Science.gov

Sample records for 3-d x-ray system

  1. 3D X-Ray Luggage-Screening System

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth

    2006-01-01

    A three-dimensional (3D) x-ray luggage- screening system has been proposed to reduce the fatigue experienced by human inspectors and increase their ability to detect weapons and other contraband. The system and variants thereof could supplant thousands of xray scanners now in use at hundreds of airports in the United States and other countries. The device would be applicable to any security checkpoint application where current two-dimensional scanners are in use. A conventional x-ray luggage scanner generates a single two-dimensional (2D) image that conveys no depth information. Therefore, a human inspector must scrutinize the image in an effort to understand ambiguous-appearing objects as they pass by at high speed on a conveyor belt. Such a high level of concentration can induce fatigue, causing the inspector to reduce concentration and vigilance. In addition, because of the lack of depth information, contraband objects could be made more difficult to detect by positioning them near other objects so as to create x-ray images that confuse inspectors. The proposed system would make it unnecessary for a human inspector to interpret 2D images, which show objects at different depths as superimposed. Instead, the system would take advantage of the natural human ability to infer 3D information from stereographic or stereoscopic images. The inspector would be able to perceive two objects at different depths, in a more nearly natural manner, as distinct 3D objects lying at different depths. Hence, the inspector could recognize objects with greater accuracy and less effort. The major components of the proposed system would be similar to those of x-ray luggage scanners now in use. As in a conventional x-ray scanner, there would be an x-ray source. Unlike in a conventional scanner, there would be two x-ray image sensors, denoted the left and right sensors, located at positions along the conveyor that are upstream and downstream, respectively (see figure). X-ray illumination

  2. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  3. TU-F-BRF-04: Registration of 3D Transesophageal Echocardiography and X-Ray Fluoroscopy Using An Inverse Geometry X-Ray System

    SciTech Connect

    Speidel, M; Hatt, C; Tomkowiak, M; Raval, A; Funk, T

    2014-06-15

    Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy.

  4. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  5. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    PubMed

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  6. High-quality 3-D coronary artery imaging on an interventional C-arm x-ray system

    SciTech Connect

    Hansis, Eberhard; Carroll, John D.; Schaefer, Dirk; Doessel, Olaf; Grass, Michael

    2010-04-15

    Purpose: Three-dimensional (3-D) reconstruction of the coronary arteries during a cardiac catheter-based intervention can be performed from a C-arm based rotational x-ray angiography sequence. It can support the diagnosis of coronary artery disease, treatment planning, and intervention guidance. 3-D reconstruction also enables quantitative vessel analysis, including vessel dynamics from a time-series of reconstructions. Methods: The strong angular undersampling and motion effects present in gated cardiac reconstruction necessitate the development of special reconstruction methods. This contribution presents a fully automatic method for creating high-quality coronary artery reconstructions. It employs a sparseness-prior based iterative reconstruction technique in combination with projection-based motion compensation. Results: The method is tested on a dynamic software phantom, assessing reconstruction accuracy with respect to vessel radii and attenuation coefficients. Reconstructions from clinical cases are presented, displaying high contrast, sharpness, and level of detail. Conclusions: The presented method enables high-quality 3-D coronary artery imaging on an interventional C-arm system.

  7. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  8. Feasibility of CT-based 3D anatomic mapping with a scanning-beam digital x-ray (SBDX) system

    NASA Astrophysics Data System (ADS)

    Slagowski, Jordan M.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Speidel, Michael A.

    2015-03-01

    This study investigates the feasibility of obtaining CT-derived 3D surfaces from data provided by the scanning-beam digital x-ray (SBDX) system. Simulated SBDX short-scan acquisitions of a Shepp-Logan and a thorax phantom containing a high contrast spherical volume were generated. 3D reconstructions were performed using a penalized weighted least squares method with total variation regularization (PWLS-TV), as well as a more efficient variant employing gridding of projection data to parallel rays (gPWLS-TV). Voxel noise, edge blurring, and surface accuracy were compared to gridded filtered back projection (gFBP). PWLS reconstruction of a noise-free reduced-size Shepp-Logan phantom had 1.4% rRMSE. In noisy gPWLS-TV reconstructions of a reduced-size thorax phantom, 99% of points on the segmented sphere perimeter were within 0.33, 0.47, and 0.70 mm of the ground truth, respectively, for fluences comparable to imaging through 18.0, 27.2, and 34.6 cm acrylic. Surface accuracies of gFBP and gPWLS-TV were similar at high fluences, while gPWLS-TV offered improvement at the lowest fluence. The gPWLS-TV voxel noise was reduced by 60% relative to gFBP, on average. High-contrast linespread functions measured 1.25 mm and 0.96 mm (FWHM) for gPWLS-TV and gFBP. In a simulation of gated and truncated projection data from a full-sized thorax, gPWLS-TV reconstruction yielded segmented surface points which were within 1.41 mm of ground truth. Results support the feasibility of 3D surface segmentation with SBDX. Further investigation of artifacts caused by data truncation and patient motion is warranted.

  9. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  10. Method for the determination of the modulation transfer function (MTF) in 3D x-ray imaging systems with focus on correction for finite extent of test objects

    NASA Astrophysics Data System (ADS)

    Schäfer, Dirk; Wiegert, Jens; Bertram, Matthias

    2007-03-01

    It is well known that rotational C-arm systems are capable of providing 3D tomographic X-ray images with much higher spatial resolution than conventional CT systems. Using flat X-ray detectors, the pixel size of the detector typically is in the range of the size of the test objects. Therefore, the finite extent of the "point" source cannot be neglected for the determination of the MTF. A practical algorithm has been developed that includes bias estimation and subtraction, averaging in the spatial domain, and correction for the frequency content of the imaged bead or wire. Using this algorithm, the wire and the bead method are analyzed for flat detector based 3D X-ray systems with the use of standard CT performance phantoms. Results on both experimental and simulated data are presented. It is found that the approximation of applying the analysis of the wire method to a bead measurement is justified within 3% accuracy up to the first zero of the MTF.

  11. Accuracy of x-ray image-based 3D localization from two C-arm views: a comparison between an ideal system and a real device

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Strobel, Norbert; Yatziv, Liron; Gilson, Wesley; Meyer, Bernhard; Hornegger, Joachim; Lewin, Jonathan; Wacker, Frank

    2009-02-01

    arm X-ray imaging devices are commonly used for minimally invasive cardiovascular or other interventional procedures. Calibrated state-of-the-art systems can, however, not only be used for 2D imaging but also for three-dimensional reconstruction either using tomographic techniques or even stereotactic approaches. To evaluate the accuracy of X-ray object localization from two views, a simulation study assuming an ideal imaging geometry was carried out first. This was backed up with a phantom experiment involving a real C-arm angiography system. Both studies were based on a phantom comprising five point objects. These point objects were projected onto a flat-panel detector under different C-arm view positions. The resulting 2D positions were perturbed by adding Gaussian noise to simulate 2D point localization errors. In the next step, 3D point positions were triangulated from two views. A 3D error was computed by taking differences between the reconstructed 3D positions using the perturbed 2D positions and the initial 3D positions of the five points. This experiment was repeated for various C-arm angulations involving angular differences ranging from 15° to 165°. The smallest 3D reconstruction error was achieved, as expected, by views that were 90° degrees apart. In this case, the simulation study yielded a 3D error of 0.82 mm +/- 0.24 mm (mean +/- standard deviation) for 2D noise with a standard deviation of 1.232 mm (4 detector pixels). The experimental result for this view configuration obtained on an AXIOM Artis C-arm (Siemens AG, Healthcare Sector, Forchheim, Germany) system was 0.98 mm +/- 0.29 mm, respectively. These results show that state-of-the-art C-arm systems can localize instruments with millimeter accuracy, and that they can accomplish this almost as well as an idealized theoretical counterpart. High stereotactic localization accuracy, good patient access, and CT-like 3D imaging capabilities render state-of-the-art C-arm systems ideal devices for X-ray

  12. X-ray imaging of laser produced plasmas by a compound 3D x-ray lens

    NASA Astrophysics Data System (ADS)

    Garanin, R. V.; Pavlov, G. A.; Suslov, N. A.; Treushnikov, V. M.; Treushnikov, V. V.; Zhidkov, N. V.

    2015-04-01

    Pilot scheme for the study of plasma under extreme condition is implemented using a compound 3D X-ray lens. Hard X-ray image of laser plasma produced by irradiating of copper foil by intense laser pulse was recorded using this lens.

  13. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  14. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Model 60007A InnerView Real-time X-ray Imaging System, produced by National Imaging Systems, a division of FlouroScan Imaging Systems, Inc. (formerly HealthMate, Inc.), Northbrook, IL, is a third generation spinoff from x-ray astronomy technology. Goddard Space Flight Center developed the original technology into the Lixiscope, a small, portable, minimal radiation x-ray instrument that could be used at the scene of an accident. FlouroScan Imaging Systems, Inc., adapted this technology to develop the FlouroScan, a low-intensity, x-ray system that could be used without the lead aprons, film badges and lead-lined walls that conventional systems require. The InnerView is a spinoff of non-destructive testing and product inspection.

  15. 3D ablation catheter localisation using individual C-arm x-ray projections

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Dössel, O.; Grass, M.

    2014-11-01

    Cardiac ablation procedures during electrophysiology interventions are performed under x-ray guidance with a C-arm imaging system. Some procedures require catheter navigation in complex anatomies like the left atrium. Navigation aids like 3D road maps and external tracking systems may be used to facilitate catheter navigation. As an alternative to external tracking a fully automatic method is presented here that enables the calculation of the 3D location of the ablation catheter from individual 2D x-ray projections. The method registers a high resolution, deformable 3D attenuation model of the catheter to a 2D x-ray projection. The 3D localization is based on the divergent beam projection of the catheter. On an individual projection, the catheter tip is detected in 2D by image filtering and a template matching method. The deformable 3D catheter model is adapted using the projection geometry provided by the C-arm system and 2D similarity measures for an accurate 2D/3D registration. Prior to the tracking and registration procedure, the deformable 3D attenuation model is automatically extracted from a separate 3D cone beam CT reconstruction of the device. The method can hence be applied to various cardiac ablation catheters. In a simulation study of a virtual ablation procedure with realistic background, noise, scatter and motion blur an average 3D registration accuracy of 3.8 mm is reached for the catheter tip. In this study four different types of ablation catheters were used. Experiments using measured C-arm fluoroscopy projections of a catheter in a RSD phantom deliver an average 3D accuracy of 4.5 mm.

  16. 3D ablation catheter localisation using individual C-arm x-ray projections.

    PubMed

    Haase, C; Schäfer, D; Dössel, O; Grass, M

    2014-11-21

    Cardiac ablation procedures during electrophysiology interventions are performed under x-ray guidance with a C-arm imaging system. Some procedures require catheter navigation in complex anatomies like the left atrium. Navigation aids like 3D road maps and external tracking systems may be used to facilitate catheter navigation. As an alternative to external tracking a fully automatic method is presented here that enables the calculation of the 3D location of the ablation catheter from individual 2D x-ray projections. The method registers a high resolution, deformable 3D attenuation model of the catheter to a 2D x-ray projection. The 3D localization is based on the divergent beam projection of the catheter. On an individual projection, the catheter tip is detected in 2D by image filtering and a template matching method. The deformable 3D catheter model is adapted using the projection geometry provided by the C-arm system and 2D similarity measures for an accurate 2D/3D registration. Prior to the tracking and registration procedure, the deformable 3D attenuation model is automatically extracted from a separate 3D cone beam CT reconstruction of the device. The method can hence be applied to various cardiac ablation catheters. In a simulation study of a virtual ablation procedure with realistic background, noise, scatter and motion blur an average 3D registration accuracy of 3.8 mm is reached for the catheter tip. In this study four different types of ablation catheters were used. Experiments using measured C-arm fluoroscopy projections of a catheter in a RSD phantom deliver an average 3D accuracy of 4.5 mm.

  17. New 3D Bolton standards: coregistration of biplane x rays and 3D CT

    NASA Astrophysics Data System (ADS)

    Dean, David; Subramanyan, Krishna; Kim, Eun-Kyung

    1997-04-01

    The Bolton Standards 'normative' cohort (16 males, 16 females) have been invited back to the Bolton-Brush Growth Study Center for new biorthogonal plain film head x-rays and 3D (three dimensional) head CT-scans. A set of 29 3D landmarks were identified on both their biplane head film and 3D CT images. The current 3D CT image is then superimposed onto the landmarks collected from the current biplane head films. Three post-doctoral fellows have collected 37 3D landmarks from the Bolton Standards' 40 - 70 year old biplane head films. These films were captured annually during their growing period (ages 3 - 18). Using 29 of these landmarks the current 3D CT image is next warped (via thin plate spline) to landmarks taken from each participant's 18th year biplane head films, a process that is successively reiterated back to age 3. This process is demonstrated here for one of the Bolton Standards. The outer skull surfaces will be extracted from each warped 3D CT image and an average will be generated for each age/sex group. The resulting longitudinal series of average 'normative' boney skull surface images may be useful for craniofacial patient: diagnosis, treatment planning, stereotactic procedures, and outcomes assessment.

  18. 3D global estimation and augmented reality visualization of intra-operative X-ray dose.

    PubMed

    Rodas, Nicolas Loy; Padoy, Nicolas

    2014-01-01

    The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intra-operative radiation exposure can increase staff awareness of radiation exposure risks and enable the implementation of well-adapted safety measures. The current surgical practice of wearing a single dosimeter at chest level to measure radiation exposure does not provide a sufficiently accurate estimation of radiation absorption throughout the body. In this paper, we propose an approach that combines data from wireless dosimeters with the simulation of radiation propagation in order to provide a global radiation risk map in the area near the X-ray device. We use a multi-camera RGBD system to obtain a 3D point cloud reconstruction of the room. The positions of the table, C-arm and clinician are then used 1) to simulate the propagation of radiation in a real-world setup and 2) to overlay the resulting 3D risk-map onto the scene in an augmented reality manner. By using real-time wireless dosimeters in our system, we can both calibrate the simulation and validate its accuracy at specific locations in real-time. We demonstrate our system in an operating room equipped with a robotised X-ray imaging device and validate the radiation simulation on several X-ray acquisition setups. PMID:25333145

  19. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    SciTech Connect

    Robert, Normand Polack, George G.; Sethi, Benu; Rowlands, John A.; Crystal, Eugene

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  20. NDE of spacecraft materials using 3D Compton backscatter x-ray imaging

    NASA Astrophysics Data System (ADS)

    Burke, E. R.; Grubsky, V.; Romanov, V.; Shoemaker, K.

    2016-02-01

    We present the results of testing of the NDE performance of a Compton Imaging Tomography (CIT) system for single-sided, penetrating 3D inspection. The system was recently developed by Physical Optics Corporation (POC) and delivered to NASA for testing and evaluation. The CIT technology is based on 3D structure mapping by collecting the information on density profiles in multiple object cross sections through hard x-ray Compton backscatter imaging. The individual cross sections are processed and fused together in software, generating a 3D map of the density profile of the object which can then be analyzed slice-by-slice in x, y, or z directions. The developed CIT scanner is based on a 200-kV x-ray source, flat-panel x-ray detector (FPD), and apodized x-ray imaging optics. The CIT technology is particularly well suited to the NDE of lightweight aerospace materials, such as the thermal protection system (TPS) ceramic and composite materials, micrometeoroid and orbital debris (MMOD) shielding, spacecraft pressure walls, inflatable habitat structures, composite overwrapped pressure vessels (COPVs), and aluminum honeycomb materials. The current system provides 3D localization of defects and features with field of view 20x12x8 cm3 and spatial resolution ˜2 mm. In this paper, we review several aerospace NDE applications of the CIT technology, with particular emphasis on TPS. Based on the analysis of the testing results, we provide recommendations for continued development on TPS applications that can benefit the most from the unique capabilities of this new NDE technology.

  1. 3D X-ray imaging methods in support catheter ablations of cardiac arrhythmias.

    PubMed

    Stárek, Zdeněk; Lehar, František; Jež, Jiří; Wolf, Jiří; Novák, Miroslav

    2014-10-01

    Cardiac arrhythmias are a very frequent illness. Pharmacotherapy is not very effective in persistent arrhythmias and brings along a number of risks. Catheter ablation has became an effective and curative treatment method over the past 20 years. To support complex arrhythmia ablations, the 3D X-ray cardiac cavities imaging is used, most frequently the 3D reconstruction of CT images. The 3D cardiac rotational angiography (3DRA) represents a modern method enabling to create CT like 3D images on a standard X-ray machine equipped with special software. Its advantage lies in the possibility to obtain images during the procedure, decreased radiation dose and reduction of amount of the contrast agent. The left atrium model is the one most frequently used for complex atrial arrhythmia ablations, particularly for atrial fibrillation. CT data allow for creation and segmentation of 3D models of all cardiac cavities. Recently, a research has been made proving the use of 3DRA to create 3D models of other cardiac (right ventricle, left ventricle, aorta) and non-cardiac structures (oesophagus). They can be used during catheter ablation of complex arrhythmias to improve orientation during the construction of 3D electroanatomic maps, directly fused with 3D electroanatomic systems and/or fused with fluoroscopy. An intensive development in the 3D model creation and use has taken place over the past years and they became routinely used during catheter ablations of arrhythmias, mainly atrial fibrillation ablation procedures. Further development may be anticipated in the future in both the creation and use of these models.

  2. Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction.

    PubMed

    Albiol, Francisco; Corbi, Alberto; Albiol, Alberto

    2016-08-01

    We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT. PMID:26978665

  3. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    NASA Astrophysics Data System (ADS)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  4. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  5. 3D polymer gel dosimetry and Geant4 Monte Carlo characterization of novel needle based X-ray source

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sozontov, E.; Safronov, V.; Gutman, G.; Strumban, E.; Jiang, Q.; Li, S.

    2010-11-01

    In the recent years, there have been a few attempts to develop a low energy x-ray radiation sources alternative to conventional radioisotopes used in brachytherapy. So far, all efforts have been centered around the intent to design an interstitial miniaturized x-ray tube. Though direct irradiation of tumors looks very promising, the known insertable miniature x-ray tubes have many limitations: (a) difficulties with focusing and steering the electron beam to the target; (b)necessity to cool the target to increase x-ray production efficiency; (c)impracticability to reduce the diameter of the miniaturized x-ray tube below 4mm (the requirement to decrease the diameter of the x-ray tube and the need to have a cooling system for the target have are mutually exclusive); (c) significant limitations in changing shape and energy of the emitted radiation. The specific aim of this study is to demonstrate the feasibility of a new concept for an insertable low-energy needle x-ray device based on simulation with Geant4 Monte Carlo code and to measure the dose rate distribution for low energy (17.5 keV) x-ray radiation with the 3D polymer gel dosimetry.

  6. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-01-01

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages. PMID:23542702

  7. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-03-22

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.

  8. The X-Ray Transform Projection of 3D Mother Wavelet Function

    PubMed Central

    Yang, Xiangyu; Guo, Jiqiang; Lu, Li; Zeng, Li

    2013-01-01

    As we all know, any practical computed tomography (CT) projection data more or less contains noises. Hence, it will be inconvenient for the postprocessing of a reconstructed 3D image even when the noise in the projection data is white. The reason is that the noise in the reconstructed image may be nonwhite. X-ray transform can be applied to the three dimensional (3D) CT, depicting the relationship between material density and ray projection. In this paper, nontensor product relationship between the two dimensional (2D) mother wavelet and 3D mother wavelet is obtained by taking X-ray transform projection of 3D mother wavelet. We proved that the projection of the 3D mother wavelet is a 2D mother wavelet if the 3D mother wavelet satisfies certain conditions. So, the 3D wavelet transform of a 3D image can be implemented by the 2D wavelet transform of its X-ray transform projection and it will contribute to the reduction complexity and computation time during image processing. What is more, it can also avoid noise transfer and amplification during the processing of CT image reconstruction. PMID:24376470

  9. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  10. An instrument for 3D x-ray nano-imaging

    SciTech Connect

    Holler, M.; Raabe, J.; Diaz, A.; Guizar-Sicairos, M.; Quitmann, C.; Menzel, A.; Bunk, O.

    2012-07-15

    We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffraction microscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 {mu}m in diameter. In 3D on a test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.

  11. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect

    Jacobsen, Chris

    2011-04-14

    This project helped pioneer the core capabilities of coherent diffraction imaging (CDI) using X rays at synchrotron light source facilities. We developed an apparatus that was used for CDI at the Advanced Light Source, and applied it to 2D and 3D imaging of nanostructures. We also explored a number of conceptual and computational issues on the reconstruction of CDI data.

  12. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    NASA Astrophysics Data System (ADS)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the

  13. 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: A review

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Sobolev, Nikolay V.; Pernet-Fisher, John F.; Ketcham, Richard A.; Maisano, Jessica A.; Pokhilenko, Lyudmila N.; Taylor, Dawn; Taylor, Lawrence A.

    2015-04-01

    '. Diamonds observed completely enclosed in garnets suggest an early diamond-forming event prior to major re-crystallization and eclogite formation during subduction. The occurrence of diamond in association with embayed garnets suggests that diamond grew at the expense of the hosting silicate protolith. In addition, the spatial relationships of diamonds with metasomatic pathways, which are generally interpreted to result from late-stage proto-kimberlitic fluid percolation, indicate a period of diamond growth occurring close to, but prior to, the time of kimberlite emplacement. Furthermore, the paragenesis of sulfides within eclogite xenoliths are described using 3-D models for entire xenoliths volumes, providing important constraints of the timing of sulfide mobilization within the mantle. Three-D animations created using X-ray tomography data for ten of the xenoliths can be viewed at the following link: http://eps.utk.edu/faculty/taylor/tomography.php

  14. Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection

    NASA Astrophysics Data System (ADS)

    LaMarr, Beverly; Bautz, Mark; Foster, Rick; Kissel, Steve; Prigozhin, Gregory; Suntharalingam, Vyshnavi

    2010-07-01

    MIT Lincoln Laboratories and MIT Kavli Institute for Astrophysics and Space Research have developed an active pixel sensor for use as a photon counting device for imaging spectroscopy in the soft X-ray band. A silicon-on-insulator (SOI) readout circuit was integrated with a high-resistivity silicon diode detector array using a per-pixel 3D integration technique developed at Lincoln Laboratory. We have tested these devices at 5.9 keV and 1.5 keV. Here we examine the interpixel cross-talk measured with 5.9 keV X-rays.

  15. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-01-15

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  16. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  17. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method. PMID:22349401

  18. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  19. 3D simulation of the image formation in soft x-ray microscopes.

    PubMed

    Selin, Mårten; Fogelqvist, Emelie; Holmberg, Anders; Guttmann, Peter; Vogt, Ulrich; Hertz, Hans M

    2014-12-15

    In water-window soft x-ray microscopy the studied object is typically larger than the depth of focus and the sample illumination is often partially coherent. This blurs out-of-focus features and may introduce considerable fringing. Understanding the influence of these phenomena on the image formation is therefore important when interpreting experimental data. Here we present a wave-propagation model operating in 3D for simulating the image formation of thick objects in partially coherent soft x-ray microscopes. The model is compared with present simulation methods as well as with experiments. The results show that our model predicts the image formation of transmission soft x-ray microscopes more accurately than previous models.

  20. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE PAGES

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-17

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  1. Non-destructive investigations of a copper and argon doped sputtered beryllium capsule using x-rays in 3d

    SciTech Connect

    Patterson, Brian M; Defriend, Kimberly A; Havrilla, George J; Nikroo, Abbas

    2008-01-01

    The combination of 3D computed micro x-ray tomography (micro CT) and 3D confocal micro x-ray fluorescence (confocal MXRF) are very useful nondestructive metrology techniques for determining the unique compositional and morphological information of fusion targets and target materials.

  2. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    SciTech Connect

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-07-15

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  3. 3D Medipix2 detector characterization with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Gimenez, E. N.; Maneuski, D.; Mac Raighne, A.; Parkes, C.; Bates, R.; O'Shea, V.; Fleta, C.; Pellegrini, G.; Lozano, M.; Alianelli, L.; Sawhney, K. J. S.; Marchal, J.; Tartoni, N.

    2011-05-01

    Three-dimensional (3D) photodiode detectors offer advantages over standard planar photodiodes in a wide range of applications. The main advantage of these sensors for X-ray imaging is their reduced charge sharing between adjacent pixels, which could improve spatial and spectral resolution. However, a drawback of 3D sensors structures is the loss of detection efficiency due to the presence in the pixel structure of heavily doped electrode columns which are insensitive to X-ray. In this work two types of 3D silicon detectors: n-type wafer with hole collecting readout-columns (N-TYPE) and p-type wafer with electron collecting readout-columns (P-TYPE), bump-bounded to a Medipix2 read-out chip were characterized with a 14.5 keV micro-focused X-ray beam from a synchrotron. Measurements of the detection efficiency and the charge sharing were performed at different bias voltages and Medipix2 energy thresholds and compared with those of a standard planar silicon sensor.

  4. X-Ray Laue Microdiffraction Study of 3D Grain Growth in Polycrystals

    NASA Astrophysics Data System (ADS)

    Budai, J. D.; Yang, W.; Tischler, J. Z.; Larson, B. C.; Liu, W.; Ice, G. E.

    2004-11-01

    We describe a new technique for studying 3D grain growth in polycrystalline materials using white x-ray microdiffraction with micron spatial resolution. This scanning technique uses focussed, polychromatic x-rays at the Advanced Photon Source to measure the local crystal structure and lattice orientation. The capabilities of this method are demonstrated by 3D grain growth studies of aluminium during thermal annealing. 3D grain orientation maps were obtained from hot-rolled (200ºC) polycrystalline aluminum ( 1Fe,Si). The sample was then annealed to induce grain growth, cooled, and re-mapped to measure the thermal migration of all grain boundaries within the same volume region. Initial observations reveal significant grain growth above 360ºC, involving movement of both low- and high-angle boundaries. Systematic measurements obtained after annealing at successively higher temperatures provide a detailed description of the microstructural evolution in a bulk material. These measurements provide the 3D experimental link needed for testing theories and large-scale computer models of 3D grain growth in advanced materials. Support by DOE Division of Materials Sciences under contract with ORNL managed by UT-Battelle, LLC; UNI-CAT is supported by ORNL, UIUC-MRL, NIST, and UOP LLC; APS supported by DOE.

  5. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-10-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.

  6. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  7. STEMS3D: An X-ray spectral model for magnetar persistent radiations

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Weng, Shan-Shan

    2016-07-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle Δφ, and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to X-ray spectra of magnetars.

  8. Application of 3D X-ray CT data sets to finite element analysis

    SciTech Connect

    Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.

    1995-08-31

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.

  9. X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure

    PubMed Central

    Suhonen, Heikki; Grimal, Quentin; Cloetens, Peter; Peyrin, Françoise

    2012-01-01

    Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D. PMID:22952569

  10. A 3D reconstruction method of the body envelope from biplanar X-rays: Evaluation of its accuracy and reliability.

    PubMed

    Nérot, Agathe; Choisne, Julie; Amabile, Célia; Travert, Christophe; Pillet, Hélène; Wang, Xuguang; Skalli, Wafa

    2015-12-16

    The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system. PMID:26592437

  11. A 3D reconstruction method of the body envelope from biplanar X-rays: Evaluation of its accuracy and reliability.

    PubMed

    Nérot, Agathe; Choisne, Julie; Amabile, Célia; Travert, Christophe; Pillet, Hélène; Wang, Xuguang; Skalli, Wafa

    2015-12-16

    The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system.

  12. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    PubMed Central

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  13. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography.

    PubMed

    Egan, C K; Jacques, S D M; Wilson, M D; Veale, M C; Seller, P; Beale, A M; Pattrick, R A D; Withers, P J; Cernik, R J

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  14. Spectroscopic and X-ray Scattering Models in SPECT3D

    NASA Astrophysics Data System (ADS)

    Golovkin, Igor; Gregori, Gianluca; Macfarlane, Joseph; Hall, Iain; Woodruff, Pamela; Bailey, James; Harding, Eric; Ao, Tom

    2012-10-01

    Spectrally resolved X-ray scattering has become a very effective method for diagnosing the electron temperatures, densities, and average ionization of warm dense matter. We present a newly implemented capability to compute scattering from realistic experiment configurations, including the influence of plasma non-uniformities and collecting scattered x-rays from a range of angles. The method is based on a formalism developed by G. Gregori [1]. The x-ray scattering modeling has been added to the multi-dimensional collisional-radiative spectral and imaging package SPECT3D [2]. Ability to compute emissivity and attenuation of scattered photons within a multi-dimensional plasma with non-uniform temperature and density distributions adds major new functionality to existing models. We will discuss the implementation details and demonstrate results relevant to ongoing experimental investigations at Sandia National Laboratories.[4pt] [1] G. Gregori, S. H. Glenzer, W. Rozmus, R. W. Lee, and O. L. Landen, Phys. Rev. E 67, 026412 (2003).[0pt] [2] J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, High Energy Density Phys., Vol. 3, p. 181-190 (2007).

  15. Three-dimensional X-ray observation of atmospheric biological samples by linear-array scanning-electron generation X-ray microscope system.

    PubMed

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si₃N₄ thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields.

  16. Three-Dimensional X-ray Observation of Atmospheric Biological Samples by Linear-Array Scanning-Electron Generation X-ray Microscope System

    PubMed Central

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si3N4 thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields. PMID:21731770

  17. Final report of LDRD project : compact ultrabright multikilovolt x-ray sources for advanced materials studies, 3D nanoimaging, and attosecond x-ray technology.

    SciTech Connect

    Loubriel, Guillermo Manuel; Rhodes, Charles Kirkham; Mar, Alan

    2005-02-01

    Experimental evidence and corresponding theoretical analyses have led to the conclusion that the system composed of Xe hollow atom states, that produce a characteristic Xe(L) spontaneous emission spectrum at 1 {at} 2.9 {angstrom} and arise from the excitation of Xe clusters with an intense pulse of 248 nm radiation propagating in a self-trapped plasma channel, closely represents the ideal situation sought for amplification in the multikilovolt region. The key innovation that is central to all aspects of the proposed work is the controlled compression of power to the level ({approx} 10{sup 20} W/cm{sup 3}) corresponding to the maximum achieved by thermonuclear events. Furthermore, since the x-ray power that is produced appears in a coherent form, an entirely new domain of physical interaction is encountered that involves states of matter that are both highly excited and highly ordered. Moreover, these findings lead to the concept of 'photonstaging', an idea which offers the possibility of advancing the power compression by an additional factor of {approx} 10{sup 9} to {approx} 10{sup 29} W/cm{sup 3}. In this completely unexplored regime, g-ray production ({h_bar}{omega}{sub {gamma}} {approx} 1 MeV) is expected to be a leading process. A new technology for the production of very highly penetrating radiation would then be available. The Xe(L) source at {h_bar}{omega}{sub x} {approx} 4.5 keV can be applied immediately to the experimental study of many aspects of the coupling of intense femtosecond x-ray pulses to materials. In a joint collaboration, the UIC group and Sandia plan to explore the following areas. These are specifically, (1) anomalous electromagnetic coupling to solid state materials, (2) 3D nanoimaging of solid matter and hydrated biological materials (e.g. interchromosomal linkers and actin filaments in muscle), and (3) EMP generation with attosecond x-rays.

  18. 3D X-rays application for precision measurement of the cell structure of extruded polystyrene

    NASA Astrophysics Data System (ADS)

    Lim, J. Y.; Kim, K. Y.; Shin, H. S.; Yeom, S.; Lee, S. E.

    2015-12-01

    While the thermal performance of existing insulation materials have been determined by blister gases, the thermal performance of future insulation materials will be dependent on the cell size and independent foam content as we use eco-friendly blister gases with a higher thermal conductivity. However, with the current technology we are only able to guess the whole cell size and independent foam content through SEM applied 2D fragmentary scanning but are still far from the level of accurate cell structure data extraction. Under this situation, we utilized X-ray CT scanned 3D images to identify and shape the cell structure and proposed a method of inferring the whole distribution and independent foam content as accurately as possible. According to X-ray CT scanning images and SEM images, the shape was similar but according to tracer applied CT scanning images, the cell size distribution was 380∼400 pm within the range of the general insulation diameter distribution which had the highest reliability. As for extrusion foaming polystyrene, we need additional image processing to identify the independent foam content as its density is too low. So, it is recommended to raise the 3D cell structure completeness of XPS by improving the scanning accuracy.

  19. 3D Imaging of Transition Metals in the Zebrafish Embryo by X-ray Fluorescence Microtomography

    PubMed Central

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Yi, Hong; Will, Fabian; Richter, Heiko; Shin, Chong Hyun; Fahrni, Christoph J.

