Science.gov

Sample records for 3-dimensional computed tomography

  1. Quantitative 3-dimensional computed tomography analysis of olecranon fractures.

    PubMed

    Lubberts, Bart; Janssen, Stein; Mellema, Jos; Ring, David

    2016-05-01

    Olecranon fractures have variable size of the proximal fragment, patterns of fragmentation, and subluxation of the ulnohumeral joint that might be better understood and categorized on the basis of quantitative 3-dimensional computed tomography analysis. Mayo type I fractures are undisplaced, Mayo type II are displaced and stable, and Mayo type III are displaced and unstable. The last is categorized into anterior and posterior dislocations. The purpose of this study was to further clarify fracture morphology between Mayo type I, II, and III fractures. Three-dimensional models were created for a consecutive series of 78 patients with olecranon fractures that were evaluated with computed tomography. We determined the total number of fracture fragments, the volume and articular surface area of each fracture fragment, and the degree of displacement of the most proximal olecranon fracture fragment. Displaced olecranon fractures were more comminuted than nondisplaced fractures (P = .02). Displaced fractures without ulnohumeral subluxation were smallest in terms of both volume (P < .001) and articular surface involvement (P < .001) of the most proximal olecranon fracture fragment. There was no difference in average displacement of the proximal fragment between displaced fractures with and without ulnohumeral subluxation (P = .74). Anterior olecranon fracture-dislocations created more displaced (P = .04) and smaller proximal fragments than posterior fracture-dislocations (P = .005), with comparable fragmentation on average (P = .60). The ability to quantify volume, articular surface area, displacement, and fragmentation using quantitative 3-dimensional computed tomography should be considered when increased knowledge of fracture morphology and fracture patterns might be useful. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Quantitative 3-dimensional computed tomography measurements of coronoid fractures.

    PubMed

    Mellema, Jos J; Janssen, Stein J; Guitton, Thierry G; Ring, David

    2015-03-01

    Using quantitative 3-dimensional computed tomography (Q3DCT) modeling, we tested the null hypothesis that there was no difference in fracture fragment volume, articular surface involvement, and number of fracture fragments between coronoid fracture types and patterns of traumatic elbow instability. We studied 82 patients with a computed tomography scan of a coronoid fracture using Q3DCT modeling. Fracture fragments were identified and fragment volume and articular surface involvement were measured within fracture types and injury patterns. Kruskal-Wallis test was used to evaluate the Q3DCT data of the coronoid fractures. Fractures of the coronoid tip (n = 45) were less fragmented and had the smallest fragment volume and articular surface area involvement compared with anteromedial facet fractures (n = 20) and base fractures (n = 17). Anteromedial facet and base fractures were more fragmented than tip fractures, and base fractures had the largest fragment volume and articular surface area involvement compared with tip and anteromedial facet fractures. We found similar differences between fracture types described by Regan and Morrey. Furthermore, fractures associated with terrible triad fracture dislocation (n = 42) had the smallest fragment volume, and fractures associated with olecranon fracture dislocations (n = 17) had the largest fragment volume and articular surface area involvement compared with the other injury patterns. Analyzing fractures of the coronoid using Q3DCT modeling demonstrated that fracture fragment characteristics differ significantly between fracture types and injury patterns. Detailed knowledge of fracture characteristics and their association with specific patterns of traumatic elbow instability may assist decision making and preoperative planning. Quantitative 3DCT modeling can provide a more detailed understanding of fracture morphology, which might guide decision making and implant development. Copyright © 2015 American Society for

  3. Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.

    PubMed

    Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu

    2016-09-01

    Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.

  4. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  5. Pilot study of endoscopic retrograde 3-dimensional - computed tomography enteroclysis for the assessment of Crohn's disease.

    PubMed

    Tanabe, Hiroki; Ito, Takahiro; Inaba, Yuhei; Ando, Katsuyoshi; Nomura, Yoshiki; Ueno, Nobuhiro; Kashima, Shin; Moriichi, Kentaro; Fujiya, Mikihiro; Okumura, Toshikatsu

    2017-01-01

    Endoscopic retrograde ileography (ERIG) is developed in our institute and applied clinically for the diagnosis and assessment of the Crohn's disease activity. We have further improved the technique using 3-dimensional - computed tomography enteroclysis (3D-CTE) and conducted a retrospective study to determine the feasibility and the diagnostic value of endoscopic retrograde 3D-CTE (ER 3D-CTE) in Crohn's disease patients in a state of remission. Thirteen Crohn's patients were included in this pilot study. CTE was performed after the infusion of air or CO2 through the balloon tube following conventional colonoscopy. The primary endpoint of this study was to assess the safety of this method. Secondarily, the specific findings of Crohn's disease and length of the visualized small intestine were assessed. The procedures were completed without any adverse events. Gas passed through the small intestine and enterographic images were obtained in 10 out of 13 cases, but, in the remaining patients, insertion of the balloon tubes into the terminal ileum failed. Various features specific to Crohn's disease were visualized using ER 3D-CTE. A cobble stone appearance or hammock-like malformation was specific and effective for diagnosing Crohn's disease and the features of anastomosis after the surgical operations were also well described. Therefore, this technique may be useful after surgery. In this study, ER 3D-CTE was performed safely in Crohn's disease patients and may be used for the diagnosis and follow-up of this disease.

  6. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography.

    PubMed

    Glaser, Diana A; Doan, Josh; Newton, Peter O

    2012-07-15

    Experimental study for systematic evaluation of 3-dimensional (3D) reconstructions from low-dose digital stereoradiography. To assess the accuracy of EOS (EOS Imaging, Paris, France) 3-dimensional (3D) reconstructions compared with 3D computed tomography (CT) and the effect spine positioning within the EOS unit has on reconstruction accuracy. Scoliosis is a 3D deformity, but 3D morphological analyses are still rare. A new low-dose radiation digital stereoradiography system (EOS) was previously evaluated for intra/interobserver variability, but data are limited for 3D reconstruction accuracy. Three synthetic scoliotic phantoms (T1-pelvis) were scanned in upright position at 0°, ±5°, and ±10° of axial rotation within EOS and in supine position using CT. Three-dimensional EOS reconstructions were superimposed on corresponding 3D computed tomographic reconstructions. Shape, position, and orientation accuracy were assessed for each vertebra and the entire spine. Additional routine planer clinical deformity measurements were compared: Cobb angle, kyphosis, lordosis, and pelvic incidence. Mean EOS vertebral body shape accuracy was 1.1 ± 0.2 mm (maximum 4.7 mm), with 95% confidence interval of 1.7 mm. Different anatomical vertebral regions were modeled well with root-mean-square (RMS) values from 1.2 to 1.6 mm. Position and orientation accuracy of each vertebra were high: RMS offset was 1.2 mm (maximum 3.7 mm) and RMS axial rotation was 1.9° (maximum 5.8°). There was no significant difference in each of the analyzed parameters (P > 0.05) associated with varying the rotational position of the phantoms in EOS machine. Planer measurements accuracy was less than 1° mean difference for pelvic incidence, Cobb angle (mean 1.6°/maximum 3.9°), and sagittal kyphosis (mean less than 1°, maximum 4.9°). The EOS image acquisition and reconstruction software provides accurate 3D spinal representations of scoliotic spinal deformities. The results of this study provide spinal

  7. Age-related changes of the upper airway assessed by 3-dimensional computed tomography.

    PubMed

    Abramson, Zachary; Susarla, Srinivas; Troulis, Maria; Kaban, Leonard

    2009-03-01

    The purposes of this study were to establish normative data for airway size and shape and to evaluate differences associated with age and sex using 3-dimensional (3-D) imaging. Patients being evaluated by computed tomography (CT) for pathologic conditions not related to the airway were included. Using 3-D Slicer (Harvard Surgical Planning Laboratory, Brigham and Women's Hospital, Boston, MA), a software program, digital 3-D CT reconstructions were made and parameters of airway size analyzed: volume (VOL), surface area (SA), length (L), mean cross-sectional area (mean CSA), minimum retropalatal (RP), minimum retroglossal (RG), minimum cross-sectional area (min CSA), and lateral (LAT) and anteroposterior (AP) retroglossal airway dimensions. Evaluation of airway shape included LAT/AP and RP/RG ratios, uniformity (U), and sphericity, a measure of compactness (Psi). Children were stratified by stage of dentition: primary, 0 to 5 years; mixed, 6 to 11 years; permanent, 12 to 16 years; and adults, older than 16 years. Differences in airway parameters by age and sex were analyzed. Forty-six CT scans (31 males) were evaluated. Adults had larger (VOL, SA, L, mean CSA, and LAT), more elliptical (increased LAT/AP, P = 0.01), less uniform (U, P = 0.02), and less compact (decreased Psi, P = 0.001) airways than children. Among children, those in the permanent dentition demonstrated greater VOL (P < 0.01), SA (P < 0.01), L (P < 0.01), and mean CSA (P < 0.01) than those in the primary dentition. There were no gender differences in airway parameters. Understanding differences in 3-D airway size and morphology by age may serve as a basis for evaluation of patients with obstructive sleep apnea and may help to predict and to evaluate outcomes of treatment.

  8. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation.

    PubMed

    Larson, A Noelle; Santos, Edward R G; Polly, David W; Ledonio, Charles G T; Sembrano, Jonathan N; Mielke, Cary H; Guidera, Kenneth J

    2012-02-01

    A retrospective cohort study reporting the use of intraoperative computed tomography (CT) and image-guided navigation system for the placement of pedicle screws in pediatric compared with adult patients. To evaluate the accuracy of open pedicle screw placement in pediatric patients using intraoperative CT and 3-dimensional (3D) image-guided navigation. Pedicle screws are widely used in children for the correction of spinal deformity. Navigation systems and intraoperative CT are now available as an adjunct to fluoroscopy and anatomic techniques for placing pedicle screws and verifying screw position. From 2007 to 2010, 984 pedicle screws were placed in a consecutive series cohort of 50 pediatric patients for spinal deformity correction with the use of intraoperative CT (O-arm, Medtronic, Inc, Louisville, CO) and a computerized navigation system (Stealth, Medtronic, Inc, Louisville, CO). The primary outcome measure for this study is redirection or removal of screw on the basis of the intraoperative CT imaging. During the study period, 1511 screws were placed in adult patients using the same image guidance system. A total of 984 pedicle screws were implanted using real-time navigation, with a mean of 20 screws per patient (range: 2-34). On the basis of intraoperative CT, 35 screws (3.6%) were revised (27 redirected and 8 removed), representing a 96.4% accuracy rate. No patients returned to the operating room because of screw malposition.Of the 1511 screws placed in adult patients, 28 (1.8%) were revised intraoperatively for malposition on CT imaging, for an overall 98.2% accuracy rate. Screw revision thus was more common in the pediatric population (P = 0.008). However, the pediatric screw accuracy rate is significantly higher than the findings from a recent meta-analysis of predominantly nonnavigated screws in children, reporting a 94.9% accuracy rate (P = 0.03). We report 96.4% accuracy in pediatric pedicle screw placement using intraoperative CT and a 3D navigation

  9. Use of 3-dimensional computed tomography to detect a barium-masked fish bone causing esophageal perforation.

    PubMed

    Tsukiyama, Atsushi; Tagami, Takashi; Kim, Shiei; Yokota, Hiroyuki

    2014-01-01

    Computed tomography (CT) is useful for evaluating esophageal foreign bodies and detecting perforation. However, when evaluation is difficult owing to the previous use of barium as a contrast medium, 3-dimensional CT may facilitate accurate diagnosis. A 49-year-old man was transferred to our hospital with the diagnosis of esophageal perforation. Because barium had been used as a contrast medium for an esophagram performed at a previous hospital, horizontal CT and esophageal endoscopy could not be able to identify the foreign body or characterize the lesion. However, 3-dimensional CT clearly revealed an L-shaped foreign body and its anatomical relationships in the mediastinum. Accordingly, we removed the foreign body using an upper gastrointestinal endoscope. The foreign body was the premaxillary bone of a sea bream. The patient was discharged without complications.

  10. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models

    PubMed Central

    Cevidanes, Lucia H. S.; Styner, Martin A.; Proffit, William R.

    2013-01-01

    Three-dimensional (3D) imaging techniques can provide valuable information to clinicians and researchers. But as we move from traditional 2-dimensional (2D) cephalometric analysis to new 3D techniques, it is often necessary to compare 2D with 3D data. Cone-beam computed tomography (CBCT) provides simulation tools that can help bridge the gap between image types. CBCT acquisitions can be made to simulate panoramic, lateral, and posteroanterior cephalometric radioagraphs so that they can be compared with preexisting cephalometric databases. Applications of 3D imaging in orthodontics include initial diagnosis and superimpositions for assessing growth, treatment changes, and stability. Three-dimensional CBCT images show dental root inclination and torque, impacted and supernumerary tooth positions, thickness and morphology of bone at sites of mini-implants for anchorage, and osteotomy sites in surgical planning. Findings such as resorption, hyperplasic growth, displacement, shape anomalies of mandibular condyles, and morphological differences between the right and left sides emphasize the diagnostic value of computed tomography acquisitions. Furthermore, relationships of soft tissues and the airway can be assessed in 3 dimensions. PMID:16679201

  11. Automated 3-dimensional aortic annular assessment by multidetector computed tomography in transcatheter aortic valve implantation.

    PubMed

    Watanabe, Yusuke; Morice, Marie-Claude; Bouvier, Erik; Leong, Tora; Hayashida, Kentaro; Lefèvre, Thierry; Hovasse, Thomas; Romano, Mauro; Chevalier, Bernard; Donzeau-Gouge, Patrick; Farge, Arnaud; Cormier, Bertrand; Garot, Philippe

    2013-09-01

    This study sought to evaluate the accuracy, reproducibility, and predictive value for post-procedural aortic regurgitation (AR) of an automated multidetector computed tomography (MDCT) post-processing imaging software, 3mensio Valves (version 5.1.sp1, 3mensio Medical Imaging BV, the Netherlands), in the assessment of patients undergoing transcatheter aortic valve implantation (TAVI). Accurate pre-operative aortic annulus measurements are crucial for patients undergoing TAVI. One hundred five patients undergoing MDCT screening before TAVI were evaluated. Aortic annular measurement was compared between automated 3mensio Valves software and manual data post-processing software on a dedicated workstation; we analyzed the discrimination value of annulus measurement for post-procedural AR in 44 recipients of a self-expanding valve. The automated 3mensio Valves software showed good concordance with manual MDCT measurements as demonstrated by Bland-Altman analysis. The automated software provided equally good reproducibility as manual measurement, especially for measurement of aortic annulus area (intraobserver intraclass correlation coefficients 0.98 vs. 0.97, interobserver 0.98 vs. 0.95). In 44 patients after implantation of a self-expanding valve, the valve diameter/CT-measured geometric mean annulus diameter ratio by automated 3mensio Valves software showed moderate and better discrimination ability in predicting post-procedural AR compared with manual measurement (p = 0.12, area under the curve 0.77, 95% confidence interval: 0.63 to 0.91, area under the curve 0.68, 95% confidence interval: 0.50 to 0.86, respectively). The automated 3mensio Valves software demonstrated reliable, reproducible aortic annulus measurement and better predictive value for post-procedural AR, suggesting important clinical implications for pre-operative assessment of patients undergoing TAVI. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights

  12. Surgical Classification of the Mandibular Deformity in Craniofacial Microsomia Using 3-Dimensional Computed Tomography

    PubMed Central

    Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.

    2016-01-01

    Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097

  13. Relationship between proximal femoral and acetabular alignment in normal hip joints using 3-dimensional computed tomography.

    PubMed

    Buller, Leonard T; Rosneck, James; Monaco, Feno M; Butler, Robert; Smith, Travis; Barsoum, Wael K

    2012-02-01

    The bony architecture of the hip depends upon functional adaptation to mechanical usage via the dynamic interaction between the acetabulum and femoral head. Acetabular retroversion is thought to be a contributing factor of pincer-type femoroacetabular impingement. Studies of pathological hip joints suggest proximal femoral anatomy compensates for acetabular retroversion. HYPOTHESIS/ PURPOSE: The purpose of this study was to determine if a predictable relationship exists between proximal femoral and acetabular angles, age, and gender in normal hip joints. We hypothesized that, through functional adaptation to mechanical loading, a complementary developmental relationship exists between the acetabulum and proximal femur. Descriptive laboratory study. The femoral neck version, femoral neck shaft angle, acetabular version, acetabular inclination, and center edge angle were measured in 230 normal hip joints in 115 adults using 3-dimensional reconstruction software. Correlations between the angles, age, and gender were examined using the methods of stepwise regression and backward elimination. Regarding side-to-side comparison and variability, there was no statistically significant difference between the left and right sides in the average value of each angle measurement. The correlations specifically between angles, age, and gender were similar on the left and right sides for all pairs except femoral version and acetabular inclination. Regarding significant findings of the study, a positive correlation (P < .05) was found between femoral version and acetabular version (0.38° to 1°). A positive correlation was found between femoral neck shaft angle and acetabular version (0.21° to 1°). A negative correlation was found between femoral neck shaft angle and age (-0.17° to 1°). A positive correlation was found between acetabular version and female gender (2.6° to 1°). A positive correlation was found between center edge angle and female gender (2.8° to 1°). A

  14. Airway Wall Area Derived from 3-Dimensional Computed Tomography Analysis Differs among Lung Lobes in Male Smokers

    PubMed Central

    Tho, Nguyen Van; Trang, Le Thi Huyen; Murakami, Yoshitaka; Ogawa, Emiko; Ryujin, Yasushi; Kanda, Rie; Nakagawa, Hiroaki; Goto, Kenichi; Fukunaga, Kentaro; Higami, Yuichi; Seto, Ruriko; Nagao, Taishi; Oguma, Tetsuya; Yamaguchi, Masafumi; Lan, Le Thi Tuyet; Nakano, Yasutaka

    2014-01-01

    Background It is time-consuming to obtain the square root of airway wall area of the hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10), a comparable index of airway dimensions in chronic obstructive pulmonary disease (COPD), from all airways of the whole lungs using 3-dimensional computed tomography (CT) analysis. We hypothesized that √Aaw at Pi10 differs among the five lung lobes and √Aaw at Pi10 derived from one certain lung lobe has a high level of agreement with that derived from the whole lungs in smokers. Methods Pulmonary function tests and chest volumetric CTs were performed in 157 male smokers (102 COPD, 55 non-COPD). All visible bronchial segments from the 3rd to 5th generations were segmented and measured using commercially available 3-dimensional CT analysis software. √Aaw at Pi10 of each lung lobe was estimated from all measurable bronchial segments of that lobe. Results Using a mixed-effects model, √Aaw at Pi10 differed significantly among the five lung lobes (R2 = 0.78, P<0.0001). The Bland-Altman plots show that √Aaw at Pi10 derived from the right or left upper lobe had a high level of agreement with that derived from the whole lungs, while √Aaw at Pi10 derived from the right or left lower lobe did not. Conclusion In male smokers, CT-derived airway wall area differs among the five lung lobes, and airway wall area derived from the right or left upper lobe is representative of the whole lungs. PMID:24865661

  15. Osteochondritis dissecans of the capitellum: lesion size and pattern analysis using quantitative 3-dimensional computed tomography and mapping technique.

    PubMed

    Bexkens, Rens; Oosterhoff, Jacobien H; Tsai, Tsung-Yuan; Doornberg, Job N; van den Bekerom, Michel P J; Eygendaal, Denise; Oh, Luke S

    2017-09-01

    The goals of this study were to evaluate the reliability of a quantitative 3-dimensional computed tomography (Q3DCT) technique for measurement of the capitellar osteochondritis dissecans (OCD) surface area, to analyze OCD distribution using a mapping technique, and to investigate associations between Q3DCT lesion quantification and demographic characteristics and/or clinical examination findings. We identified patients with capitellar OCD who presented to our orthopedic sports medicine practice between January 2001 and January 2016 and who had undergone a preoperative computed tomography scan (slice thickness ≤1.25 mm). A total of 17 patients with a median age of 15 years (range, 12-23 years) were included in this study. Three-dimensional polygon models were reconstructed after osseous structures were marked in 3 planes. Surface areas of the OCD lesion as well as the capitellum were measured. Observer agreement was assessed with the intraclass correlation coefficient (ICC). Heat maps were created to visualize OCD distribution. Measurements of the OCD surface area showed almost perfect intraobserver agreement (ICC, 0.99; confidence interval [CI], 0.98-0.99) and interobserver agreement (ICC, 0.93; CI, 0.86-0.97). Measurements of the capitellar surface area also showed almost perfect intraobserver agreement (ICC, 0.97;CI, 0.91-0.99) and interobserver agreement (ICC, 0.86; CI, 0.46-0.96). The median OCD surface area was 101 mm(2) (range, 49-217 mm(2)). On the basis of OCD heat mapping, the posterolateral zone of the capitellum was most frequently affected. OCDs in which the lateral wall was involved were associated with larger lesion size (P = .041), longer duration of symptoms (P = .030), and worse elbow extension (P = .013). The ability to quantify the capitellar OCD surface area and lesion location in a reliable manner using Q3DCT and a mapping technique should be considered when detailed knowledge of lesion size and location is desired

  16. Predictive value of preoperative 3-dimensional computer tomography measurement of semitendinosus tendon harvested for anterior cruciate ligament reconstruction.

    PubMed

    Yasumoto, Masanori; Deie, Masataka; Sunagawa, Toru; Adachi, Nobuo; Kobayashi, Kenji; Ochi, Mitsuo

    2006-03-01

    The aim of this study was to evaluate preoperative measurement of the semitendinosus tendon (ST) by 3-dimensional computed tomography (3-D CT), before using ST as the substitute in the anterior cruciate ligament (ACL) reconstruction. Cross-sectional study to compare anatomic findings with clinical findings. The study involved 28 patients who underwent ACL reconstruction using autogenous ST graft. Preoperative 3-D CT images of ST were obtained with a multidetector-row CT scanner, and rendered qualitatively by the volume-rendering technique. The length and cross-sectional area of ST measured with 3-D CT were compared with the length of the harvested ST and the cross-sectional area of the grafted quadrupled tendon. The total length of ST measured with 3-D CT ranged from 220.3 to 285.4 mm, with a mean (+/- SD) of 248.0 +/- 17.1 mm, and that measured at surgery ranged from 230.0 to 290.0 mm, with a mean of 257.1 +/- 16.5 mm. These 2 values showed a close positive correlation (gamma = 0.634, P = .002). The cross-sectional area of ST measured with 3-D CT ranged from 4.29 to 18.5 mm2 with a mean of 11.9 +/- 4.6 mm2, and that of the substitute measured at surgery ranged from 28.3 to 56.7 mm2 with a mean of 45.5 +/- 6.9 mm2). There was no significant correlation between the areas of ST measured by CT and the areas of ST measured during surgery. Preoperative 3-D CT imaging predicts the length of ST. These findings support the measurement of ST length by 3-D CT as a useful tool for planning ACL reconstructive surgery and for providing important preoperative information to patients. Level III, diagnostic study.

  17. The Mechanical Functionality of the EXO-L Ankle Brace: Assessment With a 3-Dimensional Computed Tomography Stress Test.

    PubMed

    Kleipool, Roeland P; Natenstedt, Jerry J; Streekstra, Geert J; Dobbe, Johannes G G; Gerards, Rogier M; Blankevoort, Leendert; Tuijthof, Gabriëlle J M

    2016-01-01

    A new type of ankle brace (EXO-L) has recently been introduced. It is designed to limit the motion of most sprains without limiting other motions and to overcome problems such as skin irritation associated with taping or poor fit in the sports shoe. To evaluate the claimed functionality of the new ankle brace in limiting only the motion of combined inversion and plantar flexion. Controlled laboratory study. In 12 patients who received and used the new ankle brace, the mobility of the joints was measured with a highly accurate and objective in vivo 3-dimensional computed tomography (3D CT) stress test. Primary outcomes were the ranges of motion as expressed by helical axis rotations without and with the ankle brace between the following extreme positions: dorsiflexion to plantar flexion, and combined eversion and dorsiflexion to combined inversion and plantar flexion. Rotations were acquired for both talocrural and subtalar joints. A paired Student t test was performed to test the significance of the differences between the 2 conditions (P ≤ .05). The use of the ankle brace significantly restricted the rotation of motion from combined eversion and dorsiflexion to combined inversion and plantar flexion in both the talocrural (P = .004) and subtalar joints (P < .001). No significant differences were found in both joints for the motion from dorsiflexion to plantar flexion. The 3D CT stress test confirmed that under static and passive testing conditions, the new ankle brace limits the inversion-plantar flexion motion that is responsible for most ankle sprains without limiting plantar flexion or dorsiflexion. This test demonstrated its use in the objective evaluation of braces. © 2015 The Author(s).

  18. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report.

    PubMed

    Liacouras, Peter; Garnes, Jonathan; Roman, Norberto; Petrich, Anton; Grant, Gerald T

    2011-02-01

    The method of fabricating an auricular prosthesis by digitally positioning a mirror image of the soft tissue, then designing and using rapid prototyping to produce the mold, can reduce the steps and time needed to create a prosthesis by the traditional approach of sculpting either wax or clay. The purpose of this clinical report is to illustrate how the use of 3-dimensional (3-D) photography, computer technology, and additive manufacturing can extensively reduce many of the preliminary procedures currently used to create an auricular prosthesis. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Surgical orthodontic treatment for a patient with advanced periodontal disease: evaluation with electromyography and 3-dimensional cone-beam computed tomography.

    PubMed

    Nakajima, Kan; Yamaguchi, Tetsutaro; Maki, Koutaro

    2009-09-01

    We report here the case of a woman with Class III malocclusion and advanced periodontal disease who was treated with surgical orthodontic correction. Functional recovery after orthodontic treatment is often monitored by serial electromyography of the masticatory muscles, whereas 3-dimensional cone-beam computed tomography can provide detailed structural information about, for example, periodontal bone defects. However, it is unclear whether the information obtained via these methods is sufficient to determine the treatment goal. It might be useful to address this issue for patients with advanced periodontal disease because of much variability between patients in the determination of treatment goals. We used detailed information obtained by 3-dimensional cone-beam computed tomography to identify periodontal bone defects and set appropriate treatment goals for inclination of the incisors and mandibular surgery. Results for this patient included stable occlusion and improved facial esthetics. This case report illustrates the benefits of establishing treatment goals acceptable to the patient, based on precise 3-dimensional assessment of dentoalveolar bone, and by using masticatory muscle activity to monitor the stability of occlusion.

  20. Prosthesis-guided implant restoration of an auricular defect using computed tomography and 3-dimensional photographic imaging technologies: a clinical report.

    PubMed

    Wang, Shuming; Leng, Xu; Zheng, Yaqi; Zhang, Dapeng; Wu, Guofeng

    2015-02-01

    The concept of prosthesis-guided implantation has been widely accepted for intraoral implant placement, although clinicians do not fully appreciate its use for facial defect restoration. In this clinical report, multiple digital technologies were used to restore a facial defect with prosthesis-guided implantation. A simulation surgery was performed to remove the residual auricular tissue and to ensure the correct position of the mirrored contralateral ear model. The combined application of computed tomography and 3-dimensional photography preserved the position of the mirrored model and facilitated the definitive implant-retained auricular prosthesis.

  1. Relevance of Roux-en-Y gastric bypass volumetry using 3-dimensional gastric computed tomography with gas to predict weight loss at 1 year.

    PubMed

    Robert, Maud; Pechoux, Albane; Marion, Denis; Laville, Martine; Gouillat, Christian; Disse, Emmanuel

    2015-01-01

    Causes of Roux-en-Y gastric bypass (RYGB) failures are still controversial. Literature data suggest that gastric pouch or gastrojejunal anastomosis distentions over time could be a key factor. Making the hypothesis that progressive distention of RYGB volumes is 1 of the main factors of weight loss failure, the aim of our study was to evaluate bypass volumes changes using repeated 3-dimensional gastric computed tomography with gas and the possible negative correlation with weight loss results at 1 year. Thirty-nine patients eligible for RYGB were prospectively included. Gastric bypass volumes were assessed at 3 and 12 months postsurgery performing 3-dimensional gastric computed tomography with gas and weight loss outcomes were recorded during the first postoperative year. There was no loss to follow up. Mean % excess body mass index lost (%EBMIL) at 1 year was 66.7%. Seven patients (17.9%) did not reach Reinhold criteria and were considered as RYGB failures. We found no linear correlation between the 1 year %EBMIL and mean values of the gastric pouch (r=.01; P=.94), and the neo stomach (r=.09 ; P=.57) at 3 months. Revisional surgery was correlated negatively with %EBMIL at 1 year. Weight loss at 1 year does not seem to be correlated to RYGB volume changes. Behavioral factors probably play a major role in weight loss failure. Copyright © 2015 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  2. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts.

    PubMed

    Stephenson, Robert S; Boyett, Mark R; Hart, George; Nikolaidou, Theodora; Cai, Xue; Corno, Antonio F; Alphonso, Nelson; Jeffery, Nathan; Jarvis, Jonathan C

    2012-01-01

    The general anatomy of the cardiac conduction system (CCS) has been known for 100 years, but its complex and irregular three-dimensional (3D) geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT) as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I(2)KI), we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN) and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart.

  3. Role of preoperative 3-dimensional computed tomography reconstruction in depressed skull fractures treated with craniectomy: a case report of forensic interest.

    PubMed

    Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo

    2011-06-01

    Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.

  4. Computed Tomography-Based 3-Dimensional Finite Element Analyses of Various Types of Plates Placed for a Virtually Reduced Unilateral Condylar Fracture of the Mandible of a Patient.

    PubMed

    Murakami, Kazuhiro; Yamamoto, Kazuhiko; Sugiura, Tsutomu; Horita, Satoshi; Matsusue, Yumiko; Kirita, Tadaaki

    2017-06-01

    This study was performed to evaluate stresses in various types of plates placed for a virtually reduced unilateral condylar fracture of the mandible using computed tomography-based 3-dimensional finite element (FE) models of a patient to select the optimal plate system. A computed tomography-based FE model of the mandible of a patient with a unilateral condylar fracture was constructed. The fracture was virtually reduced and fixed with 1 straight titanium plate; 2 straight titanium plates; 2 straight poly-L-lactic acid plates; and 4-hole (box), 5-hole (strut), and 7-hole (lambda) condylar plates. Stresses developing in these plates were analyzed by applying 478.1 N of bite force at the first molar of the contralateral side of the mandible. The magnitudes of tensile stress were within the tensile strength in all types of plates. However, the magnitudes of compressive stress in 1 straight titanium plate and 2 straight poly-L-lactic acid plates were beyond the compressive strength. The tensile and compressive stresses of the 5-hole (strut) plate were the smallest among the 3 types of condylar plates. Fixation by 2 straight titanium plates or any type of condylar plate was biomechanically indicated for the condylar fracture of this patient. Among these plates, the 5-hole (strut) plate was considered optimal. FE analysis is useful in selecting the optimal fixation method in the individual patient. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Optic Strut and Para-clinoid Region – Assessment by Multi-detector Computed Tomography with Multiplanar and 3 Dimensional Reconstructions

    PubMed Central

    Ravikiran, S.R.; Kumar, Ashvini; Chavadi, Channabasappa; Pulastya, Sanyal

    2015-01-01

    Purpose To evaluate thickness, location and orientation of optic strut and anterior clinoid process and variations in paraclinoid region, solely based on multidetector computed tomography (MDCT) images with multiplanar (MPR) and 3 dimensional (3D) reconstructions, among Indian population. Materials and Methods Ninety five CT scans of head and paranasal sinuses patients were retrospectively evaluated with MPR and 3D reconstructions to assess optic strut thickness, angle and location, variations like pneumatisation, carotico-clinoid foramen and inter-clinoid osseous ridge. Results Mean optic strut thickness was 3.64mm (±0.64), optic strut angle was 42.67 (±6.16) degrees. Mean width and length of anterior clinoid process were 10.65mm (±0.79) and 11.20mm (±0.95) respectively. Optic strut attachment to sphenoid body was predominantly sulcal as in 52 cases (54.74%) and was most frequently attached to anterior 2/5th of anterior clinoid process, seen in 93 sides (48.95%). Pneumatisation of optic strut occurred in 23 sides. Carotico-clinoid foramen was observed in 42 cases (22.11%), complete foramen in 10 cases (5.26%), incomplete foramen in 24 cases (12.63%) and contact type in 8 cases (4.21%). Inter-clinoid osseous bridge was seen unilaterally in 4 cases. Conclusion The study assesses morphometric features and anatomical variations of paraclinoid region using MDCT 3D and multiplanar reconstructions in Indian population. PMID:26557589

  6. Intuitive Facial Imaging Method for Evaluation of Postoperative Swelling: A Combination of 3-Dimensional Computed Tomography and Laser Surface Scanning in Orthognathic Surgery.

    PubMed

    Yamamoto, Satoshi; Miyachi, Hitoshi; Fujii, Hitoshi; Ochiai, Shigeki; Watanabe, Satoshi; Shimozato, Kazuo

    2016-12-01

    Postoperative facial swelling after orthognathic surgery may be prolonged and of concern in some patients. In recent years, there have been several reports of analysis of postoperative facial swelling by volume data; however, such evaluations cannot exclude the possibility of error in the measured point because there are no clear anatomic landmarks on the cheek. Three-dimensional laser scanning is a noninvasive tool that can be used to measure surface changes in soft tissue over time. The aim of this study was to quantify postoperative swelling in orthognathic surgery by fusing surface scanned images with skin images reconstructed from 3-dimensional computed tomography data and identifying a set of reference points on the bone. The study comprised 30 patients undergoing bilateral sagittal split osteotomy. Facial scans were obtained with the Artec Eva Scan imaging system (Data Design, Aichi, Japan) at 9 time points from before surgery to 6 months postoperatively. Postoperative scan images were compared with the baseline facial scan obtained 6 months postoperatively. On average, 66% of the initial postoperative edema subsided in 1 month. After 3 months, only 5% of the swelling remained. There were statistically significant correlations between subcutaneous tissue thickness and swelling (P < .0001). We were able to monitor facial swelling after orthognathic surgery with very high precision using the described method. Subcutaneous tissue thickness is an important determinant of facial swelling. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. The use of a 3-dimensional computed tomography bone database to evaluate the risk of distal contact between the rasp tip and the endosteal cortical bone.

