radio surgery and in Image Guided Radiation Therapy (IGRT) where this mechanical stability is perturbed due to the additional weight the kV x-ray tube and detector. In this paper, we present a new method to evaluate a software which is used to perform an automatic measurement of the "size" (flex map) and the location of the kV and the MV isocenters of the linear accelerator. The method consists of developing a complete numerical 3D simulation of a LINAC and physical phantoms in order to produce Electronic Portal Imaging Device (EPID) images including calibrated distortions of the mechanical movement of the gantry and isocenter misalignments.
Comparative study of DSC-PWI and 3D-ASL in ischemic stroke patients.
Zhang, Shui-xia; Yao, Yi-hao; Zhang, Shun; Zhu, Wen-jie; Tang, Xiang-yu; Qin, Yuan-yuan; Zhao, Ling-yun; Liu, Cheng-xia; Zhu, Wen-zhen
2015-12-01
The purpose of this study was to quantitatively analyze the relationship between three dimensional arterial spin labeling (3D-ASL) and dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-PWI) in ischemic stroke patients. Thirty patients with ischemic stroke were included in this study. All subjects underwent routine magnetic resonance imaging scanning, diffusion weighted imaging (DWI), magnetic resonance angiography (MRA), 3D-ASL and DSC-PWI on a 3.0T MR scanner. Regions of interest (ROIs) were drawn on the cerebral blood flow (CBF) maps (derived from ASL) and multi-parametric DSC perfusion maps, and then, the absolute and relative values of ASL-CBF, DSC-derived CBF, and DSC-derived mean transit time (MTT) were calculated. The relationships between ASL and DSC parameters were analyzed using Pearson's correlation analysis. Receiver operative characteristic (ROC) curves were performed to define the thresholds of relative value of ASL-CBF (rASL) that could best predict DSC-CBF reduction and MTT prolongation. Relative ASL better correlated with CBF and MTT in the anterior circulation with the Pearson correlation coefficients (R) values being 0.611 (P<0.001) and-0.610 (P<0.001) respectively. ROC curves demonstrated that when rASL ≤0.585, the sensitivity, specificity and accuracy for predicting ROIs with rCBF<0.9 were 92.3%, 63.6% and 76.6% respectively. When rASL ≤0.952, the sensitivity, specificity and accuracy for predicting ROIs rMTT>1.0 were 75.7%, 89.2% and 87.8% respectively. ASL-CBF map has better linear correlations with DSC-derived parameters (DSC-CBF and MTT) in anterior circulation in ischemic stroke patients. Additionally, when rASL is lower than 0.585, it could predict DSC-CBF decrease with moderate accuracy. If rASL values range from 0.585 to 0.952, we just speculate the prolonged MTT.
Feasibility study of 3D cardiac imaging using a portable conebeam scanner
NASA Astrophysics Data System (ADS)
Petrov, Ivailo; Helm, Patrick A.; Drangova, Maria
2012-03-01
While the Medtronic O-arm was developed for image-guidance applications during orthopedic procedures, it has potential to assist in cardiac surgical and electrophysiological applications; the purpose of this study was to evaluate the feasibility of using a mobile conebeam imaging system (O-arm) for gated cardiac imaging. In an in vivo study (two pigs), projection data from four independently acquired breath-held scans were combined to obtain cardiac gated 3D images. Projection images were acquired during the infusion of contrast agent and while tracking the ECG. Both standard and high-definition modes of the O-arm were evaluated. Projection data were retrospectively combined to generate images corresponding to systole and diastole; different acceptance windows were investigated. The contrast to noise ratio (CNR) between blood and myocardium was compared for the different gating strategies. Gated cardiac images were successfully reconstructed with as few as two scans combined (CNR = 2.5) and a window of 200 ms. Improved image quality was achieved when selecting views based on the minimum time from the selected phase point in the cardiac cycle, rather than a fixed window; in this case the effective temporal window increased to 475 ms for two scans. The O-arm has the potential to be used as a mobile cardiac imaging system, capable of three-dimensional imaging.