    2014-01-01

    Synchrotron X-ray fluorescence (SXRF) microtomography has emerged as a powerful technique for the 3D visualization of the elemental distribution in biological samples. The mechanical stability, both of the instrument and the specimen, is paramount when acquiring tomographic projection series. By combining the progressive lowering of temperature method (PLT) with femtosecond laser sectioning, we were able to embed, excise, and preserve a zebrafish embryo at 24 hours post fertilization in an X-ray compatible, transparent resin for tomographic elemental imaging. Based on a data set comprised of 60 projections, acquired with a step size of 2 μm during 100 hours of beam time, we reconstructed the 3D distribution of zinc, iron, and copper using the iterative maximum likelihood expectation maximization (MLEM) reconstruction algorithm. The volumetric elemental maps, which entail over 124 million individual voxels for each transition metal, revealed distinct elemental distributions that could be correlated with characteristic anatomical features at this stage of embryonic development. PMID:24992831

  20. Integration of X-ray and MRI systems

    NASA Astrophysics Data System (ADS)

    Wen, Zhifei

    X-ray fluoroscopic imaging provides two-dimensional (2D) projection images with high temporal and spatial resolutions, while magnetic resonance imaging (MRI) has the ability to image any plane in 3D space with excellent soft tissue contrast and powerful physiological information. Integration of these two complementary imaging modalities can greatly benefit numerous image-guided minimally invasive procedures. At Stanford, an x-ray/MR hybrid system has been developed by placing an x-ray tube and detector inside the magnet of an open-bore interventional MR scanner in a configuration without requiring patient movement. However, the proximity of the two systems can cause one to degrade the performance of the other. The influence on the x-ray system by the MR system mainly results from its magnetic field at the location of the x-ray tube. If the magnetic field is parallel to the axis of the tube, it can change the size and shape of the x-ray focal spot by affecting the trajectories of the primary electrons, and increase the tube output by confining the backscattered electrons. If the magnetic field is misaligned with the tube axis, the electron beam can be deflected. These effects are studied analytically, numerically and experimentally. Experimental data agree well with theoretic analysis and computer simulations. Modifications to the x-ray tube are proposed to make it more robust for working in a misaligned magnetic field. The impact on the MR system from the x-ray system stems from the x-ray detector placed underneath the patient table near the MR imaging volume. Magnetic components inside the detector can be magnetized in the magnetic field and create an additional magnetic field that degrades the field homogeneity of the MR system. We use rare-earth permanent magnets located proximate to the detector to compensate for the unwanted field. The strengths and locations of the magnets are optimized with the measured detector field and the MR image quality is

  1. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A. Echina, E. S.; Suntsov, S. B.

    2015-10-27

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  2. Differential phase contrast X-ray imaging system and components

    SciTech Connect

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  3. Phase Tomography Reconstructed by 3D TIE in Hard X-ray Microscope

    SciTech Connect

    Yin, G.-C.; Chen, F.-R.; Pyun, Ahram; Je, Jung Ho; Hwu, Yeukuang; Liang, Keng S.

    2007-01-19

    X-ray phase tomography and phase imaging are promising ways of investigation on low Z material. A polymer blend of PE/PS sample was used to test the 3D phase retrieval method in the parallel beam illuminated microscope. Because the polymer sample is thick, the phase retardation is quite mixed and the image can not be distinguished when the 2D transport intensity equation (TIE) is applied. In this study, we have provided a different approach for solving the phase in three dimensions for thick sample. Our method involves integration of 3D TIE/Fourier slice theorem for solving thick phase sample. In our experiment, eight sets of de-focal series image data sets were recorded covering the angular range of 0 to 180 degree. Only three set of image cubes were used in 3D TIE equation for solving the phase tomography. The phase contrast of the polymer blend in 3D is obviously enhanced, and the two different groups of polymer blend can be distinguished in the phase tomography.

  4. Electron-ion-x-ray spectrometer system

    SciTech Connect

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.; LeBrun, T.

    1993-10-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays.

  5. 3D-printing of undisturbed soil imaged by X-ray

    NASA Astrophysics Data System (ADS)

    Bacher, Matthias; Koestel, John; Schwen, Andreas

    2014-05-01

    The unique pore structures in Soils are altered easily by water flow. Each sample has a different morphology and the results of repetitions vary as well. Soil macropores in 3D-printed durable material avoid erosion and have a known morphology. Therefore potential and limitations of reproducing an undisturbed soil sample by 3D-printing was evaluated. We scanned an undisturbed soil column of Ultuna clay soil with a diameter of 7 cm by micro X-ray computer tomography at a resolution of 51 micron. A subsample cube of 2.03 cm length with connected macropores was cut out from this 3D-image and printed in five different materials by a 3D-printing service provider. The materials were ABS, Alumide, High Detail Resin, Polyamide and Prime Grey. The five print-outs of the subsample were tested on their hydraulic conductivity by using the falling head method. The hydrophobicity was tested by an adapted sessile drop method. To determine the morphology of the print-outs and compare it to the real soil also the print-outs were scanned by X-ray. The images were analysed with the open source program ImageJ. The five 3D-image print-outs copied from the subsample of the soil column were compared by means of their macropore network connectivity, porosity, surface volume, tortuosity and skeleton. The comparison of pore morphology between the real soil and the print-outs showed that Polyamide reproduced the soil macropore structure best while Alumide print-out was the least detailed. Only the largest macropore was represented in all five print-outs. Printing residual material or printing aid material remained in and clogged the pores of all print-out materials apart from Prime Grey. Therefore infiltration was blocked in these print-outs and the materials are not suitable even though the 3D-printed pore shapes were well reproduced. All of the investigated materials were insoluble. The sessile drop method showed angles between 53 and 85 degrees. Prime Grey had the fastest flow rate; the

  6. Multi-scale 3D X-ray Imaging Capabilities at the Advanced Photon Source - Current status and future direction (Invited)

    NASA Astrophysics Data System (ADS)

    DeCarlo, F.; Xiao, X.; Khan, F.; Glowacki, A.; Schwarz, N.; Jacobsen, C.

    2013-12-01

    In x-ray computed μ-tomography (μ-XCT), a thin scintillator screen is coupled to a visible light lens and camera system to obtain micrometer-scale transmission imaging of specimens as large as a few millimeters. Recent advances in detector technology allow collecting these images at unprecedented frame rates. For a high x-ray flux density synchrotron facility like the Advanced Photon Source (APS), the detector exposure time ranges from hundreds of milliseconds to hundreds of picoseconds, making possible to acquire a full 3D micrometer-resolution dataset in less than one second. The micron resolution limitation of parallel x-ray beam projection systems can be overcame by Transmission X-ray Microscopes (TXM) where part of the image magnification is done in x-ray regime using x-ray optics like capillary condensers and Fresnel zone plates. These systems, when installed on a synchrotron x-ray source, can generate 2D images with up to 20 nm resolution with second exposure time and collect a full 3D nano-resolution dataset in few minutes. μ-XCT and TXM systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. In this presentation we describe the computational challenges associated with μ-XCT and TXM systems and present the framework and infrastructure developed at the APS to allow for routine multi-scale data integration between the two systems.

  7. Multi-scale 3D X-ray Imaging Capabilities at the Advanced Photon Source - Current status and future direction (Invited)

    NASA Astrophysics Data System (ADS)

    DeCarlo, F.; Xiao, X.; Khan, F.; Glowacki, A.; Schwarz, N.; Jacobsen, C.

    2011-12-01

    In x-ray computed μ-tomography (μ-XCT), a thin scintillator screen is coupled to a visible light lens and camera system to obtain micrometer-scale transmission imaging of specimens as large as a few millimeters. Recent advances in detector technology allow collecting these images at unprecedented frame rates. For a high x-ray flux density synchrotron facility like the Advanced Photon Source (APS), the detector exposure time ranges from hundreds of milliseconds to hundreds of picoseconds, making possible to acquire a full 3D micrometer-resolution dataset in less than one second. The micron resolution limitation of parallel x-ray beam projection systems can be overcame by Transmission X-ray Microscopes (TXM) where part of the image magnification is done in x-ray regime using x-ray optics like capillary condensers and Fresnel zone plates. These systems, when installed on a synchrotron x-ray source, can generate 2D images with up to 20 nm resolution with second exposure time and collect a full 3D nano-resolution dataset in few minutes. μ-XCT and TXM systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. In this presentation we describe the computational challenges associated with μ-XCT and TXM systems and present the framework and infrastructure developed at the APS to allow for routine multi-scale data integration between the two systems.

  8. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tomographic x-ray system. 892.1740 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system. (a) Identification. A tomographic x-ray system is an x-ray device intended to be used to produce radiologic images...

  9. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tomographic x-ray system. 892.1740 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system. (a) Identification. A tomographic x-ray system is an x-ray device intended to be used to produce radiologic images...

  10. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tomographic x-ray system. 892.1740 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system. (a) Identification. A tomographic x-ray system is an x-ray device intended to be used to produce radiologic images...

  11. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tomographic x-ray system. 892.1740 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system. (a) Identification. A tomographic x-ray system is an x-ray device intended to be used to produce radiologic images...

  12. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tomographic x-ray system. 892.1740 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system. (a) Identification. A tomographic x-ray system is an x-ray device intended to be used to produce radiologic images...

  13. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  14. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  15. Multi-contrast 3D X-ray imaging of porous and composite materials

    SciTech Connect

    Sarapata, Adrian; Herzen, Julia; Ruiz-Yaniz, Maite; Zanette, Irene; Rack, Alexander; Pfeiffer, Franz

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  16. Rapid fusion of 2D X-ray fluoroscopy with 3D multislice CT for image-guided electrophysiology procedures

    NASA Astrophysics Data System (ADS)

    Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.

    2007-03-01

    Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.

  17. Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    NASA Technical Reports Server (NTRS)

    Puspitarini, L.; Lallement, R.; Snowden, Steven L.; Vergely, J.-L.; Snowden, S.

    2014-01-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy

  18. Enhanced quantification for 3D SEM-EDS: using the full set of available X-ray lines.

    PubMed

    Burdet, Pierre; Croxall, S A; Midgley, P A

    2015-01-01

    An enhanced method to quantify energy dispersive spectra recorded in 3D with a scanning electron microscope (3D SEM-EDS) has been previously demonstrated. This paper presents an extension of this method using all the available X-ray lines generated by the beam. The extended method benefits from using high energy lines, that are more accurately quantified, and from using soft X-rays that are highly absorbed and thus more surface sensitive. The data used to assess the method are acquired with a dual beam FIB/SEM investigating a multi-element Ni-based superalloy. A high accelerating voltage, needed to excite the highest energy X-ray line, results in two available X-ray lines for several elements. The method shows an improved compositional quantification as well as an improved spatial resolution. PMID:25461593

  19. Enhanced quantification for 3D SEM–EDS: Using the full set of available X-ray lines

    PubMed Central

    Burdet, Pierre; Croxall, S.A.; Midgley, P.A.

    2015-01-01

    An enhanced method to quantify energy dispersive spectra recorded in 3D with a scanning electron microscope (3D SEM–EDS) has been previously demonstrated. This paper presents an extension of this method using all the available X-ray lines generated by the beam. The extended method benefits from using high energy lines, that are more accurately quantified, and from using soft X-rays that are highly absorbed and thus more surface sensitive. The data used to assess the method are acquired with a dual beam FIB/SEM investigating a multi-element Ni-based superalloy. A high accelerating voltage, needed to excite the highest energy X-ray line, results in two available X-ray lines for several elements. The method shows an improved compositional quantification as well as an improved spatial resolution. PMID:25461593

  20. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect

    Ando, Masami; Bando, Hiroko; Ueno, Ei

    2007-01-19

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  1. Simulations Of 3D MHD Jets: The Effects Of ICM Weather And AGN History On X-ray Cavities

    NASA Astrophysics Data System (ADS)

    Mendygral, Peter; Jones, T. W.; Dolag, K.

    2011-01-01

    The powerful jets from AGN produce low density bubbles in the ICM of the host galaxy cluster that are observed as X-ray cavities. The morphology of X-ray cavities is influenced by factors such as AGN history and ICM weather. We present 3D magnetohydrodynamical (MHD) simulations of hypersonic AGN jets in realistic cluster environments that explore the relationship between these factors and cavity properties. We will also discuss the consequences on observations of X-ray cavities with synthetic observations of these simulations. This work is supported by the NSF and by the University of Minnesota Supercomputing Institute.

  2. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    PubMed Central

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT. PMID:25361500

  3. Efficient feature-based 2D/3D registration of transesophageal echocardiography to x-ray fluoroscopy for cardiac interventions

    NASA Astrophysics Data System (ADS)

    Hatt, Charles R.; Speidel, Michael A.; Raval, Amish N.

    2014-03-01

    We present a novel 2D/ 3D registration algorithm for fusion between transesophageal echocardiography (TEE) and X-ray fluoroscopy (XRF). The TEE probe is modeled as a subset of 3D gradient and intensity point features, which facilitates efficient 3D-to-2D perspective projection. A novel cost-function, based on a combination of intensity and edge features, evaluates the registration cost value without the need for time-consuming generation of digitally reconstructed radiographs (DRRs). Validation experiments were performed with simulations and phantom data. For simulations, in silica XRF images of a TEE probe were generated in a number of different pose configurations using a previously acquired CT image. Random misregistrations were applied and our method was used to recover the TEE probe pose and compare the result to the ground truth. Phantom experiments were performed by attaching fiducial markers externally to a TEE probe, imaging the probe with an interventional cardiac angiographic x-ray system, and comparing the pose estimated from the external markers to that estimated from the TEE probe using our algorithm. Simulations found a 3D target registration error of 1.08(1.92) mm for biplane (monoplane) geometries, while the phantom experiment found a 2D target registration error of 0.69mm. For phantom experiments, we demonstrated a monoplane tracking frame-rate of 1.38 fps. The proposed feature-based registration method is computationally efficient, resulting in near real-time, accurate image based registration between TEE and XRF.

  4. Visualising, segmenting and analysing heterogenous glacigenic sediments using 3D x-ray CT.

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Diggens, Lucy; Groves, John; O'Sullivan, Catherine; Marsland, Rhona

    2015-04-01

    Whilst there has been significant application of 3D x-ray CT to geological contexts, much of this work has focused on examining properties such as porosity, which are important in reservoir assessment and hydrological evaluations. There has been considerably less attention given to the analysis of the properties of sediments themselves. One particular challenge in CT analysis is to effectively observe and discriminate the relationships between the skeleton and matrix of a sediment. This is particularly challenging in glacial sediments, which comprise an admixture of particles of a wide range of size, morphology and composition within a variably-consolidated sediment body. A key sedimentological component of glacial sediments is their fabric properties. Till fabric data has long been applied to the analysis of the coupling between glaciers and their deformable substrates. This work has typically focused on identifying former ice-flow directions, processes of till deformation and emplacement, and such data is often used to reconcile the sedimentary evidence of former glaciation with the predicted glacier and ice-sheet dynamics derived from numerical models. The collection and interpretation of till fabric data has received significant criticism in recent years, with issues such as low sample populations (typically ~50 grains per sample), small-scale spatial variation in till fabric and operator bias during data collection, all of which compromise the reliability of macro-scale till fabric analysis. Recent studies of micro-scale till fabrics have substantially added to our understanding, and suggest there is systematic variation in particle fabric as a function of particle size. However, these findings are compromised by the 2D nature of the samples (derived from thin sections) capturing only apparent orientations of particles, and are again limited to relatively small datasets. As such, there are fundamental limitations in the quality and application of till fabric

  5. Analytic 3D imaging of mammalian nucleus at nanoscale using coherent x-rays and optical fluorescence microscopy.

    PubMed

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-09-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens.

  6. Sloped irradiation techniques in deep x-ray lithography for 3D shaping of microstructures

    NASA Astrophysics Data System (ADS)

    Feiertag, Gregor; Ehrfeld, Wolfgang; Lehr, Heinz; Schmidt, Martin

    1997-07-01

    Deep x-ray lithography (DXRL) makes use of synchrotron radiation (SR) to transfer an absorber pattern from a mask into a thick resist layer. For most applications the direction of the SR beam is perpendicular to the mask and the resist plane. Subsequent replication techniques, e.g. electroforming, moulding or hot embossing, convert the resist relief obtained after development into micromechanical, microfluidic or micro- optical elements made from metals, polymers or ceramic materials. This process sequence is well known as the LIGA technique. The normal shadow printing process is complemented and enhanced by advanced techniques, e.g. by tilting the mask and the resist with respect to the SR beam or aligned multiple exposures to produce step-like structures. In this paper a technology for the fabrication of multidirectional inclined microstructures applying multiple tilted DXRL will be presented. Instead of one exposure with the mask/substrate assembly perpendicular to the SR beam, irradiation is performed several times applying tilt and rotational angles of the mask/substrate assembly relative to the SR beam. A huge variety of 3-D structures can be obtained using this technique. Some possible applications will be discussed.

  7. 3D morphological measurements of dental casts with occlusal relationship using microfocus X-ray CT.

    PubMed

    Kamegawa, Masayuki; Nakamura, Masayuki; Tsutsumi, Sadami

    2008-07-01

    In the diagnosis of dental occlusion, it is necessary to quantitatively measure interocclusal contacts and transfer them to a computer model. In this aspect, three-dimensional computer models of upper and lower dental casts play a significant role. In this study, we proposed a new method to measure occlusal interaction by using a microfocus X-ray CT technique. Measurement accuracy was determined as +/-0.03 mm in comparison with a coordinate measuring machine. A superimposition procedure for two sets of three-dimensional dental cast models was also established. Using the same dental cast, the standard deviation between the two sets of models was +/-0.015 mm - which was defined as measurement precision. Between an optical laser scanner and the microfocus X-ray CT system, the standard deviation measured between the two models was +/-0.05 mm. Data were acquired when upper and lower dental casts mounted on the bite impression were scanned, and then occlusal interaction, contacts, and distance distribution between the casts were visualized by a colored map on the cast models. Within the limitations of the current study, it was successfully demonstrated that microfocus Xray CT was well poised for quantitative measurement of occlusal interaction. PMID:18833768

  8. 21 CFR 892.1680 - Stationary x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stationary x-ray system. 892.1680 Section 892.1680...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1680 Stationary x-ray system. (a) Identification. A stationary x-ray system is a permanently installed diagnostic system intended to generate...

  9. 21 CFR 892.1720 - Mobile x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mobile x-ray system. 892.1720 Section 892.1720...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1720 Mobile x-ray system. (a) Identification. A mobile x-ray system is a transportable device system intended to be used to generate and control...

  10. 21 CFR 892.1720 - Mobile x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mobile x-ray system. 892.1720 Section 892.1720...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1720 Mobile x-ray system. (a) Identification. A mobile x-ray system is a transportable device system intended to be used to generate and control...

  11. 21 CFR 892.1680 - Stationary x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stationary x-ray system. 892.1680 Section 892.1680...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1680 Stationary x-ray system. (a) Identification. A stationary x-ray system is a permanently installed diagnostic system intended to generate...

  12. 21 CFR 892.1720 - Mobile x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mobile x-ray system. 892.1720 Section 892.1720...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1720 Mobile x-ray system. (a) Identification. A mobile x-ray system is a transportable device system intended to be used to generate and control...

  13. 21 CFR 892.1680 - Stationary x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stationary x-ray system. 892.1680 Section 892.1680...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1680 Stationary x-ray system. (a) Identification. A stationary x-ray system is a permanently installed diagnostic system intended to generate...

  14. 21 CFR 892.1680 - Stationary x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stationary x-ray system. 892.1680 Section 892.1680...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1680 Stationary x-ray system. (a) Identification. A stationary x-ray system is a permanently installed diagnostic system intended to generate...

  15. 21 CFR 892.1680 - Stationary x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stationary x-ray system. 892.1680 Section 892.1680...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1680 Stationary x-ray system. (a) Identification. A stationary x-ray system is a permanently installed diagnostic system intended to generate...

  16. 21 CFR 892.1720 - Mobile x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mobile x-ray system. 892.1720 Section 892.1720...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1720 Mobile x-ray system. (a) Identification. A mobile x-ray system is a transportable device system intended to be used to generate and control...

  17. 21 CFR 892.1720 - Mobile x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mobile x-ray system. 892.1720 Section 892.1720...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1720 Mobile x-ray system. (a) Identification. A mobile x-ray system is a transportable device system intended to be used to generate and control...

  18. 21 CFR 892.1600 - Angiographic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiographic x-ray system. 892.1600 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1600 Angiographic x-ray system. (a) Identification. An angiographic x-ray system is a device intended for radiologic visualization of the...

  19. 21 CFR 892.1600 - Angiographic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Angiographic x-ray system. 892.1600 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1600 Angiographic x-ray system. (a) Identification. An angiographic x-ray system is a device intended for radiologic visualization of the...

  20. 21 CFR 892.1600 - Angiographic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiographic x-ray system. 892.1600 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1600 Angiographic x-ray system. (a) Identification. An angiographic x-ray system is a device intended for radiologic visualization of the...

  1. 21 CFR 892.1710 - Mammographic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mammographic x-ray system. 892.1710 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1710 Mammographic x-ray system. (a) Identification. A mammographic x-ray system is a device intended to be used to produce radiographs of the...

  2. 21 CFR 892.1730 - Photofluorographic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Photofluorographic x-ray system. 892.1730 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1730 Photofluorographic x-ray system. (a) Identification. A photofluorographic x-ray system is a device that includes a fluoroscopic...

  3. 21 CFR 892.1730 - Photofluorographic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Photofluorographic x-ray system. 892.1730 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1730 Photofluorographic x-ray system. (a) Identification. A photofluorographic x-ray system is a device that includes a fluoroscopic...

  4. 21 CFR 892.1710 - Mammographic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mammographic x-ray system. 892.1710 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1710 Mammographic x-ray system. (a) Identification. A mammographic x-ray system is a device intended to be used to produce radiographs of the...

  5. 21 CFR 892.1710 - Mammographic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mammographic x-ray system. 892.1710 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1710 Mammographic x-ray system. (a) Identification. A mammographic x-ray system is a device intended to be used to produce radiographs of the...

  6. 21 CFR 892.1600 - Angiographic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Angiographic x-ray system. 892.1600 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1600 Angiographic x-ray system. (a) Identification. An angiographic x-ray system is a device intended for radiologic visualization of the...

  7. 21 CFR 892.1730 - Photofluorographic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Photofluorographic x-ray system. 892.1730 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1730 Photofluorographic x-ray system. (a) Identification. A photofluorographic x-ray system is a device that includes a fluoroscopic...

  8. 21 CFR 892.1710 - Mammographic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mammographic x-ray system. 892.1710 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1710 Mammographic x-ray system. (a) Identification. A mammographic x-ray system is a device intended to be used to produce radiographs of the...

  9. 21 CFR 892.1730 - Photofluorographic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Photofluorographic x-ray system. 892.1730 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1730 Photofluorographic x-ray system. (a) Identification. A photofluorographic x-ray system is a device that includes a fluoroscopic...

  10. 21 CFR 892.1600 - Angiographic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Angiographic x-ray system. 892.1600 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1600 Angiographic x-ray system. (a) Identification. An angiographic x-ray system is a device intended for radiologic visualization of the...

  11. 21 CFR 892.1730 - Photofluorographic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Photofluorographic x-ray system. 892.1730 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1730 Photofluorographic x-ray system. (a) Identification. A photofluorographic x-ray system is a device that includes a fluoroscopic...

  12. 21 CFR 892.1710 - Mammographic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mammographic x-ray system. 892.1710 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1710 Mammographic x-ray system. (a) Identification. A mammographic x-ray system is a device intended to be used to produce radiographs of the...

  13. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  14. Three-dimensional conformal setup (3D-CSU) of patients using the coordinate system provided by three internal fiducial markers and two orthogonal diagnostic X-ray systems in the treatment room

    SciTech Connect

    Shirato, Hiroki . E-mail: hshirato@radi.med.hokudai.ac.jp; Oita, Masataka; Fujita, Katsuhisa; Shimizu, Shinichi; Onimaru, Rikiya; Uegaki, Shinji; Watanabe, Yoshiharu; Kato, Norio; Miyasaka, Kazuo

    2004-10-01

    Purpose: To test the accuracy of a system for correcting for the rotational error of the clinical target volume (CTV) without having to reposition the patient using three fiducial markers and two orthogonal fluoroscopic images. We call this system 'three-dimensional conformal setup' (3D-CSU). Methods and materials: Three 2.0-mm gold markers are inserted into or adjacent to the CTV. On the treatment couch, the actual positions of the three markers are calculated based on two orthogonal fluoroscopies crossing at the isocenter of the linear accelerator. Discrepancy of the actual coordinates of gravity center of three markers from its planned coordinates is calculated. Translational setup error is corrected by adjustment of the treatment couch. The rotation angles ({alpha}, {beta}, {gamma}) of the coordinates of the actual CTV relative to the planned CTV are calculated around the lateral (x), craniocaudal (y), and anteroposterior (z) axes of the planned CTV. The angles of the gantry head, collimator, and treatment couch of the linear accelerator are adjusted according to the rotation of the actual coordinates of the tumor in relation to the planned coordinates. We have measured the accuracy of 3D-CSU using a static cubic phantom. Results: The gravity center of the phantom was corrected within 0.9 {+-} 0.3 mm (mean {+-} SD), 0.4 {+-} 0.2 mm, and 0.6 {+-} 0.2 mm for the rotation of the phantom from 0-30 degrees around the x, y, and z axes, respectively, every 5 degrees. Dose distribution was shown to be consistent with the planned dose distribution every 10 degrees of the rotation from 0-30 degrees. The mean rotational error after 3D-CSU was -0.4 {+-} 0.4 (mean {+-} SD), -0.2 {+-} 0.4, and 0.0 {+-} 0.5 degrees around the x, y, and z axis, respectively, for the rotation from 0-90 degrees. Conclusions: Phantom studies showed that 3D-CSU is useful for performing rotational correction of the target volume without correcting the position of the patient on the treatment couch

  15. A flying spot x-ray system for Compton backscatter imaging

    SciTech Connect

    Herr, M.D.; McInerney, J.J.; Copenhaver, G.L. ); Lamser, D.G. )

    1994-09-01

    A Compton x-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered flying spot'' x-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered x-rays, reduced x-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3-D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided x-ray dosimetry data verifying a very low x-ray dose delivered by this imaging device. Validation experiments with mechanical models show that surface displacement of typical heart beam frequencies can be measured to the nearest 0.1 mm (SD).

  16. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray...

  17. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray...

  18. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray...

  19. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray...

  20. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray...

  1. Accuracy evaluation of an X-ray microtomography system.

    PubMed

    Fernandes, Jaquiel S; Appoloni, Carlos R; Fernandes, Celso P

    2016-06-01

    Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4±3.4% and 31.0±0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images. PMID:27064197

  2. Direct x-ray sensing CCD array for intraoral dental x-ray imaging system

    NASA Astrophysics Data System (ADS)

    Cox, John D.; Williams, Donald W.; Langford, D. S.

    1994-05-01

    A commercial prototype electronic intraoral dental x-ray imaging system employing a direct sensing CCD array has been developed. Image quality parameters were measured using x-ray sources at the National Institute of Standard and Technology radiation physical department in Gaithersburg, MD. Detector response to x-rays in the 10 to 70 keV energy range was measured. The beam hardening effects of human anatomy on a typical 70 kVp spectra was measured using a tissue-equivalent dental phantom.

  3. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  4. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  5. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    PubMed Central

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; Schneider, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology. PMID:23300909

  6. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures.

    PubMed

    Miller, Brian W; Moore, Jared W; Barrett, Harrison H; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R

    2011-12-10

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented.

  7. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  8. Petrophysical analysis of limestone rocks by nuclear logging and 3D high-resolution X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Oliveira, M. F. S.; Lima, I.; Ferrucio, P. L.; Abreu, C. J.; Borghi, L.; Lopes, R. T.

    2011-10-01

    This study presents the pore-space system analysis of the 2-ITAB-1-RJ well cores, which were drilled in the São José do Itaboraí Basin, in the state of Rio de Janeiro, Brasil. The analysis presented herein has been developed based on two techniques: nuclear logging and 3D high-resolution X-ray computed microtomography. Nuclear logging has been proven to be the technique that provides better quality and more quantitative information about the porosity using radioactive sources. The Density Gamma Probe and the Neutron Sonde used in this work provide qualitative information about bulk density variations and compensated porosity of the geological formation. The samples obtained from the well cores were analyzed by microtomography. The use of this technique in sedimentary rocks allows quantitative evaluation of pore system and generates high-resolution 3D images (˜microns order). The images and data obtained by microtomography were integrated with the response obtained by nuclear logging. The results obtained by these two techniques allow the understanding of the pore-size distribution and connectivity, as well as the porosity values. Both techniques are important and they complement each other.

  9. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  10. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles

    PubMed Central

    Slater, Thomas J. A.; Lewis, Edward A.; Haigh, Sarah J.

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  11. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  12. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    NASA Astrophysics Data System (ADS)

    Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen

    Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.

  13. STXM goes 3D: digital reconstruction of focal stacks as novel approach towards confocal soft x-ray microscopy.

    PubMed

    Späth, Andreas; Scho Ll, Simon; Riess, Christian; Schmidtel, Daniel; Paradossi, Gaio; Raabe, Jo Rg; Hornegger, Joachim; Fink, Rainer H

    2014-09-01

    Fresnel zone plate based soft x-ray transmission microspectroscopy has developed into a routine technique for high-resolution elemental or chemical 2D imaging of thin film specimens. The availability of high resolution Fresnel lenses with short depth of focus offers the possibility of optical slicing (in the third dimension) by focus series with resolutions in the submicron regime. We introduce a 3D reconstruction algorithm that uses a variance-based metric to assign a focus measure as basis for volume rendering. The algorithm is applied to simulated geometries and opaque soft matter specimens thus enabling 3D visualization. These studies with z-resolution of few 100nm serve as important step towards the vision of a confocal transmission x-ray microscope.

  14. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  15. Revealing the 3D internal structure of natural polymer microcomposites using X-ray ultra microtomography.

    PubMed

    Pakzad, A; Parikh, N; Heiden, P A; Yassar, R S

    2011-07-01

    Properties of composite materials are directly affected by the spatial arrangement of reinforcement and matrix. In this research, partially hydrolysed cellulose microcrystals were used to fabricate polycaprolactone microcomposites. The spatial distribution of cellulose microcrystals was characterized by a newly developed technique of X-ray ultra microscopy and microtomography. The phase and absorption contrast imaging of X-ray ultra microscopy revealed two-dimensional and three-dimensional information on CMC distribution in polymer matrices. The highest contrast and flux (signal-to-noise ratio) were obtained using vanadium foil targets with the accelerating voltage of 30 keV and beam current of >200 nA. The spatial distribution of cellulose microcrystals was correlated to the mechanical properties of the microcomposites. It was observed that heterogeneous distribution and clustering of cellulose microcrystals resulted in degradation of tensile strength and elastic modulus of composites. The utilization of X-ray ultra microscopy can open up new opportunities for composite researchers to explore the internal structure of microcomposites. X-ray ultra microscopy sample preparation is relatively simple in comparison to transmission electron microscopy and the spatial information is gathered at much larger scale.

  16. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  17. X-ray fluorescence and X-ray transmission microtomography imaging system

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriela R.; Rocha, Henrique S.; Anjos, Marcelino J.; Faria, Paulo; Pérez, Carlos A.; Lopes, Ricardo T.

    2007-10-01

    An X-ray Transmission Microtomography (CT) system combined with an X-ray Fluorescence Microtomography (XRFCT) system was implemented in the Brazilian Synchrotron Light Source (LNLS), Campinas, Brazil. The main aim of this work is to determine the elemental and absorption distribution map in breast tissue samples. The experiments were performed at the X-Ray Fluorescence beamline (D09B-XRF) of the Brazilian Synchrotron Light Source (LNLS), Campinas, Brazil. A quasi-monochromatic beam produced by a multilayer monochromator was used as an incident beam. The fluorescence photons were acquired with an energy dispersive HPGe detector (CANBERRA Industries Inc.) placed at 90∘ to the incident beam, while transmitted photons were detected with a fast Na(Tl) scintillation counter (CYBERSTAR Oxford Danfysik) placed behind the sample in the beam direction. All the tomographic images were reconstructed using a filtered-back projection algorithm.

  18. Colloid Transport in Unsaturated Porous Media: 3D Visualization Using Synchrotron X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Brueck, C. L.; Meisenheimer, D.; Wildenschild, D.

    2015-12-01

    Understanding the mechanisms controlling colloid transport and deposition in the vadose zone is an important step in protecting our water resources. Not only may these particles themselves be undesirable contaminants, but they can also aid in the transport of smaller, molecular-scale contaminants by chemical attachment. In this research, we examined the influence that air-water interfaces (AWI) and air-water-solid contact lines (AWS) have on colloid deposition and mobilization in three-dimensional systems. We used x-ray microtomography to visualize the transport of hydrophobic colloids as they move through a partially saturated glass bead pack. Drainage and imbibition experiments were conducted using syringe pumps to control the flow of a colloid suspension through the porous media at 0.6 mL/hr. The high ionic strength fluid was adjusted to a pH of 9.5 and a concentration of 1.0 mol/L KI. During the drainage and imbibition, the flow was periodically halted and allowed to equilibrate before collecting the microtomography scans. Dopants were used to enhance the contrast between the four phases (water, air, beads, and colloids), including potassium iodide dissolved in the fluid, and an outer layer of silver coating the colloids. We hypothesized that AWIs and AWSs will scour and mobilize a significant percentage of colloids, and therefore reduce the concentration of colloids along the vertical profile of the column. The concentration of potassium iodide, and thus the ionic strength, necessary for adequate image segmentation was also explored in separate experiments so that the influence of ionic strength on colloid deposition and mobilization can be studied.