    PubMed

    Connor, Emmalynn; Cowie, Jonathan G; Wuestemann, Thies; Howell, Jonathan R; Whitehouse, Sarah L; Crawford, Ross W

    2016-12-01

    To use a 3-dimensional computed tomography (CT) bone database to evaluate the risk of distal contact between the rasp tip and the endosteal cortical bone. Using a 3-dimensional CT bone database, the rasps for Exeter stems of 125 mm in length and body size 1, with a femoral offset of 37.5, 44, or 50 mm were compared with those for Exeter stems of 150 mm in length and same body size with the corresponding femoral offset. Rasp geometry was determined using an engineering drawing software. Of the 631 femurs in the database, 238 (187 Caucasian and 51 Asian) were of appropriate femoral offset and proximal body size to receive a stem with an offset of 37.5, 44, or 50 mm. Of these, 145 (115 Caucasian and 30 Asian) femurs were of champagne-flute type; the prevalence was comparable between the 2 populations (61% vs. 59%, p=0.729). When using the 150-mm rasp, 70 (55 Caucasian and 15 Asian) of the 238 femurs had distal contact between the rasp and femoral cortex; the prevalence was comparable between the 2 populations (29% vs. 29%, relative risk=1.0, p=1.0). Distal contact between the rasp and femoral cortex occurred more commonly in champagne-flute-type femurs than other femurs in the anteroposterior plane (28% [41/145] vs. 2% [2/93], relative risk=13.1, p<0.001) and in the mediolateral plane (27% [39/145] vs. 14% [13/93], relative risk=1.92, p=0.019). When using the 125-mm rasp, only one femur (with a canal flare index of 4.52) had distal contact in the mediolateral plane with an offset of 37.5 mm. Distal contact between the rasp and femoral cortex occurred more often with the 150-mm rasp than the 125-mm rasp in both planes (p<0.001). The use of a shorter stem may enhance anatomic fit in patients with a narrow femoral canal and prevent distal contact between the rasp and femoral cortex.

  8. Total Navigation in Spine Surgery; A Concise Guide to Eliminate Fluoroscopy Using a Portable Intraoperative Computed Tomography 3-Dimensional Navigation System.

    PubMed

    Navarro-Ramirez, Rodrigo; Lang, Gernot; Lian, Xiaofeng; Berlin, Connor; Janssen, Insa; Jada, Ajit; Alimi, Marjan; Härtl, Roger

    2017-04-01

    Portable intraoperative computed tomography (iCT) with integrated 3-dimensional navigation (NAV) offers new opportunities for more precise navigation in spinal surgery, eliminates radiation exposure for the surgical team, and accelerates surgical workflows. We present the concept of "total navigation" using iCT NAV in spinal surgery. Therefore, we propose a step-by-step guideline demonstrating how total navigation can eliminate fluoroscopy with time-efficient workflows integrating iCT NAV into daily practice. A prospective study was conducted on collected data from patients undergoing iCT NAV-guided spine surgery. Number of scans, radiation exposure, and workflow of iCT NAV (e.g., instrumentation, cage placement, localization) were documented. Finally, the accuracy of pedicle screws and time for instrumentation were determined. iCT NAV was successfully performed in 117 cases for various indications and in all regions of the spine. More than half (61%) of cases were performed in a minimally invasive manner. Navigation was used for skin incision, localization of index level, and verification of implant position. iCT NAV was used to evaluate neural decompression achieved in spinal fusion surgeries. Total navigation eliminates fluoroscopy in 75%, thus reducing staff radiation exposure entirely. The average times for iCT NAV setup and pedicle screw insertion were 12.1 and 3.1 minutes, respectively, achieving a pedicle screw accuracy of 99%. Total navigation makes spine surgery safer and more accurate, and it enhances efficient and reproducible workflows. Fluoroscopy and radiation exposure for the surgical staff can be eliminated in the majority of cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Optimization of Anteromedial Portal Femoral Tunnel Drilling With Flexible and Straight Reamers in Anterior Cruciate Ligament Reconstruction: A Cadaveric 3-Dimensional Computed Tomography Analysis.

    PubMed

    Forsythe, Brian; Collins, Michael J; Arns, Thomas A; Zuke, William A; Khair, Michael; Verma, Nikhil N; Cole, Brian J; Bach, Bernard R; Inoue, Nozomu

    2017-05-01

    To use 3-dimensional custom CAD technology to evaluate how knee flexion angle affects femoral tunnel length and distance to the posterior wall when using curved and straight guides for drilling through the anteromedial portal (AMP). Six cadaveric knees were placed in an external fixator at various degrees of flexion (90°, 110°, 125°, and maximum 135° to 140°). Computed tomography scans were obtained at all flexion points for 3-dimensional point-cloud models. Using custom CAD software, surgical guides through the AMP were replicated along with virtual tunnels at each flexion angle. Distance from the posterior cortex and tunnel dimensions were collected after 8-mm and 10-mm tunnel creation. At 90° of flexion, the average tunnel length down the posterior aspect of 8-mm tunnel was 25.0 mm (95% confidence interval [CI] 16.2-33.8) and 12.0 mm (95% CI 7.3-16.7) for curved and straight guides, respectively; 31.0 mm (95% CI 26.8-35.2) and 28.6 mm (95% CI 24.8-32.4) at 110°; 33.8 mm (95% CI 30.1-37.5) and 31.1 mm (95% CI 26.8-35.4) at 125°; and 35.0 mm (95% CI 34.1-35.9) and 35.5 mm (95% CI 34.2-36.8) with maximal flexion. Values between curved and straight guides are significantly different (P < .001), with straight guides breaching the posterior wall at 90° and 110° of flexion in some specimens. The average distance to the posterior wall cortex was 0.9 mm (95% CI -1.5 to 3.3) and -0.6 mm (95% CI -2.3 to 1.1) for curved and straight guides, respectively, at 90° of flexion (P = .014); 2.3 mm (95% CI -0.2 to 4.8) and -0.1 mm (95% CI -2.4 to 2.2) at 110° (P = .001); 4.4 mm (95% CI 2.8-6.0) and 3.9 mm (95% CI 1.9-5.9) at 125° (P = .299); and 6.7 mm (95% CI 6.2-7.2) and 8.3 mm (95% CI 6.1-10.5) at maximal flexion (P = .184). Posterior wall blowout was noted when using 10-mm straight guides at both 90° (2 specimens) and 110° (3 specimens). Using 10-mm curved guides posterior blowout was noted in 1 specimen at 90°. Maximum footprint

  10. Three-Dimensional Magnetic Resonance Imaging Quantification of Glenoid Bone Loss Is Equivalent to 3-Dimensional Computed Tomography Quantification: Cadaveric Study.

    PubMed

    Yanke, Adam B; Shin, Jason J; Pearson, Ian; Bach, Bernard R; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N

    2017-04-01

    To assess the ability of 3-dimensional (3D) magnetic resonance imaging (MRI, 1.5 and 3 tesla [T]) to quantify glenoid bone loss in a cadaveric model compared with the current gold standard, 3D computed tomography (CT). Six cadaveric shoulders were used to create a bone loss model, leaving the surrounding soft tissues intact. The anteroposterior (AP) dimension of the glenoid was measured at the glenoid equator and after soft tissue layer closure the specimen underwent scanning (CT, 1.5-T MRI, and 3-T MRI) with the following methods (0%, 10%, and 25% defect by area). Raw axial data from the scans were segmented using manual mask manipulation for bone and reconstructed using Mimics software to obtain a 3D en face glenoid view. Using calibrated Digital Imaging and Communications in Medicine images, the diameter of the glenoid at the equator and the area of the glenoid defect was measured on all imaging modalities. In specimens with 10% or 25% defects, no difference was detected between imaging modalities when comparing the measured defect size (10% defect P = .27, 25% defect P = .73). All 3 modalities demonstrated a strong correlation with the actual defect size (CT, ρ = .97; 1.5-T MRI, ρ = .93; 3-T MRI, ρ = .92, P < .0001). When looking at the absolute difference between the actual and measured defect area, no significance was noted between imaging modalities (10% defect P = .34, 25% defect P = .47). The error of 3-T 3D MRI increased with increasing defect size (P = .02). Both 1.5- and 3-T-based 3D MRI reconstructions of glenoid bone loss correlate with measurements from 3D CT scan data and actual defect size in a cadaveric model. Regardless of imaging modality, the error in bone loss measurement tends to increase with increased defect size. Use of 3D MRI in the setting of shoulder instability could obviate the need for CT scans. The goal of our work was to develop a reproducible method of determining glenoid bone loss from 3D MRI data and hence

  11. Correction in malrotation of the scapula and muscle transfer for the management of severe Sprengel deformity: static and dynamic evaluation using 3-dimensional computed tomography.

    PubMed

    Yamada, Katsuhisa; Suenaga, Naoki; Iwasaki, Norimasa; Oizumi, Naomi; Minami, Akio; Funakoshi, Tadanao

    2013-03-01

    The clinical results of surgical procedures for severe Sprengel deformity have been uncertain. To obtain improved elevation, we consider that it is necessary to realign the lateral border of the scapula for upward rotation. The purposes of the current study were to evaluate the clinical results and range of motion of the scapula after such realignment. Seven cases of Sprengel deformity of Cavendish grade 3 or 4 were treated surgically and then clinically evaluated and examined using 3-dimensional computed tomography (3D CT). (Two boys and 5 girls aged 50.9 ± 15.4 mo, mean ± SD at the time of operation.) The mean follow-up was 53.1 months (range, 12 to 92 mo). After the omovertebral bone and the superomedial side of the scapula were removed, the levator scapulae and rhomboids were reattached to wrap around the scapula at maximum upward rotation to assist in maintaining this position. Cavendish and Rigault grades were used for evaluation of postoperative appearance. The superior displacement and rotation of the scapula were measured on the trunk posterior view using 3D CT. The relationship between improvement in the range of motion and radiologic change were analyzed statistically. The postoperative flexion (97.9 ± 12.9 to 160 ± 11.5 degrees) and abduction (99.3 ± 13.0 to 161.4 ± 15.7 degrees) were significantly improved compared with the mean preoperative values (P < 0.0001). 3D CT revealed that in all patients the malrotation of the scapula was improved postoperatively. The current study shows that successful realignment of the scapula led to these improved clinical results. Our procedure has advantages not only for recovery of the range of motion but also for reducing the characteristic lump in the web of the neck. However, our procedure has an inherent limitation related to asymmetric shoulder level and width. 3D CT may be useful for preoperative planning and postoperative evaluation. Level IV-case series.

  12. Pre- and postoperative evaluation of partial anomalous pulmonary venous return: by 3-dimensional cardiovascular magnetic resonance imaging and cardiovascular computed tomography.

    PubMed

    Crestanello, Juan A; Daniels, Curt; Franco, Veronica; Raman, Subha V

    2010-01-01

    The pre- and postoperative evaluation of anomalous pulmonary venous return usually requires multiple invasive and noninvasive tests in order to obtain complete anatomic and functional data. Conversely, in a single setting, either cardiovascular magnetic resonance imaging or cardiovascular computed tomography can sufficiently reveal this information in adult patients. Herein, we present the cases of 2 patients with partial anomalous pulmonary venous return who underwent preoperative and postoperative evaluation by either method alone, and we discuss the benefits and limitations of each technique.

  13. Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera.

    PubMed

    Koh, Kyung Suk; Oh, Tae Suk; Kim, Hoon; Chung, In Wook; Lee, Kang Woo; Lee, Hyo Bo; Park, Eun Jung; Jung, Jae Seob; Shin, Il Seob; Ra, Jeong Chan; Choi, Jong Woo

    2012-09-01

    Parry-Romberg disease is a rare condition that results in progressive hemifacial atrophy, involving the skin, dermis, subcutaneous fat, muscle, and, finally, cartilage and bone. Patients have been treated with dermofat or fat grafts or by microvascular free flap transfer. We hypothesized that adipose-derived stem cells (ASCs) may improve the results of microfat grafting through enhancing angiogenesis. We evaluated the utility of ASC in microfat grafting of patients with Parry-Romberg disease by measuring the change in the hemifacial volumes after injection of ASCs with microfat grafts or microfat grafts alone. In April 2008, this investigation was approved by the Korean Food and Drug Administration and the institutional review board of the Asan Medical Center (Seoul, Korea) that monitor investigator-initiated trials. Between May 2008 and January 2009, 10 volunteers with Parry-Romberg disease (5 men and 5 women; mean age, 28 y) were recruited; 5 received ASC and microfat grafts and 5 received microfat grafts only. The mean follow-up period was 15 months. Adipose-derived stem cells were obtained from abdominal fat by liposuction and were cultured for 2 weeks. On day 14, patients were injected with fat grafts alone or plus (in the test group) 1 × 10 ASCs. Patients were evaluated postoperatively using a 3-dimensional camera and 3-dimensional CT scans, and grafted fat volumes were objectively calculated. Successful outcomes were evident in all 5 patients receiving microfat grafts and ASCs, and the survival of grafted fat was better than in patients receiving microfat grafts alone. Before surgery, the mean difference between ipsilateral and contralateral hemiface volume in patients receiving microfat grafts and ASCs was 21.71 mL decreasing to 4.47 mL after surgery. Overall resorption in this ASC group was 20.59%. The mean preoperative difference in hemiface volume in those receiving microfat grafts alone was 8.32 mL decreasing to 3.89 mL after surgery. Overall

  14. Volumetric changes in the upper airway after bimaxillary surgery for skeletal class III malocclusions: a case series study using 3-dimensional cone-beam computed tomography.

    PubMed

    Lee, Yoonjung; Chun, Youn-Sic; Kang, Nara; Kim, Minji

    2012-12-01

    Postsurgical changes of the airway have become a great point of interest and often have been reported to be a predisposing factor for obstructive sleep apnea after mandibular setback surgery. The purpose of this study was to evaluate the 3-dimensional volumetric changes in the upper airway space of patients who underwent bimaxillary surgery to correct Class III malocclusions. This study was performed retrospectively in a group of patients who underwent bimaxillary surgery for Class III malocclusion and had full cone-beam computed tomographic (CBCT) images taken before surgery and 1 day, 3 months, and 6 months after surgery. The upper and lower parts of the airway volume and the diameters of the airway were measured from 2 different levels. Presurgical measurements and the amount of surgical correction were evaluated for their effect on airway volume. Data analyses were performed by analysis of variance and multiple stepwise regression analysis. The subjects included 21 patients (6 men and 15 women; mean age, 22.7 yrs). The surgeries were Le Fort I impaction (5.27 ± 2.58 mm impaction from the posterior nasal spine) and mandibular setback surgery (9.20 ± 4.60 mm set back from the pogonion). No statistically significant differences were found in the total airway volume for all time points. In contrast, the volume of the upper part showed an increase (12.35%) and the lower part showed a decrease (14.07%), with a statistically significant difference 6 months after surgery (P < .05). Predictor variables affecting the upper and lower parts of the airway volume were presurgical A point to Nasion-perpendicular (A to N-perp) and vertical surgical correction of the pogonion and the posterior nasal spine (P < .05). Bimaxillary surgery for the correction of Class III malocclusion affected the morphology by increasing the upper part and decreasing the lower part of the airway, but not the total volume. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons

  15. Is volumetric 3-dimensional computed tomography useful to predict histological tumour invasiveness? Analysis of 211 lesions of cT1N0M0 lung adenocarcinoma

    PubMed Central

    Shikuma, Kei; Menju, Toshi; Chen, Fengshi; Kubo, Takeshi; Muro, Shigeo; Sumiyoshi, Shinji; Ohata, Keiji; Sowa, Terumasa; Nakanishi, Takao; Cho, Hiroyuki; Neri, Shinya; Aoyama, Akihiro; Sato, Toshihiko; Sonobe, Makoto; Date, Hiroshi

    2016-01-01

    OBJECTIVES The purpose of this study was to use Hounsfield unit (HU) thresholds of computed tomography (CT) images to predict pathological lymph node metastasis and tumour invasiveness of cT1N0M0 lung adenocarcinoma on 3D evaluations. METHODS Preoperative CT images of 211 lesions of surgically resected cT1N0M0 lung adenocarcinoma were retrospectively examined. The tumour size was calculated in 1D, 2D and 3D views. Tumours with −300 HU and over were defined as ‘solid tumours’, and those between −800 and −301 HU were defined as ‘ground glass opacity tumours’. Tumours with −800 HU and over were assumed to be the whole tumour entity. The proportion of ‘solid tumour’ within the whole tumour entity was also calculated as the ‘solid tumour ratio’. These were compared with pathological information. RESULTS Solid tumour size and ratio were positively correlated with microscopic invasion to pleura, vessels and lymphatics in all dimensional evaluations. Pathological lymph node metastases were also well predicted by solid tumour size and ratio in all dimensional evaluations. The P-values for the receiver operating characteristic (ROC) curves of 1D, 1D ×2, 2D and 3D evaluations were: solid tumour size P = 0.013, 0.014 and 0.032; and solid tumour ratio 0.016, 0.0032 and <0.0001. In comparisons of 1D, 2D and 3D evaluations, ‘solid tumour size’ of the area under the curve (AUC) of ROC to detect pathological lymph node metastases was not significant. However, strikingly, the 3D solid tumour ratio was found to be significantly more accurate for the prediction of pathological lymph node metastases than the 1D and 2D solid tumour ratios on ROC evaluation (AUC: 1D 0.736, 2D 0.803 and 3D 0.882; P-values for the AUC comparisons were P = 0.013 for 3D versus 1D and P = 0.022 for 3D versus 2D). The correlations of subtypes of adenocarcinoma and the 3D solid tumour ratio were also investigated. Subtypes of adenocarcinoma were well correlated with the 3D solid

  16. Morphology of the Insertions of the Superficial Medial Collateral Ligament and Posterior Oblique Ligament Using 3-Dimensional Computed Tomography: A Cadaveric Study.

    PubMed

    Saigo, Takaaki; Tajima, Goro; Kikuchi, Shuhei; Yan, Jun; Maruyama, Moritaka; Sugawara, Atsushi; Doita, Minoru

    2017-02-01

    To describe the insertions of the superficial medial collateral ligament (sMCL) and posterior oblique ligament (POL) and their related osseous landmarks. Insertions of the sMCL and POL were identified and marked in 22 unpaired human cadaveric knees. The surface area, location, positional relations, and morphology of the sMCL and POL insertions and related osseous structures were analyzed on 3-dimensional images. The femoral insertion of the POL was located 18.3 mm distal to the apex of the adductor tubercle (AT). The femoral insertion of the sMCL was located 21.1 mm distal to the AT and 9.2 mm anterior to the POL. The angle between the femoral axis and femoral insertion of the sMCL was 18.6°, and that between the femoral axis and the POL insertion was 5.1°. The anterior portions of the distal fibers of the POL were attached to the fascia cruris and semimembranosus tendon, whereas the posterior fibers were attached to the posteromedial side of the tibia directly. The tibial insertion of the POL was located just proximal and medial to the superior edge of the semimembranosus groove. The tibial insertion of the sMCL was attached firmly and widely to the tibial crest. The mean linear distances between the tibial insertion of the POL or sMCL and joint line were 5.8 and 49.6 mm, respectively. This study used 3-dimensional images to assess the insertions of the sMCL and POL and their related osseous landmarks. The AT was identified clearly as an osseous landmark of the femoral insertions of the sMCL and POL. The tibial crest and semimembranosus groove served as osseous landmarks of the tibial insertions of the sMCL and POL. By showing further details of the anatomy of the knee, the described findings can assist surgeons in anatomic reconstruction of the sMCL and POL. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of the Diagnostic Accuracy of Conventional 2-Dimensional and 3-Dimensional Computed Tomography for Assessing Canine Sacral and Pelvic Fractures by Radiologists, Orthopedic Surgeons, and Veterinary Medical Students.

    PubMed

    Stieger-Vanegas, Susanne M; Senthirajah, Sri Kumar Jamie; Nemanic, Sarah; Baltzer, Wendy; Warnock, Jennifer; Hollars, Katelyn; Lee, Scott S; Bobe, Gerd

    2015-08-01

    To determine, using 3 groups of evaluators of varying experience reading orthopedic CT studies, if 3-dimensional computed tomography (3D-CT) provides a more accurate and time efficient method for diagnosis of canine sacral and pelvic fractures, and displacements of the sacroiliac and coxofemoral joints compared with 2-dimensional computed tomography (2D-CT). Retrospective clinical and prospective study. Dogs (n = 23): 12 dogs with traumatic pelvic fractures, 11 canine cadavers with pelvic trauma induced by a lateral impactor. All dogs had a 2D-CT exam of the pelvis and subsequent 3D-CT reconstructions from the 2D-CT images. Both 2D-CT and 3D-CT studies were anonymized and randomly presented to 2 veterinary radiologists, 2 veterinary orthopedic surgeons, and 2 veterinary medical students. Evaluators classified fractures using a confidence scale and recorded the duration of evaluation for each modality and case. 3D-CT was a more time-efficient technique for evaluation of traumatic sacral and pelvic injuries compared with 2D-CT in all evaluator groups irrespective of experience level reading orthopedic CT studies. However, for radiologists and surgeons, 2D-CT was the more accurate technique for evaluating sacral and pelvic fractures. 3D-CT improves sacral and pelvic fracture diagnosis when added to 2D-CT; however, 3D-CT has a reduced accuracy for evaluation of sacral and pelvic fractures if used without concurrent evaluation of 2D-CT images. © Copyright 2014 by The American College of Veterinary Surgeons.

  18. Computed Tomography (CT) -- Sinuses

    MedlinePlus

    ... More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, air-filled spaces within the bones of the face surrounding the ...

  19. Nasal computed tomography.

    PubMed

    Kuehn, Ned F

    2006-05-01

    Chronic nasal disease is often a challenge to diagnose. Computed tomography greatly enhances the ability to diagnose chronic nasal disease in dogs and cats. Nasal computed tomography provides detailed information regarding the extent of disease, accurate discrimination of neoplastic versus nonneoplastic diseases, and identification of areas of the nose to examine rhinoscopically and suspicious regions to target for biopsy.

  20. What is Computed Tomography?

    MedlinePlus

    ... Radiation-Emitting Products Radiation-Emitting Products and Procedures Medical Imaging Medical X-ray Imaging What is Computed Tomography? ... x ray (Figure 1) is the most common medical imaging examination. During this examination, an image of the ...

  1. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... Index A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... CT)? What is Positron Emission TomographyComputed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  2. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction.

    PubMed

    Zopf, David A; Mitsak, Anna G; Flanagan, Colleen L; Wheeler, Matthew; Green, Glenn E; Hollister, Scott J

    2015-01-01

    To determine the potential of an integrated, image-based computer-aided design (CAD) and 3-dimensional (3D) printing approach to engineer scaffolds for head and neck cartilaginous reconstruction for auricular and nasal reconstruction. Proof of concept revealing novel methods for bioscaffold production with in vitro and in vivo animal data. Multidisciplinary effort encompassing 2 academic institutions. Digital Imaging and Communications in Medicine (DICOM) computed tomography scans were segmented and utilized in image-based CAD to create porous, anatomic structures. Bioresorbable polycaprolactone scaffolds with spherical and random porous architecture were produced using a laser-based 3D printing process. Subcutaneous in vivo implantation of auricular and nasal scaffolds was performed in a porcine model. Auricular scaffolds were seeded with chondrogenic growth factors in a hyaluronic acid/collagen hydrogel and cultured in vitro over 2 months' duration. Auricular and nasal constructs with several types of microporous architecture were rapidly manufactured with high fidelity to human patient anatomy. Subcutaneous in vivo implantation of auricular and nasal scaffolds resulted in an excellent appearance and complete soft tissue ingrowth. Histological analysis of in vitro scaffolds demonstrated native-appearing cartilaginous growth that respected the boundaries of the scaffold. Integrated, image-based CAD and 3D printing processes generated patient-specific nasal and auricular scaffolds that supported cartilage regeneration. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  3. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  4. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  5. Proton computed tomography

    NASA Astrophysics Data System (ADS)

    Bucciantonio, Martina; Sauli, Fabio

    2015-05-01

    Proton computed tomography (pCT) is a diagnostic method capable of in situ imaging the three-dimensional density distribution in a patient before irradiation with charged particle beams. Proposed long time ago, this technology has been developed by several groups, and may become an essential tool for advanced quality assessment in hadrontherapy. We describe the basic principles of the method, its performance and limitations as well as provide a summary of experimental systems and of results achieved.

  6. Computed tomography status

    SciTech Connect

    Hansche, B.D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  7. Neutron computed tomography.

    PubMed

    Koeppe, R A; Brugger, R M; Schlapper, G A; Larsen, G N; Jost, R J

    1981-02-01

    A neutron-transmission computed tomography scanning system has been built for scanning biological materials. An oxygen filtered beam of 2.35 MeV neutrons was used for the measurements. The studies to date show that the interactions of these energy neutrons with samples simulating biological materials are more sensitive than X-rays to variations in the content of the material, thus providing the ability to produce high quality images. The neutron scans suggest that neutrons can be an effective radiation for the imaging of biological materials.

  8. Abdominal perfusion computed tomography.

    PubMed

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-02-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis.

  9. Abdominal Perfusion Computed Tomography

    PubMed Central

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M. Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-01-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis. PMID:25610249

  10. About the Complexity of Timetables and 3-Dimensional Discrete Tomography: A Short Proof of NP-Hardness

    NASA Astrophysics Data System (ADS)

    Gerard, Yan

    We consider the problem of 3-dimensional Discrete Tomography according to three linearly independent directions. Consistency of this problem has been proved to be NP-compete by M. Irving and R.W. Jerrum in 1993 [9] but there exists since 1976 a very close result of NP-hardness in the framework of Timetables which is due to S. Even, A. Itai, and A. Shamir [2]. The purpose of this paper is to provide a new result of NP-hardness for a very restricted class of 3D Discrete Tomography which is common with Timetables. Hence NP-hardness of 3D Discrete Tomography and of Timetables both follow from this new stronger result that we obtain with a short proof based on a generic principle.

  11. Controlled Cardiac Computed Tomography

    PubMed Central

    Wang, Chenglin; Liu, Ying; Wang, Ge

    2006-01-01

    Cardiac computed tomography (CT) has been a hot topic for years because of the clinical importance of cardiac diseases and the rapid evolution of CT systems. In this paper, we propose a novel strategy for controlled cardiac CT that may effectively reduce image artifacts due to cardiac and respiratory motions. Our approach is radically different from existing ones and is based on controlling the X-ray source rotation velocity and powering status in reference to the cardiac motion. We theoretically show that by such a control-based intervention the data acquisition process can be optimized for cardiac CT in the cases of periodic and quasiperiodic cardiac motions. Specifically, we formulate the corresponding coordination/control schemes for either exact or approximate matches between the ideal and actual source positions, and report representative simulation results that support our analytic findings. PMID:23165017

  12. Particle trajectory computation on a 3-dimensional engine inlet. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, J. J.

    1986-01-01

    A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated.

  13. Quadruple Axis Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Bausenwein, Dominik

    Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.

  14. Quantitative 3-Dimensional Imaging of Murine Neointimal and Atherosclerotic Lesions by Optical Projection Tomography

    PubMed Central

    Kirkby, Nicholas S.; Low, Lucinda; Seckl, Jonathan R.; Walker, Brian R.; Webb, David J.; Hadoke, Patrick W. F.

    2011-01-01

    Objective Traditional methods for the analysis of vascular lesion formation are labour intensive to perform - restricting study to ‘snapshots’ within each vessel. This study was undertaken to determine the suitability of optical projection tomographic (OPT) imaging for the 3-dimensional representation and quantification of intimal lesions in mouse arteries. Methods and Results Vascular injury was induced by wire-insertion or ligation of the mouse femoral artery or administration of an atherogenic diet to apoE-deficient mice. Lesion formation was examined by OPT imaging of autofluorescent emission. Lesions could be clearly identified and distinguished from the underlying vascular wall. Planimetric measurements of lesion area correlated well with those made from histological sections subsequently produced from the same vessels (wire-injury: R2 = 0.92; ligation-injury: R2 = 0.89; atherosclerosis: R2 = 0.85), confirming both the accuracy of this methodology and its non-destructive nature. It was also possible to record volumetric measurements of lesion and lumen and these were highly reproducible between scans (coefficient of variation = 5.36%, 11.39% and 4.79% for wire- and ligation-injury and atherosclerosis, respectively). Conclusions These data demonstrate the eminent suitability of OPT for imaging of atherosclerotic and neointimal lesion formation, providing a much needed means for the routine 3-dimensional analysis of vascular morphology in studies of this type. PMID:21379578

  15. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    SciTech Connect

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  16. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  17. 3-dimensional scanning of grinded optical surfaces based on optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hellmuth, T.; Börret, R.; Khrennikov, K.

    2007-09-01

    In the manufacturing process of aspheric glass lenses the grinding step plays a key role both in respect of the final quality of the polished lens as well as in respect of manufacturing costs. Therefore, the form of the grinded surface must be measured with high precision. The typically used tactile measuring machines provide sufficient precision regarding depth resolution but suffer from limited lateral resolution. In particular it is not possible to detect surface and sub-surface damages which essentially influence the duration of the subsequent polishing process. In order to detect these damages we set up and tested a scanning short-coherence interferometer very similar to optical coherence tomography. The aspheric lens under test is mounted on a rotation stage which can be translated in the lateral direction. The sensor beam of the interferometer is focused onto the sample and can be moved along the axial direction. The precision of the depth measurement is 0.25μm, the lateral positioning precision is 2μm. The system is used to optimize the grinding process for aspheric lenses to minimze sub-surface damages and therefore to maximize processing speed.

  18. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    PubMed Central

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  19. The effectiveness of an interactive 3-dimensional computer graphics model for medical education.

    PubMed

    Battulga, Bayanmunkh; Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-07-09

    Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. To determine the educational effectiveness of interactive 3DCG. We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures.

  20. Computed Tomography (CT) -- Head

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  1. Computed Tomography (CT) - Spine

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  2. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  3. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Srinivasan, Vivek J; Wojtkowski, Maciej; Witkin, Andre J; Duker, Jay S; Ko, Tony H; Carvalho, Mariana; Schuman, Joel S; Kowalczyk, Andrzej; Fujimoto, James G

    2006-11-01

    To assess high-speed ultrahigh-resolution optical coherence tomography (OCT) image resolution, acquisition speed, image quality, and retinal coverage for the visualization of macular pathologies. Retrospective cross-sectional study. Five hundred eighty-eight eyes of 327 patients with various macular pathologies. High-speed ultrahigh-resolution OCT images were obtained in 588 eyes of 327 patients with selected macular diseases. Ultrahigh-resolution OCT using Fourier/spectral domain detection achieves approximately 3-mum axial image resolutions, acquisition speeds of approximately 25 000 axial scans per second, and >3 times finer resolution and >50 times higher speed than standard OCT. Three scan protocols were investigated. The first acquires a small number of high-definition images through the fovea. The second acquires a raster series of high-transverse pixel density images. The third acquires 3-dimensional OCT data using a dense raster pattern. Three-dimensional OCT can generate OCT fundus images that enable precise registration of OCT images with the fundus. Using the OCT fundus images, OCT results were correlated with standard ophthalmoscopic examination techniques. High-definition macular pathologies. Macular holes, age-related macular degeneration, epiretinal membranes, diabetic retinopathy, retinal dystrophies, central serous chorioretinopathy, and other pathologies were imaged and correlated with ophthalmic examination, standard OCT, fundus photography, and fluorescein angiography, where applicable. High-speed ultrahigh-resolution OCT generates images of retinal pathologies with improved quality, more comprehensive retinal coverage, and more precise registration than standard OCT. The speed preserves retinal topography, thus enabling the visualization of subtle changes associated with disease. High-definition high-transverse pixel density OCT images improve visualization of photoreceptor and pigment epithelial morphology, as well as thin intraretinal and

  4. MAPAG: a computer program to construct 2- and 3-dimensional antigenic maps.

    PubMed

    Aguilar, R C; Retegui, L A; Roguin, L P

    1994-01-01

    The contact area between an antibody (Ab) and the antigen (Ag) is called antigenic determinant or epitope. The first step in the characterization of an Ag by using monoclonal antibodies (MAb) is to map the relative distribution of the corresponding epitopes on the Ag surface. The computer program MAPAG has been devised to automatically construct antigenic maps. MAPAG is fed with a binary matrix of experimental data indicating the ability of paired MAb to bind or not simultaneously to the Ag. The program is interactive menu-driven and allows the user an easy data handling. MAPAG utilizes iterative processes to construct and to adjust the final map, which is graphically shown as a 2- or a 3-dimensional model. Additionally, the antigenic map obtained can be optionally modified by the user or readjusted by the program. The suitability of MAPAG was illustrated by running experimental data from literature and comparing antigenic maps constructed by the program with those elaborated by the investigators without the assistance of a computer. Furthermore, since some MAb could present negative allosteric effects leading to misinterpretation of data, MAPAG has been provided with an approximate reasoning module to solve such anomalous situations. Results indicated that the program can be successfully employed as a simple, fast and reliable antigenic model-builder.

  5. Computed tomography of the thorax

    SciTech Connect

    Naidich, D.P.; Zerhouni, E.A.; Siegelman, S.S.

    1984-01-01

    This book contains chapters on: Principles and Techniques of Chest Computed Tomography; Aortic Arch and Great Vessels; Normal Anatomy and Variants; Mediastinum/Airways/Lobar Collapse/Pulmonary Hila/Pulmonary Nodule/Pulmonary Parenchyma/Pleura and Chest Wall/Pericardium/Diaphragm.

  6. Computed tomography:the details.

    SciTech Connect

    Doerry, Armin Walter

    2007-07-01

    Computed Tomography (CT) is a well established technique, particularly in medical imaging, but also applied in Synthetic Aperture Radar (SAR) imaging. Basic CT imaging via back-projection is treated in many texts, but often with insufficient detail to appreciate subtleties such as the role of non-uniform sampling densities. Herein are given some details often neglected in many texts.

  7. X-ray Computed Tomography.

    ERIC Educational Resources Information Center

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  8. Computed tomography of intracranial ependymomas

    SciTech Connect

    Swartz, J.D.; Zimmerman, R.A.; Bilaniuk, L.T.

    1982-04-01

    Twenty-six patients with ependymoma were evaluated by computed tomography (CT) over a period of 5 1/2 years. The usual CT appearance was an isodense, partially calcified mass, capable of contrast enhancement, occurring in the posterior fossa (73%) in an infant or child (77%). Outcome remains poor despite modern diagnostic and therapeutic methods.

  9. Computed tomography in hepatic echinococcosis

    SciTech Connect

    Choliz, J.D.; Olaverri, F.J.L.; Casas, T.F.; Zubieta, S.O.

    1982-10-01

    Computed tomography (CT) was used to evaluate 50 cases of hydatid disease of the liver. It was definite in 49 cases and negative in one case. Pre- and postcontrast scans were performed. CT may reveal the exact location and extension of cysts and possible complications. However, a false-negative case was found in a hydatid cyst located in a fatty liver.

  10. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  11. Computed tomography of the gastrointestinal tract

    SciTech Connect

    Meyers, M.A.

    1986-01-01

    This volume presents computed tomography of the major disease states involving the gastrointestinal tract, mesentery, and peritoneal cavity. Computed Tomography of the Gastrointestinal Tract combined experience of l5 authorities includes illustrations (most of these radiographs).

  12. NASA's computed tomography system

    NASA Astrophysics Data System (ADS)

    Engel, H. Peter

    1989-03-01

    The computerized industrial tomographic analyzer (CITA) is designed to examine the internal structure and material integrity of a wide variety of aerospace-related objects, particularly in the NASA space program. The nondestructive examination is performed by producing a two-dimensional picture of a selected slice through an object. The penetrating sources that yield data for reconstructing the slice picture are radioactive cobalt or a high-power X-ray tube. A series of pictures and computed tomograms are presented which illustrate a few of the applications the CITA has been used for since its August 1986 initial service at the Kennedy Space Center.

