Science.gov

Sample records for 3-dimensional 3d structure

  1. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and 3-dimensional structural information

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2015-01-01

    SUMMARY Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of 3-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D web server and package are available at http://prodata.swmed.edu/PROMALS3D. PMID:24170408

  2. EK3D: an E. coli K antigen 3-dimensional structure database

    PubMed Central

    Kunduru, Bharathi Reddy; Nair, Sanjana Anilkumar; Rathinavelan, Thenmalarchelvi

    2016-01-01

    A very high rate of multidrug resistance (MDR) seen among Gram-negative bacteria such as Escherichia, Klebsiella, Salmonella, Shigella, etc. is a major threat to public health and safety. One of the major virulent determinants of Gram-negative bacteria is capsular polysaccharide or K antigen located on the bacterial outer membrane surface, which is a potential drug & vaccine target. It plays a key role in host–pathogen interactions as well as host immune evasion and thus, mandates detailed structural information. Nonetheless, acquiring structural information of K antigens is not straightforward due to their innate enormous conformational flexibility. Here, we have developed a manually curated database of K antigens corresponding to various E. coli serotypes, which differ from each other in their monosaccharide composition, linkage between the monosaccharides and their stereoisomeric forms. Subsequently, we have modeled their 3D structures and developed an organized repository, namely EK3D that can be accessed through www.iith.ac.in/EK3D/. Such a database would facilitate the development of antibacterial drugs to combat E. coli infections as it has evolved resistance against 2 major drugs namely, third-generation cephalosporins and fluoroquinolones. EK3D also enables the generation of polymeric K antigens of varying lengths and thus, provides comprehensive information about E. coli K antigens. PMID:26615200

  3. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  4. International "Intercomparison of 3-Dimensional (3D) Radiation Codes" (13RC)

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.

  5. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.; Wannamaker, P.E.

    1980-11-01

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  6. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  7. 3-Dimensional Terraced NAND (3D TNAND) Flash Memory-Stacked Version of Folded NAND Array

    NASA Astrophysics Data System (ADS)

    Kim, Yoon; Cho, Seongjae; Lee, Gil Sung; Park, Il Han; Lee, Jong Duk; Shin, Hyungcheol; Park, Byung-Gook

    We propose a 3-dimensional terraced NAND flash memory. It has a vertical channel so it is possible to make a long enough channel in 1F2 size. And it has 3-dimensional structure whose channel is connected vertically along with two stairs. So we can obtain high density as in the stacked array structure, without silicon stacking process. We can make NAND flash memory with 3F2 cell size. Using SILVACO ATLAS simulation, we study terraced NAND flash memory characteristics such as program, erase, and read. Also, its fabrication method is proposed.

  8. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  9. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles

    PubMed Central

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  10. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles.

    PubMed

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  11. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  12. BOPACE 3-D (the Boeing Plastic Analysis Capability for 3-dimensional Solids Using Isoparametric Finite Elements)

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Straayer, J. W.

    1975-01-01

    The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.

  13. 3-D Visualisation: Using Internet-based Activities to Enhance Student Understanding of 3-dimensional Spatial Relationships

    NASA Astrophysics Data System (ADS)

    Boyle, A. P.; Williams, M.; Williams, P.

    2011-12-01

    Spatial ability forms its own category separate from verbal ability. Various spatial abilities have been identified over the last three decades and classified into three types: mental rotation, spatial rotation and spatial visualization, which have been linked to high performance in STEM subjects. Geoscience demands spatial thinking from learners and practitioners, and spatial literacy has been seen as a fundamental skill in Geography, Earth & Environmental Sciences (GEES disciplines) essential for progression. First year GEES students not only have to cope with new learning and teaching environments (Maguire et al., 2008), but, arriving with different science backgrounds, are faced with the challenge of developing essential skills that may be novel for them. These essential skills are subject-specific, as well as transferable, and require an understanding of 3-dimensional spatial relationships. However, spatial skills can be troublesome for some students to master. Not only do many students find difficulty in acquiring spatial skills, facing a succession of hurdles that need to be overcome in developing their understanding, but also educators, often strong spatial thinkers themselves and unaware of the degree to which some students are spatially-challenged, may find it difficult to help. Recent studies have suggested that performance on abstract and applied spatial tasks may be enhanced through instruction and practice and spatially-intensive geoscience courses may strengthen performance on spatial tasks. At Liverpool, many first year geoscience modules require understanding of 3-D spatial relationships, often from initial 2-D observations (e.g. mineralogy, petrography, vulcanology, sedimentology, palaeontology, geological map work, structural geology and fieldwork). In this paper we outline work, supported by the UK Subject Centre for Geography, Earth and Environmental Sciences (GEES), involving first year geosciences students at Liverpool, in which we explored

  14. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  15. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  16. 3-Dimensional Protein Structure of Influenza

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The loss of productivity due to flu is staggering. Costs range as much as $20 billio a year. High mutation rates of the flu virus have hindered development of new drugs or vaccines. The secret lies in a small molecule which is attached to the host cell's surface. Each flu virus, no matter what strain, must remove this small molecule to escape the host cell to spread infection. Using data from space and earth grown crystals, researchers from the Center of Macromolecular Crystallography (CMC) are desining drugs to bind with this protein's active site. This lock and key fit reduces the spread of flu in the body by blocking its escape route. In collaboration with its corporate partner, the CMC has refined drug structure in preparation for clinical trials. Tested and approved relief is expected to reach drugstores by year 2004.

  17. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors.

    PubMed

    Wen, Zhong Quan; Li, Min; Li, Fei; Zhu, Shi Jin; Liu, Xiao Ying; Zhang, Yu Xin; Kumeria, Tushar; Losic, Dusan; Gao, Yang; Zhang, Wei; He, Shi Xuan

    2016-01-21

    3-Dimensional (3D) composites based on a unique combination of MnO2-nanostructures, graphene oxide nanosheets and porous Diatomaceous Earth (DE) microparticles (GO-DE@MnO2) were synthesized and explored for application in high-performance supercapacitors. To explore the influence of the structural properties of MnO2 nanostructures on supercapacitor performances, several MnO2 structures with nanosheet and nanowire morphologies were synthesized and characterized. The prepared GO-DE@MnO2 composites with MnO2 nanosheets due to their higher conductivity and higher surface area showed a larger specific capacitance of 152.5 F g(-1) and a relatively better cycle stability (83.3% capacitance retention after 2000 cycles at a scan rate of 2 A g(-1)), indicating great potential for application in supercapacitors. PMID:26645931

  18. Structured light field 3D imaging.

    PubMed

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-01

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639

  19. Inferential modeling of 3D chromatin structure

    PubMed Central

    Wang, Siyu; Xu, Jinbo; Zeng, Jianyang

    2015-01-01

    For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen. PMID:25690896

  20. 3D structure and nuclear targets

    NASA Astrophysics Data System (ADS)

    Dupré, Raphaël; Scopetta, Sergio

    2016-06-01

    Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three-dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non-nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse-momentum-dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also summarized, in particular novel coincidence measurements at high-luminosity facilities, such as Jefferson Laboratory. Finally the prospects for the next years at future facilities, such as the 12GeV Jefferson Laboratory and the Electron Ion Collider, are presented.

  1. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  2. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.

    PubMed

    Sarver, Michael; Zirbel, Craig L; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B

    2008-01-01

    New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, "Find RNA 3D" (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose

  3. 3D Structure of Tillage Soils

    NASA Astrophysics Data System (ADS)

    González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.

    2015-04-01

    Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and

  4. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures

    PubMed Central

    Sarver, Michael; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B.

    2010-01-01

    New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, “Find RNA 3D” (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs

  5. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  6. STAR3D: a stack-based RNA 3D structural alignment tool

    PubMed Central

    Ge, Ping; Zhang, Shaojie

    2015-01-01

    The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time. PMID:26184875

  7. STAR3D: a stack-based RNA 3D structural alignment tool.

    PubMed

    Ge, Ping; Zhang, Shaojie

    2015-11-16

    The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time. PMID:26184875

  8. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.

    PubMed

    Cannone, Jamie J; Sweeney, Blake A; Petrov, Anton I; Gutell, Robin R; Zirbel, Craig L; Leontis, Neocles

    2015-07-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  9. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server

    PubMed Central

    Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles

    2015-01-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  10. 3D-GNOME: an integrated web service for structural modeling of the 3D genome

    PubMed Central

    Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-01-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892

  11. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    PubMed

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892

  12. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations. PMID:26172844

  13. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging

    PubMed Central

    Lee, Eunsoo; Choi, Jungyoon; Jo, Youhwa; Kim, Joo Yeon; Jang, Yu Jin; Lee, Hye Myeong; Kim, So Yeun; Lee, Ho-Jae; Cho, Keunchang; Jung, Neoncheol; Hur, Eun Mi; Jeong, Sung Jin; Moon, Cheil; Choe, Youngshik; Rhyu, Im Joo; Kim, Hyun; Sun, Woong

    2016-01-01

    Understanding the structural organization of organs and organisms at the cellular level is a fundamental challenge in biology. This task has been approached by reconstructing three-dimensional structure from images taken from serially sectioned tissues, which is not only labor-intensive and time-consuming but also error-prone. Recent advances in tissue clearing techniques allow visualization of cellular structures and neural networks inside of unsectioned whole tissues or the entire body. However, currently available protocols require long process times. Here, we present the rapid and highly reproducible ACT-PRESTO (active clarity technique-pressure related efficient and stable transfer of macromolecules into organs) method that clears tissues or the whole body within 1 day while preserving tissue architecture and protein-based signals derived from endogenous fluorescent proteins. Moreover, ACT-PRESTO is compatible with conventional immunolabeling methods and expedites antibody penetration into thick specimens by applying pressure. The speed and consistency of this method will allow high-content mapping and analysis of normal and pathological features in intact organs and bodies. PMID:26750588

  14. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures

    PubMed Central

    Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador

    2015-01-01

    Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. PMID:25883144

  15. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions

    PubMed Central

    Rahrig, Ryan R.; Leontis, Neocles B.; Zirbel, Craig L.

    2010-01-01

    Motivation: Comparing 3D structures of homologous RNA molecules yields information about sequence and structural variability. To compare large RNA 3D structures, accurate automatic comparison tools are needed. In this article, we introduce a new algorithm and web server to align large homologous RNA structures nucleotide by nucleotide using local superpositions that accommodate the flexibility of RNA molecules. Local alignments are merged to form a global alignment by employing a maximum clique algorithm on a specially defined graph that we call the ‘local alignment’ graph. Results: The algorithm is implemented in a program suite and web server called ‘R3D Align’. The R3D Align alignment of homologous 3D structures of 5S, 16S and 23S rRNA was compared to a high-quality hand alignment. A full comparison of the 16S alignment with the other state-of-the-art methods is also provided. The R3D Align program suite includes new diagnostic tools for the structural evaluation of RNA alignments. The R3D Align alignments were compared to those produced by other programs and were found to be the most accurate, in comparison with a high quality hand-crafted alignment and in conjunction with a series of other diagnostics presented. The number of aligned base pairs as well as measures of geometric similarity are used to evaluate the accuracy of the alignments. Availability: R3D Align is freely available through a web server http://rna.bgsu.edu/R3DAlign. The MATLAB source code of the program suite is also freely available for download at that location. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: r-rahrig@onu.edu PMID:20929913

  16. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. PMID:26689764

  17. Non-contact 3D fingerprint scanner using structured light illumination

    NASA Astrophysics Data System (ADS)

    Troy, Mike; Hassebrook, Laurence; Yalla, Veeraganesh; Daley, Raymond

    2011-03-01

    As crime prevention and national security remain a top priority, requirements for the use of fingerprints for identification continue to grow. While the size of fingerprint databases continues to expand, new technologies that can improve accuracy and ultimately matching performance will become more critical to maintain the effectiveness of the systems. FlashScan3D has developed non-contact, fingerprint scanners based on the principles of Structured Light Illumination (SLI) that capture 3Dimensional data of fingerprints quickly, accurately and independently of an operator. FlashScan3D will present findings from various research projects performed for the US Army and the Department of Homeland Security.

  18. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  19. Unit cell geometry of 3-D braided structures

    NASA Technical Reports Server (NTRS)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  20. 3D visualization of middle ear structures

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Schmitt, Thomas

    1998-06-01

    The achievement of volume geometry data from middle ear structures and surrounding components performs a necessary supposition for the finite element simulation of the vibrational and transfer characteristics of the ossicular chain. So far those models base on generalized figures and size data from anatomy textbooks or particular manual and one- or two-dimensional distance measurements of single ossicles, mostly obtained by light microscopy, respectively. Therefore the goal of this study is to create a procedure for complete three-dimensional imaging of real middle ear structures (tympanic membrane, ossicles, ligaments) in vitro or even in vivo. The main problems are their microscopic size with relevant structures from 10 micrometer to 5 mm, representing various tissue properties (bone, soft tissue). Additionally, these structures are surrounded by the temporal bone, the most solid bone of the human body. Generally there exist several established diagnostic tools for medical imaging that could be used for geometry data acquisition, e.g., X-ray computed tomography and magnetic resonance imaging. Basically they image different tissue parameters, either bony structures (ossicles), or soft tissue (tympanic membrane, ligaments). But considering this application those standard techniques allow low spatial resolution only, usually in the 0.5 - 1mm range, at least in one spatial direction. Thus particular structures of the middle ear region could even be missed completely because of their spatial location. In vitro there is a way out by collecting three complete data sets, each distinguished by 90 degree rotation of a cube-shaped temporal bone specimen. That allows high-resolution imaging in three orthogonal planes, which essentially supports the three-dimensional interpolation of the unknown elements, starting from the regularly set elements of the cubic grid with an edge extension given by the original two-dimensional matrix. A different approach represents the

  1. Acetylcholinesterase: From 3D Structure to Function

    PubMed Central

    Dvir, Hay; Silman, Israel; Harel, Michal; Rosenberry, Terrone L.; Sussman, Joel L.

    2010-01-01

    By rapid hydrolysis of the neurotransmitter, acetylcholine, acetylcholinesterase terminates neurotransmission at cholinergic synapses. Acetylcholinesterase is a very fast enzyme, functioning at a rate approaching that of a diffusion-controlled reaction. The powerful toxicity of organophosphate poisons is attributed primarily to their potent inhibition of acetylcholinesterase. Acetylcholinesterase inhibitors are utilized in the treatment of various neurological disorders, and are the principal drugs approved thus far by the FDA for management of Alzheimer’s disease. Many organophosphates and carbamates serve as potent insecticides, by selectively inhibiting insect acetylcholinesterase. The determination of the crystal structure of Torpedo californica acetylcholinesterase permitted visualization, for the first time, at atomic resolution, of a binding pocket for acetylcholine. It also allowed identification of the active site of acetylcholinesterase, which, unexpectedly, is located at the bottom of a deep gorge lined largely by aromatic residues. The crystal structure of recombinant human acetylcholinesterase in its apo-state is similar in its overall features to that of the Torpedo enzyme; however, the unique crystal packing reveals a novel peptide sequence which blocks access to the active-site gorge. PMID:20138030

  2. Comparison of protein structures using 3D profile alignment.

    PubMed

    Suyama, M; Matsuo, Y; Nishikawa, K

    1997-01-01

    A novel method for protein structure comparison using 3D profile alignment is presented. The 3D profile is a position-dependent scoring matrix derived from three-dimensional structures and is basically used to estimate sequence-structure compatibility for prediction of protein structure. Our idea is to compare two 3D profiles using a dynamic programming algorithm to obtain optimal alignment and a similarity score between them. When the 3D profile of hemoglobin was compared with each of the profiles in the library, which contained 325 profiles of representative structures, all the profiles of other globins were detected with relatively high scores, and proteins in the same structural class followed the globins. Exhaustive comparison of 3D profiles in the library was also performed to depict protein relatedness in the structure space. Using multidimensional scaling, a planar projection of points in the protein structure space revealed an overall grouping in terms of structural classes, i.e., all-alpha, all-beta, alpha/beta, and alpha+beta. These results differ in implication from those obtained by the conventional structure-structure comparison method. Differences are discussed with respect to the structural divergence of proteins in the course of molecular evolution. PMID:9071025

  3. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  4. Capacitance extraction from complex 3D interconnect structures

    SciTech Connect

    Cartwright, D.; Csanak, G.; George, D.; Walker, R.; Kuprat, A.; Dengi, A.; Grobman, W.

    1999-06-01

    A new tool has been developed for calculating the capacitance matrix for complex 3D interconnect structures involving multiple layers of irregularly shaped interconnect, imbedded in different dielectric materials. This method utilizes a new 3D adaptive unstructured grid capability, and a linear finite element algorithm. The capacitance is determined from the minimum in the total system energy as the nodes are varied to minimize the error in the electric field in the dielectric(s).

  5. 3D annotation and manipulation of medical anatomical structures

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.

  6. A reduced-coordinate approach to modeling RNA 3-D structures

    SciTech Connect

    Tung, Chang-Shung

    1997-09-01

    With the realization of RNA molecules capable of performing very specific functions (e.g., catalytic RNAs and RNAs that bind ligand with affinity and specificity of an anti-body) and contrary to the traditional view that structure of RNA molecules being functionally passive, it has become clear that studying the 3-dimensional (3-D) folding of RNA molecules is a very important task. In the absence of sufficient number of experimentally determined RNA structures available up-to-date, folding of RNA structures computationally provides an alternative approach in studying the 3-D structure of RNA molecules. We have developed a computational approach for folding RNA 3-D structures. The method is conceptually simple and general. It consists of two major components. The first being the arrangement of all helices in space. Once the helices are positioned and oriented in space, structures of the connecting loops are modeled and inserted between the helices. Any number of structural constraints derived either experimentally or theoretically can be used to guide the folding processes. A conformational sampling approach is developed with structural equilibration using the Metropolis Monte Carlo simulation. The lengths of various loop sizes (ranging from 1 base to 7 bases) are calculated based on a set of RNA structures deposited in PDB as well as a set of loop structures constructed using our method. The validity of using the averaged loop lengths of the connecting loops as distance constraints for arranging the helices in space is studied.

  7. Designing 3D Structure by 5-7 Kirigami

    NASA Astrophysics Data System (ADS)

    Gong, Xingting; Cho, Yigil; Castle, Toen; Sussman, Daniel; Kamien, Randall

    2015-03-01

    The purpose of this talk is to explore how one can create 3D structures from 2D materials through the art of kirigami. Kirigami expands upon origami by allowing not only folds, but also cuts, into materials. If we take an incompressible material such as paper and remove a hole from it, the paper will buckle into the third dimension once that hole is sealed in order to relieve strain. Thus, orienting cuts and folds in certain places throughout a sheet of paper can influence its ``pop-up,'' 3D structure. To narrow down the inverse design problem, we confined ourselves to making only one kind of cut (which we call the ``5-7 cut'') on a honeycomb grid, and we show how this single cut can give rise to arbitrarily complex three dimensional structures. A simple set of rules exists: (a) one 5-7 cut divides the material into 2 sections which can choose to pop-up or down independently of each other, (b) rows of uniform cuts must pop up or down in unison, giving (nearly) arbitrary 2D structure, and (c) the 5-7 cuts can be arranged in various ways to create 6 basic pop-up ``modes,'' which can then be arranged to give (nearly) arbitrary 3D structure. These simple rules allow a framework for designing targeted 3D structure from an initial 2D sheet of material. This work was supported by NSF EFRI-ODISSEI Grant EFRI 13-31583.

  8. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures.

    PubMed

    Rahrig, Ryan R; Petrov, Anton I; Leontis, Neocles B; Zirbel, Craig L

    2013-07-01

    The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/. PMID:23716643

  9. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures

    PubMed Central

    Rahrig, Ryan R.; Petrov, Anton I.; Leontis, Neocles B.; Zirbel, Craig L.

    2013-01-01

    The R3D Align web server provides online access to ‘RNA 3D Align’ (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/. PMID:23716643

  10. Sydney-Gunnedah-Bowen Basin deep 3D structure

    NASA Astrophysics Data System (ADS)

    Danis, Cara

    2012-01-01

    Studies of the Sydney-Gunnedah-Bowen Basin (SGBB), one of the largest extensional rift sedimentary basins on the east coast of Australia, lack an understanding of the 3D upper crustal structure. Understanding of the subsurface structure is essential for many areas of resource exploration, development and management, as well as scientific research. Geological models provide a way to visualise and investigate the subsurface structure. The integrated regional scale gravity modelling approach, which uses boreholes and seismic data constraints, provides an understanding of the upper crustal structure and allows the development of a 3D geological model which can be used as the architectural framework for many different applications. This work presents a 3D geological model of the SGBB developed for application in high resolution thermal models. It is the culmination of geological surfaces derived from the interpolation of previous regional scale 2D gravity models and numerous borehole records. The model outlines the basement structure of the SGBB and provides information on depth to basement, depth to basal volcanics and thickness of overlying sediments. Through understanding the uncertainties, limitations, confidence and reliability of this model, the 3D geological model can provide the ideal framework for future research.

  11. RNAComposer and RNA 3D structure prediction for nanotechnology.

    PubMed

    Biesiada, Marcin; Pachulska-Wieczorek, Katarzyna; Adamiak, Ryszard W; Purzycka, Katarzyna J

    2016-07-01

    RNAs adopt specific, stable tertiary architectures to perform their activities. Knowledge of RNA tertiary structure is fundamental to understand RNA functions beginning with transcription and ending with turnover. Contrary to advanced RNA secondary structure prediction algorithms, which allow good accuracy when experimental data are integrated into the prediction, tertiary structure prediction of large RNAs still remains a significant challenge. However, the field of RNA tertiary structure prediction is rapidly developing and new computational methods based on different strategies are emerging. RNAComposer is a user-friendly and freely available server for 3D structure prediction of RNA up to 500 nucleotide residues. RNAComposer employs fully automated fragment assembly based on RNA secondary structure specified by the user. Importantly, this method allows incorporation of distance restraints derived from the experimental data to strengthen the 3D predictions. The potential and limitations of RNAComposer are discussed and an application to RNA design for nanotechnology is presented. PMID:27016145

  12. With the advent of domestic 3-dimensional (3D) printers and their associated reduced cost, is it now time for every medical school to have their own 3D printer?

    PubMed

    Balestrini, Christopher; Campo-Celaya, Tatiana

    2016-01-01

    Anatomy is the backbone of medical education and new techniques to improve learning are frequently explored. With the introduction of 3D printers specifically for the home market, the price of this technology has reached affordable levels. Using patient scan data, accurate 3D models can be printed that represent real human variation in anatomy to provide an innovative, inexpensive and valuable adjunct to anatomical teaching. Is it now time for every medical school to have their own 3D printer? PMID:26383082

  13. Instability and Wave Propagation in Structured 3D Composites

    NASA Astrophysics Data System (ADS)

    Kaynia, Narges; Fang, Nicholas X.; Boyce, Mary C.

    2014-03-01

    Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the complex instability and wrinkling pattern arising in 3D structured composites and the effect of the buckling pattern on the overall structural response. The 3D structured composites consisted of stiffer plates supported by soft matrix on both sides. Compression beyond the critical strain led to complex buckling patterns in the initially straight plates. The motivation of our work is to elaborate the formation of a system of prescribed periodic scatterers (metamaterials) due to buckling, and their effect to interfere wave propagation through the metamaterial structures. Such metamaterials made from elastomers enable large reversible deformation and, as a result, significant changes of the wave propagation properties. We developed analytical and finite element models to capture various aspects of the instability mechanism. Mechanical experiments were designed to further explore the modeling results. The ability to actively alter the 3D composite structure can enable on-demand tunability of many different functions, such as active control of wave propagation to create band-gaps and waveguides.

  14. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  15. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  16. 3D printed components with ultrasonically arranged microscale structure

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-02-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create and demonstrate a novel method to instantaneously orient micro-scale glass fibres within a selectively cured photocurable resin system, using ultrasonic forces to align the fibres in the desired 3D architecture. To achieve this we have mounted a switchable, focused laser module on the carriage of a three-axis 3D printing stage, above an in-house ultrasonic alignment rig containing a mixture of photocurable resin and discontinuous 14 μm diameter glass fibre reinforcement(50 μm length). In our study, a suitable print speed of 20 mm s-1 was used, which is comparable to conventional additive layer techniques. We show the ability to construct in-plane orthogonally aligned sections printed side by side, where the precise orientation of the configurations is controlled by switching the ultrasonic standing wave profile mid-print. This approach permits the realisation of complex fibrous architectures within a 3D printed landscape. The versatile nature of the ultrasonic manipulation technique also permits a wide range of particle types (diameters, aspect ratios and functions) and architectures (in-plane, and out-plane) to be patterned, leading to the creation of a new generation of fibrous reinforced composites for 3D printing.

  17. All dispenser printed flexible 3D structured thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.

    2015-12-01

    This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.

  18. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  19. The 3-D inelastic analyses for computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    The 3-D inelastic analysis method is a focused program with the objective to develop computationally effective analysis methods and attendant computer codes for three-dimensional, nonlinear time and temperature dependent problems present in the hot section of turbojet engine structures. Development of these methods was a major part of the Hot Section Technology (HOST) program over the past five years at Lewis Research Center.

  20. 3D reconstruction methods of coronal structures by radio observations

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-11-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  1. 3D reconstruction methods of coronal structures by radio observations

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  2. 3-D Structure of the Slave and Rae Cratons Provides Clues to Their Construction

    NASA Astrophysics Data System (ADS)

    Snyder, D. B.

    2013-12-01

    Deep geologic structures within cratons that make up continental cores were long neglected. Recently acquired geophysical data from large observational arrays and geochemical data resulting from exploration for diamond has now made possible co-registration of large-scale (400-km depth), truly 3-dimensional data sets. P-waves, surface waves and magnetotelluric observations provide 3-D wavespeed and conductivity models. Multi-azimuthal receiver functions map seismic discontinuity surfaces in 3-D. Xenolith suites erupted in kimberlites provide rock samples at key lithospheric depths, albeit at sparsely distributed locations. These multi-disciplinary models are becoming available for several key cratons worldwide; here the deep structure of the Slave and Rae cratons of the Canadian Shield is described. Lithospheric layers with tapered, wedge-shaped margins are common. Slave craton layers are sub-horizontal and indicate construction of the craton core at 2.7 Ga by underthrusting and flat stacking of lithosphere. The central Rae craton has predominantly dipping discontinuities that indicate construction at 1.9 Ga by thrusting similar to that observed in crustal ';thick-skinned' fold-and-thrust belts. 3-D mapping of conductivity and metasomatism, the latter via mineral recrystallization and resetting of isotopic ages, overprints primary structures in both cratons. Distribution of more conductivitve mantle suggests that assumed causative pervasive metasomatism occurs at 100-200 km depths with ';chimneys' reaching to shallower depths, typically in locations where kimberlites or mineralization has occurred.

  3. The 3D structure of QCD and the roots of the Standard Model

    NASA Astrophysics Data System (ADS)

    Mulders, P. J.

    2016-03-01

    For many phenomenological applications involving hadrons in high energy processes the hadronic structure can be taken care of by parton distribution functions (PDFs), in which only the collinear momenta of quarks and gluons are important. In principle the transverse structure, however, provides interesting new phenomenology. Taking into account transverse momenta of partons one works with transverse momentum dependent PDFs (TMDs), These allow all spin-spin correlations and also spin-orbit correlations that have a time reversal odd character and lead to new observables. In many theoretical developments the link to the collinear treatment is used. In this talk I will speculate on a novel view of the 3-dimensional (3D) structure of QCD, which fits in a broader study looking at the roots of the Standard Model of particle physics.

  4. Dynactin 3D structure: implications for assembly and dynein binding.

    PubMed

    Imai, Hiroshi; Narita, Akihiro; Maéda, Yuichiro; Schroer, Trina A

    2014-09-23

    The multisubunit protein complex, dynactin, is an essential component of the cytoplasmic dynein motor. High-resolution structural work on dynactin and the dynein/dynactin supercomplex has been limited to small subunits and recombinant fragments that do not report fully on either ≈1MDa assembly. In the present study, we used negative-stain electron microscopy and image analysis based on random conical tilt reconstruction to obtain a three-dimensional (3D) structure of native vertebrate dynactin. The 35-nm-long dynactin molecule has a V-shaped shoulder at one end and a flattened tip at the other end, both offset relative to the long axis of the actin-related protein (Arp) backbone. The shoulder projects dramatically away from the Arp filament core in a way that cannot be appreciated in two-dimensional images, which has implications for the mechanism of dynein binding. The 3D structure allows the helical parameters of the entire Arp filament core, which includes the actin capping protein, CP, to be determined for the first time. This structure exhibits near identity to F-actin and can be well fitted into the dynactin envelope. Molecular fitting of modeled CP-Arp polymers into the envelope shows that the filament contains between 7 and 9 Arp protomers and is capped at both ends. In the 7 Arp model, which agrees best with measured Arp stoichiometry and other structural information, actin capping protein (CP) is not present at the distal tip of the structure, unlike what is seen in the other models. The 3D structure suggests a mechanism for dynactin assembly and length specification. PMID:25046383

  5. 3D precision surface measurement by dynamic structured light

    NASA Astrophysics Data System (ADS)

    Franke, Ernest A.; Magee, Michael J.; Mitchell, Joseph N.; Rigney, Michael P.

    2004-02-01

    This paper describes a 3-D imaging technique developed as an internal research project at Southwest Research Institute. The technique is based on an extension of structured light methods in which a projected pattern of parallel lines is rotated over the surface to be measured. A sequence of images is captured and the surface elevation at any location can then be determined from measurements of the temporal pattern, at any point, without considering any other points on the surface. The paper describes techniques for system calibration and surface measurement based on the method of projected quadric shells. Algorithms were developed for image and signal analysis and computer programs were written to calibrate the system and to calculate 3-D coordinates of points on a measured surface. A prototype of the Dynamic Structured Light (DSL) 3-D imaging system was assembled and typical parts were measured. The design procedure was verified and used to implement several different configurations with different measurement volumes and measurement accuracy. A small-parts measurement accuracy of 32 micrometers (.0012") RMS was verified by measuring the surface of a precision-machined plane. Large aircraft control surfaces were measured with a prototype setup that provided .02" depth resolution over a 4" by 8" field of view. Measurement times are typically less than three minutes for 300,000 points. A patent application has been filed.

  6. Myosin filament 3D structure in mammalian cardiac muscle☆

    PubMed Central

    AL-Khayat, Hind A.; Morris, Edward P.; Kensler, Robert W.; Squire, John M.

    2008-01-01

    A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2 × 430 Å long, each of which was treated as an independent ‘particle’. The resulting 40 Å resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 Å repeat, with successive crown rotations of approximately 60°, 60° and 0°, rather than the regular 40° for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac). PMID:18472277

  7. 3-D simulation of nanopore structure for DNA sequencing.

    PubMed

    Park, Jun-Mo; Pak, Y Eugene; Chun, Honggu; Lee, Jong-Ho

    2012-07-01

    In this paper, we propose a method for simulating nanopore structure by using conventional 3-D simulation tool to mimic the I-V behavior of the nanopore structure. In the simulation, we use lightly doped silicon for ionic solution where some parameters like electron affinity and dielectric constant are fitted to consider the ionic solution. By using this method, we can simulate the I-V behavior of nanopore structure depending on the location and the size of the sphere shaped silicon oxide which is considered to be an indicator of a DNA base. In addition, we simulate an Ionic Field Effect Transistor (IFET) which has basically the nanopore structure, and show that the simulated curves follow sufficiently the I-V behavior of the measurement data. Therefore, we think it is reasonable to apply parameter modeling mentioned above to simulate nanopore structure. The key idea is to modify electron affinity of silicon which is used to mimic the KCl solution to avoid band bending and depletion inside the nanopore. We could efficiently utilize conventional 3-D simulation tool to simulate the I-V behavior of nanopore structures. PMID:22966538

  8. 3-D lookup: Fast protein structure database searches

    SciTech Connect

    Holm. L.; Sander, C.

    1995-12-31

    There are far fewer classes of three-dimensional protein folds than sequence families but the problem of detecting three-dimensional similarities is NP-complete. We present a novel heuristic for identifying 3-D similarities between a query structure and the database of known protein structures. Many methods for structure alignment use a bottom-up approach, identifying first local matches and then solving a combinatorial problem in building up larger clusters of matching substructures. Here the top-down approach is to start with the global comparison and select a rough superimposition using a fast 3-D lookup of secondary structure motifs. The superimposition is then extended to an alignment of C{sup {alpha}} atoms by an iterative dynamic programming step. An all-against-all comparison of 385-representative proteins (150,000 pair comparisons) took 1 day of computer time on a single R8000 processor. In other words, one query structure is scanned against the database in a matter of minutes. The method is rated at 90% reliability at capturing statistically significant similarities. It is useful as a rapid preprocessor to a comprehensive protein structure database search system.

  9. Structure and magnetic exchange in heterometallic 3d-3d transition metal triethanolamine clusters.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2012-01-21

    Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ½ or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster. PMID:22113523

  10. Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions

    PubMed Central

    Jun, Sangmi; Zhao, Gongpu; Ning, Jiying; Gibson, Gregory A.; Watkins, Simon C.; Zhang, Peijun

    2013-01-01

    Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state1. However, direct visualization of individual viral complexes in their host cellular environment with cryoET is challenging2, due to the infrequent and dynamic nature of viral entry, particularly in the case of HIV-1. While time-lapse live-cell imaging has yielded a great deal of information about many aspects of the life cycle of HIV-13-7, the resolution afforded by live-cell microscopy is limited (~ 200 nm). Our work was aimed at developing a correlation method that permits direct visualization of early events of HIV-1 infection by combining live-cell fluorescent light microscopy, cryo-fluorescent microscopy, and cryoET. In this manner, live-cell and cryo-fluorescent signals can be used to accurately guide the sampling in cryoET. Furthermore, structural information obtained from cryoET can be complemented with the dynamic functional data gained through live-cell imaging of fluorescent labeled target. In this video article, we provide detailed methods and protocols for structural investigation of HIV-1 and host-cell interactions using 3D correlative high-speed live-cell imaging and high-resolution cryoET structural analysis. HeLa cells infected with HIV-1 particles were characterized first by confocal live-cell microscopy, and the region containing the same viral particle was then analyzed by cryo-electron tomography for 3D structural details. The correlation between two sets of imaging data, optical imaging and electron imaging, was achieved using a home-built cryo-fluorescence light microscopy stage. The approach detailed here will be valuable, not only for study of virus-host cell interactions, but also for broader applications in cell biology, such as cell signaling, membrane receptor trafficking, and many other dynamic cellular processes. PMID:23852318

  11. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  12. Automating the determination of 3D protein structure

    SciTech Connect

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  13. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis

    PubMed Central

    Lambros, Maria P.; DeSalvo, Michael K.; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-01-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC–QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  14. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis.

    PubMed

    Lambros, Maria P; DeSalvo, Michael K; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-12-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC-QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  15. Numerical Simulation of Boiling Two-Phase Flow in Tight-Lattice Rod Bundle by 3-Dimensional Two-Fluid Model Code ACE-3D

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.

  16. Engineering extracellular matrix structure in 3D multiphase tissues

    PubMed Central

    Gillette, Brian M.; Rossen, Ninna S.; Das, Nikkan; Leong, Debra; Wang, Meixin; Dugar, Arushi; Sia, Samuel K.

    2011-01-01

    In native tissues, microscale variations in the extracellular matrix (ECM) structure can drive different cellular behaviors. Although control over ECM structure could prove useful in tissue engineering and in studies of cellular behavior, isotropic 3D matrices poorly replicate variations in local microenvironments. In this paper, we demonstrate a method to engineer local variations in the density and size of collagen fibers throughout 3D tissues. The results showed that, in engineered multiphase tissues, the structures of collagen fibers in both the bulk ECM phases (as measured by mesh size and width of fibers) as well as at tissue interfaces (as measured by density of fibers and thickness of tissue interfaces) could be modulated by varying the collagen concentrations and gelling temperatures. As the method makes use of a previously published technique for tissue bonding, we also confirmed that significant adhesion strength at tissue interfaces was achieved under all conditions tested. Hence, this study demonstrates how collagen fiber structures can be engineered within all regions of a tightly integrated multiphase tissue scaffold by exploiting knowledge of collagen assembly. PMID:21840047

  17. Complete Tem-Tomography: 3D Structure of Gems Cluster

    NASA Technical Reports Server (NTRS)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  18. Characterizing 3D Vegetation Structure from Space: Mission Requirements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Bergen, Kathleen; Blair, James B.; Dubayah, Ralph; Houghton, Richard; Hurtt, George; Kellndorfer, Josef; Lefsky, Michael; Ranson, Jon; Saatchi, Sasan; Shugart, H. H.; Wickland, Diane

    2012-01-01

    Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral

  19. Structural analysis of tropical cyclone using INSAT-3D observations

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.

    2016-05-01

    The continuous observations from visible and thermal infrared (TIR) channels of geostationary satellites are highly useful for obtaining the features associated with the shape and dynamics of cloud structures within the tropical cyclones (TCs). As TC develops from an unstructured cloud cluster and intensifies, the cloud structures become more axisymmetric around the centre of the TC. To better understand the structure of TC during different stages of its evolution i.e. from its cyclogenesis to maturity and dissipation, the continuous satellite observations plays a key role. The high spatial and temporal resolution observations from geostationary satellites are very useful in order to analyze the cloud organization during the cyclogenesis. The gradient of the brightness temperatures measures the level of symmetry of each structure, which characterizes the degree of cloud organization of the TC. In the present work, the structural analysis of TC during its life period using the observations from Indian geostationary satellite INSAT-3D has been discussed. The visible and TIR observations from INSAT-3D satellite were used to fix the center position of the cyclone which is an input for the cyclone track and intensity prediction models. This data is also used to estimate the intensity of cyclone in the advanced Dvorak technique (ADT), and in the estimation of radius of maximum winds (Rmax) of TC which is an essential input parameter for the prediction of storm surge associated to the cyclones. The different patterns of cloud structure during the intensification stage, eye-wall formation and dissipation have been discussed. The early identification of these features helps in predicting the rapid intensification of TC which in turn improves the intensity predictions.

  20. Protein 3D Structure Computed from Evolutionary Sequence Variation

    PubMed Central

    Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein

  1. Dual multispectral and 3D structured light laparoscope

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Lin, Jianyu; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.

    2015-03-01

    Intraoperative feedback on tissue function, such as blood volume and oxygenation would be useful to the surgeon in cases where current clinical practice relies on subjective measures, such as identification of ischaemic bowel or tissue viability during anastomosis formation. Also, tissue surface profiling may be used to detect and identify certain pathologies, as well as diagnosing aspects of tissue health such as gut motility. In this paper a dual modality laparoscopic system is presented that combines multispectral reflectance and 3D surface imaging. White light illumination from a xenon source is detected by a laparoscope-mounted fast filter wheel camera to assemble a multispectral image (MSI) cube. Surface shape is then calculated using a spectrally-encoded structured light (SL) pattern detected by the same camera and triangulated using an active stereo technique. Images of porcine small bowel were acquired during open surgery. Tissue reflectance spectra were acquired and blood volume was calculated at each spatial pixel across the bowel wall and mesentery. SL features were segmented and identified using a `normalised cut' algoritm and the colour vector of each spot. Using the 3D geometry defined by the camera coordinate system the multispectral data could be overlaid onto the surface mesh. Dual MSI and SL imaging has the potential to provide augmented views to the surgeon supplying diagnostic information related to blood supply health and organ function. Future work on this system will include filter optimisation to reduce noise in tissue optical property measurement, and minimise spot identification errors in the SL pattern.