  19. High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys

    SciTech Connect

    Kastner, Johann; Harrer, Bernhard; Degischer, H. Peter

    2011-01-15

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterisation of materials. XCT systems with cone beam geometry, micro- or nano-focus tubes and matrix detectors are increasingly used in research and non-destructive testing. Spatial resolutions down to 1 {mu}m can be reached with such XCT-systems for heterogeneities in metals with high absorption contrast. High resolution cone beam XCT is applied to five different Al-alloys: AlMg5Si7, AlCu4Mg1, AlZn6Mg2Cu2, AlZn8Mg2Cu2 and AlSi12Ni1. Up to four different types of inhomogeneities are segmented in one alloy using voxel sizes between (0.4 {mu}m){sup 3} and (2.3 {mu}m){sup 3}. Target metallography and elemental analysis by energy dispersive X-ray analysis are used to identify the inhomogeneities. The possibilities and restrictions of XCT applied to Al-alloys are discussed. AlMg5Si7 XCT-data with a voxel size of (0.4 {mu}m){sup 3} show inhomogeneities with brighter grey-values than the Al-matrix identified as elongated Fe-aluminides, and those with lower grey-values identified as pores and Mg{sub 2}Si-particles with a 'Chinese script-like' structure. Higher-absorbing interdendritic Al-Al{sub 2}Cu-eutectic regions appear brighter than the Al-dendrites in the CT-data of AlCu4Mg1 with (1.1 {mu}m){sup 3}/voxel, whereas pores > 4 {mu}m appear darker than the Al-matrix. The size and the 3D-structure of the {alpha}-Al dendrite arms with a diameter of 50-100 {mu}m are determined in samples from chill cast billets of AlCu4Mg1 and AlZn6Mg2Cu2 alloys. The irregular interdendritic regions containing eutectic segregations with Cu- and Zn-rich phases are > 5 {mu}m wide. Equally absorbing primary equi-axed Al{sub 3}(Sc, Zr) particles > 5 {mu}m are distinguished in the centres of the dendrites by the level of sphericity values. The distribution of Ni- and Fe-aluminides in a squeeze cast AlSi12Ni1-alloy is imaged with (0.4 {mu}m){sup 3}/voxel, but the Si-phase cannot be segmented.

  20. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    SciTech Connect

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P.

    2012-07-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  1. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  2. Methodology toward 3D micro X-ray fluorescence imaging using an energy dispersive charge-coupled device detector.

    PubMed

    Garrevoet, Jan; Vekemans, Bart; Tack, Pieter; De Samber, Björn; Schmitz, Sylvia; Brenker, Frank E; Falkenberg, Gerald; Vincze, Laszlo

    2014-12-01

    A new three-dimensional (3D) micro X-ray fluorescence (μXRF) methodology based on a novel 2D energy dispersive CCD detector has been developed and evaluated at the P06 beamline of the Petra-III storage ring (DESY) in Hamburg, Germany. This method is based on the illumination of the investigated sample cross-section by a horizontally focused beam (vertical sheet beam) while fluorescent X-rays are detected perpendicularly to the sheet beam by a 2D energy dispersive (ED) CCD detector allowing the collection of 2D cross-sectional elemental images of a certain depth within the sample, limited only by signal self-absorption effects. 3D elemental information is obtained by a linear scan of the sample in the horizontal direction across the vertically oriented sheet beam and combining the detected cross-sectional images into a 3D elemental distribution data set. Results of the 3D μXRF analysis of mineral inclusions in natural deep Earth diamonds are presented to illustrate this new methodology. PMID:25346101

  3. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector.

    PubMed

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M(2). Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~0.4-2.0 μm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  4. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    PubMed Central

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4–2.0 μm for photons with energies 6–14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  5. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    PubMed

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  6. The K x-ray line structures of the 3d-transition metals in warm dense plasma

    NASA Astrophysics Data System (ADS)

    Szymańska, E.; Syrocki, Ł.; Słabkowska, K.; Polasik, M.; Rzadkiewicz, J.

    2016-09-01

    The shapes and positions of the Kα1 and Kα2 x-ray lines for 3d-transition metals can vary substantially as electrons are stripped from the outer-shells. This paper shows the detailed line shapes for nickel and zinc, obtained by calculations with a multiconfiguration Dirac-Fock method that includes Breit interaction and quantum electrodynamics corrections. The line shapes can be useful in interpreting hot, dense plasmas with energetic electrons for which the K x-ray lines are optically thin, as may be produced by pulsed power machines such as the plasma-filled rod pinch diode or the plasma focus, or in short-pulsed high power laser plasmas.

  7. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    PubMed

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  8. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  9. Strain in a silicon-on-insulator nanostructure revealed by 3D x-ray Bragg ptychography.

    PubMed

    Chamard, V; Allain, M; Godard, P; Talneau, A; Patriarche, G; Burghammer, M

    2015-01-01

    Progresses in the design of well-defined electronic band structure and dedicated functionalities rely on the high control of complex architectural device nano-scaled structures. This includes the challenging accurate description of strain fields in crystalline structures, which requires non invasive and three-dimensional (3D) imaging methods. Here, we demonstrate in details how x-ray Bragg ptychography can be used to quantify in 3D a displacement field in a lithographically patterned silicon-on-insulator structure. The image of the crystalline properties, which results from the phase retrieval of a coherent intensity data set, is obtained from a well-controlled optimized process, for which all steps are detailed. These results confirm the promising perspectives of 3D Bragg ptychography for the investigation of complex nano-structured crystals in material science.

  10. Precise Animated 3-D Displays Of The Heart Constructed From X-Ray Scatter Fields

    NASA Astrophysics Data System (ADS)

    McInerney, J. J.; Herr, M. D.; Copenhaver, G. L.

    1986-01-01

    A technique, based upon the interrogation of x-ray scatter, has been used to construct precise animated displays of the three-dimensional surface of the heart throughout the cardiac cycle. With the selection of motion amplification, viewing orientation, beat rate, and repetitive playbacks of isolated segments of the cardiac cycle, these displays are used to directly visualize epicardial surface velocity and displacement patterns, to construct regional maps of old or new myocardial infarction, and to visualize diastolic stiffening of the ventricle associated with acute ischemia. The procedure is non-invasive. Cut-downs or injections are not required.

  11. Implementation of Chest X-ray Observation Report Entry System

    PubMed Central

    Seo, Suk-Tae; Park, Hee-Joon; Kim, Min Soo; Son, Chang-Sik; Park, Hyoung-Seob; Jeon, Hyo Chan; Jung, Chi Young

    2010-01-01

    Objectives X-rays are widely used in medical examinations. In particular, chest X-rays are the most frequent imaging test. However, observations are usually recorded in a free-text format. Therefore, it is difficult to standardize the information provided to construct a database for the sharing of clinical data. Here, we describe a simple X-ray observation entry system that can interlock with an electronic medical record system. Methods We investigated common diagnosis indices. Based on the indices, we have designed an entry system which consists of 5 parts: 1) patient lists, 2) image selection, 3) diagnosis result entry, 4) image view, and 5) main menu. The X-ray observation results can be extracted in an Excel format. Results The usefulness of the proposed system was assessed in a study using over 500 patients' chest X-ray images. The data was readily extracted in a format that allowed convenient assessment. Conclusions We proposed the chest X-ray observation entry system. The proposed X-ray observation system, which can be linked with an electronic medical record system, allows easy extraction of standardized clinical information to construct a database. However, the proposed entry system is limited to chest X-rays and it is impossible to interpret the semantic information. Therefore, further research into domains using other interpretation methods is required. PMID:21818450

  12. X-Ray Shield Calculation System.

    1984-10-04

    Version: 00 NCRP49 will calculate the primary and/or secondary leakage/scatter barrier requirements (in mm of lead) for diagnostic radio-graphic and/or fluoroscopic x-ray units operating at 50, 70, 100, 125 or 150 kV.

  13. VETA x ray data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger J. V.; Jones, Mark T.; Ljungberg, Malin; Nguyen, Dan T.; Roll, John B., Jr.

    1992-01-01

    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described.

  14. Mass transfer in binary X-ray systems

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Hatchett, S.

    1975-01-01

    The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.

  15. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    NASA Astrophysics Data System (ADS)

    van de Kraats, Everine B.; Carelsen, Bart; Fokkens, Wytske J.; Boon, Sjirk N.; Noordhoek, Niels; Niessen, Wiro J.; van Walsum, Theo

    2005-12-01

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.

  16. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    NASA Astrophysics Data System (ADS)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  17. 3D X-ray Strain Microscopy in Two-Phase Composites at Submicron Length Scale

    SciTech Connect

    Barabash, Rozaliya; Bei, Hongbin; Ice, Gene E; Gao, Yanfei; Barabash, Oleg M

    2011-01-01

    Author note: Part of this research summary is based on findings first reported in Refs. [3-5, 18]. Renewed interest in composite materials is driven by the fact that their mechanical properties can be superior to those of individual constituent phases. Interfaces between the phases are the key elements responsible for the unique micro-mechanisms of plastic deformation in composites. In this study the depth-dependent residual strain distributed in the two phases and partitioned across the composite interfaces is directly measured at submicron length-scale using X-ray microdiffraction and compared to a detailed simulation within the framework of micromechanical stress analysis. Interface strength is determined from the analysis of the so-called slip zone caused by the near-surface stress relaxation. Two examples are discussed including NiAl/Mo and Ni/Mo composites.

  18. Real-time 3-D X-ray and gamma-ray viewer

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1983-01-01

    A multi-pinhole aperture lead screen forms an equal plurality of invisible mini-images having dissimilar perspectives of an X-ray and gamma-ray emitting object (ABC) onto a near-earth phosphor layer. This layer provides visible light mini-images directly into a visible light image intensifier. A viewing screen having an equal number of dissimilar perspective apertures distributed across its face in a geometric pattern identical to the lead screen, provides a viewer with a real, pseudoscopic image (A'B'C') of the object with full horizontal and vertical parallax. Alternatively, a third screen identical to viewing screen and spaced apart from a second visible light image intensifier, may be positioned between the first image intensifier and the viewing screen, thereby providing the viewer with a virtual, orthoscopic image (A"B"C") of the object (ABC) with full horizontal and vertical parallax.

  19. Mapping electronic ordering in chromium in 3D with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing

    2015-03-01

    In the antiferromagnetic state of chromium, electrons form spin-density waves and charge-density waves with wave vector along one of the lattice cubic axes; the spontaneous ordering of the electrons breaks the lattice symmetry and creates domains within a single crystal. We report the first 3-dimentional mapping of charge-density wave domains in bulk polycrystalline chromium samples using differential-aperture x-ray microdiffraction at the Advanced Photon Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

  20. Element Mapping in Organic Samples Utilizing a Benchtop X-Ray Fluorescence Emission Tomography (XFET) System

    PubMed Central

    Groll, A.; George, J.; Vargas, P.; La Rivière, P.J.; Meng, L. J.

    2015-01-01

    X-ray fluorescence computed tomography (XFCT) is an emerging imaging modality that maps the three-dimensional distribution of elements, generally metals, in ex vivo specimens and potentially in living animals and humans. Building on our previous synchrotron-based work, we experimentally explored the use of a benchtop X-ray fluorescence computed tomography system for mapping trace-metal ions in biological samples. This system utilizes a scanning pencil-beam to stimulate the object and then relies on a detection system, with single or multiple slit apertures placed in front of position-sensitive X-ray detectors, to collect the fluorescence X-rays and to form 3-D elemental map without the need for tomographic imaging reconstruction. The technique was used to generate images of the elemental distributions of a triple-tube phantom and an osmium-stained zebrafish. PMID:26705368

  1. Solar System X-rays from Charge Exchange Processes

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.; Christian, D. J.; Bhardwaj, A.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Zurbuchen, T. H.; Lepri, S. T.

    2013-04-01

    The discovery of high energy x-ray emission in 1996 from comet C/1996 B2 (Hyakutake) uncovered a new class of x-ray emitting objects. Subsequent detections of the morphology, spectra, and time dependence of the x-rays from more than 20 comets have shown that the very soft (E < 1 keV) emission is due to a charge-exchange interaction between highly charged solar wind minor ions and the comet's extended neutral atmosphere. Many solar system objects are now known to shine in the X-ray, including Venus, Mars, the Moon, the Earth, Jupiter, and Saturn, with total power outputs on the MW - GW scale. Like comets, the X-ray emission from the Earth's geo-corona, the Jovian & Saturnian aurorae, and the Martian halo are thought to be driven by charge exchange between highly charged minor (heavy) ions in the solar wind and gaseous neutral species in the bodies' atmosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from disks of Mars, Venus, and the Moon are produced by scattering of solar X-rays. The first soft X-ray observations of Earth’s aurora by Chandra shows that it is highly variable, and the giant planet aurorae are fascinating puzzles that are just beginning to yield their secrets and may be the only x-ray sources not driven directly by the Sun in the whole system as well as properties of hot exo-solar Jupiters. Observations of local solar system charge exchange processes can also help inform us about x-rays produced at more distant hot ionized gas/cold neutral gas interfaces, like the heliopause, stellar astrospheres, galactic star forming regions, and starburst galaxies.

  2. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  3. Development of an advanced 3D cone beam tomographic system

    NASA Astrophysics Data System (ADS)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  4. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    PubMed Central

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-01-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science. PMID:25650004

  5. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering.

    PubMed

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-01-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born's approximation and is remarkably efficient-opening up new routes in ultrafast nanophysics and free-electron laser science. PMID:25650004

  6. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE PAGES

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; et al

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore » from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  7. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    SciTech Connect

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science

  8. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a

  9. Quantitative 3D petrography using X-ray tomography 2: Combining information at various resolutions

    SciTech Connect

    Pamukcu, Ayla S.; Gualda, Guilherme A.R.

    2010-12-02

    X-ray tomography is a nondestructive technique that can be used to study rocks and other materials in three dimensions over a wide range of sizes. Samples that range from decimeters to micrometers in size can be analyzed, and micrometer- to centimeter-sized crystals, vesicles, and other particles can be identified and quantified. In many applications, quantification of a large spectrum of sizes is important, but this cannot be easily accomplished using a single tomogram due to a common trade-off between sample size and image resolution. This problem can be circumvented by combining tomograms acquired for a single sample at a variety of resolutions. We have successfully applied this method to obtain crystal size distributions (CSDs) for magnetite, pyroxene + biotite, and quartz + feldspar in Bishop Tuff pumice. Five cylinders of systematically varying size (1-10 mm diameter and height) were analyzed from each of five pumice clasts. Cylinder size is inversely proportional to image resolution, such that resolution ranges from 2.5 to 17 {micro}m/voxel with increasing sample size. This allows quantification of crystals 10-1000 {micro}m in size. We obtained CSDs for each phase in each sample by combining information from all resolutions, each size bin containing data from the resolution that best characterizes crystals of that size. CSDs for magnetite and pyroxene + biotite in late-erupted Bishop pumice obtained using this method are fractal, but do not seem to result from crystal fragmentation. CSDs for quartz + feldspar reveal a population of abundant crystals <35 {micro}m in size, and a population of crystals >50 {micro}m in size, which will be the focus of a separate publication.

  10. Personalized x-ray reconstruction of the proximal femur via a non-rigid 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Yu, Weimin; Zysset, Philippe; Zheng, Guoyan

    2015-03-01

    In this paper we present a new approach for a personalized X-ray reconstruction of the proximal femur via a non-rigid registration of a 3D volumetric template to 2D calibrated C-arm images. The 2D-3D registration is done with a hierarchical two-stage strategy: the global scaled rigid registration stage followed by a regularized deformable b-spline registration stage. In both stages, a set of control points with uniform spacing are placed over the domain of the 3D volumetric template and the registrations are driven by computing updated positions of these control points, which then allows to accurately register the 3D volumetric template to the reference space of the C-arm images. Comprehensive experiments on simulated images, on images of cadaveric femurs and on clinical datasets are designed and conducted to evaluate the performance of the proposed approach. Quantitative and qualitative evaluation results are given, which demonstrate the efficacy of the present approach.

  11. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone.

    PubMed

    De Boever, Wesley; Derluyn, Hannelore; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2015-07-01

    When dealing with the characterization of the structure and composition of natural stones, problems of representativeness and choice of analysis technique almost always occur. Since feature-sizes are typically spread over the nanometer to centimeter range, there is never one single technique that allows a rapid and complete characterization. Over the last few decades, high resolution X-ray CT (μ-CT) has become an invaluable tool for the 3D characterization of many materials, including natural stones. This technique has many important advantages, but there are also some limitations, including a tradeoff between resolution and sample size and a lack of chemical information. For geologists, this chemical information is of importance for the determination of minerals inside samples. We suggest a workflow for the complete chemical and structural characterization of a representative volume of a heterogeneous geological material. This workflow consists of combining information derived from CT scans at different spatial resolutions with information from scanning electron microscopy and energy-dispersive X-ray spectroscopy. PMID:25939085

  12. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone.

    PubMed

    De Boever, Wesley; Derluyn, Hannelore; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2015-07-01

    When dealing with the characterization of the structure and composition of natural stones, problems of representativeness and choice of analysis technique almost always occur. Since feature-sizes are typically spread over the nanometer to centimeter range, there is never one single technique that allows a rapid and complete characterization. Over the last few decades, high resolution X-ray CT (μ-CT) has become an invaluable tool for the 3D characterization of many materials, including natural stones. This technique has many important advantages, but there are also some limitations, including a tradeoff between resolution and sample size and a lack of chemical information. For geologists, this chemical information is of importance for the determination of minerals inside samples. We suggest a workflow for the complete chemical and structural characterization of a representative volume of a heterogeneous geological material. This workflow consists of combining information derived from CT scans at different spatial resolutions with information from scanning electron microscopy and energy-dispersive X-ray spectroscopy.

  13. Three-dimensional (3D) microstructural characterization and quantification of reflow porosity in Sn-rich alloy/copper joints by X-ray tomography

    SciTech Connect

    Jiang Ling; Chawla, Nikhilesh; Pacheco, Mario; Noveski, Vladimir

    2011-10-15

    In this paper high resolution X-ray tomography was used to characterize reflow porosity in Sn-3.9Ag-0.7Cu/Cu solder joints. The combination of two segmentation techniques was applied for the three-dimensional (3D) visualization of pores in the joints and the quantification on the characteristics of reflow porosity, including pore size, volume fraction and morphology. The size, morphology and distribution of porosity were visualized in 3D for three different solder joints. Since the results are relatively similar for all three, only the results of one joint are presented. Solder reflow porosity was mostly spherical, segregated along the solder/Cu interface, and had an average pore size of 30 {mu}m in diameter. A few large pores (larger than 100 {mu}m in diameter) were present, some of which had lower sphericity, i.e., they were more irregular. The presence of these large pores may significantly influence the mechanical behavior of solder joints. - Highlights: {yields} Non-destructive 3D characterization and quantification of porosity in Pb-free solders by X-ray tomography {yields} Two new image analysis and reconstruction tools are presented that can be used by the community at large {yields} Pore size, volume fraction, and sphericity, is critical to understanding microstructure and modeling of these systems.

  14. Micro-System Technology for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2002-01-01

    This research investigation was devoted to developing micro-system and nanotechnology for x-ray astronomy optics. The goal was to develop and demonstrate new types of lightweight, high accuracy x-ray optics for future high throughput, high resolution x-ray telescopes such as Constellation X (Con-X) and MAXIM. A number of significant accomplishments were reported under this program, which are summarized below. Most of this work has been reported in journal and conference proceedings and in presentations to NASA and at international meeting (see Bibliography).

  15. 3-D reconstruction of an ancient Egyptian mummy using X-ray computer tomography.

    PubMed

    Baldock, C; Hughes, S W; Whittaker, D K; Taylor, J; Davis, R; Spencer, A J; Tonge, K; Sofat, A

    1994-12-01

    Computer tomography has been used to image and reconstruct in 3-D an Egyptian mummy from the collection of the British Museum. This study of Tjentmutengebtiu, a priestess from the 22nd dynasty (945-715 BC) revealed invaluable information of a scientific, Egyptological and palaeopathological nature without mutilation and destruction of the painted cartonnage case or linen wrappings. Precise details on the removal of the brain through the nasal cavity and the viscera from the abdominal cavity were obtained. The nature and composition of the false eyes were investigated. The detailed analysis of the teeth provided a much closer approximation of age at death. The identification of materials used for the various amulets including that of the figures placed in the viscera was graphically demonstrated using this technique.

  16. 3-D reconstruction of an ancient Egyptian mummy using X-ray computer tomography.

    PubMed Central

    Baldock, C; Hughes, S W; Whittaker, D K; Taylor, J; Davis, R; Spencer, A J; Tonge, K; Sofat, A

    1994-01-01

    Computer tomography has been used to image and reconstruct in 3-D an Egyptian mummy from the collection of the British Museum. This study of Tjentmutengebtiu, a priestess from the 22nd dynasty (945-715 BC) revealed invaluable information of a scientific, Egyptological and palaeopathological nature without mutilation and destruction of the painted cartonnage case or linen wrappings. Precise details on the removal of the brain through the nasal cavity and the viscera from the abdominal cavity were obtained. The nature and composition of the false eyes were investigated. The detailed analysis of the teeth provided a much closer approximation of age at death. The identification of materials used for the various amulets including that of the figures placed in the viscera was graphically demonstrated using this technique. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. PMID:7853321

  17. X-ray fluorescence computed tomography system for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Enomoto, Toshiyuki; Sato, Eiichi; Abderyim, Purkhet; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitro; Izumisawa, Mitsuru; Ogawa, Akira; Sato, Shigehiro

    2008-08-01

    An x-ray fluorescence (XRF) computed tomography (CT) system utilizing a cadmium telluride (CdTe) detector is described. The CT system is of the first generation type and consists of a cerium x-ray generator, a turn table, a translation stage, a two-stage controller, a CdTe spectrometer, a multichannel analyzer (MCA), a counter board (CB), and a personal computer (PC). When an object is exposed by the x-ray generator, iodine K-series fluorescences are produced and are detected from vertical direction to x-ray axis using the spectrometer. Fluorescent photons are selected out using the MCA and are counted by the PC via CB, and XRF CT is performed by repeating translation and rotation of an object.

  18. X-ray lithography: a system integration effort

    NASA Astrophysics Data System (ADS)

    Selzer, Robert A.; Heaton, John; Vladimirsky, Yuli; Simon, Klaus

    1999-06-01

    Despite growing expectations of significant progress in projection lithography using shorter wavelengths, x-ray lithography is still the most developed and production ready technology compared with the other NGL approaches. For the timely introduction of this technology into the manufacturing environment the development of fully integrated x-ray lithography systems becomes very important. Reflecting manufacturing and R and D demands, the x-ray technology integration has been pursued for goth synchrotron radiation and x-ray point source based approaches. While the synchrotron-based approach provides the high volume platform, the point source will provide the platform for low volume production and R and D efforts. SAL recognizes the needs for both, a synchrotron based stepper as well as a point source stepper and is focused on meeting those needs. This paper will present the status of integration efforts at SAL utilizing a point source system.

  19. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    NASA Astrophysics Data System (ADS)

    Mendoza Cuevas, Ariadna; Perez Gravie, Homero

    2011-03-01

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  20. Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures

    NASA Astrophysics Data System (ADS)

    Settens, Charles; Bunday, Benjamin; Thiel, Brad; Kline, R. Joseph; Sunday, Daniel; Wang, Chengqing; Wu, Wen-li; Matyi, Richard

    2013-04-01

    We have demonstrated that transmission critical dimension small angle X-ray scattering (CD-SAXS) provides high accuracy and precision CD measurements on advanced 3D microelectronic architectures. The competitive advantage of CD-SAXS over current 3D metrology methods such as optical scatterometry is that CD-SAXS is able to decouple and fit cross-section parameters without any significant parameter cross-correlations. As the industry aggressively scales beyond the 22 nm node, CD-SAXS can be used to quantitatively measure nanoscale deviations in the average crosssections of FinFETs and high-aspect ratio (HAR) memory devices. Fitting the average cross-section of 18:1 isolated HAR contact holes with an effective trapezoid model yielded an average pitch of 796.9 +/- 0.4 nm, top diameter of 70.3 +/- 0.9 nm, height of 1088 +/- 4 nm, and sidewall angle below 0.1°. Simulations of dense 40:1 HAR contact holes and FinFET fin-gate crossbar structures have been analyzed using CD-SAXS to inquire the theoretical precision of the technique to measure important process parameters such as fin CD, height, and sidewall angle; BOX etch recess, thickness of hafnium oxide and titanium nitride layers; gate CD, height, and sidewall angle; and hafnium oxide and titanium nitride etch recess. The simulations of HAR and FinFET structures mimic the characteristics of experimental data collected at a synchrotron x-ray source. Using the CD-SAXS simulator, we estimate the measurement capabilities for smaller similar structures expected at future nodes to predict the applicability of this technique to fulfill important CD metrology needs.

  1. Systems and methods for detecting x-rays

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  2. A 3D CZT hard x-ray polarimeter for a balloon-borne payload

    NASA Astrophysics Data System (ADS)

    Caroli, E.; Alvarez, J. M.; Auricchio, N.; Budtz-Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Ferrando, P.; Laurent, P.; Limousin, O.; Galvèz, J. L.; Gloster, C. P.; Hernanz, M.; Isern, J.; Kuvvetli, I.; Maia, J. M.; Meuris, A.; Stephen, J. B.; Zappettini, A.

    2012-09-01

    Today it is widely recognised that a measurement of the polarization status of cosmic sources high energy emission is a key observational parameter to understand the active production mechanism and its geometry. Therefore new instrumentation operating in the hard X/soft γ rays energy range should be optimized also for this type of measurement. In this framework, we present the concept of a small high-performance spectrometer designed for polarimetry between 100 and 1000 keV suitable as a stratospheric balloon-borne payload dedicated to perform an accurate and reliable measurement of the polarization status of the Crab pulsar, i.e. the polarization level and direction. The detector with 3D spatial resolution is based on a CZT spectrometer in a highly segmented configuration designed to operate as a high performance scattering polarimeter. We discuss different configurations based on recent development results and possible improvements currently under study. Furthermore we describe a possible baseline design of the payload, which can be also seen as a pathfinder for a high performance focal plane detector in new hard X and soft gamma ray focussing telescopes and/or advanced Compton instruments. Finally we present preliminary data from Montecarlo undergoing studies to determine the best trade-off between polarimetric performance and detector design complexity.

  3. Acute effects of delayed reperfusion following myocardial infarction: a 3D x-ray imaging analysis

    NASA Astrophysics Data System (ADS)

    Simari, Robert D.; Bell, M. R.; Pao, Y. C.; Gersh, B. J.; Ritman, Erik L.

    1996-04-01

    Clinical and experimental data suggest that delayed reperfusion of the infarct related artery may limit infarct expansion without increasing myocardial salvage. In order to assess the potential mechanisms involved, an acute closed chest canine model of myocardial infarction and delayed reperfusion was studied. Nineteen dogs underwent 3D computed tomography in the Dynamic Spatial Reconstructor (a fast, volume imaging, CT scanner) at baseline and three and four hours later to estimate left ventricular chamber volumes, global distensibility and regional myocardial stiffness. A control group was scanned without intervention. An occlusion group underwent four hours of coronary artery occlusion. A reperfusion group underwent three hours of coronary artery occlusion followed by one hour of reperfusion. Similar infarct sizes were seen in the occlusion and reperfusion groups. Globally reperfusion was associated with increased left ventricular end diastolic pressure and prolongation of global relaxation. Regionally reperfusion was associated with increased myocardial stiffness, intramyocardial blood volume and wall thickness within the infarct zone relative to the not reperfused myocardium.

  4. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  5. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    PubMed Central

    Mukherjee, Smita; Fauré, Marie-Claude; Goldmann, Michel

    2015-01-01

    Summary In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters. PMID:26734531

  6. Multivariate analysis of X-ray, ion and electron spectral images: from surface to 3D materials characterization.

    SciTech Connect

    Kotula, Paul Gabriel; Keenan, Michael Robert

    2005-02-01

    Spectral imaging where a complete spectrum is collected from each of a series of spatial locations (1D lines, 2D images or 3D volumes) is now available on a wide range of analytical tools - from electron and x-ray to ion beam instruments. With this capability to collect extremely large spectral images comes the need for automated data analysis tools that can rapidly and without bias reduce a large number of raw spectra to a compact, chemically relevant, and easily interpreted representation. It is clear that manual interrogation of individual spectra is impractical even for very small spectral images (< 5000 spectra). More typical spectral images can contain tens of thousands to millions of spectra, which given the constraint of acquisition time may contain between 5 and 300 counts per 1000-channel spectrum. Conventional manual approaches to spectral image analysis such as summing spectra from regions or constructing x-ray maps are prone to bias and possibly error. One way to comprehensively analyze spectral image data, which has been automated, is to utilize an unsupervised self-modeling multivariate statistical analysis method such as multivariate curve resolution (MCR). This approach has proven capable of solving a wide range of analytical problems based upon the counting of x-rays (SEM/STEM-EDX, XRF, PIXE), electrons (EELS, XPS) and ions (TOF-SIMS). As an example of the MCR approach, a STEM x-ray spectral image from a ZrB2-SiC composite was acquired and analyzed. The data were generated in a FEI Tecnai F30-ST TEM/STEM operated at 300kV, equipped with an EDAX SUTW x-ray detector. The spectral image was acquired with the TIA software on the STEM at 128 by 128 pixels (12nm/pixel) for 100msec dwell per pixel (total acquisition time was 30 minutes) with a probe of approximately the same size as each pixel. Each spectrum in the image had, on average, 500 counts. The calculation took 5 seconds on a PC workstation with dual 2.4GHz PentiumIV Xeon processors and 2Gbytes

  7. 3-D Structure of Arcade Type Flares Deduced from Soft X-Ray Observations of a Homologous Flare Series

    NASA Astrophysics Data System (ADS)

    Morita, S.; Uchida, Y.; Hirose, S.

    2002-01-01

    In the solar flare problems, no ultimate model that matches observations has been established. One of the reasons for this is due to the restrictions in the observational data lacking information about the third dimension. Thus, many researchers have tried to get information about the three dimensional (3-D) coronal structures by using various techniques or ideas; like movie analysis, calculations using vector or line-of-sight components of photospheric magnetic data, and etc.. In the near future, a mission named STEREO which will obtain information about the 3-D coronal structures from two satellites, is planned. In the present paper, we noted the homology in a homologous flare series of February 1992. We derived a 3-D coronal structures by making use of the images obtained from the three different sight-lines at some common phases in them with Yohkoh SXT. The result of this analysis has made it clear that the so-called ``cusped arcade'' at the maximum phase in the well-known 1992 February 21 flare is, contrary to the general views, an ``elongated arch'' seen with a shallow oblique angle. It is not the ``flare arcade'' seen axis-on as widely conceived. This elongated arch coincides roughly with a diagonal of the main body of the "soft X-ray arcade" that came up later. The magnetic structure causing the flare as a whole turned out in this analysis to be a structure with quadruple magnetic sources. The relative locations of these four characteristic sources stayed almost the same throughout the period of this homologous flare series, determining the fundamental shape of this homologous series. We also examined the corresponding features for other similar events, also using information from other satellites, and will report the results.

  8. On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study

    NASA Astrophysics Data System (ADS)

    Williams, Jason J.; Yazzie, Kyle E.; Connor Phillips, N.; Chawla, Nikhilesh; Xiao, Xinghui; de Carlo, Francesco; Iyyer, Nagaraja; Kittur, Maddan

    2011-12-01

    In situ three-dimensional (3-D) X-ray synchrotron tomography of fatigue crack growth was conducted in a 7075-T6 aluminum alloy. Local measurements of da/ dN were possible with the 3-D data sets obtained from tomography. A comparison with fatigue striation spacings obtained from scanning electron microscopy of the fracture surfaces yielded excellent correlation with da/ dN obtained from tomography. The X-ray tomography technique can be used to obtain a highly accurate and representative measurements of crack growth locally in the microstructure of the material.

  9. A Compact X-Ray System for Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  10. A Compact X-Ray System for Macromolecular Crystallography. 5

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  11. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  12. MRI-3D ultrasound-X-ray image fusion with electromagnetic tracking for transendocardial therapeutic injections: in-vitro validation and in-vivo feasibility.

    PubMed

    Hatt, Charles R; Jain, Ameet K; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N

    2013-03-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart.

  13. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  14. 49 CFR 1546.209 - Use of X-ray systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Use of X-ray systems. 1546.209 Section 1546.209... Use of X-ray systems. (a) TSA authorization required. No foreign air carrier may use any X-ray system... security program. TSA authorizes foreign air carriers to use X-ray systems for inspecting...

  15. 49 CFR 1546.209 - Use of X-ray systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Use of X-ray systems. 1546.209 Section 1546.209... Use of X-ray systems. (a) TSA authorization required. No foreign air carrier may use any X-ray system... security program. TSA authorizes foreign air carriers to use X-ray systems for inspecting...

  16. 49 CFR 1546.209 - Use of X-ray systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Use of X-ray systems. 1546.209 Section 1546.209... Use of X-ray systems. (a) TSA authorization required. No foreign air carrier may use any X-ray system... security program. TSA authorizes foreign air carriers to use X-ray systems for inspecting...