  13. Repeatability and reproducibility of anterior chamber volume measurements using 3-dimensional corneal and anterior segment optical coherence tomography.

    PubMed

    Fukuda, Shinichi; Kawana, Keisuke; Yasuno, Yoshiaki; Oshika, Tetsuro

    2011-03-01

    To evaluate the repeatability and reproducibility of anterior chamber volume (ACV) measurements using swept-source 3-dimensional corneal and anterior segment optical coherence tomography (CAS-OCT) and dual Scheimpflug imaging. Department of Ophthalmology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan. Nonrandomized clinical trial. Measurements were taken in normal eyes (subject group) and in eyes with primary angle closure (PAC) (patient group). In the subject group, the entire ACV and the central 8.0 mm diameter ACV were measured using CAS-OCT and dual Scheimpflug imaging. In the patient group, the entire ACV and 8.0 mm ACV were measured using CAS-OCT. The coefficient of variation and intraclass correlation coefficient (ICC) were calculated to evaluate repeatability and reproducibility, and the correlation between the 2 devices was assessed. In the subject group, the mean 8.0 mm ACV was 110.14 mm(3) ± 12.57 (SD) using CAS-OCT and 114.51 ± 14.69 mm(3) using Scheimpflug imaging; there was a significant linear correlation (r = 0.878, P < .0001). The mean entire ACV on CAS-OCT was 165.15 ± 29.29 mm(3). The ICCs of the 8.0 mm and entire ACV measurements were greater than 0.94. The coefficients of repeatability and reproducibility of the 8.0 mm ACV and entire ACV measurements were less than 5%. In the patient group, the 8.0 mm and entire ACV measurements showed good reproducibility and repeatability. The CAS-OCT method allowed noninvasive measurement of the entire ACV with sufficient repeatability and reproducibility. The 8.0 mm ACV measurements with CAS-OCT and Scheimpflug imaging were comparable. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Pediatric cranial computed tomography

    SciTech Connect

    Yamada, H.

    1984-01-01

    The introduction of CT in the investigation of intercranial pathology has revolutionized the approach to clinical neurological and neurosurgical practice. This book applies the advances of cranial CT to the pediatric patient. The test is divided into two sections. The first portion describes the practical methodology, anatomy and normal and abnormal CT scan appearance, including high or low density lesions, cystic lesions and ventricular or subarachnoid space dilation. The characteristic scans for various neurological diseases are presented and discussed. The author has given special attention to the CT diagnosis of congenital malformations and cerebral neoplasms. Partial Contents: Normal Computed Tomographic Anatomy/ High Density Lesions/Low Density Lesions/Cystic Lesions; Supratentorial/Cystic Lesions; Infratentorial/Increased Head Circumference/Increased Ventricular Size/Small Ventricular Size/Cranial Lesions/Spinal Lesions/CT Cisternography/Part II CT in Neonates/Congenital Craniocerebral Malformations/Hydrocephalus/Craniosynostosis/Head Trauma/Cerebrovascular Lesions/Intracranial Lesions/Seizure Disorders/Intracranial and Other Chronic Neurological Disorders.

  15. Computed tomography of neutropenic colitis

    SciTech Connect

    Frick, M.P.; Maile, C.W.; Crass, J.R.; Goldberg, M.E.; Delaney, J.P.

    1984-10-01

    Four patients developed neutropenic colitis as a complication of acute leukemia (three) or aplastic anemia (one). On computed tomography (CT), neutropenic colitis was characterized by cecal wall thickening (four) and pneumatosis (one). Intramural areas of lower density presumably reflected edema or hemorrhage. Clinical improvement and return of adequate numbers of functioning neutrophils coincided with decrease in cecal wall thickening on CT. Prompt radiologic recognition of this serious condition is crucial, since surgical intervention is probably best avoided.

  16. Computed tomography of gynecologic diseases

    SciTech Connect

    Gross, B.H.; Moss, A.A.; Mihara, K.; Goldberg, H.I.; Glazer, G.M.

    1983-10-01

    Although computed tomography (CT) provides superb images of all areas of the body, sonography, because of its lack of ionizing radiation and its real-time and multiplanar capacities, has become the preferred initial method of evaluating the female pelvis. This has resulted in a relative paucity of information in the literature concerning CT features of benign pelvic disorders in particular and prompted the authors to review our experience with third-generation CT scanning of the uterus and ovaries.

  17. X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The primary advantage of the X-ray computed tomography (XRCT) NDE method is that features are not superposed in the image, thereby rendering them easier to interpret than radiographic projection images. Industrial XRCT systems, unlike medical diagnostic systems, have no size and dosage constraints; they are accordingly used for systems from the scale of gas turbine blades, with hundreds-of-kV energies, to those of the scale of ICBMs, requiring MV-level X-ray energies.

  18. Cranial computed tomography and MRI

    SciTech Connect

    Lee, S.H.; Rao, K.C.V.G.

    1987-01-01

    This book appears to be a hybrid between an atlas and a text. The second edition attempts to depict the current status of both computed tomography (CT) and magnetic resonance (MR) imaging in neuroradiology. Although only the final chapter of the book is completely devoted to cranial MR imaging, MR images are scattered throughout various other chapters. There is coverage of the major anatomic and pathophysiologic entities. There are 17 chapters with images, tables, and diagrams.

  19. Computed Tomography software and standards

    SciTech Connect

    Azevedo, S.G.; Martz, H.E.; Skeate, M.F.; Schneberk, D.J.; Roberson, G.P.

    1990-02-20

    This document establishes the software design, nomenclature, and conventions for industrial Computed Tomography (CT) used in the Nondestructive Evaluation Section at Lawrence Livermore National Laboratory. It is mainly a users guide to the technical use of the CT computer codes, but also presents a proposed standard for describing CT experiments and reconstructions. Each part of this document specifies different aspects of the CT software organization. A set of tables at the end describes the CT parameters of interest in our project. 4 refs., 6 figs., 1 tab.

  20. Computational optical coherence tomography [Invited

    PubMed Central

    Liu, Yuan-Zhi; South, Fredrick A.; Xu, Yang; Carney, P. Scott; Boppart, Stephen A.

    2017-01-01

    Optical coherence tomography (OCT) has become an important imaging modality with numerous biomedical applications. Challenges in high-speed, high-resolution, volumetric OCT imaging include managing dispersion, the trade-off between transverse resolution and depth-of-field, and correcting optical aberrations that are present in both the system and sample. Physics-based computational imaging techniques have proven to provide solutions to these limitations. This review aims to outline these computational imaging techniques within a general mathematical framework, summarize the historical progress, highlight the state-of-the-art achievements, and discuss the present challenges. PMID:28663849

  1. Computed tomography: A versatile technology

    SciTech Connect

    Armistead, R.A.; Stanley, J.H.

    1997-02-01

    Improvements in the speed and accuracy of computed tomography (CT) systems, together with new developments in software, are changing the ways CT technology supports manufacturing operations. In addition to providing quantitative nondestructive inspection at the end of the manufacturing line, CT images are now also being compiled for reverse engineering and first-article characterization and certification. The enhanced performance of a state-of-the-art CT system makes it an effective complement to other digital data-based manufacturing technologies such as computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE). Furthermore, CT capabilities may be combined with those of rapid prototyping such as stereolithography, selective laser sintering, and direct metal deposition, to support the rapid, cost-efficient production of parts in small lots. This article describes how the system works, how it is used for inspection, and how it may assist with reverse engineering.

  2. Sex Differences in Patients With CAM Deformities With Femoroacetabular Impingement: 3-Dimensional Computed Tomographic Quantification.

    PubMed

    Yanke, Adam B; Khair, M Michael; Stanley, Robert; Walton, David; Lee, Simon; Bush-Joseph, Charles A; Espinoza Orías, Alejandro; Espinosa Orias, Alejandro A; Inoue, Nozomu; Nho, Shane J

    2015-12-01

    To determine if significant differences exist between male and female CAM deformities using quantitative 3-dimensional (3D) volume and location analysis. Retrospective analysis of preoperative computed tomographic (CT) scans for 138 femurs (69 from male patients and 69 from female patients) diagnosed with impingement from November 2009 to November 2011 was completed. Those patients who presented with hip complaints and had a history, physical examination (limited range of motion, positive impingement signs), plain radiographs (anteroposterior pelvis, 90° Dunn view, false profile view), and magnetic resonance images consistent with femoroacetabular impingement (FAI) and in whom a minimum of 6 months of conservative therapy (oral anti-inflammatory agents, physical therapy, and activity modification) had failed were indicated for arthroscopic surgery and had a preoperative CT scan. Scans were segmented, converted to point cloud data, and analyzed with a custom-written computer program. Analysis included mean CAM height and volume, head radius, and femoral version. Differences were analyzed using an unpaired t test with significance set at P < .05. Female patients had greater femoral anteversion compared with male patients (female patients, 15.5° ± 8.3°; male patients, 11.3° ± 9.0°; P = .06). Male femoral head radii were significantly larger than female femoral heads (female patients, 22.0 ± 1.3 mm; male patients, 25.4 ± 1.3 mm; P < .001). Male CAM height was significantly larger than that in female patients (female patients, 0.66 ± 0.61 mm; male patients, 1.51 ± 0.75 mm; P < .001). Male CAM volume was significantly larger as well (male patients, 433 ± 471 mm(3); female patients, 89 ± 124 mm(3); P < .001). These differences persisted after normalizing height (P < .001) and volume (P < .001) to femoral head radius. Average clock face distribution was from the 1:09 o'clock position ± the 2:51 o'clock position to the 3:28 o'clock position ± the 1:59 o

  3. Trichinosis diagnosed by computed tomography.

    PubMed Central

    Kreel, L.; Poon, W. S.; Nainby-Luxmoore, J. C.

    1988-01-01

    Trichinosis is a worldwide disease contained by good husbandry and culinary practice, presenting unexpectedly in individual cases or mini-epidemics. The disease varies greatly in its manifestation and severity although when marked can be recognized by fever with myositis and periorbital oedema. Antibody tests are specific but the appearance on computed tomography of the brain are sufficiently characteristic to allow a confident diagnosis. Two cases where such appearances led to the diagnosis are reported. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3249711

  4. Computed tomography of stress fracture

    SciTech Connect

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-06-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic.

  5. Computed Tomography Imaging in Oncology.

    PubMed

    Forrest, Lisa J

    2016-05-01

    Computed tomography (CT) imaging has become the mainstay of oncology, providing accurate tumor staging and follow-up imaging to monitor treatment response. Presurgical evaluation of tumors is becoming commonplace and guides surgeons as to the extent and whether complete tumor resection is possible. CT imaging plays a crucial role in radiotherapy treatment planning. CT imaging in oncology has become ubiquitous in veterinary medicine because of increased availability of this imaging modality. This article focuses on CT cancer staging in veterinary oncology, CT imaging for surgical planning, and advances in CT simulation for radiation therapy planning.

  6. Computed tomography of parosteal osteosarcoma

    SciTech Connect

    Hudson, T.M.; Springfield, D.S.; Benjamin, M.; Bertoni, F.; Present, D.A.

    1985-05-01

    Twelve patients with parosteal osteosarcomas were evaluated by computed tomography (CT). CT accurately defined the extent of the tumors for purposes of surgical planning, although tumor bone often could not be distinguished from thickened host bone. Nine tumors invaded the medullary cavity, a feature that implies a poorer prognosis when the tumor also contains high-grade areas. Six CT studies accurately detected the medullary invasion, but three did not. Lucent areas within dense tumors contained either benign tissue or high- or low-grade tumor; CT did not differentiate among these different tissues. CT also did not reveal small satellite nodules of tumor beyond the main tumor mass.

  7. Computed tomography of intrathoracic goiters

    SciTech Connect

    Bashist, B.; Ellis, K.; Gold, R.P.

    1983-03-01

    Ten patients with intrathoracic goiters were evaluated by computed tomography (CT). In comparison with chest radiographs, CT showed additional features helpful in suggesting the correct diagnosis. These observations included: (1) clear continuity with the cervical thyroid gland (8/10 cases); (2) well defined borders (9/10); (3) punctate, coarse, or ringlike calcifications (8/10); (4) nonhomogeneity (9/10) often with discrete, nonenhancing, low-density areas (6/10); (5) precontrast attenuation values at least 15 H greater than adjacent muscles (4/10) with more than 25 H after contrast enhancement (8/8); and (6) characteristic patterns of goiter extension into mediastinum.

  8. Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty.

    PubMed

    Sembrano, Jonathan N; Yson, Sharon C; Polly, David W; Ledonio, Charles Gerald T; Nuckley, David J; Santos, Edward R G

    2015-01-01

    Balloon kyphoplasty is a common treatment for osteoporotic and pathologic compression fractures. Advantages include minimal tissue disruption, quick recovery, pain relief, and in some cases prevention of progressive sagittal deformity. The benefit of image-based navigation in kyphoplasty has not been established. The goal of this study was to determine whether there is a difference between fluoroscopy-guided balloon kyphoplasty and 3-dimensional image-based navigation in terms of needle malposition rate, cement leakage rate, and radiation exposure time. The authors compared navigated and nonnavigated needle placement in 30 balloon kyphoplasty procedures (47 levels). Intraoperative 3-dimensional image-based navigation was used for needle placement in 21 cases (36 levels); conventional 2-dimensional fluoroscopy was used in the other 9 cases (11 levels). The 2 groups were compared for rates of needle malposition and cement leakage as well as radiation exposure time. Three of 11 (27%) nonnavigated cases were complicated by a malpositioned needle, and 2 of these had to be repositioned. The navigated group had a significantly lower malposition rate (1 of 36; 3%; P=.04). The overall rate of cement leakage was also similar in both groups (P=.29). Radiation exposure time was similar in both groups (navigated, 98 s/level; nonnavigated, 125 s/level; P=.10). Navigated kyphoplasty procedures did not differ significantly from nonnavigated procedures except in terms of needle malposition rate, where navigation may have decreased the need for needle repositioning.

  9. Laparoscopic Sentinel Node Biopsy Using Real-time 3-dimensional Single-photon Emission Computed Tomographic Guidance in Endometrial Cancer.

    PubMed

    Fernandez-Prada, Sara; Delgado-Sanchez, Elsa; De Santiago, Javier; Zapardiel, Ignacio

    2015-01-01

    In endometrial cancer, the histopathological analysis of the lymphatic nodes is essential to establish a correct prognosis and tailored adjuvant treatment. It is well-known that patients with early-stage endometrial cancer have a low incidence of nodal disease. In this group, systematic lymphadenectomy is not recommended. To improve the detection rate of sentinel nodes in clinical practice, new techniques are emerging like real-time 3-dimensional single-photon emission computed tomographic (SPECT) imaging. We report our experience using this innovative technique for intraoperative detection of sentinel nodes in endometrial cancer. The real-time 3-dimensional SPECT sentinel node biopsy seems to be feasible and accurate in endometrial cancer although further studies are needed to set the precision and predictive values compared with the current differed SPECT techniques and blue dye techniques. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  10. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    SciTech Connect

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  11. Measuring Weld Profiles By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Noncontacting, nondestructive computer tomography system determines internal and external contours of welded objects. System makes it unnecessary to take metallurgical sections (destructive technique) or to take silicone impressions of hidden surfaces (technique that contaminates) to inspect them. Measurements of contours via tomography performed 10 times as fast as measurements via impression molds, and tomography does not contaminate inspected parts.

  12. Multidetector Computed Tomography for Congenital Anomalies of the Aortic Arch: Vascular Rings.

    PubMed

    García-Guereta, Luis; García-Cerro, Estefanía; Bret-Zurita, Montserrat

    2016-07-01

    The development of multidetector computed tomography has triggered a revolution in the study of the aorta and other large vessels and has replaced angiography in the diagnosis of congenital anomalies of the aortic arch, particularly vascular rings. The major advantage of multidetector computed tomography is that it permits clear 3-dimensional assessment of not only vascular structures, but also airway and esophageal compression. The current update aims to summarize the embryonic development of the aortic arch and the developmental anomalies leading to vascular ring formation and to discuss the current diagnostic and therapeutic role of multidetector computed tomography in this field.

  13. Congenital abnormalities of the ribs: evaluation with multidetector computed tomography.

    PubMed

    Davran, Ramazan; Bayarogullari, Hanifi; Atci, Nesrin; Kayali, Alperen; Ozturk, Fatma; Burakgazi, Gulen

    2017-02-01

    To evaluate congenital abnormalities of ribs using multidetector computed tomography. The retrospective study was conducted at Mustafa Kemal University Research Hospital, Hatay, Turkey and comprised data of patients aged 1-45 years who attended the Radiology Department for computed tomography of the thorax between January 2010 and July 2013. Multiplanar reconstructions, maximum intensity projections, and 3-dimensional images were acquired to investigate numerical and structural abnormalities of the ribs of the patients who underwent multidetector computed tomography for a variety of indications. The study comprised 650 patients. Of them, 231(35.5%) were female and 419(64.5%) male. The overall mean age was 20.9± 5.1years. However, data of 90(13.8%) patients was excluded from cervical rib evaluation and of 120(18.5%) from lumbar rib evaluation as these regions were out of the section because of the positioning. Finally, 560(86.5%) patients were included in the cervical rib evaluations, and 530(81.5%) in the lumbar rib evaluations. All the 650(100%) patients were included in the thoracic rib evaluations. Numerical abnormalities were observed in cervical ribs in 19(3.6%), in thoracic ribs in 1(0.15%) and in lumbar ribs in 7(1.3%) cases. The structural abnormalities were bifid rib in 44(6.7%) and fused type in 17(2.6%) cases. Multidetector computed tomography enabled evaluation of the thoracic cage as a whole.

  14. Computed tomography of Krukenberg tumors

    SciTech Connect

    Cho, K.C.; Gold, B.M.

    1985-08-01

    Computed tomography (CT) of three patients with Kurkenberg tumor was reviewed retrospectively. CT showed large, lobulated, multicystic masses with soft-tissue components, indistinguishable from primary ovarian carcinoma. Much has been written about metastatic ovarian tumor, but this is the first report in the radiologic literature about their CT features. The authors emphasize the importance of recognizing the ovary as a frequent site of metastases and the proper approach to this problem. In patients with a history of colon or gastric carcinoma, the mixed cystic and solid ovarian mass on CT should be regarded as metastatic tumor until proven otherwise. A careful search for gastrointestinal tract signs or symptoms should be done in any patient with a pelvic tumor. When CT is done for evaluation of ovarian tumor, the stomach and colon should be carefully evaluated, and the ovaries routinely examined in the preoperative CT staging of gastric or colon carcinoma.

  15. Computed tomography in hepatic trauma

    SciTech Connect

    Moon, K.L. Jr.; Federle, M.P.

    1983-08-01

    Twenty-five patients with hepatic injury from blunt upper abdominal trauma were examined by computed tomography (CT). The spectrum of CT findings was recorded, and the size of the hepatic laceration and the associated hemoperitoneum were correlated with the mode of therapy used in each case (operative vs nonoperative). While the need for surgery correlated roughly with the size of the hepatic laceration, the size of the associated hemoperitoneum was an important modifying factor. Fifteen patients with hepatic lacerations but little or no hemoperitoneum were managed nonoperatively. CT seems to have significant advantages over hepatic scintigraphy, angiography, and diagnostic peritoneal lavage. By combining inforamtion on the clinical state of the patient and CT findings, therapy of hepatic injury can be individualized and the incidence of nontherapeutic laparotomies decreased.

  16. Pair distribution function computed tomography.

    PubMed

    Jacques, Simon D M; Di Michiel, Marco; Kimber, Simon A J; Yang, Xiaohao; Cernik, Robert J; Beale, Andrew M; Billinge, Simon J L

    2013-01-01

    An emerging theme of modern composites and devices is the coupling of nanostructural properties of materials with their targeted arrangement at the microscale. Of the imaging techniques developed that provide insight into such designer materials and devices, those based on diffraction are particularly useful. However, to date, these have been heavily restrictive, providing information only on materials that exhibit high crystallographic ordering. Here we describe a method that uses a combination of X-ray atomic pair distribution function analysis and computed tomography to overcome this limitation. It allows the structure of nanocrystalline and amorphous materials to be identified, quantified and mapped. We demonstrate the method with a phantom object and subsequently apply it to resolving, in situ, the physicochemical states of a heterogeneous catalyst system. The method may have potential impact across a range of disciplines from materials science, biomaterials, geology, environmental science, palaeontology and cultural heritage to health.

  17. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  18. Computed tomography of cryogenic cells

    SciTech Connect

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-08-30

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions.

  19. Computed tomography of the orbit – A review and an update

    PubMed Central

    Tawfik, Hatem A.; Abdelhalim, Ahmed; Elkafrawy, Mamdouh H.

    2012-01-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) of the orbit have been competing for the hearts and minds of health care providers for well over 2 decades. While several drawbacks pertaining to CT have been outlined since the introduction of MRI, CT remains the standard diagnostic test for evaluating cross-sectional, 2 or 3-dimensional images of the body. PMID:23961026

  20. Prospectively gated cardiac computed tomography.

    PubMed

    Moore, S C; Judy, P F; Garnic, J D; Kambic, G X; Bonk, F; Cochran, G; Margosian, P; McCroskey, W; Foote, F

    1983-01-01

    A fourth-generation scanner has been modified to perform prospectively gated cardiac computed tomography (CT). A computer program monitors the electrocardiogram (ECG) and predicts when to initiate the next scan in a gated series in order to acquire all projection data for a desired phase of the heart cycle. The system has been tested with dogs and has produced cross-sectional images of all phases of the cardiac cycle. Eight to ten scans per series were sufficient to obtain reproducible images of each transverse section in the end-diastolic and end-systolic phases. The radiation dose to the skin was approximately 1.4 cGy per scan. The prospectively gated system is more than twice as efficient as a retrospectively gated system in obtaining complete angular projection data for a 10% heart cycle window. A temporal smoothing technique to suppress reconstruction artifacts due to sorting inconsistent projection data was developed and evaluated. Image noise was reduced by averaging together any overlapping projection data. Prospectively gated cardiac CT has also been used to demonstrate that the error in attenuation measured with a single nongated CT scan through the heart can be as large as 50-60 CT numbers outside the heart in the lung field.

  1. [Computed tomography and cranial paleoanthropology].

    PubMed

    Cabanis, Emmanuel Alain; Badawi-Fayad, Jackie; Iba-Zizen, Marie-Thérèse; Istoc, Adrian; de Lumley, Henry; de Lumley, Marie-Antoinette; Coppens, Yves

    2007-06-01

    Since its invention in 1972, computed tomography (C.T.) has significantly evolved. With the advent of multi-slice detectors (500 times more sensitive than conventional radiography) and high-powered computer programs, medical applications have also improved. CT is now contributing to paleoanthropological research. Its non-destructive nature is the biggest advantage for studying fossil skulls. The second advantage is the possibility of image analysis, storage, and transmission. Potential disadvantages include the possible loss of files and the need to keep up with rapid technological advances. Our experience since the late 1970s, and a recent PhD thesis, led us to describe routine applications of this method. The main contributions of CT to cranial paleoanthropology are five-fold: --Numerical anatomy with rapid acquisition and high spatial resolution (helicoidal and multidetector CT) offering digital storage and stereolithography (3D printing). --Numerical biometry (2D and 3D) can be used to create "normograms" such as the 3D craniofacial reference model used in maxillofacial surgery. --Numerical analysis offers thorough characterization of the specimen and its state of conservation and/or restoration. --From "surrealism" to virtual imaging, anatomical structures can be reconstructed, providing access to hidden or dangerous zones. --The time dimension (4D imaging) confers movement and the possibility for endoscopic simulation and internal navigation (see Iconography). New technical developments will focus on data processing and networking. It remains our duty to deal respectfully with human fossils.

  2. Role of the Animator in the Generation of 3-Dimensional Computer Generated Animation.

    ERIC Educational Resources Information Center

    Wedge, John Christian

    This master's thesis investigates the relationship between the traditional animator and the computer as computer animation systems allow them to apply traditional skills with a high degree of success. The advantages and disadvantages of traditional animation as a medium for expressing motion and character are noted, and it is argued that the…

  3. Computation of transonic potential flow about 3 dimensional inlets, ducts, and bodies

    NASA Technical Reports Server (NTRS)

    Reyhner, T. A.

    1982-01-01

    An analysis was developed and a computer code, P465 Version A, written for the prediction of transonic potential flow about three dimensional objects including inlet, duct, and body geometries. Finite differences and line relaxation are used to solve the complete potential flow equation. The coordinate system used for the calculations is independent of body geometry. Cylindrical coordinates are used for the computer code. The analysis is programmed in extended FORTRAN 4 for the CYBER 203 vector computer. The programming of the analysis is oriented toward taking advantage of the vector processing capabilities of this computer. Comparisons of computed results with experimental measurements are presented to verify the analysis. Descriptions of program input and output formats are also presented.

  4. [Computer tomography of the brain in neurology].

    PubMed

    Shmidt, E V; Vereshchagin, N V; Bragina, L K; Vavilov, S B

    1978-01-01

    The results of the studies, obtained in a computer head tomography confirms its effectiveness in the diagnosis of ischemic and hemorrhagic strokes, tumor and degenerative brain diseases, as well as in investigations of the brain ventricular systems and subarachnoidal spaces. A computer head tomography--is a perspective method in the study of brain lesions with the aid of X-ray equipment and computers.

  5. Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1980-01-01

    There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.

  6. Computed tomography using synchrotron radiation

    SciTech Connect

    Thompson, A.C.; Llacer, J.; Finman, L.C.; Hughes, E.B.; Otis, J.N.; Wilson, S.; Zeman, H.D.

    1983-09-01

    X-ray computed tomography (CT) is a widely used method of obtaining cross-sectional views of objects. The high intensity, natural collimation, monochromaticity and energy tunability of synchrotron x-ray sources could potentially be used to provide CT images of improved quality. The advantages of these systems would be that images could be produced more rapidly with better spatial resolution and reduced beam artifacts. In addition, images, in some cases, could be acquired with elemental sensitivity. As a demonstration of the capability of such a system, CT images were obtained of four slices of an excised pig heart in which the arteries and the cardiac chambers were filled with an iodinated medium. Images were taken with incident x-rays tuned successively to energies just above and below the iodine K edge. Iodine specific images were obtained by logarithmically subtracting the low energy image data from the high energy data and then reconstructing the image. CT imaging using synchrotron radiation may become a convenient and non-destructive method of imaging samples difficult to study by other methods.

  7. Normal fetal urine production rate estimated with 3-dimensional ultrasonography using the rotational technique (virtual organ computer-aided analysis).

    PubMed

    Touboul, Cyril; Boulvain, Michel; Picone, Olivier; Levaillant, Jean-Marc; Frydman, René; Senat, Marie-Victoire

    2008-07-01

    The aim of this study was to assess hourly fetal urine production rates (HFUPRs) and establish a nomogram by measuring bladder volumes with 3-dimensional ultrasound. Fetal urine bladder volume was estimated in 167 normal singleton pregnancies with neither oligohydramnios nor polyhydramnios, at a gestational age of 20-41 weeks. HFUPR was estimated in a regression analysis that included at least 3 volumes calculated during the filling phase with the Virtual Organ Computed-aided AnaLysis (VOCAL) technique. We estimated interoperator variability for HFUPR less than 10 mL/h and HFUPR greater than 10 mL/h. Fetal urine production rates at 25, 30, 35, and 40 weeks were 7.5, 22.2, 56.1, and 125.1 mL/h, respectively. The intraclass correlation coefficients for interoperator variability were 99.2% for HFUPR less than 10 mL/hour and 97.1% for HFUPR greater than 10 mL/h. Prenatal measurement of HFUPR with 3-dimensional VOCAL ultrasound is reproducible and may help to determine the cause and prognosis of amniotic fluid volume abnormalities.

  8. Interactive 3-dimensional segmentation of MRI data in personal computer environment.

    PubMed

    Yoo, S S; Lee, C U; Choi, B G; Saiviroonporn, P

    2001-11-15

    We describe a method of interactive three-dimensional segmentation and visualization for anatomical magnetic resonance imaging (MRI) data in a personal computer environment. The visual feedback necessary during 3-D segmentation was provided by a ray casting algorithm, which was designed to allow users to interactively decide the visualization quality depending on the task-requirement. Structures such as gray matter, white matter, and facial skin from T1-weighted high-resolution MRI data were segmented and later visualized with surface rendering. Personal computers with central processing unit (CPU) speeds of 266, 400, and 700 MHz, were used for the implementation. The 3-D visualization upon each execution of the segmentation operation was achieved in the order of 2 s with a 700 MHz CPU. Our results suggest that 3-D volume segmentation with semi real-time visual feedback could be effectively implemented in a PC environment without the need for dedicated graphics processing hardware.

  9. A 3-dimensional Navier-Stokes-Euler code for blunt-body flow computations

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1985-01-01

    The shock-layer flowfield is obtained with or without viscous and heat-conducting dissipations from the conservative laws of fluid dynamics equations using a shock-fitting implicity finite-difference technique. The governing equations are cast in curvilinear-orthogonal coordinates and transformed to the domain between the shock and the body. Another set of equations is used for the singular coordinate axis, which, together with a cone generator away from the stagnation point, encloses the computation domain. A time-dependent alternating direction implicit factorization technique is applied to integrate the equations with local-time increment until a steady solution is reached. The shock location is updated after the flowfield computation, but the wall conditions are implemented into the implicit procedure. Innovative procedures are introduced to define the initial flowfield, to treat both perfect and equilibrium gases, to advance the solution on a coarse-to-fine grid sequence, and to start viscous flow computations from their corresponding inviscid solutions. The results are obtained from a grid no greater than 28 by 18 by 7 and converged within 300 integration steps. They are of sufficient accuracy to start parabolized Navier-Stokes or Euler calculations beyond the nose region, to compare with flight and wind-tunnel data, and to evaluate conceptual designs of reentry spacecraft.

  10. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    SciTech Connect

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  11. A Freeware Path to Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Craft, Aaron E.

    Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.

  12. Estimation of Nasal Tip Support Using Computer-Aided Design and 3-Dimensional Printed Models

    PubMed Central

    Gray, Eric; Maducdoc, Marlon; Manuel, Cyrus; Wong, Brian J. F.

    2016-01-01

    IMPORTANCE Palpation of the nasal tip is an essential component of the preoperative rhinoplasty examination. Measuring tip support is challenging, and the forces that correspond to ideal tip support are unknown. OBJECTIVE To identify the integrated reaction force and the minimum and ideal mechanical properties associated with nasal tip support. DESIGN, SETTING, AND PARTICIPANTS Three-dimensional (3-D) printed anatomic silicone nasal models were created using a computed tomographic scan and computer-aided design software. From this model, 3-D printing and casting methods were used to create 5 anatomically correct nasal models of varying constitutive Young moduli (0.042, 0.086, 0.098, 0.252, and 0.302 MPa) from silicone. Thirty rhinoplasty surgeons who attended a regional rhinoplasty course evaluated the reaction force (nasal tip recoil) of each model by palpation and selected the model that satisfied their requirements for minimum and ideal tip support. Data were collected from May 3 to 4, 2014. RESULTS Of the 30 respondents, 4 surgeons had been in practice for 1 to 5 years; 9 surgeons, 6 to 15 years; 7 surgeons, 16 to 25 years; and 10 surgeons, 26 or more years. Seventeen surgeons considered themselves in the advanced to expert skill competency levels. Logistic regression estimated the minimum threshold for the Young moduli for adequate and ideal tip support to be 0.096 and 0.154 MPa, respectively. Logistic regression estimated the thresholds for the reaction force associated with the absolute minimum and ideal requirements for good tip recoil to be 0.26 to 4.74 N and 0.37 to 7.19 N during 1- to 8-mm displacement, respectively. CONCLUSIONS AND RELEVANCE This study presents a method to estimate clinically relevant nasal tip reaction forces, which serve as a proxy for nasal tip support. This information will become increasingly important in computational modeling of nasal tip mechanics and ultimately will enhance surgical planning for rhinoplasty. LEVEL OF EVIDENCE

  13. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  14. [Clinical application of computed tomography in cattle].

    PubMed

    Nuss, K; Schnetzler, C; Hagen, R; Schwarz, A; Kircher, P

    2011-01-01

    Computed tomography involves the use of x-rays to produce cross-sectional images of body regions. It provides non-overlapping, two-dimensional images of all desired planes as well as three-dimensional reconstruction of regions of interest. There are few reports on the clinical use of computed tomography in farm animals. Its use in cattle is limited by high cost, the application of off-label drugs and the need for general anaesthesia. In cattle computed tomography is indicated primarily for diseases of the head, e.g. dental diseases and otitis media, and neurological disorders. Less often it is used for diseases of the vertebrae and limbs. In valuable cattle, the results of computed tomography can be an important part of preoperative planning or be used to avoid unnecessary surgery when the prognosis is poor.

  15. Intraperitoneal contrast agents for computed tomography

    SciTech Connect

    Stork, J.

    1985-08-01

    Intraperitoneal contrast agents have been used to diagnose mass lesions, adhesions, and hernias using conventional radiographic techniques. The use of intraperitoneal contrast agents in conjunction with computed tomography (CT) has been limited and is the subject of this report.

  16. Computed tomography of orbital-facial neurofibromatosis

    SciTech Connect

    Zimmerman, R.A.; Bilaniuk, L.T.; Metzger, R.A.; Grossman, R.I.; Schut, L.; Bruce, D.A.

    1983-01-01

    Twenty-four patients with orbital-facial manifestations of neurofibromations were examined by computed tomography. Delineation of the extent of the disease, and differentiation of the disease processes (orbital tumor, osseous orbital dysplasia, plexiform neurofibromatosis, and buphthalmos) was possible.

  17. Interlaced X-ray diffraction computed tomography.

    PubMed

    Vamvakeros, Antonios; Jacques, Simon D M; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J; Beale, Andrew M

    2016-04-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn-Na-W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy.

  18. Computed Tomography of the Musculoskeletal System.

    PubMed

    Ballegeer, Elizabeth A

    2016-05-01

    Computed tomography (CT) has specific uses in veterinary species' appendicular musculoskeletal system. Parameters for acquisition of images, interpretation limitations, as well as published information regarding its use in small animals is reviewed.

  19. Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography.