Liu, An; Xue, Guang-huai; Sun, Miao; Shao, Hui-feng; Ma, Chi-yuan; Gao, Qing; Gou, Zhong-ru; Yan, Shi-gui; Liu, Yan-ming; He, Yong
2016-02-15
Desktop three-dimensional (3D) printers (D3DPs) have become a popular tool for fabricating personalized consumer products, favored for low cost, easy operation, and other advantageous qualities. This study focused on the potential for using D3DPs to successfully, rapidly, and economically print customized implants at medical clinics. An experiment was conducted on a D3DP-printed anterior cruciate ligament surgical implant using a rabbit model. A well-defined, orthogonal, porous PLA screw-like scaffold was printed, then coated with hydroxyapatite (HA) to improve its osteoconductivity. As an internal fixation as well as an ideal cell delivery system, the osteogenic scaffold loaded with mesenchymal stem cells (MSCs) were evaluated through both in vitro and in vivo tests to observe bone-ligament healing via cell therapy. The MSCs suspended in Pluronic F-127 hydrogel on PLA/HA screw-like scaffold showed the highest cell proliferation and osteogenesis in vitro. In vivo assessment of rabbit anterior cruciate ligament models for 4 and 12 weeks showed that the PLA/HA screw-like scaffold loaded with MSCs suspended in Pluronic F-127 hydrogel exhibited significant bone ingrowth and bone-graft interface formation within the bone tunnel. Overall, the results of this study demonstrate that fabricating surgical implants at the clinic (fab@clinic) with D3DPs can be feasible, effective, and economical.
A 3D velocimetry study of the flow through prosthetic heart valves
NASA Astrophysics Data System (ADS)
Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.
2006-11-01
Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.
NASA Astrophysics Data System (ADS)
Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia
2015-10-01
Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.
Liu, An; Xue, Guang-huai; Sun, Miao; Shao, Hui-feng; Ma, Chi-yuan; Gao, Qing; Gou, Zhong-ru; Yan, Shi-gui; Liu, Yan-ming; He, Yong
2016-01-01
Desktop three-dimensional (3D) printers (D3DPs) have become a popular tool for fabricating personalized consumer products, favored for low cost, easy operation, and other advantageous qualities. This study focused on the potential for using D3DPs to successfully, rapidly, and economically print customized implants at medical clinics. An experiment was conducted on a D3DP-printed anterior cruciate ligament surgical implant using a rabbit model. A well-defined, orthogonal, porous PLA screw-like scaffold was printed, then coated with hydroxyapatite (HA) to improve its osteoconductivity. As an internal fixation as well as an ideal cell delivery system, the osteogenic scaffold loaded with mesenchymal stem cells (MSCs) were evaluated through both in vitro and in vivo tests to observe bone-ligament healing via cell therapy. The MSCs suspended in Pluronic F-127 hydrogel on PLA/HA screw-like scaffold showed the highest cell proliferation and osteogenesis in vitro. In vivo assessment of rabbit anterior cruciate ligament models for 4 and 12 weeks showed that the PLA/HA screw-like scaffold loaded with MSCs suspended in Pluronic F-127 hydrogel exhibited significant bone ingrowth and bone-graft interface formation within the bone tunnel. Overall, the results of this study demonstrate that fabricating surgical implants at the clinic (fab@clinic) with D3DPs can be feasible, effective, and economical. PMID:26875826
3D dynamic rupture simulation and local tomography studies following the 2010 Haiti earthquake
NASA Astrophysics Data System (ADS)
Douilly, Roby
temporary station deployments. We only considered events that had at least 6 P and 6 S arrivals, and an azimuthal gap less then 180 degrees, to simultaneously invert for hypocenters and 3D velocity structure in southern Haiti. We used the program VELEST to define a minimum 1D velocity model, which was then used as a starting model in the computer algorithm SIMULPS14 to produce the 3D tomography. Our results show a pronounced low velocity zone across the Logne fault, which is consistent with the sedimentary basin location from the geologic map. We also observe a southeast low velocity zone, which is consistent with a predefined structure in the morphology. Low velocity structure usually correlates with broad zones of deformation, such as the presence of cracks or faults, or from the presence of fluid in the crust. This work provides information that can be used in future studies focusing on how changes in material properties can affect rupture propagation, which is useful to assess the seismic hazard that Haiti and other regions are facing.
3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia
NASA Astrophysics Data System (ADS)
Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.
2012-12-01
Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.
Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability
Hendriks, Delilah F. G.; Fredriksson Puigvert, Lisa; Messner, Simon; Mortiz, Wolfgang; Ingelman-Sundberg, Magnus
2016-01-01
Drug-induced cholestasis (DIC) is poorly understood and its preclinical prediction is mainly limited to assessing the compound’s potential to inhibit the bile salt export pump (BSEP). Here, we evaluated two 3D spheroid models, one from primary human hepatocytes (PHH) and one from HepaRG cells, for the detection of compounds with cholestatic liability. By repeatedly co-exposing both models to a set of compounds with different mechanisms of hepatotoxicity and a non-toxic concentrated bile acid (BA) mixture for 8 days we observed a selective synergistic toxicity of compounds known to cause cholestatic or mixed cholestatic/hepatocellular toxicity and the BA mixture compared to exposure to the compounds alone, a phenomenon that was more pronounced after extending the exposure time to 14 days. In contrast, no such synergism was observed after both 8 and 14 days of exposure to the BA mixture for compounds that cause non-cholestatic hepatotoxicity. Mechanisms behind the toxicity of the cholestatic compound chlorpromazine were accurately detected in both spheroid models, including intracellular BA accumulation, inhibition of ABCB11 expression and disruption of the F-actin cytoskeleton. Furthermore, the observed synergistic toxicity of chlorpromazine and BA was associated with increased oxidative stress and modulation of death receptor signalling. Combined, our results demonstrate that the hepatic spheroid models presented here can be used to detect and study compounds with cholestatic liability. PMID:27759057
El-Anwar, Mohamed; Ghali, Rami; Aboelnagga, Mona
2016-01-01
AIM: This study aimed to estimate the stress patterns induced by the masticatory loads on a removable prosthesis supported and retained by bar splinted implants placed in the reconstructed mandible with two different clip materials and without clip, in the fibula-jaw bone and prosthesis using finite element analysis. METHODS: Two 3D finite element models were constructed, that models components were modeled on commercial CAD/CAM software then assembled into finite element package. Vertical loads were applied simulating the masticatory forces unilaterally in the resected site and bilaterally in the central fossa of the lower first molar as 100N (tension and compression). Analysis was based on the assumption full osseointegration between different types of bones, and between implants and fibula while fixing the top surface of the TMJ in place. RESULTS: The metallic bar connecting the three implants is insensitive to the clips material. Its supporting implants showed typical behavior with maximum stress values at the neck region. Fibula and jaw bone showed stresses within physiologic, while clips material effect seems to be very small due to its relatively small size. CONCLUSION: Switching loading force direction from tensile to compression did-not change the stresses and deformations distribution, but reversed their sign from positive to negative. PMID:27275353
Photoemission studies on the 3D Dirac semiemtal state in Na3Bi
NASA Astrophysics Data System (ADS)
Xu, Suyang; Chang, Liu; Kushwaha, Satya K.; Sankar, Raman; Krizan, Jason W.; Belopolski, Ilya; Neupane, Madhab; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Jeng, Horng-Tay; Huang, Cheng-Yi; Tsai, Wei-Feng; Lin, Hsin; Shibayev, Pavel P.; Chou, Fangcheng; Cava, Robert J.; Hasan, M. Zahid
2015-03-01
A three-dimensional Dirac semimetal is a novel state of matter that has recently attracted interest in condensed matter physics and materials science. We present electronic structure measurements on the (100) surface of a recently discovered Dirac semimetal material Na3Bi. Our experimental data, for the first time, reveal a Lifshitz transition between the two bulk Dirac cones in the bulk band structure of Na3Bi. These results identify the first example of a band structure singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as in twisted bilayer graphene or the surface states of topological crystalline insulators, which have been studied extensively. The observation of multiple bulk Dirac nodes along the rotational crystal axis away from the Kramers point also serve as a signature for the symmetry-protected nature of the Dirac semimetal state in Na3Bi as elaborated in recent theories. The work at Princeton and Princeton-led synchrotron-based ARPES measurements is supported by U.S. DOE DE-FG-02-05ER46200.
3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors
NASA Astrophysics Data System (ADS)
Ungwitayatorn, Jiraporn; Samee, Weerasak; Pimthon, Jutarat
2004-02-01
The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was applied to a series of 30 chromone derivatives, a new class of HIV-1 protease inhibitors. The best predictive CoMFA model gives cross-validated r2 ( q2)=0.763, non-cross-validated r2=0.967, standard error of estimate ( S)=5.092, F=90.701. The best CoMSIA model has q2=0.707, non-cross-validated r2=0.943, S=7.018, F=51.734, included steric, electrostatic, hydrophobic, and hydrogen bond donor fields. The predictive ability of these models was validated by a set of five compounds that were not included in the training set. The calculated (predicted) and experimental inhibitory activities were well correlated. The contour maps obtained from CoMFA and CoMSIA models were in agreement with the previous docking study for this chromone series.
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.
2010-01-01
This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.
Mimicking Natural Laminar to Turbulent Flow Transition: A Systematic CFD Study Using PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
2005-01-01
For applied aerodynamic computations using a general purpose Navier-Stokes code, the common practice of treating laminar to turbulent flow transition over a non-slip surface is somewhat arbitrary by either treating the entire flow as turbulent or forcing the flow to undergo transition at given trip locations in the computational domain. In this study, the possibility of using the PAB3D code, standard k-epsilon turbulence model, and the Girimaji explicit algebraic stresses model to mimic natural laminar to turbulent flow transition was explored. The sensitivity of flow transition with respect to two limiters in the standard k-epsilon turbulence model was examined using a flat plate and a 6:1 aspect ratio prolate spheroid for our computations. For the flat plate, a systematic dependence of transition Reynolds number on background turbulence intensity was found. For the prolate spheroid, the transition patterns in the three-dimensional boundary layer at different flow conditions were sensitive to