  17. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  18. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  19. 49 CFR 1546.209 - Use of X-ray systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Use of X-ray systems. 1546.209 Section 1546.209... Use of X-ray systems. (a) TSA authorization required. No foreign air carrier may use any X-ray system... security program. TSA authorizes foreign air carriers to use X-ray systems for inspecting...

  20. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  1. 49 CFR 1546.209 - Use of X-ray systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Use of X-ray systems. 1546.209 Section 1546.209... Use of X-ray systems. (a) TSA authorization required. No foreign air carrier may use any X-ray system... security program. TSA authorizes foreign air carriers to use X-ray systems for inspecting...

  2. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  3. Application of monochromatic keV X-ray source to X-ray drug delivery system

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Taguchi, Hiroki; Mori, Azusa; Yusa, Noritaka; Kato, Takamitsu; Okayasu, Ryuichi

    2009-09-01

    X-ray Drug Delivery System (DDS) enhances accumulation of anti-cancer drug or contrast agent by surrounding it with polymer and Enhanced Penetration and Retention (EPR) effect. DDS uses advanced nano-scaled polymers that contain and deliver drug or contrast agent to cancers without side effects. Several X-ray DDSs pose high-Z atoms such as gold to absorb X-rays effectively and used as contrast agent for inspection. Moreover, they have radiation enhancement effect by emission of Auger electron and successive characteristic X-rays. The enhancement factor of gold is more than five. This could be used even for therapy. This new modality must be very important for inspection and therapy of deep cancers. We are making use of our X-band Compton scattering monochromatic keV X-ray source for the inspection. Numerical simulation on monochromatic X-ray CT for possible concentration of gold-colloid DDS considering the X-ray property from the source was done. Enough visibility was confirmed. Furthermore, in vitro experiment analyzed its toxic effect to cells by the Alkaline comet assay and fluorescent immunostaining method for single and double strand breaks of DNA. Availability of clear imaging for the inspection has been confirmed by the numerical simulation and the in-vitro evaluation of the therapy effect is under way.

  4. Pinhole X-ray/coronagraph optical systems concept definition study

    NASA Technical Reports Server (NTRS)

    Zehnpfenning, T. F.; Rappaport, S.; Wattson, R. B.

    1980-01-01

    The Pinhole X-ray/Coronagraph Concept utilizes the long baselines possible in Earth orbit with the space transportation system (shuttle) to produce observations of solar X-ray emission features at extremely high spatial resolution (up to 0.1 arc second) and high energy (up to 100 keV), and also white light and UV observations of the inner and outer corona at high spatial and/or spectral resolution. An examination of various aspects of a preliminary version of the X-ray Pinhole/Coronagraph Concept is presented. For this preliminary version, the instrument package will be carried in the shuttle bay on a mounting platform, and will be connected to the occulter with a deployable boom such as an Astromast. Generally, the spatial resolution, stray light levels, and minimum limb observing angles improve as the boom length increases. However, the associated engineering problems also become more serious with greater boom lengths.

  5. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  6. 3D Atomic Arrangement at Functional Interfaces Inside Nanoparticles by Resonant High-Energy X-ray Diffraction.

    PubMed

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit; Chen, Tsan-Yao

    2015-10-21

    With current science and technology moving rapidly into smaller scales, nanometer-sized materials, often referred to as NPs, are produced in increasing numbers and explored for numerous useful applications. Evidence is mounting, however, that useful properties of NPs can be improved further and even new NP functionality achieved by not only controlling the NP size and shape but also interfacing chemically or structurally distinct entities into single, so-called "composite" NPs. A typical example is core-shell NPs wherein the synergy of distinct atoms at the core\\shell interface endows the NPs with otherwise unachievable functionality. However, though advantageous, the concept of functional interfaces inside NPs is still pursued largely by trial-and-error. That is because it is difficut to assess the interfaces precisely at the atomic level using traditional experimental techniques and, hence, difficult to take control of. Using the core\\shell interface in less than 10 nm in size Ru core-Pt shells NPs as an example, we demonstrate that precise knowledge of the 3D atomic arrangement at functional interfaces inside NPs can be obtained by resonant high-energy X-ray diffraction (XRD) coupled to element-specific atomic pair distribution function (PDF) analysis. On the basis of the unique structure knowledge obtained, we scrutinize the still-debatable influence of core\\shell interface on the catalytic functionality of Ru core-Pt shell NPs, thus evidencing the usefulness of this nontraditional technique for practical applications.

  7. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    PubMed Central

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-01-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries. PMID:27748437

  8. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    SciTech Connect

    Raguvarun, K. Balasubramaniam, Krishnan Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  9. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    NASA Astrophysics Data System (ADS)

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-10-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries.

  10. Observations of 3-D transverse dispersion and dilution in natural consolidated rock by X-ray tomography

    NASA Astrophysics Data System (ADS)

    Boon, Maartje; Bijeljic, Branko; Niu, Ben; Krevor, Sam

    2016-10-01

    Recent studies have demonstrated the importance of transverse dispersion for dilution and mixing of solutes but most observations have remained limited to two-dimensional sand-box models. We present a new core-flood test to characterize solute transport in 3-D natural-rock media. A device consisting of three annular regions was used for fluid injection into a cylindrical rock core. Pure water was injected into the center and outer region and a NaI solution into the middle region. Steady state transverse dispersion of NaI was visualized with an X-ray medical CT-scanner for a range of Peclét numbers. Three methods were used to calculate Dt: (1) fitting an analytical solution, (2) analyzing the second-central moment, and (3) analyzing the dilution index and reactor ratio. Transverse dispersion decreased with distance due to flow focusing. Furthermore, Dt in the power-law regime showed sub-linear behavior. Overall, the reactor ratios were high confirming the homogeneity of Berea sandstone.

  11. X-ray tomography system to investigate granular materials during mechanical loading

    NASA Astrophysics Data System (ADS)

    Athanassiadis, Athanasios G.; La Rivière, Patrick J.; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M.

    2014-08-01

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)3 field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  12. X-ray tomography system to investigate granular materials during mechanical loading

    SciTech Connect

    Athanassiadis, Athanasios G.; La Rivière, Patrick J.; Sidky, Emil; Pan, Xiaochuan; Pelizzari, Charles; Jaeger, Heinrich M.

    2014-08-15

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm){sup 3} field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  13. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  14. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  15. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  16. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  17. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  18. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  19. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  20. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  1. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  2. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  3. High-resolution X-ray CT for 3D petrography of ferruginous sandstone for an investigation of building stone decay.

    PubMed

    Cnudde, Veerle; Dewanckele, Jan; Boone, Matthieu; de Kock, Tim; Boone, Marijn; Brabant, Loes; Dusar, Michiel; de Ceukelaire, Marleen; de Clercq, Hilde; Hayen, Roald; Jacobs, Patric

    2011-11-01

    Diestian ferruginous sandstone has been used as the dominant building stone for monuments in the Hageland, a natural landscape in east-central Belgium. Like all rocks, this stone type is sensitive to weathering. Case hardening was observed in combination with blackening of the exterior parts of the dressed stones. To determine the 3D petrography and to identify the structural differences between the exterior and interior parts, X-ray computed tomography was used in combination with more traditional research techniques like optical microscopy and scanning electron microscopy. The 3D characterization of the ferruginous sandstone was performed with a high-resolution X-ray CT scanner (www.ugct.ugent.be) in combination with the flexible 3D analysis software Morpho+, which provides the necessary petrophysical parameters of the scanned samples in 3D. Besides providing the required 3D parameters like porosity, pore-size distribution, grain size, grain orientation, and surface analysis, the results of the 3D analysis can also be visualized, which enables to understand and interpret the analysis results in a straightforward way. The complementarities between high-quality X-ray CT images and flexible 3D software and its relation with the more traditional microscopical research techniques are opening up new gateways in the study of weathering processes of natural building stones.

  4. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  5. PROS: Multi-mission X-ray analysis software system

    NASA Astrophysics Data System (ADS)

    Conroy, M. A.; Deponte, J.; Moran, J. F.; Orszak, J. S.; Roberts, W. P.; Schmidt, D.

    2013-06-01

    PROS is a multi-mission x-ray analysis software system designed to run under IRAF. The PROS software includes spatial, spectral, timing, data I/O and conversion routines, plotting applications, and general algorithms for performing arithmetic operations with imaging data.

  6. Precise 3D dimensional metrology using high-resolution x-ray computed tomography (μCT)

    NASA Astrophysics Data System (ADS)

    Brunke, Oliver; Santillan, Javier; Suppes, Alexander

    2010-09-01

    Over the past decade computed tomography (CT) with conventional x-ray sources has evolved from an imaging method in medicine to a well established technology for industrial applications in fields such as material science, light metals and plastics processing, microelectronics and geology. By using modern microfocus and nanofocus X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is a technology increasingly used for metrology applications in the automotive industry. CT offers big advantages compared with conventional tactile or optical coordinate measuring machines (CMMs). This is of greater importance if complex parts with hidden or difficult accessible surfaces have to be measured. In these cases, CT offers the advantage of a high density of measurement points and a non-destructive and fast capturing of the sample's complete geometry. When using this growing technology the question arises how precise a μCT based CMM can measure as compared to conventional and established methods for coordinate measurements. For characterizing the metrological capabilities of a tactile or optical CMM, internationally standardized parameters like length measurement error and probing error are defined and used. To increase the acceptance of CT as a metrological method, our work seeks to clarify the definition and usage of parameters used in the field of metrology as these apply to CT. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. For the potential user of CT as 3D metrology tool it is important to show the measurement accuracy and repeatability on realistic samples. Following a discussion of CT metrology techniques, two samples are discussed. The first compares a measured CT Data set to CAD data using CMM data as a standard for comparison of results. The second data second realistic data set will compare the results of applying both the CMM method of

  7. Design and implementation of an x-ray reflectometer system for testing x-ray optics coatings

    NASA Astrophysics Data System (ADS)

    Gurgew, Danielle N.; Broadway, David; Gubarev, Mikhail; Ramsey, Brian

    2015-09-01

    We have developed an X-ray reflectometer (XRR) system for the characterization of various soft and hard X-ray optic coatings being developed at Marshall Space Flight Center. The XRR system generates X-ray radiation with a highoutput Rigaku rotating anode source (RAS), operational at a voltage range of 5 - 35 kV, a current range of 10-150 mA. A series of precision slits, adjustable down to approximately 25 micrometers, positioned in the beam path limit the extent of the x-ray beam and control the resolution of the XRR measurement while a goniometer consisting of two precision rotary stages controls the angular position of the coating sample and X-ray detector with respect to the beam. With the high count rate capability of the RAS, a very-high-speed silicon drift detector, the Amptek Fast Silicon Drift Detector (SDD), is implemented to achieve good count rate efficiency and improve reflectivity measurements of coatings at larger graze angles. The coating sample can be adjusted using a series of linear and tipping stages to perfectly align the center of the sample with the center of the incident X-ray beam. These stages in conjunction with the goniometer components are integrated through original control software resulting in full automation of the XRR system. We will show some initial XRR measurements of both single and multilayer coatings made with this system. These results and future measurements are used to characterize potential X-ray optic coatings culminating in the production of highly reflective coatings operational at a large range of X-ray energies.

  8. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    NASA Technical Reports Server (NTRS)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  9. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography.

    PubMed

    Zielke, L; Barchasz, C; Waluś, S; Alloin, F; Leprêtre, J-C; Spettl, A; Schmidt, V; Hilger, A; Manke, I; Banhart, J; Zengerle, R; Thiele, S

    2015-01-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280

  10. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    PubMed Central

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-01-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280

  11. A laboratory system for element specific hyperspectral X-ray imaging.

    PubMed

    Jacques, Simon D M; Egan, Christopher K; Wilson, Matthew D; Veale, Matthew C; Seller, Paul; Cernik, Robert J

    2013-02-21

    X-ray tomography is a ubiquitous tool used, for example, in medical diagnosis, explosives detection or to check structural integrity of complex engineered components. Conventional tomographic images are formed by measuring many transmitted X-rays and later mathematically reconstructing the object, however the structural and chemical information carried by scattered X-rays of different wavelengths is not utilised in any way. We show how a very simple; laboratory-based; high energy X-ray system can capture these scattered X-rays to deliver 3D images with structural or chemical information in each voxel. This type of imaging can be used to separate and identify chemical species in bulk objects with no special sample preparation. We demonstrate the capability of hyperspectral imaging by examining an electronic device where we can clearly distinguish the atomic composition of the circuit board components in both fluorescence and transmission geometries. We are not only able to obtain attenuation contrast but also to image chemical variations in the object, potentially opening up a very wide range of applications from security to medical diagnostics. PMID:23145429

  12. Resonant Inelastic X-ray Scattering in Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Kim, Young-June

    2006-03-01

    Extremely bright photons generated at the new generation of synchrotron light sources have made a huge impact on various scientific disciplines ranging from biology to materials science. One of the exciting new developments is the use of x-rays in the field of solid-state spectroscopy. Inelastic x-ray scattering, analogous to the well-known inelastic neutron scattering, is a powerful tool for studying momentum-dependent electronic excitations and phonons. In particular, resonant inelastic x-ray scattering in the hard x-ray regime has been widely utilized to study the momentum dependence of various electronic excitations in strongly correlated electron systems. For example, by tuning the incident photon energy to the Cu K-edge, one can gain a large intensity enhancement as well as element specific knowledge of the electronic excitations in various copper oxide compounds. Most of the work to date has been focused on the charge-transfer excitation between the bonding and antibonding molecular orbitals, the excitation across the Mott gap, and crystal field excitations between the d-orbitals. Recent improvements in instrumentation have allowed us to observe a new mode in the mid-infrared frequency region. We will discuss the momentum dependence of these excitations in prototypical cuprate superconductors, La2-xSrxCuO4, and also examine the evolution of such excitations as charge carriers are doped into the system.

  13. 3D Morphochemistry of Basaltic/Rhyolitic Mixed Eruptions revealed via Microanalysis and X-ray microtomography.

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; Arzilli, F.; Pritchard, C. J.; Perugini, D.; Mancini, L.; Larson, P. B.; Dingwell, D. B.

    2014-12-01

    Magma Mixing, a widespread petrogenetic process often operates in concert with fractional crystallisation and assimilation, to produce chemical and temperature gradients in magma. The injection of mafic magmas into felsic magma chambers is widely regarded as a key driver in the sudden triggering of what often become highly explosive volcanic eruptions. Understanding the mechanistic chain leading to such hazardous events is the goal of the present study of the morphochemistry of mingled lavas. This study involves the combination of X-ray microtomographic and electron microprobe analyses, to unravel the complex textures and attendant chemical heterogeneities of the mixed basaltic and rhyolitic eruption of Grizzly Lake in the Norris-Mammoth corridor of the Yellowstone Plateau Volcanic Field (YPVF). We observe that both magmatic viscous interfingering and disequilibrium crystallization/dissolution processes provide vital information on the timescale of interaction between the two magmatic components prior to the eruption. Mixed rocks in the YPVF appear to have a complicated history and evolution. Therefore a very considerable amount of chemical analysis was employed here. In addition, X-ray microtomography images show variegated textural features, such as vesicle and crystal distributions, filament morphology, the distribution of enclaves, and further textural features otherwise obscured in a simple 2D analyses. Here most effort was applied to the determination of the characterisation of mixing end members. Nevertheless, analysis of the hybrid portion has led to the unexpected discovery that mixing in the Grizzly Lake system was also characterised by the disintegration/dissolution of mafic crystals into the rhyolitic magma. The results of this study expose the complexity of mixing in natural magmatic systems, identifying several textural reactive factors that must be understood more deeply for our understanding of this potential eruptive trigger to proceed.

  14. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  15. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    PubMed Central

    Glaser, Adam K.; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2015-01-01

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water. PMID:26133613

  16. 3D tissue-engineered construct analysis via conventional high-resolution microcomputed tomography without X-ray contrast.

    PubMed

    Voronov, Roman S; VanGordon, Samuel B; Shambaugh, Robert L; Papavassiliou, Dimitrios V; Sikavitsas, Vassilios I

    2013-05-01

    As the field of tissue engineering develops, researchers are faced with a large number of degrees of freedom regarding the choice of material, architecture, seeding, and culturing. To evaluate the effectiveness of a tissue-engineered strategy, histology is typically done by physically slicing and staining a construct (crude, time-consuming, and unreliable). However, due to recent advances in high-resolution biomedical imaging, microcomputed tomography (μCT) has arisen as a quick and effective way to evaluate samples, while preserving their structure in the original state. However, a major barrier for using μCT to do histology has been its inability to differentiate between materials with similar X-ray attenuation. Various contrasting strategies (hardware and chemical staining agents) have been proposed to address this problem, but at a cost of additional complexity and limited access. Instead, here we suggest a strategy for how virtual 3D histology in silico can be conducted using conventional μCT, and we provide an illustrative example from bone tissue engineering. The key to our methodology is an implementation of scaffold surface architecture that is ordered in relation to cells and tissue, in concert with straightforward image-processing techniques, to minimize the reliance on contrasting for material segmentation. In the case study reported, μCT was used to image and segment porous poly(lactic acid) nonwoven fiber mesh scaffolds that were seeded dynamically with mesenchymal stem cells and cultured to produce soft tissue and mineralized tissue in a flow perfusion bioreactor using an osteogenic medium. The methodology presented herein paves a new way for tissue engineers to identify and distinguish components of cell/tissue/scaffold constructs to easily and effectively evaluate the tissue-engineering strategies that generate them.

  17. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    SciTech Connect

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-13

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 512{sup 3} to 8192{sup 3} voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and H{sup t} (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume 'Shepp and Logan' in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  18. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

  19. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data. PMID:24357389

  20. Analysis of Ablative Performance of C/C Composite Throat Containing Defects Based on X-ray 3D Reconstruction in a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Hui, Wei-Hua; Bao, Fu-Ting; Wei, Xiang-Geng; Liu, Yang

    2015-12-01

    In this paper, a new measuring method of ablation rate was proposed based on X-ray three-dimensional (3D) reconstruction. The ablation of 4-direction carbon/carbon composite nozzles was investigated in the combustion environment of a solid rocket motor, and the macroscopic ablation and linear recession rate were studied through the X-ray 3D reconstruction method. The results showed that the maximum relative error of the X-ray 3D reconstruction was 0.0576%, which met the minimum accuracy of the ablation analysis; along the nozzle axial direction, from convergence segment, throat to expansion segment, the ablation gradually weakened; in terms of defect ablation, the middle ablation was weak, while the ablation in both sides was more serious. In a word, the proposed reconstruction method based on X-ray about C/C nozzle ablation can construct a clear model of ablative nozzle which characterizes the details about micro-cracks, deposition, pores and surface to analyze ablation, so that this method can create the ablation curve in any surface clearly.

  1. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.

    2015-12-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  2. 3D structure of liquid sprays: X-ray μ -radiography and tomography by polycapillary based technique

    NASA Astrophysics Data System (ADS)

    Marchitto, L.; Allocca, L.; Hampai, D.; Alfuso, S.; Dabagov, S. B.; Liedl, A.; Polese, C.

    2015-07-01

    This work reports the results of X-ray μ -tomographic investigation on the inner structure of high pressure fuel sprays. X-ray imaging is widely used in industry where non-destructive and high accuracy measurements of the samples morphology are required. A high flux beam can overcome the problems related to the low absorption of hydrocarbon chains as fossil fuels, therefore synchrotron X-ray sources are generally used for fuel sprays investigation. A desktop facility has successfully been used to characterize high pressure gasoline sprays for automotive applications. A X-ray tube coupled with polycapillary optics has been used providing a high flux beam with low divergence. In this paper the last improvements concerning quantitative measurements carried out on fuel sprays are reported.

  3. 3D multiscale segmentation and morphological analysis of X-ray microtomography from cold-sprayed coatings.

    PubMed

    Gillibert, L; Peyrega, C; Jeulin, D; Guipont, V; Jeandin, M

    2012-11-01

    X-ray microtomography from cold-sprayed coatings brings a new insight on this deposition process. A noise-tolerant segmentation algorithm is introduced, based on the combination of two segmentations: a deterministic multiscale segmentation and a stochastic segmentation. The stochastic approach uses random Poisson lines as markers. Results on a X-ray microtomographic image of aluminium particles are presented and validated. PMID:22946787

  4. X-ray cone beam CT system calibration

    NASA Astrophysics Data System (ADS)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  5. Lens-coupled x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Fan, Helen Xiang

    Digital radiography systems are important diagnostic tools for modern medicine. The images are produced when x-ray sensitive materials are coupled directly onto the sensing element of the detector panels. As a result, the size of the detector panels is the same size as the x-ray image. An alternative to the modern DR system is to image the x-ray phosphor screen with a lens onto a digital camera. Potential advantages of this approach include rapid readout, flexible magnification and field of view depending on applications. We have evaluated lens-coupled DR systems for the task of signal detection by analyzing the covariance matrix of the images for three cases, using a perfect detector and lens, when images are affected by blurring due to the lens and screen, and for a signal embedded in a complex random background. We compared the performance of lens-coupled DR systems using three types of digital cameras. These include a scientific CCD, a scientific CMOS, and a prosumer DSLR camera. We found that both the prosumer DSLR and the scientific CMOS have lower noise than the scientific CCD camera by looking at their noise power spectrum. We have built two portable low-cost DR systems, which were used in the field in Nepal and Utah. We have also constructed a lens-coupled CT system, which included a calibration routine and an iterative reconstruction algorithm written in CUDA.

  6. Characterization of a prototype tabletop x-ray CT breast imaging system

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Glick, Stephen J.; Gong, Xing; Didier, Clay; Mah'd, Mufeed

    2007-03-01

    Planar X-ray mammography is the standard medical imaging modality for the early detection of breast cancer. Based on advancements in digital flat-panel detector technology, dedicated x-ray computed tomography (CT) mammography is a modality under investigation that offers the potential for improved breast tumor imaging. We have implemented a prototype half cone-beam CT breast imaging system that utilizes an indirect flat-panel detector. This prototype can be used to explore and evaluate the effect of varying acquisition and reconstruction parameters on image quality. This report describes our system and characterizes the performance of the system through the analysis of Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS). All CT reconstructions were made using Feldkamp's filtered backprojection algorithm. The 3D MTF was determined by the analysis of the plane spread function (PlSF) derived from the surface spread function (SSF) of reconstructed 6.3mm spheres. 3D NPS characterization was performed through the analysis of a 3D volume extracted from zero-mean CT noise of air reconstructions. The effect of varying locations on MTF and the effect of different Butterworth filter cutoff frequencies on NPS are reported. Finally, we present CT images of mastectomy excised breast tissue. Breast specimen images were acquired on our CTMS using an x-ray technique similar to the one used during performance characterization. Specimen images demonstrate the inherent CT capability to reduce the masking effect of anatomical noise. Both the quantitative system characterization and the breast specimen images continue to reinforce the hope that dedicated flat-panel detector, x-ray cone-beam CT will eventually provide enhanced breast cancer detection capability.

  7. Sensitivity in X-ray grating interferometry on compact systems

    SciTech Connect

    Thuering, Thomas; Modregger, Peter; Haemmerle, Stefan; Weiss, Stephan; Nueesch, Joachim; Stampanoni, Marco

    2012-07-31

    The optimization of compact X-ray grating interferometry systems is crucial for the progress of this technique in industrial devices. Here, an analytical formulation for the sensitivity of the phase contrast image acquisition is derived using previous results from noise analyses. Furthermore, experimental measurements of the sensitivity for different configurations are compared, providing further insight into the dependence on polychromatic radiation. Finally, strategies for the geometrical optimization are given.

  8. A flash x-ray system for diagnosing liner implosions

    SciTech Connect

    Anderson, B. G.; Oro, D. M.; Olson, R. T.; Studebaker, J. K.; Platts, D.

    2003-01-01

    This paper describes a low energy flash X-ray system that is ideal for radiographing a wide variety of experimental phenomenon on both capacitor-bank pulsed power facilities and explosively driven magnetic-flux compression experiments. The versatility of this system has allowed us to obtain both single X-radiographs of imploding liners and multiple, temporally resolved radiographic sequences of target evolution. The dynamic liner radiographs are acquired with radially oriented X-ray heads that are instrumental for observing and diagnosing liner shape and symmetry, Rayleigh-Taylor instability growth, and liner-glide plane interaction (see Fig. 1). Multiframe radiographs acquired along the axis of a cylindrical target are used to provide physical data on phenomena such as shock-driven target hydrodynamics, Richtmyer-Meshkov instability growth, spall, fiction, and equations of state. The flexibility of this X-ray system has also allowed it to be successfully fielded both at various gas and powder gun facilities and explosively driven shock physics experiments.

  9. Automatic tool alignment in a backscatter x-ray scanning system

    SciTech Connect

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  10. Automatic tool alignment in a backscatter X-ray scanning system

    SciTech Connect

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  11. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  12. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    SciTech Connect

    Zheng Guoyan; Schumann, Steffen

    2009-04-15

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  13. Combined SPECT and x-ray CT medical imaging system

    NASA Astrophysics Data System (ADS)

    Kalki, Kathrin; Brown, J. Keenan; Blankespoor, Stephen C.; Heanue, Joseph A.; Wu, Xiang; Cann, Christopher E.; Hasegawa, Bruce H.; Chin, Michael; Stillson, Carol A.; Dae, Michael W.; Carver, James M.

    1995-05-01

    We have designed and built a system for correlated x ray CT transmission and SPECT emission imaging with an array of photon counting detectors. The scanner operates in a third generation fan beam geometry by translating a 23 element high purity germanium detector across the fan to image phantoms and small animals. The x ray CT image is used to obtain an object specific, i.e., anatomically accurate, attenuation map for the reconstruction of the SPECT image. SPECT images are reconstructed with an MLEM code and the pixel values are scaled in physical units by determining a scaling factor from a uniform water phantom with homogeneous and known attenuation. Single myocardial slices of several pigs were imaged with a 99mTc sestamibi imaging agent which is taken up in proportion to regional myocardial blood flow. The results show that 99mTc uptake and regional myocardial blood flow, determined in vivo from reconstructed SPECT images, correlate with the measured in vitro data. Furthermore, the correlation is markedly improved by reconstructing the images with an object specific attenuation map obtained from the coregistered x ray CT image. We were also able to restore the 99mTc sestamibi uptake from the reconstructed images to an accuracy between 40% and 90% of the true in vitro value, depending on the selection of maximum or mean pixel values in the regions of interest.

  14. Thin soil layer of green roof systems studied by X-Ray CT

    NASA Astrophysics Data System (ADS)

    Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal

    2016-04-01

    The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  15. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  16. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    NASA Astrophysics Data System (ADS)

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  17. Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

    SciTech Connect

    Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Van Lysel, Michael S.

    2010-12-15

    Purpose: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system. Methods: The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm{sup 2} mean detected x-ray fluence at isocenter). Results: During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0{+-}0.8 mm (mean {+-}one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error ({+-}0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds

  18. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; Liu, Zhiguo; Sun, Tianxi; Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen; Ma, Yongzhong; Ding, Xunliang

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the "virtual" X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  19. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE PAGES

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  20. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  1. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  2. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Non-image-intensified fluoroscopic x-ray system... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... of x-radiation into a visible image. This generic type of device may include signal analysis...

  3. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  4. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-image-intensified fluoroscopic x-ray system... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... of x-radiation into a visible image. This generic type of device may include signal analysis...

  5. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  6. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Non-image-intensified fluoroscopic x-ray system... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... of x-radiation into a visible image. This generic type of device may include signal analysis...

  7. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Image-intensified fluoroscopic x-ray system. 892... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device intended to visualize anatomical structures by converting a pattern of x-radiation into a visible...

  8. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image-intensified fluoroscopic x-ray system. 892... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device intended to visualize anatomical structures by converting a pattern of x-radiation into a visible...

  9. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  10. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Non-image-intensified fluoroscopic x-ray system... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... of x-radiation into a visible image. This generic type of device may include signal analysis...

  11. 49 CFR 1544.211 - Use of X-ray systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Use of X-ray systems. 1544.211 Section 1544.211... COMMERCIAL OPERATORS Operations § 1544.211 Use of X-ray systems. (a) TSA authorization required. No aircraft operator may use any X-ray system within the United States or under the aircraft operator's...

  12. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  13. 49 CFR 1544.211 - Use of X-ray systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Use of X-ray systems. 1544.211 Section 1544.211... COMMERCIAL OPERATORS Operations § 1544.211 Use of X-ray systems. (a) TSA authorization required. No aircraft operator may use any X-ray system within the United States or under the aircraft operator's...

  14. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  15. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  16. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  17. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  18. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  19. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  20. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  1. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  2. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  3. 49 CFR 1544.211 - Use of X-ray systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Use of X-ray systems. 1544.211 Section 1544.211... COMMERCIAL OPERATORS Operations § 1544.211 Use of X-ray systems. (a) TSA authorization required. No aircraft operator may use any X-ray system within the United States or under the aircraft operator's...

  4. 49 CFR 1544.211 - Use of X-ray systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Use of X-ray systems. 1544.211 Section 1544.211... COMMERCIAL OPERATORS Operations § 1544.211 Use of X-ray systems. (a) TSA authorization required. No aircraft operator may use any X-ray system within the United States or under the aircraft operator's...

  5. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  6. 49 CFR 1544.211 - Use of X-ray systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Use of X-ray systems. 1544.211 Section 1544.211... COMMERCIAL OPERATORS Operations § 1544.211 Use of X-ray systems. (a) TSA authorization required. No aircraft operator may use any X-ray system within the United States or under the aircraft operator's...

  7. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Image-intensified fluoroscopic x-ray system. 892... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device intended to visualize anatomical structures by converting a pattern of x-radiation into a visible...

  8. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Image-intensified fluoroscopic x-ray system. 892... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device intended to visualize anatomical structures by converting a pattern of x-radiation into a visible...

  9. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Non-image-intensified fluoroscopic x-ray system... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... of x-radiation into a visible image. This generic type of device may include signal analysis...

  10. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Image-intensified fluoroscopic x-ray system. 892... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device intended to visualize anatomical structures by converting a pattern of x-radiation into a visible...

  11. 3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Karen Chen-Wiegart, Yu-chen; Cronin, J. Scott; Yuan, Qingxi; Yakal-Kremski, Kyle J.; Barnett, Scott A.; Wang, Jun

    2012-11-01

    An accurate 3D morphological analysis is critically needed to study the process-structure-property relationship in many application fields such as battery electrodes, fuel cells and porous materials for sensing and actuating. Here we present the application of a newly developed full field X-ray nano-scale transmission microscopy (TXM) imaging for a non-destructive, comprehensive 3D morphology analysis of a porous Ni-YSZ solid oxide fuel cell anode. A unique combination of improved 3D resolution and large analyzed volume (˜3600 μm3) yields structural data with excellent statistical accuracy. 3D morphological parameters quantified include phase volume fractions, surface and interfacial area densities, phase size distribution, directional connectivity, tortuosity, and electrochemically active triple phase boundary density. A prediction of electrochemical anode polarization resistance based on this microstructural data yielded good agreement with a measured anode resistance via electrochemical impedance spectroscopy. The Mclachlan model is used to estimate the anode electrical conductivity.

  12. X-ray magnetic dichroism studies of magnetic multilayer systems

    NASA Astrophysics Data System (ADS)

    Antel, William Joseph, Jr.

    X-ray magnetic circular/linear dichoism (XMCD/XMLD) are powerful techniques used for element specific determination of magnetic moments. They are used with magneto-optic Kerr magnetometry (MOKE) and x-ray diffraction in the study of three different systems. The magnetic moments of Fe and Pt are determined as a function of Pt thickness in an Fe/Pt (001) multilayer. Additionally, MOKE is used to study the in plane anisotropy of the system. The ≈0.5 mB Pt induced moment is found to strongly effect the anisotropy of the system. A ferromagnetic rare-earth monopnictide, GdN, is studied as part of a Fe/GdN multilayer. XMCD is used to determine the moments of Gd and Fe in the system. It is demonstrated that it is possible to significantly enhance the Curie temperature of the GdN. Finally, the spin structure of antiferromagnetic FeMn is determined in an exchange biased FeMn/Co bilayer. It is found that four FeMn monolayers at the interface are aligned parallel to the Co in an alternating collinear spin arrangement. Beyond this the FeMn reverts to its bulk tetrahedral spin structure. Uncompensated Fe spins at the interface are the probable source of the exchange bias in this system. Lastly, a surface analysis chamber is built for the collection of angle-resolved Auger electron diffraction data.

  13. Assessment of the 3 D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging

    PubMed Central

    da Silva, Julio C; Mader, Kevin; Holler, Mirko; Haberthür, David; Diaz, Ana; Guizar-Sicairos, Manuel; Cheng, Wu-Cheng; Shu, Yuying; Raabe, Jörg; Menzel, Andreas; van Bokhoven, Jeroen A

    2015-01-01

    Porosity in catalyst particles is essential because it enables reactants to reach the active sites and it enables products to leave the catalyst. The engineering of composite-particle catalysts through the tuning of pore-size distribution and connectivity is hampered by the inability to visualize structure and porosity at critical-length scales. Herein, it is shown that the combination of phase-contrast X-ray microtomography and high-resolution ptychographic X-ray tomography allows the visualization and characterization of the interparticle pores at micro- and nanometer-length scales. Furthermore, individual components in preshaped catalyst bodies used in fluid catalytic cracking, one of the most used catalysts, could be visualized and identified. The distribution of pore sizes, as well as enclosed pores, which cannot be probed by traditional methods, such as nitrogen physisorption and isotherm analysis, were determined. PMID:26191088

  14. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  15. A density-based segmentation for 3D images, an application for X-ray micro-tomography.