    PubMed

    Koukourakis, G; Maravelis, G; Koukouraki, S; Padelakos, P; Kouloulias, V

    2009-01-01

    The concept of emission and transmission tomography was introduced by David Kuhl and Roy Edwards in the late 1950s. Their work later led to the design and construction of several tomographic instruments at the University of Pennsylvania. Tomographic imaging techniques were further developed by Michel Ter-Pogossian, Michael E. Phelps and others at the Washington University School of Medicine. Positron emission tomography (PET) is a nuclear medicine imaging technique which produces a 3-dimensional image or map of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in 3-dimensional space within the body are then reconstructed by computer analysis. In modern scanners, this reconstruction is often accomplished with the aid of a CT X-ray scan performed on the patient during the same session, in the same machine. If the biologically active molecule chosen for PET is 18F-fluorodeoxyglucose (FDG), an analogue of glucose, the concentrations of tracer imaged give tissue metabolic activity in terms of regional glucose uptake. Although use of this tracer results in the most common type of PET scan, other tracer molecules are used in PET to image the tissue concentration of many other types of molecules of interest. The main role of this article was to analyse the available types of radiopharmaceuticals used in PET-CT along with the principles of its clinical and technical considerations.

  20. Computed tomography of the sacrum: 2. pathology

    SciTech Connect

    Whelan, M.A.; Hilal, S.K.; Gold, R.P.; Luken, M.G.; Michelson, W.J.

    1982-12-01

    Fifteen cases of primary sacral pathology were analyzed. High-resolution computed tomography was found to be the most accurate means of studying these cases. Certain anatomic changes involving the central canal and sacral foramina were found to be helpful in determining the type of pathology. Although conventional plain films, radionuclide bone scans, and myelography were useful in certain cases, computed tomography was found to be the procedure of choice in the workup of sacral problems.

  1. Computed Tomography of Pancreatitis and Pancreatic Cancer.

    PubMed

    Furlow, Bryant

    2015-01-01

    Pancreatic disease often is asymptomatic until tissue damage and complications occur or until malignancies have reached advanced stages and have metastasized. Contrast-enhanced multidetector computed tomography plays a central role in diagnosing, staging, and treatment planning for pancreatitis and pancreatic cancer. This article introduces the functional anatomy of the pancreas and common bile duct and the epidemiology, pathobiology, and computed tomography imaging of pancreatitis, calculi, and pancreatic cancer.

  2. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  3. Computed Tomography For Internal Inspection Of Castings

    NASA Technical Reports Server (NTRS)

    Hanna, Timothy L.

    1995-01-01

    Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.

  4. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Sivagurunathan, Koneswaran; Mandelis, Andreas

    2017-07-01

    Photothermal diffusion-wave imaging is a promising technique for non-destructive evaluation and medical applications. Several diffusion-wave techniques have been developed to produce depth-resolved planar images of solids and to overcome imaging depth and image blurring limitations imposed by the physics of parabolic diffusion waves. Truncated-Correlation Photothermal Coherence Tomography (TC-PCT) is the most successful class of these methodologies to-date providing 3-D subsurface visualization with maximum depth penetration and high axial and lateral resolution. To extend the depth range and axial and lateral resolution, an in-depth analysis of TC-PCT, a novel imaging system with improved instrumentation, and an optimized reconstruction algorithm over the original TC-PCT technique is developed. Thermal waves produced by a laser chirped pulsed heat source in a finite thickness solid and the image reconstruction algorithm are investigated from the theoretical point of view. 3-D visualization of subsurface defects utilizing the new TC-PCT system is reported. The results demonstrate that this method is able to detect subsurface defects at the depth range of ˜4 mm in a steel sample, which exhibits dynamic range improvement by a factor of 2.6 compared to the original TC-PCT. This depth does not represent the upper limit of the enhanced TC-PCT. Lateral resolution in the steel sample was measured to be ˜31 μm.

  5. Panoramic cone beam computed tomography

    SciTech Connect

    Chang Jenghwa; Zhou Lili; Wang Song; Clifford Chao, K. S.

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{sub cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and

  6. Salivary calculus diagnosis with 3-dimensional cone-beam computed tomography.

    PubMed

    Dreiseidler, Timo; Ritter, Lutz; Rothamel, Daniel; Neugebauer, Jörg; Scheer, Martin; Mischkowski, Robert A

    2010-07-01

    The objective of this study was to evaluate cone-beam CT (CBCT) diagnoses of sialoliths in the major salivary glands. Twenty-nine CBCT images containing salivary calculi were retrospectively evaluated for image quality and artifact influence. Additionally, the reproducibility of calculus measurement and the differences between CBCT measurements and ultrasonography (US) and histomorphometry (HM) measurements were determined. Diagnostic sensitivity and specificity calculations were based on the observations of 3 masked clinicians, who reviewed a total of 58 CBCT volumes. Salivary calculi were sufficiently visualized in all patients. Metal artifacts were detected in images of 7 patients, and movement artifacts in 2. CBCT calculi measurements were highly reproducible, with mean differences of less than 350 microm. Mean CBCT measurements of calculi diameters differed from mean US measurements by approximately 500 microm and differed from mean HM measurements by approximately 1 mm. For calculus diagnoses, the mean sensitivity and specificity were both 98.85%. Although poor image qualities and artifacts can reduce diagnostic information, salivary calculi can be evaluated adequately with CBCT. CBCT measurements of calculi are highly reproducible and differ little from measurements made with US and HM. Diagnostic sensitivity and specificity levels with CBCT are as high as or higher than those obtained with other diagnostic methods. Because of its high diagnostic-information-to-radiation-dose ratio, CBCT is the preferable imaging modality for salivary calculus diagnosis. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  7. Digital tomosynthesis aided by low-resolution exact computed tomography.

    PubMed

    Zeng, Kai; Yu, Hengyong; Zhao, Shiying; Fajardo, Laurie Lee; Ruth, Christopher; Jing, Zhenxue; Wang, Ge

    2007-01-01

    Tomosynthesis reconstructs 3-dimensional images of an object from a significantly fewer number of projections as compared with that required by computed tomography (CT). A major problem with tomosynthesis is image artifacts associated with the data incompleteness. In this article, we propose a hybrid tomosynthesis approach to achieve higher image quality as compared with competing methods. In this approach, a low-resolution CT scan is followed by a high-resolution tomosynthesis scan. Then, both scans are combined to reconstruct images. To evaluate the image quality of the proposed method, we design a new breast phantom for numerical simulation and physical experiments. The results show that images obtained by our approach are clearly better than those obtained without such a CT scan.

  8. Multidetector computed tomography angiography of the abdomen.

    PubMed

    Güven, Koray; Acunaş, Bülent

    2004-10-01

    Multidetector computed tomography (MDCT) angiography has provided excellent opportunities for advancement of computed tomography (CT) technology and clinical applications. It has a wide range of applications in the abdomen including vascular pathologies either occlusive or aneurysmal; enables the radiologist to produce vascular mapping that clearly show tumor invasion of vasculature and the relationship of vessels to mass lesions. MDCTA can be used in preoperative planning for hepatic resection, preoperative evaluation and planning for liver transplantation. MDCTA can also provide extremely valuable information in the evaluation of ischemic bowel disease, active Crohn disease, the extent and location of collateral vessels in cirrhosis.

  9. Computed Tomography: Image and Dose Assessment

    SciTech Connect

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodriguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernandez, L. A.

    2006-09-08

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  10. [Perfusion computed tomography for diffuse liver diseases].

    PubMed

    Schmidt, S A; Juchems, M S

    2012-08-01

    Perfusion computed tomography (CT) has its main application in the clinical routine diagnosis of neuroradiological problems. Polyphase multi-detector spiral computed tomography is primarily used in liver diagnostics. The use of perfusion CT is also possible for the diagnostics and differentiation of diffuse hepatic diseases. The differentiation between cirrhosis and cirrhosis-like parenchymal changes is possible. It also helps to detect early stages of malignant tumors. However, there are some negative aspects, particularly that of radiation exposure. This paper summarizes the technical basics and possible applications of perfusion CT in cases of diffuse liver disease and weighs up the advantages and disadvantages of the examinations.

  11. Children's (Pediatric) CT (Computed Tomography)

    MedlinePlus

    ... which are then displayed on a monitor. Special software can also generate three-dimensional (3-D) images ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  12. Single photon emission computed tomography/computed tomography of the skull in malignant otitis externa.

    PubMed

    Chakraborty, Dhritiman; Bhattacharya, Anish; Kamaleshwaran, Koramadai Karuppusamy; Agrawal, Kanhaiyalal; Gupta, Ashok Kumar; Mittal, Bhagwant Rai

    2012-01-01

    Malignant otitis externa is a severe, rare infective condition of the external auditory canal and skull base. The diagnosis is generally made from a range of clinical, laboratory, and imaging findings. Technetium 99m methylene diphosphonate bone scintigraphy is known to detect osteomyelitis earlier than computed tomography. The authors present a patient with bilateral malignant otitis externa where the extent of skull base involvement was determined on 3-phase bone scintigraphy with single photon emission computed tomography/computed tomography. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Positron emission tomography/computed tomography in melanoma.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Fish, Lindsay M; Bradley, Yong C

    2013-09-01

    Fludeoxyglucose F 18 positron emission tomography/computed tomography (PET/CT) has been invaluable in the assessment of melanoma throughout the course of the disease. As with any modality, the studies are incomplete and more information will be gleaned as our experience progresses. Additionally, it is hoped that a newer PET agent in the pipeline will give us even greater success in the identification and subsequent treatment of melanoma. This article aims to examine the utilization of PET/CT in the staging, prognostication, and follow-up of melanoma while providing the physicians who order and interpret these studies practical guidelines and interpretive pitfalls. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Neutron computed tomography of rat lungs.

    PubMed

    Metzke, R W; Runck, H; Stahl, C A; Schillinger, B; Calzada, E; Mühlbauer, M; Schulz, M; Schneider, M; Priebe, H-J; Wall, W A; Guttmann, J

    2011-01-07

    Using conventional methods, three-dimensional imaging of the lung is challenging because of the low contrast between air and tissue and the large differences in dimensions between various pulmonary structures. The small distal airway structures and the high air-to-tissue ratio of lung tissue require an imaging technique which reliably discriminates between air and water. The objective of this study was to assess whether neutron computed tomography would satisfy such a requirement. This method utilizes the unique characteristic of neutrons of directly interacting with the atomic nucleus rather than being scattered by the atomic shell. Neutron computed tomography was tested in rats and allowed differentiation of larger lung structures (e.g., lobes) and distal airways. Airways could be identified reliably down to the sixth bronchial generation, in some cases even down to the tenth generation. The lung could be stabilized for sufficiently long exposure times to achieve an image resolution of 50-60 µm, which is the current physical resolution limit of the neutron computed tomography facility. Neutron computed tomography allowed excellent lung imaging without the need for additional tissue preparation or contrast media. The enhanced structural resolution obtained by applying this new research technique may improve understanding of lung physiology and respiratory therapy.

  15. Cerebral computed tomography, 3rd Edition

    SciTech Connect

    Weisberg, L.; Nice, C.

    1988-01-01

    This book is an introduction to the utilization of computed tomography in evaluating patients with intracranial and orbital disorders. It features clinical correlations and provides an overview of general principles, performance, and normal anatomy of CT. It covers evaluation of specific neurologic signs and symptoms, including stroke, metastatic disease, increased intracranial pressure, head injury, pediatric conditions, and more.

  16. Computed Tomography For Inspection Of Thermistors

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.

    1991-01-01

    Computed tomography (CT) enables identification of cracked thermistors without disassembly of equipment containing them. CT unit used to scan equipment and locate thermistors. Further scans made in various radial orientations perpendicular to plane of devices to find cracks. Cracks invisible in conventional x-radiographs seen.

  17. Computed Tomography Analysis of NASA BSTRA Balls

    SciTech Connect

    Perry, R L; Schneberk, D J; Thompson, R R

    2004-10-12

    Fifteen 1.25 inch BSTRA balls were scanned with the high energy computed tomography system at LLNL. This system has a resolution limit of approximately 210 microns. A threshold of 238 microns (two voxels) was used, and no anomalies at or greater than this were observed.

  18. Bladder trauma: multidetector computed tomography cystography.

    PubMed

    Ishak, Charbel; Kanth, Nalini

    2011-08-01

    Multidetector computed tomography (MDCT) cystography is rapidly becoming the most recommended study for evaluation of the bladder for suspected trauma. This article reviews the bladder trauma with emphasis on the application of MDCT cystography to traumatic bladder injuries using a pictorial essay based on images collected in our level I trauma center.

  19. Nephrocutaneous fistula diagnosed by computed tomography.

    PubMed

    Cooper, S G; Richman, A H; Tager, M G

    1989-01-01

    We present an unusual case of isolated nephrocutaneous fistula secondary to renal calculi with perirenal infection. The usefulness of computed tomography (CT), with its depiction of the extent of involvement and its characterization of the disease process, is described and the literature is reviewed.

  20. Computed tomography of the abnormal pericardium

    SciTech Connect

    Silverman, P.M.; Harell, G.S.; Korobkin, M.

    1983-06-01

    Computed tomographic (CT) findings in 18 patients with documented pericardial disease are reported. The pericardium appears as a thin, curvilinear, 1- to 2-mm-thick density best seen anterior to the right ventricular part of the heart. Pericardial abnormalities detected by CT include effusions, thickening, calcification, and cystic and solid masses. Computed tomography is complimentary to echocardiography in its ability to more accurately characterize pericardial effusions, masses, and pericardial thickening.

  1. A Guide to Computed Tomography System Specifications

    DTIC Science & Technology

    1990-08-01

    X - ray source and detectors and the mechanical handling equipment. The X - ray source could be as simple as a gamma- ray source; it could be a microfocus ...ABSTRACT (Continue on reverse if r cessary and identify by block number) The sensitivity to featu e and anomaly detection in industrial X - ray computed...SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED ABSTRACT The sensitivity to feature and anomaly detection in industrial X - ray computed tomography

  2. Single photon emission computed tomography/computed tomography for malignant otitis externa: lesion not shown on planar image.

    PubMed

    Chen, Yu-Hung; Hsieh, Hung-Jen

    2013-01-01

    Malignant otitis externa is a severe and rare infection of the external acoustic meatus. Triphasic bone and (67)Ga scintigraphies are used to initial detect and follow-up the response of therapy. With single photon emission computed tomography/computed tomography images, the diagnostic sensitivity is higher. We presented a case with malignant otitis externa with initial negative planar scintigraphic finding. The lesion was detected by photon emission computed tomography/computed tomography images. We concluded that the photon emission computed tomography/computed tomography should be performed routinely for patients with suspected malignant otitis externa, even without evidence of lesion on planar images. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Computed tomography of the spine

    SciTech Connect

    Haughton, V.M.; Williams, A.L.

    1982-01-01

    The book describes the computed tomographic (CT) techniques for imaging the different elements comprising the spinal column and canal. The use of intravenous and intrathecal contrast enhancement and of xenon enhancement is briefly mentioned. Reconstruction techniques and special problems regarding CT of the spine are presented. CT of the spinal cord, meninges and subarachnoid space, epidural space, intervertebral discs, facet joints, and vertebrae present normal anatomy, and several common pathologic conditions. (KRM)

  4. Trip report: Marshall Space Center computed tomography

    NASA Astrophysics Data System (ADS)

    Harbour, J. R.; Andrews, M. K.

    BIR Inc. is a small company out of the Chicago area which sells equipment for producing images by tomography. They have built a relatively large instrument, called ACTIS, for NASA at the Marshall Space Center in Huntsville, Alabama and still gave access to this instrument. BIR has a grant from the Department of Energy (DOE) to determine the utility of computed tomography (CT) for characterization of nuclear and hazardous waste within the DOE complex. As part of this effort, the potential of this technique for obtaining images of canistered waste forms has been investigated. Funding for data acquisition was provided through this grant.

  5. Proton computed tomography images with algebraic reconstruction

    NASA Astrophysics Data System (ADS)

    Bruzzi, M.; Civinini, C.; Scaringella, M.; Bonanno, D.; Brianzi, M.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Presti, D. Lo; Maccioni, G.; Pallotta, S.; Randazzo, N.; Romano, F.; Sipala, V.; Talamonti, C.; Vanzi, E.

    2017-02-01

    A prototype of proton Computed Tomography (pCT) system for hadron-therapy has been manufactured and tested in a 175 MeV proton beam with a non-homogeneous phantom designed to simulate high-contrast material. BI-SART reconstruction algorithms have been implemented with GPU parallelism, taking into account of most likely paths of protons in matter. Reconstructed tomography images with density resolutions r.m.s. down to 1% and spatial resolutions <1 mm, achieved within processing times of 15‧ for a 512×512 pixels image prove that this technique will be beneficial if used instead of X-CT in hadron-therapy.

  6. Computed tomography of the medulla

    SciTech Connect

    Daniels, D.L.; Williams, A.L.; Haughton, V.M.

    1982-10-01

    The medulla was studied in cadavers and in 100 patients both with and without the intrathecal administration of contrast material. The computed tomographic (CT) anatomy was correlated with the appearance on anatomic dissections. The pyramids, olives, and inferior cerebellar peduncles produced characteristic contours on cross sections of the medulla. The hypoglossal nerve by its location and course in the medullary cistern could be distinguished from the glossopharyngeal, vagal, and spinal accessory nerves. For optimal evaluation of the medulla, intrathecal administration of metrizamide and 5- and/or 1.5-mm-thick axial and coronal sections are recommended.

  7. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  8. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is a computer technique of structural stress analysis and developed in engineering mechanics. FEA has developed to investigate structural behavior of human bones over the past 40 years. When the faster computers have acquired, better FEA, using 3-dimensional computed tomography (CT) has been developed. This CT-based finite element analysis (CT/FEA) has provided clinicians with useful data. In this review, the mechanism of CT/FEA, validation studies of CT/FEA to evaluate accuracy and reliability in human bones, and clinical application studies to assess fracture risk and effects of osteoporosis medication are overviewed. PMID:26309819

  9. Computed tomography in the diagnosis of iliopsoas abscesses.

    PubMed

    Sykes, J T; Sage, M R; Burke, A M

    1984-04-14

    Two cases in which patients presented with lower back pain and bacteraemia, and in which the diagnosis of iliopsoas abscess was made by computed tomography, are reported. Before the introduction of computed tomography, this diagnosis was difficult to establish by means of clinical and radiological investigations. Computed tomography makes it possible to obtain a clear view of the retroperitoneum.

  10. Site and Severity of the Increased Humeral Retroversion in Symptomatic Baseball Players: A 3-dimensional Computed Tomographic Analysis.

    PubMed

    Itami, Yasuo; Mihata, Teruhisa; Shibano, Koji; Sugamoto, Kazuomi; Neo, Masashi

    2016-07-01

    Humeral retroversion in baseball players is greater in the dominant shoulder than in the nondominant shoulder. However, the site and severity of the humeral rotational deformity remain unclear. To evaluate the site of side-to-side differences in humeral retroversion in baseball players and the severity of these changes through 3-dimensional computed tomographic (3D CT) bone models. Cross-sectional study; Level of evidence, 3. From 2008 to 2014, we studied 25 baseball players (12 pitchers, 13 fielders) who underwent surgery for throwing-related injuries (shoulder injury, 15 players; elbow injury, 10 players). The mean age (±SD) at the time of surgery was 20.0 ± 5.9 years. A reconstructed 3D CT model of the entire humerus was divided into 15 segments of equal height (overall mean, 21.4 ± 1.0 mm). The side-to-side difference in humeral retroversion in each segment was calculated by superimposing the model of the dominant side over the mirror-image model of the nondominant side. The overall mean increase in humeral retroversion was 13.0° ± 6.2° on the dominant side. Significant side-to-side differences in retroversion were present throughout the humerus. The largest side-to-side difference in humeral retroversion was seen at the insertions of the internal rotator muscles (2.5° ± 4.3°) and around the proximal physis (2.5° ± 1.4°). At the insertions of shoulder capsule and rotator cuff tendons, the superior half of the humeral head was more retroverted than the inferior half (P < .0001). The side-to-side difference in humeral retroversion was significantly greater in the pitchers (16.2° ± 5.1°) than in the fielders (10.0° ± 5.7°) (P = .009), particularly at the proximal physis. Baseball players exhibited significant side-to-side differences in humeral retroversion at multiple sites throughout the humerus, including the proximal humerus near the epiphyseal plate and at the insertions of the internal rotator muscles, the middle of the humeral shaft, and

  11. Computed tomography of renal oncocytoma

    SciTech Connect

    Levine, E.; Huntrakoon, M.

    1983-10-01

    Renal oncocytoma is a relatively rare tumor that has an excellent prognosis and usually may be treated adequately by local resection. Preoperative differentiation from renal cell carcinoma, which requires radical nephrectomy, is thus of importance. The computed tomographic (CT) and pathologic features of three incidentally-detected renal oncocytomas were compared with those of six renal cell carcinomas of comparable size. Renal cell carcinoma appears on CT as a solid mass that generally has an indistinct interface with normal renal parenchyma, a lobulated contour, and a nonhomogeneous pattern of contrast enhancement. These features correlate with the pathologic findings of an irregular tumor margin and the frequent presence of tumor hemorrhage and necrosis. Oncocytoma, on the other hand, generally has a distinct margin, a smooth contour, and a homogeneous appearance on contrast-enhanced CT scans. These findings correlate with a smooth tumor margin and absence of tumor hemorrhage and necrosis on pathologic examination. These features are not pathognomonic of oncocytoma, as angiographic evidence suggests that renal cell carcinoma may show both distinct margination and a homogeneous blush in 6% of cases. However, their demonstration by CT should alert radiologists and surgeons to the possibility that a renal mass may be an oncocytoma. Such a presumptive diagnosis then can lead to a surgical approach that allows for renal-conserving surgery.

  12. Measuring femoral and rotational alignment: EOS system versus computed tomography.

    PubMed

    Folinais, D; Thelen, P; Delin, C; Radier, C; Catonne, Y; Lazennec, J Y

    2013-09-01

    Computed tomography (CT) is currently the reference standard for measuring femoral and tibial rotational alignment. The EOS System is a new biplanar low-dose radiographic device that allows 3-dimensional lower-limb modelling with automated measurements of femoral and tibial rotational alignment (torsion). Femoral and tibial torsion measurements provided by the EOS System are equivalent to those obtained using CT. In a retrospective analysis of 43 lower limbs in 30 patients, three senior radiologists measured femoral and tibial torsion on both CT and EOS images. Agreement between CT and EOS values was assessed by computing Pearson's correlation coefficient and interobserver reproducibility by computing the intraclass correlation coefficient (ICC). Femoral torsion was 13.4° by EOS vs. 13.7° by CT (P=0.5) and tibial torsion was 30.8° by EOS vs. 30.3° by CT (P=0.4). Strong associations were found between EOS and CT values for both femoral torsion (P=0.93) and tibial torsion (P=0.89). With EOS, the ICC was 0.93 for femoral torsion and 0.86 for tibial torsion; corresponding values with CT were 0.90 and 0.92. The EOS system is a valid alternative to CT for lower-limb torsion measurement. EOS imaging allows a comprehensive evaluation in all three planes while substantially decreasing patient radiation exposure. Level III, case-control. Copyright © 2013. Published by Elsevier Masson SAS.

  13. Cone beam computed tomography in endodontics.

    PubMed

    Durack, Conor; Patel, Shanon

    2012-01-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillo-facial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontics. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice.

  14. Computed tomography of the eye and orbit

    SciTech Connect

    Hammerschlag, S.B.; Hesselink, J.R.; Weber, A.L.

    1982-01-01

    This book is the product of the evolution of computed tomography (CT) into subspecialization and the need for one source of information for the busy radiologist. The authors have succeeded in providing a readable overview of orbital CT as well as a reference book. The book is divided into seven major catagories of pathology (Neurofibromatosis, Primary Orbital Neoplasms, Secondary and Metastic Tumors of the Orbit, Vascular Disorders, Inflammatory Disease, Occular Lesions, and Trauma) after separate discussions of anatomy and technique.

  15. [Clinical applications of computed tomography coronary angiography].

    PubMed

    Bastarrika, G; Schoepf, U J

    2009-01-01

    The clinical applications of computed tomography coronary angiography (CTCA) are constantly evolving. Initially employed to quantify coronary artery calcification, multidetector CT also makes it possible to evaluate the anatomy and anatomical variations of coronary circulation, rule out coronary disease, and follow up surgical and percutaneous revascularization procedures. Moreover, CTCA may potentially be useful to quantify ventricular function, characterize non-calcified atherosclerotic plaques, and analyze myocardial perfusion and viability, providing anatomical, morphological, and functional information in patients with suspected ischemic heart disease.

  16. Cone beam computed tomography use in orthodontics.

    PubMed

    Nervina, J M

    2012-03-01

    Cone beam computed tomography (CBCT) is widely used by orthodontists to obtain three-dimensional (3-D) images of their patients. This is of value as malocclusion results from discrepancies in three planes of space. This review tracks the use of CBCT in orthodontics, from its validation as an accurate and reliable tool, to its use in diagnosing and treatment planning, and in assessing treatment outcomes in orthodontics.

  17. Computed Tomography of Transverse Phase Space

    SciTech Connect

    Watts, A.; Johnstone, C.; Johnstone, J.

    2016-09-19

    Two computed tomography techniques are explored to reconstruct beam transverse phase space using both simulated beam and multi-wire profile data in the Fermilab Muon Test Area ("MTA") beamline. Both Filtered Back-Projection ("FBP") and Simultaneous Algebraic Reconstruction Technique ("SART") algorithms [2] are considered and compared. Errors and artifacts are compared as a function of each algorithm’s free parameters, and it is shown through simulation and MTA beamline profiles that SART is advantageous for reconstructions with limited profile data.

  18. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice.

  19. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  20. Computed tomography and thin-section tomography in facial trauma.

    PubMed

    Kreipke, D L; Moss, J J; Franco, J M; Maves, M D; Smith, D J

    1984-05-01

    The efficacy of radiographic methods in detecting and classifying facial fractures was assessed. Thirty-one patients with maxillofacial trauma were studied with plain radiography, coronal and lateral pluridirectional tomography (PT), and axial and direct coronal computed tomography (CT). PT and CT were compared to assess how many fractures each method could demonstrate. In addition, plain films were used in combination with each special study to see how efficacious each combination was at classifying fractures into types, such as blow-out, tripod, etc. To reflect the fact that it is sometimes impossible to obtain lateral PT or direct coronal CT scans at this institution, the same analysis was done using just coronal PT and axial CT. With two projections, CT was better than PT at demonstrating fractured surfaces (168 vs. 156) and in classifying fractures in combination with plain films (48 vs. 43). However, when only one projection from each special study was used, PT surpassed CT in showing fractures (137 vs. 124) and in classifying fractures (42 vs. 40). Failures with each method occurred when the plane of section was parallel or oblique to the plane of the structure being examined, that is, axial CT failed to show the floor of the orbit well and coronal PT failed to show the anterior maxillary sinus wall well. Imaging in two planes, including the coronal plane, is desirable for greatest accuracy in fracture detection, whether by CT, PT, or both. CT is generally better for the display of soft-tissue abnormalities.

  1. Computed tomography and thin-section tomography in facial trauma

    SciTech Connect

    Kreipke, D.L.; Moss, J.J.; Franco, J.M.; Maves, M.D.; Smith, D.J.

    1984-05-01

    The efficacy of radiographic methods in detecting and classifying facial fractures was assessed. Thirty-one patients with maxillofacial trauma were studied with plain radiography, coronal and lateral pluridirectional tomography (PT), and axial and direct coronal computed tomography (CT). PT and CT were compared to assess how many fractures each method could demonstrate. In addition, plain films were used in combination with each special study to see how efficacious each combination was at classifying fractures into types. With two projection, CT was better than PT at demonstrating fracture surfaces (168 vs. 156) and in classifying fractures in combination with plain films (48 vs. 43). However, when only one projection from each special study was used, PT surpassed CT in showing fractures (137 vs. 124) and in classifying fractures (42 vs. 40). Failures with each method occurred when the plane of section was parallel or oblique to the plane of the structure being examined. Imaging in two planes, including the coronal plane, is desirable for greatest accuracy in fracture detection, whether by CT, PT, or both. CT is generally better for the display of soft-tissue abnormalities.

  2. [Positron emission tomography/computed tomography in rheumatology].

    PubMed

    Derlin, T

    2017-06-29

    Combined positron emission tomography/computed tomography (PET/CT) is a whole-body imaging procedure, which enables sensitive detection of inflammatory changes. It may be used to simultaneously obtain both precise anatomical and molecular information in order to comprehensively characterize diseases. The glucose analogue (18)F-fluorodeoxyglucose (FDG) represents a universally applicable radiotracer for imaging of inflammatory processes. Its accumulation in tissues can be semiquantitatively characterized by use of standardized uptake values (SUV). In principle, a broad spectrum of infectious and non-infectious inflammatory and malignant diseases can be imaged. (18)F-FDG PET/CT has become a valuable modality and is increasingly being used for evaluation of large vessel vasculitis and for evaluation of elevated systemic inflammatory markers without known cause. Beside the radiotracer (18)F-FDG, other radiopharmaceuticals enable a non-invasive analysis of additional parameters of inflammatory disorders, such as other metabolic pathways or the expression of surface receptors.

  3. Use of cone beam computed tomography in otolaryngologic treatments.

    PubMed

    Cakli, Hamdi; Cingi, Cemal; Ay, Yazgi; Oghan, Fatih; Ozer, Torun; Kaya, Ercan

    2012-03-01

    Cone beam computed tomography (CBCT) allows us to evaluate 3-dimensional (3D) morphology of the maxillofacial skeleton and also used in dentomaxillofacial imaging to solve complex diagnostic and treatment planning problems such as craniofacial fractures, temporamandibular dysfunctions or sinus imaging. CBCT uses a rectangular or round 2D detector, which allows a single rotation of the gantry to generate a scan of the entire region of interest. Technological and application-specific factors such as development of compact, relatively low-cost, high-quality, large, flat-panel detector arrays; the availability of low-cost computers with processing power sufficient for cone beam image reconstruction; the fabrication of highly efficient radiograph tubes capable of multiple exposures necessary for cone beam scanning at prices lower than those currently used for fan beam CT; and limited volume scanning (e.g., head and neck) eliminating the need for subsecond gantry rotation speeds make this possible. The objective of this study is to review published evidence for CBCT having an important role in ORL treatments. We aimed to review all the available literature about the CBCT imagination in ORL treatments. Systematic literature search was performed using PubMed and Ovid. Additional literature was retrieved from reference lists in the articles. Systematic analysis of the literature from 1998 to 2010 was performed. A total of 40 abstracts were evaluated independently by two members of the project group, and 38 articles were included in the review.

  4. Computed tomography to quantify tooth abrasion

    NASA Astrophysics Data System (ADS)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  5. Computer tomography imaging of fast plasmachemical processes

    SciTech Connect

    Denisova, N. V.; Katsnelson, S. S.; Pozdnyakov, G. A.

    2007-11-15

    Results are presented from experimental studies of the interaction of a high-enthalpy methane plasma bunch with gaseous methane in a plasmachemical reactor. The interaction of the plasma flow with the rest gas was visualized by using streak imaging and computer tomography. Tomography was applied for the first time to reconstruct the spatial structure and dynamics of the reagent zones in the microsecond range by the maximum entropy method. The reagent zones were identified from the emission of atomic hydrogen (the H{sub {alpha}} line) and molecular carbon (the Swan bands). The spatiotemporal behavior of the reagent zones was determined, and their relation to the shock-wave structure of the plasma flow was examined.

  6. Comparative study on computed tomography algorithms

    NASA Astrophysics Data System (ADS)

    Zayed, Nasser; Lawton, Bryan

    1994-09-01

    This study uses Computed Tomography (CT) for reconstructing images of solid propellant rocket motors during static firing tests. Implementation, verification and comparison of four CT algorithms are presented. These four algorithms are: Algebraic Reconstruction Technique, Linear Superposition with Compensation, and Fourier Convolution technique with parallel beams and fan-beam. The phantom used in the comparison between algorithms is similar in cross-section to a solid propellant rocket motor. Comparison between algorithms on the ability to detect artifacts is made. Also, a comparison is made using data obtained by optical tomography of the absorption coefficient inside a 20 mm gas gun barrel. Finally, a comparison of the running time versus number of projections, number of ray sums, and resolution is studied.

  7. Quantification and clinical relevance of head motion during computed tomography.

    PubMed

    Wagner, Arne; Schicho, Kurt; Kainberger, Franz; Birkfellner, Wolfgang; Grampp, Stephan; Ewers, Rolf

    2003-11-01

    To quantify the 3-dimensional translation and rotation components of head motion during computed tomography and to analyze the influence of such motion on perceptible artifacts and distortion of volume image data sets. Using high-precision optoelectronic motion-capture technology, changes in patient head position during axial CT scanning were registered in 20 cases and 2 phantoms with a spatial relative resolution better than 0.003 cm. Statistical analysis was performed on a base of 6-dimensional measurement-vectors, each with 3 translation and 3 rotation values. Because of the recording frequency of the tracking system, more than 80000 values were included in a statistical analysis. All 20 patients had head motion during the CT scanning, with only 4 of 20 patients showing perceptible motion artifacts. The frequency, the extent, and the direction of the movements did not correlate with either the observations made by the radiologic staff or with the patient's subjective estimation of comfort. Translation movements of the head during CT accounted for a maximum of 0.5 cm and rotations of more than 2 degrees without perceptible motion artifacts. The extent of positional changes of the head was found to correlate with the duration of scanning (Pearson's correlation coefficient: 0.647 for translation shifts, 0.453 for rotation shifts). The mean direction of head motion could be characterized predominantly as a rotation around the longitudinal axis of the body (xy plane) at a significance level of 0.01. Computed tomography evaluations of the head performed without rigid fixation suffer a spatial distortion of the volume image data sets, caused by interimage motion. The absence of motion artifacts is not correlated with the absence of motion.

  8. Role of post-mapping computed tomography in virtual-assisted lung mapping.

    PubMed

    Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun

    2017-02-01

    Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.

  9. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  10. Positron computed tomography: current state, clinical results and future trends

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  11. Depiction of ventriculoperitoneal shunt obstruction with single-photon emission computed tomography/computed tomography.

    PubMed

    Aksoy, Sabire Yılmaz; Vatankulu, Betül; Uslu, Lebriz; Halac, Metin

    2016-01-01

    An 83-year-old male patient with ventriculoperitoneal shunt underwent radionuclide shunt study using single-photon emission computed tomography/computed tomography (SPECT/CT) to evaluate the shunt patency. The planar images showed activity at the cranial region and spinal canal but no significant activity at the peritoneal cavity. However, SPECT/CT images clearly demonstrated accumulation of activity at the superior part of bifurcation level with no activity at the distal end of shunt as well as no spilling of radiotracer into the peritoneal cavity indicating shunt obstruction. SPECT/CT makes the interpretation of radionuclide shunt study more accurate and easier as compared with traditional planar images.

  12. Emerging clinical applications of computed tomography.

    PubMed

    Liguori, Carlo; Frauenfelder, Giulia; Massaroni, Carlo; Saccomandi, Paola; Giurazza, Francesco; Pitocco, Francesca; Marano, Riccardo; Schena, Emiliano

    2015-01-01

    X-ray computed tomography (CT) has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications.

  13. Cross-sectional anatomy for computed tomography

    SciTech Connect

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations.