  2. General design method for 3-dimensional, potential flow fields. Part 2: Computer program DIN3D1 for simple, unbranched ducts

    NASA Technical Reports Server (NTRS)

    Stanitz, J. D.

    1985-01-01

    The general design method for three-dimensional, potential, incompressible or subsonic-compressible flow developed in part 1 of this report is applied to the design of simple, unbranched ducts. A computer program, DIN3D1, is developed and five numerical examples are presented: a nozzle, two elbows, an S-duct, and the preliminary design of a side inlet for turbomachines. The two major inputs to the program are the upstream boundary shape and the lateral velocity distribution on the duct wall. As a result of these inputs, boundary conditions are overprescribed and the problem is ill posed. However, it appears that there are degrees of compatibility between these two major inputs and that, for reasonably compatible inputs, satisfactory solutions can be obtained. By not prescribing the shape of the upstream boundary, the problem presumably becomes well posed, but it is not clear how to formulate a practical design method under this circumstance. Nor does it appear desirable, because the designer usually needs to retain control over the upstream (or downstream) boundary shape. The problem is further complicated by the fact that, unlike the two-dimensional case, and irrespective of the upstream boundary shape, some prescribed lateral velocity distributions do not have proper solutions.

  3. 3D Shape and Indirect Appearance by Structured Light Transport.

    PubMed

    OToole, Matthew; Mather, John; Kutulakos, Kiriakos N

    2016-07-01

    We consider the problem of deliberately manipulating the direct and indirect light flowing through a time-varying, general scene in order to simplify its visual analysis. Our approach rests on a crucial link between stereo geometry and light transport: while direct light always obeys the epipolar geometry of a projector-camera pair, indirect light overwhelmingly does not. We show that it is possible to turn this observation into an imaging method that analyzes light transport in real time in the optical domain, prior to acquisition. This yields three key abilities that we demonstrate in an experimental camera prototype: (1) producing a live indirect-only video stream for any scene, regardless of geometric or photometric complexity; (2) capturing images that make existing structured-light shape recovery algorithms robust to indirect transport; and (3) turning them into one-shot methods for dynamic 3D shape capture. PMID:27295455

  4. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  5. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  6. An Efficient 3D Imaging using Structured Light Systems

    NASA Astrophysics Data System (ADS)

    Lee, Deokwoo

    Structured light 3D surface imaging has been crucial in the fields of image processing and computer vision, particularly in reconstruction, recognition and others. In this dissertation, we propose the approaches to development of an efficient 3D surface imaging system using structured light patterns including reconstruction, recognition and sampling criterion. To achieve an efficient reconstruction system, we address the problem in its many dimensions. In the first, we extract geometric 3D coordinates of an object which is illuminated by a set of concentric circular patterns and reflected to a 2D image plane. The relationship between the original and the deformed shape of the light patterns due to a surface shape provides sufficient 3D coordinates information. In the second, we consider system efficiency. The efficiency, which can be quantified by the size of data, is improved by reducing the number of circular patterns to be projected onto an object of interest. Akin to the Shannon-Nyquist Sampling Theorem, we derive the minimum number of circular patterns which sufficiently represents the target object with no considerable information loss. Specific geometric information (e.g. the highest curvature) of an object is key to deriving the minimum sampling density. In the third, the object, represented using the minimum number of patterns, has incomplete color information (i.e. color information is given a priori along with the curves). An interpolation is carried out to complete the photometric reconstruction. The results can be approximately reconstructed because the minimum number of the patterns may not exactly reconstruct the original object. But the result does not show considerable information loss, and the performance of an approximate reconstruction is evaluated by performing recognition or classification. In an object recognition, we use facial curves which are deformed circular curves (patterns) on a target object. We simply carry out comparison between the

  7. 3D Seismic Imaging over a Potential Collapse Structure

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  8. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins. PMID:25069136

  9. The 3D structure of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Patsourakos, Spiros

    2016-07-01

    Coronal Mass Ejections (CMEs) represent one of the most powerful energy release phenomena in the entire solar system and are a major driver of space weather. Prior to 2006, our observational access to CMEs was limited to single viewpoint remote sensing observations in the inner/outer corona, and in-situ observations further away, e.g. at 1 AU. Taking all these factors together, turned out to be a major obstacle in our understanding and characterizing of the 3D structure and evolution of CMEs. The situation improved dramatically with the availability of multi-viewpoint imaging observations of CMEs, all way through from the Sun to 1 AU, from the STEREO mission since 2006, combined with observations from other missions (SOHO, Hinode, SDO, IRIS). With this talk we will discuss several key recent results in CME science resulting from the analysis of multi-viewpoint observations. This includes: (1) shape and structure; (2) kinematics and energetics; (3) trajectories, deflections and rotations; (4) arrival times and velocities at 1 AU; (5) magnetic field structure; (6) relationships with coronal and interplanetary shocks and solar energetic particles. The implications of these results in terms of CME theories and models will be also addressed. We will conclude with a discussion of important open issues in our understanding of CMEs and how these could be addressed with upcoming (Solar Orbiter, Solar Probe Plus) and under-study missions (e.g., L5).

  10. CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins

    PubMed Central

    Ekambaram, Rajasekaran; Kannaiyan, Akila; Marimuthu, Vijayasarathy; Swaminathan, Vinobha Chinnaiah; Renganathan, Senthil; Perumal, Ananda Gopu

    2014-01-01

    Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function. PMID:24748753

  11. 3D structures of membrane proteins from genomic sequencing

    PubMed Central

    Hopf, Thomas A.; Colwell, Lucy J.; Sheridan, Robert; Rost, Burkhard; Sander, Chris; Marks, Debora S.

    2012-01-01

    Summary We show that amino acid co-variation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown, 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane), applies a maximum entropy approach to infer evolutionary co-variation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded, de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modelling by this method. PMID:22579045

  12. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides

    PubMed Central

    2012-01-01

    Background Polysaccharides are ubiquitously present in the living world. Their structural versatility makes them important and interesting components in numerous biological and technological processes ranging from structural stabilization to a variety of immunologically important molecular recognition events. The knowledge of polysaccharide three-dimensional (3D) structure is important in studying carbohydrate-mediated host-pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine development as well as material science applications or production of bio-ethanol. Description PolySac3DB is an annotated database that contains the 3D structural information of 157 polysaccharide entries that have been collected from an extensive screening of scientific literature. They have been systematically organized using standard names in the field of carbohydrate research into 18 categories representing polysaccharide families. Structure-related information includes the saccharides making up the repeat unit(s) and their glycosidic linkages, the expanded 3D representation of the repeat unit, unit cell dimensions and space group, helix type, diffraction diagram(s) (when applicable), experimental and/or simulation methods used for structure description, link to the abstract of the publication, reference and the atomic coordinate files for visualization and download. The database is accompanied by a user-friendly graphical user interface (GUI). It features interactive displays of polysaccharide structures and customized search options for beginners and experts, respectively. The site also serves as an information portal for polysaccharide structure determination techniques. The web-interface also references external links where other carbohydrate-related resources are available. Conclusion PolySac3DB is established to maintain information on the detailed 3D structures of polysaccharides. All the data and features are available via the web

  13. Morphological Control of Cells on 3-Dimensional Multi-Layer Nanotopographic Structures.

    PubMed

    Jeong, Heon-Ho; Noh, Young-Mu; Song, Hwan-Moon; Lee, Sang-Ho; Park, Jin-Sung; Lee, Chang-Soo

    2015-05-01

    The extracellular matrix (ECM) environment is known to play an important role in the process of various cell regulatory mechanisms. We have investigated the ability of 3-dimensional ECM geometries to induce morphological changes in cells. Bi-layer polymeric structures with submicron scale stripe patterns were fabricated using a two-step nano-imprinting technique, and the orientation angle (θ(α)) of the upper layer was controlled by changing its alignment with respect to the orientation of the bottom layer. When cells were grown on the mono-layer stripe structure with a single orientation, they elongated along the direction of the stripe pattern. On bi-layer polymer structures, the cell morphologies gradually changed and became rounded, with an increase of θα up to 90 degrees, but the polarities of these cells were still aligned along the orientation of the upper layer. As a result, we show that the polarity and the roundness of cells can be independently regulated by adjusting the orientation of 3-dimensional hierarchical ECM topography. PMID:26505024

  14. 3D Soil Images Structure Quantification using Relative Entropy

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Gonzalez-Nieto, P. L.; Bird, N. R. A.

    2012-04-01

    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice-Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.

  15. Slat Cove Unsteadiness Effect of 3D Flow Structures

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Khorrami, Mehdi R.

    2006-01-01

    Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.

  16. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (≤45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ∼ 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  17. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  18. Postprocessing techniques for 3D non-linear structures

    NASA Technical Reports Server (NTRS)

    Gallagher, Richard S.

    1987-01-01

    How graphics postprocessing techniques are currently used to examine the results of 3-D nonlinear analyses, some new techniques which take advantage of recent technology, and how these results relate to both the finite element model and its geometric parent are reviewed.

  19. Arbitrary and Parallel Nanofabrication of 3D Metal Structures with Polymer Brush Resists.

    PubMed

    Chen, Chaojian; Xie, Zhuang; Wei, Xiaoling; Zheng, Zijian

    2015-12-01

    3D polymer brushes are reported for the first time as ideal resists for the alignment-free nanofabrication of complex 3D metal structures with sub-100 nm lateral resolution and sub-10 nm vertical resolution. Since 3D polymer brushes can be serially fabricated in parallel, this method is effective to generate arbitrary 3D metal structures over a large area at a high throughput. PMID:26439441

  20. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  1. 3-D structure and dynamics of microtubule self-organization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ou-Yang, H. Daniel

    2008-03-01

    Laser scanning confocal microscopy was used to study the dynamics of 3D assemblies spontaneously formed in microtubule (MT) solutions. Microtubule solutions prepared by mixing and incubating tubulin in the presence of GTP and Oregon Green conjugated taxol in PM buffer were placed in long, sub-millimeter thin glass cells by the capillary action. Within 24 hours, starting with a uniform distribution, microtubules were found to be gradually separated into a few large ``buckled'' bundles along the long direction, and in the middle plane, of the sample cell. A well-defined wavelength of the buckling sinusoids was around 510 μm. The cross section of these round bundles was approximately 40 μm in diameter and the lengths were several centimeters. Detailed analysis of the 3-D image within the bundles revealed that each bundle seemed to consist of loosely packed MTs. It appeared that MTs were phase separated resulting from attractive interactions between charged MT fibers. The ``buckling'' behavior could be the result of geometrical constraints of the repulsive cell walls and the repulsive interaction between bundles. Detailed 3-D observations of the dynamic evolution of MT assembly could provide insight to the mechanisms of cellular MT organization and phase separation of charged colloidal rods.

  2. PROMALS3D web server for accurate multiple protein sequence and structure alignments.

    PubMed

    Pei, Jimin; Tang, Ming; Grishin, Nick V

    2008-07-01

    Multiple sequence alignments are essential in computational sequence and structural analysis, with applications in homology detection, structure modeling, function prediction and phylogenetic analysis. We report PROMALS3D web server for constructing alignments for multiple protein sequences and/or structures using information from available 3D structures, database homologs and predicted secondary structures. PROMALS3D shows higher alignment accuracy than a number of other advanced methods. Input of PROMALS3D web server can be FASTA format protein sequences, PDB format protein structures and/or user-defined alignment constraints. The output page provides alignments with several formats, including a colored alignment augmented with useful information about sequence grouping, predicted secondary structures and consensus sequences. Intermediate results of sequence and structural database searches are also available. The PROMALS3D web server is available at: http://prodata.swmed.edu/promals3d/. PMID:18503087

  3. 3D Reconstruction of virtual colon structures from colonoscopy images.

    PubMed

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  4. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. PMID:27167030

  5. Triangular framework mesh generation of 3D geological structure

    NASA Astrophysics Data System (ADS)

    Meng, Xianhai; Zhou, Kun; Li, Jigang; Yang, Qin

    2013-03-01

    The dynamic simulation of oil migration and accumulation is an important issue on the research of petroleum exploration, and it is a numerical simulation process with special requirement on the framework mesh of 3D geological models, which means that the mesh should have same geometry and topology relation near the intersected part of geological surfaces. In this paper, basing on the conforming Delaunay triangulation algorithm to construct mesh of individual geological stratum or fault, a novel link-Delaunay-triangulation method is presented to achieve the geometric and topological consistency in the intersected line between two surfaces, also with the analysis of termination of our algorithm. Finally, some examples of the geological framework mesh are provided and the experimental result proved that the algorithm's effectiveness in engineering practice.

  6. Investigation into 3D earth structure and sources using full seismic waveforms

    NASA Astrophysics Data System (ADS)

    Covellone, Brian M.

    Seismograms are the result of the complex interactions between a seismic source, a propagation medium and the seismograph's response. Through the use of 3-dimensional modeling and full seismic waveform data, we quantify and minimize errors associated with the source and propagation medium within our data sets. We compile a new and unique earthquake catalog for the Middle East that is openly available to the public. We quantify the benefits of using a 3-dimensional model relative to a 1-dimensional model to minimizing error in earthquake moment tensors and identify where in the waveform 3-dimensional models outperform 1-dimensional models. Two new and unique 3-dimensional seismic wave speed models are computed for the Ontong Java plateau and eastern North American margin.Both models are significant improvements to the resolution of wave speed structures in the crust and upper mantle and provide new information for the evaluation of tectonic features.

  7. Image quality improvement for a 3D structure exhibiting multiple 2D patterns and its implementation.

    PubMed

    Hirayama, Ryuji; Nakayama, Hirotaka; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-04-01

    A three-dimensional (3D) structure designed by our proposed algorithm can simultaneously exhibit multiple two-dimensional patterns. The 3D structure provides multiple patterns having directional characteristics by distributing the effects of the artefacts. In this study, we proposed an iterative algorithm to improve the image quality of the exhibited patterns and have verified the effectiveness of the proposed algorithm using numerical simulations. Moreover, we fabricated different 3D glass structures (an octagonal prism, a cube and a sphere) using the proposed algorithm. All 3D structures exhibit four patterns, and different patterns can be observed depending on the viewing direction. PMID:27137021

  8. 3-dimensional (orthogonal) structural complexity of time-series data using low-order moment analysis

    NASA Astrophysics Data System (ADS)

    Law, Victor J.; O'Neill, Feidhlim T.; Dowling, Denis P.

    2012-09-01

    The recording of atmospheric pressure plasmas (APP) electro-acoustic emission data has been developed as a plasma metrology tool in the last couple of years. The industrial applications include automotive and aerospace industry for surface activation of polymers prior to bonding [1, 2, and 3]. It has been shown that as the APP jets proceeds over a treatment surface, at a various fixed heights, two contrasting acoustic signatures are produced which correspond to two very different plasma-surface entropy states (blow arc ˜ 1700 ± 100 K; and; afterglow ˜ 300-400 K) [4]. The metrology challenge is now to capture deterministic data points within data clusters. For this to be achieved new real-time data cluster measurement techniques needs to be developed [5]. The cluster information must be extracted within the allotted process time period if real-time process control is to be achieved. This abstract describes a theoretical structural complexity analysis (in terms crossing points) of 2 and 3-dimentional line-graphs that contain time-series data. In addition LabVIEW implementation of the 3-dimensional data analysis is performed. It is also shown the cluster analysis technique can be transfer to other (non-acoustic) datasets.

  9. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. PMID:26992060

  10. 3D Modeling of Branching Structures for Anatomical Instruction

    PubMed Central

    Mattingly, William A.; Chariker, Julia H.; Paris, Richard; Chang, Dar-jen; Pani, John R.

    2015-01-01

    Branching tubular structures are prevalent in many different organic and synthetic settings. From trees and vegetation in nature, to vascular structures throughout human and animal biology, these structures are always candidates for new methods of graphical and visual expression. We present a modeling tool for the creation and interactive modification of these structures. Parameters such as thickness and position of branching structures can be modified, while geometric constraints ensure that the resulting mesh will have an accurate anatomical structure by not having inconsistent geometry. We apply this method to the creation of accurate representations of the different types of retinal cells in the human eye. This method allows a user to quickly produce anatomically accurate structures with low polygon counts that are suitable for rendering at interactive rates on commodity computers and mobile devices. PMID:27087764

  11. Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Polis, Daniel L.; Rowles, Russell R.; Segal, Kenneth N.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.

  12. UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation

    PubMed Central

    Zhu, Jinhao; Wei, Bryan; Yuan, Yuan; Mi, Yongli

    2009-01-01

    A user-friendly software system, UNIQUIMER 3D, was developed to design DNA structures for nanotechnology applications. It consists of 3D visualization, internal energy minimization, sequence generation and construction of motif array simulations (2D tiles and 3D lattices) functionalities. The system can be used to check structural deformation and design errors under scaled-up conditions. UNIQUIMER 3D has been tested on the design of both existing motifs (holiday junction, 4 × 4 tile, double crossover, DNA tetrahedron, DNA cube, etc.) and nonexisting motifs (soccer ball). The results demonstrated UNIQUIMER 3D's capability in designing large complex structures. We also designed a de novo sequence generation algorithm. UNIQUIMER 3D was developed for the Windows environment and is provided free of charge to the nonprofit research institutions. PMID:19228709

  13. 3D Crustal Structure and 3D-b-value in AbuDabbab Seismogenic Source, Northern Red Sea.

    NASA Astrophysics Data System (ADS)

    Al-Arifi, Nassir; El Kherpy, Sami; Koulakov, Ivan

    2014-05-01

    Abu Dabbab seismogenic source region is of unique seismic activity located on the Egyptian Red Sea coast. It's known as earthquake Cannons where the earthquakes are accompanied by a sound of distinct rumbling similar to the sound of a distant quarry blast which is heard by humans for several generations. Seismic activity of Abu Dabbab becomes very well determined after establishing of the Egyptian National Seismic Network 1997. Joint earthquake tomography inversion of local and regional data has been performed in order to image the crustal heterogeneity and the origin of the cannons earthquakes. Most previous studies suggested that this activity is of magmatic origin. We found the seismicity forms an arc shaped cluster that surrounds an aseismic block. This aseismic block has high velocities and a low Vp/Vs ratio. The origin of this seismic activity is probably due an active fault below the non-deformed block of Precambrian Igneous rock reaching a depth of ~10 km. Spatial mapping of the frequency magnitude distribution of the earthquakes and 3D-b-value indicate a strong variation moreover high b-value (1.4) at depth downward the rigid block. The Combined interpretation of the seismic imaging and 3D b-value in addition to the seismological and the geophysical observations revealed the tectonic origin of the earthquake activity in this area which is related strongly to the evolution of the crust in the Red Sea and its tectonic activity. KEYWARD:Three dimensional Crustal Structure - Seismic activity -Three-D b-value- Red Sea tectonics- Tectonic activity

  14. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2014-01-01

    Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of three-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D Web server and package are available at http://prodata.swmed.edu/PROMALS3D. PMID:24170408

  15. GMOL: An Interactive Tool for 3D Genome Structure Visualization.

    PubMed

    Nowotny, Jackson; Wells, Avery; Oluwadare, Oluwatosin; Xu, Lingfei; Cao, Renzhi; Trieu, Tuan; He, Chenfeng; Cheng, Jianlin

    2016-01-01

    It has been shown that genome spatial structures largely affect both genome activity and DNA function. Knowing this, many researchers are currently attempting to accurately model genome structures. Despite these increased efforts there still exists a shortage of tools dedicated to visualizing the genome. Creating a tool that can accurately visualize the genome can aid researchers by highlighting structural relationships that may not be obvious when examining the sequence information alone. Here we present a desktop application, known as GMOL, designed to effectively visualize genome structures so that researchers may better analyze genomic data. GMOL was developed based upon our multi-scale approach that allows a user to scale between six separate levels within the genome. With GMOL, a user can choose any unit at any scale and scale it up or down to visualize its structure and retrieve corresponding genome sequences. Users can also interactively manipulate and measure the whole genome structure and extract static images and machine-readable data files in PDB format from the multi-scale structure. By using GMOL researchers will be able to better understand and analyze genome structure models and the impact their structural relations have on genome activity and DNA function. PMID:26868282

  16. Characterizing 3D RNA structure by single molecule FRET.

    PubMed

    Stephenson, James D; Kenyon, Julia C; Symmons, Martyn F; Lever, Andrew M L

    2016-07-01

    The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model. PMID:26853327

  17. SAFAS: Unifying Form and Structure through Interactive 3D Simulation

    ERIC Educational Resources Information Center

    Polys, Nicholas F.; Bacim, Felipe; Setareh, Mehdi; Jones, Brett D.

    2015-01-01

    There has been a significant gap between the tools used for the design of a building's architectural form and those that evaluate the structural physics of that form. Seeking to bring the perspectives of visual design and structural engineering closer together, we developed and evaluated a design tool for students and practitioners to explore the…

  18. Determining 3-D motion and structure from image sequences

    NASA Technical Reports Server (NTRS)

    Huang, T. S.

    1982-01-01

    A method of determining three-dimensional motion and structure from two image frames is presented. The method requires eight point correspondences between the two frames, from which motion and structure parameters are determined by solving a set of eight linear equations and a singular value decomposition of a 3x3 matrix. It is shown that the solution thus obtained is unique.

  19. The 3D Structure of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Zoccali, Manuela; Valenti, Elena

    2016-06-01

    We review the observational evidences concerning the three-dimensional structure of the Galactic bulge. Although the inner few kpc of our Galaxy are normally referred to as the bulge, all the observations demonstrate that this region is dominated by a bar, i.e., the bulge is a bar. The bar has a boxy/peanut (X-shaped) structure in its outer regions, while it seems to become less and less elongated in its innermost region. A thinner and longer structure departing from the main bar has also been found, although the observational evidences that support the scenario of two separate structures has been recently challenged. Metal-poor stars ([Fe/H] ≲ -0.5 dex) trace a different structure, and also have different kinematics.

  20. 3D Thermoelectric Structures Derived from a New Mixed Micromachining Process

    NASA Astrophysics Data System (ADS)

    Du, Chen-Hsun; Lee, Chengkuo

    2000-12-01

    This paper proposes an innovative 3D thermoelectric structure which significantly reduce the componet size without deterioration of sensor performance. Based on complementary metal-oxide-semiconductor (CMOS) transistor compatible process, this 3D thermoelectric structure is demonstrated and fabricated by combining front-side silicon anisotropic wet etching and aluminum sacrificial layer etching technique. The voltage responsivity of derived 3D thermoelectric structure with 180× 180 μm2 pixel size can be as high as 190 V/W in vacuum. This new thermoelectric structure shows its potential to be an excellent pixel structure of infrared sensor array for infrared recognition applications.

  1. LV motion tracking from 3D echocardiography using textural and structural information.

    PubMed

    Myronenko, Andriy; Song, Xubo; Sahn, David J

    2007-01-01

    Automated motion reconstruction of the left ventricle (LV) from 3D echocardiography provides insight into myocardium architecture and function. Low image quality and artifacts make 3D ultrasound image processing a challenging problem. We introduce a LV tracking method, which combines textural and structural information to overcome the image quality limitations. Our method automatically reconstructs the motion of the LV contour (endocardium and epicardium) from a sequence of 3D ultrasound images. PMID:18044597

  2. A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures

    NASA Astrophysics Data System (ADS)

    Sauls, Barbara Lynn

    Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to

  3. Delineation of nuclear structures in 3D multicellular systems

    2013-09-13

    A pipeline, implemented within the Insight Segmentation and Registration Toolkit (ITK) and The Visualization Toolkit (VTK) framework, to delineate each nucleus and to profile morphometric and colony organization. At an abstract level, our approach is an extension of a previously developed method for monolayer call structure models.

  4. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants.

    PubMed

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure-activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein-ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145

  5. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Zhang, Yong

    2016-04-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side.

  6. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    PubMed Central

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  7. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors.

    PubMed

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III-V, and II-VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain-low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  8. Fabrication, Characterization, And Deformation of 3D Structural Meta-Materials

    NASA Astrophysics Data System (ADS)

    Montemayor, Lauren C.

    Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (mum -- mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation

  9. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    NASA Astrophysics Data System (ADS)

    Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.

    2016-04-01

    Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.

  10. ProSAT+: visualizing sequence annotations on 3D structure.

    PubMed

    Stank, Antonia; Richter, Stefan; Wade, Rebecca C

    2016-08-01

    PRO: tein S: tructure A: nnotation T: ool-plus (ProSAT(+)) is a new web server for mapping protein sequence annotations onto a protein structure and visualizing them simultaneously with the structure. ProSAT(+) incorporates many of the features of the preceding ProSAT and ProSAT2 tools but also provides new options for the visualization and sharing of protein annotations. Data are extracted from the UniProt KnowledgeBase, the RCSB PDB and the PDBe SIFTS resource, and visualization is performed using JSmol. User-defined sequence annotations can be added directly to the URL, thus enabling visualization and easy data sharing. ProSAT(+) is available at http://prosat.h-its.org. PMID:27284084

  11. Code System for Analysis of 3-D Reinforced Concrete Structures.

    1999-11-22

    Version 00 NONSAP-C is a finite element program for determining the static and dynamic response of three-dimensional reinforced concrete structures. Long-term, or creep, behavior of concrete structures can also be analyzed. Nonlinear constitutive relations for concrete under short-term loads are incorporated in two time-independent models, a variable-modulus approach with orthotropic behavior induced in the concrete due to the development of different tangent moduli in different directions and an elastic-plastic model in which the concrete ismore » assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening-fracture material. A viscoelastic constitutive model for long-term thermal creep of concrete is included. Three-dimensional finite elements available in NONSAP-C include a truss element, a multinode tendon element for prestressed and post tensioned concrete structures, an elastic-plastic membrane element to represent the behavior of cavity liners, and a general isoparametric element with a variable number of nodes for analysis of solids and thick shells.« less

  12. 3D Printing for Spacecraft Multi-Functional Structures

    NASA Astrophysics Data System (ADS)

    Roddy, P. A.; Huang, C. Y.; Lyke, J.; Baur, J.; Durstock, M.; MacDonald, E.

    2013-12-01

    Three-dimensional printing, more formally Additive Manufacturing (AM), is being explored by groups worldwide for use in space missions, but we recognize the amazing potential of this emerging technology to produce space weather environmental sensors at costs commensurate with declining research budgets. We present here a plan to go substantially beyond the novelty stage of this technology by developing a foundation for using AM in high-assurance space system missions. Our two-pronged approach involves (1) a disciplined investigation of material properties and reliability (electrical, mechanical, radiation) of AM and (2) the extension of this knowledge to make complex structures that can exploit the advantages of AM. We address the design, manufacture, and optimization of multifunctional space structures using multi-physics design methods, integrated computational models, and AM. Integrated multifunctional structures have significant advantage in flexibility, size, weight, and power in comparison to formally attached elements, but their design and fabrication can be complex. The complexity and range in element shape, processing method, material properties and vehicle integration make this an ideal problem to advance the current state of the art methods for multiphysics mechanism design and strengthening AM processing science.

  13. Designing self-assembling 3D structures of microcapsules

    NASA Astrophysics Data System (ADS)

    Li, Like; Shum, Henry; Shklyaev, Oleg; Yashin, Victor; Balazs, Anna

    Self-assembly of complex, three-dimensional structures is commonly achieved by biological cells but difficult to realize in synthetic systems with micron-scale or larger components. Some previous modeling studies have considered only the planar self-assembly of microcapsules on a substrate. In this work, nanoparticles released from the capsules bind to the substrate and to the shells of nearby capsules. The non-uniform nanoparticle deposition on a capsule's surface leads to adhesion gradients, which drive the capsules to effectively ``climb'' on top of one another and self-organize in the vertical direction. We determine conditions that favor this structural organization. In particular, we study how the vertical structuring depends on the background fluid flow, the topography of the microcapsules and the underlying surface, the capsule-capsule interaction and that between the capsules and the substrate. The findings can provide design rules for the autonomous creation of novel nanocomposites, where the layers are formed from nanoparticle-containing and nanoparticle-decorated microcapsules.

  14. Fabrication of 3-Dimensional Structure of Metal Oxide Semiconductor Field Effect Transistor Embodied in the Convex Corner of the Silicon Micro-Fluidic Channel

    NASA Astrophysics Data System (ADS)

    Lim, Geunbae; Park, Chin-Sung; Lyu, Hong-Kun; Kim, Dong-Sun; Jeong, Yong-Taek; Park, Hey-Jung; Kim, Hyoung Sik; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun

    2003-06-01

    As micro-fluidic systems and biochemical detection systems are scaled to smaller dimensions, the realization of small and portable biochemical detection systems has become increasingly important. In this paper, we propose a 3-dimensional structure of a metal oxide semiconductor field-effect transistor(3-D MOSFET) using tetramethyl ammonium hydroxide (TMAH) anisotropic etching, which is a suitable device for combining with a micro-fluidic system. After fabricating a trapezoidal micro-fluidic channel, the 3-D MOSFET embodied in the convex corner of the micro-fluidic channel was fabricated. The length of the gate is about 20 μm and the width is about 9 μm. The depth and top width of the trapezoidal micro-fluidic channel are about 8 μm and 60 μm, respectively. The measured drain saturation current of the 3-D MOSFET was about -22 μA at VGS=-5 V and VDS=-5 V, and the device characteristics exhibit a typical MOSFET behavior. Moreover, a gold layer was used for the MOSFET’s gate metal to detect charged biochemical samples using the affinity between gold and thiol.

  15. Structural 3d Monitoring Using a New Sinusoidal Fitting Adjustment

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Habib, A.; Lichti, D.; El-Badry, M.

    2016-06-01

    Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate - a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  16. Joint inversion for 3-dimensional S-velocity mantle structure along the Tethyan margin

    NASA Astrophysics Data System (ADS)

    Chang, S.; van der Lee, S.; Flanagan, M. P.; Bedle, H.; Marone, F.; Matzel, E. M.; Pasyanos, M. E.; Rodgers, A. J.; Romanowicz, B.; Schmid, C.

    2007-12-01

    For purposes of studying the lateral heterogeneity as well as for ultimately predicting seismograms for the region which extends from the western Mediterranean region to the Hindu Kush, we construct a new 3-D S-velocity model by jointly inverting regional waveforms, surface wave group velocity measurements, teleseismic S arrival times, and crustal thickness estimates from receiver functions, refraction lines, and gravity surveys. We can expect better resolution for the resulting model than when using individual data set, because these data types have complementary resolving power for crust and mantle structures, vertical and lateral variations, shallow and deep mantle features, local and global structure, and are jointly inverted to image the complexity of this tectonically diverse area. We have fitted the waveforms of regional S and Rayleigh waves from over 3800 seismograms using Partitioned Waveform Inversion. We have accumulated over 3000 crustal thicknesses from receiver functions, gravity measurements, and refraction profiles. We have measured Rayleigh wave group velocities for hundreds of new paths recorded at the MIDSEA stations and combined them with thousands of existing paths transecting the region. We have over 5000 teleseismic S arrival times measured through cross correlation and 200,000 more from picks originally reported to the ISC. We scale the resulting S-velocity model to a P-velocity model using observed relations between S and P delay times as well as mineral physics. We then update the P-model using P delay times and compare the result to existing P-velocity models of the region. We discuss features of our new model, which includes oceanic structure, cratons, subducting slabs that penetrate into the lower mantle and others that do not, low-velocity mantle plumes, rifts, plateaus, and basins.

  17. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants

    PubMed Central

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure–activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein–ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145

  18. Formation of 3D structures in a volumetric photocurable material via a holographic method

    NASA Astrophysics Data System (ADS)

    Vorzobova, N. D.; Bulgakova, V. G.; Veselov, V. O.

    2015-12-01

    The principle of forming 3D polymer structures is considered, based on the display of the 3D intensity distribution of radiation formed by a hologram in the bulk of a photocurable material. The conditions are determined for limiting the cure depth and reproducing the projected wavefront configuration.

  19. Evaluation of 3-Dimensional Superimposition Techniques on Various Skeletal Structures of the Head Using Surface Models

    PubMed Central

    Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    Objectives To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Methods Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. Results There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.790.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Conclusions Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In

  20. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  1. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets. PMID:26824922

  2. 3D Structured Grid Generation Codes for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Loellbach, James; Tsung, Fu-Lin

    1999-01-01

    This report describes the research tasks during the past year. The research was mainly in the area of computational grid generation in support of CFD analyses of turbomachinery components. In addition to the grid generation work, a numerical simulation was obtained for the flow through a centrifugal gas compressor using an unstructured Navier-Stokes solver. Other tasks involved many different turbomachinery component analyses. These analyses were performed for NASA projects or for industrial applications. The work includes both centrifugal and axial machines, single and multiple blade rows, and steady and unsteady analyses. Over the past five years, a set of structured grid generation codes were developed that allow grids to be obtained fairly quickly for the large majority of configurations we encounter. These codes do not comprise a generalized grid generation package; they are noninteractive codes specifically designed for turbomachinery blade row geometries. But because of this limited scope, the codes are small, fast, and portable, and they can be run in the batch mode on small workstations. During the past year, these programs were used to generate computational grids were modified for a wide variety of configurations. In particular, the codes or wrote supplementary codes to improve our grid generation capabilities for multiple blade row configurations. This involves generating separate grids for each blade row, and then making them match and overlap by a few grid points at their common interface so that fluid properties are communicated across the interface. Unsteady rotor/stator analyses were performed for an axial turbine, a centrifugal compressor, and a centrifugal pump. Steady-state single-blade-row analyses were made for a study of blade sweep in transonic compressors. There was also cooperation on the application of an unstructured Navier-Stokes solver for turbomachinery flow simulations. In particular, the unstructured solver was used to analyze the

  3. A 3-D fluorescence imaging system incorporating structured illumination technology

    NASA Astrophysics Data System (ADS)

    Antos, L.; Emord, P.; Luquette, B.; McGee, B.; Nguyen, D.; Phipps, A.; Phillips, D.; Helguera, M.

    2010-02-01

    A currently available 2-D high-resolution, optical molecular imaging system was modified by the addition of a structured illumination source, OptigridTM, to investigate the feasibility of providing depth resolution along the optical axis. The modification involved the insertion of the OptigridTM and a lens in the path between the light source and the image plane, as well as control and signal processing software. Projection of the OptigridTM onto the imaging surface at an angle, was resolved applying the Scheimpflug principle. The illumination system implements modulation of the light source and provides a framework for capturing depth resolved mages. The system is capable of in-focus projection of the OptigridTM at different spatial frequencies, and supports the use of different lenses. A calibration process was developed for the system to achieve consistent phase shifts of the OptigridTM. Post-processing extracted depth information using depth modulation analysis using a phantom block with fluorescent sheets at different depths. An important aspect of this effort was that it was carried out by a multidisciplinary team of engineering and science students as part of a capstone senior design program. The disciplines represented are mechanical engineering, electrical engineering and imaging science. The project was sponsored by a financial grant from New York State with equipment support from two industrial concerns. The students were provided with a basic imaging concept and charged with developing, implementing, testing and validating a feasible proof-of-concept prototype system that was returned to the originator of the concept for further evaluation and characterization.

  4. 3D printing meets computational astrophysics: deciphering the structure of η Carinae's inner colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  5. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    NASA Astrophysics Data System (ADS)

    Babu, Sabarish; Liao, Pao-Chuan; Shin, Min C.; Tsap, Leonid V.

    2006-12-01

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  6. Sensitivity of an MT Array to 3D Structure Outside the Array Footprint

    NASA Astrophysics Data System (ADS)

    Booker, J. R.; Mackie, R. L.; Burd, A. I.; Pomposiello, M. C.; Favetto, A. B.

    2015-12-01

    Standard data collection strategy in magnetotellurics (MT) is to deploy a profile or array of sites that spans the target of interest. There is no expectation that structure can be imaged outside the area covered by sites. We have inverted two MT arrays for 3D structure under Argentina. The two arrays do not overlap, but serendipitously the 3D model for the northern array overlaps the position of a prominent 3D deep conductive structure seen in the inversion of the southern array. To our surprise this deep southern feature is also imaged by the northern array even though it is well outside the footprint of the northern array. It therefore appears that typical intuition about one's ability to image structure outside the span of the sites is not always true. We present model studies to demonstrate why this is so and under what conditions one can expect a 3D array to be capable of imaging structure outside the array.

  7. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  8. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    PubMed Central

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  9. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs.

    PubMed

    Burns, Jhr; Delparte, D; Gates, R D; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  10. mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome.

    PubMed

    Meyer, Michael J; Lapcevic, Ryan; Romero, Alfonso E; Yoon, Mark; Das, Jishnu; Beltrán, Juan Felipe; Mort, Matthew; Stenson, Peter D; Cooper, David N; Paccanaro, Alberto; Yu, Haiyuan

    2016-05-01

    A new algorithm and Web server, mutation3D (http://mutation3d.org), proposes driver genes in cancer by identifying clusters of amino acid substitutions within tertiary protein structures. We demonstrate the feasibility of using a 3D clustering approach to implicate proteins in cancer based on explorations of single proteins using the mutation3D Web interface. On a large scale, we show that clustering with mutation3D is able to separate functional from nonfunctional mutations by analyzing a combination of 8,869 known inherited disease mutations and 2,004 SNPs overlaid together upon the same sets of crystal structures and homology models. Further, we present a systematic analysis of whole-genome and whole-exome cancer datasets to demonstrate that mutation3D identifies many known cancer genes as well as previously underexplored target genes. The mutation3D Web interface allows users to analyze their own mutation data in a variety of popular formats and provides seamless access to explore mutation clusters derived from over 975,000 somatic mutations reported by 6,811 cancer sequencing studies. The mutation3D Web interface is freely available with all major browsers supported. PMID:26841357

  11. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.

    2015-03-01

    The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.

  12. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  13. 3D Printers Can Provide an Added Dimension for Teaching Structure-Energy Relationships

    ERIC Educational Resources Information Center

    Blauch, David N.; Carroll, Felix A.

    2014-01-01

    A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.

  14. Effect of 3d doping on the electronic structure of BaFe2As2.

    PubMed

    McLeod, J A; Buling, A; Green, R J; Boyko, T D; Skorikov, N A; Kurmaev, E Z; Neumann, M; Finkelstein, L D; Ni, N; Thaler, A; Bud'ko, S L; Canfield, P C; Moewes, A

    2012-05-30

    The electronic structure of BaFe(2)As(2) doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d(10) shell. These findings help shed light on why superconductivity can occur in BaFe(2)As(2) doped with Co and Ni but not Cu. PMID:22534111

  15. Effect of 3d doping on the electronic structure of BaFe2As2

    SciTech Connect

    McLeod, John A.; Buling, A.; Green, R.J.; Boyko, T.D.; Skorikov, N.A.; Kurmaev, E.Z.; Neumann, M.; Finkelstein, L.D.; Ni, Ni; Thaler, Alexander; Budko, Serguei L.; Canfield, Paul; Moewes, A.