    PubMed

    Tran, Thanh N; Nguyen, Thanh T; Willemsz, Tofan A; van Kessel, Gijs; Frijlink, Henderik W; van der Voort Maarschalk, Kees

    2012-05-01

    Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image.

  16. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Coroado, J.; dos Santos, J. M. F.; Lühl, L.; Wolff, T.; Kanngießer, B.; Carvalho, M. L.

    2011-05-01

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each "layer". Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  17. X-ray based stem detection in an automatic tomato weeding system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A stem detection system was developed for automatic weed control in transplanted tomato fields. A portable x-ray source projected an x-ray beam perpendicular to the crop row and parallel to the soil surface. The plant’s main stem absorbs x-ray energy, decreasing the detected signal and allowing stem...

  18. Automatic Weed Control System For Transplanted Processing Tomatoes Using X-ray Stem Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A stem detection system was developed for automatic weed control in transplanted tomato fields. A portable x-ray source projected an x-ray beam perpendicular to the crop row and parallel to the soil surface. The plant’s main stem absorbs x-ray energy, decreasing the detected signal and allowing ste...

  19. X-ray based stem detection in an automated tomato weeding system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A stem detection system was developed for automatic weed control in transplanted tomato fields. A portable x-ray source projected an x-ray beam perpendicular to the crop row and parallel to the soil surface. The plant’s main stem absorbs x-ray energy, decreasing the detected signal and allowing stem...

  20. Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: an X-ray scattering and sedimentation modelling study.

    PubMed

    Gilbert, Hannah E; Eaton, Julian T; Hannan, Jonathan P; Holers, V Michael; Perkins, Stephen J

    2005-02-25

    Complement receptor type 2 (CR2, CD21) forms a tight complex with C3d, a fragment of C3, the major complement component. Previous crystal structures of the C3d-CR2 SCR 1-2 complex and free CR2 SCR 1-2 showed that the two SCR domains of CR2 form contact with each other in a closed V-shaped structure. SCR 1 and SCR 2 are connected by an unusually long eight-residue linker peptide. Medium-resolution solution structures for CR2 SCR 1-2, C3d, and their complex were determined by X-ray scattering and analytical ultracentrifugation. CR2 SCR 1-2 is monomeric. For CR2 SCR 1-2, its radius of gyration R(G) of 2.12(+/-0.05) nm, its maximum length of 10nm and its sedimentation coefficient s20,w(o) of 1.40(+/-0.03) S do not agree with those calculated from the crystal structures, and instead suggest an open structure. Computer modelling of the CR2 SCR1-2 solution structure was based on the structural randomisation of the eight-residue linker peptide joining SCR 1 and SCR 2 to give 9950 trial models. Comparisons with the X-ray scattering curve indicated that the most favoured arrangements for the two SCR domains corresponded to an open V-shaped structure with no contacts between the SCR domains. For C3d, X-ray scattering and sedimentation velocity experiments showed that it exists as a monomer-dimer equilibrium with a dissociation constant of 40 microM. The X-ray scattering curve for monomeric C3d gave an R(G) value of 1.95 nm, and this together with its s20,w(o) value of 3.17 S gave good agreement with the monomeric C3d crystal structure. Modelling of the C3d dimer gave good agreements with its scattering and ultracentrifugation parameters. For the complex, scattering and ultracentrifugation experiments showed that there was no dimerisation, indicating that the C3d dimerisation site was located close to the CR2 SCR 1-2 binding site. The R(G) value of 2.44(+/-0.1) nm, its length of 9 nm and its s20,w(o) value of 3.45(+/-0.01) S showed that its structure was not much more

  1. Estimation of three-dimensional knee joint movement using bi-plane x-ray fluoroscopy and 3D-CT

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Fujita, Satoshi; Kohno, Takahiro; Suzuki, Masahiko; Miyagi, Jin; Moriya, Hideshige

    2005-04-01

    Acquisition of exact information of three-dimensional knee joint movement is desired in plastic surgery. Conventional X-ray fluoroscopy provides dynamic but just two-dimensional projected image. On the other hand, three-dimensional CT provides three-dimensional but just static image. In this paper, a method for acquiring three-dimensional knee joint movement using both bi-plane, dynamic X-ray fluoroscopy and static three-dimensional CT is proposed. Basic idea is use of 2D/3D registration using digitally reconstructed radiograph (DRR) or virtual projection of CT data. Original ideal is not new but the application of bi-plane fluoroscopy to natural bones of knee is reported for the first time. The technique was applied to two volunteers and successful results were obtained. Accuracy evaluation through computer simulation and phantom experiment with a knee joint of a pig were also conducted.

  2. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  3. MiniMAX: miniature, mobile, agile, x-ray system

    NASA Astrophysics Data System (ADS)

    Watson, Scott A.; Cunningham, Gwynneth; Gonzales, Samuel

    2012-06-01

    We present a unique, lightweight, compact, low-cost, x-ray imager: MiniMAX (Miniature, Mobile, Agile, X-ray). This system, which exploits the best aspects of Computed Radiography (CR) and Digital Radiography (DR) technology, weighs less than 6lbs, fits into a 6" diameter x 16" long carbon-fiber tube, and is constructed almost entirely from offthe- shelf components. MiniMAX is suitable for use in weld inspection, archaeology, homeland security, and veterinary medicine. While quantum limited for MeV radiography, the quantum-efficiency is too low for routine medical use. Formats include: 4"x6", 8"x12", or 16"x24" and can be readily displayed on the camera back, using a pocket projector, or on a tablet computer. In contrast to a conventional, flying-spot scanner, MiniMAX records a photostimulated image from the entire phosphor at once using a bright, red LED flash filtered through an extremely efficient (OD>9) dichroic filter.

  4. A Comparative View of X-rays from the Solar System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron; Gladstone, Randy; Cravens, Tom; Waite, Hunter; Branduardi-Raymont, Graziella; Ostgaard, Nikolai; Dennerl, Konrad; Lisse, Carey; Kharchenko, Vasili

    2005-01-01

    With the advent of sophisticated X-ray observatories, viz., Chandra and XMM-Newton, the field of planetary X-ray astronomy is advancing at a faster pace. Several new solar system objects are now know to shine in X-rays at energies generally below 2 keV. Jupiter, Saturn, and Earth, all three magnetized planets, have been observed by Chandra and XMM-Newton. At Jupiter, both auroral and non-auroral disk X-ray emissions have been observed. The first soft X-ray observation of Earth's aurora by Chandra shows that it is highly variable. X-rays have been detected from Saturn's disk, but no convincing evidence of X-ray aurora has been seen. Several comets have been observed in X-rays by Chandra and XMM-Newton. Cometary X-rays are produced due to change exchange of solar wind ions with cold cometary neutrals. Soft X-rays have also been observed from Venus, Mars, Moon, Io, Europa, Io plasma torus, and heliosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from sunlit disk of Mars, Venus, and Moon are produced due to scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, heliosphere, darkside of Moon, and Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. The X- ray aurora on Earth is generated by electron bremsstrahlung and on Jupiter by precipitation of highly-ionized energetic heavy ions. In this paper we will present a comparative overview of X-ray emission from different solar system objects and make an attempt to synthesize a coherent picture.

  5. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald; He, Fei; Lau, Yue-Ying

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  6. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  7. The Best of Both Worlds: 3D X-ray Microscopy with Ultra-high Resolution and a Large Field of View

    NASA Astrophysics Data System (ADS)

    Li, W.; Gelb, J.; Yang, Y.; Guan, Y.; Wu, W.; Chen, J.; Tian, Y.

    2011-09-01

    3D visualizations of complex structures within various samples have been achieved with high spatial resolution by X-ray computed nanotomography (nano-CT). While high spatial resolution generally comes at the expense of field of view (FOV). Here we proposed an approach that stitched several 3D volumes together into a single large volume to significantly increase the size of the FOV while preserving resolution. Combining this with nano-CT, 18-μm FOV with sub-60-nm resolution has been achieved for non-destructive 3D visualization of clustered yeasts that were too large for a single scan. It shows high promise for imaging other large samples in the future.

  8. Use of 3D X-ray Computed Microtomography to Observe in situ Sediment Structure and Colloidal Zirconia Deposits at the Pore Scale

    NASA Astrophysics Data System (ADS)

    Chen, C.; Packman, A. I.; Keane, D. T.; Gaillard, J.

    2006-12-01

    We are using X-ray Micro-Tomography (XMT) to study in situ sediment structure using the facilities of the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT), Advanced Photon Source (APS), Argonne National Laboratory. Images of a sediment sample are taken at a number of different angles as the incident x- ray beam passes through it, and a three-dimensional view of the interior of the sample is then reconstructed from these maps using Computed Tomography (CT). These 3D images allow us to observe sediment structure with near-micron-scale resolution. We are also using difference tomography to resolve the distribution of zirconium in sediment cores. Column experiments were performed to observe the deposition of colloidal zirconia (Zr) particles in porous media composed of glass beads. Reconstructed 3D maps of Zr deposition demonstrate strong pore-scale heterogeneity. Most zirconia particles accumulated at the upstream sides of collector beads and in narrow pore throats. Statistical analysis of deposition clusters reveals the average, large-scale filtration behavior. Reconstructed 3D pore structure data were used to investigate scale dependency and the effects of local variation within the porous medium. Statistical representative elementary volumes were calculated for quantities such as porosity, specific surface area, and permeability. Finally, preliminary experiments in flume were conducted in order to investigate zirconia deposition in streambeds at the scale of characteristic topographic features (bedforms).

  9. Laser gain on 3p-3d and 3s-3p transitions and X-ray line ratios for the nitrogen isoelectronic sequence

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Seely, J. F.; Bhatia, A. K.

    1989-01-01

    Results are presented on calculations of the 72 levels belonging to the 2s(2)2p(3), 2s2p(4), 2p(5), 2s(2)2p(2)3s, 2s(2)2p(2)3p, and 2s(2)2p(2)3d configurations of the N I isoelectronic sequence for the ions Ar XII, Ti XVI, Fe XX, Zn XXIV, and Kr XXX, for electron densities up to 10 to the 24th/cu cm. It was found that large population inversions and gain occur between levels in the 2s(2)2p(2)3p configuration and levels in the 2s(2)2p(2)3d configuration that cannot decay to the ground configuration by an electric dipole transition. For increasing electron densities, the intensities of the X-ray transitions from the 2s(2)2p(2)3p configuration to the ground configuration decrease relative to the transitions from the 2s(2)2p(2)3s and 2s(2)2p(2)3d configurations to the ground configuration. The density dependence of these X-ray line ratios is presented.

  10. Coherence transport through imperfect x-ray optical systems.

    PubMed

    Nugent, K; Tran, C; Roberts, A

    2003-09-22

    The latest generation of synchrotron sources, so-called third generation sources, are able to produce copious amounts of coherent radiation. However it has become evident that the experimental systems that have been developed are unable to fully utilize the coherent flux. This has led to a perception that coherence is lost while the radiation is transported down the beamline. However it is well established that the degree of coherence must be preserved, or increased, by an experimental system, and so this apparent "decoherence" must have its origin in the nature of the measurement process. In this paper we use phase space methods to present an argument that the loss of useful coherent flux can be attributed to unresolved speckle in the x-ray beam.

  11. Investigation of 3D glenohumeral displacements from 3D reconstruction using biplane X-ray images: Accuracy and reproducibility of the technique and preliminary analysis in rotator cuff tear patients.

    PubMed

    Zhang, Cheng; Skalli, Wafa; Lagacé, Pierre-Yves; Billuart, Fabien; Ohl, Xavier; Cresson, Thierry; Bureau, Nathalie J; Rouleau, Dominique M; Roy, André; Tétreault, Patrice; Sauret, Christophe; de Guise, Jacques A; Hagemeister, Nicola

    2016-08-01

    Rotator cuff (RC) tears may be associated with increased glenohumeral instability; however, this instability is difficult to quantify using currently available diagnostic tools. Recently, the three-dimensional (3D) reconstruction and registration method of the scapula and humeral head, based on sequences of low-dose biplane X-ray images, has been proposed for glenohumeral displacement assessment. This research aimed to evaluate the accuracy and reproducibility of this technique and to investigate its potential with a preliminary application comparing RC tear patients and asymptomatic volunteers. Accuracy was assessed using CT scan model registration on biplane X-ray images for five cadaveric shoulder specimens and showed differences ranging from 0.6 to 1.4mm depending on the direction of interest. Intra- and interobserver reproducibility was assessed through two operators who repeated the reconstruction of five subjects three times, allowing defining 95% confidence interval ranging from ±1.8 to ±3.6mm. Intraclass correlation coefficient varied between 0.84 and 0.98. Comparison between RC tear patients and asymptomatic volunteers showed differences of glenohumeral displacements, especially in the superoinferior direction when shoulder was abducted at 20° and 45°. This study thus assessed the accuracy of the low-dose 3D biplane X-ray reconstruction technique for glenohumeral displacement assessment and showed potential in biomechanical and clinical research.

  12. Novel direct digital modular x-ray device and system

    NASA Astrophysics Data System (ADS)

    Spartiotis, Konstantinos E.; Orava, Risto; Schulman, Tom; Pyyhtia, Jouni; Sarakinos, Militiadis E.; Sanghera, Bal; Epenetos, Agamemnon; Sunni, Ilkka; Salonen, Jaakko; Gronberg, Leif; Majander, Paivi; Allison, David J.; Myers, Melvyn

    1998-07-01

    We present an update on a novel direct digital X-ray imaging device and system. The system comprises a mosaic of hybrid solid state semiconductor devices removably mount onto a master plane covering an imaging surface of any desirable shape and size. Each imaging device comprises a pixel semiconductor detector flip-chip joined to a CMOS ASIC. Monolithic CdZnTe and Si pixel detectors with dimensions 12.2 X 4.2 mm2 and 18.9 X 9.6 mm2 have been implemented with a pixel pitch of 35 micrometer. Each circuit on the ASIC, corresponding to a detector pixel, is capable of accumulating thousands of X-rays in the diagnostic energy spectrum with high efficiency (CdZnTe) and user accumulation times ranging from just a few ms to a few s. Individual, removable tiles are combined in a mosaic providing continuous large area imaging with no inactive regions. This tiling approach allows for cost efficient replacement of defective tiles. The packaging delivers a compact, lightweight, portable cassette whose thickness is around 2.0 cm. The basic hybrid detector design and tiling scheme are generic and may be used in mammography, conventional radiography and fluoroscopy. A special tiling scheme has been designed for use in intraoral imaging. We present our measured Modulation Transfer Function (MTF) and Detective Quantum Efficiency (DQE). Images taken with hard objects, phantoms and soft tissue further demonstrate system functionality and provide a comparison with radiographic film and CR plates. The first application of the new technology is intended for the field of dental imaging, mammographic biopsy and other small area medical applications (approximately 10 - 30 cm2 imaging area) as well as Small Area Non Destructive Testing.

  13. Design of wireless triggering pulse generation for x-ray medical system

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Sik; Lee, Jae-Cheol

    2007-12-01

    Digital x-ray imaging system is composed of an x-ray generator and a digital image acquisition system. In this paper, we designed a wireless trigger pulse generation circuit, detection trigger board, to capture the image accurately by established the synchronization between x-ray generator and digital image acquisition system and we analyzed its performance and compared to conventional method. There are two pulses generated by this study, the ACQ_START pulse, which indicates the detection of x-ray radiation from x-ray generator, and the ACQ_END pulse, which indicates the x-ray disappearance from x-ray generator. These trigger the image acquisition system of digital x-ray imaging system, to start the image capturing or to stop. Geiger tube were used to detect x-ray radiation from the air. Image acquisition is activated only this time between ACQ_START and ACQ_END signal. By detecting the x-ray radiation signal from the air and generate the trigger pulses, we can get more accurate timing for capturing the x-ray image. Also, owing to omitting the installation wire between x-ray generator and digital image acquisition system, Installation will be very easy. In addition to that, any type of x-ray generator can be installed without incompatibility. With this experiment, we tried to capture images of the resolution chart to compare the experimental result. We got 3.5 line pair / mm resolution at 20 mAs of x-ray level with resolution chart. This is same or better image comparing to conventional way.

  14. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Manuwong, Theerapatt; Zhang, Wei; Kazinczi, Peter Lobo; Bodey, Andrew J.; Rau, Christoph; Mi, Jiawei

    2015-07-01

    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

  15. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  17. Miniature lightweight x-ray optics (MiXO) for solar system exploration

    NASA Astrophysics Data System (ADS)

    Hong, J.; Romaine, S.

    2014-07-01

    Over the last few decades, grazing incidence X-ray optics have been a pivotal tool for advances in X-ray astronomy. They have been successfully employed in many great observatories such as ROSAT, Chandra X-ray Observatory and XMM-Newton. In planetary science, X-ray observations of Solar system objects are a great tool to understand the nature of the target bodies and the evolutionary history of the Solar system as a whole. To date, X-ray observations in near-target planetary missions have been limited to collimator-based instruments due to tight mass and volume constraints, arising from the multi-instrument nature of planetary missions. In addition, unlike observations of astrophysical sources at virtually infinite distances, near-target observations of planetary bodies introduce a unique set of challenges. While true focusing X-ray optics can overcome these challenges, a practical implementation of focusing X-ray optics for planetary missions depends on the feasibility of compact lightweight X-ray optics. We review scientific motivations for X-ray observations of planetary bodies and illustrate the unique challenges encountered in planetary missions through a few examples. We introduce a new metal-ceramic hybrid technology for X-ray mirrors that can enable compact lightweight Wolter-I X-ray optics suitable for resource limited planetary missions.

  18. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  19. Microtomographic images of rat's lumbar vertebra microstructure using 30 keV synchrotron X-rays: an analysis in terms of 3D visualization

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Takeda, T.; Kawakami, T.; Uesugi, K.; Tsuchiya, Y.; Wu, J.; Lwin, T. T.; Itai, Y.; Zeniya, T.; Yuasa, T.; Akatsuka, T.

    2004-05-01

    Microtomographic images of rat's lumbar vertebra of different age groups varying from 8, 56 and 78 weeks were obtained at 30 keV using synchrotron X-rays with a spatial resolution of 12 μm. The images are analyzed in terms of 3D visualization and micro-architecture. Density histogram of rat's lumbar vertebra is compared with test phantoms. Rat's lumbar volume and phantom volume are studied at different concentrations of hydroxyapatite with slice number. With the use of 2D slices, 3D images are reconstructed, in order to know the evolution and a state of decline of bone microstructure with aging. Cross-sectional μ-CT images shows that the bone of young rat has a fine trabecular microstructure while that of the old rat has large meshed structure.

  20. Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography

    NASA Astrophysics Data System (ADS)

    Wautier, A.; Geindreau, C.; Flin, F.

    2015-10-01

    The full 3-D macroscopic mechanical behavior of snow is investigated by solving kinematically uniform boundary condition problems derived from homogenization theories over 3-D images obtained by X-ray tomography. Snow is modeled as a porous cohesive material, and its mechanical stiffness tensor is computed within the framework of the elastic behavior of ice. The size of the optimal representative elementary volume, expressed in terms of correlation lengths, is determined through a convergence analysis of the computed effective properties. A wide range of snow densities is explored, and power laws with high regression coefficients are proposed to link the Young's and shear moduli of snow to its density. The degree of anisotropy of these properties is quantified, and Poisson's ratios are also provided. Finally, the influence of the main types of metamorphism (isothermal, temperature gradient, and wet snow metamorphism) on the elastic properties of snow and on their anisotropy is reported.

  1. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  2. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  3. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    SciTech Connect

    Boone, M.A.; De Kock, T.; Bultreys, T.; De Schutter, G.; Vontobel, P.; Van Hoorebeke, L.; Cnudde, V.

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  4. Quantitative 3D elemental analysis inside plant roots by means of synchrotron confocal micro X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Terzano, R.; Vekemans, B.; Tomasi, N.; Spagnuolo, M.; Schoonjans, T.; Vincze, L.; Pinton, R.; Cesco, S.; Ruggiero, P.

    2009-04-01

    The knowledge of the distribution and concentration of elements within plants is a fundamental step to better understand how these plants uptake specific elements from the medium of growth and how they manage acquisition and compartmentalisation of nutrients as well as toxic metals. For some elements, either nutrients or toxicants, it can be of relevance to know their concentration level within microscopic volumes in plant organs, where they are stored or accumulated. Usually, this type of microscopic analysis requires complex cutting procedures and extensive sample manipulations. In this research, the technique of synchrotron micro X-ray fluorescence in the confocal mode was applied to image the distribution of elements in selected key-planes of tomato roots without the need of any sample preparation, except washing and freeze-drying. Using this method, a first polycapillary lens focussed the X-ray beam with an energy of 12.4 keV down to a 20 µm beam that is penetrating the sample, and a second polycapillary half-lens, that was positioned at the detection side at 90 degrees to the first polycapillary, could then restrict further the view on this irradiated volume to a defined microscopic volume (typically 20x20x20 µm3) from which the induced fluorescent radiation is finally collected by the energy dispersive detector. In this way, it was possible to investigate the concentration levels of some elements such as K, Ca, Mn, Fe, Cu and Zn within the roots of tomato plants. The quantification was performed by means of a dedicated XRF Fundamental Parameter (FP) method in order to calculate the concentrations of trace elements within the analysed plants. Utilizing fundamental atomic parameters, the applied FP method is taking into account the influence of sample self-absorption and especially the specific detection processes by the polycapillary lens. Quantification was assessed and validated by using different standards: NIST SRM 1573a (trace elements in tomato leaves

  5. Three dimensional co-registration between a positron emission tracking system and a C-arm x-ray imaging system

    NASA Astrophysics Data System (ADS)

    Spencer, Benjamin A.

    Real-time motion tracking is required for accurate delivery of radiation therapy to tumours undergoing motion due to respiration, as well as for the precise guidance, manipulation, and operation of surgical tools or devices used during non-invasive interventional procedures. Positron emission real-time three-dimensional (3D) tracking (PeTrack) is a proposed solution to these problems which is currently being developed at Carleton University. The technique involves the localization and tracking of positron emission fiducial markers which could be implanted into a tumour volume or integrated into a surgical tool or instrument. The research presented here describes the co-registration of the PeTrack localization and tracking system with a C-arm x-ray imaging system capable of 3D cone-beam imaging. This co-registration allows the display of objects tracked in 3D by the PeTrack system on to a 3D reconstructed image. The acquisition of accurate 3D images from the x-ray imaging system requires: x-ray detector distortion correction, geometric calibration of the C-arm x-ray scanner, and then a method to reconstruct 3D images. PeTrack localization and tracking of positron sources requires a detector system capable of detecting positron sources, and an algorithm which can localize and track positron sources based on the information provided by the detector system. This tracking algorithm has previously been developed. The co-registration of the x-ray imaging system and the PeTrack tracking system requires the geometric calibrations of the PeTrack and the x-ray imaging systems both defined in a common 3D reference frame. The results presented in this work show that distortion correction is essential for the acquisition of high quality 3D image reconstructions. The method of x-ray scanner geometric calibration implemented was validated for the the first time with real data. A method of PeTrack geometric calibration was developed and evaluated. A simulation study showed that

  6. Feasibility of 3D tracking of surgical tools using 2D single plane x-ray projections

    NASA Astrophysics Data System (ADS)

    Seslija, Petar; Habets, Damiaan F.; Peters, Terry M.; Holdsworth, David W.

    2008-03-01

    Fluoroscopy is widely used for intra-procedure image guidance, however its planar images provide limited information about the location of the surgical tools or targets in three-dimensional space. An iterative method based on the projection-Procrustes technique can determine the three-dimensional positions and orientations of known sparse objects from a single, perspective projection. We assess the feasibility of applying this technique to track surgical tools by measuring its accuracy and precision through in vitro experiments. Two phantoms were fabricated to perform this assessment: a grid plate phantom with numerous point-targets at regular distances from each other; and a sparse object used as a surgical tool phantom. Two-dimensional projections of the phantoms were acquired using an image intensifier-based C-arm x-ray unit. The locations of the markers projected onto the images were identified and measured using an automated algorithm. The three-dimensional location of the phantom tool tip was identified from these images using the projection-Procrustes technique. The accuracy and precision of the tip localization were used to assess our technique. The average three-dimensional root-mean-square target registration error of the phantom tool tip was 1.8 mm. The average three-dimensional root-mean-square precision of localizing the tool tip was 0.5 mm.

  7. A rotational and axial motion system load frame insert for in situ high energy x-ray studies.

    PubMed

    Shade, Paul A; Blank, Basil; Schuren, Jay C; Turner, Todd J; Kenesei, Peter; Goetze, Kurt; Suter, Robert M; Bernier, Joel V; Li, Shiu Fai; Lind, Jonathan; Lienert, Ulrich; Almer, Jonathan

    2015-09-01

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  8. A rotational and axial motion system load frame insert for in situ high energy x-ray studies.

    PubMed

    Shade, Paul A; Blank, Basil; Schuren, Jay C; Turner, Todd J; Kenesei, Peter; Goetze, Kurt; Suter, Robert M; Bernier, Joel V; Li, Shiu Fai; Lind, Jonathan; Lienert, Ulrich; Almer, Jonathan

    2015-09-01

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability. PMID:26429452

  9. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    SciTech Connect

    Shade, Paul A. Schuren, Jay C.; Turner, Todd J.; Blank, Basil; Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan; Suter, Robert M.; Bernier, Joel V.; Li, Shiu Fai; Lind, Jonathan

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  10. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    . Since the large electrode spacing (up to 500 {micro}m) can be realized in the 3D-Trench electrode detector due to their advantage of greatly reduced full depletion voltage, detectors with large pixel cells (therefore small dead volume) can be made for applications in photon science (e.g. X-ray).

  11. New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications

    NASA Astrophysics Data System (ADS)

    Li, Zheng

    2011-12-01

    . Since the large electrode spacing (up to 500 μm) can be realized in the 3D-Trench electrode detector due to their advantage of greatly reduced full depletion voltage, detectors with large pixel cells (therefore small dead volume) can be made for applications in photon science (e.g. X-ray).

  12. Dynamic Granularity for X-Ray Imaging Systems

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Bigman, Verle H.; Edens, Aaron D.; Schollmeier, Marius; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2013-10-01

    Dynamic range and spatial resolution are correlated, because imaging units such as pixels or film grains can cover a wider dynamic range if they are larger, so that they can contain more electrons in a well or fluorescence centers in a grain. However, for systems that are subject to low photon flux, statistical noise influences the spatial resolution. Statistical noise is important for many experiments that rely on single shot X-ray imaging diagnostics. Detectors face a limited photon flux and often also a limited detection probability, where photons of higher energy may just penetrate the detector. The effective spatial resolution depends on detector efficiency, incident photon flux, detector cell size (grain/pixel), and the detector's inherent noise. We describe the combined influences with a ``dynamic granularity'' function, based on measurements of the grain size dependent distinguishability of grey levels. The dynamic granularity is unique to each imaging system, but allows us to quantify the performance of different detectors in a system. We have characterized a fast microchannel plate imaging detector and imaging plate with respect to dynamic granularity on the 6.151 keV crystal imaging system at the Z-Beamlet laser. Sandia Natl. Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's Natl. Nucl. Security Administration under contract DE-AC04-94AL8500.

  13. The Chandra X-ray Center data system: supporting the mission of the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Ian; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Hall, Diane; Plummer, David; Zografou, Panagoula

    2006-06-01

    The Chandra X-ray Center Data System provides end-to-end scientific software support for Chandra X-ray Observatory mission operations. The data system includes the following components: (1) observers' science proposal planning tools; (2) science mission planning tools; (3) science data processing, monitoring, and trending pipelines and tools; and (4) data archive and database management. A subset of the science data processing component is ported to multiple platforms and distributed to end-users as a portable data analysis package. Web-based user tools are also available for data archive search and retrieval. We describe the overall architecture of the data system and its component pieces, and consider the design choices and their impacts on maintainability. We discuss the many challenges involved in maintaining a large, mission-critical software system with limited resources. These challenges include managing continually changing software requirements and ensuring the integrity of the data system and resulting data products while being highly responsive to the needs of the project. We describe our use of COTS and OTS software at the subsystem and component levels, our methods for managing multiple release builds, and adapting a large code base to new hardware and software platforms. We review our experiences during the life of the mission so-far, and our approaches for keeping a small, but highly talented, development team engaged during the maintenance phase of a mission.

  14. SU-C-18C-03: Dual-Energy X-Ray Fluoroscopy Imaging System

    SciTech Connect

    Virshup, G; Richmond, M; Mostafavi, H; Ganguly, A; Fu, D

    2014-06-01

    Purpose: This work studies the clinical utility of dual energy (DE) subtraction fluoroscopy for fiducial-free tumor tracking in lung radiation therapy (RT). Improvement in tumor visualization and quantification of tumor shift within a breathing cycle were analyzed. Methods: Twenty subjects who were undergoing RT for lung cancer were recruited following institutional review board approval. The subjects had a range of tumor sizes, locations in the lungs, and body sizes. An x-ray imaging system was setup with the following components: (a) x-ray tube (Varian G-242, Varian Medical Systems (VMS), CA) (b) flat panel detector (4030CB, VMS, CA) and (c) x-ray generator (EPS 50RF, EMD, Canada). Firmware and software modifications were made to the generator to allow 10 x-ray pulse pairs with alternating low/high kV, 100 ms apart for ∼4s (one breathing cycle). Images were obtained at 4 angles: 0°, 45°, 90° and 135°. Weighted subtraction of a kV-pair image set was used to create a “bone-free” image of the lungs. The 2D tumor-shift in each subtracted image and the 3D shift during a breathing cycle was calculated using all views. Results: The subjects enrolled had the following statistics: average age 62.3±7.1 years, 5 female/15 male, 11 had tumors on the right and 9 on the left and the average tumor size was ∼31.4±10.8 mm. X-ray imaging conditions for the pulse pairs were: 70/120 kVp, 280/221 mA and 65/8 ms. For views where these parameters were insufficient 80/130 kVp, 280/221 mA and 60/12 ms was used. Tumor visibility improved for 0°, 45°, 90° and 135° in 100%, 55%, 75% and 80% of the cases respectively. Tumor shift during a breathing cycle was: 2.4±1.0 mm AP, 2.7±1.4 mm LR and 7.6±4.8 mm IS. Conclusion: DE subtraction fluoroscopy allowed improved visualization and quantification of movement of tumors in the lungs during a breathing cycle. This study was entirely funded by Varian Medical Systems.

  15. Non-destructive 3D Imaging of Extraterrestrial Materials by Synchrotron X-ray Micro- tomography (XR-CMT) and Laser Confocal Scanning Microscopy (LCSM): Beyond Pretty Pictures

    NASA Astrophysics Data System (ADS)

    Ebel, D. S.; Greenberg, M.

    2009-05-01

    We report scientific results made possible only by the use these two non-destructive 3D imaging techniques. XR-CMT provides 3D image reconstructions at spatial resolutions of 1 to 17 micron/voxel edge. We use XR- CMT to locate potential melt-inclusion-bearing phenocrysts in batches of 100-200 micron lunar fire-fountain spherules; to locate and visualize the morphology of 1-2mm size, irregular, unmelted Ca-, Al-rich inclusions (CAIs) and to quantify chondrule/matrix ratios and chondrule size distributions in 6x6x20mm chunks of carbonaceous chondrites; to quantify the modal abundance of opaque phases in similar sized Martian meteorite fragments, and in individual 1-2mm diameter chondrules from chondrites. LCSM provides 3D image stacks at resolutions < 100 nm/pixel. We are the only group creating deconvolved image stacks of 100 to over 1000 micron long comet particle tracks in aerogel keystones from the Stardust mission. We present measurements of track morphology in 3D, and locate high-value particles using complementary synchrotron x- ray fluorescence (XRF) examination. We show that bench-top LCSM extracts maximum information about tracks and particles rapidly and cheaply prior to destructive disassembly. Using XR-CMT we quantify, for the first time, the volumetric abundances of metal grains in 1-2 mm diameter CR chondrite chondrules. Metal abundances vary from 1 to 37 vol.% between 8 chondrules (and more by inspection), in a meteorite with solar (chondritic) Fe/Si ratio, indicating that chondrules formed and accreted locally from bulk solar composition material. They are 'complementary' to each other in Fe/Si ratios. Void spaces in chondritic CAIs and chondrules are shown to be a primary feature, not due to plucking during sectioning. CAI morphology in 3D reveals pre-accretionary impact features, and various types of mineralogical layering, seen in 3D, reveal the formation history of these building blocks of planets and asteroids. We also quantify the x-ray

  16. X-ray computed tomography system for laboratory small-object imaging: Enhanced tomography solutions.

    PubMed

    Kharfi, F; Yahiaoui, M L; Boussahoul, F

    2015-07-01

    A portable X-ray tomography system has been installed and actually being tested at our medical imaging laboratory. This tomography system employs a combination of scintillator screen and CCD camera as image detector. The limit of spatial resolution of 290 μm of this imaging system is determined by the establishment of its modulation transfer function (MTF). In this work, we present attempts to address some issues such as limited resolution and low contrast through the development of affordable post-acquisition solutions based on the application of super-resolution method (projection onto convex sets, POCS) to create new projections set enabling the reconstruction of an improved 3D image in terms of contrast, resolution and noise. In addition to small-object examination, this tomography system is used for hands-on training activities involving students and scientists.