  14. Emerging clinical applications of computed tomography

    PubMed Central

    Liguori, Carlo; Frauenfelder, Giulia; Massaroni, Carlo; Saccomandi, Paola; Giurazza, Francesco; Pitocco, Francesca; Marano, Riccardo; Schena, Emiliano

    2015-01-01

    X-ray computed tomography (CT) has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications. PMID:26089707

  15. Alzheimer disease: focus on computed tomography.

    PubMed

    Reynolds, April

    2013-01-01

    Alzheimer disease is the most common type of dementia, affecting approximately 5.3 million Americans. This debilitating disease is marked by memory loss, confusion, and loss of cognitive ability. The exact cause of Alzheimer disease is unknown although research suggests that it might result from a combination of factors. The hallmarks of Alzheimer disease are the presence of beta-amyloid plaques and neurofibrillary tangles in the brain. Radiologic imaging can help physicians detect these structural characteristics and monitor disease progression and brain function. Computed tomography and magnetic resonance imaging are considered first-line imaging modalities for the routine evaluation of Alzheimer disease.

  16. Computed tomography of infantile hepatic hemangioendothelioma

    SciTech Connect

    Lucaya, J.; Enriquez, G.; Amat, L.; Gonzalez-Rivero, M.A.

    1985-04-01

    Computed tomography (CT) was performed on five infants with hepatic hemangioendothelioma. Precontrast scans showed solitary or multiple, homogeneous, circumscribed areas with reduced attenuation values. Tiny tumoral calcifications were identified in two patients. Serial scans, after injection of a bolus of contrast material, showed early massive enhancement, which was either diffuse or peripheral. On delayed scans, multinocular tumors became isodense with surrounding liver, while all solitary ones showed varied degrees of centripetal enhancement and persistent central cleftlike unenhanced areas. The authors believe that these CT features are characteristic and obviate arteriographic confirmation.

  17. Cone Beam Computed Tomography - Know its Secrets

    PubMed Central

    Kumar, Mohan; Shanavas, Muhammad; Sidappa, Ashwin; Kiran, Madhu

    2015-01-01

    Cone-beam computed tomography (CBCT) is an advanced imaging modality that has high clinical applications in the field of dentistry. CBCT proved to be a successful investigative modality that has been used for dental and maxillofacial imaging. Radiation exposure dose from CBCT is 10 times less than from conventional CT scans during maxillofacial exposure. Furthermore, CBCT is highly accurate and can provide a three-dimensional volumetric data in axial, sagittal and coronal planes. This article describes the basic technique, difference in CBCT from CT and main clinical applications of CBCT. PMID:25859112

  18. Computed tomography angiography to evaluate thoracic outlet neurovascular compression.

    PubMed

    Hasanadka, Ravishankar; Towne, Jonathan B; Seabrook, Gary R; Brown, Kellie R; Lewis, Brian D; Foley, W Dennis

    2007-01-01

    The objective was to evaluate the efficacy of computed tomography angiography with upper extremity hyperabduction to diagnose thoracic outlet syndrome. Over 5 years, 21 patients were treated surgically for neurogenic symptoms of thoracic outlet syndrome. For patients whose diagnosis was unclear after history and physical examination, adjunctive tests (duplex, magnetic resonance angiography, or computed tomography angiography) were performed to help establish the diagnosis. Five of the 6 computed tomography angiograms were positive. The sixth computed tomography was deemed to be an incomplete study. With mean follow-up of 9.4 months, 95% (n = 19) of patients with a positive hyperabduction test on physical examination were free of symptoms postoperatively. All patients with a positive computed tomography angiogram, with their neurovascular compression localized to the thoracic outlet, had successful operative decompression. Computed tomography angiogram with abduction of the arm can be used as an adjunct to confirm the diagnosis of neurovascular compression and then predict successful operative decompression.

  19. Introduction to neutron stimulated emission computed tomography.

    PubMed

    Floyd, Carey E; Bender, Janelle E; Sharma, Amy C; Kapadia, Anuj; Xia, Jessie; Harrawood, Brian; Tourassi, Georgia D; Lo, Joseph Y; Crowell, Alexander; Howell, Calvin

    2006-07-21

    Neutron stimulated emission computed tomography (NSECT) is presented as a new technique for in vivo tomographic spectroscopic imaging. A full implementation of NSECT is intended to provide an elemental spectrum of the body or part of the body being interrogated at each voxel of a three-dimensional computed tomographic image. An external neutron beam illuminates the sample and some of these neutrons scatter inelastically, producing characteristic gamma emission from the scattering nuclei. These characteristic gamma rays are acquired by a gamma spectrometer and the emitting nucleus is identified by the emitted gamma energy. The neutron beam is scanned over the body in a geometry that allows for tomographic reconstruction. Tomographic images of each element in the spectrum can be reconstructed to represent the spatial distribution of elements within the sample. Here we offer proof of concept for the NSECT method, present the first single projection spectra acquired from multi-element phantoms, and discuss potential biomedical applications.

  20. Optical computing for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Huo, Tiancheng; Wang, Chengming; Liao, Wenchao; Chen, Tianyuan; Ai, Shengnan; Zhang, Wenxin; Hsieh, Jui-Cheng; Xue, Ping

    2016-11-01

    We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application.

  1. Coronary computed tomography and magnetic resonance imaging.

    PubMed

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C

    2009-04-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use.

  2. Optical computing for optical coherence tomography

    PubMed Central

    Zhang, Xiao; Huo, Tiancheng; Wang, Chengming; Liao, Wenchao; Chen, Tianyuan; Ai, Shengnan; Zhang, Wenxin; Hsieh, Jui-Cheng; Xue, Ping

    2016-01-01

    We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application. PMID:27869131

  3. Space shuttle main engine computed tomography applications

    NASA Technical Reports Server (NTRS)

    Sporny, Richard F.

    1990-01-01

    For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

  4. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  5. Applied X-Ray computed tomography

    SciTech Connect

    Buynak, C.F.; Bossi, R.H.

    1994-12-31

    The application of X-ray Computed Tomography (CT) for aircraft and aerospace structures and ancillary equipment has been investigated in the Advanced Development of X-ray Computed Tomography Applications demonstration (CTAD) program (F33615-88-C-5404) sponsored by the U.S. Air Force Wright Laboratory, Materials Directorate, Nondestructive Evaluation (NDE) Branch. The volumetric feature evaluation capability of X-Ray CT offers a quantitative measurement tool for material density/constituents and dimensions. This capability has economic value for improving the evaluation and control of materials and processes used in aircraft/aerospace structures. The CTAD effort has applied CT in a variety of areas such as electronics, closed systems, castings, organic composites and advanced materials and processes; using a wide range of X-ray sources from less than 150 kV to 9 MV. Applications of CT in these areas include configuration control, anomaly detection, geometry acquisition, failure analysis, non invasive micrography, product development support and engineering fitness for service.

  6. COMPUTED TOMOGRAPHY OF TOOTH RESORPTION IN CATS.

    PubMed

    Lang, Linda G; Wilkinson, Thomas E; White, Tammy L; Farnsworth, Raelynn K; Potter, Kathleen A

    2016-09-01

    Tooth resorption is the most common dental disease in cats and can be a source of oral pain. The current clinical gold standard for diagnosis includes a combination of oral exam and dental radiography, however early lesions are not always detected. Computed tomography (CT) of the skull, including the dental arches, is a commonly performed diagnostic procedure, however the appearance of tooth resorption on CT and the diagnostic ability of CT to detect tooth resorption have not been evaluated. The purpose of this prospective, descriptive, diagnostic accuracy study was to characterize the CT appearance of tooth resorption in a sample of affected cats and to evaluate the sensitivity and specificity of CT for tooth resorption compared to the clinical gold standard of oral exam and intraoral dental radiography. Twenty-eight cat cadaver specimens were recruited for inclusion. Each specimen was evaluated using oral exam, intraoral dental radiography, and computed tomography (four different slice thicknesses). Each tooth was evaluated for the presence or absence of tooth resorption. Teeth with lesions and a subset of normal teeth were evaluated with histopathology. On CT, tooth resorption appeared as irregularly marginated hypoattenuating defects in the mineral attenuating tooth components, most commonly involving the root or cementoenamel junction. Sensitivity for CT detection of tooth resorption was fair to poor (42.2-57.7%) and specificity was good to excellent (92.8-96.3%). Findings from this study indicated that CT has high specificity but low sensitivity for detection of tooth resorption in cats.

  7. Computed Tomography Technology: Development and Applications for Defence

    NASA Astrophysics Data System (ADS)

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-09-01

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT&E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  8. Computed Tomography Technology: Development and Applications for Defence

    SciTech Connect

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-09-26

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT and E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  9. Applicability of 3-Dimensional Quantitative Coronary Angiography-Derived Computed Fractional Flow Reserve for Intermediate Coronary Stenosis.

    PubMed

    Yazaki, Kyoichiro; Otsuka, Masato; Kataoka, Shohei; Kahata, Mitsuru; Kumagai, Asako; Inoue, Koji; Koganei, Hiroshi; Enta, Kenji; Ishii, Yasuhiro

    2017-06-23

    Quantitative flow ratio (QFR) is a newly developed image-based index for estimating fractional flow reserve (FFR).Methods and Results:We analyzed 151 coronary arteries with intermediate stenosis in 142 patients undergoing wire-based FFR measurement using dedicated software. Predefined contrast flow QFR, which was derived from 3-dimensional quantitative coronary angiography (3-D QCA) withThrombolysis in Myocardial Infarction (TIMI) frame counts, was compared with FFR as a reference. QFR had good correlation (r=0.80, P<0.0001) and agreement (mean difference: 0.01±0.05) with FFR. After applying the FFR cut-off ≤0.8, the overall accuracy rate of QFR ≤0.8 was 88.0%. On receiver operating characteristics analysis, the area under the curve was 0.93 for QFR. In contrast, 3-D QCA-derived anatomical indices had insufficient correlation with FFR and diagnostic performance compared with QFR. QFR had good correlation and agreement with FFR and high diagnostic performance in the evaluation of intermediate coronary stenosis, suggesting that QFR may be an alternative tool for estimating myocardial ischemia.

  10. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  11. Computed tomography of the pituitary gland

    SciTech Connect

    Bonneville, J.F.; Cattin, F.; Dietemann, J.L.

    1986-01-01

    This book is written entirely to include the imaging of the pituitary gland by computed tomography (CT). The first three chapters illustrated technical aspects of scanning, anatomic depiction of the gland by CT, and the use of dynamic CT scanning for detecting and displaying abnormalities. The chapters discuss and illustrate various types of pathologic processes in and around the pituitary gland. One short but very helpful chapter demonstrates potential pitfalls due to the combination of anatomic variants and the geometry of CT sections. Some illustrations of disease processed are depicted by magnetic resonance imaging. All major types of pituitary diseases are illustrated. Lists of readily available English-language references are available. A small subject index is provided at the end of the book in which the illustrations are identified by use of a special numeric front.

  12. Arterioportal shunts on dynamic computed tomography

    SciTech Connect

    Nakayama, T.; Hiyama, Y.; Ohnishi, K.; Tsuchiya, S.; Kohno, K.; Nakajima, Y.; Okuda, K.

    1983-05-01

    Thirty-two patients, 20 with hepatocelluar carcinoma and 12 with liver cirrhosis, were examined by dynamic computed tomography (CT) using intravenous bolus injection of contrast medium and by celiac angiography. Dynamic CT disclosed arterioportal shunting in four cases of hepatocellular carcinoma and in one of cirrhosis. In three of the former, the arterioportal shunt was adjacent to a mass lesion on CT, suggesting tumor invasion into the portal branch. In one with hepatocellular carcinoma, the shunt was remote from the mass. In the case with cirrhosis, there was no mass. In these last two cases, the shunt might have been caused by prior percutaneous needle puncture. In another case of hepatocellular carcinoma, celiac angiography but not CT demonstrated an arterioportal shunt. Thus, dynamic CT was diagnostic in five of six cases of arteriographically demonstrated arterioportal shunts.

  13. Mouse brain imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Xia, Jun; Wang, Lihong V.

    2014-03-01

    Photoacoustic computed tomography (PACT) provides structural and functional information when used in small animal brain imaging. Acoustic distortion caused by bone structures largely limits the deep brain image quality. In our work, we present ex vivo PACT images of freshly excised mouse brain, intending that can serve as a gold standard for future PACT in vivo studies on small animal brain imaging. Our results show that structures such as the striatum, hippocampus, ventricles, and cerebellum can be clearly di erentiated. An artery feature called the Circle of Willis, located at the bottom of the brain, can also be seen. These results indicate that if acoustic distortion can be accurately accounted for, PACT should be able to image the entire mouse brain with rich structural information.

  14. Computed tomography of primary intrahepatic biliary malignancy

    SciTech Connect

    Itai, Y.; Araki, T.; Furui, S.; Yashiro, N.; Ohtomo, K.; Iio, M.

    1983-05-01

    Fifteen patients with primary intrahepatic biliary malignancy (cholangiocarcinoma in 13, biliary cystadenocarcinoma in two) were examined by computed tomography (CT). The CT features were classified into three types: (A) a well-defined round cystic mass with internal papillary projections, (B) a localized intrahepatic biliary dilatation without a definite mass lesion, and (C) miscellaneous low-density masses. Intraphepatic biliary dilatation was noted in all cases of Types A and B and half of those of Type C; dilatation of extrahepatic bile ducts occurred in 4/4, 1/3, and 0/8, respectively. CT patterns, such as a well-defined round cystic mass with papillary projections or dilatation of intra- and extrahepatic ducts, give important clues leading to a correct diagnosis of primary intrahepatic biliary malignancy.

  15. Computed tomography of the abnormal thymus

    SciTech Connect

    Baron, R.L.; Lee, J.K.T.; Sagel, S.S.; Levitt, R.G.

    1982-01-01

    Computed tomography (CT) should be the imaging method of choice following plain chest radiographs when a suspected thymic abnormality requires further evaluation. Based upon a six-year experience, including the evaluation of 25 patients with thymic pathology, CT was found useful in suggesting or excluding a diagnosis of thymoma and in distinguishing thymic hyperplasis from thymoma in patients with myasthenia gravis. The thickness of the thymic lobes determined by CT was found to be a more accurate indicator of infiltrative disease (thymic hyperplasia and lymphoma) than the width. CT was helpful in differentiating benign thymic cysts from solid tumors, and in defining the extent of a thymic neoplasms. On occasion, CT may suggest the specific histologic nature of a thymic lesion.

  16. Mobile computed tomography for mass fatality investigations.

    PubMed

    Rutty, Guy N; Robinson, Claire; Jeffery, Amanda; Morgan, Bruno

    2007-06-01

    The use of computed tomography (CT) has received growing interest within the forensic world. To date, most publications have been related to the use of clinical or institutional sited scanners with few publications reporting on the actual, as opposed to the theoretical, use of mobile CT scanners in forensic practice. This review paper considers the use of mobile CT scanning for forensic investigations. It reviews the literature and presents the experience gained from a 6-month trial undertaken by the Forensic Pathology Unit, at the University of Leicester, UK of the use of CT for mass fatality investigation. Protocols for the use of mobile CT are discussed to assist other centres contemplating the use of mobile CT for mass fatality investigations.

  17. Computed tomography in metastatic renal cell carcinoma.

    PubMed

    Griffin, Nyree; Grant, Lee Alexander; Bharwani, Nishat; Sohaib, S Aslam

    2009-08-01

    Recent developments in chemotherapy have resulted in several new drug treatments for metastatic renal cell carcinoma (RCC). These therapies have shown improved progression-free survival and are applicable to many more patients than the conventional cytokine-based treatments for metastatic RCC. Consequently imaging is playing a greater part in the management of such patients. Computed tomography (CT) remains the primary imaging modality with other imaging modalities playing a supplementary role. CT is used in the diagnosis and staging of metastatic RCC. It is used in the follow-up of patients after nephrectomy, in assessing the extent of metastatic disease, and in evaluating response to treatment. This review looks at the role of CT in patients with metastatic RCC and describes the appearances of metastatic RCC before and following systemic therapy.

  18. Intraoperative 3D Computed Tomography: Spine Surgery.

    PubMed

    Adamczak, Stephanie E; Bova, Frank J; Hoh, Daniel J

    2017-10-01

    Spinal instrumentation often involves placing implants without direct visualization of their trajectory or proximity to adjacent neurovascular structures. Two-dimensional fluoroscopy is commonly used to navigate implant placement, but with the advent of computed tomography, followed by the invention of a mobile scanner with an open gantry, three-dimensional (3D) navigation is now widely used. This article critically appraises the available literature to assess the influence of 3D navigation on radiation exposure, accuracy of instrumentation, operative time, and patient outcomes. Also explored is the latest technological advance in 3D neuronavigation: the manufacturing of, via 3D printers, patient-specific templates that direct implant placement. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. System Matrix Analysis for Computed Tomography Imaging.

    PubMed

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data.

  20. Computed tomography of osteosarcoma after intraarterial chemotherapy

    SciTech Connect

    Shirkhoda, A.; Jaffe, N.; Wallace, S.; Ayala, A.; Lindell, M.M.; Zornoza, J.

    1985-01-01

    The response to intraarterial cis-diamminedichloroplatinum II (CDP) chemotherapy was evaluated by computed tomography (CT) in 33 patients with pathologically proved osteosarcoma of the long or flat bones. Twenty-one of the 33 patients had a CT scan before chemotherapy was started. In the other 12 patients, a CT scan was obtained after at least two courses of treatment, and additional studies were performed during the course of therapy. In those patients responding to treatment, the posttherapy scan revealed a remarkable decrease or complete disappearance of the associated soft-tissue mass and clear reestablishment of the fat planes between the muscle bundles that had been obscured. There was sharp definition of the peripheral margins of the calcified healing neoplasm, and the calcification in the healing tumor could be differentiated easily from that of the original bone neoplasm. CT was more accurate than conventional studies in detecting healing process and diagnosis of remission.

  1. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  2. Reconstructing cetacean brain evolution using computed tomography.

    PubMed

    Marino, Lori; Uhen, Mark D; Pyenson, Nicholas D; Frohlich, Bruno

    2003-05-01

    Until recently, there have been relatively few studies of brain mass and morphology in fossil cetaceans (dolphins, whales, and porpoises) because of difficulty accessing the matrix that fills the endocranial cavity of fossil cetacean skulls. As a result, our knowledge about cetacean brain evolution has been quite limited. By applying the noninvasive technique of computed tomography (CT) to visualize, measure, and reconstruct the endocranial morphology of fossil cetacean skulls, we can gain vastly more information at an unprecedented rate about cetacean brain evolution. Here, we discuss our method and demonstrate it with several examples from our fossil cetacean database. This approach will provide new insights into the little-known evolutionary history of cetacean brain evolution.

  3. Quality assessment of clinical computed tomography

    NASA Astrophysics Data System (ADS)

    Berndt, Dorothea; Luckow, Marlen; Lambrecht, J. Thomas; Beckmann, Felix; Müller, Bert

    2008-08-01

    Three-dimensional images are vital for the diagnosis in dentistry and cranio-maxillofacial surgery. Artifacts caused by highly absorbing components such as metallic implants, however, limit the value of the tomograms. The dominant artifacts observed are blowout and streaks. Investigating the artifacts generated by metallic implants in a pig jaw, the data acquisition for the patients in dentistry should be optimized in a quantitative manner. A freshly explanted pig jaw including related soft-tissues served as a model system. Images were recorded varying the accelerating voltage and the beam current. The comparison with multi-slice and micro computed tomography (CT) helps to validate the approach with the dental CT system (3D-Accuitomo, Morita, Japan). The data are rigidly registered to comparatively quantify their quality. The micro CT data provide a reasonable standard for quantitative data assessment of clinical CT.

  4. Computed Tomography Findings in Xanthogranulomatous Pyelonephritis

    PubMed Central

    Rajesh, Arumugam; Jakanani, George; Mayer, Nick; Mulcahy, Kevin

    2011-01-01

    Background: Xanthogranulomatous pyelonephritis (XGN) is an uncommon condition characterized by chronic suppurative renal inflammation that leads to progressive parenchymal destruction. Purpose: To review the computed tomography (CT) findings of patients diagnosed with XGN. Materials and Methods: A retrospective review of CT findings in patients with histologically proven XGN was carried out. Results: Thirteen CT examinations of 11 patients were analyzed. Renal enlargement was demonstrable on the affected side in all patients. Nine patients (82%) had multiple dilated calyces and abnormal parenchyma. Six patients (55%) had a renal pelvis or upper ureteric calculus causing obstruction. Three patients (27%) had focal fat deposits identifiable within the inflamed renal parenchyma. Two patients had renal abscesses. Ten patients (91%) had extrarenal extension of the inflammatory changes. Three patients (27%) demonstrated extensive retroperitoneal inflammation. Conclusion: Unilateral renal enlargement and inflammation were the most consistent findings of XGN on CT. Perinephric inflammation and collections or abscess should also alert the radiologist to the possibility of this diagnosis. PMID:22315712

  5. Computed tomography assessment of reinforced concrete

    SciTech Connect

    Martz, H.E.; Schneberk, D.J.; Roberson, G.P.; Monteiro, J.M.

    1991-05-24

    Gamma-ray computed tomography (CT) is potentially powerful nondestructive method for assessing the degree of distress that exists in reinforced-concrete structures. In a study to determine the feasibility of using CT to inspect reinforced-concrete specimens, we verified that CT can quantitatively image the internal details of reinforced concrete. To assess the accuracy of CT in determining voids and cracks, we inspected two fiber-reinforced concrete cylinders (one loaded and one unloaded) and a third cylinder containing a single reinforcing bar (rebar). To evaluate the accuracy of CT in establishing the location of reinforcing bars, we also inspected a concrete block containing rebars with different diameters. The results indicate that CT was able to revolve the many different phases in reinforced concrete (voids, cracks, rebars, and concrete) with great accuracy. 15 refs., 10 figs.

  6. Imaging of Cardiac Valves by Computed Tomography

    PubMed Central

    Feuchtner, Gudrun

    2013-01-01

    This paper describes “how to” examine cardiac valves with computed tomography, the normal, diseased valves, and prosthetic valves. A review of current scientific literature is provided. Firstly, technical basics, “how to” perform and optimize a multislice CT scan and “how to” interpret valves on CT images are outlined. Then, diagnostic imaging of the entire spectrum of specific valvular disease by CT, including prosthetic heart valves, is highlighted. The last part gives a guide “how to” use CT for planning of transcatheter aortic valve implantation (TAVI), an emerging effective treatment option for patients with severe aortic stenosis. A special focus is placed on clinical applications of cardiac CT in the context of valvular disease. PMID:24490107

  7. Analysis of Ventricular Function by Computed Tomography

    PubMed Central

    Rizvi, Asim; Deaño, Roderick C.; Bachman, Daniel P.; Xiong, Guanglei; Min, James K.; Truong, Quynh A.

    2014-01-01

    The assessment of ventricular function, cardiac chamber dimensions and ventricular mass is fundamental for clinical diagnosis, risk assessment, therapeutic decisions, and prognosis in patients with cardiac disease. Although cardiac computed tomography (CT) is a noninvasive imaging technique often used for the assessment of coronary artery disease, it can also be utilized to obtain important data about left and right ventricular function and morphology. In this review, we will discuss the clinical indications for the use of cardiac CT for ventricular analysis, review the evidence on the assessment of ventricular function compared to existing imaging modalities such cardiac MRI and echocardiography, provide a typical cardiac CT protocol for image acquisition and post-processing for ventricular analysis, and provide step-by-step instructions to acquire multiplanar cardiac views for ventricular assessment from the standard axial, coronal, and sagittal planes. Furthermore, both qualitative and quantitative assessments of ventricular function as well as sample reporting are detailed. PMID:25576407

  8. System Matrix Analysis for Computed Tomography Imaging

    PubMed Central

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  9. Radiation risks from pediatric computed tomography scanning.

    PubMed

    Chodick, Gabriel; Kim, Kwang Pyo; Shwarz, Michael; Horev, Gad; Shalev, Varda; Ron, Elaine

    2009-12-01

    Although radiological exams are not frequently used to diagnose unsuspected endocrine disease, computed tomography (CT) plays a significant role in today's endocrinology. Despite the known association between radiation exposure during childhood and cancer, the use of pediatric CT, which delivers non-negligible radiation doses to some organs and tissues, continues to rise sharply. The purpose of this review is to describe the current use of pediatric CT, explain basic concepts in ionizing radiation physics and dosimetry, and discuss potential risks from pediatric CT scans. Finally, we will summarize two recent programs for reducing and controlling exposure to ionizing radiation from pediatric CT: the As Low As Reasonably Achievable (ALARA) concept and the Image Gently initiative. Promoting public awareness and particularly educating referring physicians, including endocrinologists, about the potential radiation-associated risks from CT scans, is essential for reducing unnecessary radiation exposure from CT in children.

  10. Computed tomography of the gastrointestinal tract

    SciTech Connect

    Megibow, A.J.; Balthazar, E.J.

    1986-01-01

    New generation CT scans combined with high-detail barium studies have now allowed radiologists to see and gain a more complete understanding of the wall and surrounding structures of the gastrointestinal tract. The editors state that their intent is to ''present in a comprehensive volume an up-to-date evaluation o the role, significance, indications, and limitations of computed tomography of the gastrointestinal tract.'' There is an initial chapter on CT scanning techniques and the use of oral contrast agents. Chapters follow on Ct of the esophagus, stomach, duodenum, small bowel, and colon. The chapters start with a description of the anatomic structures and then cover in detail common pathologic conditions that affect the organ. Indications for examinations are also included in many chapters. There are final chapters on percutaneous drainage of abscesses and fluid collections and on radiologic-patholoic correlation of some of the more common entities.

  11. Computed tomography of axial skeletal osteoid osteomas

    SciTech Connect

    Gamba, J.L.; Martinez, S.; Apple, J.; Harrelson, J.M.; Nunley, J.A.

    1984-04-01

    Five cases of axial skeletal osteoid osteomas were viewed with particular attention to the role of computed tomography (CT) as a key diagnostic tool in the evaluation of osteoid osteoma. The complex anatomy of the axial skeleton can make the diagnosis of osteoid osteoma extremely difficult on routine films or tomograms, and the lesion often is well delineated only on CT scans. As complete surgical excision of this benign bony tumor is curative, precise anatomic localization is essential to the surgeon. Conventional radiographs were normal in all patients. Bone scans were positive when obtained and were useful in localizing the lesion and directing CT to the appropriate level. In all five cases CT was of proven value in accurately demonstrating the location, nidus, and other characteristic diagnostic radiographic features of osteoid osteoma.

  12. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  13. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  14. Solution of Poisson equations for 3-dimensional grid generations. [computations of a flow field over a thin delta wing

    NASA Technical Reports Server (NTRS)

    Fujii, K.

    1983-01-01

    A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.

  15. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  16. Standardized medical terminology for cardiac computed tomography: a report of the Society of Cardiovascular Computed Tomography.

    PubMed

    Weigold, Wm Guy; Abbara, Suhny; Achenbach, Stephan; Arbab-Zadeh, Armin; Berman, Daniel; Carr, J Jeffrey; Cury, Ricardo C; Halliburton, Sandra S; McCollough, Cynthia H; Taylor, Allen J

    2011-01-01

    Since the emergence of cardiac computed tomography (CT) at the turn of the 21st century, there has been an exponential growth in research and clinical development of the technique, with contributions from investigators and clinicians from varied backgrounds: physics and engineering, informatics, cardiology, and radiology. However, terminology for the field is not unified. As a consequence, there are multiple abbreviations for some terms, multiple terms for some concepts, and some concepts that lack clear definitions and/or usage. In an effort to aid the work of all those who seek to contribute to the literature, clinical practice, and investigation of the field, the Society of Cardiovascular Computed Tomography sets forth a standard set of medical terms commonly used in clinical and investigative practice of cardiac CT.

  17. Depiction of ventriculoperitoneal shunt obstruction with single-photon emission computed tomography/computed tomography

    PubMed Central

    Aksoy, Sabire Yılmaz; Vatankulu, Betül; Uslu, Lebriz; Halac, Metin

    2016-01-01

    An 83-year-old male patient with ventriculoperitoneal shunt underwent radionuclide shunt study using single-photon emission computed tomography/computed tomography (SPECT/CT) to evaluate the shunt patency. The planar images showed activity at the cranial region and spinal canal but no significant activity at the peritoneal cavity. However, SPECT/CT images clearly demonstrated accumulation of activity at the superior part of bifurcation level with no activity at the distal end of shunt as well as no spilling of radiotracer into the peritoneal cavity indicating shunt obstruction. SPECT/CT makes the interpretation of radionuclide shunt study more accurate and easier as compared with traditional planar images. PMID:27385906

  18. Computed tomography and magnetic resonance findings in lipoid pneumonia.

    PubMed Central

    Bréchot, J M; Buy, J N; Laaban, J P; Rochemaure, J

    1991-01-01

    A case of exogenous lipoid pneumonia was documented by computed tomography and magnetic resonance imaging. Although strongly suggesting the presence of fat on T1 weighted images, magnetic resonance does not produce images specific for this condition. Computed tomography is the best imaging modality for its diagnosis. Images PMID:1750024

  19. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  20. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  1. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  2. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  3. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  4. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games.

    PubMed

    Broeren, Jurgen; Claesson, Lisbeth; Goude, Daniel; Rydmark, Martin; Sunnerhagen, Katharina S

    2008-01-01

    The main purpose of this study was to place a virtual reality (VR) system, designed to assess and to promote motor performance in the affected upper extremity in subjects after stroke, in a nonhospital environment. We also wanted to investigate if playing computer games resulted in improved motor function in persons with prior stroke. The intervention involved 11 patients after stroke who received extra rehabilitation by training on a computer 3 times a week during a 4-week period. The control group involved 11 patients after stroke who continued their previous rehabilitation (no extra computer training) during this period. The mean age of all was 68 years (range = 47-85) and the average time after stroke 66 months (range = 15-140). The VR training consisted of challenging games, which provided a range of difficulty levels that allow practice to be fun and motivating. An additional group of 11 right-handed aged matched individuals without history of neurological or psychiatric illnesses served as reference subjects. All the participants reported that they were novel computer game players. After an initial introduction they learned to use the VR system quickly. The treatment group demonstrated improvements in motor outcome for the trained upper extremity, but this was not detected in real-life activities. The results of this research suggest the usefulness of computer games in training motor performance. VR can be used beneficially not only by younger participants but also by older persons to enhance their motor performance after stroke. Copyright 2008 S. Karger AG, Basel.

  5. Teflon laryngeal granuloma presenting as laryngeal cancer on combined positron emission tomography and computed tomography scanning.

    PubMed

    Ondik, M P; Kang, J; Bayerl, M G; Bruno, M; Goldenberg, D

    2009-05-01

    Positron emission tomography with 18F-fluorodeoxyglucose (18FDG) has been increasingly used in the diagnostic investigation of patients with neoplasms of the head and neck. Positron emission tomography and computed tomography have also proven useful for surveillance of thyroid cancers that no longer concentrate radioiodine. However, certain benign or inflammatory lesions can also accumulate 18F-fluorodeoxyglucose and lead to misdiagnosis. We review and discuss the pitfalls of using positron emission tomography and computed tomography for surveillance of thyroid cancer. We present the case of a 48-year-old woman who was diagnosed with a laryngeal neoplasm on integrated positron emission tomography and computed tomography scanning, after a routine ultrasound demonstrated an enlarged thyroid nodule. On physical examination, she had a laryngeal mass overlying an immobile vocal fold. The mass was biopsied and found to harbour a Teflon granuloma. Positron emission tomography positive Teflon granulomas have previously been reported in the nasopharynx and vocal folds, and should be considered in the differential diagnosis of patients who have undergone prior surgery involving Teflon injection. It is important for otolaryngologists and radiologists to recognise potential causes of false positive positron emission tomography and computed tomography findings, including Teflon granulomas.

  6. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  7. Computed Tomography in Diagnosis of Admantinoma

    PubMed Central

    Misra, Akansha; Misra, Deepankar; Rai, Shalu; Panjwani, Sapna; Ranjan, Vikash; Prabhat, Mukul; Bhalla, Kanika; Bhatnagar, Puneet

    2015-01-01

    Context: Admantinoma is second most common benign odontogenic tumor which clinically appears as an aggressive odontogenic tumor, often asymptomatic and slow growing, associated with symptoms such as swelling, dental malocclusion, pain, and paresthesia of the affected area. The radiographic appearance may vary from unilocular to multilocular radiolucencies, imparting a characteristic honey comb, soap bubble appearance or may resemble a caricature of spider. Case Report: This report highlights the importance of conventional and advanced imaging in the diagnosis of large and invasive lesions. Patient reported with complaint of swelling in jaw, which progressively increased; and was found to be bony hard, both intra- and extraorally. Radiographs revealed large multilocular radiolucency on left body and ramus of mandible with soap bubble pattern and knife edged root resorption. Computed tomographic examination evaluated the extent of the lesion, internal structure, and relation to adjacent structures; further a reconstructed image was obtained to evaluate extent of destruction in three dimensions. Conclusion: Computed tomography has an important role in the diagnosis and treatment planning is imperative as it is superior in revealing the cortical destruction and extension into the neighboring soft tissues than conventional radiography. PMID:26110136

  8. Airway growth and development: a computerized 3-dimensional analysis.

    PubMed

    Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri

    2012-09-01

    The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: An in vitro quantitative flow study.

    PubMed

    Li, X; Shiota, T; Delabays, A; Teien, D; Zhou, X; Sinclair, B; Pandian, N G; Sahn, D J

    1999-12-01

    This study was designed to develop and test a 3-dimensional method for direct measurement of flow convergence (FC) region surface area and for quantitating regurgitant flows with an in vitro flow system. Quantitative methods for characterizing regurgitant flow events such as flow convergence with 2-dimensional color flow Doppler imaging systems have yielded variable results and may not be accurate enough to characterize those more complex spatial events. Four differently shaped regurgitant orifices were studied: 3 flat orifices (circular, rectangular, triangular) and a nonflat one mimicking mitral valve prolapse (all 4 orifice areas = 0.24 cm(2)) in a pulsatile flow model at 8 to 9 different regurgitant flow rates (10 to 50 mL/beat). An ultrasonic flow probe and meter were connected to the flow model to provide reference flow data. Video composite data from the color Doppler flow images of the FC were reconstructed after computer-controlled 180 degrees rotational acquisition was performed. FC surface area (S cm(2)) was calculated directly without any geometric assumptions by measuring parallel sliced flow convergence arc lengths through the FC volume and multiplying each by the slice thickness (2.5 to 3.2 mm) over 5 to 8 slices and then adding them together. Peak regurgitant flow rate (milliliters per second) was calculated as the product of 3-dimensional determined S (cm(2)) multiplied by the aliasing velocity (centimeters per second) used for color Doppler imaging. For all of the 4 shaped orifices, there was an excellent relationship between actual peak flow rates and 3-dimensional FC-calculated flow rates with the direct measurement of the surface area of FC (r = 0.99, mean difference = -7.2 to -0.81 mL/s, % difference = -5% to 0%), whereas a hemielliptic method implemented with 3 axial measurements of the flow convergence zone from 2-dimensional planes underestimated actual flow rate by mean difference = -39.8 to -18.2 mL/s, % difference = -32% to -17% for any

  10. Investigation of Measurement Condition for 3-Dimensional Spectroscopy by Scanning Transmission X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Ohigashi, T.; Inagaki, Y.; Ito, A.; Shinohara, K.; Kosugi, N.