    2012-04-25

    The electronic structure of BaFe2As2 doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.

  16. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    SciTech Connect

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  17. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  18. Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp.

    PubMed

    Zhang, Fengxiang; Low, Hong Yee

    2008-10-15

    Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold. PMID:21832645

  19. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream.

    PubMed

    Li, L; Sun, T H; Shu, C H; Zhang, H B

    2016-07-01

    A series of 3-dimensional (3-D) structural mesoporous silica materials, SBA-16, MCM-48 and KIT-6, was synthesized and supported with different ZnO loadings (10, 20, 30, and 40wt%) by the incipient wetness method to evaluate the performances on H2S removal at room temperature. These materials were characterized by N2 adsorption, XRD, and TEM to investigate their textural properties. All the ZnO-loaded adsorbents exhibited the H2S removal capacity of bellow 0.1 ppmv. With the best ZnO loading percentage of 30wt% on MCM-48 and KIT-6, 20wt% on SBA-16 according to the results of breakthrough test, further increasing ZnO loading caused the decrease of the adsorption capacity due to the agglomeration of ZnO. Besides, the H2S adsorption capacities of the supports materials varied in the order of KIT-6>MCM-48>SBA-16, which was influenced primarily by their pore volume and pore size. With the largest pores in these 3-D arrangement materials, KIT-6 showed the best performance of supported material for ZnO, due to its retained superior physical properties as well as large pore diameter to allow faster gas-solid interaction and huge pore volume to disperse ZnO on the surface of it. PMID:26970044

  20. Self-Discovery of Structural Geology Concepts using Interactive 3D Visualization

    NASA Astrophysics Data System (ADS)

    Billen, M. I.; Saunders, J.

    2010-12-01

    Mastering structural geology concepts that depend on understanding three-dimensional (3D) geometries and imagining relationships among unseen subsurface structures are fundamental skills for geologists. Traditionally these skills are developed first, through use of 2D drawings of 3D structures that can be difficult to decipher or 3D physical block models that show only a limited set of relationships on the surfaces of the blocks, followed by application and testing of concepts in field settings. We hypothesize that this learning process can be improved by providing repeated opportunities to evaluate and explore synthetic 3D structures using interactive 3D visualization software. We present laboratory modules designed for undergraduate structural geology curriculum using a self-discovery approach to teach concepts such as: the Rule of V’s, structure separation versus fault slip, and the more general dependence of structural exposure on surface topography. The laboratory modules are structured to allow students to discover and articulate each concept from observations of synthetic data both on traditional maps and using the volume visualization software 3DVisualizer. Modules lead students through exploration of data (e.g., a dipping layered structure exposed in ridge-valley topography or obliquely offset across a fault) by allowing them to interactively view (rotate, pan, zoom) the exposure of structures on topographic surfaces and to toggle on/off the full 3D structure as a transparent colored volume. This tool allows student to easily visually understand the relationships between, for example a dipping structure and its exposure on valley walls, as well as how the structure extends beneath the surface. Using this method gives students more opportunities to build a mental library of previously-seen relationships from which to draw-on when applying concepts in the field setting. These laboratory modules, the data and software are freely available from KeckCAVES.

  1. Structure of Pseudoknot PK26 Shows 3D Domain Swapping in an RNA

    NASA Technical Reports Server (NTRS)

    Lietzke, Susan E; Barnes, Cindy L.

    1998-01-01

    3D domain swapping provides a facile pathway for the evolution of oligomeric proteins and allosteric mechanisms and a means for using monomer-oligomer equilibria to regulate biological activity. The term "3D domain swapping" describes the exchange of identical domains between two protein monomers to create an oligomer. 3D domain swapping has, so far, only been recognized in proteins. In this study, the structure of the pseudoknot PK26 is reported and it is a clear example of 3D domain swapping in RNA. PK26 was chosen for study because RNA pseudoknots are required structures in several biological processes and they arise frequently in in vitro selection experiments directed against protein targets. PK26 specifically inhibits HIV-1 reverse transcriptase with nanomolar affinity. We have now determined the 3.1 A resolution crystal structure of PK26 and find that it forms a 3D domain swapped dimer. PK26 shows extensive base pairing between and within strands. Formation of the dimer requires the linker region between the pseudoknot folds to adopt a unique conformation that allows a base within a helical stem to skip one base in the stacking register. Rearrangement of the linker would permit a monomeric pseudoknot to form. This structure shows how RNA can use 3D domain swapping to build large scale oligomers like the putative hexamer in the packaging RNA of bacteriophage Phi29.

  2. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    PubMed Central

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUSstart) and after (3D-iCEUSend) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUSstart and 3D-iCEUSend data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  3. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t ) and after (3D-iCEUS e n d ) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  4. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hwan; Chung, Jaewon; Hotz, Nico; Nam, Koo Hyun; Grigoropoulos, Costas P.

    2010-12-01

    Inkjet printing of functional materials is a key technology toward ultra-low-cost, large-area electronics. We demonstrate low-temperature 3D micro metal structure fabrication by direct inkjet printing of metal nanoparticles (NPs) as a versatile, direct 3D metal structuring approach representing an alternative to conventional vacuum deposition and photolithographic methods. Metal NP ink was inkjet-printed to exploit the large melting temperature drop of the nanomaterial and the ease of the NP ink formulation. Parametric studies on the basic conditions for stable 3D inkjet printing of NP ink were carried out. Furthermore, diverse 3D metal microstructures, including micro metal pillar arrays, helices, zigzag and micro bridges were demonstrated and electrical characterization was performed. Since the process requires low temperature, it carries substantial potential for fabrication of electronics on a plastic substrate.

  5. Incorporating 3-dimensional models in online articles

    PubMed Central

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  6. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    PubMed

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated. PMID:20941016

  7. Air-structured optical fibre drawn from a 3D-printed preform

    NASA Astrophysics Data System (ADS)

    Cook, Kevin; Leon-Saval, Sergio; Canning, John; Reid, Zane; Hossain, Md. Arafat; Peng, Gang-Ding

    2015-09-01

    We report the first optical fibre drawn from a 3D-printed preform. An air-structured polymer preform is printed using a modified butadiene plastic called Bendlay as opposed to the more-common Acrylonitrile Butadiene Styrene (ABS). The preform is subsequently drawn to fibre form at a relatively low temperature of 160 °C and maintains its air-structured cladding holes. Such ability to freely-design and 3D-print complex preform structures, such as photonic bandgap and photonic crystal structures, opens up an exciting new front in optical fibre fabrication.

  8. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes

    PubMed Central

    Rodriguez-Palacios, Alex; Kodani, Tomohiro; Kaydo, Lindsey; Pietropaoli, Davide; Corridoni, Daniele; Howell, Scott; Katz, Jeffry; Xin, Wei; Pizarro, Theresa T.; Cominelli, Fabio

    2015-01-01

    Histology is fundamental to assess two-dimensional intestinal inflammation; however, inflammatory bowel diseases (IBDs) are often indistinguishable microscopically on the basis of mucosal biopsies. Here, we use stereomicroscopy (SM) to rapidly profile the entire intestinal topography and assess inflammation. We examine the mucosal surface of >700 mice (encompassing >16 strains and various IBD-models), create a profiling catalogue of 3D-stereomicroscopic abnormalities and demonstrate that mice with comparable histological scores display unique sub-clusters of 3D-structure-patterns of IBD pathology, which we call 3D-stereoenterotypes, and which are otherwise indiscernible histologically. We show that two ileal IBD-stereoenterotypes (‘cobblestones' versus ‘villous mini-aggregation') cluster separately within two distinct mouse lines of spontaneous ileitis, suggesting that host genetics drive unique and divergent inflammatory 3D-structural patterns in the gut. In humans, stereomicroscopy reveals ‘liquefaction' lesions and hierarchical fistulous complexes, enriched with clostridia/segmented filamentous bacteria, running under healthy mucosa in Crohn's disease. We suggest that stereomicroscopic (3D-SMAPgut) profiling can be easily implemented and enable the comprehensive study of inflammatory 3D structures, genetics and flora in IBD. PMID:26154811

  9. A finite element analysis of a 3D auxetic textile structure for composite reinforcement

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoyang; Hu, Hong; Liu, Yanping

    2013-08-01

    This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.

  10. Gene3D: structural assignments for the biologist and bioinformaticist alike

    PubMed Central

    Buchan, Daniel W. A.; Rison, Stuart C. G.; Bray, James E.; Lee, David; Pearl, Frances; Thornton, Janet M.; Orengo, Christine A.

    2003-01-01

    The Gene3D database (http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/) provides structural assignments for genes within complete genomes. These are available via the internet from either the World Wide Web or FTP. Assignments are made using PSI-BLAST and subsequently processed using the DRange protocol. The DRange protocol is an empirically benchmarked method for assessing the validity of structural assignments made using sequence searching methods where appropriate assignment statistics are collected and made available. Gene3D links assignments to their appropriate entries in relevent structural and classification resources (PDBsum, CATH database and the Dictionary of Homologous Superfamilies). Release 2.0 of Gene3D includes 62 genomes, 2 eukaryotes, 10 archaea and 40 bacteria. Currently, structural assignments can be made for between 30 and 40 percent of any given genome. In any genome, around half of those genes assigned a structural domain are assigned a single domain and the other half of the genes are assigned multiple structural domains. Gene3D is linked to the CATH database and is updated with each new update of CATH. PMID:12520054

  11. Lithographically-generated 3D lamella layers and their structural color

    NASA Astrophysics Data System (ADS)

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-01

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.

  12. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography

    PubMed Central

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  13. Using CATH-Gene3D to Analyze the Sequence, Structure, and Function of Proteins.

    PubMed

    Sillitoe, Ian; Lewis, Tony; Orengo, Christine

    2015-01-01

    The CATH database is a classification of protein structures found in the Protein Data Bank (PDB). Protein structures are chopped into individual units of structural domains, and these domains are grouped together into superfamilies if there is sufficient evidence that they have diverged from a common ancestor during the process of evolution. A sister resource, Gene3D, extends this information by scanning sequence profiles of these CATH domain superfamilies against many millions of known proteins to identify related sequences. Thus the combined CATH-Gene3D resource provides confident predictions of the likely structural fold, domain organisation, and evolutionary relatives of these proteins. In addition, this resource incorporates annotations from a large number of external databases such as known enzyme active sites, GO molecular functions, physical interactions, and mutations. This unit details how to access and understand the information contained within the CATH-Gene3D Web pages, the downloadable data files, and the remotely accessible Web services. PMID:26087950

  14. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  15. Lithographically-generated 3D lamella layers and their structural color.

    PubMed

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-28

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ∼ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc. PMID:27087577

  16. Estimating the complexity of 3D structural models using machine learning methods

    NASA Astrophysics Data System (ADS)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  17. System for conveyor belt part picking using structured light and 3D pose estimation

    NASA Astrophysics Data System (ADS)

    Thielemann, J.; Skotheim, Ø.; Nygaard, J. O.; Vollset, T.

    2009-01-01

    Automatic picking of parts is an important challenge to solve within factory automation, because it can remove tedious manual work and save labor costs. One such application involves parts that arrive with random position and orientation on a conveyor belt. The parts should be picked off the conveyor belt and placed systematically into bins. We describe a system that consists of a structured light instrument for capturing 3D data and robust methods for aligning an input 3D template with a 3D image of the scene. The method uses general and robust pre-processing steps based on geometric primitives that allow the well-known Iterative Closest Point algorithm to converge quickly and robustly to the correct solution. The method has been demonstrated for localization of car parts with random position and orientation. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  18. 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder

    NASA Astrophysics Data System (ADS)

    Beecroft, M.

    2016-07-01

    3D printing is a form of additive manufacturing whereby the building up of layers of material creates objects. The selective laser sintering process (SLS) uses a laser beam to sinter powdered material to create objects. This paper builds upon previous research into 3D printed textile based material exploring the use of SLS using nylon powder to create flexible weft knitted structures. The results show the potential to print flexible textile based structures that exhibit the properties of traditional knitted textile structures along with the mechanical properties of the material used, whilst describing the challenges regarding fineness of printing resolution. The conclusion highlights the potential future development and application of such pieces.

  19. Acquisition of 3d Information for Vanished Structure by Using Only AN Ancient Picture

    NASA Astrophysics Data System (ADS)

    Kunii, Y.; Sakamoto, R.

    2016-06-01

    In order to acquire 3D information for reconstruction of vanished historical structure, grasp of 3D shape of such structure was attempted by using an ancient picture. Generally, 3D information of a structure is acquired by photogrammetric theory which requires two or more pictures. This paper clarifies that the geometrical information of the structure was obtained only from an ancient picture, and 3D information was acquired. This kind of method was applied for an ancient picture of the Old Imperial Theatre. The Old Imperial Theatre in the picture is constituted by two-point perspective. Therefore, estimated value of focal length of camera, length of camera to the Old Imperial Theatre and some parameters were calculated by estimation of field angle, using body height as an index of length and some geometrical information. Consequently, 3D coordinate of 120 measurement points on the surface of the Old Imperial Theatre were calculated respectively, and 3DCG modeling of the Old Imperial Theatre was realized.

  20. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.

    PubMed

    Ruiz-Cantu, Laura; Gleadall, Andrew; Faris, Callum; Segal, Joel; Shakesheff, Kevin; Yang, Jing

    2016-03-01

    3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an important role in cell ingrowth and nutrition infusion. Although the internal porosity and pore size of 3D printed scaffolds have been frequently studied, the surface porosity and pore size, which are critical for cell infiltration and mass transport, have not been investigated. The surface geometry can differ considerably from the internal scaffold structure depending on the 3D printing process. It is vital to be able to control the surface geometry of scaffolds as well as the internal structure to fabricate optimal architectures. This work presents a method to control the surface porosity and pore size of 3D printed scaffolds. Six scaffold designs have been printed with surface porosities ranging from 3% to 21%. We have characterised the overall scaffold porosity and surface porosity using optical microscopy and microCT. It has been found that surface porosity has a significant impact on cell infiltration and proliferation. In addition, the porosity of the surface has been found to have an effect on mechanical properties and on the forces required to penetrate the scaffold with a surgical suturing needle. To the authors' knowledge, this study is the first to investigate the surface geometry of extrusion-based 3D printed scaffolds and demonstrates the importance of surface geometry in cell infiltration and clinical manipulation. PMID:26930179

  1. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  2. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences

    PubMed Central

    Hayat, Sikander; Sander, Chris; Marks, Debora S.

    2015-01-01

    Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand–strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases. PMID:25858953

  3. Structural response to 3D simulated earthquake motions in San Bernardino Valley

    USGS Publications Warehouse

    Safak, E.; Frankel, A.

    1994-01-01

    Structural repsonse to one- and three-dimensional (3D) simulated motions in San Bernardino Valley from a hypothetical earthquake along the San Andreas fault with moment magnitude 6.5 and rupture length of 30km is investigated. The results show that the ground motions and the structural response vary dramatically with the type of simulation and the location. -from Authors

  4. 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism

    NASA Astrophysics Data System (ADS)

    Ba, Ningning; Zhu, Lianjie; Li, Hongbin; Zhang, Guangzhi; Li, Jianfa; Sun, Jingfeng

    2016-03-01

    3-dimensional (3D) rod-like CuO with nanowire hierarchical structure has been synthesized successfully by a facile ultrasound assisted method combined with thermal conversion, using rouaite Cu2(OH)3NO3 as the precursor. The product was characterized by XRD, SEM, TEM, HRTEM and FT-IR spectrum. Its optical properties were studied by means of UV-Vis diffuse reflectance absorption spectroscopy and photoluminescence (PL) spectrum. Series of control experiments have been performed to explore influencing factors to the product morphologies and a possible formation mechanism has been proposed. The results show that each CuO rod assembled by tens of nanowires is 200-300 nm in diameter and about 1000 nm in length. Each nanowire contains many interconnected nanoparticles with sizes of about 15 nm. Particularly, ultrasound processing was found beneficial to the formation of the 3D rod-like CuO with nanowire hierarchical structure.

  5. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.

    PubMed

    Markaki, Yolanda; Smeets, Daniel; Fiedler, Susanne; Schmid, Volker J; Schermelleh, Lothar; Cremer, Thomas; Cremer, Marion

    2012-05-01

    Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization. PMID:22508100

  6. 3D topography of biologic tissue by multiview imaging and structured light illumination

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Shiwu; Xu, Ronald

    2014-02-01

    Obtaining three-dimensional (3D) information of biologic tissue is important in many medical applications. This paper presents two methods for reconstructing 3D topography of biologic tissue: multiview imaging and structured light illumination. For each method, the working principle is introduced, followed by experimental validation on a diabetic foot model. To compare the performance characteristics of these two imaging methods, a coordinate measuring machine (CMM) is used as a standard control. The wound surface topography of the diabetic foot model is measured by multiview imaging and structured light illumination methods respectively and compared with the CMM measurements. The comparison results show that the structured light illumination method is a promising technique for 3D topographic imaging of biologic tissue.

  7. Advanced methods for 3-D inelastic structural analysis for hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    Three-dimensional Inelastic Analysis Methods are described. These methods were incorporated into a series of new computer codes embodying a progression of mathematical models (mechanics of materials, specialty finite element, boundary element) for streamlined analysis of hot engine structures such as: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (displacements, frequencies, amplitudes, buckling) structural behavior of the three respective components. The methods and the three computer codes, referred to as MOMM (Mechanics Of Materials Model), MHOST (MARC-Hot Section Technology), and BEST3D (Boundary Element Stress Technology), have been developed and are briefly described.

  8. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  9. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording.

    PubMed

    Pan, Alice Ian; Lin, Min-Hsuan; Chung, Hui-Wen; Chen, Hsin; Yeh, Shih-Rung; Chuang, Yung-Jen; Chang, Yen-Chung; Yew, Tri-Rung

    2016-01-01

    A novel 3D carbon nanotube (CNT) microelectrode was developed through direct growth of CNTs on a gold pin-shaped 3D microelectrode at a low temperature (400 °C) for applications in neural and cardiac recording. With an electroplated Ni catalyst layer covering the entire surface of the pin-shaped structure, CNTs were synthesized on a 3D microelectrode by catalytic thermal chemical vapor deposition (CVD). According to the analyses by electrochemical impedance spectroscopy, the impedance of 3D microelectrodes after CNT growth and UV/O3 treatment decreased from 9.3 Ω mm(-2) to 1.2 Ω mm(-2) and the capacitance increased largely from 2.2 mF cm(-2) to 73.3 mF cm(-2). The existence of UVO3-treated CNT led to a large improvement of interfacial capacitance, contributing to the decrease of impedance. The electrophysiological detection capability of this 3D CNT microelectrode was demonstrated by the distinguished P waves, QRS complex and T waves in the electrocardiogram of the zebrafish heart and the action potential recorded from individual rat hippocampal neurons. The compatibility of integration with ICs, high resolution in space, electrophysiological signals, and non-invasive long-term recording suggest that the 3D CNT microelectrode exhibits promising potential for applications in electrophysiological research and clinical trials. PMID:26588673

  10. Modeling 3D soil and sediment distributions for assessing catchment structure and hydrological feedbacks

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Brück, Yasemine; Hinz, Christoph; Gerke, Horst H.

    2015-04-01

    Structural heterogeneity, namely the spatial distribution of soils and sediments (represented by mineral particles), characterizes catchment hydrological behavior. In natural catchments, local geology and the specific geomorphic processes determine the characteristics and spatial distribution of structures. In constructed catchments, structural features are determined primarily by the construction processes and the geological origin of the parent material. Objectives are scenarios of 3D catchment structures in form of complete 3D description of soil hydraulic properties generated from the knowledge of the formation processes. The constructed hydrological catchment 'Hühnerwasser' (Lower Lusatia, Brandenburg, Germany) was used for the calibration and validation of model results due to its well-known conditions. For the modelling of structural features, a structure generator was used to model i) quasi-deterministic sediment distributions using input data from a geological model of the parent material excavation site; ii) sediment distributions that are conditioned to measurement data from soil sampling; and iii) stochastic component sediment distributions. All three approaches allow a randomization within definable limits. Furthermore, the spoil cone / spoil ridge orientation, internal layering, surface compaction and internal spoil cone compaction were modified. These generated structural models were incorporated in a gridded 3D volume model constructed with the GOCAD software. For selected scenarios, the impact of structure variation was assessed by hydrological modelling with HYDRUS 2D/3D software. For that purpose, 3D distributions of soil hydraulic properties were estimated based on generated sediment properties using adapted pedotransfer functions. Results from the hydrological model were compared them to measured discharges from the catchment. The impact of structural feature variation on flow behaviour was analysed by comparing different simulation scenarios

  11. 2D and 3D X-Ray Structural Microscopy Using Submicron-Resolution Laue Microdiffraction

    SciTech Connect

    Budai, John D.; Yang, Wenge; Larson, Bennett C.; Tischler, Jonathan Z.; Liu, Wenjun; Ice, Gene E.

    2010-11-10

    We have developed a scanning, polychromatic x-ray microscopy technique with submicron spatial resolution at the Advanced Photon Source. In this technique, white undulator radiation is focused to submicron diameter using elliptical mirrors. Laue diffraction patterns scattered from the sample are collected with an area detector and then analyzed to obtain the local crystal structure, lattice orientation, and strain tensor. These new microdiffraction capabilities have enabled both 2D and 3D structural studies of materials on mesoscopic length-scales of tenths-to-hundreds of microns. For thin samples such as deposited films, 2D structural maps are obtained by step-scanning the area of interest. For example, 2D x-ray microscopy has been applied in studies of the epitaxial growth of oxide films. For bulk samples, a 3D differential-aperture x-ray microscopy technique has been developed that yields the full diffraction information from each submicron volume element. The capabilities of 3D x-ray microscopy are demonstrated here with measurements of grain orientations and grain boundary motion in polycrystalline aluminum during 3D thermal grain growth. X-ray microscopy provides the needed, direct link between the experimentally measured 3D microstructural evolution and the results of theory and modeling of materials processes on mesoscopic length scales.

  12. Local-global alignment for finding 3D similarities in protein structures

    DOEpatents

    Zemla, Adam T.

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  13. Mixed-Mode Fracture and Fatigue Analysis of Cracked 3D Complex Structures using a 3D SGBEM-FEM Alternating Method

    NASA Astrophysics Data System (ADS)

    Bhavanam, Sharada

    The aim of this thesis is to numerically evaluate the mixed-mode Stress Intensity Factors (SIFs) of complex 3D structural geometries with arbitrary 3D cracks using the Symmetric Galerkin Boundary Element Method-Finite Element Method (SGBEM-FEM) Alternating Method. Various structural geometries with different loading scenarios and crack configurations were examined in this thesis to understand the behavior and trends of the mixed-mode SIFs as well as the fatigue life for these complex structural geometries. Although some 3D structures have empirical and numerical solutions that are readily available in the open literature, some do not; therefore this thesis presents the results of fracture and fatigue analyses of these 3D complex structures using the SGBEM-FEM Alternating Method to serve as reference for future studies. Furthermore, there are advantages of using the SGBEM-FEM Alternating Method compared to traditional FEM methods. For example, the fatigue-crack-growth and fatigue life can be better estimated for a structure because different fatigue models (i.e. Walker, Paris, and NASGRO) can be used within the same framework of the SGBEM-FEM Alternating Method. The FEM (un-cracked structure)/BEM(crack model) meshes are modeled independently, which speeds up the computation process and reduces the cost of human labor. A simple coarse mesh can be used for all fracture and fatigue analyses of complex structures. In this thesis, simple coarse meshes were used for 3D complex structures, which were below 5000 elements as compared to traditional FEM, which require meshes where the elements range on the order of ˜250,000 to ˜106 and sometimes even more than that.

  14. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation

    NASA Astrophysics Data System (ADS)

    El Said, Bassam; Ivanov, Dmitry; Long, Andrew C.; Hallett, Stephen R.

    2016-03-01

    3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite's mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results. The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven

  15. Computational methods for constructing protein structure models from 3D electron microscopy maps

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-01-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504

  16. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  17. 3D flexible NiTi-braided elastomer composites for smart structure applications

    NASA Astrophysics Data System (ADS)

    Heller, L.; Vokoun, D.; Šittner, P.; Finckh, H.

    2012-04-01

    While outstanding functional properties of thin NiTi wires are nowadays well recognized and beneficially utilized in medical NiTi devices, development of 2D/3D wire structures made out of these NiTi wires remains challenging and mostly unexplored. The research is driven by the idea of creating novel 2D/3D smart structures which inherit the functional properties of NiTi wires and actively utilize geometrical deformations within the structure to create new/improved functional properties. Generally, textile technology provides attractive processing methods for manufacturing 2D/3D smart structures made out of NiTi wires. Such structures may be beneficially combined with soft elastomers to create smart deformable composites. Following this route, we carried out experimental work focused on development of 3D flexible NiTi-braided elastomer composites involving their design, laboratory manufacture and thermomechanical testing. We describe the manufacturing technology and structural properties of these composites; and perform thermomechanical tests on the composites, focusing particularly on quasistatic tensile properties, energy absorption, damping and actuation under tensile loading. Functional thermomechanical properties of the composites are discussed with regard to the mechanical properties of the components and architecture of the composites. It is found that the composites indeed inherit all important features of the thermomechanical behavior of NiTi wires but, due to their internal architecture, outperform single NiTi wires in some features such as the magnitude of recoverable strain, superelastic damping capacity and thermally induced actuation strain.

  18. SimRNAweb: a web server for RNA 3D structure modeling with optional restraints.

    PubMed

    Magnus, Marcin; Boniecki, Michał J; Dawson, Wayne; Bujnicki, Janusz M

    2016-07-01

    RNA function in many biological processes depends on the formation of three-dimensional (3D) structures. However, RNA structure is difficult to determine experimentally, which has prompted the development of predictive computational methods. Here, we introduce a user-friendly online interface for modeling RNA 3D structures using SimRNA, a method that uses a coarse-grained representation of RNA molecules, utilizes the Monte Carlo method to sample the conformational space, and relies on a statistical potential to describe the interactions in the folding process. SimRNAweb makes SimRNA accessible to users who do not normally use high performance computational facilities or are unfamiliar with using the command line tools. The simplest input consists of an RNA sequence to fold RNA de novo. Alternatively, a user can provide a 3D structure in the PDB format, for instance a preliminary model built with some other technique, to jump-start the modeling close to the expected final outcome. The user can optionally provide secondary structure and distance restraints, and can freeze a part of the starting 3D structure. SimRNAweb can be used to model single RNA sequences and RNA-RNA complexes (up to 52 chains). The webserver is available at http://genesilico.pl/SimRNAweb. PMID:27095203

  19. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  20. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression

    PubMed Central

    Jacob, J. Augustin; Kumar, N. Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120

  1. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.

    PubMed

    Jacob, J Augustin; Kumar, N Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120

  2. Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Anna, Pietro; Nunes, Joao P.; Bijeljic, Branko; Blunt, Martin J.; Juanes, Ruben

    2014-09-01

    We study the nature of non-Fickian particle transport in 3-D porous media by simulating fluid flow in the intricate pore space of real rock. We solve the full Navier-Stokes equations at the same resolution as the 3-D micro-CT (computed tomography) image of the rock sample and simulate particle transport along the streamlines of the velocity field. We find that transport at the pore scale is markedly anomalous: longitudinal spreading is superdiffusive, while transverse spreading is subdiffusive. We demonstrate that this anomalous behavior originates from the intermittent structure of the velocity field at the pore scale, which in turn emanates from the interplay between velocity heterogeneity and velocity correlation. Finally, we propose a continuous time random walk model that honors this intermittent structure at the pore scale and captures the anomalous 3-D transport behavior at the macroscale.

  3. Element-specific X-ray phase tomography of 3D structures at the nanoscale.

    PubMed

    Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Holler, Mirko; Huthwelker, Thomas; Menzel, Andreas; Vartiainen, Ismo; Müller, Elisabeth; Kirk, Eugenie; Gliga, Sebastian; Raabe, Jörg; Heyderman, Laura J

    2015-03-20

    Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard x-ray phase imaging and resonant elastic scattering to achieve ab initio element-specific 3D characterization of a cobalt-coated artificial buckyball polymer scaffold at the nanoscale. By performing ptychographic x-ray tomography at and far from the Co K edge, we are able to locate and quantify the Co layer in our sample to a 3D spatial resolution of 25 nm. With a quantitative determination of the electron density we can determine that the Co layer is oxidized, which is confirmed with microfluorescence experiments. PMID:25839287

  4. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  5. 3D watershed-based segmentation of internal structures within MR brain images

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    In this paper an image-based method founded on mathematical morphology is presented in order to facilitate the segmentation of cerebral structures on 3D magnetic resonance images (MRIs). The segmentation is described as an immersion simulation, applied to the modified gradient image, modeled by a generated 3D region adjacency graph (RAG). The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions are identified in order to attribute an influence zone only to relevant minima of the image. This stage uses contrasted regions from morphological reconstruction and labeled flat regions constrained by the RAG. The goal of the decision stage is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a 3D extension of the watershed transform. Upon completion of the segmentation, the outcome of the preceding process is presented to the user for manual selection of the structures of interest (SOI). Results of this approach are described and illustrated with examples of segmented 3D MRIs of the human head.

  6. 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping.

    PubMed

    Lo, Yu-Chen; Senese, Silvia; Damoiseaux, Robert; Torres, Jorge Z

    2016-08-19

    Target identification remains a major challenge for modern drug discovery programs aimed at understanding the molecular mechanisms of drugs. Computational target prediction approaches like 2D chemical similarity searches have been widely used but are limited to structures sharing high chemical similarity. Here, we present a new computational approach called chemical similarity network analysis pull-down 3D (CSNAP3D) that combines 3D chemical similarity metrics and network algorithms for structure-based drug target profiling, ligand deorphanization, and automated identification of scaffold hopping compounds. In conjunction with 2D chemical similarity fingerprints, CSNAP3D achieved a >95% success rate in correctly predicting the drug targets of 206 known drugs. Significant improvement in target prediction was observed for HIV reverse transcriptase (HIVRT) compounds, which consist of diverse scaffold hopping compounds targeting the nucleotidyltransferase binding site. CSNAP3D was further applied to a set of antimitotic compounds identified in a cell-based chemical screen and identified novel small molecules that share a pharmacophore with Taxol and display a Taxol-like mechanism of action, which were validated experimentally using in vitro microtubule polymerization assays and cell-based assays. PMID:27285961

  7. 3D shape shearography with integrated structured light projection for strain inspection of curved objects

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Groves, Roger M.

    2015-05-01

    Shearography (speckle pattern shearing interferometry) is a non-destructive testing technique that provides full-field surface strain characterization. Although real-life objects especially in aerospace, transport or cultural heritage are not flat (e.g. aircraft leading edges or sculptures), their inspection with shearography is of interest for both hidden defect detection and material characterization. Accurate strain measuring of a highly curved or free form surface needs to be performed by combining inline object shape measuring and processing of shearography data in 3D. Previous research has not provided a general solution. This research is devoted to the practical questions of 3D shape shearography system development for surface strain characterization of curved objects. The complete procedure of calibration and data processing of a 3D shape shearography system with integrated structured light projector is presented. This includes an estimation of the actual shear distance and a sensitivity matrix correction within the system field of view. For the experimental part a 3D shape shearography system prototype was developed. It employs three spatially-distributed shearing cameras, with Michelson interferometers acting as the shearing devices, one illumination laser source and a structured light projector. The developed system performance was evaluated with a previously reported cylinder specimen (length 400 mm, external diameter 190 mmm) loaded by internal pressure. Further steps for the 3D shape shearography prototype and the technique development are also proposed.

  8. RNAssess--a web server for quality assessment of RNA 3D structures.

    PubMed

    Lukasiak, Piotr; Antczak, Maciej; Ratajczak, Tomasz; Szachniuk, Marta; Popenda, Mariusz; Adamiak, Ryszard W; Blazewicz, Jacek

    2015-07-01

    Nowadays, various methodologies can be applied to model RNA 3D structure. Thus, the plausible quality assessment of 3D models has a fundamental impact on the progress of structural bioinformatics. Here, we present RNAssess server, a novel tool dedicated to visual evaluation of RNA 3D models in the context of the known reference structure for a wide range of accuracy levels (from atomic to the whole molecule perspective). The proposed server is based on the concept of local neighborhood, defined as a set of atoms observed within a sphere localized around a central atom of a particular residue. A distinctive feature of our server is the ability to perform simultaneous visual analysis of the model-reference structure coherence. RNAssess supports the quality assessment through delivering both static and interactive visualizations that allows an easy identification of native-like models and/or chosen structural regions of the analyzed molecule. A combination of results provided by RNAssess allows us to rank analyzed models. RNAssess offers new route to a fast and efficient 3D model evaluation suitable for the RNA-Puzzles challenge. The proposed automated tool is implemented as a free and open to all users web server with an user-friendly interface and can be accessed at: http://rnassess.cs.put.poznan.pl/. PMID:26068469

  9. 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography

    PubMed Central

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-01-01

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions. PMID:25940394

  10. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    SciTech Connect

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  11. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE PAGESBeta

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  12. About the automated pattern creation of 3D jacquard double needle bed warp knitted structures

    NASA Astrophysics Data System (ADS)

    Renkens, W.; Kyosev, Y.

    2016-07-01

    Three dimensional structures can be produced on jacquard warp knitting machines with double needle bed. This work presents theoretical considerations about the modelling and simulation of these structures. After that a method is described, how to obtain production parameters from the simulation data. The analysis demonstrates, that the automated pattern creation of 3D structures is not always possible and not all mathematical solutions of the problem can be knittable.

  13. What spherically symmetric viscosity structure produces the same PGR as a realistic 3D Earth?

    NASA Astrophysics Data System (ADS)

    Paulson, A.; Zhong, S.; Wahr, J.

    2003-04-01

    Observations of isostatic adjustment of the earth's surface due to transient loading provide important constraints on the mantle viscosity structure. However, most studies of this response have assumed a spherically symmetric (1D) earth. This study is motivated by the following question: when a one-dimensional viscosity model is derived from post-glacial rebound (PGR) observations, how does this 1D structure correspond to the three-dimensional structure of the earth? Using the 3D spherical finite element software CitcomSVE [Zhong et al., 2002], we are able to compute the earth's response to realistic glacial loading when the earth has a truly 3D viscosity structure. The loading is provided by the ICE-3G deglaciation history [Tushingham &Peltier, 1991]. The 3D viscosity structure is constructed by first selecting a priori a radial average viscosity (for example, ( 1021 \\: {Pa \\cdot s}) in the upper mantle and (2 × 1021 \\: {Pa \\cdot s}) in the lower mantle). The lateral variations about this radial structure are derived from seismic shear-velocity tomography models by converting velocities to temperature, then temperature to viscosity. The seismic tomography models used are S20RTS [Ritsema et al., 1999] and NA00 [Van der Lee, 2002]. From the computed isostatic response, we measure typical PGR observables: relative sea level change (RSLC) and (dot{J2}). These measurements are then treated as synthetic data, and we search for 1D (radially stratified) viscosity models, forced with the same glaciation history, that will best fit these synthetic PGR observations. We find that for sites near the center of a large glacial load (e.g., southern Hudson Bay), a local average of the 3D viscosity structure provides a reasonable 1D proxy. For sites along the periphery of the glacial load (e.g., Boston), it is much more difficult to find a 1D model that can reproduce the 3D observations. We also approach the problem by running an ensemble of 1D viscosity models, and finding

  14. Mathematical structure of the three-dimensional (3D) Ising model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Dong

    2013-03-01

    An overview of the mathematical structure of the three-dimensional (3D) Ising model is given from the points of view of topology, algebra, and geometry. By analyzing the relationships among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model. 1) The complex quaternion basis constructed for the 3D Ising model naturally represents the rotation in a (3+1)-dimensional space-time as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function obtained by taking the time average. 2) A unitary transformation with a matrix that is a spin representation in 2n·l·o-space corresponds to a rotation in 2n·l·o-space, which serves to smooth all the crossings in the transfer matrices and contributes the non-trivial topological part of the partition function of the 3D Ising model. 3) A tetrahedron relationship would ensure the commutativity of the transfer matrices and the integrability of the 3D Ising model, and its existence is guaranteed by the Jordan algebra and the Jordan-von Neumann-Wigner procedures. 4) The unitary transformation for smoothing the crossings in the transfer matrices changes the wave functions by complex phases varphix, varphiy, and varphiz. The relationship with quantum field and gauge theories and the physical significance of the weight factors are discussed in detail. The conjectured exact solution is compared with numerical results, and the singularities at/near infinite temperature are inspected. The analyticity in β = 1/(kBT) of both the hard-core and the Ising models has been proved only for β > 0, not for β = 0. Thus the high-temperature series cannot serve as a standard for judging a putative exact solution of the 3D Ising model.

  15. Modelling and analysing 3D buildings with a primal/dual data structure

    NASA Astrophysics Data System (ADS)

    Boguslawski, Pawel; Gold, Christopher M.; Ledoux, Hugo

    While CityGML permits us to represent 3D city models, its use for applications where spatial analysis and/or real-time modifications are required is limited since at this moment the possibility to store topological relationships between the elements is rather limited and often not exploited. We present in this paper a new topological data structure, the dual half-edge (DHE), which permits us to represent the topology of 3D buildings (including their interiors) and of the surrounding terrain. It is based on the idea of simultaneously storing a graph in 3D space and its dual graph, and to link the two. We propose Euler-type operators for incrementally constructing 3D models (for adding individual edges, faces and volumes to the model while updating the dual structure simultaneously), and we also propose navigation operators to move from a given point to all the connected planes or polyhedra for example. The DHE also permits us to store attributes to any element. We have implemented the DHE and have tested it with different CityGML models. Our technique allows us to handle important query types, for example finding the nearest exterior exit to a given room, as in disaster management planning. As the structure is locally modifiable the model may be adapted whenever a particular pathway is no longer available. The proposed DHE structure adds significant analytic value to the increasingly popular CityGML model.

  16. Proteopedia: A Collaborative, Virtual 3D Web-Resource for Protein and Biomolecule Structure and Function

    ERIC Educational Resources Information Center

    Hodis, Eran; Prilusky, Jaime, Sussman, Joel L.

    2010-01-01

    Protein structures are hard to represent on paper. They are large, complex, and three-dimensional (3D)--four-dimensional if conformational changes count! Unlike most of their substrates, which can easily be drawn out in full chemical formula, drawing every atom in a protein would usually be a mess. Simplifications like showing only the surface of…

  17. Automated identification of RNA 3D modules with discriminative power in RNA structural alignments.

    PubMed

    Theis, Corinna; Höner Zu Siederdissen, Christian; Hofacker, Ivo L; Gorodkin, Jan

    2013-12-01

    Recent progress in predicting RNA structure is moving towards filling the 'gap' in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm. PMID:24005040

  18. Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks

    SciTech Connect

    Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei; Bruegger, Juergen; Villanueva, Guillermo

    2009-03-10

    Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of a silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.