  17. Local ISM 3D distribution and soft X-ray background. Inferences on nearby hot gas and the North Polar Spur

    NASA Astrophysics Data System (ADS)

    Puspitarini, L.; Lallement, R.; Vergely, J.-L.; Snowden, S. L.

    2014-06-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and that are filled by hot gas. To demonstrate this and to derive a clearer picture of the local ISM, we compare our recent 3D maps of the IS dust distribution to the ROSAT diffuse X-ray background maps after removing heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust-to-gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled the 0.25 keV surface brightness in a simple way along the Galactic plane as seen from the Sun, taking the absorption by the mapped clouds into account. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred average mean pressure in the local cavities is found to be on the order of 10 000 cm-3 K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust-to-CaII ratio is very low in this region, implying there is a large quantity of lower temperature (non-X-ray emitting) ionized gas and, as a consequence, a reduction in the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the main two brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of

  18. Optical Synchronization Systems for Femtosecond X-raySources

    SciTech Connect

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-05-09

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  19. The Lixiscope: a Pocket-size X-ray Imaging System

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Seltzer, S. M.

    1978-01-01

    A Low Intensity X ray Imaging device with the acronym LIXISCOPE is described. The Lixiscope has a small format and is powered only by a 2.7V battery. The high inherent gain of the Lixiscope permits the use of radioactive sources in lieu of X-ray machines in some fluoroscopic applications. In this mode of operation the complete X ray imaging system is truly portable and pocket-sized.

  20. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  1. Development of a coincidence system for the measurement of X-ray emission atomic parameters

    NASA Astrophysics Data System (ADS)

    Martínez, Filiberto; Miranda, Javier

    2013-07-01

    Preliminary results obtained in experiments carried out with an x-ray spectrometer built at the Instituto de Física for Atomic Physics and environmental sciences studies are presented. The experiments are based on a coincidence method for signals produced by LEGe and Si(Li) detectors. The x-ray fluorescence yields (ωLi) and Coster-Kronig transition probabilities (fij) for elements with 55 ≤ Z ≤ 60 are among the quantities of interest. The method is based on the simultaneous detection of K x-rays with the LEGe detector and the L x-rays with the Si(Li) detector. The primary radiation source is an x-ray tube with Rh anode. The system was tested with the coincidence of the L x-rays from Ce with its K line, demonstrating the feasibility of the experiments.

  2. Development of a coincidence system for the measurement of X-ray emission atomic parameters

    SciTech Connect

    Martinez, Filiberto; Miranda, Javier

    2013-07-03

    Preliminary results obtained in experiments carried out with an x-ray spectrometer built at the Instituto de Fisica for Atomic Physics and environmental sciences studies are presented. The experiments are based on a coincidence method for signals produced by LEGe and Si(Li) detectors. The x-ray fluorescence yields ({omega}{sub Li}) and Coster-Kronig transition probabilities (f{sub ij}) for elements with 55 {<=} Z {<=} 60 are among the quantities of interest. The method is based on the simultaneous detection of K x-rays with the LEGe detector and the L x-rays with the Si(Li) detector. The primary radiation source is an x-ray tube with Rh anode. The system was tested with the coincidence of the L x-rays from Ce with its K line, demonstrating the feasibility of the experiments.

  3. Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration.

    PubMed

    Hopp, T; Duric, N; Ruiter, N V

    2015-03-01

    Ultrasound Computer Tomography (USCT) is a promising breast imaging modality under development. Comparison to a standard method like mammography is essential for further development. Due to significant differences in image dimensionality and compression state of the breast, correlating USCT images and X-ray mammograms is challenging. In this paper we present a 2D/3D registration method to improve the spatial correspondence and allow direct comparison of the images. It is based on biomechanical modeling of the breast and simulation of the mammographic compression. We investigate the effect of including patient-specific material parameters estimated automatically from USCT images. The method was systematically evaluated using numerical phantoms and in-vivo data. The average registration accuracy using the automated registration was 11.9mm. Based on the registered images a method for analysis of the diagnostic value of the USCT images was developed and initially applied to analyze sound speed and attenuation images based on X-ray mammograms as ground truth. Combining sound speed and attenuation allows differentiating lesions from surrounding tissue. Overlaying this information on mammograms, combines quantitative and morphological information for multimodal diagnosis. PMID:25456144

  4. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  5. A quantitative x-ray detection system for gold nanoparticle tumour biomarkers

    NASA Astrophysics Data System (ADS)

    Ricketts, K.; Castoldi, A.; Guazzoni, C.; Ozkan, C.; Christodoulou, C.; Gibson, A. P.; Royle, G. J.

    2012-09-01

    X-ray fluorescence techniques have proven beneficial for identifying and quantifying trace elements in biological tissues. A novel approach is being developed that employs x-ray fluorescence with an aim to locate heavy nanoparticles, such as gold, which are embedded into tissues. Such nanoparticles can be functionalized to act as markers for tumour characteristics to map the disease state, with the future aim of imaging them to inform cancer therapy regimes. The uptake of functionalized nanoparticles by cancer cells will also enable detection of small clusters of infiltrating cancer cells which are currently missed by commonly used imaging modalities. The novel system, consisting of an energy-resolving silicon drift detector with high spectral resolution, shows potential in both quantification of and sensitivity to nanoparticle concentrations typically found in tumours. A series of synchrotron measurements are presented; a linear relationship between fluorescence intensity and gold nanoparticle (GNP) concentration was found down to 0.005 mgAu ml-1, the detection limit of the system. Successful use of a bench-top source, suitable for possible future clinical use, is also demonstrated, and found not to degrade the detection limit or accuracy of the GNP concentration measurement. The achieved system sensitivity suggests possible future clinical usefulness in measuring tumour uptake in vivo, particularly in shallow tumour sites and small animals, in ex vivo tissue and in 3D in vitro research samples.

  6. Communication: Systematic shifts of the lowest unoccupied molecular orbital peak in x-ray absorption for a series of 3d metal porphyrins.

    PubMed

    García-Lastra, J M; Cook, P L; Himpsel, F J; Rubio, A

    2010-10-21

    Porphyrins are widely used as dye molecules in solar cells. Knowing the energies of their frontier orbitals is crucial for optimizing the energy level structure of solar cells. We use near edge x-ray absorption fine structure (NEXAFS) spectroscopy to obtain the energy of the lowest unoccupied molecular orbital (LUMO) with respect to the N(1s) core level of the molecule. A systematic energy shift of the N(1s) to LUMO transition is found along a series of 3d metal octaethylporphyrins and explained by density functional theory. It is mainly due to a shift of the N(1s) level rather than a shift of the LUMO or a change in the electron-hole interaction of the core exciton.

  7. Recognition of binary x-ray systems utilizing the doppler effect

    NASA Technical Reports Server (NTRS)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  8. Mechanized X-ray inspection system for large tanks

    NASA Technical Reports Server (NTRS)

    Occhipinti, G. C.

    1967-01-01

    Mechanized X ray equipment provides nondestructive inspection of structural weldments at various positions on very large tanks. It mechanizes the placement of the film, automates the identification process, adheres to safety requirements, and eliminates all the usual time-consuming manual operations in industrial radiography.

  9. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  10. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  11. Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-09-01

    Surgical targeting of the incorrect vertebral level (wrong-level surgery) is among the more common wrong-site surgical errors, attributed primarily to the lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. The conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (namely CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and a CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved ten patient CT datasets from which 50 000 simulated fluoroscopic images were generated from C-arm poses selected to approximate the C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (namely mPD <5 mm). Simulation studies showed a success rate of 99.998% (1 failure in 50 000 trials) and computation time of 4.7 s on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated the robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond

  12. Laboratory 3D Micro-XRF/Micro-CT Imaging System

    NASA Astrophysics Data System (ADS)

    Bruyndonckx, P.; Sasov, A.; Liu, X.

    2011-09-01

    A prototype micro-XRF laboratory system based on pinhole imaging was developed to produce 3D elemental maps. The fluorescence x-rays are detected by a deep-depleted CCD camera operating in photon-counting mode. A charge-clustering algorithm, together with dynamically adjusted exposure times, ensures a correct energy measurement. The XRF component has a spatial resolution of 70 μm and an energy resolution of 180 eV at 6.4 keV. The system is augmented by a micro-CT imaging modality. This is used for attenuation correction of the XRF images and to co-register features in the 3D XRF images with morphological structures visible in the volumetric CT images of the object.

  13. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  14. A Compact X-Ray System for Support of High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  15. Fast and accurate calibration of an X-ray imager to an electromagnetic tracking system for interventional cardiac procedures.

    PubMed

    Lang, Andrew; Stanton, Douglas; Parthasarathy, Vijay; Jain, Ameet

    2010-01-01

    Cardiovascular disease affects millions of Americans each year. Interventional guidance systems are being developed as treatment options for some of the more delicate procedures, including targeted stem cell therapy. As advanced systems for such types of interventional guidance are being developed, electromagnetic (EM) tracking is coming in demand to perform navigation. To use this EM tracking technology, a calibration is necessary to register the tracker to the imaging system. In this paper we investigate the calibration of an X-ray imaging system to EM tracking. Two specially designed calibration phantoms have been designed for this purpose, each having a rigidly attached EM sensor. From a clinical usability point-of-view, we propose to divide this calibration problem into two steps: i) in initial calibration of the EM sensor to the phantom design using an EM tracked needle to trace out grooves in the phantom surface and ii) segmentation from X-ray images and 3D reconstruction of beads embedded in the phantom in a known geometric pattern. Combining these two steps yields and X-ray-to-EM calibration accuracy of less than 1 mm when overlaying an EM tracked needle on X-ray images.

  16. Three mirror glancing incidence system for X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1974-01-01

    A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.

  17. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography.

    PubMed

    Chen-Wiegart, Yu-chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2015-01-21

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A 'stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications. PMID:25474162

  18. Statistically deformable 2D/3D registration for accurate determination of post-operative cup orientation from single standard X-ray radiograph.

    PubMed

    Zheng, Guoyan

    2009-01-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D/3D rigid image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of a pre-operative CT scan, which is not available for most retrospective studies. To address these issues, we developed and validated a statistically deformable 2D/3D registration approach for accurate determination of post-operative cup orientation. No CAD model and pre-operative CT data is required any more. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the validity of the approach. PMID:20426064

  19. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Rosenmann, Daniel; Preissner, Curt; Freeland, John W.; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  20. X-ray scattering by many-particle systems

    NASA Astrophysics Data System (ADS)

    Crowley, B. J. B.; Gregori, G.

    2013-01-01

    This paper reviews the treatment of high-frequency Thomson scattering in the non-relativistic and near-relativistic regimes with the primary purpose of understanding the nature of the frequency redistribution correction to the differential cross-section. This correction is generally represented by a factor involving the ratio ω α /ω β of the scattered (α) to primary (β) frequencies of the radiation. In some formulae given in the literature, the ratio appears squared, in others it does not. In Compton scattering, the frequency change is generally understood to be due to the recoil of the particle as a result of energy and momentum conservation in the photon-electron system. In this case, the Klein-Nishina formula gives the redistribution factor as \\left( {{{\\omega _\\alpha }/{\\omega _\\beta }}} \\right)^2 . In the case of scattering by a many-particle system, however, the frequency and momentum changes are no longer directly interdependent but depend also upon the properties of the medium, which are encoded in the dynamic structure factor. We show that the redistribution factor explicit in the quantum cross-section (that seen by a photon) is ω α /ω β, which is not squared. Formulae for the many-body cross-section given in the literature, in which the factor is squared, can often be attributed to a different (classical) definition of the cross-section, though not all authors are explicit about which definition they are using. What is shown not to be true is that the structure factor simply gives the ratio of the many-electron to one-electron differential cross-sections, as is sometimes supposed. Mixing up the cross-section definitions can lead to errors when describing x-ray scattering. We illustrate the nature of the discrepancy by deriving the energy-integrated angular distributions, with first-order relativistic corrections, for classical and quantum scattering measurements, as well as the radiative opacity for photon diffusion in a Thomson

  1. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    NASA Technical Reports Server (NTRS)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  2. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  3. Calibration-free device sizing using an inverse geometry x-ray system

    SciTech Connect

    Tomkowiak, Michael T.; Speidel, Michael A.; Raval, Amish N.; Van Lysel, Michael S.

    2011-01-15

    Purpose: Quantitative coronary angiography (QCA) can be used to support device size selection for cardiovascular interventions. The accuracy of QCA measurements using conventional x-ray fluoroscopy depends on proper calibration using a reference object and avoiding vessel foreshortening. The authors have developed a novel interventional device sizing method using the inverse geometry scanning-beam digital x-ray (SBDX) fluoroscopy system. The proposed method can measure the diameter and length of vessel segments without imaging a reference object and when vessels appear foreshortened. Methods: SBDX creates multiple tomosynthetic x-ray images corresponding to planes through the patient volume. The structures that lie in the plane are in focus and the features above and below the plane are blurred. Three-dimensional localization of the vessel edges was performed by examining the degree of blurring at each image plane. A 3D vessel centerline was created and used to determine vessel magnification and angulation relative to the image planes. Diameter measurements were performed using a model-based method and length measurements were calculated from the 3D centerline. Phantom validation was performed by measuring the diameter and length of vessel segments with nominal diameters ranging from 0.5 to 2.8 mm and nominal lengths of 42 mm. The phantoms were imaged at a range of positions between the source and the detector ({+-}16 cm relative to isocenter) and with a range of foreshortening angles (0 deg. - 75 deg.). Results: Changes in vessel phantom position created magnifications ranging from 87% to 118% relative to isocenter magnification. Average diameter errors were less than 0.15 mm. Average length measurements were within 1% (0.3 mm) of the true length. No trends were observed between measurement accuracy and magnification. Changes in vessel phantom orientation resulted in decreased apparent length down to 28% of the original nonforeshortened length. Average diameter

  4. Low-cost 3D rangefinder system

    NASA Astrophysics Data System (ADS)

    Chen, Bor-Tow; Lou, Wen-Shiou; Chen, Chia-Chen; Lin, Hsien-Chang

    1998-06-01

    Nowadays, 3D data are popularly performed in computer, and 3D browsers manipulate 3D model in the virtual world. Yet, till now, 3D digitizer is still a high-cost product and not a familiar equipment. In order to meet the requirement of 3D fancy world, in this paper, the concept of a low-cost 3D digitizer system is proposed to catch 3D range data from objects. The specified optical design of the 3D extraction is effective to depress the size, and the processing software of the system is compatible with PC to promote its portable capability. Both features contribute a low-cost system in PC environment in contrast to a large system bundled in an expensive workstation platform. In the structure of 3D extraction, laser beam and CCD camera are adopted to construct a 3D sensor. Instead of 2 CCD cameras for capturing laser lines twice before, a 2-in-1 system is proposed to merge 2 images in one CCD which still retains the information of two fields of views to inhibit occlusion problems. Besides, optical paths of two camera views are reflected by mirror in order that the volume of the system can be minified with one rotary axis only. It makes a portable system be more possible to work. Combined with the processing software executable in PC windows system, the proposed system not only saves hardware cost but also processing time of software. The system performance achieves 0.05 mm accuracy. It shows that a low- cost system is more possible to be high-performance.

  5. The Devil is in the Details: Using X-Ray Computed Tomography to Develop Accurate 3D Grain Characteristics and Bed Structure Metrics for Gravel Bed Rivers

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Hodge, R. A.; Leyland, J.; Sear, D. A.; Ahmed, S. I.

    2014-12-01

    Uncertainty for bedload estimates in gravel bed rivers is largely driven by our inability to characterize the arrangement and orientation of the sediment grains within the bed. The characteristics of the surface structure are produced by the water working of grains, which leads to structural differences in bedforms through differential patterns of grain sorting, packing, imbrication, mortaring and degree of bed armoring. Until recently the technical and logistical difficulties of characterizing the arrangement of sediment in 3D have prohibited a full understanding of how grains interact with stream flow and the feedback mechanisms that exist. Micro-focus X-ray CT has been used for non-destructive 3D imaging of grains within a series of intact sections of river bed taken from key morphological units (see Figure 1). Volume, center of mass, points of contact, protrusion and spatial orientation of individual surface grains are derived from these 3D images, which in turn, facilitates estimates of 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and grain exposure. By aggregating representative samples of grain-scale properties of localized interacting sediment into overall metrics, we can compare and contrast bed stability at a macro-scale with respect to stream bed morphology. Understanding differences in bed stability through representative metrics derived at the grain-scale will ultimately lead to improved bedload estimates with reduced uncertainty and increased understanding of interactions between grain-scale properties on channel morphology. Figure 1. CT-Scans of a water worked gravel-filled pot. a. 3D rendered scan showing the outer mesh, and b. the same pot with the mesh removed. c. vertical change in porosity of the gravels sampled in 5mm volumes. Values are typical of those measured in the field and lab. d. 2-D slices through the gravels at 20% depth from surface (porosity = 0.35), and e. 75% depth from

  6. Assessment of Image Processing and Resolution on Permeability and Drainage Simulations Through 3D Pore-networks Obtained Using X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Mills, G.; Willson, C. S.; Thompson, K. E.; Rivers, M. L.

    2013-12-01

    Typically, continuum-scale flow parameters are obtained through laboratory experiments. Over the past several years, image-based modeling, which is a direct simulation of flow through the structural arrangements of the voids and solids obtained using X-ray computed tomography (XCT) in a sample porous medium, has become a reliable technique for predicting certain flow parameters. Even though XCT is capable of resolving micron-level details, the voxel resolution of the reconstructed image is still dependent upon a number of factors, including the sample size, X-ray energy and XCT beamline setup. Thus, each imaging experiment requires a tradeoff between the sample size that can be imaged, the voxel resolution, and the length scale of the pore space that can be extracted. In addition, the geometric and topological properties of the void space and 3D pore network structure are dictated by the image processing and the choice of pore network generation method. In this research, image-based pore network models are used to quantitatively assess the impact of image resolution, image processing and the choice of pore network generation methods on simulated parameters. A 5 mm diameter and ~15 mm in length Berea sandstone core was scanned two times. First, a ~12 mm long section of the entire cross-section was scanned at 4.1 micron voxel resolution; next, a ~1.4 mm diameter and ~4.12 mm length section within the 1st domain was scanned at 1 micron voxel resolution. The resulting 3D datasets were filtered and segmented into solid and void space. The low resolution image was filtered and segmented using two different approaches in order to evaluate the potential of each approach in identifying the different solid phases in the original 16 bit dataset. A set of networks were created by varying the pore density on both the high and low resolution datasets in order to assess the impact of these factors on flow simulations. Single-phase permeability and a two-phase drainage pore

  7. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  8. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    SciTech Connect

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-04-15

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  9. Closed-bore XMR (CBXMR) systems for aortic valve replacement: x-ray tube imaging performance.

    PubMed

    Bracken, John A; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-04-01

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation. PMID:19472613

  10. X-ray studies of solar system objects: now and the next decade

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, G.

    2016-06-01

    XMM-Newton and Chandra have revealed the multiplicity of X-ray emissions from planets, comets and minor bodies in our solar system. This presentation will review the main findings so far and will look forward to the unique contributions that XMM-Newton can continue to provide in solar system exploration. As a prime example, Jupiter's polar regions show bright soft X-ray aurorae with a line-rich spectrum arising from charge exchange interactions of atmospheric neutrals with local and/or solar wind high charge-state heavy ions. At energies above ˜3 keV the auroral X-ray spectrum is featureless, pointing to an origin from electron bremsstrahlung. Jupiter's atmosphere scatters solar X-rays, so that the planet's disk displays an X-ray spectrum that closely resembles that of solar flares. The arrival of Juno at Jupiter this July will enable in situ measurements simultaneous with XMM-Newton observations, offering unique opportunities to validate models developed to describe the planet's behaviour. Unlike Jupiter, Mars and Venus lack a strong magnetic field, yet they show X-ray emissions from their disks and exospheres, via solar X-ray scattering and charge exchange. Future XMM-Newton observations of solar system targets, under different solar activity conditions, will provide ever deeper insights into their close relationships with their parent star.

  11. Directional x-ray dark-field imaging of strongly ordered systems

    SciTech Connect

    Jensen, Torben Haugaard; Feidenhans'l, Robert; Bech, Martin; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Rutishauser, Simon; Deyhle, Hans; Reznikova, Elena; Mohr, Juergen

    2010-12-01

    Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.

  12. New X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of long working distance

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Yumoto, Hirokatsu; Takeuchi, Akihisa; Suzuki, Yoshio; Yamauchi, Kazuto; Uruga, Tomoya

    2010-05-01

    A new X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of 300 mm long working distance has been developed at beamline 37XU of SPring-8. A focusing test has been performed in the X-ray energy range 20-37.7 keV. A focused beam size of 1.3 μm ( V)×1.5 μm ( H) has been achieved at an X-ray energy of 30 keV, and a total photon flux of the focused beam was about 2.7×10 10 photons/s. Micro-X-ray fluorescence (μ-XRF) analysis of eggplant roots has been carried out using the developed microprobe. It is clearly observed in the XRF images that cadmium is highly accumulated in the endodermis, exodermis and epidermis of roots. This study demonstrates the potential of scanning microscopy for heavy elements analysis in the high-energy X-ray region.

  13. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue

    PubMed Central

    Bukreeva, Inna; Fratini, Michela; Campi, Gaetano; Pelliccia, Daniele; Spanò, Raffaele; Tromba, Giuliana; Brun, Francesco; Burghammer, Manfred; Grilli, Marco; Cancedda, Ranieri; Cedola, Alessia; Mastrogiacomo, Maddalena

    2015-01-01

    The understanding of structure–function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required. PMID:26442248

  14. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  15. Synchrotron X-ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum dot Nanoparticles in Daphnia Magna

    SciTech Connect

    Jackson, B.; Pace, H; Lanzirotti, A; Smith, R; Ranville, J

    2009-01-01

    The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

  16. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  17. Hybrid deterministic-stochastic modeling of x-ray beam bowtie filter scatter on a CT system.

    PubMed

    Liu, Xin; Hsieh, Jiang

    2015-01-01

    Knowledge of scatter generated by bowtie filter (i.e. x-ray beam compensator) is crucial for providing artifact free images on the CT scanners. Our approach is to use a hybrid deterministic-stochastic simulation to estimate the scatter level generated by a bowtie filter made of a material with low atomic number. First, major components of CT systems, such as source, flat filter, bowtie filter, body phantom, are built into a 3D model. The scattered photon fluence and the primary transmitted photon fluence are simulated by MCNP - a Monte Carlo simulation toolkit. The rejection of scattered photon by the post patient collimator (anti-scatter grid) is simulated with an analytical formula. The biased sinogram is created by superimposing scatter signal generated by the simulation onto the primary x-ray beam signal. Finally, images with artifacts are reconstructed with the biased signal. The effect of anti-scatter grid height on scatter rejection are also discussed and demonstrated.

  18. The NeXT x-ray telescope system: status update

    NASA Astrophysics Data System (ADS)

    Ogasaka, Yasushi; Kunieda, Hideyo; Miyazawa, Takuya; Serlemitsos, Peter; Soong, Yang; Okajima, Takashi; Maeda, Yoshitomo; Mori, Hideyuki; Ishida, Manabu; Awaki, Hisamitsu; Furuzawa, Akihiro; Namba, Yoshiharu; Uesugi, Kentaro; Suzuki, Yoshio; Haba, Yoshito; Tamura, Keisuke; Tsunemi, Hiroshi; Yamashita, Koujun; Itoh, Masayuki

    2008-07-01

    Japan's NeXT mission has been approved for the Phase-A in 2007. At present NeXT is in the process of transition to the Phase-B. One of the unique feature of the mission is an imaging spectroscopy in unprecedentedly wide energy region from 0.5 to 80 keV. The X-Ray Telescope (XRT) system covers the energy region by means of grazing incidence reflective optics. International collaboration has been formed for the project and design and basic study have been carried out so far. Current baseline specification includes two hard X-ray telescopes which are combined with the Hard X-ray Imager (Si + CdTe pixel or strip) and cover 5 to 80 keV, and two soft X-ray telescopes which cover 0.3 to about 20 keV, one combined with a high resolution X-ray micro-calorimeter and the other with an X-ray CCD. Both of hard and soft X-ray mirrors employ same optical design; tightly-nested, conically-approximated thin-foil Wolter-I optics. The mission requirements for XRT system have been identified as 300 cm2 at 30 keV for the hard X-ray telescope in total and 400 cm2 at 6 keV for the soft X-ray telescope per unit. The requirement on the point spread function is 1.7 arcmin in HPD, as well as the goal being 1.2 arcmin. Based on the current level of technology all the mission requirements are expected to be satisfied.

  19. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B.; Holzwarth, Ronald

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  20. Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.; Hara, K. Y.; Taira, H.; Sato, H.

    2016-11-01

    The convertible source system for the neutron and the X-ray imagings was installed in the 45MeV electron linear accelerator facility at Hokkaido University. The source system is very useful for a complementary imaging. The imaging measurements for a sample were performed with both beams by using a vacuum tube type image intensifier. The enhanced contrast was obtained from the dataset of the radiograms measured with the neutron and X-ray beams.

  1. Two-stage reflective optical system for achromatic 10 nm x-ray focusing

    NASA Astrophysics Data System (ADS)

    Motoyama, Hiroto; Mimura, Hidekazu

    2015-12-01

    Recently, coherent x-ray sources have promoted developments of optical systems for focusing, imaging, and interferometers. In this paper, we propose a two-stage focusing optical system with the goal of achromatically focusing pulses from an x-ray free-electron laser (XFEL), with a focal width of 10 nm. In this optical system, the x-ray beam is expanded by a grazing-incidence aspheric mirror, and it is focused by a mirror that is shaped as a solid of revolution. We describe the design procedure and discuss the theoretical focusing performance. In theory, soft-XFEL lights can be focused to a 10 nm area without chromatic aberration and with high reflectivity; this creates an unprecedented power density of 1020 W cm-2 in the soft-x-ray range.

  2. Discovery of an X-Ray-emitting Contact Binary System 2MASS J11201034‑2201340

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Yang, Ting-Chang; Chou, Yi; Liu, L.; Qian, S.-B.; Hui, C. Y.; Kong, Albert K. H.; Lin, L. C. C.; Tam, P. H. T.; Li, K. L.; Ngeow, Chow-Choong; Chen, W. P.; Ip, Wing-Huen

    2016-06-01

    We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034‑2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of P=0.28876208(56) days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson–Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of (0.7-1.5)× {10}30 erg s‑1, which is in the expected range of an X-ray emitting contact binary.

  3. Discovery of an X-Ray-emitting Contact Binary System 2MASS J11201034-2201340

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Yang, Ting-Chang; Chou, Yi; Liu, L.; Qian, S.-B.; Hui, C. Y.; Kong, Albert K. H.; Lin, L. C. C.; Tam, P. H. T.; Li, K. L.; Ngeow, Chow-Choong; Chen, W. P.; Ip, Wing-Huen

    2016-06-01

    We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034-2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of P=0.28876208(56) days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson-Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of (0.7-1.5)× {10}30 erg s-1, which is in the expected range of an X-ray emitting contact binary.

  4. SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns

    NASA Astrophysics Data System (ADS)

    Koestel, John

    2016-04-01

    3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected

  5. Coordinated X-Ray, Ultraviolet, Optical, and Radio Observations of the PSR J1023+0038 System in a Low-mass X-Ray Binary State

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Archibald, Anne M.; Bassa, Cees; Deller, Adam T.; Halpern, Jules P.; Heald, George; Hessels, Jason W. T.; Janssen, Gemma H.; Lyne, Andrew G.; Moldón, Javier; Paragi, Zsolt; Patruno, Alessandro; Perera, Benetge B. P.; Stappers, Ben W.; Tendulkar, Shriharsh P.; D'Angelo, Caroline R.; Wijnands, Rudy

    2015-06-01

    The PSR J1023+0038 binary system hosts a neutron star and a low-mass, main-sequence-like star. It switches on year timescales between states as an eclipsing radio millisecond pulsar and a low-mass X-ray binary (LMXB). We present a multi-wavelength observational campaign of PSR J1023+0038 in its most recent LMXB state. Two long XMM-Newton observations reveal that the system spends ˜70% of the time in a ≈3 × 1033 erg s-1 X-ray luminosity mode, which, as shown in Archibald et al., exhibits coherent X-ray pulsations. This emission is interspersed with frequent lower flux mode intervals with ≈ 5× {10}32 erg s-1 and sporadic flares reaching up to ≈1034 erg s-1, with neither mode showing significant X-ray pulsations. The switches between the three flux modes occur on timescales of order 10 s. In the UV and optical, we observe occasional intense flares coincident with those observed in X-rays. Our radio timing observations reveal no pulsations at the pulsar period during any of the three X-ray modes, presumably due to complete quenching of the radio emission mechanism by the accretion flow. Radio imaging detects highly variable, flat-spectrum continuum radiation from PSR J1023+0038, consistent with an origin in a weak jet-like outflow. Our concurrent X-ray and radio continuum data sets do not exhibit any correlated behavior. The observational evidence we present bears qualitative resemblance to the behavior predicted by some existing “propeller” and “trapped” disk accretion models although none can account for key aspects of the rich phenomenology of this system.

  6. X-ray computed tomography system using a multipixel photon counter

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Abderyim, Purkhet; Nomiya, Seiichiro; Hitomi, Keitaro; Ogawa, Akira; Sato, Shigehiro

    2008-08-01

    A photon-counting K-edge x-ray Computed Tomography (CT) system is useful for discriminating photon energy and for decreasing absorbed dose for patients. The CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation stage, a two-stage controller, a multipixel photon counter (MPPC) module, a 0.5-mm-thick zinc oxide (ZnO) scintillator, a counter board (CB), and a personal computer (PC). Tomography is accomplished by repeating the translation and rotation of an object. Penetrating x-ray photons from the object are detected by the scintillator in conjunction with the MPPC module, and the event signals are counted by the CB. Without using energy discriminating, photon counting CT was carried out by controlling x-ray spectra.

  7. X-ray-based machine vision system for distal locking of intramedullary nails.

    PubMed

    Juneho, F; Bouazza-Marouf, K; Kerr, D; Taylor, A J; Taylor, G J S

    2007-05-01

    In surgical procedures for femoral shaft fracture treatment, current techniques for locking the distal end of intramedullary nails, using two screws, rely heavily on the use of two-dimensional X-ray images to guide three-dimensional bone drilling processes. Therefore, a large number of X-ray images are required, as the surgeon uses his/her skills and experience to locate the distal hole axes on the intramedullary nail. The long-term effects of X-ray radiation and their relation to different types of cancer still remain uncertain. Therefore, there is a need to develop a surgical technique that can limit the use of X-rays during the distal locking procedure. A robotic-assisted orthopaedic surgery system has been developed at Loughborough University to assist orthopaedic surgeons by reducing the irradiation involved in such operations. The system simplifies the current approach as it uses only two near-orthogonal X-ray images to determine the drilling trajectory of the distal locking holes, thereby considerably reducing irradiation to both the surgeon and patient. Furthermore, the system uses robust machine vision features to reduce the surgeon's interaction with the system, thus reducing the overall operating time. Laboratory test results have shown that the proposed system is very robust in the presence of variable noise and contrast in the X-ray images.

  8. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    PubMed Central

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-01-01

    A hybrid closed-bore x-ray∕MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation. PMID:19472613

  9. First Results from a Microfocus X-Ray System for Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    1999-01-01

    The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.