    2017-06-01

    A sample cell for performing computed tomography (CT) was developed. The 3-dimensional (3D) structure of polystyrene spheres was observed and the fluctuation of reconstructed linear absorption coefficients (LAC) was 9.3%. To improve the quality of data in 3D spectro-microscopy, required measurement condition is discussed.

  11. Evaluation of Sinonasal Diseases by Computed Tomography

    PubMed Central

    Phatak, Suresh

    2016-01-01

    Introduction Computed Tomography (CT) plays an important diagnostic role in patients with sinonasal diseases and determines the treatment. The CT images clearly show fine structural architecture of bony anatomy thereby determining various anatomical variation, extent of disease and characterization of various inflammatory, benign and malignant sinonasal diseases. Aim To evaluate sensitivity and specificity of CT in diagnosis of sinonasal diseases and to characterise the benign and malignant lesions with the help of various CT parameters. Also, to correlate findings of CT with histo-pathological and diagnostic nasal endoscopy/ Functional Endoscopic Sinus Surgery (FESS) findings. Materials and Methods In this hospital based prospective study 175 patients with symptomatic sinonasal diseases were evaluated by clinical diagnosis and 16 slice Multi Detector Computed Tomography (MDCT). The details of findings of nasal endoscopy, Functional Endoscopic Sinus Surgery (FESS), histopathological examination and fungal culture were collected in all those cases where those investigations were done. All those findings were correlated with CT findings and statistical analysis was done by using Test statistics (sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) and accuracy), Chi-Square test and Z-test for single proportions. Software used in the analysis was SPSS 17.0 version and graph pad prism 6.0 version and p < 0.05 was considered as statistically significant. Results CT diagnosis had higher sensitivity, specificity, PPV and NPV in diagnosing various sinonasal diseases in comparison to clinical diagnosis. On correlating CT diagnosis with final diagnosis, congenital conditions have 100% sensitivity and specificity. Chronic sinusitis has 98.3% sensitivity and 97.8% specificity. For fungal sinusitis the sensitivity was 60% and specificity was 99.3%. Polyps have sensitivity of 94.4% and specificity of 98.1%. Benign neoplasms have sensitivity

  12. Angio-computed tomography and dynamic computed tomography in staging of renal cell carcinoma

    SciTech Connect

    Lang, E.K.

    1984-04-01

    Dynamic computed tomography and angio-tomography combine criteria generated by CT with those of angiography and are advocated by the author to improve staging of renal cell carcinoma. Dynamic CT was performed in 29 patients and angio-CT in 12 patients in this group. Rapid acquisition of data permits generation of a CT section in intervals of 1 to 6 seconds, which in turn reflects arterial capillary, and venous transit of contrast medium through tissue. The propensity for dense enhancement of renal cell carcinoma makes possible positive identification of tumor elements. This feature proved accurate for the assessment of local extension of renal neoplasms in all 29 patients, involvement of the renal vein by tumor in 9/10, involvement of the inferior vena cava by tumor in 6/6, and involvement of regional nodes by tumor in 6/8.

  13. Dedicated breast computed tomography: Basic aspects

    SciTech Connect

    Sarno, Antonio; Mettivier, Giovanni Russo, Paolo

    2015-06-15

    X-ray mammography of the compressed breast is well recognized as the “gold standard” for early detection of breast cancer, but its performance is not ideal. One limitation of screening mammography is tissue superposition, particularly for dense breasts. Since 2001, several research groups in the USA and in the European Union have developed computed tomography (CT) systems with digital detector technology dedicated to x-ray imaging of the uncompressed breast (breast CT or BCT) for breast cancer screening and diagnosis. This CT technology—tracing back to initial studies in the 1970s—allows some of the limitations of mammography to be overcome, keeping the levels of radiation dose to the radiosensitive breast glandular tissue similar to that of two-view mammography for the same breast size and composition. This paper presents an evaluation of the research efforts carried out in the invention, development, and improvement of BCT with dedicated scanners with state-of-the-art technology, including initial steps toward commercialization, after more than a decade of R and D in the laboratory and/or in the clinic. The intended focus here is on the technological/engineering aspects of BCT and on outlining advantages and limitations as reported in the related literature. Prospects for future research in this field are discussed.

  14. Computed tomography characterisation of additive manufacturing materials.

    PubMed

    Bibb, Richard; Thompson, Darren; Winder, John

    2011-06-01

    Additive manufacturing, covering processes frequently referred to as rapid prototyping and rapid manufacturing, provides new opportunities in the manufacture of highly complex and custom-fitting medical devices and products. Whilst many medical applications of AM have been explored and physical properties of the resulting parts have been studied, the characterisation of AM materials in computed tomography has not been explored. The aim of this study was to determine the CT number of commonly used AM materials. There are many potential applications of the information resulting from this study in the design and manufacture of wearable medical devices, implants, prostheses and medical imaging test phantoms. A selection of 19 AM material samples were CT scanned and the resultant images analysed to ascertain the materials' CT number and appearance in the images. It was found that some AM materials have CT numbers very similar to human tissues, FDM, SLA and SLS produce samples that appear uniform on CT images and that 3D printed materials show a variation in internal structure.

  15. Portable Digital Radiography and Computed Tomography Manual

    SciTech Connect

    Not Available

    2007-11-01

    This user manual describes the function and use of the portable digital radiography and computed tomography (DRCT) scanner. The manual gives a general overview of x-ray imaging systems along with a description of the DRCT system. An inventory of the all the system components, organized by shipping container, is also included. In addition, detailed, step-by-step procedures are provided for all of the exercises necessary for a novice user to successfully collect digital radiographs and tomographic images of an object, including instructions on system assembly and detector calibration and system alignment. There is also a short section covering the limited system care and maintenance needs. Descriptions of the included software packages, the DRCT Digital Imager used for system operation, and the DRCT Image Processing Interface used for image viewing and tomographic data reconstruction are given in the appendixes. The appendixes also include a cheat sheet for more experienced users, a listing of known system problems and how to mitigate them, and an inventory check-off sheet suitable for copying and including with the machine for shipment purposes.

  16. Shape threat detection via adaptive computed tomography

    NASA Astrophysics Data System (ADS)

    Masoudi, Ahmad; Thamvichai, Ratchaneekorn; Neifeld, Mark A.

    2016-05-01

    X-ray Computed Tomography (CT) is used widely for screening purposes. Conventional x-ray threat detection systems employ image reconstruction and segmentation algorithms prior to making threat/no-threat decisions. We find that in many cases these pre-processing steps can degrade detection performance. Therefore in this work we will investigate methods that operate directly on the CT measurements. We analyze a fixed-gantry system containing 25 x-ray sources and 2200 photon counting detectors. We present a new method for improving threat detection performance. This new method is a so-called greedy adaptive algorithm which at each time step uses information from previous measurements to design the next measurement. We utilize sequential hypothesis testing (SHT) in order to derive both the optimal "next measurement" and the stopping criterion to insure a target probability of error Pe. We find that selecting the next x-ray source according to such a greedy adaptive algorithm, we can reduce Pe by a factor of 42.4× relative to the conventional measurement sequence employing all 25 sources in sequence.

  17. Cosine fitting radiography and computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Pan-Yun; Zhang, Kai; Huang, Wan-Xia; Yuan, Qing-Xi; Wang, Yan; Ju, Zai-Qiang; Wu, Zi-Yu; Zhu, Pei-Ping

    2015-06-01

    A new method in diffraction-enhanced imaging computed tomography (DEI-CT) that follows the idea developed by Chapman et al. [Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. Biol. 42 2015] in 1997 is proposed in this paper. Merged with a “reverse projections” algorithm, only two sets of projection datasets at two defined orientations of the analyzer crystal are needed to reconstruct the linear absorption coefficient, the decrement of the real part of the refractive index and the linear scattering coefficient of the sample. Not only does this method reduce the delivered dose to the sample without degrading the image quality, but, compared with the existing DEI-CT approaches, it simplifies data-acquisition procedures. Experimental results confirm the reliability of this new method for DEI-CT applications. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the National Natural Science Foundation of China (Grant Nos. 11205189, 11375225, and U1332109), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42, Y4545320Y2, and 542014IHEPZZBS50659).

  18. Industrial computed tomography image size measurement

    NASA Astrophysics Data System (ADS)

    Ping, Chen; Jin-Xiao, Pan; Bin, Liu

    2009-09-01

    As one of the most useful modern detection technologies, Industrial Computed Tomography (ICT) image size measurement can correctly non-destructively measure the size of workpieces' inner construction, and it is considered as the standard for quality assurance and reverse engineering. In view of the advantages and disadvantages compared to conventional methods, this paper improves the precision of image size measurement with a new algorithm that uses an approximate function to describe edge degradation. First, this algorithm constructs the approximate function and determines the optimal point of edge detection, based on image intensity and inflexions. Then, in order to accurately extract the image edge, this algorithm is used to revise the primary image, completing construction of the CT image. Excellent results are obtained from simulations and experiments. The experimental results indicate that the relative error is 2% for the CT image when the step evolution of the image edge is pooled. The relative error of this method is decreased by as much as 1.5% compared to wavelet transformation and ridgelet transformation. Therefore, this new algorithm demonstrates increased effectiveness in extracting an accurate measurement of the CT image edge.

  19. Three energy computed tomography with synchrotron radiation

    SciTech Connect

    Menk, R.H.; Thomlinson, W.; Zhong, Z.; Charvet, A.M.; Arfelli, F. |; Chapman, L.

    1997-09-01

    Preliminary experiments for digital subtraction computed tomography (CT) at the K-edge of iodine (33.1 keV) were carried out at SMERF (Synchrotron Medical Research Facility X17B2) at the National Synchrotron Light Source, Brookhaven National Laboratory. The major goal was to evaluate the availability of this kind of imaging for in vivo neurological studies. Using the transvenous coronary angiography system, CT images of various samples and phantoms were taken simultaneously at two slightly different energies bracketing the K-absorption edge of iodine. The logarithmic subtraction of the two images resulted in the contrast enhancement of iodine filled structures. An additional CT image was taken at 99.57 keV (second harmonic of the fundamental wave). The third energy allowed the calculation of absolute iodine, tissue and bone images by means of a matrix inversion. A spatial resolution of 0.8 LP/mm was measured in single energy images and iodine concentrations down to 0.082 mg/ml in a 1/4 diameter detail were visible in the reconstructed subtraction image.

  20. Multiple pencil beams for proton computed tomography

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihisa; Abe, Isao

    1987-12-01

    A device for generating and scanning multiple pencil beams has been designed and constructed for proton computed tomography (CT). It consists of two sets of brass blocks with slits attached to cylinders moved by highly pressurized oil. One set of slits is placed in front of a specimen in order to chop multiple pencil beams from a parallel beam. The other set of slits is placed behind the specimen to stop protons scattered at a large angle in the object to improve the spatial resolution of proton CT. The slits are moved to scan the object. Using the multiple-beam-scanning method, the scanning time of CT was reduced to less than eight minutes. The displacement of each block was controlled by an oil-servo system. Positional accuracy of less than 35 μm (rms) has been achieved in a full stroke of 30 or 39 mm under the condition that the load weight was about 26 kg and the maximum instantaneous speed of the block was about 20 cm/s. The device was used to perform the proton CT and was found to work well.

  1. Numerical Simulation for Generalized Aurora Computed Tomography

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Aso, T.; Gustavsson, B.; Tanabe, K.; Kadokura, A.; Ogawa, Y.

    2007-12-01

    The conventional method of aurora tomographic inversion is extended to a more generalized aurora computed tomography (CT). The generalized aurora CT is the method to reconstruct energy distribution of auroral precipitating electrons from multimodal data, such as electron density enhancement from the EISCAT radar and cosmic noise absorption (CNA) from imaging riometer, as well as auroral images. In this study, we evaluate the feasibility of the generalized aurora CT by numerical simulation. The forward problem is based on model calculation of auroral emission and electron density enhancement for incident electrons and the mapping of the results to the instruments. Assuming the energy and spatial distributions of the incident electrons, the three-dimensional (3D) distributions of volume emission rate and electron density are calculated. The data observed with the ALIS (Auroral Large Imaging System) cameras, the EISCAT radar, and the imaging riometer are obtained by mapping the volume emission rate and electron density to each instrument. We attempt to retrieve the initial distribution of precipitating electrons from the simulated observational data. The inversion analysis is based on the Bayesian inference, in which the problem is formulated as the maximization problem of posterior probability. The results are compared between the reconstruction from only auroral images and that from multimodal data.

  2. Computed tomography imaging and angiography - principles.

    PubMed

    Kamalian, Shervin; Lev, Michael H; Gupta, Rajiv

    2016-01-01

    The evaluation of patients with diverse neurologic disorders was forever changed in the summer of 1973, when the first commercial computed tomography (CT) scanners were introduced. Until then, the detection and characterization of intracranial or spinal lesions could only be inferred by limited spatial resolution radioisotope scans, or by the patterns of tissue and vascular displacement on invasive pneumoencaphalography and direct carotid puncture catheter arteriography. Even the earliest-generation CT scanners - which required tens of minutes for the acquisition and reconstruction of low-resolution images (128×128 matrix) - could, based on density, noninvasively distinguish infarct, hemorrhage, and other mass lesions with unprecedented accuracy. Iodinated, intravenous contrast added further sensitivity and specificity in regions of blood-brain barrier breakdown. The advent of rapid multidetector row CT scanning in the early 1990s created renewed enthusiasm for CT, with CT angiography largely replacing direct catheter angiography. More recently, iterative reconstruction postprocessing techniques have made possible high spatial resolution, reduced noise, very low radiation dose CT scanning. The speed, spatial resolution, contrast resolution, and low radiation dose capability of present-day scanners have also facilitated dual-energy imaging which, like magnetic resonance imaging, for the first time, has allowed tissue-specific CT imaging characterization of intracranial pathology.

  3. A Detector for Proton Computed Tomography

    SciTech Connect

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak – the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  4. Loss of consciousness: when to perform computed tomography?

    PubMed

    Halley, Michelle K; Silva, Patricia D; Foley, Jennifer; Rodarte, Alexander

    2004-05-01

    To determine the diagnostic value of physical examination (including neurologic exam) for positive computed tomography scan findings in children with closed head injury, Glasgow Coma Scale score 13-15 in the emergency department, and loss of consciousness or amnesia. Prospective descriptive study. A large, tertiary, pediatric trauma center in San Diego County. Children ages 2-16 with an isolated closed head injury, history of loss of consciousness or amnesia, and Glasgow Coma Scale 13-15 who were referred for pediatric trauma evaluation and received a head computed tomography as part of this evaluation. A standardized physical examination including skull/scalp exam, pupils, tympanic membrane, and brief neurologic exam was documented on each patient. Subjects age 2-16 being evaluated by the pediatric trauma team for closed head injury with loss of consciousness or amnesia and Glasgow Coma Scale 13-15 received a standardized physical exam, noncontrast head computed tomography scan, and follow-up telephone call at 4-6 wks. Outcome variables include intracranial injury visualized on computed tomography scan and need for neurosurgical intervention. Ninety-eight subjects were enrolled in the study over a 1-yr period. Computed tomography scans revealed evidence of intracranial injury in 13 of 98 subjects (13%). Normal examination increased the probability of a normal computed tomography scan from.87 pretest to.90 posttest. Four of 38 subjects with normal examination were noted to have evidence of intracranial injury on computed tomography. These four subjects did not require neurosurgical intervention. Two of 98 subjects underwent neurosurgical procedures. One intracranial pressure monitor was placed for decreasing level of consciousness. One subject underwent surgical elevation of a depressed skull fracture. Detailed clinical examination is of no diagnostic value in detecting intracranial injuries found on head computed tomography scan. Patients with observed loss of

  5. 18F-fluorodeoxyglucose Positron Emisson Tomography/Computed Tomography Guided Conformal Brachytherapy for Cervical Cancer

    SciTech Connect

    Nam, Heerim; Huh, Seung Jae; Ju, Sang Gyu; Park, Won; Lee, Jeong Eun; Choi, Joon Young; Kim, Byung-Tae; Kim, Chan Kyo; Park, Byung Kwan

    2012-09-01

    Purpose: To evaluate the feasibility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-guided conformal brachytherapy treatment planning in patients with cervical cancer. Methods and Materials: Pretreatment FDG-PET/CT was performed for 12 patients with cervical cancer. Brachytherapy simulation was performed after an external-beam radiation therapy median dose of 4140 cGy. Patients underwent FDG-PET/CT scans with placement of tandem and ovoid applicators. The gross tumor volume (GTV) was determined by adjusting the window and level to a reasonable value and outlining the edge of the enhancing area, which was done in consultation with a nuclear medicine physician. A standardized uptake value profile of the tumor margin was taken for each patient relative to the maximum uptake value of each tumor and analyzed. The plan was designed to deliver 400 cGy to point A (point A plan) or to cover the clinical target volume (CTV) (PET/CT plan). Results: The median dose that encompassed 95% of the target volume (D95) of the CTV was 323.0 cGy for the point A plan vs 399.0 cGy for the PET/CT plan (P=.001). The maximum standardized uptake values (SUV{sub max}) of the tumors were reduced by a median of 57% (range, 13%-80%). All but 1 patient presented with discernable residual uptake within the tumors. The median value of the thresholds of the tumors contoured by simple visual analysis was 41% (range, 23%-71%). Conclusions: In this study, the PET/CT plan was better than the conventional point A plan in terms of target coverage without increasing the dose to the normal tissue, making optimized 3-dimensional brachytherapy treatment planning possible. In comparison with the previously reported study with PET or CT alone, we found that visual target localization was facilitated by PET fusion on indeterminate CT masses. Further studies are needed to characterize the metabolic activity detected during radiation therapy for more reliable targeting.

  6. Blueprint of the certification examination in cardiovascular computed tomography.

    PubMed

    Min, James K; Abbara, Suhny; Berman, Daniel S; Edgertond, Dawn M; Gerson, Myron C; Halliburton, Sandra; Hines, Jerome L; Hodgson, John M; Lesser, John R; Lennond, Lorraine; Taylor, Allen J; Wann, L Samuel; Ziffer, Jack A; Cerqueira, Manuel D

    2008-01-01

    Physician certification is critical in all areas of cardiovascular imaging to assure optimal performance and interpretation of quality studies for patient diagnosis and management. This is especially important in the field of cardiovascular computed tomography where practitioners have varied training and expertise that may not cover the full range of skills in the technical, image interpretative and clinical application of the results for patient management. The Certification Board of Cardiovascular Computed Tomography was developed to test the minimal level of competence of physicians performing cardiovascular computed tomography. In this article, the process of defining the content areas, determining candidate eligibility and the process of examination development and testing will be defined.

  7. Abdominal alterations in disseminated paracoccidioidomycosis: computed tomography findings*

    PubMed Central

    Vermelho, Marli Batista Fernandes; Correia, Ademir Silva; Michailowsky, Tânia Cibele de Almeida; Suzart, Elizete Kazumi Kuniyoshi; Ibanês, Aline Santos; Almeida, Lanamar Aparecida; Khoury, Zarifa; Barba, Mário Flores

    2015-01-01

    Objective To evaluate the incidence and spectrum of abdominal computed tomography imaging findings in patients with paracoccidioidomycosis. Materials and Methods Retrospective analysis of abdominal computed tomography images of 26 patients with disseminated paracoccidioidomycosis. Results Abnormal abdominal tomographic findings were observed in 18 patients (69.2%), while no significant finding was observed in the other 8 (30.8%) patients. Conclusion Computed tomography has demonstrated to play a relevant role in the screening and detection of abdominal abnormalities in patients with disseminated paracoccidioidomycosis. PMID:25987748

  8. Computed tomography: the investigation of choice for aortic dissection?

    PubMed Central

    Singh, H; Fitzgerald, E; Ruttley, M S

    1986-01-01

    Computed tomography has become established as complementary to aortography in the investigation of patients with suspected aortic dissection. Two cases of dissecting aneurysm are reported in which extensive aortography failed to show evidence of dissection. In both cases dissection was demonstrated by computed tomography. The diagnosis was confirmed in one case at operation and in the other case by follow up. It is suggested that computed tomography is the diagnostic method of first choice in aortic dissection. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:3730218

  9. Non-uniform projection angle processing in computed tomography

    NASA Astrophysics Data System (ADS)

    Simo, Yanic; Tayag, Tristan J.

    In this paper, we present a novel approach for the collection of computed tomography data. Non-uniform increments in projection angle may be used to reduce data acquisition time with minimal reduction in the accuracy of the reconstructed profile. The key is to exploit those projection angles which correspond to regions where the object contains few high spatial frequency components. This technique is applicable to optical phase computed tomography, as well as X-ray computed tomography. We present simulation results on intraocular lenses used in cataract surgery.

  10. The Utility of Dual Energy Computed Tomography in Musculoskeletal Imaging

    PubMed Central

    Khanduri, Sachin; Goyal, Aakshit; Singh, Bhumika; Chaudhary, Mriganki; Sabharwal, Tushar; Jain, Shreshtha; Sharma, Hritik

    2017-01-01

    The objective of this article is to review the mechanisms, advantages and disadvantages of dual energy computed tomography (DECT) over conventional tomography (CT) in musculoskeletal imaging as DECT provides additional information about tissue composition and artifact reduction. This provides clinical utility in detection of urate crystals, bone marrow edema, reduction of beam hardening metallic artifact, and ligament and tendon analysis. PMID:28900555

  11. Computed tomography quality indexes: evaluation experience

    NASA Astrophysics Data System (ADS)

    Strocchi, Sabina; Vite, Cristina; Novario, Raffaele; Cacciatori, Marco; Frigerio, Giovanna; Conte, Leopoldo

    2009-02-01

    Aim of this work was to identify proper figures of merit (FoM's) to quantitatively and objectively assess the whole acquisition process of a CT image and to evaluate which are more significant. Catphan® phantom images where acquired with a 64 slices computed tomography system, with head and abdomen protocols. Automatic exposure modulation system was on, with different settings. We defined three FoM's (Q, Q1 and Q2) including image quality parameters and acquisition modalities; two of them (Q and Q1) include also a radiation dose quantity, the third (Q2) does not. Then we drew from these the comparable FoM's (CNR, Q1 *, Q2), that do not have dose in their definitions, in order to investigate how they depend on perceived image quality. The FoM's were evaluated for each series. At the same time, expert observers evaluated the number of low contrast inserts seen in the phantom' images. The considered CNR, Q1*, Q2 FoM's are linearly related to the perceived image quality for both the acquisition protocols (head: r2=0.91;0.94;0.91; abdomen: r2=0.93;0.93;0.85). Q and Q1 values analysis shows that these FoM's can distinguish between different acquisition modalities (head or abdomen) with statistically significant difference (p<0.05). The studied FoM's can be usefully used to quantitatively and objectively assess the whole CT image acquisition process. Those FoM's including also radiation dose (Q, Q1) can be used to objectively quantify the equilibrium between image quality and radiation dose for a certain acquisition modality.

  12. Lung in Dengue: Computed Tomography Findings

    PubMed Central

    Rodrigues, Rosana Souza; Brum, Ana Livia Garcia; Paes, Marciano Viana; Póvoa, Tiago Fajardo; Basilio-de-Oliveira, Carlos Alberto; Marchiori, Edson; Borghi, Danielle Provençano; Ramos, Grazielle Viana; Bozza, Fernando Augusto

    2014-01-01

    Background Dengue is the most important mosquito-borne viral disease in the world. Dengue virus infection may be asymptomatic or lead to undifferentiated fever, dengue fever with or without warning signs, or severe dengue. Lower respiratory symptoms are unusual and lung-imaging data in patients with dengue are scarce. Methodology/Principal Findings To evaluate lung changes associated with dengue infection, we retrospectively analyzed 2,020 confirmed cases of dengue. Twenty-nine of these patients (11 females and 18 males aged 16–90 years) underwent chest computed tomography (CT), which yielded abnormal findings in 17 patients: 16 patients had pleural effusion (the sole finding in six patients) and 11 patients had pulmonary abnormalities. Lung parenchyma involvement ranged from subtle to moderate unilateral and bilateral abnormalities. The most common finding was ground-glass opacity in eight patients, followed by consolidation in six patients. Less common findings were airspace nodules (two patients), interlobular septal thickening (two patients), and peribronchovascular interstitial thickening (one patient). Lung histopathological findings in four fatal cases showed thickening of the alveolar septa, hemorrhage, and interstitial edema. Conclusions/Significance In this largest series involving the use of chest CT to evaluate lung involvement in patients with dengue, CT findings of lower respiratory tract involvement were uncommon. When abnormalities were present, pleural effusion was the most frequent finding and lung involvement was often mild or moderate and bilateral. Extensive lung abnormalities are infrequent even in severe disease and when present should lead physicians to consider other diagnostic possibilities. PMID:24836605

  13. Dose in x-ray computed tomography.

    PubMed

    Kalender, Willi A

    2014-02-07

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  14. Patient dose considerations in computed tomography examinations

    PubMed Central

    Tsalafoutas, Ioannis A; Koukourakis, Georgios V

    2010-01-01

    Ionizing radiation is extensively used in medicine and its contribution to both diagnosis and therapy is undisputable. However, the use of ionizing radiation also involves a certain risk since it may cause damage to tissues and organs and trigger carcinogenesis. Computed tomography (CT) is currently one of the major contributors to the collective population radiation dose both because it is a relatively high dose examination and an increasing number of people are subjected to CT examinations many times during their lifetime. The evolution of CT scanner technology has greatly increased the clinical applications of CT and its availability throughout the world and made it a routine rather than a specialized examination. With the modern multislice CT scanners, fast volume scanning of the whole human body within less than 1 min is now feasible. Two dimensional images of superb quality can be reconstructed in every possible plane with respect to the patient axis (e.g. axial, sagital and coronal). Furthermore, three-dimensional images of all anatomic structures and organs can be produced with only minimal additional effort (e.g. skeleton, tracheobronchial tree, gastrointestinal system and cardiovascular system). All these applications, which are diagnostically valuable, also involve a significant radiation risk. Therefore, all medical professionals involved with CT, either as referring or examining medical doctors must be aware of the risks involved before they decide to prescribe or perform CT examinations. Ultimately, the final decision concerning justification for a prescribed CT examination lies upon the radiologist. In this paper, we summarize the basic information concerning the detrimental effects of ionizing radiation, as well as the CT dosimetry background. Furthermore, after a brief summary of the evolution of CT scanning, the current CT scanner technology and its special features with respect to patient doses are given in detail. Some numerical data is also

  15. Radiological protection in paediatric computed tomography.

    PubMed

    Khong, P-L; Frush, D; Ringertz, H

    2012-01-01

    It is well known that paediatric patients are generally at greater risk for the development of cancer per unit of radiation dose compared with adults, due both to the longer life expectancy for any harmful effects of radiation to manifest, and the fact that developing organs and tissues are more sensitive to the effects of radiation. Multiple computed tomography (CT) examinations may cumulatively involve absorbed doses to organs and tissues that can sometimes approach or exceed the levels known from epidemiological studies to significantly increase the probability of cancer development. Radiation protection strategies include rigorous justification of CT examinations and the use of imaging techniques that are non-ionising, followed by optimisation of radiation dose exposure (according to the 'as low as reasonably achievable' principle). Special consideration should be given to the availability of dose reduction technology when acquiring CT scanners. Dose reduction should be optimised by adjustment of scan parameters (such as mAs, kVp, and pitch) according to patient weight or age, region scanned, and study indication (e.g. images with greater noise should be accepted if they are of sufficient diagnostic quality). Other strategies include restricting multiphase examination protocols, avoiding overlapping of scan regions, and only scanning the area in question. Newer technologies such as tube current modulation, organ-based dose modulation, and iterative reconstruction should be used when appropriate. Attention should also be paid to optimising study quality (e.g. by image post-processing to facilitate radiological diagnoses and interpretation). Finally, improving awareness through education and advocacy, and further research in paediatric radiological protection are important to help reduce patient dose. Copyright © 2012. Published by Elsevier Ltd.

  16. Predicting cancer risks from dental computed tomography.

    PubMed

    Wu, T-H; Lin, W-C; Chen, W-K; Chang, Y-C; Hwang, J-J

    2015-01-01

    Dental computed tomography (CT) has become a common tool when carrying out dental implants, yet there is little information available on its associated cancer risk. The objective of this study was to estimate the lifetime-attributable risk (LAR) of cancer incidence that is associated with the radiation dose from dental CT scans and to evaluate the effect of scan position, sex, and age on the cancer risk. This retrospective cohort study involved 505 participants who underwent CT scans. The mean effective doses for male and female patients in the maxilla group were 408 and 389 µSv (P = 0.055), respectively, whereas the mean effective doses for male and female patients in the mandible groups were 475 and 450 µSv (P < 0.001), respectively. The LAR for cancer incidence after mandible CT scanning varied from 1 in 16,196 for a 30-y-old woman to 1 in 114,680 for a 70-y-old man. The organ-specific cancer risks for thyroid cancer, other cancers, leukemia, and lung cancer account for 99% of the LAR. Among patients of all ages, the estimated LAR of a mandible scan was higher than that of a maxilla scan. Furthermore, the LAR for female thyroid cancer had a peak before age 45 y. The risk for a woman aged 30 y is roughly 8 times higher than that of a woman aged 50 y. After undergoing a dental CT scan, the possible cancer risks related to sex and age across various different anatomical regions are not similar. The greatest risk due to a dental CT scan is for a mandible scan when the woman is younger than 45 y. Given the limits of the sample size, machine parameters, and the retrospective nature of this study, the results need to be interpreted within the context of this patient population. Future studies will be of value to corroborate these findings. © International & American Associations for Dental Research 2014.

  17. Single-photon emission computed tomography/computed tomography in brain tumors.

    PubMed

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  18. Atlas of computed body tomography: normal and abnormal anatomy

    SciTech Connect

    Chiu, L.C.; Schapiro, R.L.

    1980-01-01

    This atlas contains comparative sections on normal and abnormal computed tomography of the neck, chest, abdomen, pelvis, upper and lower limbs, fascia, and peritoneum. Also included is a subject index to aid in the identification of abnormal scans. (DLS)

  19. Computed tomography enteroclysis in the diagnosis of intestinal diseases.

    PubMed

    Engin, Gulgun

    2008-01-01

    The role of computed tomography (CT) enteroclysis in the imaging of small bowel diseases is expanded with recent technological advances in multidetector CT system. Computed tomography enteroclysis is the examination of choice for patients with symptoms of intermittent small bowel obstruction, especially when there is a history of prior complex abdominal surgery, abdominal tumor, radiation therapy, and also in high grade obstructions with suspicion of extraintestinal internal fistula. Computed tomography enteroclysis is becoming the first-line modality for the evaluation of advanced and complicated small bowel Crohn disease. Computed tomography enteroclysis can also become an important complementary imaging technique to capsule endoscopy in the assessment of small bowel neoplasms and occult gastrointestinal hemorrhage. In this study, the technique and clinical applications of CT enteroclysis are reviewed; its advantages and limitations compared with the other imaging techniques and capsule endoscopy are discussed.

  20. Perfusion computed tomography to assist decision making for stroke thrombolysis

    PubMed Central

    Levi, Christopher; Krishnamurthy, Venkatesh; McElduff, Patrick; Miteff, Ferdi; Spratt, Neil J.; Bateman, Grant; Donnan, Geoffrey; Davis, Stephen; Parsons, Mark

    2015-01-01

    The use of perfusion imaging to guide selection of patients for stroke thrombolysis remains controversial because of lack of supportive phase three clinical trial evidence. We aimed to measure the outcomes for patients treated with intravenous recombinant tissue plasminogen activator (rtPA) at a comprehensive stroke care facility where perfusion computed tomography was routinely used for thrombolysis eligibility decision assistance. Our overall hypothesis was that patients with ‘target’ mismatch on perfusion computed tomography would have improved outcomes with rtPA. This was a prospective cohort study of consecutive ischaemic stroke patients who fulfilled standard clinical/non-contrast computed tomography eligibility criteria for treatment with intravenous rtPA, but for whom perfusion computed tomography was used to guide the final treatment decision. The ‘real-time’ perfusion computed tomography assessments were qualitative; a large perfusion computed tomography ischaemic core, or lack of significant perfusion lesion-core mismatch were considered relative exclusion criteria for thrombolysis. Specific volumetric perfusion computed tomography criteria were not used for the treatment decision. The primary analysis compared 3-month modified Rankin Scale in treated versus untreated patients after ‘off-line’ (post-treatment) quantitative volumetric perfusion computed tomography eligibility assessment based on presence or absence of ‘target’ perfusion lesion-core mismatch (mismatch ratio >1.8 and volume >15 ml, core <70 ml). In a second analysis, we compared outcomes of the perfusion computed tomography-selected rtPA-treated patients to an Australian historical cohort of non-contrast computed tomography-selected rtPA-treated patients. Of 635 patients with acute ischaemic stroke eligible for rtPA by standard criteria, thrombolysis was given to 366 patients, with 269 excluded based on visual real-time perfusion computed tomography assessment. After off

  1. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography.

    PubMed

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-03-01

    Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.

  2. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography

    PubMed Central

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-01-01

    Objectives: Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Materials and Methods: Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). Results: There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. Conclusions: CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations. PMID:27928239

  3. Image analysis of particle field by means of computed tomography

    NASA Technical Reports Server (NTRS)

    Nakayama, Mitsushige

    1987-01-01

    In order to visualize and investigate spray structures, computed tomography technique is applied to analyze droplet information. From the transmitted light intensity through the spray and/or the data of particle size distribution obtained from a Fraunhofer diffraction principle, the quantitative volume of spray droplet or local particle size was calculated and the reconstruction of spray structures was made. The background of computed tomography is described along with some experimental results of the structure of intermittent spray such as diesel spray.

  4. Advances in equine computed tomography and use of contrast media.

    PubMed

    Puchalski, Sarah M

    2012-12-01

    Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Cone beam computed tomography in Endodontics - a review.

    PubMed

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics.

  6. Pleuropancreatic fistula: endoscopic retrograde cholangiopancreatography and computed tomography

    SciTech Connect

    McCarthy, S.; Pellegrini, C.A.; Moss, A.A.; Way, L.W.

    1984-06-01

    The complementary use of endoscopic retrograde cholangiopancreatography and computed tomography in the diagnosis and management of pleuropancreatic fistulas is described in relation to four cases in which computed tomography revealedthe thoracic extension of a pancreatic fistula not demonstrable by endoscopic retrograde cholangiopancreatography, although the latter indicated an abnormal pancreatic duct. The complementary use of both techniques may be necessary to define the pathologic anatomy so that the appropriate therapy, particularly the surgical approach, can be decided.