  19. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    NASA Astrophysics Data System (ADS)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  20. Studies of the 3D Structure of the Nucleon at JLab

    NASA Astrophysics Data System (ADS)

    Avakian, Harut

    2016-08-01

    Studies of the 3D structure of the nucleon encoded in transverse momentum dependent distribution and fragmentation functions of partons and generalized parton distributions are among the key objectives of the JLab 12 GeV upgrade and the electron ion collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  1. Holographic particle velocimetry - A 3D measurement technique for vortex interactions, coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hussain, Fazle

    1991-10-01

    To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.

  2. A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector

    SciTech Connect

    Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

    2010-11-09

    Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modified tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically depo­sited 3D silicon anodes demonstrate outstanding rate performance, cycling stability, and rate capability. Electrodeposition thus provides a unique means of fabricating silicon anode materials on complex substrates at low cost.

  3. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  4. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells

    PubMed Central

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L.; Han, Jessica H.; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H.; Bussey, Kimberly J.; Meldrum, Deirdre R.

    2016-01-01

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an ‘epigenetic’ drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat’s differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action. PMID:27503568

  5. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    PubMed

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-01-01

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action. PMID:27503568

  6. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures.

    PubMed

    Zenou, M; Sa'ar, A; Kotler, Z

    2015-01-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures. PMID:26602432

  7. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    PubMed Central

    Zenou, M.; Sa’ar, A.; Kotler, Z.

    2015-01-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures. PMID:26602432

  8. 3D shape measurement of shoeprint impression with structured illumination and fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Cao, Yiping; Xiang, Liqun; Chen, Wenjing

    2002-06-01

    The shoeprint impressions of suspect left at the crime scene can sometimes tell investigators what type of shoes to be looked for. These shoeprint impressions as one of the important evidence are useful in the detection of criminals. In this paper we propose a novel technique for identifying and analyzing the 3D characteristics of shoeprint impressions. We also design 3D shoeprint impression analysis system based on the combination the 3D shape measurement with structured illumination and fringe pattern analysis. We give a detail discussion on the principle and configuration of the system. Laboratory experiments show the technique is efficient in the detection of shoeprint and in the offering the reference for judicial evidence.

  9. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'Ar, A.; Kotler, Z.

    2015-11-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  10. GIANT: pattern analysis of molecular interactions in 3D structures of protein–small ligand complexes

    PubMed Central

    2014-01-01

    Background Interpretation of binding modes of protein–small ligand complexes from 3D structure data is essential for understanding selective ligand recognition by proteins. It is often performed by visual inspection and sometimes largely depends on a priori knowledge about typical interactions such as hydrogen bonds and π-π stacking. Because it can introduce some biases due to scientists’ subjective perspectives, more objective viewpoints considering a wide range of interactions are required. Description In this paper, we present a web server for analyzing protein–small ligand interactions on the basis of patterns of atomic contacts, or “interaction patterns” obtained from the statistical analyses of 3D structures of protein–ligand complexes in our previous study. This server can guide visual inspection by providing information about interaction patterns for each atomic contact in 3D structures. Users can visually investigate what atomic contacts in user-specified 3D structures of protein–small ligand complexes are statistically overrepresented. This server consists of two main components: “Complex Analyzer”, and “Pattern Viewer”. The former provides a 3D structure viewer with annotations of interacting amino acid residues, ligand atoms, and interacting pairs of these. In the annotations of interacting pairs, assignment to an interaction pattern of each contact and statistical preferences of the patterns are presented. The “Pattern Viewer” provides details of each interaction pattern. Users can see visual representations of probability density functions of interactions, and a list of protein–ligand complexes showing similar interactions. Conclusions Users can interactively analyze protein–small ligand binding modes with statistically determined interaction patterns rather than relying on a priori knowledge of the users, by using our new web server named GIANT that is freely available at http://giant.hgc.jp/. PMID:24423161

  11. Ground and Structure Deformation 3d Modelling with a Tin Based Property Model

    NASA Astrophysics Data System (ADS)

    TIAN, T.; Zhang, J.; Jiang, W.

    2013-12-01

    With the development of 3D( three-dimensional) modeling and visualization, more and more 3D tectonics are used to assist the daily work in Engineering Survey, in which the prediction of deformation field in strata and structure induced by underground construction is an essential part. In this research we developed a TIN (Triangulated Irregular Network) based property model for the 3D (three dimensional) visualization of ground deformation filed. By record deformation vector for each nodes, the new model can express the deformation with geometric-deformation-style by drawing each node in its new position and deformation-attribute-distribution-style by drawing each node in the color correspond with its deformation attribute at the same time. Comparing with the volume model based property model, this new property model can provide a more precise geometrical shape for structure objects. Furthermore, by recording only the deformation data of the user-interested 3d surface- such as the ground surface or the underground digging surface, the new property model can save a lot of space, which makes it possible to build the deformation filed model of a much more large scale. To construct the models of deformation filed based on TIN model, the refinement of the network is needed to increase the nodes number, which is necessary to express the deformation filed with a certain resolution. The TIN model refinement is a process of sampling the 3D deformation field values on points on the TIN surface, for which we developed a self-adapting TIN refinement method. By set the parameter of the attribute resolution, this self-adapting method refines the input geometric-expressing TIN model by adding more vertexes and triangles where the 3D deformation filed changing faster. Comparing with the even refinement method, the self-adapting method can generate a refined TIN model with nodes counted less by two thirds. Efficiency Comparison between Self-adapting Refinement Method and Even

  12. Modeling tumor/polyp/lesion structure in 3D for computer-aided diagnosis in colonoscopy

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Sargent, Dusty; Wang, Yuan-Fang

    2010-02-01

    We describe a software system for building three-dimensional (3D) models from colonoscopic videos. The system is end-to-end in the sense that it takes as input raw image frames-shot during a colon exam-and produces the 3D structure of objects of interest (OOI), such as tumors, polyps, and lesions. We use the structure-from-motion (SfM) approach in computer vision which analyzes an image sequence in which camera's position and aim vary relative to the OOI. The varying pose of the camera relative to the OOI induces the motion-parallax effect which allows 3D depth of the OOI to be inferred. Unlike the traditional SfM system pipeline, our software system contains many check-and-balance mechanisms to ensure robustness, and the analysis from earlier stages of the pipeline is used to guide the later processing stages to better handle challenging medical data. The constructed 3D models allow the pathology (growth and change in both structure and appearance) to be monitored over time.

  13. Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-01-01

    Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. This makes it possible to directly create three-dimensional (3D) microfluidic structures in glass that are of great use for fabrication of biochips. For fabrication of the 3D microfluidic structures, two technical approaches are being attempted. One of them employs femtosecond laser-induced internal modification of glass followed by wet chemical etching using an acid solution (Femtosecond laser-assisted wet chemical etching), while the other one performs femtosecond laser 3D ablation of the glass in distilled water (liquid-assisted femtosecond laser drilling). This paper provides a review on these two techniques for fabrication of 3D micro and nanofluidic structures in glass based on our development and experimental results.

  14. Parametric estimation of 3D tubular structures for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Anderson, Pamela G.; Rosenberg, Elizabeth; Kilmer, Misha E.; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L.

    2013-01-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction. PMID:23411913

  15. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  16. 3D scanning of internal structure in gel engineering materials with visual scanning microscopic light scattering

    NASA Astrophysics Data System (ADS)

    Watanabe, Yosuke; Gong, Jing; Masato, Makino; Kabir, M. Hasnat; Furukawa, Hidemitsu

    2014-04-01

    The 3D printing technology, causing much attention from the beginning of 2013, will be possibly an alternative method to fabricate the biological soft tissues. Recently our group of Yamagata University has developed the world-first 3D Gel Printer to fabricate the complicated gel-materials with high-strength and biocompatibility. However, there are no 3D scanners that collect the data from the internal structure of complicated gel objects such as eye lens. It means that a new system for scanning the internal structure is needed now. In this study, firstly, we have tried to investigate the gel network of synthetic and biological gel with scanning microscopic light scattering (SMILS). We calculated the Young's modulus of synthetic gels with the SMILS and with the tensile test, and precisely compared the results between them. The temperature dependences of the inside structure and the transparency are observed in the pig crystalline lens. The quantitative analysis indicates the importance of the internal structure of real object. Secondary, we show the new system named Gel-scanner that can provide the 2-dimentional data of the internal structure. From examining our findings, the scanning of internal structure will enable us to expect physical properties of the real object. We convince that the gelscanner will play major role in the various fields.

  17. Analysis of the rupture process of the 1995 Kobe earthquake using a 3D velocity structure

    NASA Astrophysics Data System (ADS)

    Guo, Yujia; Koketsu, Kazuki; Ohno, Taichi

    2013-12-01

    A notable feature of the 1995 Kobe (Hyogo-ken Nanbu) earthquake is that violent ground motions occurred in a narrow zone. Previous studies have shown that the origin of such motions can be explained by the 3D velocity structure in this zone. This indicates not only that the 3D velocity structure significantly affects strong ground motions, but also that we should consider its effects in order to determine accurately the rupture process of the earthquake. Therefore, we have performed a joint source inversion of strong-motion, geodetic, and teleseismic data, where 3D Green's functions were calculated for strong-motion and geodetic data in the Osaka basin. Our source model estimates the total seismic moment to be about 2.1 × 1019 N m and the maximum slip reaches 2.9 m near the hypocenter. Although the locations of large slips are similar to those reported by Yoshida et al. (1996), there are quantitative differences between our results and their results due to the differences between the 3D and 1D Green's functions. We have also confirmed that our source model realized a better fit to the strong motion observations, and a similar fit as Yoshida et al. (1996) to the observed static displacements.

  18. Factors Affecting Dimensional Accuracy of 3-D Printed Anatomical Structures Derived from CT Data.

    PubMed

    Ogden, Kent M; Aslan, Can; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Soman, Pranav

    2015-12-01

    Additive manufacturing and bio-printing, with the potential for direct fabrication of complex patient-specific anatomies derived from medical scan data, are having an ever-increasing impact on the practice of medicine. Anatomic structures are typically derived from CT or MRI scans, and there are multiple steps in the model derivation process that influence the geometric accuracy of the printed constructs. In this work, we compare the dimensional accuracy of 3-D printed constructs of an L1 vertebra derived from CT data for an ex vivo cadaver T-L spine with the original vertebra. Processing of segmented structures using binary median filters and various surface extraction algorithms is evaluated for the effect on model dimensions. We investigate the effects of changing CT reconstruction kernels by scanning simple geometric objects and measuring the impact on the derived model dimensions. We also investigate if there are significant differences between physical and virtual model measurements. The 3-D models were printed using a commercial 3-D printer, the Replicator 2 (MakerBot, Brooklyn, NY) using polylactic acid (PLA) filament. We found that changing parameters during the scan reconstruction, segmentation, filtering, and surface extraction steps will have an effect on the dimensions of the final model. These effects need to be quantified for specific situations that rely on the accuracy of 3-D printed models used in medicine or tissue engineering applications. PMID:25982877

  19. 3D interactive model of lumbar spinal structures of anesthetic interest.

    PubMed

    Prats-Galino, Alberto; Reina, Miguel A; Mavar Haramija, Marija; Puigdellivol-Sánchez, Anna; Juanes Méndez, Juan A; De Andrés, José A

    2015-03-01

    A 3D model of lumbar structures of anesthetic interest was reconstructed from human magnetic resonance (MR) images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The MR images were analyzed using a specific 3D software platform for biomedical data. Models generated from manually delimited volumes of interest and selected MR images were exported to Virtual Reality Modeling Language format and were presented in a PDF document containing JavaScript-based functions. The 3D file and the corresponding instructions and license files can be downloaded freely at http://diposit.ub.edu/dspace/handle/2445/44844?locale=en. The 3D PDF interactive file includes reconstructions of the L3-L5 vertebrae, intervertebral disks, ligaments, epidural and foraminal fat, dural sac and nerve root cuffs, sensory and motor nerve roots of the cauda equina, and anesthetic approaches (epidural medial, spinal paramedial, and selective nerve root paths); it also includes a predefined sequential educational presentation. Zoom, 360° rotation, selective visualization, and transparency graduation of each structure and clipping functions are available. Familiarization requires no specialized informatics knowledge. The ease with which the document can be used could make it valuable for anatomical and anesthetic teaching and demonstration of patient information. PMID:25352014

  20. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  1. The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.

    PubMed

    Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai

    2016-04-28

    DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices. PMID:27004750

  2. Optimal Image Stitching for Concrete Bridge Bottom Surfaces Aided by 3d Structure Lines

    NASA Astrophysics Data System (ADS)

    Liu, Yahui; Yao, Jian; Liu, Kang; Lu, Xiaohu; Xia, Menghan

    2016-06-01

    Crack detection for bridge bottom surfaces via remote sensing techniques is undergoing a revolution in the last few years. For such applications, a large amount of images, acquired with high-resolution industrial cameras close to the bottom surfaces with some mobile platform, are required to be stitched into a wide-view single composite image. The conventional idea of stitching a panorama with the affine model or the homographic model always suffers a series of serious problems due to poor texture and out-of-focus blurring introduced by depth of field. In this paper, we present a novel method to seamlessly stitch these images aided by 3D structure lines of bridge bottom surfaces, which are extracted from 3D camera data. First, we propose to initially align each image in geometry based on its rough position and orientation acquired with both a laser range finder (LRF) and a high-precision incremental encoder, and these images are divided into several groups with the rough position and orientation data. Secondly, the 3D structure lines of bridge bottom surfaces are extracted from the 3D cloud points acquired with 3D cameras, which impose additional strong constraints on geometrical alignment of structure lines in adjacent images to perform a position and orientation optimization in each group to increase the local consistency. Thirdly, a homographic refinement between groups is applied to increase the global consistency. Finally, we apply a multi-band blending algorithm to generate a large-view single composite image as seamlessly as possible, which greatly eliminates both the luminance differences and the color deviations between images and further conceals image parallax. Experimental results on a set of representative images acquired from real bridge bottom surfaces illustrate the superiority of our proposed approaches.

  3. Proteopedia: Exciting Advances in the 3D Encyclopedia of Biomolecular Structure

    NASA Astrophysics Data System (ADS)

    Prilusky, Jaime; Hodis, Eran; Sussman, Joel L.

    Proteopedia is a collaborative, 3D web-encyclopedia of protein, nucleic acid and other structures. Proteopedia ( http://www.proteopedia.org ) presents 3D biomolecule structures in a broadly accessible manner to a diverse scientific audience through easy-to-use molecular visualization tools integrated into a wiki environment that anyone with a user account can edit. We describe recent advances in the web resource in the areas of content and software. In terms of content, we describe a large growth in user-added content as well as improvements in automatically-generated content for all PDB entry pages in the resource. In terms of software, we describe new features ranging from the capability to create pages hidden from public view to the capability to export pages for offline viewing. New software features also include an improved file-handling system and availability of biological assemblies of protein structures alongside their asymmetric units.

  4. Finding the displacement of wood structure in heritage building by 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Lee, M. C.; Tsai, Y. L.; Wang, R. Z.; Lin, M. L.

    2015-08-01

    Heritage buildings are highly prone to long term damage from the microclimate, scourge and vandalism, which can result in damaged materials, structures, painting and cultural heritage items. This study will focus on finding the displacement of wood structural members through the use of a 3D laser scanner and the 4D concept of time. The results will compare the scans from different periods to find the difference (if any) in the structural member position. Wood structures usually consist of numerous wood members connected to form the structure. However, these members can be damaged in various ways such as physical mechanisms, chemical reactions, and biological corrosion. When damage to the wood structure occurs, the structural displacement can be affected, and if affected severely, can lead to a building collapse. Monitoring of the structural displacement is the best way to discover damage immediately and to preserve the heritage building. However, the Cultural Heritage Preservation Law in Taiwan prohibits the installation of monitoring instruments (e.g strain gauge, accelerometer) in historic structures (heritage buildings). Scanning the wood structure with 3D lasers is the most non-intrusive method and quickly achieves displacement through visualization. The displacement scan results can be compared with different periods and different members to analyze the severity of damage. Once the 3D scanner is installed, the whole building is scanned, and point clouds created to build the visual building model. The structural displacement can be checked via the building model and the differences are measured between each member to find the high risk damaged areas or members with large displacement. Early detection of structural damage is the most effective way means of preservation.

  5. Topological evolutionary computing in the optimal design of 2D and 3D structures

    NASA Astrophysics Data System (ADS)

    Burczynski, T.; Poteralski, A.; Szczepanik, M.

    2007-10-01

    An application of evolutionary algorithms and the finite-element method to the topology optimization of 2D structures (plane stress, bending plates, and shells) and 3D structures is described. The basis of the topological evolutionary optimization is the direct control of the density material distribution (or thickness for 2D structures) by the evolutionary algorithm. The structures are optimized for stress, mass, and compliance criteria. The numerical examples demonstrate that this method is an effective technique for solving problems in computer-aided optimal design.

  6. 3D structure and conductive thermal field of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  7. 3D printing of layered brain-like structures using peptide modified gellan gum substrates.

    PubMed

    Lozano, Rodrigo; Stevens, Leo; Thompson, Brianna C; Gilmore, Kerry J; Gorkin, Robert; Stewart, Elise M; in het Panhuis, Marc; Romero-Ortega, Mario; Wallace, Gordon G

    2015-10-01

    The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases. PMID:26231917

  8. Low-cost impact detection and location for automated inspections of 3D metallic based structures.

    PubMed

    Morón, Carlos; Portilla, Marina P; Somolinos, José A; Morales, Rafael

    2015-01-01

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach. PMID:26029951

  9. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    PubMed Central

    Morón, Carlos; Portilla, Marina P.; Somolinos, José A.; Morales, Rafael

    2015-01-01

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach. PMID:26029951

  10. LigandBox: A database for 3D structures of chemical compounds

    PubMed Central

    Kawabata, Takeshi; Sugihara, Yusuke; Fukunishi, Yoshifumi; Nakamura, Haruki

    2013-01-01

    A database for the 3D structures of available compounds is essential for the virtual screening by molecular docking. We have developed the LigandBox database (http://ligandbox.protein.osaka-u.ac.jp/ligandbox/) containing four million available compounds, collected from the catalogues of 37 commercial suppliers, and approved drugs and biochemical compounds taken from KEGG_DRUG, KEGG_COMPOUND and PDB databases. Each chemical compound in the database has several 3D conformers with hydrogen atoms and atomic charges, which are ready to be docked into receptors using docking programs. The 3D conformations were generated using our molecular simulation program package, myPresto. Various physical properties, such as aqueous solubility (LogS) and carcinogenicity have also been calculated to characterize the ADME-Tox properties of the compounds. The Web database provides two services for compound searches: a property/chemical ID search and a chemical structure search. The chemical structure search is performed by a descriptor search and a maximum common substructure (MCS) search combination, using our program kcombu. By specifying a query chemical structure, users can find similar compounds among the millions of compounds in the database within a few minutes. Our database is expected to assist a wide range of researchers, in the fields of medical science, chemical biology, and biochemistry, who are seeking to discover active chemical compounds by the virtual screening. PMID:27493549

  11. Sequence-based identification of 3D structural modules in RNA with RMDetect.

    PubMed

    Cruz, José Almeida; Westhof, Eric

    2011-06-01

    Structural RNA modules, sets of ordered non-Watson-Crick base pairs embedded between Watson-Crick pairs, have central roles as architectural organizers and sites of ligand binding in RNA molecules, and are recurrently observed in RNA families throughout the phylogeny. Here we describe a computational tool, RNA three-dimensional (3D) modules detection, or RMDetect, for identifying known 3D structural modules in single and multiple RNA sequences in the absence of any other information. Currently, four modules can be searched for: G-bulge loop, kink-turn, C-loop and tandem-GA loop. In control test sequences we found all of the known modules with a false discovery rate of 0.23. Scanning through 1,444 publicly available alignments, we identified 21 yet unreported modules and 141 known modules. RMDetect can be used to refine RNA 2D structure, assemble RNA 3D models, and search and annotate structured RNAs in genomic data. PMID:21552257

  12. Low-cost structured-light based 3D capture system design

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bengtson, Kurt R.; Robinson, Barrett F.; Allebach, Jan P.

    2014-03-01

    Most of the 3D capture products currently in the market are high-end and pricey. They are not targeted for consumers, but rather for research, medical, or industrial usage. Very few aim to provide a solution for home and small business applications. Our goal is to fill in this gap by only using low-cost components to build a 3D capture system that can satisfy the needs of this market segment. In this paper, we present a low-cost 3D capture system based on the structured-light method. The system is built around the HP TopShot LaserJet Pro M275. For our capture device, we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an analytical approach to predicting the achievable resolution of the reconstructed 3D object based on differentials and small signal theory, and an experimental procedure for validating that the system under test meets the specifications for reconstructed object resolution that are predicted by our analytical model. By comparing our experimental measurements from the camera-projector system with the simulation results based on the model for this system, we conclude that our prototype system has been correctly configured and calibrated. We also conclude that with the analytical models, we have an effective means for specifying system parameters to achieve a given target resolution for the reconstructed object.

  13. Experimentation of structured light and stereo vision for underwater 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Bruno, F.; Bianco, G.; Muzzupappa, M.; Barone, S.; Razionale, A. V.

    Current research on underwater 3D imaging methods is mainly addressing long range applications like seafloor mapping or surveys of archeological sites and shipwrecks. Recently, there is an increasing need for more accessible and precise close-range 3D acquisition technologies in some application fields like, for example, monitoring the growth of coral reefs or reconstructing underwater archaeological pieces that in most cases cannot be recovered from the seabed. This paper presents the first results of a research project that aims to investigate the possibility of using active optical techniques for the whole-field 3D reconstructions in an underwater environment. In this work we have tested an optical technique, frequently used for in air acquisition, based on the projection of structured lighting patterns acquired by a stereo vision system. We describe the experimental setup used for the underwater tests, which were conducted in a water tank with different turbidity conditions. The tests have evidenced that the quality of 3D reconstruction is acceptable even with high turbidity values, despite the heavy presence of scattering and absorption effects.

  14. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the

  15. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    PubMed Central

    Lakhlili, Wiame; Chevé, Gwénaël; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2015-01-01

    The AKT/mammalian target of rapamycin (mTOR) pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D) structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site. PMID:26257525

  16. Utilizing in-situ resources and 3D printing structures for a manned Mars mission

    NASA Astrophysics Data System (ADS)

    Kading, Benjamin; Straub, Jeremy

    2015-02-01

    This paper presents a manned Mars mission, which is based on the use of in-situ resources for the fabrication of structures. First, it provides an overview of the two-phase mission. In phase one, robotic construction units prepare a functional base for phase-two human habitation. Then, it describes a set of prospective structures that can be created utilizing additive manufacturing (commonly known as 3D printing) techniques and in situ materials. Next, the technological advancements required to allow this type of mission are considered and their feasibility is discussed. Specific focus is given to the topics of basalt 3D printing and the maintenance of the pressure environment. The process of the construction of the base is also discussed. Finally the proposed approach is analyzed through comparison to prior missions, before concluding.

  17. Topology optimization of 3D structures with design-dependent loads

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Shu-Tian; Zhang, Xiong

    2010-10-01

    Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A boundary search scheme is proposed for 3D problems, by means of which the load surface can be identified effectively and efficiently, and the difficulties arising in other approaches can be overcome. The load surfaces are made up of the boundaries of finite elements and the loads can be directly applied to corresponding element nodes, which leads to great convenience in the application of this method. Finally, the effectiveness and efficiency of the proposed method is validated by several numerical examples.

  18. 3D structural analysis of proteins using electrostatic surfaces based on image segmentation

    PubMed Central

    Vlachakis, Dimitrios; Champeris Tsaniras, Spyridon; Tsiliki, Georgia; Megalooikonomou, Vasileios; Kossida, Sophia

    2016-01-01

    Herein, we present a novel strategy to analyse and characterize proteins using protein molecular electro-static surfaces. Our approach starts by calculating a series of distinct molecular surfaces for each protein that are subsequently flattened out, thus reducing 3D information noise. RGB images are appropriately scaled by means of standard image processing techniques whilst retaining the weight information of each protein’s molecular electrostatic surface. Then homogeneous areas in the protein surface are estimated based on unsupervised clustering of the 3D images, while performing similarity searches. This is a computationally fast approach, which efficiently highlights interesting structural areas among a group of proteins. Multiple protein electrostatic surfaces can be combined together and in conjunction with their processed images, they can provide the starting material for protein structural similarity and molecular docking experiments.

  19. Computer modeling of 3D structures of cytochrome P450s.

    PubMed

    Chang, Y T; Stiffelman, O B; Loew, G H

    1996-01-01

    The understanding of structure-function relationship of enzymes requires detailed information of their three-dimensional structure. Protein structure determination by X-ray and NMR methods, the two most frequently used experimental procedures, are often difficult and time-consuming. Thus computer modeling of protein structures has become an increasingly active and attractive option for obtaining predictive models of three-dimensional protein structures. Specifically, for the ubiquitous metabolizing heme proteins, the cytochrome P450s, the X-ray structures of four isozymes of bacterial origin, P450cam, P450terp, P450BM-3 and P450eryF have now been determined. However, attempts to obtain the structure of mammalian forms by experimental means have thus far not been successful. Thus, there have been numerous attempts to construct models of mammalian P450s using homology modeling methods in which the known structures have been used to various extents and in various strategies to build models of P450 isozymes. In this paper, we review these efforts and then describe a strategy for structure building and assessment of 3D models of P450s recently developed in our laboratory that corrects many of the weaknesses in the previous procedures. The results are 3D models that for the first time are stable to unconstrained molecular dynamics simulations. The use of this method is demonstrated by the construction and validation of a 3D model for rabbit liver microsomal P450 isozyme 2B4, responsible for the oxidative metabolism of diverse xenobiotics including widely used inhalation anesthetics. Using this 2B4 model, the substrate access channel, substrate binding site and plausible surface regions for binding with P450 redox partners were identified. PMID:9010606

  20. 3D reconstruction of internal structure of animal body using near-infrared light

    NASA Astrophysics Data System (ADS)

    Tran, Trung Nghia; Yamamoto, Kohei; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2014-03-01

    To realize three-dimensional (3D) optical imaging of the internal structure of animal body, we have developed a new technique to reconstruct CT images from two-dimensional (2D) transillumination images. In transillumination imaging, the image is blurred due to the strong scattering in the tissue. We had developed a scattering suppression technique using the point spread function (PSF) for a fluorescent light source in the body. In this study, we have newly proposed a technique to apply this PSF for a light source to the image of unknown light-absorbing structure. The effectiveness of the proposed technique was examined in the experiments with a model phantom and a mouse. In the phantom experiment, the absorbers were placed in the tissue-equivalent medium to simulate the light-absorbing organs in mouse body. Near-infrared light was illuminated from one side of the phantom and the image was recorded with CMOS camera from another side. Using the proposed techniques, the scattering effect was efficiently suppressed and the absorbing structure can be visualized in the 2D transillumination image. Using the 2D images obtained in many different orientations, we could reconstruct the 3D image. In the mouse experiment, an anesthetized mouse was held in an acrylic cylindrical holder. We can visualize the internal organs such as kidneys through mouse's abdomen using the proposed technique. The 3D image of the kidneys and a part of the liver were reconstructed. Through these experimental studies, the feasibility of practical 3D imaging of the internal light-absorbing structure of a small animal was verified.

  1. A theoretical study of the structure and stability of borohydride on 3d transition metals

    NASA Astrophysics Data System (ADS)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  2. Assessment of the isostatic state and the load distribution of the European Molasse basin by means of lithospheric-scale 3D structural and 3D gravity modelling

    NASA Astrophysics Data System (ADS)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2015-07-01

    The European Molasse basin is a foreland basin situated at the northern front of the European Alps and has formed as a consequence of the Euro-Adriatic continental collision since the Tertiary. Today, it is underlain by Mesozoic sedimentary successions on top of a Paleozoic crust. To investigate the deep structure, the isostatic state, as well as the load distribution in the basin and the adjacent Alpine area, we constructed a lithospheric-scale 3D structural model by implementing available surface, well and seismic data. Subsequently, the structure of the model was constrained by means of 3D gravity modelling. Complementary, the isostatic state has been assessed based on the calculation of the 3D load distribution. Our results show that the Molasse basin is not in isostatic equilibrium and that the gravity field of the area is strongly controlled by the configuration of the crystalline crust. Furthermore, we show that the area is influenced by significant lateral load variations down to a depth of -150 km, which are considerably larger than commonly assumed for this level. Furthermore, our results allow a first-order assessment of the minimum compensating horizontal stress required to prevent gravitational collapse.

  3. Characterizing Woody Vegetation Spectral and Structural Parameters with a 3-D Scene Model

    NASA Astrophysics Data System (ADS)

    Qin, W.; Yang, L.

    2004-05-01

    Quantification of structural and biophysical parameters of woody vegetation is of great significance in understanding vegetation condition, dynamics and functionality. Such information over a landscape scale is crucial for global and regional land cover characterization, global carbon-cycle research, forest resource inventories, and fire fuel estimation. While great efforts and progress have been made in mapping general land cover types over large area, at present, the ability to quantify regional woody vegetation structural and biophysical parameters is limited. One approach to address this research issue is through an integration of physically based 3-D scene model with multiangle and multispectral remote sensing data and in-situ measurements. The first step of this work is to model woody vegetation structure and its radiation regime using a physically based 3-D scene model and field data, before a robust operational algorithm can be developed for retrieval of important woody vegetation structural/biophysical parameters. In this study, we use an advanced 3-D scene model recently developed by Qin and Gerstl (2000), based on L-systems and radiosity theories. This 3-D scene model has been successfully applied to semi-arid shrubland to study structure and radiation regime at a regional scale. We apply this 3-D scene model to a more complicated and heterogeneous forest environment dominated by deciduous and coniferous trees. The data used in this study are from a field campaign conducted by NASA in a portion of the Superior National Forest (SNF) near Ely, Minnesota during the summers of 1983 and 1984, and supplement data collected during our revisit to the same area of SNF in summer of 2003. The model is first validated with reflectance measurements at different scales (ground observations, helicopter, aircraft, and satellite). Then its ability to characterize the structural and spectral parameters of the forest scene is evaluated. Based on the results from this study

  4. Dynamic Characteristics of a Model and Prototype for 3D-RC Structure

    NASA Astrophysics Data System (ADS)

    Moniuddin, Md. Khaja; Vasanthalakshmi, G.; Chethan, K.; Babu, R. Ramesh

    2016-06-01

    Infill walls provide durable and economical partitions that have relatively excellent thermal and sound insulation with high fire resistance. Monolithic infilled walls are provided within RC structures without being analyzed as a combination of concrete and brick elements, although in reality they act as a single unit during earthquakes. The performance of such structures during earthquakes has proved to be superior in comparison to bare frames in terms of stiffness, strength and energy dissipation. To know the dynamic characteristics of monolithic infill wall panels and masonry infill, modal, response spectrum and time history analyses have been carried out on a model and prototype of a 3D RC structure for a comparative study.

  5. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.

    PubMed

    Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng

    2013-09-01

    The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences. PMID:23824509

  6. Segmentation of bone structures in 3D CT images based on continuous max-flow optimization

    NASA Astrophysics Data System (ADS)

    Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.

    2015-03-01

    In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.

  7. SPRITE and ASSAM: web servers for side chain 3D-motif searching in protein structures

    PubMed Central

    Nadzirin, Nurul; Gardiner, Eleanor J.; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2012-01-01

    Similarities in the 3D patterns of amino acid side chains can provide insights into their function despite the absence of any detectable sequence or fold similarities. Search for protein sites (SPRITE) and amino acid pattern search for substructures and motifs (ASSAM) are graph theoretical programs that can search for 3D amino side chain matches in protein structures, by representing the amino acid side chains as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. Both programs require the input file to be in the PDB format. The objective of using SPRITE is to identify matches of side chains in a query structure to patterns with characterized function. In contrast, a 3D pattern of interest can be searched for existing occurrences in available PDB structures using ASSAM. Both programs are freely accessible without any login requirement. SPRITE is available at http://mfrlab.org/grafss/sprite/ while ASSAM can be accessed at http://mfrlab.org/grafss/assam/. PMID:22573174

  8. Integration of nano-scale components and supports in micromachined 3D silicon structures

    NASA Astrophysics Data System (ADS)

    Song, J.; Azimi, S.; Y Dang, Z.; Breese, M. B. H.

    2014-04-01

    We have developed a process for the three-dimensional (3D) machining of p-type silicon on a micro- and nano-scale using high-energy ion beam irradiation with one or more energies and fluences, followed by electrochemical anodization in hydrofluoric acid. We present a study of the dependence of our fabricated structures on irradiating ion energies, fluences, geometries and wafer resistivity. All these factors determine whether the micro- and nano-scale features are properly connected to the supports in the 3D silicon structures. If wrongly chosen, any of these factors may cause a breakage at the connection through localized over-etching. Under optimum irradiation and anodization conditions, free-standing patterned membranes can be fabricated with feature dimensions of 100 nm over areas of many square millimeters. This investigation is based on silicon structures but is relevant to any electro-assisted etching process for 3D fabrication, paving the way for achieving free-standing silicon photonics, mechanical resonators and micro-/nano-electromechanical systems.

  9. 3D Axon structure extraction and analysis in confocal fluorescence microscopy images.

    PubMed

    Zhang, Yong; Zhou, Xiaobo; Lu, Ju; Lichtman, Jeff; Adjeroh, Donald; Wong, Stephen T C

    2008-08-01

    The morphological properties of axons, such as their branching patterns and oriented structures, are of great interest for biologists in the study of the synaptic connectivity of neurons. In these studies, researchers use triple immunofluorescent confocal microscopy to record morphological changes of neuronal processes. Three-dimensional (3D) microscopy image analysis is then required to extract morphological features of the neuronal structures. In this article, we propose a highly automated 3D centerline extraction tool to assist in this task. For this project, the most difficult part is that some axons are overlapping such that the boundaries distinguishing them are barely visible. Our approach combines a 3D dynamic programming (DP) technique and marker-controlled watershed algorithm to solve this problem. The approach consists of tracking and updating along the navigation directions of multiple axons simultaneously. The experimental results show that the proposed method can rapidly and accurately extract multiple axon centerlines and can handle complicated axon structures such as cross-over sections and overlapping objects. PMID:18336075

  10. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  11. The deep geothermal potential of Berlin (Germany) - Predictions from 3D structural and thermal modelling

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Fuchs, Sven; Cacace, Mauro; Kastner, Oliver; Huenges, Ernst; Scheck-Wenderoth, Magdalena

    2013-04-01

    In the light of an aspired reduction of CO2 emissions for Germany's capital Berlin, one possible alternative for meeting the city's growing energy demands lies in deep geothermal energy. To minimise exploration risks, a profound knowledge about the subsurface temperature distribution is indispensable. We present a 3D structural model that is used for thermal modelling and thus correlates calculated subsurface temperatures with geothermally relevant structures in the deep subsurface of Berlin - an ideal base for improving the probability of finding adequate geothermal reservoirs. Berlin is located in the eastern part of the North German Basin which is filled with several thousand metres of Permian to Cenozoic sediments containing hot and water bearing aquifers to potentially be used as hydrothermal reservoirs. To characterise the geological underground, the 3D structural model integrates stratigraphical, petrophysical and well-log based information from local boreholes as well as stratigraphic trends from (seismic data based) regional 3D models. The model differentiates 21 geological units: 17 Permian-Cenozoic sedimentary layers, pre-Permian sediments, upper crust, lower crust and the lithospheric mantle. Based on this 3D geological model complemented by databased lithology-dependent thermal properties, two groups of numerical thermal simulations have been carried out: calculations of the steady-state conductive thermal field and simulations of coupled fluid and heat transport. The 3D thermal models predict large lateral variations in temperatures that are validated by high-precession temperature logs. These variations are mostly caused by three specific geological layers and their physical properties: the Permian Zechstein salt with its markedly high thermal conductivity and strong thickness variation (171-3442 m); the crystalline upper crustal layer with its high radiogenic heat production and decreasing thickness from east to west; and the Tertiary Rupelian

  12. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    SciTech Connect

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur

    2012-11-15

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.

  13. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs. PMID:26202430

  14. 3-D Radar Imaging Reveals Deep Structures and Buried Craters Within the Martian Polar Caps

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Foss, F. J., II; Campbell, B. A.; Phillips, R. J.; Smith, I. B.

    2015-12-01

    We use Shallow Radar (SHARAD) observations on thousands of orbital passes by the Mars Reconnaissance Orbiter to produce fully imaged 3-D data volumes encompassing both polar ice caps of Mars. Greatly clarifying the view of subsurface features, a completed volume for Planum Boreum provides new constraints on the nature and timing of emplacement of the northern polar deposits and their relationship to climate. The standard method of mapping subsurface features with single-pass 2-D radargrams has been very fruitful (see Brothers et al. 2015, JGR 120 in press, and references therein), but a full assessment of internal structures has been hindered by interfering off-nadir echoes from spiral troughs and other variable topography prevalent on both caps. By assembling the SHARAD radargrams into a volume and applying a 3-D imaging process (migration) borrowed from seismic processing techniques, we enhance the signal-to-noise ratio while repositioning the echoes to their proper locations, thereby unraveling the interference. As part of the process, we correct ionospheric distortions and delays of the radar echoes (Campbell et al. 2014, IEEE GRSL 11 #3). Interfaces painstakingly mapped in radargrams (e.g., the basal-unit surface, a buried chasma) are clearly visible in the 3-D volume, and new features are revealed. Structures may now be mapped through trough-rich regions, including a widespread sequence that provides corroborative evidence of recent ice ages (Smith et al. 2015, LPSC XLVI #2574). Distinctive radar signatures associated with known, partially buried craters also occur elsewhere in the volume but without surface expression. Presumably, these are fully buried craters that may provide a new means to estimate the age of the deposits. Preliminary work for Planum Australe demonstrates that the 3-D processing currently underway will illuminate deep structures that are broadly obfuscated in 2-D radargrams by a shallow scatterer (Campbell et al. 2015, LPSC XLVI #2366).

  15. Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA.