  10. Repositioning accuracy of two different mask systems-3D revisited: Comparison using true 3D/3D matching with cone-beam CT

    SciTech Connect

    Boda-Heggemann, Judit . E-mail: judit.boda-heggemann@radonk.ma.uni-heidelberg.de; Walter, Cornelia; Rahn, Angelika; Wertz, Hansjoerg; Loeb, Iris; Lohr, Frank; Wenz, Frederik

    2006-12-01

    Purpose: The repositioning accuracy of mask-based fixation systems has been assessed with two-dimensional/two-dimensional or two-dimensional/three-dimensional (3D) matching. We analyzed the accuracy of commercially available head mask systems, using true 3D/3D matching, with X-ray volume imaging and cone-beam CT. Methods and Materials: Twenty-one patients receiving radiotherapy (intracranial/head-and-neck tumors) were evaluated (14 patients with rigid and 7 with thermoplastic masks). X-ray volume imaging was analyzed online and offline separately for the skull and neck regions. Translation/rotation errors of the target isocenter were analyzed. Four patients were treated to neck sites. For these patients, repositioning was aided by additional body tattoos. A separate analysis of the setup error on the basis of the registration of the cervical vertebra was performed. The residual error after correction and intrafractional motility were calculated. Results: The mean length of the displacement vector for rigid masks was 0.312 {+-} 0.152 cm (intracranial) and 0.586 {+-} 0.294 cm (neck). For the thermoplastic masks, the value was 0.472 {+-} 0.174 cm (intracranial) and 0.726 {+-} 0.445 cm (neck). Rigid masks with body tattoos had a displacement vector length in the neck region of 0.35 {+-} 0.197 cm. The intracranial residual error and intrafractional motility after X-ray volume imaging correction for rigid masks was 0.188 {+-} 0.074 cm, and was 0.134 {+-} 0.14 cm for thermoplastic masks. Conclusions: The results of our study have demonstrated that rigid masks have a high intracranial repositioning accuracy per se. Given the small residual error and intrafractional movement, thermoplastic masks may also be used for high-precision treatments when combined with cone-beam CT. The neck region repositioning accuracy was worse than the intracranial accuracy in both cases. However, body tattoos and image guidance improved the accuracy. Finally, the combination of both mask

  11. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  12. Experimental setup and the system performance for single-grid-based phase-contrast x-ray imaging (PCXI) with a microfocus x-ray tube

    NASA Astrophysics Data System (ADS)

    Lim, Hyunwoo; Park, Yeonok; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Park, Chulkyu; Woo, Taeho; Lee, Minsik; Kim, Jinsoo; Chung, Nagkun; Kim, Jinwon; Kim, Jinguk

    2015-08-01

    In this work, we investigated a simplified approach to phase-contrast x-ray imaging (PCXI) by using a single antiscatter grid and a microfocus x-ray tube, which has potential to open the way to further widespread use of PCXI into the related application areas. We established a table-top setup for PCXI studies of biological and non-biological samples and investigated the system performance. The PCXI system consists of a focused-linear grid having a strip density of 200 lines/in. (JPI Healthcare Corp.), a microfocus x-ray tube having a focal spot size of about 5 μm (Hamamatsu, L7910), and a high-resolution CMOS imaging detector having a pixel size of 48 μm (Rad-icon Imaging Corp., Shad-o-Box 2048). By using our prototype system, we successfully obtained attenuation, scattering, and differential phase-contrast x-ray images of improved visibility from the raw images of several samples at x-ray tube conditions of 50 kVp and 6 mAs. Our initial results indicate that the single-grid-based approach seems a useful method for PCXI with great simplicity and minimal requirements on the setup alignment.

  13. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph

    1993-01-01

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  14. Intense X-ray flares from active stellar systems - EV Lacertae and HD 8357

    NASA Technical Reports Server (NTRS)

    Ambruster, C.; Snyder, W. A.; Wood, K. S.

    1984-01-01

    The HEAO A-1 Sky Survey Experiment included X-ray data used to define light curves for the flare star EV Lac and for X-ray flares observed in the binary system HD 8357. The data were taken during flare events and were detailed enough to calculate the flare rates and flaring luminosities. The peak luminosities during flares were several times the luminosities in normal X-ray flares emitted by the objects. Peak luminosities reached 30-50 times the normal variations and were associated with an order of magnitude increase in energy output. EV Lac was sufficiently active to be recommended for inclusion in future X-ray monitoring programs.

  15. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

    1993-09-14

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

  16. Single grating x-ray imaging for dynamic biological systems

    NASA Astrophysics Data System (ADS)

    Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.

    2012-07-01

    Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.

  17. Spectral feature variations in x-ray diffraction imaging systems

    NASA Astrophysics Data System (ADS)

    Wolter, Scott D.; Greenberg, Joel A.

    2016-05-01

    Materials with different atomic or molecular structures give rise to unique scatter spectra when measured by X-ray diffraction. The details of these spectra, though, can vary based on both intrinsic (e.g., degree of crystallinity or doping) and extrinsic (e.g., pressure or temperature) conditions. While this sensitivity is useful for detailed characterizations of the material properties, these dependences make it difficult to perform more general classification tasks, such as explosives threat detection in aviation security. A number of challenges, therefore, currently exist for reliable substance detection including the similarity in spectral features among some categories of materials combined with spectral feature variations from materials processing and environmental factors. These factors complicate the creation of a material dictionary and the implementation of conventional classification and detection algorithms. Herein, we report on two prominent factors that lead to variations in spectral features: crystalline texture and temperature variations. Spectral feature comparisons between materials categories will be described for solid metallic sheet, aqueous liquids, polymer sheet, and metallic, organic, and inorganic powder specimens. While liquids are largely immune to texture effects, they are susceptible to temperature changes that can modify their density or produce phase changes. We will describe in situ temperature-dependent measurement of aqueous-based commercial goods in the temperature range of -20°C to 35°C.

  18. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    SciTech Connect

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Slagowski, Jordan M.; Funk, Tobias; Raval, Amish N.; Speidel, Michael A.

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using a 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on

  19. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    PubMed Central

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Slagowski, Jordan M.; Funk, Tobias; Raval, Amish N.; Speidel, Michael A.

    2015-01-01

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using a 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on

  20. 3D Structure of Sulfolobus solfataricus Carboxypeptidase Developed by Molecular Modeling is Confirmed by Site-Directed Mutagenesis and Small Angle X-Ray Scattering

    PubMed Central

    Occhipinti, Emanuela; Martelli, Pier Luigi; Spinozzi, Francesco; Corsi, Federica; Formantici, Cristina; Molteni, Laura; Amenitsch, Heintz; Mariani, Paolo; Tortora, Paolo; Casadio, Rita

    2003-01-01

    Sulfolobus solfataricus carboxypeptidase (CPSso) is a thermostable zinc-metalloenzyme with a Mr of 43,000. Taking into account the experimentally determined zinc content of one ion per subunit, we developed two alternative 3D models, starting from the available structures of Thermoactinomyces vulgaris carboxypeptidase (Model A) and Pseudomonas carboxypeptidase G2 (Model B). The former enzyme is monomeric and has one metal ion in the active site, while the latter is dimeric and has two bound zinc ions. The two models were computed by exploiting the structural alignment of the one zinc- with the two zinc-containing active sites of the two templates, and with a threading procedure. Both computed structures resembled the respective template, with only one bound zinc with tetrahedric coordination in the active site. With these models, two different quaternary structures can be modeled: one using Model A with a hexameric symmetry, the other from Model B with a tetrameric symmetry. Mutagenesis experiments directed toward the residues putatively involved in metal chelation in either of the models disproved Model A and supported Model B, in which the metal-binding site comprises His108, Asp109, and His168. We also identified Glu142 as the acidic residue interacting with the water molecule occupying the fourth chelation site. Furthermore, the overall fold and the oligomeric structure of the molecule was validated by small angle x-ray scattering (SAXS). An ab initio original approach was used to reconstruct the shape of the CPSso in solution from the experimental curves. The results clearly support a tetrameric structure. The Monte Carlo method was then used to compare the crystallographic coordinates of the possible quaternary structures for CPSso with the SAXS profiles. The fitting procedure showed that only the model built using the Pseudomonas carboxypeptidase G2 structure as a template fitted the experimental data. PMID:12885660

  1. An inexpensive x-ray imaging system of big visual field

    NASA Astrophysics Data System (ADS)

    Yu, Chunyu; Qing, Baowang; Chang, Benkang

    2006-01-01

    In this paper, a new kind of x-ray imaging system designed by our laboratory is introduced in detail. Different from the traditional x-ray imaging system, its image intensifier is a combined one. The system's main components are the intensifying screen and the brightness intensifier and they are coupled by lens. Compared with the traditional x-ray imaging system, it has the advantages of low cost, big visual field and convenient installation. At the very beginning of this paper, the structure and the imaging principle of the new kind of x-ray imaging system are described, then requirements for the key components of this system are discussed and put forward. At the end of this paper, we give the images of the foot and the bag, which are the imaging results of the system. It indicates that the x-ray imaging system is satisfied and just for its low price, the usual users such as the middle and small hospitals can afford the system. As for the imaging performance of the system as concerned, it can be applied to security checking, medical treatment, nondestructive testing and many other fields of the science and technology.

  2. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    SciTech Connect

    Laloum, D.; Printemps, T.; Bleuet, P.; Lorut, F.

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  3. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray

  4. Comparison of agricultural soils' structure depending on tillage system using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Beckers, Eléonore; Degré, Aurore; Ly, Sarann; Léonard, Angélique

    2010-05-01

    , Belgium). The cone beam source operated at 100 kV, using an aluminium filter. The detector configuration, i.e. 1048×2000 pixels 16-bit X-ray camera, and the distance source-object-camera were adjusted to produce images with a pixel size of 17 µm. This resolution allows us to visualize both meso- and macro- porosity. In this study, half the samples were placed under a 15000 kPa pressure (corresponding pressure for the wilting point) in Richards' apparatus in order to empty the meso- and macro-porosity. To determine a priori the class of porosity for the samples, relations between water retention and pressure head can be plotted using this apparatus. Scanning results consist in 2D images. The 2D images are recombined to form 3D structure. Then the pore network can be analyzed through useful factors like size distribution, shape, connectivity, orientation, tortuosity etc. The oral presentation will report the first analysis results of images obtained from the microtomographic investigation of soil samples. Soil sampling and scanning methods will be detailed. Main porosity parameters will be discussed, soil's structure will be defined, and finally differences according to the agricultural practices will be put in evidence.

  5. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  6. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  7. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  8. An explosives detection system for airline security using coherent x-ray scattering technology

    NASA Astrophysics Data System (ADS)

    Madden, Robert W.; Mahdavieh, Jacob; Smith, Richard C.; Subramanian, Ravi

    2008-08-01

    L-3 Communications Security and Detection Systems (SDS) has developed a new system for automated alarm resolution in airline baggage Explosive Detection Systems (EDS) based on coherent x-ray scattering spectroscopy. The capabilities of the system were demonstrated in tests with concealed explosives at the Transportation Security Laboratory and airline passenger baggage at Orlando International Airport. The system uses x-ray image information to identify suspicious objects and performs targeted diffraction measurements to classify them. This extra layer of detection capability affords a significant reduction in the rate of false alarm objects that must presently be resolved by opening passenger bags for hand inspection.

  9. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  10. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  11. Development of Silver Tape Target System for High Repetition X-ray Laser

    NASA Astrophysics Data System (ADS)

    Nishikino, Masaharu; Ochi, Yoshihiro; Hasegawa, Noboru; Kawachi, Tetsuya; Ohba, Toshiyuki; Kaihori, Takeshi; Nagashima, Keisuke

    The development of continuous pumping to the target system is an important issue for realizing an x-ray laser (XRL) with the high repetition rate. We have developed a 13.9 nm XRL using a silver tape target and demonstrated a highly coherent XRL with an oscillator-amplifier configuration using two tape target systems and the TOPAZ laser system with a 10-J and a 0.1-Hz repetition rate. The output energy is comparable to the x-ray laser generated with a silver-deposited slab target, and the pointing stability using the new tape target system is better than conventional slab target.

  12. Development of an X-ray imaging system with SOI pixel detectors

    NASA Astrophysics Data System (ADS)

    Nishimura, Ryutaro; Arai, Yasuo; Miyoshi, Toshinobu; Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo

    2016-09-01

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented.

  13. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Gendreau, Keith C.

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.

  14. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Gendreau, Keith C.

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  15. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  16. Backscatter x-ray development for space vehicle thermal protection systems

    SciTech Connect

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-23

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  17. UNIVERSAL BEHAVIOR OF X-RAY FLARES FROM BLACK HOLE SYSTEMS

    SciTech Connect

    Wang, F. Y.; Dai, Z. G.; Yi, S. X.; Xi, S. Q. E-mail: dzg@nju.edu.cn

    2015-01-01

    X-ray flares have been discovered in black hole systems such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A* at the center of our Galaxy, and some active galactic nuclei. Occurrences of X-ray flares are always accompanied by relativistic jets. However, it is still unknown whether or not there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here, we report observed data of X-ray flares and show that they have three statistical properties similar to solar flares, including power-law distributions of their energies, durations, and waiting times, which can be explained by a fractal-diffusive, self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetically dominated.

  18. A vehicle threat detection system using correlation analysis and synthesized x-ray images

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Elmaghraby, Adel

    2013-06-01

    The goal of the proposed research is to automate the vehicle threat detection with X-ray images when a vehicle crosses the country border or the gateway of a secured facility (military base). The proposed detection system requires two inputs: probe images (from X-ray machine) and gallery images (from database). For each vehicle, the gallery images include the X-ray images of fully-loaded (with typical cargo) and unloaded (empty) vehicle. The proposed system produces two types of outputs for threat detection: the detected anomalies and the synthesized images (e.g., grayscale fusion, color fusion, and differential images). The anomalies are automatically detected with the block-wise correlation analysis between two temporally aligned images (probe versus gallery). The locations of detected anomalies can be marked with small rectangles on the probe X-ray images. The several side-view images can be combined into one fused image in gray scale and in colors (color fusion) that provides more comprehensive information to the operator. The fused images are suitable for human analysis and decision. We analyzed a set of vehicle X-ray images, which consists of 4 images generated from AS and E OmniView Gantry™. The preliminary results of detected anomalies and synthesized images are very promising; meanwhile the processing speed is very fast.

  19. X-ray properties of the Be/X-ray system 28 0114+650 = LSI +65deg 010

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.; Swank, J. H.; Szymkowiak, A. E.; White, N. E.

    1983-01-01

    Results are presented from experiments on the Einstein Observatory, HEAO 1, and OSO 8 on the temporal and spectral properties of 2S 0114+650. In a 12 hr Einstein monitor proportional counter and solid state spectrometer observation, two episodes of flaring occurred by an order of magnitude over about 1 hr. Variability on shorter time scales showed a preferred period of 14.9 minutes, but periodic pulsations were not seen in the HEAO 1 and OSO 8 data. The spectra above 1 keV were typical of accreting X-ray pulsars; the power law was E exp -alpha with alpha of about 1.2 for the number spectrum up to a cutoff at 14 keV. There is some evidence that the spectrum is steeper when the source is quiescent at low luminosity, but no large spectral changes attended the flares. Absorption column densities were consistent with interstellar reddening of the proposed companion, the Be star LSI +65 deg010. In the minute and hour variability and in the spectral character, 2S0114+650 is similar to other Be star-neutron star binary X-ray sources. Variations over several days in the OSO 8 data suggest orbital effects.

  20. Multibeam field emission x-ray system with half-scan reconstruction algorithm

    SciTech Connect

    Lu Yang; Yu Hengyong; Cao Guohua; Zhao Jun; Wang Ge; Zhou, Otto

    2010-07-15

    Purpose: In this article, the authors propose a multibeam field emission x-ray (MBFEX) system along with a half-scan fan-beam reconstruction algorithm. Methods: The proposed system consists of a linear CNT-based MBFEX source array, a single large area detector that is divided into same number of segments as the number of x-ray beams, a multihole collimator that aligns each beam with a corresponding detector segment, and a sample rotation stage. The collimator is placed between the source and the object to restrict the x-ray radiations through the target object only. In this design, all the x-ray beams are activated simultaneously to provide multiple projection views of the object. The detector is virtually segmented and synchronized with the x-ray exposure and the physiological signals when gating is involved. The transmitted x-ray intensity from each beam is collected by the corresponding segment on the detector. After each exposure, the object is rotated by a step angle until sufficient data set is collected. The half-scan reconstruction formula for MBFEX system is derived from the conventional filtered backprojection algorithm. To demonstrate the advantages of the system and method in reducing motion artifacts, the authors performed simulations with both standard and dynamic Shepp-Logan phantoms. Results: The numerical results indicate that the proposed multibeam system and the associated half-scan algorithm can effectively reduce the scanning time and improve the image quality for a time-varying object. Conclusions: The MBFEX technique offers an opportunity for the innovation of multisource imaging system.

  1. Operation of the ultrasoft x-ray system on NSTX (abstract)

    SciTech Connect

    Stutman, D.; Iovea, M.; Finkenthal, M.; Kaita, R.; Johnson, D.; Roquemore, L.; Roney, P.

    2001-01-01

    The ultrasoft x-ray imaging system on National Spherical Torus Experiment (NSTX) became operational and provided the first data in the filtered diode slow bow tie configuration. Using different band pass filters on each of three arrays allows an approximate spectroscopic estimate of the plasma impurity content, as well as of the electron temperature. Magnetohydrodynamics (MHD) activity from different plasma regions is also observed. The soft x-ray emission profiles are well behaved until an Internal Reconnection Event occurs. Examples of NSTX MHD phenomena seen in the ultrasoft x-ray emission under different operational regimes will be presented. From a technical point of view, we point out that the industrial PC based data acquisition system was not adversely affected by stray magnetic fields due to its close proximity to the NSTX device. Also, the surface barrier diodes withstood baking to 100{sup o}C relatively well.

  2. Development of an X-ray fluorescence holographic measurement system for protein crystals

    NASA Astrophysics Data System (ADS)

    Sato-Tomita, Ayana; Shibayama, Naoya; Happo, Naohisa; Kimura, Koji; Okabe, Takahiro; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-06-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α2β2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm3) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  3. Generation and dose distribution measurement of flash x-ray in KALI-5000 system.

    PubMed

    Menon, Rakhee; Roy, Amitava; Mitra, S; Sharma, A; Mondal, J; Mittal, K C; Nagesh, K V; Chakravarthy, D P

    2008-10-01

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm(2) current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO(4):Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance approximately 1/x(n), where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  4. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    SciTech Connect

    Menon, Rakhee; Roy, Amitava; Mitra, S.; Sharma, A.; Mondal, J.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  5. Comparing expert systems for identifying chest x-ray reports that support pneumonia.

    PubMed Central

    Chapman, W. W.; Haug, P. J.

    1999-01-01

    We compare the performance of four computerized methods in identifying chest x-ray reports that support acute bacterial pneumonia. Two of the computerized techniques are constructed from expert knowledge, and two learn rules and structure from data. The two machine learning systems perform as well as the expert constructed systems. All of the computerized techniques perform better than a baseline keyword search and a lay person, and perform as well as a physician. We conclude that machine learning can be used to identify chest x-ray reports that support pneumonia. PMID:10566352

  6. Single x-ray transmission system for bone mineral density determination

    SciTech Connect

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  7. Optimization of X-ray tomography through a cooperative computing system in grid

    SciTech Connect

    Hasan, Moin Goraya, Major Singh

    2015-08-28

    Cooperative Computing implemented as Cooperative Computing System (CCS) in grid has been proved a considerably reliable technique to execute the tasks with real time constraints in a grid environment. This technique can be applied in many high performance distributed computing applications. HPC has a large number of applications in various fields of physics. One such application in radiation physics is X-ray tomography. X-Ray tomography contains numerous applications in various fields of science, technology and research. As the technology is changing from analog to digital in almost all the scenarios, this paper presents an idea towards the attachment of X-ray tomography assembly to HPC environment so as to obtain the highly reliable optimization.

  8. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  9. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  10. Spectral and timing nature of the symbiotic X-ray binary 4U 1954+319: The slowest rotating neutron star in an X-ray binary system

    SciTech Connect

    Enoto, Teruaki; Corbet, Robin H. D.; Sasano, Makoto; Yamada, Shin'ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Fuerst, Felix; Wilms, Jörn

    2014-05-10

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ∼5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (∼7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (∼60%-80%), and the location in the Corbet diagram favor high B-field (≳ 10{sup 12} G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10{sup 33}-10{sup 35} erg s{sup –1}), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ∼10{sup 13} G NS, this scheme can explain the ∼5.4 hr equilibrium rotation without employing the magnetar-like field (∼10{sup 16} G) required in the disk accretion case. The timescales of multiple irregular flares (∼50 s) can also be attributed to the free-fall time from the Alfvén shell for a ∼10{sup 13} G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  11. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  12. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in an X-Ray Binary System

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jörn

    2014-05-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60%-80%), and the location in the Corbet diagram favor high B-field (gsim 1012 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1033-1035 erg s-1), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1013 G NS, this scheme can explain the ~5.4 hr equilibrium rotation without employing the magnetar-like field (~1016 G) required in the disk accretion case. The timescales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfvén shell for a ~1013 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  13. Design and implemention of a multi-functional x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang

    2015-10-01

    A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.

  14. Direct Measurement of Mammographic X-Ray Spectra with a Digital CdTe Detection System

    PubMed Central

    Abbene, Leonardo; Gerardi, Gaetano; Principato, Fabio; Sordo, Stefano Del; Raso, Giuseppe

    2012-01-01

    In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in mammography (1–30 keV). The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole collimator and a custom alignment device. A comparison with the attenuation curves and the half value layer values, obtained from the measured and simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research, calibration of dosimeters and advanced quality controls in mammography. PMID:22969406

  15. Automatic multimodal 2D/3D image fusion of ultrasound computer tomography and x-ray mammography for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Hopp, Torsten; Duric, Neb; Ruiter, Nicole V.

    2012-03-01

    Breast cancer is the most common cancer among women. The established screening method to detect breast cancer in an early state is X-ray mammography. However, X-ray frequently provides limited contrast of tumors located within glandular tissue. A new imaging approach is Ultrasound Computer Tomography generating threedimensional volumes of the breast. Three different images are available: reflectivity, attenuation and speed of sound. The correlation of USCT volumes with X-ray mammograms is of interest for evaluation of the new imaging modality as well as for a multimodal diagnosis. Yet, both modalities differ in image dimensionality, patient positioning and deformation state of the breast. In earlier work we proposed a methodology based on Finite Element Method to register speed of sound images with the according mammogram. In this work, we enhanced the methodology to register all three image types provided by USCT. Furthermore, the methodology is now completely automated using image similarity measures to estimate rotations in datasets. A fusion methodology is proposed which combines the information of the three USCT image types with the X-ray mammogram via semitransparent overlay images. The evaluation was done using 13 datasets from a clinical study. The registration accuracy was measured by the displacement of the center of a lesion marked in both modalities. Using the automated rotation estimation, a mean displacement of 10.4 mm was achieved. Due to the clinically relevant registration accuracy, the methodology provides a basis for evaluation of the new imaging device USCT as well as for multimodal diagnosis.

  16. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  17. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    NASA Astrophysics Data System (ADS)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  18. A bench-top K X-ray fluorescence system for quantitative measurement of gold nanoparticles for biological sample diagnostics

    NASA Astrophysics Data System (ADS)

    Ricketts, K.; Guazzoni, C.; Castoldi, A.; Royle, G.

    2016-04-01

    Gold nanoparticles can be targeted to biomarkers to give functional information on a range of tumour characteristics. X-ray fluorescence (XRF) techniques offer potential quantitative measurement of the distribution of such heavy metal nanoparticles. Biologists are developing 3D tissue engineered cellular models on the centimetre scale to optimise targeting techniques of nanoparticles to a range of tumour characteristics. Here we present a high energy bench-top K-X-ray fluorescence system designed for sensitivity to bulk measurement of gold nanoparticle concentration for intended use in such thick biological samples. Previous work has demonstrated use of a L-XRF system in measuring gold concentrations but being a low energy technique it is restricted to thin samples or superficial tumours. The presented system comprised a high purity germanium detector and filtered tungsten X-ray source, capable of quantitative measurement of gold nanoparticle concentration of thicker samples. The developed system achieved a measured detection limit of between 0.2 and 0.6 mgAu/ml, meeting specifications of biologists and being approximately one order of magnitude better than the detection limit of alternative K-XRF nanoparticle detection techniques. The scatter-corrected K-XRF signal of gold was linear with GNP concentrations down to the detection limit, thus demonstrating potential in GNP concentration quantification. The K-XRF system demonstrated between 5 and 9 times less sensitivity than a previous L-XRF bench-top system, due to a fundamental limitation of lower photoelectric interaction probabilities at higher K-edge energies. Importantly, the K-XRF technique is however less affected by overlying thickness, and so offers future potential in interrogating thick biological samples.

  19. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  20. A robot-based detector manipulator system for a hard x-ray nanoprobe instrument.

    SciTech Connect

    Shu, D., Maser, J., Holt, M. , Winarski, R., Preissner, C.,Lai, B., Vogt, S., Stephenson, G.B.

    2007-11-11

    This paper presents the design of a robot-based detector manipulator for microdiffraction applications with a hard X-ray nanoprobe instrument system being constructed at the Advanced Photon Source (APS) for the Center for Nanoscale Materials (CNM) being constructed at Argonne National Laboratory (ANL). Applications for detectors weighing from 1.5 to 100 kg were discussed in three configurations.

  1. High Energy X-Ray System Specification for the Device Assembly Facility (DAF) at the NNSS

    SciTech Connect

    Fry, David A.

    2012-08-10

    This specification establishes requirements for an X-Ray System to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS) to support radiography of experimental assemblies for Laboratory (LANL, LLNL, SNL) programs conducting work at the NNSS.

  2. INTEGRATED SYSTEM SIMULATION IN X-RAY RADIOGRAPHY

    SciTech Connect

    T. KWAN; ET AL

    2001-01-01

    An integrated simulation capability is being developed to examine the fidelity of a dynamic radiographic system. This capability consists of a suite of simulation codes which individually model electromagnetic and particle transport phenomena and are chained together to model an entire radiographic event. Our study showed that the electron beam spot size at the converter target plays the key role in determining material edge locations. The angular spectrum is a relatively insensitive factor in radiographic fidelity. We also found that the full energy spectrum of the imaging photons must be modeled to obtain an accurate analysis of material densities.

  3. Energy-discriminating K-edge x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Abderyim, Purkhet; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitaro; Ogawa, Akira; Sato, Shigehiro; Ichimaru, Toshio

    2008-08-01

    An energy-discriminating K-edge x-ray Computed Tomography (CT) system is useful for increasing contrast resolution of a target region and for diagnosing cancers utilizing a drug delivery system. The CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation stage, a two-stage controller, a cadmium telluride (CdTe) detector, a charge amplifier, a shaping amplifier, a multi-channel analyzer (MCA), a counter board (CB), and a personal computer (PC). The K-edge CT is accomplished by repeating translation and rotation of an object. Penetrating x-ray spectra from the object are measured by a spectrometer utilizing the CdTe detector, amplifiers, and MCA. Both the photon energy and the energy width are selected by the MCA for discriminating photon energy. Enhanced iodine K-edge x-ray CT was performed by selecting photons with energies just beyond iodine K-edge energy of 33.2 keV.

  4. Combined use of backscattered and transmitted images in x-ray personnel screening systems

    NASA Astrophysics Data System (ADS)

    Tracey, B.; Schiefele, Markus; Alvino, Christopher; Miller, Eric; Al-Kofani, Omar

    2012-06-01

    Current aviation security relies heavily on personnel screening using X-ray backscatter systems or other advanced imaging technologies. Passenger privacy concerns and screening times can be reduced through the use of low-dose twosided X-ray backscatter (Bx) systems, which also have the ability to collect transmission (Tx) X-ray. Bx images reveal objects placed on the body, such as contraband and security threats, as well as anatomical features at or close to the surface, such as lungs cavities and bones. While the quality of the transmission images is lower than medical imagery due to the low X-ray dose, Tx images can be of significant value in interpreting features in the Bx images, such as lung cavities, which can cause false alarms in automated threat detection (ATD) algorithms. Here we demonstrate an ATD processing chain fusing both Tx and BX images. The approach employs automatically extracted fiducial points on the body and localized active contour methods to segments lungs in acquired Tx and Bx images. Additionally, we derive metrics from the Tx image can be related to the probability of observing internal body structure in the Bx image. The combined use of Tx and Bx data can enable improved overall system performance.

  5. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    NASA Astrophysics Data System (ADS)

    2005-05-01

    New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they

  6. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  7. Ultraviolet and X-ray detection of the 56 Peg system (KO 2p + WD)

    NASA Technical Reports Server (NTRS)

    Schindler, M.; Stencel, R. E.; Linsky, J. L.; Basri, G.; Helfand, D.

    1982-01-01

    Both IUE short and long wavelength exposures of the 56 Peg system are discussed. This mild barium star has an X-ray luminosity of 3 x 10 to the 31st power ergs/1, comparable to the rapidly rotating RS CVn binary systems, yet lies in a region of the HR diagram where stellar X-rays are generally not observed. This cool, bright giant is not a rapid rotator and the key to understanding its emission lies in the recent discovery of its white dwarf companion. Accretion onto the white dwarf of approximately 0.1% of the stellar wind of the primary is sufficient to power an X-ray source of the observed luminosity. Reprocessing of the X-rays in the cool dense stellar wind explains the origin of the UV emission line spectrum, and may explain the time varying asymmetry of the Mg 2 kappa line profile that is observed. Graphs which show observed fluxes and wavelengths are discussed.

  8. Athena as the next generation X-ray observatory: Solar system targets and exoplanets

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Sciortino, Salvatore

    Athena studies of the solar system, by providing ever deeper insights in the complex workings of planetary magnetospheres and exospheres, will answer many of the questions left open by the pioneering work of Chandra and XMM-Newton and will add enormously to our understanding of the interactions of space plasmas and magnetic fields. The non-dispersive character of X-IFU spectroscopy will enable Jupiter’s auroral and scattered solar emissions, and the Io Plasma Torus, to be mapped spatially and spectrally at high resolution; will enable surface composition analysis through fluorescence spectra of the Galilean satellites; will establish how planetary exospheres, such as Mars’, and comets respond to the interaction with the solar wind, in a global way that in situ measurements cannot provide. The X-IFU, with its two orders of magnitude improved effective area over current spectrometers, will push the search for auroral X-ray emission on Saturn to much fainter limits, and set very sensitive constraints on Uranus X-ray emission. Athena will explore the magnetic interplay between stars and planets in X-rays by searching for X-ray spectral variability over the planet's orbital phases and for systems of different orbital eccentricity, and will investigate ingress/eclipse/egress effects for transiting hot-Jupiter exoplanets; again instrumental to this will be the vastly improved signal-to-noise ratio provided by Athena over that achieved by XMM-Newton or Chandra.

  9. X-ray transfer in binary systems - A Monte Carlo study

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Joss, P. C.; Rappaport, S.

    1978-01-01

    Results are presented for Monte Carlo calculations of X-ray light curves for binary systems surrounded by clouds with simple density distributions, chemical compositions, and ionization structures. Occultation of the X radiation by the companion star is taken into account along with Compton scattering and photoionization within the clouds. The models are used to examine the effect of various cloud geometries and ionization structures on the emergent X-ray flux as a function of orbital phase and X-ray energy. The results demonstrate the sensitivity of observed light curves and phase-dependent spectra with respect to the optical depth, geometry, and ionization structure of a surrounding cloud for the cases of a uniform-density cloud with a radius four times the binary orbital separation, a steady-state constant-velocity stellar wind emanating from the companion star, and a spherically symmetric shell or 'cocoon' of the type proposed for Cyg X-3. It is concluded that X-ray binary systems are unlikely to be surrounded by obscuring clouds.

  10. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  11. Data acquisition system for X-ray free-electron laser experiments at SACLA

    PubMed Central

    Joti, Yasumasa; Kameshima, Takashi; Yamaga, Mitsuhiro; Sugimoto, Takashi; Okada, Kensuke; Abe, Toshinori; Furukawa, Yukito; Ohata, Toru; Tanaka, Ryotaro; Hatsui, Takaki; Yabashi, Makina

    2015-01-01

    A data acquisition system for X-ray free-electron laser experiments at SACLA has been developed. The system has been designed for reliable shot-to-shot data storage with a high data stream greater than 4 Gbps and massive data analysis. Configuration of the system and examples of prompt data analysis during experiments are presented. Upgrade plans for the system to extend flexibility are described. PMID:25931070

  12. Monte-Carlo simulation of a slot-scanning X-ray imaging system.

    PubMed

    Kulkarni, Mayuresh; Dendere, Ronald; Nicolls, Fred; Steiner, Stef; Douglas, Tania S

    2016-01-01

    We present a method for simulating slot-scanning X-ray imaging using the general-purpose Monte Carlo simulation package PENELOPE and penEasy Imaging. Different phantoms can be defined with the PENGEOM package, which defines bodies as combinations of volumes limited by quadric surfaces. The source-detector geometry, the position of the object, the collimator, the X-ray tube properties, the detector material and the pixel dimensions are defined. The output of the time-delay integration detector is simulated using sequential slot outputs derived from penEasy Imaging. The simulations are validated using tungsten and aluminium test objects, which are both simulated and imaged. The simulations are compared to the X-ray images using standard image quality metrics. The MTF, NPS and DQE curves show that the real and simulated X-ray images are comparable in terms of spatial resolution, noise and frequency information. The implementation can be modified to suit alterations in the system being simulated. PMID:26725256

  13. Microscopic x-ray imaging system for biomedical applications using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki

    2007-02-01

    An X-ray direct-conversion type detector with a spatial resolution of 10-11 μm was developed for real-time biomedical imaging. The detector incorporates the X-ray SATICON pickup tube with a photoconductive target layer of amorphous selenium. For high-resolution imaging, the X-ray image is directly converted into an electric signal in the photoconductive layer without image blur. Microangiography experiments were carried out for depicting angiogenic vessels in a rabbit model of cancer using the direct-conversion detector and a third generation synchrotron radiation source at SPring-8. In synchrotron radiation radiography, a long source-to-object distance and a small source spot can produce high-resolution images. After transplantation of cancer cells into the rabbit auricle, small tumor blood vessels with diameters of 20-30 μm in an immature vascular network produced by angiogenesis were visualized by contrast material injection into the auricular artery at a monochromatic X-ray energy of 33.2 keV just above the iodine K-edge energy. The synchrotron radiation system is a useful tool to evaluate the micro-angioarchitecture of malignant tumors in animal models of cancer for in vivo preclinical studies.