  7. Computer-Assisted 3-Dimensional Reconstructions of Scaphoid Fractures and Nonunions With and Without the Use of Patient-Specific Guides: Early Clinical Outcomes and Postoperative Assessments of Reconstruction Accuracy.

    PubMed

    Schweizer, Andreas; Mauler, Flavien; Vlachopoulos, Lazaros; Nagy, Ladislav; Fürnstahl, Philipp

    2016-01-01

    To present results regarding the accuracy of the reduction of surgically reconstructed scaphoid nonunions or fractures using 3-dimensional computer-based planning with and without patient-specific guides. Computer-based surgical planning was performed with computed tomography (CT) data on 22 patients comparing models of the pathological and the opposite uninjured scaphoid in 3 dimensions. For group 1 (9 patients), patient-specific guides were designed and manufactured using additive manufacturing technology. During surgery, the guides were used to define the orientation of the reduced fragments. The scaphoids in group 2 (13 patients) were reduced with the conventional freehand technique. All scaphoids in both groups were fixed with a headless compression screw or K-wires, and all bone defects (except one) were filled with autologous bone grafts or vascularized grafts. Postoperative CT scans were acquired 2 or more months after the operations to monitor consolidation and compare the final result with the preoperative plan. The clinical results and accuracy of the reconstructions were compared. In group 1, 8 of 9 scaphoids healed after 2 to 6 months, and partial nonunion after 9 months was observed in one patient. In group 2, 11 of 13 scaphoids healed between 2 and 34 months whereas 2 scaphoids did not consolidate. Comparison of the preoperative and postoperative 3-dimensional data revealed an average residual displacement of 7° (4° in flexion-extension, 4° in ulnar-radial deviation, and 3° in pronation-supination) in group 1. In group 2, residual displacement after surgery was 26° (22° in flexion-extension, 12° in ulnar-radial deviation, and 7° in pronation-supination). The difference in the accuracy of reconstruction was significant. Although the scaphoid is small, patient-specific guides can be used to perform scaphoid reconstructions. When the guides were used, the reconstructions were significantly more anatomic compared with those resulting from the

  8. Cone-beam computed tomography in endodontics: are we there yet?

    PubMed

    Nesari, Royeen; Rossman, Louis E; Kratchman, Samuel I

    2009-01-01

    From digital radiography units to office computer systems, there are several pieces of equipment that make up today's high-tech dental office. Recently, advances in dental imaging have allowed cone-beam computed tomography (CBCT), which is a form of 3-dimensional radiography, to gain increasing popularity as another major office component. In consideration of the current economic conditions, cost has become a definite obstacle for many practitioners. With several brands available, this technology has nonetheless generated considerable attention for use in presurgical treatment planning and diagnosis. However, is there enough evidence for its use in endodontics? This article aims to bring to light the many exciting features of CBCT, including its operation, impact, and feasibility in endodontics.

  9. [Challenges for computed tomography of overweight patients].

    PubMed

    Bamberg, F; Marcus, R; Petersilka, M; Nikolaou, K; Becker, C R; Reiser, M F; Johnson, T

    2011-05-01

    In morbidly obese patients, computed tomography frequently represents the only viable option for non-invasive imaging diagnostics. The aim of this study was to analyze the weight limits, dose and image quality with standard CT scanners and to determine the diagnostic value and dose with a dual source XXL mode.A total of 15 patients (average body weight 189.6 ± 42 kg) were retrospectively identified who had been examined with the XXL mode. Of these patients 7 (average body weight 176.4 ± 56 kg) had been examined using both the XXL and standard protocols allowing for an intraindividual comparison in this subcollective. Additionally 14 patients weighing between 90 and 150 kg (average 106.1 ± 19 kg) examined with standard protocols were included as references. Dose, image noise and subjectively assessed image quality (rating scale 1-4) were determined. Additionally, a large abdomen phantom of 48 cm diameter was examined with both protocols at equivalent tube current-time product in order to compare the dose efficiency.The patient groups differed significantly in dose (CTDI(vol) XXL 72.9 ± 23 versus standard 16.7 ± 11 mGy; intraindividual 64.1 ± 20 versus 27.0 ± 15 mGy). The image noise was generally somewhat higher in the XXL group but significantly lower in the intraindividual comparison (liver 24.2 ± 14 HU versus 36.3 ± 20 HU; p = 0.03; fat 15.5 ± 8 HU versus 26.2 ± 12 HU; p=0.02). With ratings of 1.9 ± 0.7 and 1.8 ± 0.7 image quality did not differ significantly in general, whereas there was a clear difference in the intraindividual comparison (1.8 ± 0.8 versus 3.0 ± 1.2) and only the XXL protocol achieved diagnostic quality in all cases, while 43% of the examinations with the standard protocol were rated as non-diagnostic. The quantification of dose efficiency in the phantom scans yielded no significant difference between the protocols.Up to 150 kg body weight, CT can be performed with the standard technique at 120 kVp with tube current modulation

  10. Skeletal dosimetry in cone beam computed tomography

    SciTech Connect

    Walters, B. R. B.; Ding, G. X.; Kramer, R.; Kawrakow, I.

    2009-07-15

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm{sup 3}, with 17x17x17 {mu}m{sup 3} microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens ({approx}8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only {approx}50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  11. Application of Computer Tomography for Life Detection

    NASA Technical Reports Server (NTRS)

    Tsapin, A.; Nealson, K.

    2001-01-01

    Perhaps one of the most fundamentally difficult challenges facing those who would search for life is that of scale determination. Spatial scales of life on Earth range over more than 15 orders of magnitude in mass and volume, and more than 8 orders of magnitude in 2 dimensional space. If the distribution of life is sparse in comparison to the background on which it is found, then the choice of the right scale is critical to finding that life. But how does one identify the proper scale? To put this in other words, how does one recognize the "haystacks" in which the needles (biosignatures and evidence of life) might be most profitably searched for? The problem is further exacerbated when conditions get extreme because much of the life moves from the clement surface environment into the pores and more clement environments inside of rocks, minerals and soils. Once encased in their lithic homes, these microbes become nearly impossible to study by standard techniques because of the opacity of the rocks. It is this problem that we propose to address in the work proposed here. Computer Tomography (CT) has been a very valuable tool in medicine, where the best resolution available has typically been of the order of about 0.5 mm. However, to adapt the approach for life detection of microbial endoliths, the resolution needs to be moved to the micrometer and even submicrometer levels. Thus for the studies proposed here, we begin with a commercially available instrument that can yield resolution of approximately 10 micrometers. The rational for this is twofold: first, this is the "state of the art" in laboratory instruments; and second, that while the usual size of a microbial cell is about 1 micron, microorganisms tend to live in communities that usually exceed the 10 micrometer size range. The resolution also depends on the sample size itself, so having a small lab instrument into which small samples can be placed will be beneficial to the resolution. We have now used several

  12. Application of Computer Tomography for Life Detection

    NASA Technical Reports Server (NTRS)

    Tsapin, A.; Nealson, K.

    2001-01-01

    Perhaps one of the most fundamentally difficult challenges facing those who would search for life is that of scale determination. Spatial scales of life on Earth range over more than 15 orders of magnitude in mass and volume, and more than 8 orders of magnitude in 2 dimensional space. If the distribution of life is sparse in comparison to the background on which it is found, then the choice of the right scale is critical to finding that life. But how does one identify the proper scale? To put this in other words, how does one recognize the "haystacks" in which the needles (biosignatures and evidence of life) might be most profitably searched for? The problem is further exacerbated when conditions get extreme because much of the life moves from the clement surface environment into the pores and more clement environments inside of rocks, minerals and soils. Once encased in their lithic homes, these microbes become nearly impossible to study by standard techniques because of the opacity of the rocks. It is this problem that we propose to address in the work proposed here. Computer Tomography (CT) has been a very valuable tool in medicine, where the best resolution available has typically been of the order of about 0.5 mm. However, to adapt the approach for life detection of microbial endoliths, the resolution needs to be moved to the micrometer and even submicrometer levels. Thus for the studies proposed here, we begin with a commercially available instrument that can yield resolution of approximately 10 micrometers. The rational for this is twofold: first, this is the "state of the art" in laboratory instruments; and second, that while the usual size of a microbial cell is about 1 micron, microorganisms tend to live in communities that usually exceed the 10 micrometer size range. The resolution also depends on the sample size itself, so having a small lab instrument into which small samples can be placed will be beneficial to the resolution. We have now used several

  13. Investigation of coherent-scatter computed tomography

    NASA Astrophysics Data System (ADS)

    Westmore, Michael S.; Fenster, Aaron; Cunningham, Ian A.

    1995-05-01

    Conventional computed tomography (CT) images are `maps' of the x ray linear attenuation coefficient within a slice through an object. A novel approach to CT is being developed which instead produces tomographic images based on an object's low-angle (0 - 10 degree(s)) x-ray diffraction properties. The coherent-scatter cross sections of many materials vary greatly, and this coherent-scatter CT (CSCT) system gives material-specific information on this basis. The goal of this research is to produce tomographic maps of bone-mineral content (BMC), first in laboratory specimens, and potentially in patients. The concept of reconstructing tomographic images using coherently scattered x rays was first demonstrated by Harding et al. The approach described here is a modification of their method. First generation CT geometry is used in which a diffraction pattern is acquired for each pencil-beam using a CsI image intensifier coupled to a CCD. Each pattern is sectioned into concentric annular rings so that the integrated signal in each ring gives the scatter intensity at a particular scatter angle, integrated along the path through the object. An image is reconstructed for each ring, resulting in a series of tomographic images corresponding to the scatter intensity at a series of scatter angles. A test phantom was imaged (70 kVp, 50 mAs per exposure, 100 mSv average dose) to demonstrate CSCT. The phantom consists of a water-filled Lucite cylinder containing rods of polyethylene, Lucite, polycarbonate, and nylon. The resulting series of images was used to extract the angular-dependent scatter cross section for every pixel. Using pure material cross sections as basis functions, the cross section from each pixel was fitted using non-negative least squares. The results were used to create material-specific images. These results show that CSCT is feasible with this approach and that if the materials in an object have distinguishable scatter cross sections, the method has the ability

  14. Incidence of blunt craniocervical artery injuries: use of whole-body computed tomography trauma imaging with adapted computed tomography angiography.

    PubMed

    Fleck, Steffen K; Langner, Soenke; Baldauf, Joerg; Kirsch, Michael; Kohlmann, Thomas; Schroeder, Henry W S

    2011-09-01

    The incidence of traumatic craniocervical artery dissection varies in published trauma series. To determine the frequency of traumatic craniocervical artery injury in polytrauma patients by using standardized whole-body trauma computed tomography with adapted computed tomography angiography of the craniocervical vessels. A total of 718 consecutive patients requiring whole-body trauma computed tomography (16-row multislice) because of the mechanism of their injury patterns and an Injury Severity Scale score greater than 16 were analyzed prospectively. After a cranial scan, computed tomography angiography of the craniocervical vessels with 40 mL of iodinated contrast agent was performed using bolus tracking. The overall incidence of blunt carotid and vertebral injuries (BCVIs) in the screened population was 1.7%. BCVIs were observed in 27.3% of patients with detected isolated cervical spine injuries and in 3.9% of patients with isolated cranial fractures with or without intracranial hemorrhage, whereas 5.3% of patients with combined cervical and cranial lesions were associated with BCVIs. In addition, 0.4% of BCVIs occurred in patients without evidence of head or neck trauma. Whole-body trauma computed tomography with an adapted scanning protocol for the craniocervical vessels is a fast, safe, and feasible method for detecting vascular injuries. It allows prompt further treatment if necessary. Computed tomography angiography could be a part of a broad screening protocol for craniocervical vessels in documented injuries of the head and neck and in trauma mechanisms influencing the craniocervical region as well.

  15. Knee rotation influences the femoral tunnel angle measurement after anterior cruciate ligament reconstruction: a 3-dimensional computed tomography model study.

    PubMed

    Tang, Jing; Thorhauer, Eric; Marsh, Chelsea; Fu, Freddie H; Tashman, Scott

    2014-07-01

    Femoral tunnel angle (FTA) has been proposed as a metric for evaluating whether ACL reconstruction was performed anatomically. In clinic, radiographic images are typically acquired with an uncertain amount of internal/external knee rotation. The extent to which knee rotation will influence FTA measurement is unclear. Furthermore, differences in FTA measurement between the two common positions (0° and 45° knee flexion) have not been established. The purpose of this study was to investigate the influence of knee rotation on FTA measurement after ACL reconstruction. Knee CT data from 16 subjects were segmented to produce 3D bone models. Central axes of tunnels were identified. The 0° and 45° flexion angles were simulated. Knee internal/external rotations were simulated in a range of ± 20°. FTA was defined as the angle between the tunnel axis and femoral shaft axis, orthogonally projected into the coronal plane. Femoral tunnel angle was positively/negatively correlated with knee rotation angle at 0°/45° knee flexion. At 0° knee flexion, FTA for anterio-medial (AM) tunnels was significantly decreased at 20° of external knee rotation. At 45° knee flexion, more than 16° external or 19° internal rotation significantly altered FTA measurements for single-bundle tunnels; smaller rotations (± 9° for AM, ± 5° for PL) created significant errors in FTA measurements after double-bundle reconstruction. Femoral tunnel angle measurements were correlated with knee rotation. Relatively small imaging malalignment introduced significant errors with knee flexed 45°. This study supports using the 0° flexion position for knee radiographs to reduce errors in FTA measurement due to knee internal/external rotation.

  16. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  17. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement.

    PubMed

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-Koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-07-01

    Technetium pertechnetate (TcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of TcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of TcO4 in detecting thyroid function abnormalities. We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent TcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal-Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other TcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Quantitative SPECT/CT is more accurate than conventional TUS for measuring TcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake.

  18. Predicting exercise capacity after lobectomy by single photon emission computed tomography and computed tomography.

    PubMed

    Nagamatsu, Yoshinori; Sueyoshi, Susumu; Sasahara, Hiroko; Oka, Yousuke; Kumazoe, Hiroyuki; Mitsuoka, Masahiro; Akagi, Yoshito

    2016-09-01

    This study compared the prediction of postoperative exercise capacity by employing lung perfusion scintigraphy images obtained with single photon emission computed tomography together with computed tomography (SPECT/CT) versus the common method of counting subsegments (SC method). In 18 patients scheduled for lobectomy, predicted postoperative maximum oxygen uptake per kilogram body weight ([Formula: see text]) was calculated by the SPECT/CT and SC methods. Correlations were examined between the [Formula: see text] predicted by SPECT/CT or the SC method, and the actual [Formula: see text] measured at 2 weeks (mean 15.4 ± 1.5 days) and 1 month (mean 29.1 ± 0.75 days) after surgery to determine whether SPECT/CT was more accurate than SC for predicting postoperative exercise capacity. There was a significant positive correlation between the [Formula: see text] predicted by SPECT/CT and the actual value at 2 weeks (r = 0.802, p < 0.0001) or 1 month (r = 0.770, p < 0.0001). There was also a significant positive correlation between the [Formula: see text] predicted by SC and the actual value at 2 weeks (r = 0.785, p < 0.0001) or 1 month (r = 0.784, p < 0.0001). This study showed that both SPECT/CT and the SC method were useful for predicting postoperative [Formula: see text] in the clinical setting.

  19. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  20. Shifted helical computed tomography to optimize cardiac positron emission tomography-computed tomography coregistration: quantitative improvement and limitations.

    PubMed

    Johnson, Nils P; Pan, Tinsu; Gould, K Lance

    2010-10-01

    Positron emission tomography-computed tomography (PET-CT) uses CT attenuation correction but suffers from misregistration artifacts. However, the quantitative accuracy of helical versus cine CT in the same patient after optimized coregistration by shifting both CT data as needed for each patient is unknown. We studied 293 patients undergoing cardiac perfusion PET-CT using helical CT attenuation correction for comparison to cine CT. Objective, quantitative criteria identified perfusion abnormalities that were associated visually with PET-CT misregistration. Custom software shifted CT data to optimize coregistration with quantitative artifact improvement. The majority (58.1%) of cases with both helical and shifted helical CT data (n  = 93) had artifacts that improved or resolved by software shifting helical CT data. Translation of shifted helical CT was greatest in the x-direction (8.8 ± 3.3 mm) and less in the y- and z-directions (approximately 3.5 mm). The magnitude of differences in quantitative end points was greatest for helical (p  =  .0001, n  =  177 studies), less for shifted helical but significant (p  =  .0001, n  =  93 studies), and least for cine (not significant, n  =  161 studies) CT compared to optimal attenuation correction for each patient. Frequent artifacts owing to attenuation-emission misregistration are substantially corrected by software shifting helical CT scans to achieve proper coregistration that, however, remains on average significantly inferior to cine CT attenuation quantitatively.

  1. Multimodal sentinel lymph node mapping with single-photon emission computed tomography (SPECT)/computed tomography (CT) and photoacoustic tomography.

    PubMed

    Akers, Walter J; Edwards, W Barry; Kim, Chulhong; Xu, Baogang; Erpelding, Todd N; Wang, Lihong V; Achilefu, Samuel

    2012-03-01

    The identification of cancer cells in the lymph nodes surrounding a tumor is important in establishing a prognosis. Optical detection techniques such as fluorescence and photoacoustic tomography (PAT) have been reported in preclinical studies for noninvasive sentinel lymph node (SLN) mapping. A method for validation of these techniques is needed for clinical trials. We report the use of a multimodal optical-radionuclear contrast agent as a validation tool for PAT in a preclinical model. Methylene blue (MB) was radiolabeled with (125)I for multimodal SLN mapping and used in conjunction with MB to assess the feasibility of multimodal SLN mapping in a rat model by PAT and single-photon emission computed tomography (SPECT). MB provided sufficient contrast for identifying SLNs noninvasively with a PAT system adapted from a clinical ultrasound imaging system. The signal location was corroborated by SPECT using (125)I labeled MB. The translation of PAT into the clinic can be facilitated by a direct comparison with established imaging methods using a clinically relevant dual SPECT and photoacoustic imaging agent. The new high-resolution PAT is a promising technology for the sensitive and accurate SLN detection in cancer patients. Copyright © 2012 Mosby, Inc. All rights reserved.

  2. Computed tomography in the evaluation of Crohn disease

    SciTech Connect

    Goldberg, H.I.; Gore, R.M.; Margulis, A.R.; Moss, A.A.; Baker, E.L.

    1983-02-01

    The abdominal and pelvic computed tomographic examinations in 28 patients with Crohn disease were analyzed and correlated with conventional barium studies, sinograms, and surgical findings. Mucosal abnormalities such as aphthous lesions, pseudopolyps, and ulcerations were only imaged by conventional techniques. Computed tomography proved superior in demonstrating the mural, serosal, and mesenteric abnormalities such as bowel wall thickening (82%), fibrofatty proliferation of mesenteric fat (39%), mesenteric abscess (25%), inflammatory reaction of the mesentery (14%), and mesenteric lymphadenopathy (18%). Computed tomography was most useful clinically in defining the nature of mass effects, separation, or displacement of small bowel segments seen on small bowel series. Although conventional barium studies remain the initial diagnostic procedure in evaluating Crohn disease, computed tomography can be a useful adjunct in resolving difficult clinical and radiologic diagnostic problems.

  3. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  4. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed...

  5. Tracheal rupture in a cat: diagnosis by computed tomography.

    PubMed

    Bhandal, Jitender; Kuzma, Alan

    2008-06-01

    A cat was presented with a history of worsening generalized subcutaneous emphysema following dental prophylaxis. Tentative diagnosis of tracheal rupture was made. The location and extent of the tear was confirmed with the help of computed tomography. This is the 1st computed tomographic description of tracheal rupture in the veterinary literature.

  6. Development of a proton Computed Tomography detector system

    NASA Astrophysics Data System (ADS)

    Naimuddin, Md.; Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.; Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.

    2016-02-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  7. Development of a proton Computed Tomography Detector System

    SciTech Connect

    Naimuddin, Md.; Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.; Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.

    2016-02-04

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  8. Evaluating iterative reconstruction performance in computed tomography

    SciTech Connect

    Chen, Baiyu Solomon, Justin; Ramirez Giraldo, Juan Carlos; Samei, Ehsan

    2014-12-15

    Purpose: Iterative reconstruction (IR) offers notable advantages in computed tomography (CT). However, its performance characterization is complicated by its potentially nonlinear behavior, impacting performance in terms of specific tasks. This study aimed to evaluate the performance of IR with both task-specific and task-generic strategies. Methods: The performance of IR in CT was mathematically assessed with an observer model that predicted the detection accuracy in terms of the detectability index (d′). d′ was calculated based on the properties of the image noise and resolution, the observer, and the detection task. The characterizations of image noise and resolution were extended to accommodate the nonlinearity of IR. A library of tasks was mathematically modeled at a range of sizes (radius 1–4 mm), contrast levels (10–100 HU), and edge profiles (sharp and soft). Unique d′ values were calculated for each task with respect to five radiation exposure levels (volume CT dose index, CTDI{sub vol}: 3.4–64.8 mGy) and four reconstruction algorithms (filtered backprojection reconstruction, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 3 and 5, SAFIRE3 and SAFIRE5; all provided by Siemens Healthcare, Forchheim, Germany). The d′ values were translated into the areas under the receiver operating characteristic curve (AUC) to represent human observer performance. For each task and reconstruction algorithm, a threshold dose was derived as the minimum dose required to achieve a threshold AUC of 0.9. A task-specific dose reduction potential of IR was calculated as the difference between the threshold doses for IR and FBP. A task-generic comparison was further made between IR and FBP in terms of the percent of all tasks yielding an AUC higher than the threshold. Results: IR required less dose than FBP to achieve the threshold AUC. In general, SAFIRE5 showed the most significant dose reduction

  9. Evaluating iterative reconstruction performance in computed tomography.

    PubMed

    Chen, Baiyu; Ramirez Giraldo, Juan Carlos; Solomon, Justin; Samei, Ehsan

    2014-12-01

    Iterative reconstruction (IR) offers notable advantages in computed tomography (CT). However, its performance characterization is complicated by its potentially nonlinear behavior, impacting performance in terms of specific tasks. This study aimed to evaluate the performance of IR with both task-specific and task-generic strategies. The performance of IR in CT was mathematically assessed with an observer model that predicted the detection accuracy in terms of the detectability index (d'). d' was calculated based on the properties of the image noise and resolution, the observer, and the detection task. The characterizations of image noise and resolution were extended to accommodate the nonlinearity of IR. A library of tasks was mathematically modeled at a range of sizes (radius 1-4 mm), contrast levels (10-100 HU), and edge profiles (sharp and soft). Unique d' values were calculated for each task with respect to five radiation exposure levels (volume CT dose index, CTDIvol: 3.4-64.8 mGy) and four reconstruction algorithms (filtered backprojection reconstruction, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 3 and 5, SAFIRE3 and SAFIRE5; all provided by Siemens Healthcare, Forchheim, Germany). The d' values were translated into the areas under the receiver operating characteristic curve (AUC) to represent human observer performance. For each task and reconstruction algorithm, a threshold dose was derived as the minimum dose required to achieve a threshold AUC of 0.9. A task-specific dose reduction potential of IR was calculated as the difference between the threshold doses for IR and FBP. A task-generic comparison was further made between IR and FBP in terms of the percent of all tasks yielding an AUC higher than the threshold. IR required less dose than FBP to achieve the threshold AUC. In general, SAFIRE5 showed the most significant dose reduction potentials (11-54 mGy, 77%-84%), followed by

  10. Positron emission tomography-computed tomography coregistration for diagnosis and intraoperative localization in recurrent nelson syndrome.

    PubMed

    Hintz, Eric B; Tomlin, Jeffery M; Chengazi, Vaseem; Vates, G Edward

    2013-06-01

    Recurrent pituitary disease presents unique challenges, including in some cases difficulty localizing a tumor radiographically. Here, we present the case of a patient with recurrent Nelson syndrome whose radiographic work-up was complicated by a significant parasellar metallic artifact. Positron emission tomography ultimately localized the lesion, and coregistration with computed tomography allowed for accurate intraoperative navigation. Additionally, we review a range of imaging techniques available in the evaluation of pituitary disease.

  11. Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography.

    PubMed

    Elumogo, Comfort O; Kochenderfer, James N; Civelek, A Cahid; Bluemke, David A

    2016-04-01

    Pigmented villonodular synovitis (PVNS) is a benign joint disease best characterized on magnetic resonance imaging (MRI). The role of fluorine 18 fluorodeoxyglucose ((18)F-FDG) position emission tomography-computed tomography (PET-CT) in the diagnosis or characterization remains unclear. PVNS displays as a focal FDG avid lesion, which can masquerade as a metastatic lesion, on PET-CET. We present a case of PVNS found on surveillance imaging of a lymphoma patient.

  12. Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography

    PubMed Central

    Elumogo, Comfort O.; Kochenderfer, James N.; Civelek, A. Cahid

    2016-01-01

    Pigmented villonodular synovitis (PVNS) is a benign joint disease best characterized on magnetic resonance imaging (MRI). The role of fluorine 18 fluorodeoxyglucose (18F-FDG) position emission tomography-computed tomography (PET-CT) in the diagnosis or characterization remains unclear. PVNS displays as a focal FDG avid lesion, which can masquerade as a metastatic lesion, on PET-CET. We present a case of PVNS found on surveillance imaging of a lymphoma patient. PMID:27190776

  13. Assessment of Intracranial Structure Volumes in Fetuses With Growth Restriction by 3-Dimensional Sonography Using the Extended Imaging Virtual Organ Computer-Aided Analysis Method.

    PubMed

    Caetano, Ana Carolina Rabachini; Zamarian, Ana Cristina Perez; Araujo Júnior, E; Cavalcante, Rafael Oliveira; Simioni, Christiane; Silva, Carolina Pacheco; Rolo, Liliam Cristine; Moron, Antonio Fernandes; Nardozza, Luciano Marcondes Machado

    2015-08-01

    To assess intracranial structure volumes by 3-dimensional (3D) sonography in fetuses with growth restriction. We conducted a prospective cross-sectional case-control study involving 59 fetuses with growth restriction (38 fetuses with estimated weight <3rd percentile and 21 fetuses with estimated weight between 3rd and 10th percentiles, according to Hadlock et al [Radiology 1984; 150:535-540]) and 54 controls between 24 and 34 weeks' gestation. The following fetal intracranial structure volumes were assessed: cerebellum, brain, and frontal region. The volume was assessed by 3D sonography using the extended imaging virtual organ computer-aided analysis method with 10 sequential planes. Analysis of variance was used to compare fetal groups. The intraclass correlation coefficient was used to assess intraobserver and interobserver reproducibility. Statistical significance between the brain, frontal region, and cerebellar volumes and a relationship between the frontal region and the brain in fetuses with estimated weights below the 3rd percentile and controls were observed (P < .001; P < .001; and P = .002; and P = .008, respectively). Good intraobserver and interobserver reproducibility was observed for the fetal brain, frontal region, and cerebellar volumes, with intraclass correlation coefficients of 0.998, 0.997, 0.997, 0.999, 0.997, and 0.998, respectively. The intracranial structure volumes assessed by 3D sonography using the extended imaging virtual organ computer-aided analysis method were reduced in fetuses with growth restriction (estimated weight <3rd percentile). © 2015 by the American Institute of Ultrasound in Medicine.

  14. [Value and future of electron beam computed tomography].

    PubMed

    Kirchgeorg, M; Plainfossé, M C; Hernigou, A

    1994-12-01

    Mecanic computed tomography would probably never reach the acquisition brevity obtained by EBT. This machine is the best for exploration of cardiovascular diseases, and non cooperative patients, and for cine and flow studies. Morever, there are never tube cooling delays or interruptions in any procedures. Its disadvantages are the price, the impossibility to tilt the gantry, and the computer which are to be improved. With "Evolution", Siemens proposes now improvements with the CVS mode and a computer release without increasing of the price.

  15. Three-dimensional computed tomography of the mummy Wenuhotep.

    PubMed

    Pickering, R B; Conces, D J; Braunstein, E M; Yurco, F

    1990-09-01

    Computed tomography allows cross-sectional imaging of anthropological as well as clinical subjects. Recently, technical innovations have made three-dimensional reconstruction of these images feasible. We performed two-dimensional and three-dimensional computed tomography of a Late Period Egyptian mummy to reexamine findings seen on previous radiographic studies and to evaluate the usefulness of these techniques in paleopathology. Two-dimensional images provided excellent anatomic detail. There was graphic depiction of the mummification process that corroborated information previously obtained from Egyptological studies. Three-dimensional reconstruction provided images of facial features as if the mummy had been unwrapped. Three-dimensional computed tomography is a useful method of nondestructively evaluating paleopathological remains, and it may yield information not obtainable by any other means.

  16. Godfrey Hounsfield and the dawn of computed tomography.

    PubMed

    Petrik, Vladimir; Apok, Vinothini; Britton, Juliet A; Bell, B Anthony; Papadopoulos, Marios C

    2006-04-01

    To provide a historical account of the events surrounding the development of the computed tomography scanner. Information was obtained by interviewing people who worked with Sir Godfrey Hounsfield and Dr. James Ambrose at Atkinson Morley's Hospital in the 1970s, and from published books, articles, and several web sites, including the Nobel web site. The computed tomography scanner was successfully developed because of the collaboration between an imaginative engineer, Godfrey Hounsfield, who created the machine, and a brilliant neuroradiologist, James Ambrose, who demonstrated its wide clinical significance. The computed tomography scanner represents one of the most important contributions to neurosurgical practice in the past 100 years, and its development is a remarkable story of scientific endeavor.

  17. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  18. Three-Dimensional Computed Tomography Analysis of the Posterior Tibial Slope in 100 Knees.

    PubMed

    Ho, Jade Pei Yuik; Merican, Azhar M; Hashim, Muhammad Sufian; Abbas, Azlina A; Chan, Chee Ken; Mohamad, Jamal A

    2017-10-01

    The posterior tibial slope (PTS) is an important consideration in knee arthroplasty. However, there is still no consensus for the optimal slope. The objectives of this study were (1) to reliably determine the native PTS in this population using 3-dimensional computed tomography scans and (2) to determine the normal reference range for PTS in this population. One hundred computed tomography scans of disease-free knees were analyzed. A 3-dimensional reconstructed image of the tibia was generated and aligned to its anatomic axis in the coronal and sagittal planes. The tibia was then rotationally aligned to the tibial plateau (tibial centroid axis) and PTS was measured from best-fit planes on the surface of the proximal tibia and individually for the medial and lateral plateaus. This was then repeated with the tibia rotationally aligned to the ankle (transmalleolar axis). When rotationally aligned to the tibial plateau, the mean PTS, medial PTS, and lateral PTS were 11.2° ± 3.0 (range, 4.7°-17.7°), 11.3° ± 3.2 (range, 2.7°-19.7°), and 10.9° ± 3.7 (range, 3.5°-19.4°), respectively. When rotationally aligned to the ankle, the mean PTS, medial PTS, and lateral PTS were 11.4° ± 3.0 (range, 5.3°-19.3°), 13.9° ± 3.7 (range, 3.1°-24.4°), and 9.7° ± 3.6 (range, 0.8°-17.7°), respectively. The PTS in the normal Asian knee is on average 11° (mean) with a reference range of 5°-17° (mean ± 2 standard deviation). This has implications to surgery and implant design. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. High-resolution reconstruction of a waxed heart specimen with flat panel volume computed tomography and rapid prototyping.

    PubMed

    Greil, Gerald F; Kuettner, Axel; Flohr, Thomas; Grasruck, Michael; Sieverding, Ludger; Meinzer, Hans-Peter; Wolf, Ivo

    2007-01-01

    A waxed piglet heart was scanned with a flat panel volume computed tomography scanner (voxel size, 0.25 mm). Virtual and real laser-sintered models showed excellent visual concordance with the original. Using an iterative-closest-point algorithm, a very low mean surface distance was found between the original and laser-sintered model (0.26 +/- 0.34 mm). These techniques allow submillimeter 3-dimensional virtual and real reconstructions without destroying the original and might be useful for teaching, research, and planning of cardiac interventions.

  20. Computed tomography evaluation for transcatheter aortic valve implantation (TAVI): imaging of the aortic root and iliac arteries.

    PubMed

    Schoenhagen, Paul; Kapadia, Samir R; Halliburton, Sandra S; Svensson, Lars G; Tuzcu, E Murat

    2011-01-01

    For patients with severe aortic stenosis, open-heart surgical valve replacement remains the current clinical standard with documented, excellent long-term outcome. Over the past few years, transcatheter aortic valve implantation (TAVI) has developed into a treatment alternative for high-risk patients with severe aortic stenosis. Because transcatheter valvular procedures are characterized by lack of exposure of the operative field, image guidance is critical. This Pictorial Essay describes the role of 3-dimensional imaging with multidetector row computed tomography for detailed reconstructions of the aortic valve, aortic root, and iliac arteries in the context of TAVI.

  1. Using the 320-Multidetector Computed Tomography scanner for four-dimensional functional assessment of the elbow joint.

    PubMed

    Goh, Yin Peng; Lau, Kenneth K

    2012-02-01

    As described in this case report, the use of the 320-Multidetector Computed Tomography scanner (Aquilion One, Toshiba Medical Systems, Japan) to produce continuous 3-dimensional images in real time, over a distance of 16 cm in the z-axis, proved to aid in the diagnosis of a patient's restrictive elbow joint. This state-of-the-art scanner allows fast and noninvasive dynamic-kinematic functional evaluation of the elbow joint in vivo. It will also be applicable to kinematic studies of other joints.

  2. C-Arm Computed Tomography Compared With Positron Emission Tomography/Computed Tomography for Treatment Planning Before Radioembolization

    SciTech Connect

    Becker, Christoph Waggershauser, Tobias; Tiling, Reinhold; Weckbach, Sabine; Johnson, Thorsten; Meissner, Oliver; Klingenbeck-Regn, Klaus; Reiser, Maximilian; Hoffmann, Ralf Thorsten

    2011-06-15

    The purpose of this study was to determine whether rotational C-arm computed tomography (CT) allows visualization of liver metastases and adds relevant information for radioembolization (RE) treatment planning. Technetium angiography, together with C-arm CT, was performed in 47 patients to determine the feasibility for RE. C-arm CT images were compared with positron emission tomography (PET)/CT images for the detection of liver tumors. The images were also rated according one of the following three categories: (1) images that provide no additional information compared with DSA alone; (2) images that do provide additional information compared with DSA; and (2) images that had an impact on eligibility determination for and planning of the RE procedure. In all patients, 283 FDG-positive liver lesions were detected by PET. In venous contrast-phase CT, 221 (78.1%) and 15 (5.3%) of these lesions were either hypodense or hyperdense, respectively. In C-arm CT, 103 (36.4%) liver lesions were not detectable because they were outside of either the field of view or the contrast-enhanced liver segment. Another 25 (8.8%) and 98 (34.6%) of the liver lesions were either hyperdense or presented primarily as hypodense lesions with a rim enhancement, respectively. With PET/CT as the standard of reference, venous CT and C-arm CT failed to detect 47 (16.6%) and 57 (20.1%) of all liver lesions, respectively. For RE planning, C-arm CT provided no further information, provide some additional information, or had an impact on the procedure in 20 (42.5%), 15 (31.9%) and 12 (25.6%) of patients, respectively. We conclude that C-arm CT may add decisive information in patients scheduled for RE.