    PubMed

    Mrozek, Dariusz; Brożek, Miłosz; Małysiak-Mrozek, Bożena

    2014-02-01

    Searching for similar 3D protein structures is one of the primary processes employed in the field of structural bioinformatics. However, the computational complexity of this process means that it is constantly necessary to search for new methods that can perform such a process faster and more efficiently. Finding molecular substructures that complex protein structures have in common is still a challenging task, especially when entire databases containing tens or even hundreds of thousands of protein structures must be scanned. Graphics processing units (GPUs) and general purpose graphics processing units (GPGPUs) can perform many time-consuming and computationally demanding processes much more quickly than a classical CPU can. In this paper, we describe the GPU-based implementation of the CASSERT algorithm for 3D protein structure similarity searching. This algorithm is based on the two-phase alignment of protein structures when matching fragments of the compared proteins. The GPU (GeForce GTX 560Ti: 384 cores, 2GB RAM) implementation of CASSERT ("GPU-CASSERT") parallelizes both alignment phases and yields an average 180-fold increase in speed over its CPU-based, single-core implementation on an Intel Xeon E5620 (2.40GHz, 4 cores). In this paper, we show that massive parallelization of the 3D structure similarity search process on many-core GPU devices can reduce the execution time of the process, allowing it to be performed in real time. GPU-CASSERT is available at: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm. PMID:24481593

  16. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities

    PubMed Central

    Dai, Chao; Li, Wenyuan; Tjong, Harianto; Hao, Shengli; Zhou, Yonggang; Li, Qingjiao; Chen, Lin; Zhu, Bing; Alber, Frank; Jasmine Zhou, Xianghong

    2016-01-01

    Three-dimensional (3D) genome structures vary from cell to cell even in an isogenic sample. Unlike protein structures, genome structures are highly plastic, posing a significant challenge for structure-function mapping. Here we report an approach to comprehensively identify 3D chromatin clusters that each occurs frequently across a population of genome structures, either deconvoluted from ensemble-averaged Hi-C data or from a collection of single-cell Hi-C data. Applying our method to a population of genome structures (at the macrodomain resolution) of lymphoblastoid cells, we identify an atlas of stable inter-chromosomal chromatin clusters. A large number of these clusters are enriched in binding of specific regulatory factors and are therefore defined as ‘Regulatory Communities.' We reveal two major factors, centromere clustering and transcription factor binding, which significantly stabilize such communities. Finally, we show that the regulatory communities differ substantially from cell to cell, indicating that expression variability could be impacted by genome structures. PMID:27240697

  17. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

    PubMed

    Mao, Yiqi; Yu, Kai; Isakov, Michael S; Wu, Jiangtao; Dunn, Martin L; Jerry Qi, H

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  18. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    PubMed Central

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  19. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-09-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  20. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  1. 3D measurement method based on combined temporal encoding structured light

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoyang; Wang, Yang; Yu, Shuang; Cheng, Hao; Sun, Xiaoming; Yu, Shuchun; Chen, Deyun

    2013-10-01

    Three-dimensional (3D) vision measurement technology based on encoding structured light plays an important role and has become the main development trend in the field of 3D non-contact measurement. However, how to synthetically improve measurement speed, accuracy and sampling density is still a difficult problem. Thus in the present work, a novel 3D measurement method based on temporal encoding structured light by combining trapezoidal phase-shifting pattern and cyclic code pattern is proposed. Due to trapezoidal phase-shifting has the advantages of high sampling density and high-speed, the proposed method can maintain these advantages by using cyclic code to expand the range of trapezoidal phase-shifting. In addition, the correction scheme is designed to solve the problem of cycle dislocation. Finally, simulation experimental platform is built with 3ds max and MATLAB. Experimental analyses and results show that, the maximal error is less than 3 mm in the range from 400 mm to 1100 mm, cycle dislocation correction has a good effect.

  2. Characterization of ABS specimens produced via the 3D printing technology for drone structural components

    NASA Astrophysics Data System (ADS)

    Ferro, Carlo Giovanni; Brischetto, Salvatore; Torre, Roberto; Maggiore, Paolo

    2016-07-01

    The Fused Deposition Modelling (FDM) technology is widely used in rapid prototyping. 3D printers for home desktop applications are usually employed to make non-structural objects. When the mechanical stresses are not excessive, this technology can also be successfully employed to produce structural objects, not only in prototyping stage but also in the realization of series pieces. The innovative idea of the present work is the application of this technology, implemented in a desktop 3D printer, to the realization of components for aeronautical use, especially for unmanned aerial systems. For this purpose, the paper is devoted to the statistical study of the performance of a desktop 3D printer to understand how the process performs and which are the boundary limits of acceptance. Mechanical and geometrical properties of ABS (Acrylonitrile Butadiene Styrene) specimens, such as tensile strength and stiffness, have been evaluated. ASTM638 type specimens have been used. A capability analysis has been applied for both mechanical and dimensional performances. Statistically stable limits have been determined using experimentally collected data.

  3. An unprecedented 3D POM-Ag architecture with intertwined and homological helical structures.

    PubMed

    Sha, Jing-Quan; Li, Meng-Ting; Sun, Jing-Wen; Zhang, Yu-Nan; Yan, Peng-Fei; Li, Guang-Ming

    2013-06-01

    A new hybrid compound, Na[Ag6(pyttz)2(H2O)][PMo12O40] (pyttz = 3-(pyrid-3-yl)-5-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl), has been hydrothermally synthesized and structurally characterized by routine techniques. X-ray diffraction analysis reveals that the title compound is constructed by the 2D Ag-pyttz coordination polymer and 3D Ag-POM architecture with helix. A fascinating structural feature is the assembling fashion of the right- and left-helical chain, namely, the helical chains with different orientations are intertwined with each other forming intertwined double helical layers along the c-axis, and the identical left- or right-handed helical chains are fused together in a hand-by-hand mode generating another homological helical layer along the a-axis. As a result, these helical layers intersect each other obtaining an unprecedented 3D POM-Ag inorganic architecture. Note that the 3D framework with a helix constructed by POMs and metal ions has never been observed up to date. Additionally, its photocatalytic degradation of RhB was also investigated. PMID:23558903

  4. Direct observation in 3d of structural crossover in binary hard sphere mixtures

    NASA Astrophysics Data System (ADS)

    Statt, Antonia; Pinchaipat, Rattachai; Turci, Francesco; Evans, Robert; Royall, C. Patrick

    2016-04-01

    For binary fluid mixtures of spherical particles in which the two species are sufficiently different in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to change from roughly the diameter of the large species to that of the small species along a sharp crossover line in the phase diagram [C. Grodon et al., J. Chem. Phys. 121, 7869 (2004)]. Using particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo simulations. In contrast with previous work [J. Baumgartl et al., Phys. Rev. Lett. 98, 198303 (2007)], where a correspondence was drawn between crossover and percolation of both species, in our 3d study we find that structural crossover is unrelated to percolation.

  5. Micro-CT for the quantification of 3D voids within damaged structures

    SciTech Connect

    Patterson, Brian M; Hamilton, Christopher E; Cerreta, Ellen K; Dennis - Koller, Darcie; Bronkhorst, C. A.; Hansen, B. L.

    2011-01-26

    Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

  6. Shape optimization of 3D continuum structures via force approximation techniques

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.; Kodiyalam, Srinivas

    1988-01-01

    The existing need to develop methods whereby the shape design efficiency can be improved through the use of high quality approximation methods is addressed. An efficient approximation method for stress constraints in 3D shape design problems is proposed based on expanding the nodal forces in Taylor series with respect to shape variations. The significance of this new method is shown through elementary beam theory calculations and via numerical computations using 3D solid finite elements. Numerical examples including the classical cantilever beam structure and realistic automotive parts like the engine connecting rod are designed for optimum shape using the proposed method. The numerical results obtained from these methods are compared with other published results, to assess the efficiency and the convergence rate of the proposed method.

  7. The lithospheric-scale 3D structural configuration of the North Alpine Foreland Basin constrained by gravity modelling and the calculation of the 3D load distribution

    NASA Astrophysics Data System (ADS)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2014-05-01

    The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International

  8. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  9. 3D visualization of deformation structures and potential fluid pathways at the Grimsel Test Site

    NASA Astrophysics Data System (ADS)

    Schneeberger, Raphael; Kober, Florian; Berger, Alfons; Spillmann, Thomas; Herwegh, Marco

    2015-04-01

    Knowledge on the ability of fluids to infiltrate subsurface rocks is of major importance for underground constructions, geothermal or radioactive waste disposal projects. In this study, we focus on the characterization of water infiltration pathways, their 3D geometries and origins. Based on surface and subsurface mapping in combination with drill core data, we developed by the use of MoveTM (Midland Valley Exploration Ltd.) a 3D structural model of the Grimsel Test Site (GTS). GTS is an underground laboratory operated by NAGRA, the Swiss organisation responsible for the management of nuclear waste. It is located within a suite of post-Variscan magmatic bodies comprising former granitic and granodioritic melts, which are dissected by mafic and aplitic dikes. During Alpine orogeny, the suite was tectonically overprinted within two stages of ductile deformation (Wehrens et al., in prep.) followed by brittle overprint of some of the shear zones during the retrograde exhumation history. It is this brittle deformation, which controls today's water infiltration network. However, the associated fractures, cataclasites and fault gouges are controlled themselves by aforementioned pre-existing mechanical discontinuities, whose origin ranges back as far as to the magmatic stage. For example, two sets of vertically oriented mafic dikes (E-W and NW-SE striking) and compositional heterogeneities induced by magmatic segregation processes in the plutonic host rocks served as nucleation sites for Alpine strain localization. Subsequently, NE-SW, E-W and NW-SE striking ductile shear zones were formed, in combination with high temperature fracturing while dissecting the host rocks in a complex 3D pattern (Wehrens et al, in prep.). Whether the ductile shear zones have been subjected to brittle reactivation and can serve as infiltration pathways or not, depends strongly on their orientations with respect to the principal stress field. Especially where deformation structures intersect

  10. Reconstruction of 3D structure using stochastic methods: morphology and transport properties

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Gerke, Kirill; Čapek, Pavel; Vasilyev, Roman; Korost, Dmitry; Skvortsova, Elena

    2013-04-01

    One of the main factors defining numerous flow phenomena in rocks, soils and other porous media, including fluid and solute movements, is pore structure, e.g., pore sizes and their connectivity. Numerous numerical methods were developed to quantify single and multi-phase flow in such media on microscale. Among most popular ones are: 1) a wide range of finite difference/element/volume solutions of Navier-Stokes equations and its simplifications; 2) lattice-Boltzmann method; 3) pore-network models, among others. Each method has some advantages and shortcomings, so that different research teams usually utilize more than one, depending on the study case. Recent progress in 3D imaging of internal structure, e.g., X-ray tomography, FIB-SEM and confocal microscopy, made it possible to obtain digitized input pore parameters for such models, however, a trade-off between resolution and sample size is usually unavoidable. There are situations then only standard two-dimensional information of porous structure is known due to tomography high cost or resolution limitations. However, physical modeling on microscale requires 3D information. There are three main approaches to reconstruct (using 2D cut(s) or some other limited information/properties) porous media: 1) statistical methods (correlation functions and simulated annealing, multi-point statistics, entropy methods), 2) sequential methods (sphere or other granular packs) and 3) morphological methods. Stochastic reconstructions using correlation functions possess some important advantage - they provide a statistical description of the structure, which is known to have relationships with all physical properties. In addition, this method is more flexible for other applications to characterize porous media. Taking different 3D scans of natural and artificial porous materials (sandstones, soils, shales, ceramics) we choose some 2D cut/s as sources of input correlation functions. Based on different types of correlation functions

  11. Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing

    NASA Astrophysics Data System (ADS)

    Challapalli, Adithya

    Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.

  12. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins

    PubMed Central

    Gouet, Patrice; Robert, Xavier; Courcelle, Emmanuel

    2003-01-01

    The fortran program ESPript was created in 1993, to display on a PostScript figure multiple sequence alignments adorned with secondary structure elements. A web server was made available in 1999 and ESPript has been linked to three major web tools: ProDom which identifies protein domains, PredictProtein which predicts secondary structure elements and NPS@ which runs sequence alignment programs. A web server named ENDscript was created in 2002 to facilitate the generation of ESPript figures containing a large amount of information. ENDscript uses programs such as BLAST, Clustal and PHYLODENDRON to work on protein sequences and such as DSSP, CNS and MOLSCRIPT to work on protein coordinates. It enables the creation, from a single Protein Data Bank identifier, of a multiple sequence alignment figure adorned with secondary structure elements of each sequence of known 3D structure. Similar 3D structures are superimposed in turn with the program PROFIT and a final figure is drawn with BOBSCRIPT, which shows sequence and structure conservation along the Cα trace of the query. ESPript and ENDscript are available at http://genopole.toulouse.inra.fr/ESPript. PMID:12824317

  13. The "lnc" between 3D chromatin structure and X chromosome inactivation.

    PubMed

    Pandya-Jones, Amy; Plath, Kathrin

    2016-08-01

    The long non-coding RNA Xist directs a remarkable instance of developmentally regulated, epigenetic change known as X Chromosome Inactivation (XCI). By spreading in cis across the X chromosome from which it is expressed, Xist RNA facilitates the creation of a heritably silent, heterochromatic nuclear territory that displays a three-dimensional structure distinct from that of the active X chromosome. How Xist RNA attaches to and propagates across a chromosome and its influence over the three-dimensional (3D) structure of the inactive X are aspects of XCI that have remained largely unclear. Here, we discuss studies that have made significant contributions towards answering these open questions. PMID:27062886

  14. A 3D moisture-stress FEM analysis for time dependent problems in timber structures

    NASA Astrophysics Data System (ADS)

    Fortino, Stefania; Mirianon, Florian; Toratti, Tomi

    2009-11-01

    This paper presents a 3D moisture-stress numerical analysis for timber structures under variable humidity and load conditions. An orthotropic viscoelastic-mechanosorptive material model is specialized on the basis of previous models. Both the constitutive model and the equations needed to describe the moisture flow across the structure are implemented into user subroutines of the Abaqus finite element code and a coupled moisture-stress analysis is performed for several types of mechanical loads and moisture changes. The presented computational approach is validated by analyzing some wood tests described in the literature and comparing the computational results with the reported experimental data.

  15. The “lnc” between 3D Chromatin Structure and X Chromosome Inactivation

    PubMed Central

    Pandya-Jones, Amy; Plath, Kathrin

    2016-01-01

    The long non-coding RNA Xist directs a remarkable instance of developmentally regulated, epigenetic change known as X Chromosome Inactivation (XCI). By spreading in cis across the X chromosome from which it is expressed, Xist RNA facilities the creation of a heritably silent, heterochromatic nuclear territory that displays a three-dimensional structure distinct from that of the active X chromosome. How Xist RNA attaches to and propagates across a chromosome and its influence over the three-dimensional (3D) structure of the inactive X are aspects of XCI that have remained largely unclear. Here, we discuss studies that have made significant contributions towards answering these open questions. PMID:27062886

  16. 3D Geo-Structures Visualization Education Project (3dgeostructuresvis.ucdavis.edu)

    NASA Astrophysics Data System (ADS)

    Billen, M. I.

    2014-12-01

    Students of field-based geology must master a suite of challenging skills from recognizing rocks, to measuring orientations of features in the field, to finding oneself (and the outcrop) on a map and placing structural information on maps. Students must then synthesize this information to derive meaning from the observations and ultimately to determine the three-dimensional (3D) shape of the deformed structures and their kinematic history. Synthesizing this kind of information requires sophisticated visualizations skills in order to extrapolate observations into the subsurface or missing (eroded) material. The good news is that students can learn 3D visualization skills through practice, and virtual tools can help provide some of that practice. Here I present a suite of learning modules focused at developing students' ability to imagine (visualize) complex 3D structures and their exposure through digital topographic surfaces. Using the software 3DVisualizer, developed by KeckCAVES (keckcaves.org) we have developed visualizations of common geologic structures (e.g., syncline, dipping fold) in which the rock is represented by originally flat-lying layers of sediment, each with a different color, which have been subsequently deformed. The exercises build up in complexity, first focusing on understanding the structure in 3D (penetrative understanding), and then moving to the exposure of the structure at a topographic surface. Individual layers can be rendered as a transparent feature to explore how the layer extends above and below the topographic surface (e.g., to follow an eroded fold limb across a valley). The exercises are provided using either movies of the visualization (which can also be used for examples during lectures), or the data and software can be downloaded to allow for more self-driven exploration and learning. These virtual field models and exercises can be used as "practice runs" before going into the field, as make-up assignments, as a field

  17. Simulating Seismic Wave Propagation in 3-D Structure: A Case Study For Istanbul City

    NASA Astrophysics Data System (ADS)

    Yelkenci, Seda; Aktar, Mustafa

    2013-04-01

    Investigation of the wave propagation around the Marmara Sea, in particular for the city of Istanbul is critical because this target area is identified as one of the megacities with the highest seismic risk in the world. This study makes an attempt for creating an integrated 3D seismic/geologic model and precise understanding of 3-D wave propagation in the city of Istanbul. The approach is based on generating synthetic seismograms using realistic velocity structures as well as accurate location, focal mechanism and source parameters of reference earthquakes. The modarate size reference earthquakes occured in the Marmara Sea and were recorded by the National Seismic Network of Turkey as well as the network of Istanbul Early Warning and Rapid Response System. The seismograms are simulated by means of a 3-D finite difference method operated on parallel processing environment. In the content of creating a robust velocity model; 1D velocity models which are derived fom previous crustal studies of Marmara region such as refraction seismic and receiver functions have been conducted firstly for depths greater than 1km. Velocity structure in shallower part of the study region is then derived from recent geophysical and geotechnical surveys. To construct 3-D model from the obtained 1-D model data, a variety of interpolation methods are considered. According to the observations on amplitude and arrival time based on comparison of simulated seismograms, the considered velocity model is refined the way that S delay times are compensated. Another important task of this work is an application of the finite difference method to estimate three-dimensional seismic responses for a specified basin structure including soft sediments with low shear velocities in respect of the surrounded area in the Asian part of Istanbul. The analysis performed both in the time and frequency domain, helps in understanding of the comprehensive wave propagation characteristics and the distribution of

  18. Molecular Phylogeny and Predicted 3D Structure of Plant beta-D-N-Acetylhexosaminidase

    PubMed Central

    Hossain, Md. Anowar

    2014-01-01

    beta-D-N-Acetylhexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of β-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. We constructed phylogenetic tree of β-hexosaminidases to analyze the evolutionary history and predicted functions of plant hexosaminidases. Phylogenetic analysis reveals the complex history of evolution of plant β-hexosaminidase that can be described by gene duplication events. The 3D structure of tomato β-hexosaminidase (β-Hex-Sl) was predicted by homology modeling using 1now as a template. Structural conformity studies of the best fit model showed that more than 98% of the residues lie inside the favoured and allowed regions where only 0.9% lie in the unfavourable region. Predicted 3D structure contains 531 amino acids residues with glycosyl hydrolase20b domain-I and glycosyl hydrolase20 superfamily domain-II including the (β/α)8 barrel in the central part. The α and β contents of the modeled structure were found to be 33.3% and 12.2%, respectively. Eleven amino acids were found to be involved in ligand-binding site; Asp(330) and Glu(331) could play important roles in enzyme-catalyzed reactions. The predicted model provides a structural framework that can act as a guide to develop a hypothesis for β-Hex-Sl mutagenesis experiments for exploring the functions of this class of enzymes in plant kingdom. PMID:25165734

  19. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  20. Learning the 3-D structure of objects from 2-D views depends on shape, not format.

    PubMed

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-05-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  1. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  2. Color influence on accuracy of 3D scanners based on structured light

    NASA Astrophysics Data System (ADS)

    Voisin, Sophie; Page, David L.; Foufou, Sebti; Truchetet, Frédéric; Abidi, Mongi A.

    2006-02-01

    The characterization of commercial 3D scanners allows acquiring precise and useful data. The accuracy of range and, more recently, color for 3D scanners is usually studied separately, but when the 3D scanner is based on structured light with a color coding pattern, color influence on range accuracy should be investigated. The commercial product that we have tested has the particularity that it can acquire data under ambient light instead of a controlled environment as it is with most available scanners. Therefore, based on related work in the literature and on experiments we have done on a variety of standard illuminants, we have designed an interesting setup to control illuminant interference. Basically, the setup consists of acquiring the well-known Macbeth ColorChecker under a controlled environment and also ambient daylight. The results have shown variations with respect to the color. We have performed several statistical studies to show how the range results evolve with respect to the RGB and the HSV channels. In addition, a systematic noise error has also been identified. This noise depends on the object color. A subset of colors shows strong noise errors while other colors have minimal or even no systematic error under the same illuminant.

  3. PACS-based interface for 3D anatomical structure visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Koehl, Christophe; Soler, Luc; Marescaux, Jacques

    2002-05-01

    The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.

  4. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  5. Micro-structured materials and mechanical cues in 3D collagen gels.

    PubMed

    Phillips, James B; Brown, Robert

    2011-01-01

    Collagen gels provide a versatile and widely used substrate for three-dimensional (3D) cell culture. Here we describe how cell-seeded Type-I collagen gels can be adapted to provide powerful 3D models to support a wide range of research applications where cell/substrate alignment, density, stiffness/compliance, and strain are critical factors. In their fully hydrated form, rectangular collagen gels can be tethered such that endogenous forces generated as resident cells attach to and remodel the fibrillar collagen network can align the substrate in a controllable, predictable, and quantifiable manner. By removing water from collagen gels (plastic compression), their density increases towards that of body tissues, facilitating the engineering of a range of biomimetic constructs with controllable mechanical properties. This dense collagen can be used in combination with other components to achieve a range of functional properties from controlled perfusion, or tensile/compressive strength to new micro-structures. Detailed methodology is provided for the assembly of a range of 3D collagen materials including tethered aligned hydrogels and plastic compressed constructs. A range of techniques for analysing cell behaviour within these models, including microscopy and molecular analyses are described. These systems therefore provide a highly controllable mechanical and chemical micro-environment for investigating a wide range of cellular responses. PMID:21042973

  6. Integration of 3D Structure from Disparity into Biological Motion Perception Independent of Depth Awareness

    PubMed Central

    Wang, Ying; Jiang, Yi

    2014-01-01

    Images projected onto the retinas of our two eyes come from slightly different directions in the real world, constituting binocular disparity that serves as an important source for depth perception - the ability to see the world in three dimensions. It remains unclear whether the integration of disparity cues into visual perception depends on the conscious representation of stereoscopic depth. Here we report evidence that, even without inducing discernible perceptual representations, the disparity-defined depth information could still modulate the visual processing of 3D objects in depth-irrelevant aspects. Specifically, observers who could not discriminate disparity-defined in-depth facing orientations of biological motions (i.e., approaching vs. receding) due to an excessive perceptual bias nevertheless exhibited a robust perceptual asymmetry in response to the indistinguishable facing orientations, similar to those who could consciously discriminate such 3D information. These results clearly demonstrate that the visual processing of biological motion engages the disparity cues independent of observers’ depth awareness. The extraction and utilization of binocular depth signals thus can be dissociable from the conscious representation of 3D structure in high-level visual perception. PMID:24586622

  7. Algorithms for extraction of structural attitudes from 3D outcrop models

    NASA Astrophysics Data System (ADS)

    Duelis Viana, Camila; Endlein, Arthur; Ademar da Cruz Campanha, Ginaldo; Henrique Grohmann, Carlos

    2016-05-01

    The acquisition of geological attitudes on rock cuts using traditional field compass survey can be a time consuming, dangerous, or even impossible task depending on the conditions and location of outcrops. The importance of this type of data in rock-mass classifications and structural geology has led to the development of new techniques, in which the application of photogrammetric 3D digital models has had an increasing use. In this paper we present two algorithms for extraction of attitudes of geological discontinuities from virtual outcrop models: ply2atti and scanline, implemented with the Python programming language. The ply2atti algorithm allows for the virtual sampling of planar discontinuities appearing on the 3D model as individual exposed surfaces, while the scanline algorithm allows the sampling of discontinuities (surfaces and traces) along a virtual scanline. Application to digital models of a simplified test setup and a rock cut demonstrated a good correlation between the surveys undertaken using traditional field compass reading and virtual sampling on 3D digital models.

  8. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    SciTech Connect

    Khoromskij, B.N. Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-09-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h{sup 3}) convergence in the grid-size h=O(n{sup -1}). Moreover, this requires O(3rn+r{sup 3}) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH{sub 4} molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10{sup -6} hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  9. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.

    PubMed

    Tokheim, Collin; Bhattacharya, Rohit; Niknafs, Noushin; Gygax, Derek M; Kim, Rick; Ryan, Michael; Masica, David L; Karchin, Rachel

    2016-07-01

    The impact of somatic missense mutation on cancer etiology and progression is often difficult to interpret. One common approach for assessing the contribution of missense mutations in carcinogenesis is to identify genes mutated with statistically nonrandom frequencies. Even given the large number of sequenced cancer samples currently available, this approach remains underpowered to detect drivers, particularly in less studied cancer types. Alternative statistical and bioinformatic approaches are needed. One approach to increase power is to focus on localized regions of increased missense mutation density or hotspot regions, rather than a whole gene or protein domain. Detecting missense mutation hotspot regions in three-dimensional (3D) protein structure may also be beneficial because linear sequence alone does not fully describe the biologically relevant organization of codons. Here, we present a novel and statistically rigorous algorithm for detecting missense mutation hotspot regions in 3D protein structures. We analyzed approximately 3 × 10(5) mutations from The Cancer Genome Atlas (TCGA) and identified 216 tumor-type-specific hotspot regions. In addition to experimentally determined protein structures, we considered high-quality structural models, which increase genomic coverage from approximately 5,000 to more than 15,000 genes. We provide new evidence that 3D mutation analysis has unique advantages. It enables discovery of hotspot regions in many more genes than previously shown and increases sensitivity to hotspot regions in tumor suppressor genes (TSG). Although hotspot regions have long been known to exist in both TSGs and oncogenes, we provide the first report that they have different characteristic properties in the two types of driver genes. We show how cancer researchers can use our results to link 3D protein structure and the biologic functions of missense mutations in cancer, and to generate testable hypotheses about driver mechanisms. Our results

  10. Influence of pre-existing salt structures in the 3D pattern of multilayer folding

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.; Collignon, Marine

    2014-05-01

    Upward movement of the Precambrian Hormuz salt in the Fars region of the Zagros is supposed to have started as early as Late Cretaceous. The Late Cretaceous - Tertiary deformation events that lead to the folding of the sedimentary cover in this area would have therefore, enhance the upward salt movement by squeezing the pre-existing salt structures. How these salt diapirs evolve under such compressive events has already been previously addressed using analogue models (e.g. Callot et al. 2012). The same authors observed that pre-existing salt structures control the size and geometry of folds in sandbox models. Our previous work has shown that 3D folding instability gives rise to a wide variety of fold shapes (e.g. from dome shape structures to long en echelon or straight anticlines), resulting of the interactions between growing fold segments. The three dimensional growth of these folds, the wavelength and the lateral propagation, is itself controlled by physical parameters. However, the existence of initial weak zones such as pre-existing salt plugs within the sedimentary cover can affect the development of such folds by localizing part of the deformation. In this study we have used numerical modeling to investigate how the fold pattern in 3D multilayer folding is affected by pre-existing salt structures. High-resolution 3D folding simulations (with and without pre-existing salt structures) were performed with the parallel code LaMEM. Cylindrically shaped diapirs with different diameters and heights have been added to a multilayer folding setup. The use of a finite element based landscape evolution model (both erosion and sedimentation) allows for initially buried salt diapirs to be exposed at the surface during folding evolution. Acknowledgements Funding was provided by the European Research Council under the European Community's Seventh Framework program (FP7/2007-2013) ERC Grant agreement #258830. 3D simulations are performed in the IBM Blue Gene/Q JUQUEEN

  11. Experimental Investigation of the Near Wall Flow Structure of a Low Reynolds Number 3-D Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Fleming, J. L.; Simpson, R. L.

    1997-01-01

    Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.

  12. Structural and property studies on metal–organic compounds with 3-D supramolecular network

    SciTech Connect

    Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian

    2014-07-01

    Two carboxylato-bridged allomeric compounds, ([Cu{sub 2}(dbsa){sub 2}(hmt) (H{sub 2}O){sub 4}]{sub 1/2}·2H{sub 2}O){sub n} (1), ([Ni(dbsa)(H{sub 2}O){sub 2}]{sub 1/2}[Ni(dbsa)(hmt)(H{sub 2}O){sub 2}]{sub 1/2}·2H{sub 2}O){sub n} (2) (H{sub 2}dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J{sub 1}=−3.5 cm{sup −1}, J{sub 2}=−2.8 cm{sup −1} for 1, and g=2.1, J=−3.5 cm{sup −1} for 2. - Graphical abstract: Variable-temperature magnetic property studies of two 3-D supramolecular compounds reveal the existence of antiferromagnetic interactions between the metal ions, through the effective super-exchange media. - Highlights: • Two 3-D allomeric Cu(II) and Ni(II) metal–organic compounds have been prepared. • The 3-D networks were constructed by coordination bonds, weak interactions and hydrogen bond interactions. • There are antiferromagnetic super-exchange interactions between the metal ions.

  13. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    NASA Astrophysics Data System (ADS)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ < 10°) distances. Three component earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic

  14. The 3D geological model of the Eastern Romania tectonics and structure

    NASA Astrophysics Data System (ADS)

    Necula, Nicusor; Sorin Baciu, Dorin; Niculita, Mihai; Dumitriu, Tony-Cristian

    2016-04-01

    3D geologic modelling is a modern tool which allow the conceptualization of geologic relations in an interactive environment, strengthening the ability to understand and present tectonic and structural geologic models. We integrated the data available in the literature (wells, maps, cross-sections) for the geological structure of the Eastern Romania, comprising the Eastern Carpathians Orogen and its foreland. The subducting East European plate generated the Eastern Carphatians thrusts. Under the Eastern Carpathians, beside East European plate, the Tornquist-Teysseire zone is caught. East European Craton (Proterozoic), Scythian Platform (Paleozoic), North Dobrogean Orogen (Paleozoic) and Moesian Platform (Paleozoic), all neighbor Tornquist-Teysseire zone (Paleozoic), playing the role of foreland for the Eastern Carpathian Orogen. The Eastern Carphatians Orogen has two flysch belts, the Inner Carpathian called Dacides formed in Cretacic deformations and the Outer Carpathian called Moldavides and formed in Late Badenian to Sarmatian deformations. The modelling was performed in Midland Valley's Move software. The boundaries of all the structural units presented above were modelled, together with the faults which are represented on the various osurces used. The created 3D geological model is seen as a tool to better understand and represent the tectonic and structural model of the Eastern ROmania and will also allow a better quantification of the relations between geology and landforms in Eastern Romania.

  15. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  16. Error analysis for creating 3D face templates based on cylindrical quad-tree structure

    NASA Astrophysics Data System (ADS)

    Gutfeter, Weronika

    2015-09-01

    Development of new biometric algorithms is parallel to advances in technology of sensing devices. Some of the limitations of the current face recognition systems may be eliminated by integrating 3D sensors into these systems. Depth sensing devices can capture a spatial structure of the face in addition to the texture and color. This kind of data is yet usually very voluminous and requires large amount of computer resources for being processed (face scans obtained with typical depth cameras contain more than 150 000 points per face). That is why defining efficient data structures for processing spatial images is crucial for further development of 3D face recognition methods. The concept described in this work fulfills the aforementioned demands. Modification of the quad-tree structure was chosen because it can be easily transformed into less dimensional data structures and maintains spatial relations between data points. We are able to interpret data stored in the tree as a pyramid of features which allow us to analyze face images using coarse-to-fine strategy, often exploited in biometric recognition systems.

  17. Comparative 3D Genome Structure Analysis of the Fission and the Budding Yeast

    PubMed Central

    Gong, Ke; Tjong, Harianto; Zhou, Xianghong Jasmine; Alber, Frank

    2015-01-01

    We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species. PMID:25799503

  18. Linear-Time Protein 3-D Structure Searching with Insertions and Deletions

    NASA Astrophysics Data System (ADS)

    Shibuya, Tetsuo; Jansson, Jesper; Sadakane, Kunihiko

    It becomes more and more important to search for similar structures from molecular 3-D structure databases in the structural biology of the post genomic era. Two molecules are said to be similar if the RMSD (root mean square deviation) of the two molecules is less than or equal to some given constant bound. In this paper, we consider an important, fundamental problem of finding all the similar substructures from 3-D structure databases of chain molecules (such as proteins), with consideration of indels (i.e., insertions and deletions). The problem has been believed to be very difficult, but its computational difficulty has not been well known. In this paper, we first show that the same problem in arbitrary dimension is NP-hard. Moreover, we also propose a new algorithm that dramatically improves the average-case time complexity for the problem, in case the number of indels k is bounded by some constant. Our algorithm solves the above problem in average O(N) time, while the time complexity of the best known algorithm was O(Nm k + 1), for a query of size m and a database of size N.

  19. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    NASA Astrophysics Data System (ADS)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  20. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    PubMed Central

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  1. Traversing and labeling interconnected vascular tree structures from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.; Govindarajan, Sindhuja Tirumalai; Salgia, Ankit; Hegde, Satyanarayan; Prabhakaran, Sreekala; Finol, Ender A.; White, R. James

    2014-03-01

    Purpose: Detailed characterization of pulmonary vascular anatomy has important applications for the diagnosis and management of a variety of vascular diseases. Prior efforts have emphasized using vessel segmentation to gather information on the number or branches, number of bifurcations, and branch length and volume, but accurate traversal of the vessel tree to identify and repair erroneous interconnections between adjacent branches and neighboring tree structures has not been carefully considered. In this study, we endeavor to develop and implement a successful approach to distinguishing and characterizing individual vascular trees from among a complex intermingling of trees. Methods: We developed strategies and parameters in which the algorithm identifies and repairs false branch inter-tree and intra-tree connections to traverse complicated vessel trees. A series of two-dimensional (2D) virtual datasets with a variety of interconnections were constructed for development, testing, and validation. To demonstrate the approach, a series of real 3D computed tomography (CT) lung datasets were obtained, including that of an anthropomorphic chest phantom; an adult human chest CT; a pediatric patient chest CT; and a micro-CT of an excised rat lung preparation. Results: Our method was correct in all 2D virtual test datasets. For each real 3D CT dataset, the resulting simulated vessel tree structures faithfully depicted the vessel tree structures that were originally extracted from the corresponding lung CT scans. Conclusion: We have developed a comprehensive strategy for traversing and labeling interconnected vascular trees and successfully implemented its application to pulmonary vessels observed using 3D CT images of the chest.

  2. Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems

    NASA Astrophysics Data System (ADS)

    Kalnins, Ernie G.; Miller, Willard, Jr.

    2012-06-01

    The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter) potentials. However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable) is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler-Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008) showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011) showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider a! n infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers (k1,k2) and reducing to the usual systems when k1=k2=1. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.

  3. Cross modality registration of video and magnetic tracker data for 3D appearance and structure modeling

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang

    2010-02-01

    The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).

  4. 3D velocity structure of upper crust beneath NW Bohemia/Vogtland

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mousavi, Sima; Korn, Michael; Sens-Schönfelder, Christoph; Bauer, Klaus; Rößler, Dirk

    2013-04-01

    The 3D structure of the upper crust beneath west Bohemia/Vogtland region, analyzed with travel time tomography and ambient noise surface wave tomography using existing data. This region is characterized by a series of phenomena like occurrence of repeated earthquake swarms, surface exhalation, CO2 enriched fluids, mofettes, mineral springs and enhanced heat flow, and has been proposed as an excellent location for an ICDP drilling project targeted to a better understanding of the crust in an active magmatic environment. We performed a 3D tomography using P-and S-wave travel times of local earthquakes and explosions. The data set were taken from permanent and temporary seismic networks in Germany and Czech Republic from 2000 to 2010, as well as active seismic experiments like Celebration 2000 and quarry blasts. After picking P and S wave arrival times, 399 events which were recorded by 9 or more stations and azimuthal gap<160° were selected for inversion. A simultaneous inversion of P and S wave 1D velocity models together with relocations of hypocenters and station corrections was performed. The obtained minimum 1D velocity model was used as starting model for the 3D Vp and Vp/Vs velocity models. P and S wave travel time tomography employs damped least-square method and ray tracing by pseudo-bending algorithm. For model parametrization different cell node spacings have been tested to evaluate the resolution in each node. Synthetic checkerboard tests have been done to check the structural resolution. Then Vp and Vp/Vs in the preferred 3D grid model have been determined. Earthquakes locations in iteration process change till the hypocenter adjustments and travel time residuals become smaller than the defined threshold criteria. Finally the analysis of the resolution depicts the well resolved features for interpretation. We observed lower Vp/Vs ratio in depth of 5-10 km close to the foci of earthquake swarms and higher Vp/Vs ratio is observed in Saxoturingian zone and

  5. Predicting RNA 3D structure using a coarse-grain helix-centered model

    PubMed Central

    Kerpedjiev, Peter; Höner zu Siederdissen, Christian; Hofacker, Ivo L.

    2015-01-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures. PMID:25904133

  6. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    NASA Astrophysics Data System (ADS)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the

  7. 3D structural model of the North Alpine Foreland Basin, Bavarian Part

    NASA Astrophysics Data System (ADS)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2013-04-01

    The continental collision of Europe and Africa leads to the rise of the European Alps, which gave way to the formation of the North Alpine Foreland Basin, also referred to as the Molasse Basin, since the Tertiary. This typically wedge formed "foredeep" basin is filled with predominantly clastic sediments originating from erosional processes of the Alps which overly a southward dipping Mesozoic and Paleozoic succession. With our project we want to contribute to the understanding of the structure and subsequently of the thermal configuration of the Molasse Basin and its underlying deposits on a basin wide scale. We constructed a 3D structural model of the basin down to the crust-mantle-boundary, beginning with the Bavarian part. Therefore we used an approach of already existing local to midscale 2D and 3D structural models (e.g. Lüschen et al. 2006) as well as surface maps, seismic, well and gravity data. This 3D structural model resolves 5 sedimentary layers of the Mesozoic, including the geothermally utilized carbonate Malm aquifer (e.g. Birner et al. 2011), as well as the combined Paleozoic basement. Assuming isostatic equilibrium of the system a lithosphere-asthenosphere-boundary (LAB) has been calculated and compared to other published LABs of the region. Subsequently the model has been further constrained by 3D gravity modeling. The outcomes show that Cretaceous sediments are restricted to a small region in the central to eastern model area and are mostly overlain by the Tertiary Molasse sediments. The Triassic sediments occur in the northern and western part of the model area and do not continue far under the Molasse basin proper, while the Jurassic can be tracked as far south as beneath the Alps. The evaluation of the gravity indicates that the crystalline crust consists of a lighter upper crust and a denser lower crust. Our final LAB is shallowest under the Triassic subbasin, descending below the Bohemian Massif and the Molasse Basin proper and rising again

  8. Monte Carlo generators for studies of the 3D structure of the nucleon

    SciTech Connect

    Avakian, Harut; D'Alesio, U.; Murgia, F.

    2015-01-23

    In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.

  9. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  10. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  11. Assessment of Damage Detection in Composite Structures Using 3D Vibrometry

    NASA Astrophysics Data System (ADS)

    Grigg, S.; Pearson, M.; Marks, R.; Featherston, C.; Pullin, R.