  14. Flash X-Ray Diffraction System for Fast, Single-PulseTemperature and Phase Transition Measurements (Pre-print)

    SciTech Connect

    Michael J. Madlener; Dane V. Morgan

    2007-06-12

    A new, fast, single-pulse diagnostic for determining phase transitions and measuring the bulk temperature of polycrystalline metal objects has been developed. The diagnostic consists of a 37-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71-{angstrom} monochromatic X rays and a P-43 fluor coupled to a cooled, charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1{sup o} divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm-diameter molybdenum anode. X rays are produced by a high-energy electron beam transiting inward from the cathode to the anode in a needle-and-washer configuration. The anode's characteristic K-{alpha} X-ray emission lines are utilized for this diffraction system. The X-ray anode is heavily shielded in all directions other than the collimated beam. The X-ray diode has a sealed reentrant system, allowing X rays to be produced inside a vacuum containment vessel, close to the sample under study.

  15. Multimodality image guidance system integrating X-ray fluoroscopy and ultrasound image streams with electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; Shechter, Guy; Stanton, Douglas; Dalal, Sandeep; Elgort, Daniel; Manzke, Robert; Chan, Raymond C.; Zagorchev, Lyubomir

    2007-03-01

    This work presents an integrated system for multimodality image guidance of minimally invasive medical procedures. This software and hardware system offers real-time integration and registration of multiple image streams with localization data from navigation systems. All system components communicate over a local area Ethernet network, enabling rapid and flexible deployment configurations. As a representative configuration, we use X-ray fluoroscopy (XF) and ultrasound (US) imaging. The XF imaging system serves as the world coordinate system, with gantry geometry derived from the imaging system, and patient table position tracked with a custom-built measurement device using linear encoders. An electromagnetic (EM) tracking system is registered to the XF space using a custom imaging phantom that is also tracked by the EM system. The RMS fiducial registration error for the EM to X-ray registration was 2.19 mm, and the RMS target registration error measured with an EM-tracked catheter was 8.81 mm. The US image stream is subsequently registered to the XF coordinate system using EM tracking of the probe, following a calibration of the US image within the EM coordinate system. We present qualitative results of the system in operation, demonstrating the integration of live ultrasound imaging spatially registered to X-ray fluoroscopy with catheter localization using electromagnetic tracking.

  16. Tool 3D geometry measurement system

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Ni, Jun; Sun, Yi; Lin, Xuewen

    2001-10-01

    A new non-contact tool 3D geometry measurement system based on machine vision is described. In this system, analytical and optimization methods are used respectively to achieve system calibration, which can determine the rotation center of the drill. The data merging method is fully studied which can translate the scattered different groups of raw data in sensor coordinates into drill coordinates and get 3-D topography of the drill body. Corresponding data processing methods for drill geometry are also studied. Statistical methods are used to remove the outliers. Laplacian of Gaussian operator are used to detect the boundary on drill cross-section and drill tip profile. The arithmetic method for calculating the parameters is introduced. The initial measurement results are presented. The cross-section profile, drill tips geometry are shown. Pictures of drill wear on drill tip are given. Parameters extracted from the cross-section are listed. Compared with the measurement results using CMM, the difference between this drill geometry measurement system and CMM is, Radius of drill: 0.020mm, Helix angle: 1.310, Web thickness: 0.034mm.

  17. 3-D reconstruction and virtual ductoscopy of high-grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT.

    PubMed

    Ichihara, Shu; Ando, Masami; Maksimenko, Anton; Yuasa, Tetsuya; Sugiyama, Hiroshi; Hashimoto, Eiko; Yamasaki, Katsuhito; Mori, Kensaku; Arai, Yoshinori; Endo, Tokiko

    2008-01-01

    Stereomicroscopic observations of thick sections, or three-dimensional (3-D) reconstructions from serial sections, have provided insights into histopathology. However, they generally require time-consuming and laborious procedures. Recently, we have developed a new algorithm for refraction-based X-ray computed tomography (CT). The aim of this study is to apply this emerging technology to visualize the 3-D structure of a high-grade ductal carcinomas in situ (DCIS) of the breast. The high-resolution two-dimensional images of the refraction-based CT were validated by comparing them with the sequential histological sections. Without adding any contrast medium, the new CT showed strong contrast and was able to depict the non-calcified fine structures such as duct walls and intraductal carcinoma itself, both of which were barely visible in a conventional absorption-based CT. 3-D reconstruction and virtual endoscopy revealed that the high-grade DCIS was located within the dichotomatous branches of the ducts. Multiple calcifications occurred in the necrotic core of the continuous DCIS, resulting in linear and branching (casting type) calcifications, a hallmark of high-grade DCIS on mammograms. In conclusion, refraction-based X-ray CT approaches the low-power light microscopic view of the histological sections. It provides high quality slice data for 3-D reconstruction and virtual ductosocpy.

  18. Chandra HRC Observations of X-Rays from the Jupiter System

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; Clarke, J. T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In support of the Cassini fly-by of Jupiter, the Chandra X-Ray Observatory's High Resolution Camera (HRC) was used to observe the Jovian system for a complete rotation of Jupiter on December 18, 2000, from 10-20 UT (Universal Time). The HRC is most sensitive to x-rays in the 0.1-10 keV range, with a peak sensitivity in the 1-1.5 keV range, and is a direct descendant of the imagers on the Einstein and ROSAT (Roentgen Satellite) satellites. Chandra differs from other x-ray observatories primarily by virtue of its remarkable 0.5 inch half-power PSF (Point Spread Function), which provides ten times the acuity of its nearest rival. Preliminary analysis of the December 18 data has yielded the following results: 1) a strong, high-latitude northern auroral 'hot spot,' which is relatively fixed near 60-70 degrees north latitude and 160-180 degrees system III longitude, and which pulsates with a period of about 40 minutes and has an average emitted power of about 1 GW; 2) relatively uniform low-latitude emissions, with a total power output of about 2 GW; 3) the first detection of x-ray emissions from the Io Plasma Torus, with a dusk/dawn brightness ratio of about 2.2 and a total emitted power of about 0.7 GW; and 4) the first detection of x-ray emissions from Io itself, with an emitted power of about 0.06 GW. These power estimates are based on an assumed emission wavelength of 653 eV (corresponding to the Lyman alpha line of OVIII ions), and is subject to revision as Chandra spectra of Jupiter are analyzed further. We will present these and other results from this unique data set.

  19. Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System

    NASA Astrophysics Data System (ADS)

    Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.

    2016-02-01

    The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.

  20. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  1. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  2. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  3. X-ray optical system for imaging laser plumes with a spatial resolution of up to 70 nm

    NASA Astrophysics Data System (ADS)

    Nechai, A. N.; Pestov, A. E.; Polkovnikov, V. N.; Salashchenko, N. N.; Toropov, M. N.; Chkhalo, N. I.; Tsybin, N. N.; Shcherbakov, A. V.

    2016-04-01

    We consider an X-ray optical system which permits obtaining laser plume images at a wavelength of 13.5 nm with a resolution of up to 70 nm. The X-ray optical system comprises an X-ray Schwarzschild objective made up of two aspherical multilayer mirrors, a scintillator (YAG : Ce ceramics), which converts X-rays to the visible radiation, and a visible-optical system, which images the scintillator surface onto a CCD camera. The spatial resolution of the system is limited by the resolution of the optical system (0.7 μm) and the magnification (10×) of the X-ray objective and is as high as 70 nm. The effect of Schwarzschild objective mirror shapes on the spatial resolution is analysed. The profile of concave mirror aspherisation is considered, which provides the attainment of the diffraction-limited quality of the objective. Data are given for the quantum efficiency of the system at a wavelength of 13.5 nm. We describe the experimental test bench intended for studying the developed X-ray optical system and outline the first experimental data which illustrate its efficiency. Owing to the natural division into the 'X-ray' and 'visible' parts, the optical system under discussion permits an easy change of the magnification and the field of view without realigning the X-ray optical elements. The wavelength may be varied in a range between 3 and 40 nm by changing the multilayer mirrors.

  4. Discovery of X-Ray Emission from the First Be/Black Hole System

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M.; Iwasawa, K.; Zabalza, V.; Casares, J.

    2014-05-01

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k_BT = 0.07^{+0.04}_{-0.03} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above sime0.8 keV. The obtained total flux is F(0.3-5.5\\, keV) = (4.6^{+1.3}_{-1.1})\\times 10^{-14} erg cm-2 s-1. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L X = (3.7 ± 1.7) × 1031 erg s-1. Considering the estimated range of BH masses to be 3.8-6.9 M ⊙, this luminosity represents (6.7 ± 4.4) × 10-8 L Edd, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ~10-8 L Edd. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  5. Engineering Specification Document (ESD) of X-ray Vacuum Transport System (XVTS) for LCLS XTOD

    SciTech Connect

    Shen, S

    2006-01-25

    The vacuum system of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. The preliminary system layout, detailed analyses and suggested selection of the vacuum components for the XTOD tunnel section are presented in the preliminary design report [1]. This document briefly reviews the preliminary design and provides engineering specifications for the system, which can be used as 'design to' specifications for the final design. Also included are the requirements of plans for procurement, mechanical integration, schedule and the cost estimates.

  6. Cascaded-systems analyses of photon-counting x-ray detectors

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-03-01

    Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. Recently, cascaded systems analysis (CSA) has been extended to the description of the detective quantum efficiency (DQE) of SPC detectors. In this article we apply the new CSA approach to the description of the DQE of hypothetical direct-conversion selenium (Sc) and cadmium zinc telluride (CdZnTc) detectors including the effects of poly-energetic x-ray spectra, stochastic conversion of x-ray energy to electron­ hole (c-h) pairs, depth-dependent collection of e-h pairs using the Hecht relation, additive electronic noise, and thresholding. Comparisons arc made to an energy-integrating model. For this simple model, with the exception of thick (1- 10 mm) Sc-bascd convertors, we found that the SPC DQE was 5-20 %greater than that of the energy­ integrating model. This trend was tnw even when additive noise was included in the SPC model and excluded from the energy-integrating model. However, the DQE of SPC detectors with poor collection efficiency (such as thick (<1 mm) Sc detectors) and high levels of additive noise can be degraded by 40-90 % for all energies and x-ray spectra considered. vVhile photon-counting approaches arc not yet ready for routine diagnostic imaging, the available DQE is equal to or higher than that of conventional energy-integrating detectors under a wide range of x-ray energies and convertor thickness. However, like energy-integrating detectors, the DQE of SPC detectors will be degraded by the combination of poor collection efficiency and high levels of additive noise.

  7. Development of tomographic imaging systems using carbon-nanotube-based field-emission x-ray sources

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2005-11-01

    Conventional thermionic x-ray sources use hot filament cathodes to generate electrons for x-ray production. The thermionic technology has several inherent limitations such as high operating temperature, slow response time, and difficulty for miniaturization. On the other hand, field emission provides an alternative to generate electrons without all these limitations. The concept of field emission x-ray source has been proposed and tested in the early 1970s. Unfortunately all of the early field emission x-ray systems failed due primarily to the limitations on the electron field emitters. Carbon nanotubes (CNT) have recently emerged as a promising class of electron emissive materials and field emission x-ray source based on CNTs are expected to have significantly improved properties. We have recently developed a CNT-based field emission micro-focus x-ray source. It shows stable tube current under high operating voltage, extraordinary dynamic imaging capability, and excellent potential for miniaturization. All of these new features make it very attractive for various potential industrial and medical applications. In order to demonstrate its applications, two sets of x-ray imaging systems using this field emission x-ray source were constructed in our lab. One is a micro-computed tomographic (micro-CT) imaging system using a single field emission x-ray source for dynamic radiographic and tomographic imaging applications. It shows great potential for the future development of dynamic micro-CT scanner. The other one is a multi-beam field emission x-ray source with multiple addressable focal spots which can provide scanning x-ray beams without mechanical movement. It can lead to fast data acquisition rates for future tomographic imaging systems with a simplified experimental set-up.

  8. A dynamic 3D foot reconstruction system.

    PubMed

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  9. A High-Speed Detector System for X-ray Fluorescence Microprobes.

    SciTech Connect

    Siddons,P.D.; Dragone, A.; De Geronimo, g.; Kuczewski, A.; Kuczewski, J.; O

    2006-10-29

    We have developed a high-speed system for collecting x-ray fluorescence microprobe data, based on ASICs developed at BNL and high-speed processors developed by CSIRO. The system can collect fluorescence data in a continuous raster scan mode, and present elemental images in real time using Ryan's Dynamic Analysis algorithm. We will present results from a 32-element prototype array illustrating the concept. The final instrument will have 384 elements arranged in a square array around a central hole.

  10. X-ray studies of the redback system PSR J2129-0429

    NASA Astrophysics Data System (ADS)

    Noori, Hind Al; Roberts, Mallory; Hessels, Jason; McLaughlin, Maura; Breton, Rene

    2016-04-01

    We present new NuStar data of the redback millisecond pulsar (MSP) system PSR J2129-0429. Redback systems are important when it comes to understanding the evolution of MSPs, in terms of pulsar recycling, as they have been observed to transition between a state of accretion, where emission is in the optical and X-ray regimes, and a state of eclipsed radio pulsation. This system is particularly interesting due to some peculiarities: it has a more massive companion as well as a stronger magnetic field than other redbacks, indicating that the system is in a fairly early stage of recycling. It’s X-ray lightcurve (as obtained from XMM-Newton data) has a very hard power-law component and exhibits an efficiency of a few percent in X-ray. With the NuStar data, the spectrum can be seen to extend to ~30 keV. Additionally, it shows strong orbital variation, about 5 times greater than is typical for other systems, and is also very clearly double peaked. Hints of similar peaks have been observed in the lightcurves of other redback systems, and so this system can help in understanding the intrabinary shock of eclipsing MSPs.

  11. X-ray emission from the PSR B1259-63 system near apastron

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Tavani, M.; Belloni, T.

    1995-01-01

    The PSR B1259-63 system contains a 47 ms radio pulsar in a highly eccentric binary with a Be-star companion. Strongly time-variable X-ray emission was reported from this system as the pulsar was near apastron in 1992- early 1993. The variability was primarily deduced from an apparent nondetection of the PSR B1259-63 system during a first preapastron ROSAT observation in 1992 February. We have reanalyzed the ROSAT observations of the PSR B1259-63 system. Contrary to the results of a previous analysis, we find that the PSR B1259-63 system was detected by ROSAT during the first off-axis 1992 February observation. The intensity of the soft X-ray emission of the PSR B1259-63 system before and after the 1992 apastron appears to vary at most by a factor of approx. 2. Our results sensibly constrain theoretical models of X-ray emission from the PSR B1259-63 system.

  12. ROSAT x ray survey observations of active chromospheric binary systems and other selected sources

    NASA Technical Reports Server (NTRS)

    Ramsey, Lawrence W.

    1993-01-01

    The connection between processes that produce optical chromospheric activity indicators and those that produce x-rays in RS CVn binary systems by taking advantage of the ROSAT All-Sky Survey (RASS) results and our unique ground-based data set was investigated. In RS CVn systems, excess emission in the Ca 2 resonance (K & H) and infrared triplet (IRT) lines and in the Balmer lines of hydrogen is generally cited as evidence for chromospheric activity, which is usually modeled as scaled up solar-type activity. X-ray emission in RS CVn systems is believed to arise from coronal loop structures. Results from spectra data obtained from RASS observations are discussed and presented.

  13. MIT modular x-ray source systems for the study of plasma diagnostics

    SciTech Connect

    Coleman, J.W.; Wenzel, K.W.; Petrasso, R.D.; Lo, D.H.; Li, C.K.; Lierzer, J.R.; Wei, T. )

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an {ital e}-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded {ital e}-gun of the RACEHORSE system gives a 0.5--1.0-cm pulsable spot on target. The nongridded {ital e}-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design details and some RACEHORSE results are presented.

  14. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    SciTech Connect

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  15. Estimation of patient setup uncertainty using BrainLAB Exatrac X-Ray 6D system in image-guided radiotherapy.

    PubMed

    Infusino, Erminia; Trodella, Lucio; Ramella, Sara; D'Angelillo, Rolando M; Greco, Carlo; Iurato, Aurelia; Trodella, Luca E; Nacca, Alessandro; Cornacchione, Patrizia; Mameli, Alessandra

    2015-03-08

    The purpose of this study was to evaluate setup uncertainties for brain sites with ExacTrac X-Ray 6D system and to provide optimal margin guidelines. Fifteen patients with brain tumor were included in this study. Two X-ray images with ExacTrac X-Ray 6D system were used to verify patient position and tumor target localization before each treatment. The 6D fusion software first generates various sets of DRRs with position variations in both three translational and three rotational directions (six degrees of freedom) for the CT images. Setup variations (translation and rotation) after correction were recorded and corrected before treatment. The 3D deviations are expressed as mean ± standard deviation. The random error (Σ(σi)), systematic error (μi), and group systematic error (M(μi)) for the different X-ray were calculated using the definitions of van Herk.(1) Mean setup errors were calculated from X-ray images acquired after all fractions. There is moderate patient-to-patient variation in the vertical direction and small variations in systematic errors and magnitudes of random errors are smaller. The global systematic errors were measured to be less than 2.0 mm in each direction. Random component of all patients are smaller ranging from 0.1-0.3 mm small. The safety margin (SM) to the lateral, is 0.5 mm and 2.6 mm for van Herk(1) and Stroom et al.,(2) respectively, craniocaudal axis is 1.5 mm and 3.4 mm, respectively, and with respect to the antero-posterior axis, 2.3 mm and 3.9 mm. Daily X-ray imaging is essential to compare and assess the accuracy of treatment delivery to different anatomical locations.

  16. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  17. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  18. Method of and means for testing a glancing-incidence mirror system of an X-ray telescope

    NASA Technical Reports Server (NTRS)

    Dailey, C. C. (Inventor)

    1977-01-01

    An apparatus was designed for measuring the resolution and efficiency of a glancing-incidence mirror system having an even number of coaxial and confocal reflecting surfaces for use in an X-ray telescope. A collimated beam of X-rays is generated by an X-ray laser and directed along the axis of the system so that the beam is incident on the reflecting surfaces and illuminates a predetermined area. An X-ray detector, such as a photographic film, is located at the common focus of the surfaces so that the image produced by the X-rays may be compared with a test pattern interposed between the laser and the system.

  19. Processing of x-ray image in the intelligent setting system for fracture

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhang, Liyong; Liu, Sijiu; Yu, Zhiguo

    2006-11-01

    Intelligent setting system based on biomechanics and bone fracture therapy can accomplish micro-wound, intelligence and high efficiency of fracture setting. X-ray images grabbed by C-shape-arm X-ray machine supply the most key data for intelligent setting. Processing, analysis and transmission security of the image is the core in the system. According to characteristics being shown in three dimensions gray distribution figure and frequency spectrum of the image, histogram equalization in space domain and homomorphic filtering in frequency domain are separately proposed to enhance contrast and sharpness. On the foundation of mining orthopedics experts experience knowledge, setting for femoral-neck fracture is turned into three in-continuous operations that are reflected in the X-ray images through nine points, six lines, two angles and one distance and that are able to be implemented by mechanical manipulator and control device in the system. Master-slave reference frame is put forward to supply a stable reference standard to calculate parameters. Encryption method based on chaos dynamics system is brought forward to ensure image information security in the process of telemedicine intelligent setting for fracture. Clinic experience proved that the system can help orthopedists to correctly and reliably complete setting for bone fracture.

  20. Evaluation of Multiple-Scale 3D Characterization for Coal Physical Structure with DCM Method and Synchrotron X-Ray CT

    PubMed Central

    Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures. PMID:25861674

  1. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  2. The efficiency of an X-ray screening system at a mass disaster.

    PubMed

    Goodman, Norman R; Edelson, Linda B

    2002-01-01

    This is a study to determine the efficiency and efficacy of using an X-ray security screening system to locate both dental fragments and other foreign objects that might be commingled with fragmented remains in a mass disaster. A controlled study by the Pennsylvania Dental Identification Team (PADIT) revealed that a manual examination of simulated body bags containing commingled dental parts and foreign objects by a team of trained forensic odontologists was very effective in locating dental fragments and in finding foreign objects. Although this was effective, it was not efficient, because it was very time consuming. With the use of an X-ray security screening system, the time factor could be reduced. This study also revealed that even though this sophisticated equipment could reduce the time factor in locating commingled dental and foreign objects, a forensic odontologist should be utilized to be most effective. PMID:12064639

  3. A portable high-field pulsed magnet system for x-ray scattering studies.

    SciTech Connect

    Islam, Z.; Ruff, J.P.C.; Nojiri, H.; Matsuda, Y. H.; Ross, K. A.; Gaulin, B. D.; Qu, Z.; Lang, J. C.

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (- 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  4. The Transient X-Ray Burster Gro J1744-28: An Unstable Accretion System?

    NASA Technical Reports Server (NTRS)

    Wood, Kent; Hertz, Paul; Imamura, James; Wolff, Mike; Scargle, Jeffrey; Cuzzi, Jeffrey N. (Technical Monitor)

    1996-01-01

    The newly discovered burst/pulsar source GRO J1744-28 may be considered as a quasi-periodic oscillator (QPO) with a frequency in the 1-10 milli-Hz range, plus an X-ray pulsar with a period of .47 sec (IAU Circulars 6272, 6275, 6276, 6284, 6285, 6286). Since some of the observed properties of this system do not fit with the relaxation oscillators used to interpret rapid bursters, we are investigating the applicability of models that have been used for QPO in X-ray binary systems. Noting that some features of the nonlinear dynamical model called the dripping handrail are seen in the reported observations, we compare this model with the beat-frequency modulation picture of QPO.

  5. Evaluation of a computer aided X-ray fluorographic system. Part 2: Image processing

    NASA Astrophysics Data System (ADS)

    Burch, S. F.; Cocking, S. J.

    1981-12-01

    The TV imagery from a computer aided X-ray fluorographic system has been digitally processed with an I2S model 70E image processor, controlled by a PDP 11/60 minicomputer. The image processor allowed valuable processing for detection of defects in cast components to be carried out at television frame rates. Summation of TV frames was used to reduce noise, and hence improve the thickness sensitivity of the system. A displaced differencing technique and interactive contrast enhancement were then used to improve the reliability of inspection by removing spurious blemishes and interferences lines, while simultaneously enhancing the visibility of real defects. The times required for these operations are given, and the benefits provided for X-ray fluorography are illustrated by the results from inspection of aero engine castings.

  6. Development of an X-ray Micro-Laminography System at SPring-8

    SciTech Connect

    Hoshino, M.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.; Yagi, N.

    2011-09-09

    An x-ray micro-laminography system has been developed at SPring-8 and applied to measurements of planar objects that cannot be observed by x-ray computed tomography. To reconstruct a sectional image parallel to the planar surface, a filtered back-projection technique considering the inclination angle of a rotational axis was developed. Experimental conditions suitable for laminography measurements in this system were investigated. Spatial resolution in the reconstructed plane was almost determined by the detector resolution, while the spatial resolution perpendicular to the planar surface tended to be worse by the artifacts inherent of the laminographic scanning and reconstruction method. A laminated test sample was clearly observed in three dimensions.

  7. In application specific integrated circuit and data acquisition system for digital X-ray imaging

    NASA Astrophysics Data System (ADS)

    Beuville, E.; Cederström, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-02-01

    We have developed an Application Specific Integrated Circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications.

  8. Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Liu, Baodong; Wang, Ge; Ritman, Erik L.; Cao, Guohua; Lu, Jianping; Zhou, Otto; Zeng, Li; Yu, Hengyong

    2011-10-01

    A multisource x-ray interior imaging system with limited angle scanning is investigated to study the possibility of building an ultrafast micro-CT for dynamic small animal imaging, and two methods are employed to perform interior reconstruction from a limited number of projections collected by the multisource interior x-ray system. The first is total variation minimization with the steepest descent search (TVM-SD) and the second is total difference minimization with soft-threshold filtering (TDM-STF). Comprehensive numerical simulations and animal studies are performed to validate the associated reconstructed methods and demonstrate the feasibility and application of the proposed system configuration. The image reconstruction results show that both of the two reconstruction methods can significantly improve the image quality and the TDM-SFT is slightly superior to the TVM-SD. Finally, quantitative image analysis shows that it is possible to make an ultrafast micro-CT using a multisource interior x-ray system scheme combined with the state-of-the-art interior tomography.

  9. Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems.

    PubMed

    Liu, Baodong; Wang, Ge; Ritman, Erik L; Cao, Guohua; Lu, Jianping; Zhou, Otto; Zeng, Li; Yu, Hengyong

    2011-10-01

    A multisource x-ray interior imaging system with limited angle scanning is investigated to study the possibility of building an ultrafast micro-CT for dynamic small animal imaging, and two methods are employed to perform interior reconstruction from a limited number of projections collected by the multisource interior x-ray system. The first is total variation minimization with the steepest descent search (TVM-SD) and the second is total difference minimization with soft-threshold filtering (TDM-STF). Comprehensive numerical simulations and animal studies are performed to validate the associated reconstructed methods and demonstrate the feasibility and application of the proposed system configuration. The image reconstruction results show that both of the two reconstruction methods can significantly improve the image quality and the TDM-SFT is slightly superior to the TVM-SD. Finally, quantitative image analysis shows that it is possible to make an ultrafast micro-CT using a multisource interior x-ray system scheme combined with the state-of-the-art interior tomography.

  10. A quasi-realtime x-ray microtomography system at the Advanced Photon Source.

    SciTech Connect

    DeCarlo, F.; Foster, I.; Insley, J.; Kesselman, C.; Lane, P.; Mancini, D.; McNulty, I.; Su, M.; Tieman, B.; Wang, Y.; von Laszewski, G.

    1999-07-16

    The combination of high-brilliance x-ray sources, fast detector systems, wide-bandwidth networks, and parallel computers can substantially reduce the time required to acquire, reconstruct, and visualize high-resolution three-dimensional tomographic datasets. A quasi-realtime computed x-ray microtomography system has been implemented at the 2-BM beamline at the Advanced Photon Source at Argonne National Laboratory. With this system, a complete tomographic data set can be collected in about 15 minutes. Immediately after each projection is obtained, it is rapidly transferred to the Mathematics and Computing Sciences Division where preprocessing and reconstruction calculations are performed concurrently with the data acquisition by a SGI parallel computer. The reconstruction results, once completed, are transferred to a visualization computer that performs the volume rendering calculations. Rendered images of the reconstructed data are available for viewing back at the beamline experiment station minutes after the data acquisition was complete. The fully pipelined data acquisition and reconstruction system also gives us the option to acquire the tomographic data set in several cycles, initially with coarse then with fine angular steps. At present the projections are acquired with a straight-ray projection imaging scheme using 5-20 keV hard x rays in either phase or amplitude contrast mode at a 1-10 pm resolution. In the future, we expect to increase the resolution of the projections to below 100 nm by using a focused x-ray beam at the 2-ID-B beamline and to reduce the combined acquisition and computation time to the 1 min scale with improvements in the detectors, network links, software pipeline, and computation algorithms.

  11. An X-ray Imaging System for Hard-to-Reach Facility Diagnosis Using Femtosecond Laser-Plasma

    NASA Astrophysics Data System (ADS)

    Oishi, Yuji; Nayuki, Takuya; Nakajima, Chikahito; Fujii, Takashi; Zhidkov, Alexei; Nemoto, Koshichi

    2010-04-01

    For hard-to-reach facility diagnosis, a radiographic testing system that consists of a compact laser-plasma X-ray (LPX) generator and a compact X-ray imaging sensor is shown to be competitive to that based on the isotope imaging. A 1-mm-thick CsI charge-coupled device (CCD) sensor supplied with a cooling system was developed to tolerate a long X-ray exposition. Even without optimization of X-ray yield from a Ta thin film irradiated by 230 mJ, 70 fs laser pulses, clear X-ray images of a SUS304 pipe (outer diameter 34 mm with 4.5 mm thickness) with an elbow were produced.

  12. The Discovery of a Second Luminous Low Mass X-Ray Binary System in the Globular Cluster M15

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Angelini, Lorella

    2001-01-01

    Using the Chandra X-ray Observatory we have discovered a second bright X-ray source in the globular cluster M15 that is 2.7" to the west of AC211, the previously known low mass X-ray binary (LMXB) in this system. Prior to the 0.5" imaging capability of Chandra this second source could not have been resolved from AC211. The luminosity and spectrum of this new source, which we call M15-X2, are consistent with it also being a LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The new source, M15-X2, is coincident with a 18th U magnitude very blue star. The discovery of a second LMXB in M15 clears up a long standing puzzle where the X-ray and optical properties of AC211 appear consistent with the central source being hidden behind an accretion disk corona, and yet also showed a luminous X-ray burst suggesting the neutron star is directly visible. This discovery suggests instead that the X-ray burst did not come from AC211, but rather from the newly discovered X-ray source. We discuss the implications of this discovery for X-ray observations of globular clusters in nearby galaxies.

  13. Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.

    2008-11-01

    Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.

  14. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOEpatents

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  15. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOEpatents

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  16. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Glover, Jack L.; Hudson, Lawrence T.

    2016-06-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.

  17. PROS: An IRAF based system for analysis of x ray data

    NASA Technical Reports Server (NTRS)

    Conroy, M. A.; Deponte, J.; Moran, J. F.; Orszak, J. S.; Roberts, W. P.; Schmidt, D.

    1992-01-01

    PROS is an IRAF based software package for the reduction and analysis of x-ray data. The use of a standard, portable, integrated environment provides for both multi-frequency and multi-mission analysis. The analysis of x-ray data differs from optical analysis due to the nature of the x-ray data and its acquisition during constantly varying conditions. The scarcity of data, the low signal-to-noise ratio and the large gaps in exposure time make data screening and masking an important part of the analysis. PROS was developed to support the analysis of data from the ROSAT and Einstein missions but many of the tasks have been used on data from other missions. IRAF/PROS provides a complete end-to-end system for x-ray data analysis: (1) a set of tools for importing and exporting data via FITS format -- in particular, IRAF provides a specialized event-list format, QPOE, that is compatible with its IMAGE (2-D array) format; (2) a powerful set of IRAF system capabilities for both temporal and spatial event filtering; (3) full set of imaging and graphics tasks; (4) specialized packages for scientific analysis such as spatial, spectral and timing analysis -- these consist of both general and mission specific tasks; and (5) complete system support including ftp and magnetic tape releases, electronic and conventional mail hotline support, electronic mail distribution of solutions to frequently asked questions and current known bugs. We will discuss the philosophy, architecture and development environment used by PROS to generate a portable, multimission software environment. PROS is available on all platforms that support IRAF, including Sun/Unix, VAX/VMS, HP, and Decstations. It is available on request at no charge.

  18. Dedicated Stereophotogrammetric X-Ray System For Craniofacial Research And Treatment Planning

    NASA Astrophysics Data System (ADS)

    Baumrind, Sheldon; Moffitt, Francis; Curry, Sean; Isaacson, Robert J.

    1983-07-01

    We have constructed and brought into use what we believe to be the first dedicated coplanar craniofacial stereometric x-ray system for clinical use. Paired Machlett Dynamax 50/58 x-ray tubes with 0.3 mm focal spots are employed. Displacement between emitters is 16 inches. The focus film distance for both emitters is 66.5 inches. The mid-sagittal plane to focus distance is 60 inches. One film of each stereo pair conforms with the standards of the Second Roentgenocephalometric Workshop and can be used to make all standard two-dimensional orthodontic and cephalometric measurements. When supplemented by data from the conjugate film, a three-dimensional coordinate map can be generated as a machine operation. Specialized complementary software has been developed to increase the reliability of landmark location both in two and in three dimensions.

  19. Alignment System for Full-Shell Replicated X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysical applications using the electroformnickel replication process. For space-based applications these optics must be light-weight yet stable, which dictates the use of very-thin-walled full-shell mirrors. Such shells have been fabricated with resolution as good as 11 arcsec for hard x-rays, and technology enhancements under development at MSFC are aimed at producing mirrors with resolution better than 10 arcsec. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center designed to meet this challenge.

  20. An X-ray photoelectron spectroscopic study of the B-N-Ti system

    SciTech Connect

    Seal, S.; Barr, T.L.; Sobczak, N.; Benko, E.; Morgiel, J.

    1997-03-01

    Composite nitrides (such as BN, TiN) are widely used in various industrial applications because of their extreme wear and corrosion resistance, thermal and electrical properties. In order to obtain composite materials with these optimal properties, it is important to elucidate whether any chemical reactions occur at nitride/metal interfaces, e.g., those involving BN-Ti/TiN. Materials of interest include the deposition by PVD of Ti and TiN on BN substrates. Some of these systems were then subjected to varying degrees of physical and thermal alteration. Detailed X-ray photoelectron spectroscopy (XPS) has therefore been rendered of these interfaces using cross-sectional display and sputter etching. Resulting structural and morphological features have been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). Diffusion of the nitridation, oxynitride formation and interfacial growth are of general interest.