    2015-07-01

    Carbon fibre reinforced polymers (CFRP) have been used significantly more in recent years due to their increased specific strength over aluminium structures. One major area in which their use has grown is the aerospace industry where many now use CFRP in their construction. One major problem with CFRP's is their low resistance to impacts. Structural health monitoring (SHM) aims to continually monitor a structure throughout its entire life and can allow aircraft owners to identify impact damage as it occurs. This means that it can be repaired prior to growth, saving weight with the repair and the time that aircraft is grounded. Two areas of SHM being researched are Acoustic Emission (AE) monitoring and AcoustoUltrasonics (AU) both based on an understanding of the propagation of ultrasonic waves. 3D Scanning laser vibrometry was used to monitor the propagation of AU waves with the aim of gaining a better understanding their interaction with delamination in carbon fibre reinforced polymers. Three frequencies were exited with a PZT transducer and the received signal analysed by a cross correlation method. The results from this and the vibrometer scans revealed 100 kHz as the most effective propagating frequency of the three. A high resolution scan was then conducted at this frequency where it could be seen that only the out of plane component of the wave interacted with the damage, in particular the A0 mode. A 3D Fast Fourier Transform was then plotted, which identified the most effective frequency as 160 kHz.

  12. 3D X-rays application for precision measurement of the cell structure of extruded polystyrene

    NASA Astrophysics Data System (ADS)

    Lim, J. Y.; Kim, K. Y.; Shin, H. S.; Yeom, S.; Lee, S. E.

    2015-12-01

    While the thermal performance of existing insulation materials have been determined by blister gases, the thermal performance of future insulation materials will be dependent on the cell size and independent foam content as we use eco-friendly blister gases with a higher thermal conductivity. However, with the current technology we are only able to guess the whole cell size and independent foam content through SEM applied 2D fragmentary scanning but are still far from the level of accurate cell structure data extraction. Under this situation, we utilized X-ray CT scanned 3D images to identify and shape the cell structure and proposed a method of inferring the whole distribution and independent foam content as accurately as possible. According to X-ray CT scanning images and SEM images, the shape was similar but according to tracer applied CT scanning images, the cell size distribution was 380∼400 pm within the range of the general insulation diameter distribution which had the highest reliability. As for extrusion foaming polystyrene, we need additional image processing to identify the independent foam content as its density is too low. So, it is recommended to raise the 3D cell structure completeness of XPS by improving the scanning accuracy.

  13. Structural description and combined 3D display for superior analysis of cerebral vascularity from MRA

    NASA Astrophysics Data System (ADS)

    Szekely, Gabor; Koller, Thomas; Kikinis, Ron; Gerig, Guido

    1994-09-01

    Medical image analysis has to support the clinicians ability to identify, manipulate and quantify anatomical structures. On scalar 2D image data, a human observer is often superior to computer assisted analysis, but the interpretation of vector- valued data or data combined from different modalities, especially in 3D, can benefit from computer assistance. The problem of how to convey the complex information to the clinician is often tackled by providing colored multimodality renderings. We propose to go a step beyond by supplying a suitable modelling of anatomical and functional structures encoding important shape features and physical properties. The multiple attributes regarding geometry, topology and function are carried by the symbolic description and can be interactively queried and edited. Integrated 3D rendering of object surfaces and symbolic representation acts as a visual interface to allow interactive communication between the observer and the complex data, providing new possibilities for quantification and therapy planning. The discussion is guided by the prototypical example of investigating the cerebral vasculature in MRA volume data. Geometric, topological and flow-related information can be assessed by interactive analysis on a computer workstation, providing otherwise hidden qualitative and quantitative information. Several case studies demonstrate the potential usage for structure identification, definition of landmarks, assessment of topology for catheterization, and local simulation of blood flow.

  14. Long term effects of CO2 on 3-D pore structure and 3-D phase distribution in reservoir sandstones from the Green River well (Utah, USA)

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Kisoensingh, Shailesh

    2014-05-01

    Reservoir sandstones and cap rocks from the Green River area in Utah (USA) have been naturally exposed to CO2 fluids for hundreds of thousands of years, leading to compositional and microstructural alterations of the rocks. A 300m long section of this section of these Green river reservoir and cap rocks has been cored in 2012. Here, results of a high-resolution micro X-ray tomography study of a suite of samples from the well are reported detailing the 3D pore structure and phase distribution changes due to long term CO2 exposure. The reservoir sandstones from the Green River well (Utah) reveal the presence of various degrees of carbonate precipitation in the pores. Both reservoir sandstones (the shallower Entrada Formation and the deeper Navajo Formation) show variations in carbonate content and porosity structure. The Entrada sandstone exhibits widespread carbonate precipitation (up to 60% of infill of the original porosity), with the largest amount of carbonates at the boundary with the underlying Carmel cap rock. In an interval of a meter from the contact, carbonate precipitation decreases sharply till ~20%. The porosity is significantly reduced in the lowest 1 meter. The reduction in porosity lead to a reduction in pore connectivity and thereby permeability by the long-term CO2 exposure. On the other hand the Navajo sandstone shows predominantly only isolated spots of carbonate precipitation (up to 20% of the original porosity). Widespread carbonate precipitation is absent in the Navajo reservoir sandstone samples. Because carbonate precipitation is not present throughout, the large-scale permeability of the formation is likely not significantly affected by the CO2 exposure. The results show how the 3D distribution of the phases and the 3D shapes of the pores are affected by long term CO2 exposure and can be used as an example for potential changes to be expected in reservoir sandstones due to CO2 storage in future CO2 sequestration endeavours.

  15. Fast similarity search for protein 3D structures using topological pattern matching based on spatial relations.

    PubMed

    Park, Sung-Hee; Ryu, Keun Ho; Gilbert, David

    2005-08-01

    Similarity search for protein 3D structures become complex and computationally expensive due to the fact that the size of protein structure databases continues to grow tremendously. Recently, fast structural similarity search systems have been required to put them into practical use in protein structure classification whilst existing comparison systems do not provide comparison results on time. Our approach uses multi-step processing that composes of a preprocessing step to represent geometry of protein structures with spatial objects, a filter step to generate a small candidate set using approximate topological string matching, and a refinement step to compute a structural alignment. This paper describes the preprocessing and filtering for fast similarity search using the discovery of topological patterns of secondary structure elements based on spatial relations. Our system is fully implemented by using Oracle 8i spatial. We have previously shown that our approach has the advantage of speed of performance compared with other approach such as DALI. This work shows that the discovery of topological relations of secondary structure elements in protein structures by using spatial relations of spatial databases is practical for fast structural similarity search for proteins. PMID:16187404

  16. Fast 3D reconstruction of tool wear based on monocular vision and multi-color structured light illuminator

    NASA Astrophysics Data System (ADS)

    Wang, Zhongren; Li, Bo; Zhou, Yuebin

    2014-11-01

    Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.

  17. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique

    PubMed Central

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-01-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields. PMID:26926357

  18. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique.

    PubMed

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-01-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields. PMID:26926357

  19. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-02-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields.

  20. Correlative nanoscale 3D imaging of structure and composition in extended objects.

    PubMed

    Xu, Feng; Helfen, Lukas; Suhonen, Heikki; Elgrabli, Dan; Bayat, Sam; Reischig, Péter; Baumbach, Tilo; Cloetens, Peter

    2012-01-01

    Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies. PMID:23185554

  1. 3D modeling method for computer animate based on modified weak structured light method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2010-11-01

    A simple and affordable 3D scanner is designed in this paper. Three-dimensional digital models are playing an increasingly important role in many fields, such as computer animate, industrial design, artistic design and heritage conservation. For many complex shapes, optical measurement systems are indispensable to acquiring the 3D information. In the field of computer animate, such an optical measurement device is too expensive to be widely adopted, and on the other hand, the precision is not as critical a factor in that situation. In this paper, a new cheap 3D measurement system is implemented based on modified weak structured light, using only a video camera, a light source and a straight stick rotating on a fixed axis. For an ordinary weak structured light configuration, one or two reference planes are required, and the shadows on these planes must be tracked in the scanning process, which destroy the convenience of this method. In the modified system, reference planes are unnecessary, and size range of the scanned objects is expanded widely. A new calibration procedure is also realized for the proposed method, and points cloud is obtained by analyzing the shadow strips on the object. A two-stage ICP algorithm is used to merge the points cloud from different viewpoints to get a full description of the object, and after a series of operations, a NURBS surface model is generated in the end. A complex toy bear is used to verify the efficiency of the method, and errors range from 0.7783mm to 1.4326mm comparing with the ground truth measurement.

  2. Correlative Nanoscale 3D Imaging of Structure and Composition in Extended Objects

    PubMed Central

    Xu, Feng; Helfen, Lukas; Suhonen, Heikki; Elgrabli, Dan; Bayat, Sam; Reischig, Péter; Baumbach, Tilo; Cloetens, Peter

    2012-01-01

    Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies. PMID:23185554

  3. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation

    NASA Astrophysics Data System (ADS)

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-01

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  4. Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.

    2001-01-01

    The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.

  5. Quantitative visualization of high-speed 3D turbulent flow structures using holographic interferometric tomography

    NASA Astrophysics Data System (ADS)

    Timmerman, B. H.; Watt, D. W.; Bryanston-Cross, P. J.

    1999-02-01

    Using holographic interferometry the three-dimensional structure of unsteady and large-scale motions within subsonic and transonic turbulent jet flows has been studied. The instantaneous 3D flow structure is obtained by tomographic reconstruction techniques from quantitative phase maps recorded using a rapid-switching, double reference beam, double pulse laser system. The reconstruction of the jets studied here reveal a three-dimensional nature of the flow. In particular an increasing complexity can be seen in the turbulence as the flow progresses from the jet nozzle. Furthermore, a coherent three-dimensional, possibly rotating, structure can be seen to exist within these jets. The type of flow features illustrated here are not just of fundamental importance for understanding the behavior of free jet flows, but are also common to a number of industrial applications, ranging from the combustion flow within an IC engine to the transonic flow through the stages of a gas turbine.

  6. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan

    2016-04-01

    Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies.

  7. Measuring the 3D shape of high temperature objects using blue sinusoidal structured light

    NASA Astrophysics Data System (ADS)

    Zhao, Xianling; Liu, Jiansheng; Zhang, Huayu; Wu, Yingchun

    2015-12-01

    The visible light radiated by some high temperature objects (less than 1200 °C) almost lies in the red and infrared waves. It will interfere with structured light projected on a forging surface if phase measurement profilometry (PMP) is used to measure the shapes of objects. In order to obtain a clear deformed pattern image, a 3D measurement method based on blue sinusoidal structured light is proposed in this present work. Moreover, a method for filtering deformed pattern images is presented for correction of the unwrapping phase. Blue sinusoidal phase-shifting fringe pattern images are projected on the surface by a digital light processing (DLP) projector, and then the deformed patterns are captured by a 3-CCD camera. The deformed pattern images are separated into R, G and B color components by the software. The B color images filtered by a low-pass filter are used to calculate the fringe order. Consequently, the 3D shape of a high temperature object is obtained by the unwrapping phase and the calibration parameter matrixes of the DLP projector and 3-CCD camera. The experimental results show that the unwrapping phase is completely corrected with the filtering method by removing the high frequency noise from the first harmonic of the B color images. The measurement system can complete the measurement in a few seconds with a relative error of less than 1 : 1000.

  8. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds.

    PubMed

    Hofmann, Sandra; Stok, Kathryn S; Kohler, Thomas; Meinel, Anne J; Müller, Ralph

    2014-01-01

    The development of porous scaffolds for tissue engineering applications requires the careful choice of properties, as these influence cell adhesion, proliferation and differentiation. Sterilization of scaffolds is a prerequisite for in vitro culture as well as for subsequent in vivo implantation. The variety of methods used to provide sterility is as diverse as the possible effects they can have on the structural and material properties of the three-dimensional (3-D) porous structure, especially in polymeric or proteinous scaffold materials. Silk fibroin (SF) has previously been demonstrated to offer exceptional benefits over conventional synthetic and natural biomaterials in generating scaffolds for tissue replacements. This study sought to determine the effect of sterilization methods, such as autoclaving, heat-, ethylene oxide-, ethanol- or antibiotic-antimycotic treatment, on porous 3-D SF scaffolds. In terms of scaffold morphology, topography, crystallinity and short-term cell viability, the different sterilization methods showed only few effects. Nevertheless, mechanical properties were significantly decreased by a factor of two by all methods except for dry autoclaving, which seemed not to affect mechanical properties compared to the native control group. These data suggest that SF scaffolds are in general highly resistant to various sterilization treatments. Nevertheless, care should be taken if initial mechanical properties are of interest. PMID:24013025

  9. Poloidal structure of the plasma edge with 3D magnetic fields

    NASA Astrophysics Data System (ADS)

    Agostini, Matteo; Scarin, Paolo; Carraro, Lorella; Spizzo, Gianluca; Spolaore, Monica; Vianello, Nicola

    2015-11-01

    In the RFX-mod reversed-field pinch, when the magnetic field spontaneously develops a non axi-symmetric structure, also the plasma edge assumes a three dimensional shape. In previous RFX works, it has been shown that kinetic properties of the plasma (electron pressure, connection lengths, floating potential, influx, plasma flow) closely follow the symmetry of the 3D field, both in amplitude and phase, along the toroidal angle (i.e, the RFP perpendicular direction in the edge). Using a set of poloidally distributed diagnostics, it is shown that these same properties follow the poloidal periodicity (m =1) of the field. However, the behavior of the phase is more difficult to understand. In particular, the 3D modulation of the plasma potential can rotate in the poloidal direction with the typical velocity of 100m/s, similar in value with the phase velocity of the m =1 magnetic mode; or it can jump between inboard and outboard equatorial midplane. Moreover, when the floating potential structure rotates, there are preliminary indications that its direction depends on the plasma density: it follows the m =1 mode at higher density, and rotates in the opposite direction at lower density.

  10. 3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure

    NASA Astrophysics Data System (ADS)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2016-07-01

    We demonstrate broadband, low loss, and close-to-zero dispersion guidance of terahertz (THz) radiation in a dielectric tube with an anti-reflection structure (AR-tube waveguide) in the frequency range from 0.2 to 1.0 THz. The anti-reflection structure (ARS) consists of close-packed cones in a hexagonal lattice arranged on the outer surface of the tube cladding. The feature size of the ARS is in the order of the wavelength between 0.2 and 1.0 THz. The waveguides are fabricated with the versatile and cost efficient 3D-printing method. Terahertz time-domain spectroscopy (THz-TDS) measurements as well as 3D finite-difference time-domain simulations (FDTD) are performed to extensively characterize the AR-tube waveguides. Spectrograms, attenuation spectra, effective phase refractive indices, and the group-velocity dispersion parameters β 2 of the AR-tube waveguides are presented. Both the experimental and numerical results confirm the extended bandwidth and smaller group-velocity dispersion of the AR-tube waveguide compared to a low loss plain dielectric tube THz waveguide. The AR-tube waveguide prototypes show an attenuation spectrum close to the theoretical limit given by the infinite cladding tube waveguide.

  11. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea.

    PubMed

    Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan

    2016-01-01

    Oceanic mesoscale eddies with horizontal scales of 50-300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies. PMID:27074710

  12. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea

    PubMed Central

    Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan

    2016-01-01

    Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies. PMID:27074710

  13. A crust-scale 3D structural model of the Beaufort-Mackenzie Basin (Arctic Canada)

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Scheck-Wenderoth, Magdalena; Lewerenz, Björn; Kroeger, Karsten Friedrich

    2013-04-01

    The Beaufort-Mackenzie Basin was initiated in the Early Jurassic as part of an Arctic rifted passive continental margin which soon after became overprinted by Cordilleran foreland tectonics. Decades of industrial exploration and scientific research in this petroliferous region have produced a wide spectrum of geological and geophysical data as well as geoscientific knowledge. We have integrated available grids of sedimentary horizons, well data, seismic reflection and refraction data, and the observed regional gravity field into the first crust-scale 3D structural model of the Beaufort-Mackenzie Basin. Many characteristics of this model reflect the complex geodynamic and tectonostratigraphic history of the basin. The Mesozoic-Cenozoic sedimentary part of the model comprises seven clastic units (predominantly sandy shales) of which the modelled thickness distributions allow to retrace the well-established history of the basin comprising a gradual north(east)ward shift of the main depocentres as well as diverse phases of localised erosion. As a result of this development, the present-day configuration of the basin reveals that the sedimentary units tend to be younger, more porous, and thus less dense towards the north at a constant depth level. By integrating three refraction seismic profiles and performing combined isostatic and 3D gravity modelling, we have modelled the sub-sedimentary basement of the Beaufort-Mackenzie Basin. The continental basement spans from unstretched domains (as thick as about 42 km) in the south to extremely thinned domains (of less than 5 km thickness) in the north where it probably represents transitional crust attached to the oceanic crust of the Canada Basin. The uppermost parts of the continental crust are less dense (ρ = 2710 kg/m3) and most probably made up by pre-Mesozoic meta-sediments overlying a heavier igneous and metamorphic crust (ρ = 2850 kg/m3). The presented crust-scale 3D structural model shows that the greatest

  14. A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures

    NASA Astrophysics Data System (ADS)

    Marescot, Laurent; Rigobert, Stéphane; Palma Lopes, Sérgio; Lagabrielle, Richard; Chapellier, Dominique

    2006-09-01

    This paper presents a general and comprehensive way to evaluate the geometric factors used for the computation of apparent resistivities in the context of DC resistivity mapping and non-destructive investigations, in laboratory or in the field. This technique enables one to consider 3-dimensional objects with arbitrary shape. The expression of the geometric factor results from the early definition of apparent resistivitiy. It is expressed as the ratio of the resistances obtained from measurements to the resistances induced in the medium with unitary resistivity considering the same object geometry and electrode set-up. In this work, a finite element code is used for the computation of the geometric factor. In this code, the electrodes do not need to be located on the nodes of the mesh. This option makes the finite element mesh generation task easier. A first synthetical example illustrates how the present approach could be applied to apparent resistivity mapping in an environment with a complex underground topography. A second example, based on real data in a water tank, illustrates the simulation of a resistivity survey on a structure with finite extent, e.g. a laboratory sample. In both examples, topographic artefacts and effects of material sample shapes are successfully taken into account and reliable apparent resistivity descriptions of the structures are obtained. The effectiveness of the method for the detection of heterogeneities in apparent resistivity maps is highlighted.

  15. Modeling the effects of 3-D slab geometry and oblique subduction on subduction zone thermal structure

    NASA Astrophysics Data System (ADS)

    Wada, I.; Wang, K.; He, J.

    2013-12-01

    In this study, we revisit the effects of along-strike variation in slab geometry and oblique subduction on subduction zone thermal structures. Along-strike variations in slab dip cause changes in the descending rate of the slab and generate trench-parallel pressure gradients that drive trench-parallel mantle flow (e.g., Kneller and van Keken, 2007). Oblique subduction also drives trench-parallel mantle flow. In this study, we use a finite element code PGCtherm3D and examine a range of generic subduction geometries and parameters to investigate the effects of the above two factors. This exercise is part of foundational work towards developing detailed 3-D thermal models for NE Japan, Nankai, and Cascadia to better constrain their 3-D thermal structures and to understand the role of temperature in controlling metamorphic, seismogenic, and volcanic processes. The 3-D geometry of the subducting slabs in the forearc and arc regions are well delineated at these three subduction zones. Further, relatively large compilations of surface heat flow data at these subduction zones make them excellent candidates for this study. At NE Japan, a megathrust earthquake occurred on March 11, 2011; at Nankai and Cascadia, there has been a great effort to constrain the scale of the next subduction thrust earthquake for the purpose of disaster prevention. Temperature influences the slip behavior of subduction faults by (1) affecting the rheology of the interface material and (2) controlling dehydration reactions, which can lead to elevated pore fluid pressure. Beyond the depths of subduction thrust earthquakes, the thermal structure is affected strongly by the pattern of mantle wedge flow. This flow is driven by viscous coupling between the subducting slab and the overriding mantle, and it brings in hot flowing mantle into the wedge. The trench-ward (up-dip) extent of the slab-mantle coupling is thus a key factor that controls the thermal structure. Slab-mantle decoupling at shallow

  16. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  17. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.

    PubMed

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-10

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  18. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  19. Global Structure of Idealized Stream Interaction Regions Using 3D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Pahud, D. M.; Hughes, W. J.; Merkin, V. G.

    2014-12-01

    The global structure of the heliosphere during solar cycles (SC) 23 and 24 differed significantly in many ways, for example in terms of global magnetic field strength, velocity structure and the observed properties of Stream Interaction Region (SIR) and associated shocks. The differences considered in this study focus primarily on the effects of the three-dimensional (3D) structure of SIRs. During the minimum of SC 24, equatorial coronal holes were prevalent as sources of low-latitude high-speed solar wind. In contrast, the canonical depiction of SC 23's minimum wind configuration is of a band of slow wind undulating about the heliographic equator. Using the heliospheric adaptation of the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) model (LFM-helio), we have run simulations for two idealized global solar wind conditions. The first simulation approximates the classical tilted dipole, with fast solar wind at high latitudes and a band of slow wind tilted with respect to the heliographic equator, and the second consists of global slow solar wind with equatorial circular sources of high-speed streams. The evolution of the SIRs from 0.1 AU to 2.0 AU is characterized using the amplitude and location of the maximum compressions of the plasma and the magnetic field as well as the largest deflection of solar wind flow. The relation between plasma and magnetic field compressions differs between the two cases considered. The SIRs produced by the equatorial coronal holes have similar maximum densities to those of the tilted dipole case, but the magnetic field magnitude is larger and the plasma is hotter. This suggests that evolution depends on the 3D structure of the SIR and its effects on the competitive roles of the growth of the structure, driven by compression from dynamic pressure, and and relaxation from the plasma flow and magnetic field deflections occurring in the region. Magnetic field threading SIRs and tracing plasma parcels are examined.

  20. Representing geometric structures in 3D tomography soil images: Application to pore-space modeling

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ndeye Ngom, Fatou; François Delerue, Jean

    2007-09-01

    Only in the last decade have geoscientists started to use 3D computed tomography (CT) images of soil for better understanding and modeling of soil properties. In this paper, we propose one of the first approaches to allow the definition and computation of stable (intrinsic) geometric representations of structures in 3D CT soil images. This addresses the open problem set by the description of volume shapes from discrete traces without any a priori information. The basic concept involves representing the volume shape by a piecewise approximation using simple volume primitives (bowls, cylinders, cones, etc.). This typical representation is assumed to optimize a criterion ensuring its stability. This criterion includes the representation scale, which characterizes the trade-off between the fitting error and the number of patches. We also take into account the preservation of topological properties of the initial shape: the number of connected components, adjacency relationships, etc. We propose an efficient computation method for this piecewise approximation using cylinders or bowls. For cylinders, we use optimal region growing in a valuated adjacency graph that represents the primitives and their adjacency relationships. For bowls, we compute a minimal set of Delaunay spheres recovering the skeleton. Our method is applied to modeling of a coarse pore space extracted from 3D CT soil images. The piecewise bowls approximation gives a geometric formalism corresponding to the intuitive notion of pores and also an efficient way to compute it. This geometric and topological representation of coarse pore space can be used, for instance, to simulate biological activity in soil.

  1. Gravimetric 3D Subsurface Modelling of the Cerro Do Jarau Structure, Rio Grande Do Sul, Brazil.

    NASA Astrophysics Data System (ADS)

    Giacomini, B. B.

    2014-12-01

    Although common in other bodies of the solar system, impact craters formed in basaltic terrains are rare on Earth and only a few examples are known. Two of these craters are located south of Brazil, the Vargeão and Vista Alegre impact craters. The Cerro do Jarau structure is not confirmed, but is a possible third Brazilian basaltic crater, formed above the Serra Geral basalt floods of the Paraná Basin like the other two. Cerro do Jarau is a 13 km circular landform that rises over 200 meters above the plains of the "pampas" in southern Brazil. The name, meaning "Jarau hills", is given after the crests of silicified and deformed Botucatu sandstones, which form a semiring of elevated hills in the northern part of the structure. This work focused on the construction of a 3D subsurface geological model that could explain a new set of ground gravimetric data. Bouguer anomalies were calculated from gravity acceleration measured at 313 stations irregularly distributed on the area of the impact structure. A regional component represented by a polynomial trend surface was extracted from the total Bouguer anomalies. The residual Bouguer map (fig. 1) shows a strong positive anomaly with a NE-SW trend, located in the northeastern part of the structure. This gravity feature is not common in other impact structures, being possibly related to a dike intrusion. However, the negative anomaly present in the center of the structure and the circular positive anomaly surrounding the central part of the structure could be related to an impact structure. The positive circular anomaly is not spatially coincident with the edges of the structure, a feature that is also observed at the Vargeão and Vista Alegre impact structures. Density values of basalts, sandstones and breccias were measured from rock samples and each average value were used as constraints for the 3D model developed with the Geosoft® VOXI Earth modelling.This model provided a better understanding of the subsurface design

  2. 2D and 3D reconstruction and geomechanical characterization of kilometre-scale complex folded structures

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Agliardi, Federico; Crosta, Giovanni B.; Villa, Alberto; Bistacchi, Andrea; Iudica, Gaetano

    2015-04-01

    points based on their normal vector orientations to identify and map bedding and fractures. Combined stereographic analysis of bedding orientations and use of filters allowed the quantification of fold hinge and limb geometries and their 3D reconstruction in GOCAD. Fracture patterns derived from points clouds and field data allowed identifying different geomechanical domains associated to the folded structure. Our results encourage the integrated analysis of high-resolution point clouds and detailed structural and geomechanical field data as inputs to the 3D geometrical reconstruction and modelling of folded rock masses. Validation of virtual outcrop reconstructions through a comparison with field structural measurements suggests that very precise geometrical constraints can be obtained by TLS on geological bodies with complex geometrical features. However, additional constraints on TLS survey layout design are required to optimise the reconstruction and distinction of specific structural elements associated to folding as bedding and fold-related fracture systems.

  3. A simple configuration for fabrication of 2D and 3D photonic quasicrystals with complex structures

    NASA Astrophysics Data System (ADS)

    Sun, XiaoHong; Wang, Shuai; Liu, Wei; Jiang, LiuDi

    2016-06-01

    A simple method using a single-prism common-path interferometer is presented for the fabrication of complex quasicrystals in sub-micrometer scales. Multiple types of two-dimensional (2D) and three-dimensional (3D) quasicrystalline structures are designed and their diffraction patterns are obtained by using Fourier Transform method. Multi-fold rotational symmetries are demonstrated and compared. By using this method, a wide range of quasicrystals types can be produced with arbitrary complexities and rotational symmetries. The transmittance studies of 12-fold and 18-fold structures also reveal the existence of complete photonic bandgaps, which also demonstrates increased symmetry and significantly improved characteristics of photonic band-gaps.

  4. A 3D multi-block structured version of the KIVA 2 code

    NASA Astrophysics Data System (ADS)

    Habachi, C.; Torres, A.

    A numerical procedure is developed in the KIVA 2 code for calculating flows in complex geometries. Those geometries consist of an arbitrary number of 3D secondary domains which are connected with any angle to a main region. In this procedure, the governing equations are discretized on a system of partial overlapping structured grids. Calculations are performed in the different meshes of the computation domain which are linked by a fully conservative algorithm. By this numerical technique, calculations in those geometries are possible with a reasonable number of inactive cells involved by a structured code like KIVA 2. This algorithm was validated on an 1D analytical case and a 2D experimental case. It was then used for modeling an industrial problem, a two stroke engine with ports and moving boundaries.

  5. Structural, magnetic and conduction properties of 3d-metal monoatomic wires

    NASA Astrophysics Data System (ADS)

    García-Fuente, A.; Daul, C.

    2014-04-01

    From density functional theory calculations, we study the structure, magnetism and conduction properties of monoatomic wires made of all the 3d elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Wires with equidistant and alternating bond lengths are considered. Both magnetism and structure are found to play an important role for the conduction properties of the wires. Ferromagnetic wires are found to present a spin filtering effect which is not directly related with the magnitude of their magnetic moment. On the other hand, the main effect of bond length alternation is to partially destroy the transmission around the Fermi level, especially from the d bands. Ni wires are found to present particularly interesting spin filtering properties, meanwhile Cr wires present promising magnetoresistive effects.

  6. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  7. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  8. Web-based Three-dimensional Virtual Body Structures: W3D-VBS

    PubMed Central

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  9. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  10. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    PubMed

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  11. 3D stochastic inversion of potential field data using structural geologic constraints

    NASA Astrophysics Data System (ADS)

    Shamsipour, Pejman; Schetselaar, Ernst; Bellefleur, Gilles; Marcotte, Denis

    2014-12-01

    We introduce a new method to include structural orientation constraints into potential field inversion using a stochastic framework. The method considers known geological interfaces and planar orientation data such as stratification estimated from seismic surveys or drill hole information. Integrating prior geological information into inversion methods can effectively reduce ambiguity and improve inversion results. The presented approach uses cokriging prediction with derivatives. The method is applied to two synthetic models to demonstrate its suitability for 3D inversion of potential field data. The method is also applied to the inversion of gravity data collected over the Lalor volcanogenic massive sulfide deposit at Snow Lake, Central Manitoba, Canada. The results show that using a structurally-constrained inversion leads to a better-resolved solution.

  12. Pore - to - Core Modeling of Soil Organic Matter Decomposition in 3D Soil Structures

    NASA Astrophysics Data System (ADS)

    Falconer, R. E.; Battaia, G.; Baveye, P.; Otten, W.

    2013-12-01

    There is a growing body of literature supporting the need for microbial contributions to be considered explicitly in carbon-climate models. There is also overwhelming evidence that physical protection within aggregates can play a significant role in organic matter dynamics. Yet current models of soil organic matter dynamics divide soil organic matter into conceptual pools with distinct turnover times, assuming that a combination of biochemical and physical properties control decay without explicit description. Albeit robust in their application, such models are not capable to account for changes in soil structure or microbial populations, or accurately predict the effect of wetness or priming. A spatially explicit model is presented that accounts for microbial dynamics and physical processes, permitting consideration of the heterogeneity of the physical and chemical microenvironments at scales relevant for microbes. Exemplified for fungi, we investigate how micro-scale processes manifest at the core scale with particular emphasis on evolution of CO2 and biomass distribution. The microbial model is based upon previous (Falconer et al, 2012) and includes the following processes: uptake, translocation, recycling, enzyme production, growth, spread and respiration. The model is parameterised through a combination of literature data and parameter estimation (Cazelles et al., 2012).The Carbon model comprises two pools, particulate organic matter which through enzymatic activity is converted into dissolved organic matter. The microbial and carbon dynamics occur within a 3D soil structure obtained by X-ray CT. We show that CO2 is affected not only by the amount of Carbon in the soil but also by microbial dynamics, soil structure and the spatial distribution of OM. The same amount of OM can result in substantially different respiration rates, with surprisingly more CO2 with increased clustering of OM. We can explain this from the colony dynamics, production of enzymes and

  13. Imaging 3D anisotropic upper mantle shear velocity structure of Southeast Asia using seismic waveform inversion

    NASA Astrophysics Data System (ADS)

    Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.

    2011-12-01

    Southeast Asia as a special region in the world which is seismically active and is surrounded by active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. Seismic anisotropic tomography can shade light on the complex crust and upper mantle dynamics of this region, which is the subject of much debate. In this study, we applied full waveform time domain tomography to image 3D isotropic and anisotropic upper mantle shear velocity structure of Southeast Asia. Three component waveforms of teleseismic and far regional events (15 degree ≤ Δ≤ 165 degree) with magnitude ranges from Mw6.0 to Mw7.0 are collected from 91 permanent and 438 temporary broadband seismic stations in SE Asia. Wavepackets of both fundamental and overtone modes, filtered between 60 and 400 sec, are selected automatically according to the similarity between data and synthetic waveforms (Panning & Romanowicz, 2006). Wavepackets corresponding to event-station paths that sample the region considered are weighted according to path redundancy and signal to noise ratio. Higher modes and fundamental mode wavepackets are weighted separately in order to enhance the contribution of higher modes which are more sensitive to deeper structure compared to the fundamental mode. Synthetic waveforms and broadband sensitivity kernels are computed using normal mode asymptotic coupling theory (NACT, Li & Romanowicz, 1995). As a starting model, we consider a global anisotropic upper mantle shear velocity model based on waveform inversion using the Spectral Element Method (Lekic & Romanowicz, 2011), updated for more realistic crustal thickness (French et al., 2011) as our starting model, we correct waveforms for the effects of 3D structure outside of the region, and invert them for perturbations in the 3D structure of the target region only. We start with waveform inversion down to 60sec and after several iterations, we include shorter period

  14. Internal Structure of Periglacial Landforms: Assessment using 3D Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Emmert, Adrian; Kneisel, Christof

    2015-04-01

    The occurrence of internal heterogeneities within periglacial landforms (e.g. frost table topography or varying ice content) is in most cases not inferable from the surface. Hence, to develop an enhanced understanding of the interaction between surface and subsurface processes, it is necessary to analyse the internal structure of different periglacial landforms and landform elements. The assessment of the internal structure is provided by the application of three-dimensional Electrical Resistivity Imaging (ERI). ERI is the technique of merging datum points from several parallel and perpendicular performed two-dimensional ERT (Electrical Resistivity Tomography) measurements and inverting the data set with a 3D inversion algorithm (sometimes also referred to as quasi-3D ERT). The application of this method has proven to be a valuable tool for mapping the spatial extent of isolated permafrost bodies and associated subsurface conditions. In this contribution, we present results from four ERI measurements, carried out in summer 2014 at different investigation sites in the Swiss Alps: Three measurements were performed on pebbly rockglaciers of different size and topographical position and one measurement was performed on a solifluction slope. Each of the 3D survey grids consists of 17 to 32 single 2D ERT surveys (Dipol-Dipol or Wenner-Schlumberger array) and covers an area of between 6000 m² and 7000 m², depending on the specific survey grid set-up. The inversions of the data sets were performed using the two different inversion algorithms of the software products "RES3DINV" and "BERT" (Boundless Electrical Resistivity Tomography) for a comparative analysis and to further support the geomorphological interpretation of the geophysical models. Each of the resulting resistivity models shows strong small-scale spatial heterogeneities between the investigated landforms but also within landform elements. For the investigated rockglacier sites, these structures include

  15. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  16. Identifying Key Structural Features and Spatial Relationships in Archean Microbialites Using 2D and 3D Visualization Methods

    NASA Astrophysics Data System (ADS)

    Stevens, E. W.; Sumner, D. Y.

    2009-12-01

    Microbialites in the 2521 ± 3 Ma Gamohaan Formation, South Africa, have several different end-member morphologies which show distinct growth structures and spatial relationships. We characterized several growth structures and spatial relationships in two samples (DK20 and 2_06) using a combination of 2D and 3D analytical techniques. There are two main goals in studying complicated microbialites with a combination of 2D and 3D methods. First, one can better understand microbialite growth by identifying important structures and structural relationships. Once structures are identified, the order in which the structures formed and how they are related can be inferred from observations of crosscutting relationships. Second, it is important to use both 2D and 3D methods to correlate 3D observations with those in 2D that are more common in the field. Combining analysis provides significantly more insight into the 3D morphology of microbial structures. In our studies, 2D analysis consisted of describing polished slabs and serial sections created by grinding down the rock 100 microns at a time. 3D analysis was performed on serial sections visualized in 3D using Vrui and 3DVisualizer software developed at KeckCAVES, UCD (http://keckcaves.org). Data were visualized on a laptop and in an immersive cave system. Both samples contain microbial laminae and more vertically orients microbial "walls" called supports. The relationships between these features created voids now filled with herringbone and blocky calcite crystals. DK20, a classic plumose structure, contains two types of support structures. Both are 1st order structures (1st order structures with organic inclusions and 1st without organic inclusions) interpreted as planar features based on 2D analysis. In the 2D analysis the 1st order structures show v branching relationships as well as single cuspate relationships (two 1st order structures with inclusions merging upward), and single tented relationships (three supports

  17. 3D Structure and Internal Circulation of Pancake Vortices in Rotating Stratified Flows

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram; Marcus, Philip; Aubert, Oriane; Le Bars, Michael; Le Gal, Patrice

    2011-11-01

    Jovian vortices, Atlantic meddies, and vortices of the protoplanetrary disks are examples of weakly-forced or unforced long-lived vortices in rotating stratified flows. Knowing the 3D structure and internal circulation of these vortices is essential in understanding their physics, which is not well-understood. For example, the aspect ratio of these vortices has been long thought to be f / N where f is the Coriolis parameter and N is the Brunt-Vaisala frequency. However, our recent theoretical and experimental study has shown that the aspect ratio in fact depends not only on f and N but also on the Rossby number and density mixing inside the vortex. The new scaling law also agrees with the available measurements of the meddies and Jupiter's Great Red Spot. High resolution 3D numerical simulations of the Navier-Stokes equation are carried out to confirm this new scaling law for a slowly (viscously) decaying anticyclonic vortex in which the Rossby number and stratification inside the vortex evolve in time. For a wide range of parameters and different distributions of density anomaly, the secondary circulations within the vortices are studied. The effect of a non-uniform background stratification is investigated, and the small cyclonic vortices that form above and below the anticyclone are studied.

  18. ISRU 3D printing for habitats and structures on the Moon

    NASA Astrophysics Data System (ADS)

    Cowley, Aidan

    2016-07-01

    In-situ-resource utilisation (ISRU) in combination with 3D printing may evolve into a key technology for future exploration. Setting up a lunar facility could be made much simpler by using additive manufacturing techniques to build elements from local materials - this would drastically reduce mission mass requirements and act as an excellent demonstrator for ISRU on other planetary bodies. Fabricating structures and components using Lunar regolith is an area of interest for ESA, as evidenced by past successful General Studies Program (GSP) and ongoing technology development studies. In this talk we detail a number of projects looking into the behavior of Lunar regolith simulants, their compositional variants and approaches to sintering such material that are under-way involving EAC, ESTEC and DLR. We report on early studies into utilizing conventional thermal sintering approaches of simulants as well as microwave sintering of these compositions. Both techniques are candidates for developing a 3D printing methodology using Lunar regolith. It is known that the differences in microwave effects between the actual lunar soil and lunar simulants can be readily ascribed to the presence of nanophase metallic Fe, native to Lunar regolith but lacking in simulants. In compostions of simulant with increased Illmenite (FeTiO3) concentrations, we observe improved regolith response to microwave heating, and the readily achieved formation of a glassy melt in ambient atmosphere. The improved response relative to untreated simulant is likely owing to the increased Fe content in the powder mix.

  19. Self-Assembled 3D Ordered Macroporous Structures for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Juan, Wen-Tau; Chung, Kuo-Yuan; Mishra, Narayan; Lin, Keng-Hui

    2008-03-01

    A simple, inexpensive and fast microfluidic method to fabricate three-dimensional ordered macroporous gel is demonstrated using alginate as the scaffold material. The microfluidic device consists of two concentric micropipettes where one is nested inside the other. Nitrogen gas and aqueous alginate solution with Pluronic F127 are pumped through the inner and the outer channel respectively. Under appropriate conditions, bubbles of a uniform size are generated within the device at few thousand Hz. We show the control over bubble size by the gas pressure and quantitatively predict the size dependence from the geometry of fluidic device. Monodisperse bubbles are collected and self-assemble into crystal structures as wet foam. The alginate solution between bubbles is crosslinked by divalent calcium ions and turns into 3D ordered macroporous gel where the pores are highly interconnected. The pore size can be directly controlled by the bubble size which ranges from few tens microns to few millimeters. This technique promises a versatile and robust way to make 3D ordered tissue engineering scaffolds.

  20. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  1. Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei

    2013-11-01

    This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.

  2. 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures

    NASA Astrophysics Data System (ADS)

    Jarząbek-Rychard, M.; Borkowski, A.

    2016-08-01

    The objective of the paper is to develop an automated method that enables for the recognition and semantic interpretation of topological building structures. The novelty of the proposed modeling approach is an unambiguous decomposition of complex objects into predefined simple parametric structures, resulting in the reconstruction of one topological unit without independent overlapping elements. The aim of a data processing chain is to generate complete polyhedral models at LOD2 with an explicit topological structure and semantic information. The algorithms are performed on 3D point clouds acquired by airborne laser scanning. The presented methodology combines data-based information reflected in an attributed roof topology graph with common knowledge about buildings stored in a library of elementary structures. In order to achieve an appropriate balance between reconstruction precision and visualization aspects, the implemented library contains a set of structure-depended soft modeling rules instead of strictly defined geometric primitives. The proposed modeling algorithm starts with roof plane extraction performed by the segmentation of building point clouds, followed by topology identification and recognition of predefined structures. We evaluate the performance of the novel procedure by the analysis of the modeling accuracy and the degree of modeling detail. The assessment according to the validation methods standardized by the International Society for Photogrammetry and Remote Sensing shows that the completeness of the algorithm is above 80%, whereas the correctness exceeds 98%.

  3. On topological mapping of yarn structures in 3-D braided composite preforms

    SciTech Connect

    Wang, Y.Q.; Wang, A.S.D.

    1994-12-31

    Previous studies have established that the internal yarn structure in a 3-D braided preform possesses a certain topological character which is determined by the braiding method alone, regardless of the preform shape or the yarn size used. This unique geometric property provides the possibility that yarn structures in preforms of different shapes may be mathematically connected from one to another, as long as the preforms are produced by the same braiding procedure. Exploring this possibility, the present paper discusses a geometric mapping method for the determination of the internal yarn structures in preforms of complex shapes. The idea is to obtain the desired mapping between two preform shapes, the mapping being able to also link analytically the respective yarn structures. Thus, if the yarn structure in one shape (simple) is known, the yarn structure in the other shape (complex) can be determined by the mapping. Illustrative examples using preforms braided by the 4-step 1x1 method are presented in detail. In general, determination of the desired mapping between two preforms of complex shapes requires a numerical and iterative procedure; between two preforms of relatively simple shapes, closed form mapping functions can be obtained.

  4. Towards 3D and Multilayer Electromagnetic Metamaterials Structures in the THz Range

    NASA Astrophysics Data System (ADS)

    Casse, B. D. F.; Moser, H. O.; Lee, J. W.; Inglis, S.; Bahou, M.; Jian, L. K.

    2007-03-01

    V. G. Veselago predicted that left-handed materials would exhibit a plethora of unusual effects such as a negative index of refraction as used in Snell's law, a reverse Doppler and Cerenkov effect. This novel class of materials, following Pendry's recipes, can potentially restore evanescent waves to focus subwavelength details in an image. Micron-size electromagnetic metamaterials (EM^3) structures which exist so far were produced and characterized as single layer structures. Furthermore the structures were produced with a low yield. In the first part of the talk, we will present techniques for producing copious amount of EM^3 chips via the LIGA process using Synchrotron radiation and demonstrate assembly of the first multilayer THz EM^3 structures. The planar micro- or nanoEM^3 produced so far are also highly anisotropic. Recently, we proposed schemes to produce more isotropic structures, within the same matrix, via tilted X-ray exposures that were introduced in the LIGA process years ago. In the second part of the talk, we will show the results of microfabrication of nearly 3D EM^3 structures for the THz range.

  5. Toward Rational Fragment-Based Lead Design without 3D Structures

    PubMed Central

    2012-01-01

    Fragment-based lead discovery (FBLD) has become a prime component of the armamentarium of modern drug design programs. FBLD identifies low molecular weight ligands that weakly bind to important biological targets. Three-dimensional structural information about the binding mode is provided by X-ray crystallography or NMR spectroscopy and is subsequently used to improve the lead compounds. Despite tremendous success rates, FBLD relies on the availability of high-resolution structural information, still a bottleneck in drug discovery programs. To overcome these limitations, we recently demonstrated that the meta-structure approach provides an alternative route to rational lead identification in cases where no 3D structure information about the biological target is available. Combined with information-rich NMR data, this strategy provides valuable information for lead development programs. We demonstrate with several examples the feasibility of the combined NMR and meta-structure approach to devise a rational strategy for fragment evolution without resorting to highly resolved protein complex structures. PMID:22889313

  6. Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids

    SciTech Connect

    Seidel, D.B.; Pasik, M.F.; Kiefer, M.L.; Riley, D.J.; Turner, C.D.

    1998-01-01

    New techniques have been recently developed that allow unstructured, free meshes to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids. The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of modeling afforded by free meshes to be combined with the simplicity and efficiency of rectilinear techniques. Integration of these new methods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-In-Cell (PIC) code provides new modeling capability for a wide variety of electromagnetic and plasma physics problems. To completely exploit the integration of this technology into QUICKSILVER for applications requiring the self-consistent treatment of charged particles, this project has extended existing PIC methods for operation on these hybrid unstructured/rectilinear meshes. Several technical issues had to be addressed in order to accomplish this goal, including the location of particles on the unstructured mesh, adequate conservation of charge, and the proper handling of particles in the transition region between structured and unstructured portions of the hybrid grid.

  7. ROMY - The First Large 3D Ring Laser Structure for Seismology and Geodesy

    NASA Astrophysics Data System (ADS)

    Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Lin, Chin-Jen; Gebauer, André; Wells, Jon-Paul

    2016-04-01

    Large ring laser gyroscopes have matured to the point that they can routinely observe rotational motions from geophysical processes that can be used in geodesy and seismology. The ring lasers used for this purpose enclose areas between 16 and 800 square meters and have in common that they can only measure rotations around the vertical axis because the structures are horizontally placed on the floor. With the ROMY project we have embarked on the construction of a full 3-dimensional rotation sensor. The actual apparatus consists of four individual triangular ring lasers arranged in the shape of a tetrahedron with 12 m of length on each side. At each corner of the tetrahedron three of the ring lasers are rigidly tied together to the same mechanical reference. The overall size of the installation provides a promising compromise between sensor stability on one side and sensor resolution on the other side. This talk introduces the technical concept of the ROMY ring laser installation and will also briefly outline the requirements for applications in space geodesy.

  8. Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold.

    PubMed

    Yang, Yang; Pei, Zhiqiang; Li, Zhen; Wei, Yen; Ji, Yan

    2016-02-24

    Making dynamic three-dimensional (3D) structures capable of reversible shape changes or locomotion purely out of dry polymers is very difficult. Meanwhile, no previous dynamic 3D structures can be remade into new configurations while being resilient to mechanical damages and low temperature. Here, we show that light-activated transesterification in carbon nanotube dispersed liquid crystalline vitrimers enables flexible design and easy building of dynamic 3D structures out of flat films upon irradiation of light without screws, glues, or molds. Shining light also enables dynamic 3D structures to be quickly modified on demand, restored from distortion, repaired if broken, in situ healed when microcrack appears, assembled for more sophisticated structures, reconfigured, and recycled after use. Furthermore, the fabrication, reconfiguration, actuation, reparation, and assembly as well as healing can be performed even at extremely low temperatures (e.g., -130 °C). PMID:26840838

  9. 3D-Mapping of Dolomitized Structures in Lower Cambrian Phosphorites

    NASA Astrophysics Data System (ADS)

    Hippler, Dorothee; Stammeier, Jessica A.; Brunner, Roland; Rosc, Jördis; Franz, Gerhard; Dietzel, Martin

    2016-04-01

    Dolomitization is a widespread phenomenon in ancient sedimentary rocks, particularly close to the Precambrian-Cambrian boundary. Dolomite can form in synsedimentary or hydrothermal environments, preferentially via the replacement of solid carbonate precursor phases. Synsedimentary dolomite formation is often associated with microbial activity, such as bacterial sulfate reduction or methanogenesis. In this study, we investigate dolomitic phosphorites from the Lowermost Cambrian Tal Group, Mussoori Syncline, Lesser Himalaya, India, using micro-CT 3D-mapping, in order to unravel the complex diagenetic history of the rocks. The selected sample shows alternating layering of phosphatic mudstones and sparitic dolostone, in which brecciated layers of phosphorite or phosphatic mudstones are immersed in a dolomite-rich matrix. Lamination occurs on a sub-millimetre scale, with lamination sometimes wavy to crinkly. This fabric is interpreted as former microbial mats, providing the environment for early diagenetic phosphatization. Preliminary electron backscatter imaging with scanning microscopy revealed that dolomite crystals often occur in spherical to ellipsoidal structures, typically with a high porosity. This dolomite is associated with botryoidal apatite, organic matter and small amounts of calcite. Micro-CT 3D-mappings reveal that dolomite structures are cigar-shaped, elongated and up to 600 μm long. They are further arranged in a Mikado-like oriented framework spanning a layer thickness of a few millimetres. Analyses of ambient pore space, with similar elongated outlines and filled with organic matter, suggest a potential coherence of ambient pore space and shape of the dolomite structures. Allowing for other associated mineral phases, such as pyrite and silicates, and their spatial distribution, the present approach can be used to unravel distinct diagenetic reaction pathways, and might thus constrain the proxy potential of these Lower Cambrian dolomitic phosphorites

  10. Regional structural styles in the northeast Netherlands as expressed on 3-D data

    SciTech Connect

    Goeyenbier, H. )

    1993-09-01

    The northeast Netherlands areas is a highly prospective gas province, containing the Groningen gas field and a multitude of smaller fields. Some 40 three-dimensional (3-D) seismic surveys have been acquired over the last 10 yr. covering a major part of this 15,000-km[sup 2] area. These surveys have been combined for the first time on a Landmark workstation to produce time, depth, and horizon attribute maps from six important (overburden and reservoir) levels: base Tertiary, base Chalk, base Cretaceous, base Jurassic, top Zechstein and base Zechstein. The structural history was reconstructed by analyzing isopach maps of the various units in combination with dip extractions along the mapped horizons to outline the active fault trends. Isopach maps of the Tertiary, Chalk, and Lower Cretaceous sediments reveal the salt movement during this interval with depocenters in the Lauwerszee trough as a result of salt withdrawal and salt diapirism in the areas of structural weakness near existing fault trends. The dip maps at the base of these units show the en-echelon fault pattern and the presence of crestal collapse systems above the salt domes. A comparison between base Cretaceous and base Chalk isopach maps also highlights the presence of inverted Lower Cretaceous basins. By comparing the overburden fault trends with the pre-Zechstein pattern, late faults can be separated from older trends, which has helped the prediction of sealing faults. The regional 3-D data provide a powerful and unambiguous tool to unravel the structural history in the northeast Netherlands.

  11. A 3-D crustal velocity structure across the Variscides of southwest Ireland

    NASA Astrophysics Data System (ADS)

    Landes, M.; Readman, P. W.; O'Reilly, B. M.; Shannon, P. M.

    2003-04-01

    In the VARNET-96 experiment three seismic refraction profiles were acquired to examine the crustal structure in the south-west of Ireland. The shotpoint geometry allowed for both in-line and off-line fan shot recordings on the three profiles. Results of 3-D inversion modelling illustrate that there is pervasive lateral heterogeneity of the sedimentary and crustal velocity structure south of the Shannon Estuary. Palaeozoic strata at the south coast are about 5-6 km thick associated with the sedimentary infill of the Munster and South Munster Basins. To the north, shallow upper crust in the vicinity of the Killarney-Mallow Fault Zone is followed by a 3-4 km thick sedimentary succession in the Dingle-Shannon Basin. A zone of high-velocity upper crust (6.4-6.6 km/s) beneath the South Munster Basin correlates with a gravity high between the Kenmare-Killarney and the Leinster Granite gravity lows. Other high-velocity zones beneath Dingle Bay and the Kenmare River region may be associated with the deep traces of the Killarney-Mallow Fault Zone and the Cork-Kenmare Line. The 3-D velocity model was taken as a basis for the computation of PmP reflected arrivals from the crust-mantle boundary. The Moho depth varies from 28-29 km at the south coast to 32-33 km beneath the Dingle-Shannon Basin. Pervasive Variscan deformation appears to be confined to the sedimentary and upper crustal structure thus supporting a thin-skinned tectonic model for Variscan deformation. Deep-crustal variations only occur where they can be correlated with major tectonic features such as the Caledonian Iapetus Suture near the Shannon Estuary. The shallowing of the Moho towards the coast may result from Mesozoic crustal extension in the adjacent offshore sedimentary basins.

  12. 3D Whole-prominence Fine Structure Modeling. II. Prominence Evolution

    NASA Astrophysics Data System (ADS)

    Gunár, Stanislav; Mackay, Duncan H.

    2015-10-01

    We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing position of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.

  13. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    NASA Astrophysics Data System (ADS)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  14. i3Drefine Software for Protein 3D Structure Refinement and Its Assessment in CASP10

    PubMed Central

    Bhattacharya, Debswapna; Cheng, Jianlin

    2013-01-01

    Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in 8th CASP experiment. During the 9th and recently concluded 10th CASP experiments, a consistent growth in number of refinement targets and participating groups has been witnessed. Yet, protein structure refinement still remains a largely unsolved problem with majority of participating groups in CASP refinement category failed to consistently improve the quality of structures issued for refinement. In order to alleviate this need, we developed a completely automated and computationally efficient protein 3D structure refinement method, i3Drefine, based on an iterative and highly convergent energy minimization algorithm with a powerful all-atom composite physics and knowledge-based force fields and hydrogen bonding (HB) network optimization technique. In the recent community-wide blind experiment, CASP10, i3Drefine (as ‘MULTICOM-CONSTRUCT’) was ranked as the best method in the server section as per the official assessment of CASP10 experiment. Here we provide the community with free access to i3Drefine software and systematically analyse the performance of i3Drefine in strict blind mode on the refinement targets issued in CASP10 refinement category and compare with other state-of-the-art refinement methods participating in CASP10. Our analysis demonstrates that i3Drefine is only fully-automated server participating in CASP10 exhibiting consistent improvement over the initial structures in both global and local structural quality metrics. Executable version of i3Drefine is freely available at http://protein.rnet.missouri.edu/i3drefine/. PMID:23894517

  15. Cardiothoracic Applications of 3-dimensional Printing.

    PubMed

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  16. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  17. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  18. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  19. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  20. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    PubMed Central

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Summary Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  1. Structural optimization of 3D-printed synthetic spider webs for high strength.

    PubMed

    Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J

    2015-01-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372

  2. Protein Thermodynamics from the 3D Topological Structure of the Native State

    NASA Astrophysics Data System (ADS)

    Wood, Gregory; Dallakayan, Sargis; Jacobs, Donald

    2004-03-01

    Thermodynamic stability is calculated from the new Distance Constraint Model (DCM)[1]. Microscopic interactions are treated as constraints to which entropy and energies are assigned. From the 3D structure, an ensemble of mechanical frameworks are constructed representing distinct topologies of fluctuating constraints. For each framework, total energy is additive over all constraints while total entropy is additive over a select set of independent constraints. Independent constraints are identified via a graph theoretical algorithm, Floppy Inclusion and Rigid Substructure Topography (FIRST) [2]. Using Monte Carlo sampling a free energy landscape is calculated in constraint space. Excellent fits to heat capacity data for ubiquitin are achieved. Work supported by NIH GM48680-0952. [1] D. J. Jacobs, S. Dallakyan, G. G. Wood and A. Heckathorne, cond-mat/0309207 (to appear in PRE) [2] D. J. Jacobs, A. Rader, L. A. Kuhn and M. F. Thorpe, Proteins 44 150 (2001)

  3. Structural optimization of 3D-printed synthetic spider webs for high strength

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  4. Ex Vivo 3D Diffusion Tensor Imaging and Quantification of Cardiac Laminar Structure

    PubMed Central

    Helm, Patrick A.; Tseng, Hsiang-Jer; Younes, Laurent; McVeigh, Elliot R.; Winslow, Raimond L.

    2007-01-01

    A three-dimensional (3D) diffusion-weighted imaging (DWI) method for measuring cardiac fiber structure at high spatial resolution is presented. The method was applied to the ex vivo reconstruction of the fiber architecture of seven canine hearts. A novel hypothesis-testing method was developed and used to show that distinct populations of secondary and tertiary eigenvalues may be distinguished at reasonable confidence levels (P ≤ 0.01) within the canine ventricle. Fiber inclination and sheet angles are reported as a function of transmural depth through the anterior, lateral, and posterior left ventricle (LV) free wall. Within anisotropic regions, two consistent and dominant orientations were identified, supporting published results from histological studies and providing strong evidence that the tertiary eigenvector of the diffusion tensor (DT) defines the sheet normal. PMID:16149057

  5. 3-D crust and mantle structure in southern Ontario, Canada via receiver function imaging

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Frederiksen, A. W.

    2013-11-01

    A teleseismic data set from the POLARIS project is used to obtain 3-D images of southern Ontario using two imaging techniques: scattering tomography and common-conversion-point stacking. The resulting images reveal a layered crust, the layering being interrupted by discontinuities associated with major crustal-scale faulting. Breaks in crustal continuity and Moho deflections associated with the Ottawa-Bonnechère Graben indicate that the graben is associated with faulting on a whole crust scale. We also detect similar discontinuities across the Mississauga Domain, supporting the previous interpretation that the domain is bounded by crustal-scale faults. We locate discontinuous sub-lithospheric negative-polarity arrivals which indicate complex three-dimensional structures within the lithosphere and may be associated with subduction remnants or a mid-lithosphere discontinuity.

  6. Structural optimization of 3D-printed synthetic spider webs for high strength

    PubMed Central

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-01-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372

  7. Gravity verification of 3-D crustal structure (CRUST2) for the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Rybakov, M.

    2009-12-01

    CRUST2 - a global 3-D tomography model of the seismic velocity and density structure of the Earth's crust and uppermost mantle (Bassin, C., Laske, G. and Masters, G., The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897, 2000) is now public domain data set available from http:// mahi. ucsd.edu/ Gabi/rem.dir/crust/crust2.html.The data are extremely important for various purposes e. g. the seismic monitoring of nuclear explosions etc. Therefore the validity and quality of the CRUST2 should be verified by using the external data such as gravity observations. By extracting the data for the Eastern Mediterranean region (20-40 East and 26-40 North) the set of deep surfaces and densities maps for each layer (2 x 2 degree cell ~250*250km for study region) was compiled. It should be noted that the crust separation was made into three layers (upper, middle and lower crust) instead of usual separation for granite and basalt sub crust. The maps were compared with the existing structural compilations of Cornel University (Seber et al., 2001), Rybakov and Segev, 2004, Segev et al., 2006. The main subjects of comparison were the top of the crystalline basement and Moho surface. That shows the CRUST2.0 model is at a small enough scale to resolve significant lateral variations in crustal properties. Gravity effect of the CRUST2.0 model was calculated using 3-D forward modeling program from three rectangular grids which define the distribution of mass: the top surface (e. g. sea bottom), the bottom surface (e. g. base of soft sediments) and the density of the soft sediments. Calculated gravity was compared with observed gravity data and one can see good coincidence of the subglobal scale gravity pattern. There is no need to mention that regional scale anomalies can’t be seen in the calculated gravity. At whole the 3-D CRUST2 model provides uniform valuable data (e.g. mantle density etc), which can not be obtained by any other way

  8. The 3-Dimensional Inner and Outer Structure of Ejecta Around Eta Carinae as Detected by the STIS

    NASA Technical Reports Server (NTRS)

    Ishibashi, Kazunori; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The HST/STIS instrument was used successfully to perform a complete mapping of the Homunculus nebula at two wavelength ranges including H-alpha and H-beta with a spectral resolving power of about 5000 and a spatial resolution of 0.1". The individual spectra were merged to synthesize three-dimensional data cubes that contain a set of images of Eta Car with spatial resolution of 0.10 to 0.251, sliced at velocity increment of 10 -- 30 km/s. For the first time this unique method allows us to diagnose the origin of intrinsic narrow emission structure of the nebula with high spatial and velocity resolution. Our initial analysis revealed the inner emission structure appeared to trace an elongated bipolar shell (possibly other shells as well) with a scale size of an arcsecond (i.e., "little homunculus in the Homunculus"). Furthermore, the mapping data cube revealed that the "fan" or "paddle" -- often referred as the source of peculiar blue-shifted intrinsic emissions including the Strontium cloud -- is not the source of intrinsic emissions. The fan is not even a part of the equatorial disk, but is spatially separated from the peculiar emission structure. Indeed we suggest that the fan is a surface of the Northwest lobe, possibly revealed by a blowout of the equatorial disk. We will use a number of visualization techniques (tomographic animations and simple 3-D models) to show these structures. These new results have strong impact upon future numerical modelings of the Homunculus nebula and of understanding of the evolution of the ejecta powered by the central source(s).

  9. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    NASA Astrophysics Data System (ADS)

    Coluccio, M. L.; Francardi, M.; Gentile, F.; Candeloro, P.; Ferrara, L.; Perozziello, G.; Di Fabrizio, E.

    2016-01-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity.

  10. A 3-D crustal velocity structure across the southeastern Carpathians of Romania

    NASA Astrophysics Data System (ADS)

    Landes, M.; Hauser, F.; Ritter, J. R. R.; Fielitz, W.; Popa, M.

    2003-04-01

    The Vrancea zone in the southeastern Carpathians is one of the most active seismic regions in Europe. In order to study the crustal and upper-mantle structure in this region, two seismic refraction experiments were carried out in 1999 and 2001. The 1999 campaign comprised a 320 km long N-S profile and a 80 km long transverse profile. All shots were recorded simultaneously on both profiles. The profile conducted in 2001 extended in E-W direction from the Hungarian border across the Vrancea zone to the Black Sea. A first ever 3-D crustal velocity model of the south-eastern Carpathians within a 115 x 235 km wide region around the Vrancea zone is presented. This model was generated by application of a 3-D refraction and reflection tomography algorithm (Hole 1992, 1995). In order to enhance the model resolution, first arrival data from local earthquakes were also included. The results indicate a high-velocity structure above the Vrancea zone extending from shallow levels to depths of about 11 km. A possible relation to the Trotus and Capidava-Ovidiu faults, which converge to the north of it, is deemed unlikely. However,the existence of the outstanding high velocities may be explained by crystalline basement thrust onto the sub-Carpathian nappes. The high-velocity region is surrounded by the lower velocity Focsani and Brasov basins. The sedimentary succession beneath the southern part of the model area extends to 18 km depth, while in the north sediment thickness varies between 10 and 15 km. Further results of the interface modelling of prominent reflections show that the mid-crustal and Moho interfaces shallow northwards from 30 km to 22 km and from 42 km to 38 km, respectively.

  11. The mantle wedge's transient 3-D flow regime and thermal structure

    NASA Astrophysics Data System (ADS)

    Davies, D. R.; Le Voci, G.; Goes, S.; Kramer, S. C.; Wilson, C. R.

    2016-01-01

    Arc volcanism, volatile cycling, mineralization, and continental crust formation are likely regulated by the mantle wedge's flow regime and thermal structure. Wedge flow is often assumed to follow a regular corner-flow pattern. However, studies that incorporate a hydrated rheology and thermal buoyancy predict internal small-scale-convection (SSC). Here, we systematically explore mantle-wedge dynamics in 3-D simulations. We find that longitudinal "Richter-rolls" of SSC (with trench-perpendicular axes) commonly occur if wedge hydration reduces viscosities to Pa s, although transient transverse rolls (with trench-parallel axes) can dominate at viscosities of Pa s. Rolls below the arc and back arc differ. Subarc rolls have similar trench-parallel and trench-perpendicular dimensions of 100-150 km and evolve on a 1-5 Myr time-scale. Subback-arc instabilities, on the other hand, coalesce into elongated sheets, usually with a preferential trench-perpendicular alignment, display a wavelength of 150-400 km and vary on a 5-10 Myr time scale. The modulating influence of subback-arc ridges on the subarc system increases with stronger wedge hydration, higher subduction velocity, and thicker upper plates. We find that trench-parallel averages of wedge velocities and temperature are consistent with those predicted in 2-D models. However, lithospheric thinning through SSC is somewhat enhanced in 3-D, thus expanding hydrous melting regions and shifting dehydration boundaries. Subarc Richter-rolls generate time-dependent trench-parallel temperature variations of up to K, which exceed the transient 50-100 K variations predicted in 2-D and may contribute to arc-volcano spacing and the variable seismic velocity structures imaged beneath some arcs.

  12. High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data

    NASA Astrophysics Data System (ADS)

    GarcíA-Yeguas, Araceli; Koulakov, Ivan; IbáñEz, Jesús M.; Rietbrock, A.

    2012-09-01

    We present a high resolution 3 dimensional (3D) P wave velocity model for Tenerife Island, Canaries, covering the top of Teide volcano (3,718 m a.s.l.) down to around 8 km below sea level (b.s.l). The tomographic inversion is based on a large data set of travel times obtained from a 3D active seismic experiment using offshore shots (air guns) recorded at more than 100 onshore seismic stations. The obtained seismic velocity structure is strongly heterogeneous with significant (up to 40%) lateral variations. The main volcanic structure of the Las Cañadas-Teide-Pico Viejo Complex (CTPVC) is characterized by a high P wave velocity body, similar to many other stratovolcanoes. The presence of different high P wave velocity regions inside the CTPVC may be related to the geological and volcanological evolution of the system. The presence of high P wave velocities at the center of the island is interpreted as evidence for a single central volcanic source for the formation of Tenerife. Furthermore, reduced P wave velocities are found in a small confined region in CTPVC and are more likely related to hydrothermal alteration, as indicated by the existence of fumaroles, than to the presence of a magma chamber beneath the system. In the external regions, surrounding CTPVC a few lower P wave velocity regions can be interpreted as fractured zones, hydrothermal alterations, porous materials and thick volcaniclastic deposits.

  13. HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure.

    PubMed

    Zou, Chenchen; Zhang, Yuping; Ouyang, Zhengqing

    2016-01-01

    Genome-wide 3C technologies (Hi-C) are being increasingly employed to study three-dimensional (3D) genome conformations. Existing computational approaches are unable to integrate accumulating data to facilitate studying 3D chromatin structure and function. We present HSA ( http://ouyanglab.jax.org/hsa/ ), a flexible tool that jointly analyzes multiple contact maps to infer 3D chromatin structure at the genome scale. HSA globally searches the latent structure underlying different cleavage footprints. Its robustness and accuracy outperform or rival existing tools on extensive simulations and orthogonal experiment validations. Applying HSA to recent in situ Hi-C data, we found the 3D chromatin structures are highly conserved across various human cell types. PMID:26936376

  14. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    PubMed Central

    Li, Wenyuan; Kalhor, Reza; Dai, Chao; Hao, Shengli; Gong, Ke; Zhou, Yonggang; Li, Haochen; Zhou, Xianghong Jasmine; Le Gros, Mark A.; Larabell, Carolyn A.; Chen, Lin; Alber, Frank

    2016-01-01

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization. PMID:26951677

  15. High-coverage stable structures of 3d transition metal intercalated bilayer graphene.

    PubMed

    Liao, Ji-Hai; Zhao, Yu-Jun; Tang, Jia-Jun; Yang, Xiao-Bao; Xu, Hu

    2016-06-01

    Alkali-metal intercalated graphite and graphene have been intensively studied for decades, where alkali-metal atoms are found to form ordered structures at the hollow sites of hexagonal carbon rings. Using first-principles calculations, we have predicted various stable structures of high-coverage 3d transition metal (TM) intercalated bilayer graphene (BLG) stabilized by the strain. Specifically, with reference to the bulk metal, Sc and Ti can form stable TM-intercalated BLG without strain, while the stabilization of Fe, Co, and Ni intercalated BLG requires the biaxial strain of over 7%. Under the biaxial strain ranging from 0% to 10%, there are four ordered sandwich structures for Sc with the coverage of 0.25, 0.571, 0.684, and 0.75, in which the Sc atoms are all distributed homogenously instead of locating at the hollow sites. According to the phase diagram, a homogenous configuration of C8Ti3C8 with the coverage of 0.75 and another inhomogeneous structure with the coverage of 0.692 were found. The electronic and magnetic properties as a function of strain were also analyzed to indicate that the strain was important for the stabilities of the high-coverage TM-intercalated BLG. PMID:27167998

  16. Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes

    SciTech Connect

    Roll, Mark F.; Kampf, Jeffrey W.; Laine, Richard M.

    2011-05-10

    We report here the Diels–Alder reaction of octa(diphenylacetylene)silsesquioxane [DPA₈OS] with tetraphenylcyclopentadienone or tetra(p-tolyl)cyclopentadienone to form octa(hexaphenylbenzene)octasilsesquioxane, (Ph₆C₆)₈OS, or octa(tetratolyldiphenylbenzene)octasilsesquioxane, (p-Tolyl₄Ph₂C₆)₈OS. Likewise, tetra(p-tolyl)cyclopentadienone reacts with octa(p-tolylethynylphenyl)OS to form octa(pentatolylphenylbenzene)octasilsesquioxane (p-Tolyl₅PhC₆)₈OS. These compounds, with molecular weights of 4685–5245 Da, were isolated and characterized using a variety of analytical methods. The crystal structure of DPA₈OS offers a 3 nm³ unit cell with Z = 1. The crystal structure of (Ph₆C₆)₈OS was determined to have a triclinic unit cell of 11 nm³ with Z = 1. The latter structure is believed to be the largest discrete molecular structure reported with 330 carbons. Efforts to dehydrogenatively cyclize (Scholl reaction) the hexaarylbenzene groups to form 3-D octgraphene compounds are described.

  17. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor

    SciTech Connect

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-10-24

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90 A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.

  18. Function and 3D Structure of the N-Glycans on Glycoproteins

    PubMed Central

    Nagae, Masamichi; Yamaguchi, Yoshiki

    2012-01-01

    Glycosylation is one of the most common post-translational modifications in eukaryotic cells and plays important roles in many biological processes, such as the immune response and protein quality control systems. It has been notoriously difficult to study glycoproteins by X-ray crystallography since the glycan moieties usually have a heterogeneous chemical structure and conformation, and are often mobile. Nonetheless, recent technical advances in glycoprotein crystallography have accelerated the accumulation of 3D structural information. Statistical analysis of “snapshots” of glycoproteins can provide clues to understanding their structural and dynamic aspects. In this review, we provide an overview of crystallographic analyses of glycoproteins, in which electron density of the glycan moiety is clearly observed. These well-defined N-glycan structures are in most cases attributed to carbohydrate-protein and/or carbohydrate-carbohydrate interactions and may function as “molecular glue” to help stabilize inter- and intra-molecular interactions. However, the more mobile N-glycans on cell surface receptors, the electron density of which is usually missing on X-ray crystallography, seem to guide the partner ligand to its binding site and prevent irregular protein aggregation by covering oligomerization sites away from the ligand-binding site. PMID:22942711

  19. Full-hand 3D non-contact scanner using sub-window-based structured light-illumination technique

    NASA Astrophysics Data System (ADS)

    Yalla, Veeraganesh; Hassebrook, Laurence; Daley, Ray; Boles, Colby; Troy, Mike

    2012-06-01

    Fingerprint identification is a well-regarded and widely accepted modality in the field of biometrics for its high recognition rates. Legacy 2D contact based methods, though highly evolved in terms of technology suffer from certain drawbacks. Being contact based, there are many known issues which affect the recognition rates. Flashscan3D/University of Kentucky (UKY) developed state of the art 3D non-contact fingerprint scanners using different structured light illumination (SLI) techniques namely SLI single Point Of View (POV) and the SLI Subwindowing techniques. Capturing the fingerprints by non-contact means in 3D gives much higher quality fingerprint data which ultimately improves matching rates over a traditional 2D approach. In this paper, we present a full hand 3D non-contact scanner using the SLI Sub-windowing technique. Sample fingerprint data and experimental results for fingerprint matching based on a small sample 3D fingerprint test set are presented.

  20. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    NASA Astrophysics Data System (ADS)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  1. Comparison and functional implications of the 3D architectures of viral tRNA-like structures.

    PubMed

    Hammond, John A; Rambo, Robert P; Filbin, Megan E; Kieft, Jeffrey S

    2009-02-01

    RNA viruses co-opt the host cell's biological machinery, and their infection strategies often depend on specific structures in the viral genomic RNA. Examples are tRNA-like structures (TLSs), found at the 3' end of certain plant viral RNAs, which can use the cell's aminoacyl tRNA-synthetases (AARSs) to drive addition of an amino acid to the 3' end of the viral RNA. TLSs are multifunctional RNAs involved in processes such as viral replication, translation, and viral RNA stability; these functions depend on their fold. Experimental result-based structural models of TLSs have been published. In this study, we further examine these structures using a combination of biophysical and biochemical approaches to explore the three-dimensional (3D) architectures of TLSs from the turnip yellow mosaic virus (TYMV), tobacco mosaic virus (TMV), and brome mosaic virus (BMV). We find that despite similar function, these RNAs are biophysically diverse: the TYMV TLS adopts a characteristic tRNA-like L shape, the BMV TLS has a large compact globular domain with several helical extensions, and the TMV TLS aggregates in solution. Both the TYMV and BMV TLS RNAs adopt structures with tight backbone packing and also with dynamic structural elements, suggesting complexities and subtleties that cannot be explained by simple tRNA mimicry. These results confirm some aspects of existing models and also indicate how these models can be improved. The biophysical characteristics of these TLSs show how these multifunctional RNAs might regulate various viral processes, including negative strand synthesis, and also allow comparison with other structured RNAs. PMID:19144910

  2. 3D Modelling of Inaccessible Areas using UAV-based Aerial Photography and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Obanawa, Hiroyuki; Hayakawa, Yuichi; Gomez, Christopher

    2014-05-01

    In hardly accessible areas, the collection of 3D point-clouds using TLS (Terrestrial Laser Scanner) can be very challenging, while airborne equivalent would not give a correct account of subvertical features and concave geometries like caves. To solve such problem, the authors have experimented an aerial photography based SfM (Structure from Motion) technique on a 'peninsular-rock' surrounded on three sides by the sea at a Pacific coast in eastern Japan. The research was carried out using UAS (Unmanned Aerial System) combined with a commercial small UAV (Unmanned Aerial Vehicle) carrying a compact camera. The UAV is a DJI PHANTOM: the UAV has four rotors (quadcopter), it has a weight of 1000 g, a payload of 400 g and a maximum flight time of 15 minutes. The camera is a GoPro 'HERO3 Black Edition': resolution 12 million pixels; weight 74 g; and 0.5 sec. interval-shot. The 3D model has been constructed by digital photogrammetry using a commercial SfM software, Agisoft PhotoScan Professional®, which can generate sparse and dense point-clouds, from which polygonal models and orthophotographs can be calculated. Using the 'flight-log' and/or GCPs (Ground Control Points), the software can generate digital surface model. As a result, high-resolution aerial orthophotographs and a 3D model were obtained. The results have shown that it was possible to survey the sea cliff and the wave cut-bench, which are unobservable from land side. In details, we could observe the complexity of the sea cliff that is nearly vertical as a whole while slightly overhanging over the thinner base. The wave cut bench is nearly flat and develops extensively at the base of the cliff. Although there are some evidences of small rockfalls at the upper part of the cliff, there is no evidence of very recent activity, because no fallen rock exists on the wave cut bench. This system has several merits: firstly lower cost than the existing measuring methods such as manned-flight survey and aerial laser

  3. Structure of the Rambler Rhyolite, Baie Verte Peninsula, Newfoundland: Inversions using UBC-GIF Grav3D and Mag3D

    NASA Astrophysics Data System (ADS)

    Spicer, B.; Morris, B.; Ugalde, H.

    2011-09-01

    Hosted within the Pacquet Harbour Group (PHG) on the Baie Verte Peninsula of north-central Newfoundland, the Rambler rhyolite is a 487 Ma unit of felsic tuffs, flows and subvolcanic intrusive rocks. The PHG has been affected by multiple phases of deformation with the youngest D4 deformation event producing broad northeast plunging upright cross folds in the Rambler rhyolite. Fold culminations on the upper bounding surface of the rhyolite host Cu +/- Au volcanogenic massive sulfide deposits (e.g. Rambler and Ming mines). Geophysical inversions of recently acquired high resolution gravity and magnetic data have been implemented to determine the extent of the fold axis (dome) at depth. To direct the outcome of the inversion process towards a more geologically reasonable solution this study outlines a procedure which permits the inclusion of known geological and geophysical constraints into the input (reference) model for inversion using the MAG3D and GRAV3D algorithms provided by the University of British Columbia Geophysical Inversion Facility. Reference model constraints included surficial geological contacts as defined by aeromagnetic data, and subsurface distribution of physical property variations from a series of drill-hole logs. The output (computed) model images the surface of the rhyolite dome as dipping roughly 40° to the northeast as a series of voxels with density values ranging from 2.71 to 2.75 g/cm3. While previously published ore deposit models parallel this structure in the near surface, results from these inversions suggest deeper exploration may be favorable. Magnetic inversion modeling has not provided any insight into dome morphology however it outlines the distribution of gabbroic dykes surrounding the dome.

  4. 3D structural measurements of the proximal femur from 2D DXA images using a statistical atlas

    NASA Astrophysics Data System (ADS)

    Ahmad, Omar M.; Ramamurthi, Krishna; Wilson, Kevin E.; Engelke, Klaus; Bouxsein, Mary; Taylor, Russell H.

    2009-02-01

    A method to obtain 3D structural measurements of the proximal femur from 2D DXA images and a statistical atlas is presented. A statistical atlas of a proximal femur was created consisting of both 3D shape and volumetric density information and then deformably registered to 2D fan-beam DXA images. After the registration process, a series of 3D structural measurements were taken on QCT-estimates generated by transforming the registered statistical atlas into a voxel volume. These measurements were compared to the equivalent measurements taken on the actual QCT (ground truth) associated with the DXA images for each of 20 human cadaveric femora. The methodology and results are presented to address the potential clinical feasibility of obtaining 3D structural measurements from limited angle DXA scans and a statistical atlas of the proximal femur in-vivo.

  5. Coseismic deformation due to the 2011 Tohoku earthquake: influence of 3-D plate structure around Japan

    NASA Astrophysics Data System (ADS)

    Hashima, A.; Freed, A. M.; Becker, T. W.; Sato, H.; Okaya, D. A.; Suito, H.; Hatanaka, Y.; Matsubara, M.; Takeda, T.; Ishiyama, T.; Iwasaki, T.

    2013-12-01

    Beneath the Japan islands, the Pacific plate descends from the east and the Philippine sea plate descends from the south, causing interaction of two slabs at depth. The 2011 M9 Tohoku earthquake in northern Japan had a source region with a length of ~500 km and a width of ~200 km and forced broad lithospheric and mantle regions in the region to deform. Here, we investigate the effects of slab geometry and 3D heterogeneity on the inversion of inferred coseismic slip and the resulting broad coseismic deformation throughout the region. We construct a 3-D finite element model (FEM) to generate Green's functions for use in a coseismic inversion study that allows considering the influence of complex slab geometry as well as heterogeneities in elastic structure on inferred slip. We utilize the large, land-based Japan GPS array as well as seafloor geodetic constraints in the inversion. We are particularly interested in how coseismic seafloor constraints influence inversion results. Our FEM considers a region of 4500 km x 4900 km x 670 km, incorporating the Pacific and the Philippine sea slabs by interpolating models for the Tohoku region and the Nankai trough, as well as the Kuril, Ryukyu and Izu-Bonin arcs. The model region is divided into about 500,000 tetrahedral elements with average dimension ranging from 20-100 km. We also test the role of gravity on coseismic results, with initial results suggesting that gravitational loading is not an important factor because of the shallow dip of the upper Pacific slab.Our long-term objective is to study the influence of the Tohoku earthquake on evolution of stresses throughout Japan due to both coseismic and postseismic processes, the latter including afterslip and viscoelastic relaxation. An accurate accounting of coseismic slip is very important to such an endeavor.

  6. 3D visualization of aqueous humor outflow structures in-situ in humans.

    PubMed

    Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Sigal, Ian A; Folio, Lindsey S; Xu, Juan; Gong, Haiyan; Schuman, Joel S

    2011-09-01

    Aqueous humor (AH) exiting the eye via the trabecular meshwork and Schlemm's canal (SC) passes through the deep and intrascleral venous plexus (ISVP) or directly through aqueous veins. The purpose of this study was to visualize the human AH outflow system 360° in three dimensions (3D) during active AH outflow in a virtual casting. The conventional AH outflow pathways of 7 donor eyes were imaged with a modified Bioptigen spectral-domain optical coherence tomography system (Bioptigen Inc, USA; SuperLum LTD, Ireland) at a perfusion pressure of 20 mmHg (N = 3), and 10 mmHg (N = 4). In all eyes, 36 scans (3 equally distributed in each clock hour), each covering a 2 × 3 × 2 mm volume (512 frames, each 512 × 1024 pixels), were obtained. All image data were black/white inverted, and the background subtracted (ImageJ 1.40 g, http://rsb.info.nih.gov/ij/). Contrast was adjusted to isolate the ISVP. SC, collector channels, the deep and ISVP, and episcleral veins were observed throughout the limbus. Aqueous veins could be observed extending into the episcleral veins. Individual scan ISVP castings were rendered and assembled in 3D space in Amira 4.1 (Visage Imaging Inc. USA). A 360-degree casting of the ISVP was obtained in all perfused eyes. The ISVP tended to be dense and overlapping in the superior and inferior quadrants, and thinner in the lateral quadrants. The human AH outflow pathway can be imaged using SD-OCT. The more superficial structures of the AH outflow pathway present with sufficient contrast as to be optically isolated and cast in-situ 360° in cadaver eye perfusion models. This approach may be useful as a model in future studies of human AH outflow. PMID:21514296

  7. Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin

    NASA Astrophysics Data System (ADS)

    Autin, J.; Scheck-Wenderoth, M.; Götze, H.-J.; Reichert, C.; Marchal, D.

    2016-04-01

    Following previous work on the Colorado Basin using a 3D crustal structural model, we now investigate the presence of lower crustal bodies at the base of the crust using 3D lithospheric gravity modelling and calculations of the conductive thermal field. Our first study highlighted two fault directions and depocentres associated with thinned crust (NW-SE in the West and NE-SW at the distal margin). Fault relative chronology argues for two periods of extension: (1) NW-SE faulting and thinning in the western Colorado Basin and (2) NE-SW faulting and thinning related to the continental breakup and formation of the NE-SW-striking volcanic margins of the Atlantic Ocean. In this study, the geometry of modelled high-density Lower Crustal Bodies (LCBs) enables the reproduction of the gravimetric field as well as of the temperature measured in wells down to 4500 m. The modelled LCBs correlate with geological observations: (1) NW-SE LCBs below the deepest depocentres in the West, (2) NE-SW LCBs below the distal margin faults and the seaward dipping reflectors. Thus the proposed poly-phased evolution of the margin could as well correspond to two emplacement phases of the LCBs. The calculated conductive thermal field fits the measured temperatures best if the thermal properties (thermal conductivity and radiogenic heat production) assigned to the LCBs correspond to either high-grade metamorphic rocks or to mafic magmatic intrusions. To explain the possible lithology of the LCBs, we propose that the two successive phases of extension are accompanied by magma supply, emplaced (1) in the thinnest crust below the older NW-SE depocentres, then (2) along the NE-SW continentward boundary of the distal margin and below the volcanic seaward dipping reflectors. The South African conjugate margin records only the second NE-SW event and we discuss hypotheses which could explain these differences between the conjugate margins.

  8. Transition zone structure beneath NE China from 3D waveform modelling: Subduction related plumes

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Grand, S. P.; Niu, F.

    2013-12-01

    Seismic tomography is currently used to image deep structure on global and local scales. However, tomography inversions usually underestimate amplitudes and likely cannot resolve narrow slow anomalies in the deep mantle. Careful modelling of waveform distortions has the potential to provide better constraints on small scale anomalies in the mantle. We observed strong waveform distortions from several earthquakes that propagated through a low velocity anomaly in the mantle transition zone beneath the Changbaishan volcanic center, Northeast China. The slow anomaly was recently found by tomography results using the NECESSArray. For each earthquake, there exists a cluster of stations whose S-wave amplitude is substantially higher than the other stations. Also, at the stations near the edges of the cluster, the recorded S waves become more complex, usually featuring two pulses with smaller amplitude. We used the spectral-element method (SPECFEM3D) to construct 3D waveforms using the tomographic model as a starting input model. Synthetic modeling indicated that the observed large amplitude and double arrivals for each cluster can be explained by a strong low velocity anomaly with a diameter of ~200 km surrounded by high velocities in the transition zone. The velocity contrast between the slow anomaly and the surrounding medium is at least 8%, which is double that found in the original tomographic model. The large velocity contrast (8%) cannot be the velocity contrast between the slab and normal transition zone mantle because if this were the case a travel time misfit with observed data to the west would result in. We speculate that the slow anomaly is a manifestation of a return flow upwelling through a slab gap in the mantle transition zone that feeds Changbaishan volcanism. The upwelling mantle is likely hot, and the heat source may come from warm, buoyant sub-lithospheric mantle entrained with the sinking lithosphere that requires an opening to rise.

  9. Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline silicon

    NASA Astrophysics Data System (ADS)

    Berenschot, Erwin J. W.; Jansen, Henri V.; Tas, Niels R.

    2013-05-01

    When it comes to high-performance filtration, separation, sunlight collection, surface charge storage or catalysis, the effective surface area is what counts. Highly regular fractal structures seem to be the perfect candidates, but manufacturing can be quite cumbersome. Here it is shown--for the first time—that complex 3D fractals can be engineered using a recursive operation in conventional micromachining of single crystalline silicon. The procedure uses the built-in capability of the crystal lattice to form self-similar octahedral structures with minimal interference of the constructor. The silicon fractal can be used directly or as a mold to transfer the shape into another material. Moreover, they can be dense, porous, or like a wireframe. We demonstrate, after four levels of processing, that the initial number of octahedral structures is increased by a factor of 625. Meanwhile the size decreases 16 times down to 300 nm. At any level, pores of less than 100 nm can be fabricated at the octahedral vertices of the fractal. The presented technique supports the design of fractals with Hausdorff dimension D free of choice and up to D = 2.322.

  10. Characterizing 3D Structure of Convective Momentum Transport Associated with the MJO Based on Contemporary Reanalyses

    NASA Astrophysics Data System (ADS)

    Oh, J.; Jiang, X.; Waliser, D. E.; Moncrieff, M. W.; Johnson, R. H.

    2013-12-01

    As one of the most prominent tropical atmospheric variability modes, the Madden-Julian Oscillation (MJO) exerts profound influences on global weather and climate, and serves as a critical predictability source for extend-range forecast. While credible representation of the MJO still represents a great challenge for current general circulation models (GCMs), previous studies on the vertical structure of the MJO have largely focused on collective impacts from multi-scale convective systems on thermodynamic properties of the MJO. Most recently, limited observational studies and idealized modeling work suggested that convective momentum transport (CMT) could also play an important role in interpreting the observed MJO features. In this study, the 3D CMT structure associated with the MJO is examined by analyzing model output from three recent high-quality reanalysis systems, including NOAA's Climate Forecast System Reanalysis (CFSR), NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA), and ECMWF-the Year of Tropical Convection (YOTC) reanalysis. Consistent with previous cloud-resolving model study, a well-organized three-layer vertical structure in the CMT associated with the MJO is also discerned based on reanalyses. The result suggests that CMT tends to intensify the MJO circulation, particularly in the lower troposphere. Relative roles of meso-scale systems (MCS) and synoptic waves in contributing the total CMT profiles of the MJO will also be explored. Differences in CMT profiles in these several reanalysis models will be discussed.

  11. Modelling of 3D Attenuation Structure in the Mantle Using a Waveform Approach: Successes and Challenges

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.; Gung, Y.

    2003-12-01

    The study of lateral variations in Q in the upper mantle at the global scale is generally addressed using isolated phases in the seismogram (for example fundamental mode surface wave spectra), which limits the sampling and therefore the resolution of Q structure that can be achieved. The use of isolated phases has the advantage of working directly with amplitudes, thus making it easier to detect contamination of the anelastic attenuation signal by elastic focusing and scattering, a key problem in attenuation tomography. We here discuss recent progress on a waveform modeling approach, which allows us to work with entire seismograms and exploit the information contained both in fundamental mode surface waves, overtones and body waves. The method is based on a normal mode approach and proceeds iteratively. In the first step, we invert for 3D elastic structure using the NACT approach (Non-linear Asymptotic Coupling Theory; Li and Romanowicz, 1995), which aligns the phase part of the observed and synthetic seismograms. In the second step, we invert for Q. The crucial issue is how to account for elastic effects in the amplitudes (focusing)- we discuss asymptotic versus more exact methods to address this problem and illustrate the effects on the resulting models. We discuss prominent features in the lateral variations in Q in the upper mantle, their evolution with depth, and their relation with elastic structure, in particular from the point of view of resolving upwellings and the large scale signature of plumes.

  12. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    PubMed Central

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  13. Development of portable 3D optical measuring system using structured light projection method

    NASA Astrophysics Data System (ADS)

    Aoki, Hiroshi

    2014-05-01

    Three-dimensional (3D) scanners are becoming increasingly common in many industries. However most of these scanning technologies have drawbacks for practical use due to size, weight, accessibility, and ease-of-use. Depending on the application, speed, flexibility and portability can often be deemed more important than accuracy. We have developed a solution to address this market requirement and overcome the aforementioned limitations. To counteract shortcomings such as heavy weight and large size, an optical sensor is used that consists of a laser projector, a camera system, and a multi-touch screen. Structured laser light is projected onto the measured object with a newly designed laser projector employing a single Micro Electro Mechanical Systems (MEMS) mirror. The optical system is optimized for the combination of a Laser Diode (LD), the MEMS mirror and the size of measurement area to secure the ideal contrast of structured light. Also, we developed a new calibration algorithm for this sensor with MEMS laser projector that uses an optical camera model for point cloud calculation. These technical advancements make the sensor compact, save power consumption, and reduce heat generation yet still allows for rapid calculation. Due to the principle of the measurement, structured light triangulation utilizing phase-shifting technology, resolution is improved. To meet requirements for practical applications, the optics, electronics, image processing, display and data management capabilities have been integrated into a single compact unit.

  14. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    PubMed

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  15. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.

    PubMed

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2015-01-01

    Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The purpose of this work was to develop EDCs DataBank, the only database of EDCs with three-dimensional structures. This database was built on MySQL using the EU list of potential endocrine disruptors and TEDX list. It contains the three-dimensional structures available on PubChem, as well as a wide variety of information from different databases and text mining tools, useful for almost any kind of research regarding EDCs. The web platform was developed employing HTML, CSS and PHP languages, with dynamic contents in a graphic environment, facilitating information analysis. Currently EDCs DataBank has 615 molecules, including pesticides, natural and industrial products, cosmetics, drugs and food additives, among other low molecular weight xenobiotics. Therefore, this database can be used to study the toxicological effects of these molecules, or to develop pharmaceuticals targeting hormone receptors, through docking studies, high-throughput virtual screening and ligand-protein interaction analysis. EDCs DataBank is totally user-friendly and the 3D-structures of the molecules can be downloaded in several formats. This database is freely available at http://edcs.unicartagena.edu.co. PMID:25451822

  16. Studies of coupled cavity LINAC (CCL) accelerating structures with 3-D codes

    SciTech Connect

    Spalek, G.

    2000-08-01

    The cw CCL being designed for the Accelerator Production of Tritium (APT) project accelerates protons from 96 MeV to 211 MeV. It consists of 99 segments each containing up to seven accelerating cavities. Segments are coupled by intersegment coupling cavities and grouped into supermodules. The design method needs to address not only basic cavity sizing for a given coupling and pi/2 mode frequency, but also the effects of high power densities on the cavity frequency, mechanical stresses, and the structure's stop band during operation. On the APT project, 3-D RF (Ansoft Corp.'s HFSS) and coupled RF/structural (Ansys Inc.'s ANSYS) codes are being used. to develop tools to address the above issues and guide cooling channel design. The code's predictions are being checked against available low power Aluminum models. Stop band behavior under power will be checked once the tools are extended to CCDTL structures that have been tested at high power. A summary of calculations made to date and agreement with measured results will be presented.

  17. 3D-FE analysis of functionally graded structured dental posts.

    PubMed

    Abu Kasim, Noor H; Madfa, Ahmed A; Hamdi, Mohd; Rahbari, Ghahnavyeh R

    2011-01-01

    This study aimed to compare the biomechanical behaviour of functionally graded structured posts (FGSPs) and homogenous-type posts in simulated models of a maxillary central incisor. Two models of FGSPs consisting of a multilayer xTi-yHA composite design, where zirconia and alumina was added as the first layer for models A and B respectively were compared to homogenous zirconia post (model C) and a titanium post (model D). The amount of Ti and HA in the FGSP models was varied in gradations. 3D-FEA was performed on all models and stress distributions were investigated along the dental post. In addition, interface stresses between the posts and their surrounding structures were investigated under vertical, oblique, and horizontal loadings. Strain distribution along the post-dentine interface was also investigated. The results showed that FGSPs models, A and B demonstrated better stress distribution than models C and D, indicating that dental posts with multilayered structure dissipate localized and interfacial stress and strain more efficiently than homogenous-type posts. PMID:22123011

  18. Fabrication and characterization of metal-to-metal interconnect structures for 3-D integration

    NASA Astrophysics Data System (ADS)

    Huffman, Alan; Lannon, John; Lueck, Matthew; Gregory, Christopher; Temple, Dorota

    2009-03-01

    The use of collapsible (solder) bump interconnects in pixel detector hybridization has been shown to be very successful. However, as pixel sizes decrease, the use of non-collapsible metal-to-metal bump bonding methods is needed to push the interconnect dimensions smaller. Furthermore, these interconnects are compatible with 3D intgration technologies which are being considered to increase overall pixel and system performance. These metal-to-metal bonding structures provide robust mechanical and electrical connections and allow for a dramatic increase in pixel density. Of particular interest are Cu-Cu thermocompression bonding and Cu/Sn-Cu solid-liquid diffusion bonding processes. Working with Fermilab, RTI undertook a demonstration to show that these bump structures could be reliably used to interconnect devices designed with 20 micron I/O pitch. Cu and Cu/Sn bump fabrication processes were developed to provide a well-controlled surface topography necessary for the formation of low resistance, high yielding, and reliable interconnects. The electrical resistance and yield has been quantified based on electrical measurements of daisy chain test structures and the mechanical strength of the bonding has been quantified through die shear testing. The reliability has been characterized through studies of the impact of thermal exposure on the mechanical performance of the bonds. Cross-section SEM analysis, coupled with high resolution energy dispersive spectroscopy, has provided insight into the physical and chemical nature of the bonding interfaces and aided in the evaluation of the long-term stability of the bonds.

  19. Learning structured models for segmentation of 2-D and 3-D imagery.

    PubMed

    Lucchi, Aurelien; Marquez-Neila, Pablo; Becker, Carlos; Li, Yunpeng; Smith, Kevin; Knott, Graham; Fua, Pascal

    2015-05-01

    Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically structured support vector machines (SSVM). Although SSVMs are appealing, they suffer from certain limitations. First, they are restricted in practice to linear kernels because the more powerful nonlinear kernels cause the learning to become prohibitively expensive. Second, they require iteratively finding the most violated constraints, which is often intractable for the loopy graphical models used in image segmentation. This requires approximation that can lead to reduced quality of learning. In this paper, we propose three novel techniques to overcome these limitations. We first introduce a method to "kernelize" the features so that a linear SSVM framework can leverage the power of nonlinear kernels without incurring much additional computational cost. Moreover, we employ a working set of constraints to increase the reliability of approximate subgradient methods and introduce a new way to select a suitable step size at each iteration. We demonstrate the strength of our approach on both 2-D and 3-D electron microscopic (EM) image data and show consistent performance improvement over state-of-the-art approaches. PMID:25438309

  20. Cloud4Psi: cloud computing for 3D protein structure similarity searching

    PubMed Central

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-01-01

    Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141

  1. Determining the 3D Structure of the Corona Using Vertical Height Constraints on Observed Active Region Loops

    NASA Astrophysics Data System (ADS)

    Gary, G. Allen; Hu, Qiang; Lee, Jong Kwan; Aschwanden, Markus J.

    2014-10-01

    The corona associated with an active region is structured by high-temperature, magnetically dominated closed and open loops. The projected 2D geometry of these loops is captured in EUV filtergrams. In this study using SDO/AIA 171 Å filtergrams, we expand our previous method to derive the 3D structure of these loops, independent of heliostereoscopy. We employ an automated loop recognition scheme (Occult-2) and fit the extracted loops with 2D cubic Bézier splines. Utilizing SDO/HMI magnetograms, we extrapolate the magnetic field to obtain simple field models within a rectangular cuboid. Using these models, we minimize the misalignment angle with respect to Bézier control points to extend the splines to 3D (Gary, Hu, and Lee 2014). The derived Bézier control points give the 3D structure of the fitted loops. We demonstrate the process by deriving the position of 3D coronal loops in three active regions (AR 11117, AR 11158, and AR 11283). The numerical minimization process converges and produces 3D curves which are consistent with the height of the loop structures when the active region is seen on the limb. From this we conclude that the method can be important in both determining estimates of the 3D magnetic field structure and determining the best magnetic model among competing advanced magnetohydrodynamics or force-free magnetic-field computer simulations.

  2. Simultaneous inversion for 3D crustal and anisotropic lithospheric structure and regional hypocenters beneath Germany

    NASA Astrophysics Data System (ADS)

    Muench, Thomas; Koch, Manfred; Schlittenhardt, Jörg

    2010-05-01

    There is now ample evidence from both refraction seismic studies, done already a quarter century ago and from more recent local earthquake traveltime analysis of some of the authors above that large sections of the upper mantle underneath Europe and Germany, in particular, are anisotropic. Employing a modified version of the method of simultaneous inversion for structure and hypocenters (SSH) of the first author, including a priori known upper mantle anisotropy, the investigations of Song et al. [2001] and Song et al. [2004] by means of a 1D time-term analysis and a full 2D Pn anisotropic inversion of regional traveltime data are extended here to a full 3D SSH-inversion underneath Germany. Regional traveltimes from local events occurring between 1975 - 2003 are used which, after application of several selection criteria, results in ~1300 events with a total of ~30000 P- and S-phases for the SSH inversion. Because many of the recorded events appear to suffer from relatively poor hypocentral depth locations a full SSH analysis becomes an intricate undertaking. To alleviate the problem the SSH procedure is carried out in several incremental steps of increasing complexity. First of all improved vertically inhomogeneous velocity (1D) models are derived assuming an isotropic as well as an anisotropic upper mantle. In addition of a slightly better model fit for the anisotropic than for the isotropic model, the latter gives also a somewhat lower Pn-velocity of ~7.90 km/s, compared with ~8.0 km/s for the former. This indicates that inclusion of upper mantle anisotropy into the model is required to obtain physically reasonable Pn-velocities. The results for the P-velocity in the lower crustal layer of the model are less clear, as there appears to be some trade-off in the velocity of that layer and that of the upper mantle. During the course of this part of the study the 3D models have been increasingly refined, starting with a lateral discretization into 15 x 15 blocs

  3. The crustal and mantle velocity structure in central Asia from 3D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Martin, R. V.; Toksoz, M. N.; Pei, S.

    2010-12-01

    The lithospheric structure in central Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the world. We developed P- and S- wave velocity structures of the central Asia in the crust using the traveltime data from Kyrgyzstan, Tajikistan, Kazakhstan, and Uzbek. We chose the events and stations between 32N65E and 45N85E and focused on the areas of Pamir and western Tianshan. In this data set, there are more than 6000 P and S arrivals received at 80 stations from about 300 events. The double difference tomography is applied to relocate events and to invert for seismic structures simultaneously. Our results provide accurate locations of earthquakes and high resolution crustal structure in this region. To extend the model deeper into the mantle through the upper mantle transition zone, ISC/EHB data for P and PP phases are combined with the ABCE data. To counteract the “smearing effect,” the crust and upper mantle velocity structure, derived from regional travel-times, is used. An adaptive grid method based on ray density is used in the inversion. A P-wave velocity model extending down to a depth of 2000 km is obtained. regional-teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of Tian Shan. The slab geometry is quite complex, reflecting the history of the changes in the plate motions and collision processes. Vp/Vs tomography was also determined in the study region, and an attenuation tomography was obtained as well.

  4. 3D Case Studies of Monitoring Dynamic Structural Tests using Long Exposure Imagery

    NASA Astrophysics Data System (ADS)

    McCarthy, D. M. J.; Chandler, J. H.; Palmeri, A.

    2014-06-01

    Structural health monitoring uses non-destructive testing programmes to detect long-term degradation phenomena in civil engineering structures. Structural testing may also be carried out to assess a structure's integrity following a potentially damaging event. Such investigations are increasingly carried out with vibration techniques, in which the structural response to artificial or natural excitations is recorded and analysed from a number of monitoring locations. Photogrammetry is of particular interest here since a very high number of monitoring locations can be measured using just a few images. To achieve the necessary imaging frequency to capture the vibration, it has been necessary to reduce the image resolution at the cost of spatial measurement accuracy. Even specialist sensors are limited by a compromise between sensor resolution and imaging frequency. To alleviate this compromise, a different approach has been developed and is described in this paper. Instead of using high-speed imaging to capture the instantaneous position at each epoch, long-exposure images are instead used, in which the localised image of the object becomes blurred. The approach has been extended to create 3D displacement vectors for each target point via multiple camera locations, which allows the simultaneous detection of transverse and torsional mode shapes. The proposed approach is frequency invariant allowing monitoring of higher modal frequencies irrespective of a sampling frequency. Since there is no requirement for imaging frequency, a higher image resolution is possible for the most accurate spatial measurement. The results of a small scale laboratory test using off-the-shelf consumer cameras are demonstrated. A larger experiment also demonstrates the scalability of the approach.

  5. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone.

    PubMed

    De Boever, Wesley; Derluyn, Hannelore; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2015-07-01

    When dealing with the characterization of the structure and composition of natural stones, problems of representativeness and choice of analysis technique almost always occur. Since feature-sizes are typically spread over the nanometer to centimeter range, there is never one single technique that allows a rapid and complete characterization. Over the last few decades, high resolution X-ray CT (μ-CT) has become an invaluable tool for the 3D characterization of many materials, including natural stones. This technique has many important advantages, but there are also some limitations, including a tradeoff between resolution and sample size and a lack of chemical information. For geologists, this chemical information is of importance for the determination of minerals inside samples. We suggest a workflow for the complete chemical and structural characterization of a representative volume of a heterogeneous geological material. This workflow consists of combining information derived from CT scans at different spatial resolutions with information from scanning electron microscopy and energy-dispersive X-ray spectroscopy. PMID:25939085

  6. Resonant structure of the 3d electron`s angular distribution in a free Mn{sup +}Ion

    SciTech Connect

    Amusia, M.Y.; Dolmatov, V.K.

    1995-08-01

    The 3d-electron angular anisotropy parameter of the free Mn{sup +} ion is calculated using the {open_quotes}spin-polarized{close_quotes} random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p {yields} 3d discrete excitation. The effect of the 3p {yields} 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published.

  7. A Mean Field Analysis of the Exchange Coupling (J) For 2- and 3-D Structured Tetracyanoethylenide (TCNE -)-based Magnets

    SciTech Connect

    McConnell, Amber C.; Fishman, Randy Scott; Miller, Joel S.

    2012-01-01

    Mean field expressions based on the simple Heisenberg model were derived to correlate the inter- and intralayer exchange coupling to the critical temperatures, Tc, for several TCNE (tetracyanoethylene) based magnets with extended 2- and 3-D structure types. These expressions were used to estimate the exchange coupling, J, for 2-D ferrimagnetic [MII(TCNE)(NCMe)2]+ (M = Mn, Fe), 3-D antiferromagnetic MnII(TCNE)[C4(CN)8]1/2, and 3-D ferrimagnetic MnII(TCNE)3/2(I3)1/2. The sign and magnitude of the exchange coupling are in accord with previously reported magnetic data.

  8. Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds.

    PubMed

    Park, Young-Ouk; Myung, Sung-Woon; Kook, Min-Suk; Jung, Sang-Chul; Kim, Byung-Hoon

    2016-02-01

    In this study, 3D polycaprolactone (PCL) scaffolds were fabricated by 3D printing technique. The macro/nano morphology of, 3D PCL scaffolds surface was etched with oxygen plasma. Acrylic acid (AA) plasma-polymerization was performed to functionalize the macro/nano surface with carboxyl groups and then collagen was immobilized with plasma-polymerized 3D PCL scaffolds. After O2 plasma and AA plasma-polymerization, contact angles were decreased. The FE-SEM and AFM results showed that O2 plasma is increased the surface roughness. The MTT assay results showed that proliferation of the M3CT3-E1 cells increased on the oxygen plasma treated and collagen immobilized 3D PCL scaffolds. PMID:27433597

  9. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds.

    PubMed

    Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol, Jon; Szabo, Peter; Burri, Harsha Vardhan Reddy; Canali, Chiara; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2015-10-01

    One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting process. The PVA mould network defines the channels and is dissolved after curing the polymer casted around it. The printing parameters determined the PVA filament density in the sacrificial structure and this density resulted in different stiffness of the corresponding elastomer replica. It was possible to achieve 80% porosity corresponding to about 150 cm(2)/cm(3) surface to volume ratio. The process is easily scalable as demonstrated by fabricating a 75 cm(3) scaffold with about 16,000 interconnected channels (about 1m(2) surface area) and with a channel to channel distance of only 78 μm. To our knowledge this is the largest scaffold ever to be produced with such small feature sizes and with so many structured channels. The fabricated scaffolds were applied for in-vitro culturing of hepatocytes over a 12-day culture period. Smaller scaffolds (6×4 mm) were tested for cell culturing and could support homogeneous cell growth throughout the scaffold. Presumably, the diffusion of oxygen and nutrient throughout the channel network is rapid enough to support cell growth. In conclusion, the described process is scalable, compatible with cell culture, rapid, and inexpensive. PMID:26117791

  10. Exploring 3D structural influences of aliphatic and aromatic chemicals on α-cyclodextrin binding.

    PubMed

    Linden, Lukas; Goss, Kai-Uwe; Endo, Satoshi

    2016-04-15

    Binding of solutes to macromolecules is often influenced by steric effects caused by the 3D structures of both binding partners. In this study, the 1:1 α-cyclodextrin (αCD) binding constants (Ka1) for 70 organic chemicals were determined to explore the solute-structural effects on the αCD binding. Ka1 was measured using a three-part partitioning system with either a headspace or a passive sampler serving as the reference phase. The Ka1 values ranged from 1.08 to 4.97 log units. The results show that longer linear aliphatic chemicals form more stable complexes than shorter ones, and that the position of the functional group has a strong influence on Ka1, even stronger than the type of the functional group. Comparison of linear and variously branched aliphatic chemicals indicates that having a sterically unhindered alkyl chain is favorable for binding. These results suggest that only one alkyl chain can enter the binding cavity. Relatively small aromatic chemicals such as 1,3-dichlorobenzene bind to αCD well, while larger ones like tetrachlorobenzene and 3-ring aromatic chemicals show only a weak interaction with αCD, which can be explained by cavity exclusion. The findings of this study help interpret cyclodextrin binding data and facilitate the understanding of binding processes to macromolecules. PMID:26826354

  11. Cloning, Expression and 3D Structure Prediction of Chitinase from Chitinolyticbacter meiyuanensis SYBC-H1

    PubMed Central

    Hao, Zhikui; Wu, Hangui; Yang, Meiling; Chen, Jianjun; Xi, Limin; Zhao, Weijie; Yu, Jialin; Liu, Jiayang; Liao, Xiangru; Huang, Qingguo

    2016-01-01

    Two CHI genes from Chitinolyticbacter meiyuanensis SYBC-H1 encoding chitinases were identified and their protein 3D structures were predicted. According to the amino acid sequence alignment, CHI1 gene encoding 166 aa had a structural domain similar to the GH18 type II chitinase, and CHI2 gene encoding 383 aa had the same catalytic domain as the glycoside hydrolase family 19 chitinase. In this study, CHI2 chitinase were expressed in Escherichia coli BL21 cells, and this protein was purified by ammonium sulfate precipitation, DEAE-cellulose, and Sephadex G-100 chromatography. Optimal activity of CHI2 chitinase occurred at a temperature of 40 °C and a pH of 6.5. The presence of metal ions Fe3+, Fe2+, and Zn2+ inhibited CHI2 chitinase activity, while Na+ and K+ promoted its activity. Furthermore, the presence of EGTA, EDTA, and β-mercaptoethanol significantly increased the stability of CHI2 chitinase. The CHI2 chitinase was active with p-NP-GlcNAc, with the Km and Vm values of 23.0 µmol/L and 9.1 mM/min at a temperature of 37 °C, respectively. Additionally, the CHI2 chitinase was characterized as an N-acetyl glucosaminidase based on the hydrolysate from chitin. Overall, our results demonstrated CHI2 chitinase with remarkable biochemical properties is suitable for bioconversion of chitin waste. PMID:27240345

  12. Cloning, Expression and 3D Structure Prediction of Chitinase from Chitinolyticbacter meiyuanensis SYBC-H1.

    PubMed

    Hao, Zhikui; Wu, Hangui; Yang, Meiling; Chen, Jianjun; Xi, Limin; Zhao, Weijie; Yu, Jialin; Liu, Jiayang; Liao, Xiangru; Huang, Qingguo

    2016-01-01

    Two CHI genes from Chitinolyticbacter meiyuanensis SYBC-H1 encoding chitinases were identified and their protein 3D structures were predicted. According to the amino acid sequence alignment, CHI1 gene encoding 166 aa had a structural domain similar to the GH18 type II chitinase, and CHI2 gene encoding 383 aa had the same catalytic domain as the glycoside hydrolase family 19 chitinase. In this study, CHI2 chitinase were expressed in Escherichia coli BL21 cells, and this protein was purified by ammonium sulfate precipitation, DEAE-cellulose, and Sephadex G-100 chromatography. Optimal activity of CHI2 chitinase occurred at a temperature of 40 °C and a pH of 6.5. The presence of metal ions Fe(3+), Fe(2+), and Zn(2+) inhibited CHI2 chitinase activity, while Na⁺ and K⁺ promoted its activity. Furthermore, the presence of EGTA, EDTA, and β-mercaptoethanol significantly increased the stability of CHI2 chitinase. The CHI2 chitinase was active with p-NP-GlcNAc, with the Km and Vm values of 23.0 µmol/L and 9.1 mM/min at a temperature of 37 °C, respectively. Additionally, the CHI2 chitinase was characterized as an N-acetyl glucosaminidase based on the hydrolysate from chitin. Overall, our results demonstrated CHI2 chitinase with remarkable biochemical properties is suitable for bioconversion of chitin waste. PMID:27240345

  13. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  14. 2D and 3D multipactor modeling in dielectric-loaded accelerator structures

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas

    2010-11-01

    Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an RF electric field under vacuum conditions. MP is a severe problem in modern rf systems and, therefore, theoretical and experimental studies of MP are of great interest to the researchers working in various areas of physics and engineering. In this work we present results of MP studies in dielectric-loaded accelerator (DLA) structures. First, we show simulation results obtained with the use of the 2D self-consistent MP model (O. V. Sinitsyn, et. al., Phys. Plasmas, vol. 16, 073102 (2009)) and compare those to experimental ones obtained during recent extensive studies of DLA structures performed by Argonne National Laboratory, Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs (C. Jing, et al., IEEE Trans. Plasma Sci., vol. 38, pp. 1354-1360 (2010)). Then we present some new results of 3D analysis of MP which include studies of particle trajectories and studies of MP development at the early stage.

  15. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.

    PubMed

    Meier, Armin; Söding, Johannes

    2015-10-01

    Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite. PMID:26496371

  16. Transfer-printing and host-guest properties of 3D supramolecular particle structures.

    PubMed

    Ling, Xing Yi; Phang, In Yee; Reinhoudt, David N; Vancso, G Julius; Huskens, Jurriaan

    2009-04-01

    Mechanically robust and crystalline supramolecular particle structures have been constructed by decoupling nanoparticle assembly and supramolecular glue infiltration into a sequential process. First, beta-cyclodextrin (CD)-functionalized polystyrene particles (d approximately 500 nm) were assembled on a CD-functionalized surface via convective assembly to form highly ordered, but mechanically unstable, particle crystals. Subsequently, the crystals were infiltrated by a solution of adamantyl-functionalized dendrimers, functioning as a supramolecular glue to bind neighboring particles together and to couple the entire particle crystal to the CD surface, both in a noncovalent manner. The supramolecular particle crystals are highly robust, as witnessed by their ability to withstand agitation by ultrasonication. When assembled on a poly(dimethylsiloxane) (PDMS) stamp, the dendrimer-infiltrated particle crystals could be transfer-printed onto a CD-functionalized target surface. By variation of the geometry and size of the PDMS stamps, single particle lines, interconnected particle rings, and V-shaped particle assemblies were obtained. The particle structures served as 3D receptors for the binding of (multiple) complementary guest molecules, indicating that the supramolecular host functionalities of the particle crystals were retained throughout the fabrication process. PMID:20356024

  17. Band structure and spin texture of Bi2Se3 3 d ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Velev, Julian P.; Dang, Xiaoqian; Tsymbal, Evgeny Y.

    2016-07-01

    The spin-helical surface states in a three-dimensional topological insulator (TI), such as Bi2Se3 , are predicted to have superior efficiency in converting charge current into spin polarization. This property is said to be responsible for the giant spin-orbit torques observed in ferromagnetic metal/TI structures. In this work, using first-principles and model tight-binding calculations, we investigate the interface between the topological insulator Bi2Se3 and 3 d -transition ferromagnetic metals Ni and Co. We find that the difference in the work functions of the topological insulator and the ferromagnetic metals shift the topological surface states down about 0.5 eV below the Fermi energy where the hybridization of these surface states with the metal bands destroys their helical spin structure. The band alignment of Bi2Se3 and Ni (Co) places the Fermi energy far in the conduction band of bulk Bi2Se3 , where the spin of the carriers is aligned with the magnetization in the metal. Our results indicate that the topological surface states are unlikely to be responsible for the huge spin-orbit torque effect observed experimentally in these systems.

  18. 3-D Crustal Velocity Structure Across the Vrancea Zone in Romania, Derived From Seismic Data

    NASA Astrophysics Data System (ADS)

    Landes, M.; Hauser, F.; Popa, M.

    2002-12-01

    The Vrancea zone in the south-eastern Carpathians is one of the most active seismic zones in Europe. In order to study the crustal and upper-mantle structure in this region, two seismic refraction/wide-angle reflection experiments were carried out in 1999 and 2001. The 1999 campaign comprised a 320 km long N-S profile and a 80 km long transverse profile (E-W). All shots were recorded simultaneously on both profiles. The profile conducted in 2001 extended in E-W direction from the Hungarian border across the Vrancea zone to the Black Sea. We present an application of a 3-D refraction and reflection tomography algorithm (Hole 1992, 1995), elaborating the crustal velocity and interface structure within a 115 x 235 km wide region around the Vrancea zone. In order to enhance the model resolution, first arrival data from local earthquakes of the CALIXTO-99 teleseismic project were also included. The results indicate a high-velocity structure beneath the northern part of the Vrancea zone extending from shallow levels to depths of about 11 km. This structure may be related to the Trotus and Capidava-Ovidiu faults, which converge to the north of it. The high-velocity region is surrounded by the lower velocity Focsani and Brasov basins. The sedimentary succession beneath the southern part of the model extends to 18 km depth, while in the north sediment thickness varies between 10 and 15 km. Further results of the interface modelling of prominent reflections show that the mid-crustal and Moho interfaces shallow northwards from 30 km to 22 km and from 42 km to 38 km, respectively. This correlates well with previous results of Hauser et al. (2001).

  19. 3-D Isotropic and Anisotropic S-velocity Structure in the North American Upper Mantle

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Marone, F.; Romanowicz, B.; Abt, D.; Fischer, K.

    2008-12-01

    The tectonic diversity of the North American continent has led to a number of geological, tectonic and geodynamical models, many of which can be better tested with high resolution 3-d tomographic models of the isotropic and anisotropic mantle structure of the continent. In the framework of non-linear asymptotic coupling theory (NACT), we recently developed tools to invert long period seismic waveforms combined with SKS splitting data, for both isotropic and radial and azimuthal anisotropic S-wave velocity structure in the upper mantle at the continental scale (Marone et al., 2007; Marone and Romanowicz, 2007). Striking differences in both isotropic and anisotropic velocity structure were observed: beneath the high velocity stable cratonic region a distinct two-layer anisotropic domain is present, with the bottom layer fast axis direction aligned with the absolute plate motion, and a shallower lithospheric layer with north pointing fast axis most likely showing records of past tectonic history; under the active western US the direction of tomographically inferred anisotropy is stable with depth and compatible with the absolute plate motion direction. Here we present an updated model which includes nearly five more years of data, including data from newly operative USArray stations, and a somewhat more extended frequency band. Our new model confirms our previous results, and reveals greater yet complex details of the anisotropic velocity structure beneath the western U.S.. We also show initial results of incorporating constraints on the depth to the lithosphere-asthenosphere boundary (LAB) using teleseismic receiver functions. We discuss the different anisotropic domains resolved both laterally and in depth, in the context of tectonic history of the north American continent.