  3. [Cardiac computed tomography: new applications of an evolving technique].

    PubMed

    Martín, María; Corros, Cecilia; Calvo, Juan; Mesa, Alicia; García-Campos, Ana; Rodríguez, María Luisa; Barreiro, Manuel; Rozado, José; Colunga, Santiago; de la Hera, Jesús M; Morís, César; Luyando, Luis H

    2015-01-01

    During the last years we have witnessed an increasing development of imaging techniques applied in Cardiology. Among them, cardiac computed tomography is an emerging and evolving technique. With the current possibility of very low radiation studies, the applications have expanded and go further coronariography In the present article we review the technical developments of cardiac computed tomography and its new applications. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  4. Fractured osteophyte demonstrated on SPECT and computed tomography.

    PubMed

    Spieth, Michael E; Schmitz, Stacey L

    2003-08-01

    ABSTRACT We present an interesting case of a fractured osteophyte causing back pain that was demonstrated both on bone single photon emission computed tomography (SPECT) and computed tomography (CT). The magnetic resonance images, thoracic anterior spine plain radiograph, whole-body bone scan passes, and thoracic spot view were not impressive. Bone SPECT was the impetus for getting the CT scan. The CT scan not only demonstrated the osteophyte but a pseudarthrosis that was probably causing the pain. If it were not for the positive SPECT bone scan, the CT scan would not have been ordered after unimpressive magnetic resonance imaging.

  5. Direct sagital computed tomography of the temporomandibular joint

    SciTech Connect

    Manzione, J.V.; Seltzer, S.E.; Katzberg, R.W.; Hammerschlag, S.B.; Chiango, B.F.

    1983-01-01

    Temporomandibular joint dysfunction is a common clinical problem that has been reported to affect 4%-28% of adults. Temporomandibular joint arthrography has shown that many of these patients have intraarticular abnormalities involving the meniscus. A noninvasive test that could demonstrate the meniscus as well as bony abnormalities of the joint would be an important advance. In an attempt to develop such a noninvasive test, we have performed direct sagittal computed tomography (CT) on cadaver temporomandibular joints and have correlated the images with anatomic sections. We are currently applying this technique clinically and report one representative example in which direct sagittal computed tomography of the temporomandibular joint accurately demonstrated an anteriorly displaced meniscus.

  6. Anaesthesia for magnetic resonance imaging/computed tomography.

    PubMed

    Funk, W; Taeger, K

    2000-08-01

    The need for general anaesthesia for magnetic resonance imaging/computed tomography investigations can be reduced by the implementation of structured sedation programmes supervised by anaesthetists. Despite its side-effects, chloral hydrate is still the drug most widely used. Rectal thiopental or intravenous propofol are suggested anaesthetic agents for pre-school children and uncooperative or claustrophobic individuals. Spiral computed tomography scans and ultrafast magnetic resonance imaging shorten immobilization times further. However, functional magnetic resonance imaging and intervention techniques in neuroradiology depend on a motionless patient. A useful strategy for testing anaesthesia equipment has been outlined.

  7. Investigation of a near-infrared-ray computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Satoi, Yuichi; Yamaguchi, Satoshi; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2016-10-01

    In the near-infrared-ray computed tomography (NIR-CT) scanner, NIR rays are produced from a light-emitting diode (LED) and detected using an NIR phototransistor (PT). The wavelengths of the LED peak intensity and the PT high sensitivity in the data table are both 940 nm. The photocurrents flowing through the PTR are converted into voltages using an emitter-follower circuit, and the output voltages are sent to a personal computer through an analog-digital converter. The NIR projection curves for tomography are obtained by repeated linear scans and rotations of the object, and the scanning is conducted in both directions of its movement.

  8. Pharyngeal airway volume and shape from cone-beam computed tomography: Relationship to facial morphology

    PubMed Central

    Grauer, Dan; Cevidanes, Lucia S. H.; Styner, Martin A.; Ackerman, James L.; Proffit, William R.

    2010-01-01

    Introduction The aim of this study was to assess the differences in airway shape and volume among subjects with various facial patterns. Methods Cone-beam computed tomography records of 62 nongrowing patients were used to evaluate the pharyngeal airway volume (superior and inferior compartments) and shape. This was done by using 3-dimensional virtual surface models to calculate airway volumes instead of estimates based on linear measurements. Subgroups of the sample were determined by anteroposterior jaw relationships and vertical proportions. Results There was a statistically significant relationship between the volume of the inferior component of the airway and the anteroposterior jaw relationship (P = 0.02), and between airway volume and both size of the face and sex (P = 0.02, P = 0.01). No differences in airway volumes related to vertical facial proportions were found. Skeletal Class II patients often had forward inclination of the airway (P <0.001), whereas skeletal Class III patients had a more vertically oriented airway (P = 0.002). Conclusions Airway volume and shape vary among patients with different anteroposterior jaw relationships; airway shape but not volume differs with various vertical jaw relationships. The methods developed in this study make it possible to determine the relationship of 3-dimensional pharyngeal airway surface models to facial morphology, while controlling for variability in facial size. PMID:19962603

  9. Revisiting Seismic Tomography Through Direct Methods and High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Bogiatzis, P.; Davis, T. A.

    2015-12-01

    Over the last two decades, the rapid increase in data availability and computational power significantly increased the number of data and model parameters that can be investigated in seismic tomography problems. Often, the model space consists of 105-106 unknown parameters and there are comparable numbers of observations, making direct computational methods such as the singular value decomposition prohibitively expensive or impossible, leaving iterative solvers as the only alternative option. Among the disadvantages of the iterative algorithms is that the inverse of the matrix that defines the system is not explicitly formed. As a consequence, the model resolution and covariance matrices, that are crucial for the quantitative assessment of the uncertainty of the tomographic models, cannot be computed. Despite efforts in finding computationally affordable approximations of these matrices, challenges remain, and approaches such as the checkerboard resolution tests continue to be used. Based upon recent developments in sparse algorithms and high performance computing resources, we demonstrate that direct methods are becoming feasible for large seismic tomography problems, and apply the technique to obtain a regional P-wave tomography model and its full resolution matrix with 267,520 parameters. Furthermore, we show that the structural analysis of the forward operators of the seismic tomography problems can provide insights into the inverse problem, and allows us to determine and exploit approximations that yield accurate solutions.

  10. Missing wedge computed tomography by iterative algorithm DIRECTT.

    PubMed

    Kupsch, Andreas; Lange, Axel; Hentschel, Manfred P; Lück, Sebastian; Schmidt, Volker; Grothausmann, Roman; Hilger, André; Manke, Ingo

    2015-01-01

    A strategy to mitigate typical reconstruction artefacts in missing wedge computed tomography is presented. These artefacts appear as elongations of reconstructed details along the mean direction (i.e. the symmetry centre of the projections). Although absent in standard computed tomography applications, they are most prominent in advanced electron tomography and also in special topics of X-ray and neutron tomography under restricted geometric boundary conditions. We investigate the performance of the DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm to reduce the directional artefacts in standard procedures. In order to be sensitive to the anisotropic nature of missing wedge artefacts, we investigate isotropic substructures of metal foam as well as circular disc models. Comparison is drawn to filtered backprojection and algebraic techniques. Reference is made to reconstructions of complete data sets. For the purpose of assessing the reconstruction quality, Fourier transforms are employed to visualize the missing wedge directly. Deficient reconstructions of disc models are evaluated by a length-weighted kernel density estimation, which yields the probabilities of boundary orientations. The DIRECTT results are assessed at different signal-to-noise ratios by means of local and integral evaluation parameters. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Feasibility Study of Computational Fluid Dynamics Simulation of Coronary Computed Tomography Angiography Based on Dual-Source Computed Tomography

    PubMed Central

    Lu, Jing; Yu, Jie; Shi, Heshui

    2017-01-01

    Background Adding functional features to morphological features offers a new method for non-invasive assessment of myocardial perfusion. This study aimed to explore technical routes of assessing the left coronary artery pressure gradient, wall shear stress distribution and blood flow velocity distribution, combining three-dimensional coronary model which was based on high resolution dual-source computed tomography (CT) with computational fluid dynamics (CFD) simulation. Methods Three cases of no obvious stenosis, mild stenosis and severe stenosis in left anterior descending (LAD) were enrolled. Images acquired on dual-source CT were input into software Mimics, ICEMCFD and FLUENT to simulate pressure gradient, wall shear stress distribution and blood flow velocity distribution. Measuring coronary enhancement ratio of coronary artery was to compare with pressure gradient. Results Results conformed to theoretical values and showed difference between normal and abnormal samples. Conclusions The study verified essential parameters and basic techniques in blood flow numerical simulation preliminarily. It was proved feasible. PMID:27924174

  12. An Easily Assembled Laboratory Exercise in Computed Tomography

    ERIC Educational Resources Information Center

    Mylott, Elliot; Klepetka, Ryan; Dunlap, Justin C.; Widenhorn, Ralf

    2011-01-01

    In this paper, we present a laboratory activity in computed tomography (CT) primarily composed of a photogate and a rotary motion sensor that can be assembled quickly and partially automates data collection and analysis. We use an enclosure made with a light filter that is largely opaque in the visible spectrum but mostly transparent to the near…

  13. Clinical and computed tomography features of secondary renal hyperparathyroidism

    PubMed Central

    Vanbrugghe, Benoît; Blond, Laurent; Carioto, Lisa; Carmel, Eric Norman; Nadeau, Marie-Eve

    2011-01-01

    An atypical case of secondary renal hyperparathyroidism was diagnosed in a 9-year-old miniature schnauzer after a skull computed tomography (CT) showed the presence of 2 bilateral and symmetrical soft tissue maxillary masses, and osteopenia of the skull. PMID:21532826

  14. An Easily Assembled Laboratory Exercise in Computed Tomography

    ERIC Educational Resources Information Center

    Mylott, Elliot; Klepetka, Ryan; Dunlap, Justin C.; Widenhorn, Ralf

    2011-01-01

    In this paper, we present a laboratory activity in computed tomography (CT) primarily composed of a photogate and a rotary motion sensor that can be assembled quickly and partially automates data collection and analysis. We use an enclosure made with a light filter that is largely opaque in the visible spectrum but mostly transparent to the near…

  15. Recent Scientific Evidence and Technical Developments in Cardiovascular Computed Tomography.

    PubMed

    Marcus, Roy; Ruff, Christer; Burgstahler, Christof; Notohamiprodjo, Mike; Nikolaou, Konstantin; Geisler, Tobias; Schroeder, Stephen; Bamberg, Fabian

    2016-05-01

    In recent years, coronary computed tomography angiography has become an increasingly safe and noninvasive modality for the evaluation of the anatomical structure of the coronary artery tree with diagnostic benefits especially in patients with a low-to-intermediate pretest probability of disease. Currently, increasing evidence from large randomized diagnostic trials is accumulating on the diagnostic impact of computed tomography angiography for the management of patients with acute and stable chest pain syndrome. At the same time, technical advances have substantially reduced adverse effects and limiting factors, such as radiation exposure, the amount of iodinated contrast agent, and scanning time, rendering the technique appropriate for broader clinical applications. In this work, we review the latest developments in computed tomography technology and describe the scientific evidence on the use of cardiac computed tomography angiography to evaluate patients with acute and stable chest pain syndrome. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Computed tomography: Will the slices reveal the truth

    PubMed Central

    Haridas, Harish; Mohan, Abarajithan; Papisetti, Sravanthi; Ealla, Kranti K. R.

    2016-01-01

    With the advances in the field of imaging sciences, new methods have been developed in dental radiology. These include digital radiography, density analyzing methods, cone beam computed tomography (CBCT), magnetic resonance imaging, ultrasound, and nuclear imaging techniques, which provide high-resolution detailed images of oral structures. The current review aims to critically elaborate the use of CBCT in endodontics. PMID:27652253

  17. How to interpret computed tomography of the lumbar spine

    PubMed Central

    Mobasheri, R; Das, T; Vaidya, S; Mallik, S; El-Hussainy, M; Casey, A

    2014-01-01

    Computed tomography (CT) of the spine has remained an important tool in the investigation of spinal pathology. This article helps to explain the basics of CT of the lumbar spine to allow the clinician better use of this diagnostic tool. PMID:25245727

  18. Computed tomography as a definitive method for diagnosing gastrointestinal lipomas

    SciTech Connect

    Heiken. J.P.; Forde, K.A; Gold, R.P.

    1982-02-01

    Four cases of gastrointestinal lipoma that were demonstrated by computed tomography (CT) are presented. Until now, definitive diagnosis of gastrointestinal lipomas has required fiberoptic endoscopy, biopsy, or surgical excision. The results of this study indicate that CT may become a definitive diagnostic examination for lipomas of the gastrointestinal tract.

  19. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  20. Clinical applications of computed tomography angiography in neuroimaging.

    PubMed

    Dross, Peter; Fisher, Brandon

    2005-06-01

    Recent technical advances in multidetector computed tomography angiography (CTA) now allow for the noninvasive evaluation of the neurovascular tree. In the evaluation of intracranial aneurysms, stroke imaging, and other vascular abnormalities, CTA compares favorably with conventional angiography. Several illustrative case reports are presented and the advantages of CTA over conventional angiography are discussed.

  1. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  2. Cone beam computed tomography scanning and diagnosis for dental implants.

    PubMed

    Greenberg, Alex M

    2015-05-01

    Cone beam computed tomography (CBCT) has become an important new technology for oral and maxillofacial surgery practitioners. CBCT provides improved office-based diagnostic capability and applications for surgical procedures, such as CT guidance through the use of computer-generated drill guides. A thorough knowledge of the basic science of CBCT as well as the ability to interpret the images correctly and thoroughly is essential to current practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cranial computed tomography in infancy and childhood

    SciTech Connect

    Hammock, M.K.; Mihorat, T.H.

    1981-01-01

    A large number of pediatric cases have been accumulated and categorized according to congenital abnormalities, trauma, hydrocephalus, tumors, and infection. Each category contains background material accompanied by computed-tomographic (CT) illustrations and a related discussion. The material is derived from 6,000 CT scans performed at Children's Hospital National Medical Center in Washington, DC since 1973. (JMT)

  4. The role of single-photon emission computed tomography and SPECT/computed tomography in oncologic imaging.

    PubMed

    Brandon, David; Alazraki, Adina; Halkar, Raghuveer K; Alazraki, Naomi P

    2011-02-01

    Single-photon emission computed tomography (SPECT) and hybrid SPECT/computed tomography (SPECT/CT) cameras have emerged as a dominant technology providing invaluable tools in the diagnosis, staging, therapy planning, and treatment monitoring of multiple cancers over the past decade. In the same way that positron emission tomography (PET) benefited from the addition of CT, functional SPECT and anatomic CT data obtained as a single study have shown improvements in diagnostic imaging sensitivity and specificity by improving lesion conspicuity, reducing false positives, and clarifying indeterminate lesions. Furthermore, the anatomic imaging better localizes the functional data, which can be critical in surgical and therapy planning. As more disease-specific imaging agents become available, the role of SPECT/CT in the new paradigms of molecular imaging for personalized medicine will expand. Established and emerging uses of SPECT/CT in a wide variety of oncologic diseases, as well as radiation exposure issues, are reviewed. Published by Elsevier Inc.

  5. A Comparison of 2- and 3-dimensional Healing Assessment after Endodontic Surgery Using Cone-beam Computed Tomographic Volumes or Periapical Radiographs.

    PubMed

    Schloss, Tom; Sonntag, David; Kohli, Meetu R; Setzer, Frank C

    2017-07-01

    The aim of this study was to compare the assessment of healing after endodontic microsurgery using 2-dimensional (2D) periapical films versus 3-dimensional (3D) cone-beam computed tomographic (CBCT) imaging. The healing of 51 teeth from 44 patients was evaluated using Molven's criteria (2D) and modified PENN 3D criteria. The absolute area (2D) and volume (3D) changes of apical lesions preoperatively and at follow-up were calculated by segmentation using OsiriX software (Pixmeo, Bernex, Switzerland) and ITK-Snap (free software). There was a significant difference between the mean preoperative lesion volumes of 95.34 mm(3) (n = 51, standard deviation [SD] ±196.28 mm(3)) versus 6.48 mm(3) (n = 51, SD ±17.70 mm(3)) at follow-up (P < .05). The mean volume reduction was 83.7%. Preoperatively, mean lesion areas on periapical films were 13.55 mm(2) (n = 51, SD ±18.80 mm(2)) and 1.83 mm(2) (n = 51, SD ±.68 mm(2)) at follow-up (P < .05). According to Molven's criteria, 40 teeth were classified as complete healing, 7 as incomplete healing, and 4 as uncertain healing. Based on the modified PENN 3D criteria, 33 teeth were classified as complete healing, 14 as limited healing, 1 as uncertain healing, and 3 as unsatisfactory healing. The variation in the distribution of the 2D and 3D healing classifications was significantly different (P < .05). Periapical healing statuses incomplete healing or uncertain healing according to Molven's criteria could be clearly classified using 3D criteria. CBCT analysis allowed a more precise evaluation of periapical lesions and healing of endodontic microsurgery than periapical films. Significant differences existed between the 2 methods. Over the observation period, the mean periapical lesion sizes significantly decreased in volume. Given the correct indications, the use of CBCT imaging may be a valuable tool for the evaluation of healing of endodontic surgery. Copyright © 2017 American Association of Endodontists

  6. Discontinuous splenogonadal fusion diagnosed on computed tomography

    PubMed Central

    Jakkani, Ravikanth; Alhajri, Fayzah A; Alteriki, Abdullattif; Almuteri, Meshari F; Athyal, Reji P; Hashem, Khaled Z

    2016-01-01

    Splenogonadal fusion is a very rare congenital anomaly which often manifests as a scrotal mass and rarely as cryptorchidism. It can be of continuous and discontinuous type based on the presence of a band of connecting splenic tissue. We report a rare case of discontinuous type of splenogonadal fusion in an adolescent male presenting as cryptorchidism. We emphasize the computed tomographic findings, which helped us in preoperative diagnosis and aided in appropriate management. PMID:28104947

  7. Computed tomography in suspected osteoid osteomas of tubular bones

    SciTech Connect

    Herrlin, K.; Ekelund, L.; Loevdahl, R.; Persson, B.

    1982-12-01

    Six cases of suspected osteoid osteoma of tubular bones were evaluated by computed tomography (CT). In all cases a radiolucent nidus was clearly demonstrated. In two cases a radiodense center of the nidus was visualized. It is suggested that CT may replace conventional tomography in the evaluation of these lesions. Due to its ability to locate the lesion in the transverse plane, CT is superior for the exact planning of surgery to avoid unnecessary large or misdirected resections. Adequate window settings are essential in the evaluation of these lesions.

  8. Computer tomography of large dust clouds in complex plasmas.

    PubMed

    Killer, Carsten; Himpel, Michael; Melzer, André

    2014-10-01

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications.

  9. Computer tomography of large dust clouds in complex plasmas

    SciTech Connect

    Killer, Carsten; Himpel, Michael; Melzer, André

    2014-10-15

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications.

  10. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopeng; Prakash, Jaya; Ruscitti, Francesca; Glasl, Sarah; Stellari, Fabio Franco; Villetti, Gino; Ntziachristos, Vasilis

    2016-01-01

    Nuclear imaging plays a critical role in asthma research but is limited in its readings of biology due to the short-lived signals of radio-isotopes. We employed hybrid fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) for the assessment of asthmatic inflammation based on resolving cathepsin activity and matrix metalloproteinase activity in dust mite, ragweed, and Aspergillus species-challenged mice. The reconstructed multimodal fluorescence distribution showed good correspondence with ex vivo cryosection images and histological images, confirming FMT-XCT as an interesting alternative for asthma research.

  11. Radiology of giant cell tumors of bone: computed tomography, arthro-tomography, and scintigraphy.

    PubMed

    Hudson, T M; Schiebler, M; Springfield, D S; Enneking, W F; Hawkins, I F; Spanier, S S

    1984-01-01

    Radiologic studies of 50 giant cell tumors of bone in 48 patients were useful in assessing the anatomic extent for planning surgical treatment. Contrast-enhanced computed tomography (CT) provided the most useful and complete evaluation, including soft tissue extent and relationship to major vessels. Angiography was useful when the extraosseous extent and vascular relationships were not entirely clear on CT. Arthro-tomography was the best way to evaluate tumor invasion through subchondral cortex and articular cartilage. Reactive soft tissues, with edema and hyperemia, were difficult to distinguish from tumor tissue on CT and angiograms. Bone scintigrams often showed intense uptake beyond the true tumor limits.

  12. Role of positron emission tomography/computed tomography in breast cancer.

    PubMed

    Bourgeois, Austin C; Warren, Lance A; Chang, Ted T; Embry, Scott; Hudson, Kathleen; Bradley, Yong C

    2013-09-01

    Although positron emission tomography (PET) imaging may not be used in the diagnosis of breast cancer, the use of PET/computed tomography is imperative in all aspects of breast cancer staging, treatment, and follow-up. PET will continue to be relevant in personalized medicine because accurate tumor status will be even more critical during and after the transition from a generic metabolic agent to receptor imaging. Positron emission mammography is an imaging proposition that may have benefits in lower doses, but its use is limited without new radiopharmaceuticals. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Positron emission tomography and computed tomography assessments of the aging human brain

    SciTech Connect

    de Leon, M.J.; George, A.E.; Ferris, S.H.; Christman, D.R.; Fowler, J.S.; Gentes, C.I.; Brodie, J.; Reisberg, B.; Wolf, A.P.

    1984-02-01

    The relationship between alterations in brain structure and brain function was studied in vivo in both young and elderly human subjects. Computed tomography revealed significant age-related ventricular and cortical sulcal dilatation. The cortical changes were most closely related to age. Positron emission tomography failed to show regional changes in brain glucose metabolic rate. The results suggest that the normal aging brain undergoes structural atrophic changes without incurring regional metabolic changes. Examination of the correlations between the structural and the metabolic measures revealed no significant relationships. These data are discussed with respect to the significant structure-function relationships that have been reported in Alzheimer disease. 27 references, 3 figures, 2 tables.

  14. Case report of non-Hodgkin's lymphoma involving the lacrimal glands demonstrated by computed tomography

    SciTech Connect

    Kniskern, J.A.; Hart, K.; Decker, D.A.; Harris, J.H.

    1981-12-15

    A case of bilateral lacrimal gland infiltration by diffuse, mixed histiocytic-lymphocytic lymphoma demonstrated by computed tomography is reported. Non-Hodgkin's lymphomatous involvement of the lacrimal gland is uncommon. Computed tomography provides precise delineation of perioccular neoplasia.

  15. Computed tomography of localized pleural mesothelioma

    SciTech Connect

    Dedrick, C.G.; McLoud, T.C.; Shepard, J.O.; Shipley, R.T.

    1985-02-01

    The computed tomographic (CT) features of six pathologically proven cases of fibrous mesothelioma were reviewed. There were no pathognomonic CT characteristics, but in all cases CT suggested or supported the preoperative diagnosis. CT findings included well delineated, often lobulated, noncalcified soft-tissue masses in close relation to a pleural surface, associated crural thickening, and absence of chest wall invasion. An obtuse angle of the mass with respect to the pleural surface was not particularly useful. Rather, a smoothly tapering margin was more characteristic of a pleural lesion.

  16. Computed tomography of abdominal carcinoid tumors

    SciTech Connect

    Picus, D.; Glazer, H.S.; Levitt, R.G.; Husband, J.E.

    1984-09-01

    Computed tomographic (CT) scans were obtained in 20 patients with primary and/or metastatic abdominal carcinoid tumors. The primary tumors were seen rarely on CT. Mesenteric involvement was seen in eight of the 20 patients, usually as a soft-tissue mass surrounded by fat and radiating soft-tissue strands. Enlarged retroperitoneal lymph nodes were seen in seven patients, but rarely were they the only manifestation of intraabdominal disease. The most common finding was liver metastases (13 of 20 patients). CT is helpful in evaluating the extent of tumor before surgical exploration an in following the progression of disease once the diagnosis has been established.

  17. Clinical utility of dental cone-beam computed tomography: current perspectives

    PubMed Central

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis. PMID:24729729

  18. Comparison of computed tomography scout based reference point localization to conventional film and axial computed tomography.

    PubMed

    Jiang, Lan; Templeton, Alistair; Turian, Julius; Kirk, Michael; Zusag, Thomas; Chu, James C H

    2011-01-01

    Identification of source positions after implantation is an important step in brachytherapy planning. Reconstruction is traditionally performed from films taken by conventional simulators, but these are gradually being replaced in the clinic by computed tomography (CT) simulators. The present study explored the use of a scout image-based reconstruction algorithm that replaces the use of traditional film, while exhibiting low sensitivity to metal-induced artifacts that can appear in 3D CT methods. In addition, the accuracy of an in-house graphical software implementation of scout-based reconstruction was compared with seed location reconstructions for 2 phantoms by conventional simulator and CT measurements. One phantom was constructed using a planar fixed grid of 1.5-mm diameter ball bearings (BBs) with 40-mm spacing. The second was a Fletcher-Suit applicator embedded in Styrofoam (Dow Chemical Co., Midland, MI) with one 3.2-mm-diameter BB inserted into each of 6 surrounding holes. Conventional simulator, kilovoltage CT (kVCT), megavoltage CT, and scout-based methods were evaluated by their ability to calculate the distance between seeds (40 mm for the fixed grid, 30-120 mm in Fletcher-Suit). All methods were able to reconstruct the fixed grid distances with an average deviation of <1%. The worst single deviations (approximately 6%) were exhibited in the 2 volumetric CT methods. In the Fletcher-Suit phantom, the intermodality agreement was within approximately 3%, with the conventional sim measuring marginally larger distances, with kVCT the smallest. All of the established reconstruction methods exhibited similar abilities to detect the distances between BBs. The 3D CT-based methods, with lower axial resolution, showed more variation, particularly with the smaller BBs. With a software implementation, scout-based reconstruction is an appealing approach because it simplifies data acquisition over film-based reconstruction without requiring any specialized equipment

  19. Computed tomography of human joints and radioactive waste drums

    SciTech Connect

    Martz, Harry E.; Roberson, G. Patrick; Hollerbach, Karin; Logan, Clinton M.; Ashby, Elaine; Bernardi, Richard

    1999-12-02

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have seen increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed, 1.) Our computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. 2.) We are developing NDE and NDA techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity.

  20. Initial water quantification results using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Heller, A. K.; Shi, L.; Brenizer, J. S.; Mench, M. M.

    2009-06-01

    Neutron computed tomography is an important imaging tool in the field of non-destructive testing and in fundamental research for many engineering applications. Contrary to X-rays, neutrons can be attenuated by some light materials, such as hydrogen, but can penetrate many heavy materials. Thus, neutron computed tomography is useful in obtaining important three-dimensional information about a sample's interior structure and material properties that other traditional methods cannot provide. The neutron computed tomography system at the Pennsylvania State University's Radiation Science and Engineering Center is being utilized to develop a water quantification technique for investigation of water distribution in fuel cells under normal conditions. A hollow aluminum cylinder test sample filled with a known volume of water was constructed for purposes of testing the quantification technique. Transmission images of the test sample at different angles were easily acquired through the synthesis of a dedicated image acquisition computer driving a rotary table controller and an in-house developed synchronization software package. After data acquisition, Octopus (version 8.2) and VGStudio Max (version 1.2) were used to perform cross-sectional and three-dimensional reconstructions of the sample, respectively. The initial reconstructions and water quantification results are presented.

  1. Computed tomography of human joints and radioactive waste drums

    SciTech Connect

    Ashby, E; Bernardi, R; Hollerbach, K; Logan, C; Martz, H; Roberson, G P

    1999-06-01

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have been increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed. (1) The computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. (2) They are developing NDE and NDE techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity.

  2. Classification of breast computed tomography data

    SciTech Connect

    Nelson, Thomas R.; Cervino, Laura I.; Boone, John M.; Lindfors, Karen K.

    2008-03-15

    Differences in breast tissue composition are important determinants in assessing risk, identifying disease in images and following changes over time. This paper presents an algorithm for tissue classification that separates breast tissue into its three primary constituents of skin, fat and glandular tissue. We have designed and built a dedicated breast CT scanner. Fifty-five normal volunteers and patients with mammographically identified breast lesions were scanned. Breast CT voxel data were filtered using a 5 pt median filter and the image histogram was computed. A two compartment Gaussian fit of histogram data was used to provide an initial estimate of tissue compartments. After histogram analysis, data were input to region-growing algorithms and classified as to belonging to skin, fat or gland based on their value and architectural features. Once tissues were classified, a more detailed analysis of glandular tissue patterns and a more quantitative analysis of breast composition was made. Algorithm performance assessment demonstrated very good or excellent agreement between algorithm and radiologist observers in 97.7% of the segmented data. We observed that even in dense breasts the fraction of glandular tissue seldom exceeded 50%. For most individuals the composition is better characterized as being a 70% (fat)-30% (gland) composition than a 50% (fat)-50% (gland) composition.

  3. Computed Tomography of the Normal Bovine Tarsus.

    PubMed

    Hagag, U; Tawfiek, M; Brehm, W; Gerlach, K

    2016-12-01

    The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16-slice multidetector CT scanner. Tarsi were frozen at -20(o) C and sectioned to 10-mm-thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology.

  4. Multidetector computed tomography for acute pulmonary embolism.

    PubMed

    Stein, Paul D; Fowler, Sarah E; Goodman, Lawrence R; Gottschalk, Alexander; Hales, Charles A; Hull, Russell D; Leeper, Kenneth V; Popovich, John; Quinn, Deborah A; Sos, Thomas A; Sostman, H Dirk; Tapson, Victor F; Wakefield, Thomas W; Weg, John G; Woodard, Pamela K

    2006-06-01

    The accuracy of multidetector computed tomographic angiography (CTA) for the diagnosis of acute pulmonary embolism has not been determined conclusively. The Prospective Investigation of Pulmonary Embolism Diagnosis II trial was a prospective, multicenter investigation of the accuracy of multidetector CTA alone and combined with venous-phase imaging (CTA-CTV) for the diagnosis of acute pulmonary embolism. We used a composite reference test to confirm or rule out the diagnosis of pulmonary embolism. Among 824 patients with a reference diagnosis and a completed CT study, CTA was inconclusive in 51 because of poor image quality. Excluding such inconclusive studies, the sensitivity of CTA was 83 percent and the specificity was 96 percent. Positive predictive values were 96 percent with a concordantly high or low probability on clinical assessment, 92 percent with an intermediate probability on clinical assessment, and nondiagnostic if clinical probability was discordant. CTA-CTV was inconclusive in 87 of 824 patients because the image quality of either CTA or CTV was poor. The sensitivity of CTA-CTV for pulmonary embolism was 90 percent, and specificity was 95 percent. CTA-CTV was also nondiagnostic with a discordant clinical probability. In patients with suspected pulmonary embolism, multidetector CTA-CTV has a higher diagnostic sensitivity than does CTA alone, with similar specificity. The predictive value of either CTA or CTA-CTV is high with a concordant clinical assessment, but additional testing is necessary when the clinical probability is inconsistent with the imaging results. Copyright 2006 Massachusetts Medical Society.

  5. Multidetector-row computed tomography of thoracic aortic anomalies in dogs and cats: Patent ductus arteriosus and vascular rings

    PubMed Central

    2011-01-01

    Background Diagnosis of extracardiac intrathoracic vascular anomalies is of clinical importance, but remains challenging. Traditional imaging modalities, such as radiography, echocardiography, and angiography, are inherently limited by the difficulties of a 2-dimensional approach to a 3-dimensional object. We postulated that accurate characterization of malformations of the aorta would benefit from 3-dimensional assessment. Therefore, multidetector-row computed tomography (MDCT) was chosen as a 3-dimensional, new, and noninvasive imaging technique. The purpose of this study was to evaluate patients with 2 common diseases of the intrathoracic aorta, either patent ductus arteriosus or vascular ring anomaly, by contrast-enhanced 64-row computed tomography. Results Electrocardiography (ECG)-gated and thoracic nongated MDCT images were reviewed in identified cases of either a patent ductus arteriosus or vascular ring anomaly. Ductal size and morphology were determined in 6 dogs that underwent ECG-gated MDCT. Vascular ring anomalies were characterized in 7 dogs and 3 cats by ECG-gated MDCT or by a nongated thoracic standard protocol. Cardiac ECG-gated MDCT clearly displayed the morphology, length, and caliber of the patent ductus arteriosus in 6 affected dogs. Persistent right aortic arch was identified in 10 animals, 8 of which showed a coexisting aberrant left subclavian artery. A mild dilation of the proximal portion of the aberrant subclavian artery near its origin of the aorta was present in 4 dogs, and a diverticulum analogous to the human Kommerell's diverticulum was present in 2 cats. Conclusions Contrast-enhanced MDCT imaging of thoracic anomalies gives valuable information about the exact aortic arch configuration. Furthermore, MDCT was able to characterize the vascular branching patterns in dogs and cats with a persistent right aortic arch and the morphology and size of the patent ductus arteriosus in affected dogs. This additional information can be of help

  6. Intracranial Carotid Calcification on Cranial Computed Tomography

    PubMed Central

    Subedi, Deepak; Zishan, Umme Sara; Chappell, Francesca; Gregoriades, Maria-Lena; Sudlow, Cathie; Sellar, Robin

    2015-01-01

    Background and Purpose— Intracranial internal carotid artery calcification is associated with cerebrovascular risk factors and stroke, but few quantification methods are available. We tested the reliability of visual scoring, semiautomated Agatston score, and calcium volume measurement in patients with recent stroke. Methods— We used scans from a prospective hospital stroke registry and included patients with anterior circulation ischemic stroke or transient ischemic stroke whose noncontrast cranial computed tomographic scans were available electronically. Two raters measured semiautomatic quantitative Agatston score, and calcium volume, and performed qualitative visual scoring using the original 4-point Woodcock score and a modified Woodcock score, where each image on which the internal carotid arteries appeared was scored and the slice scores summed. Results— Intra- and interobserver coefficient of variations were 8.8% and 16.5% for Agatston, 8.8% and 15.5% for calcium volume, and 5.7% and 5.4% for the modified Woodcock visual score, respectively. The modified Woodcock visual score correlated strongly with both Agatston and calcium volume quantitative measures (both R2=0.84; P<0.0001); calcium volume increased by 0.47-mm/point increase in modified Woodcock visual score. Intracranial internal carotid artery calcification increased with age by all measures (eg, visual score, Spearman ρ=0.4; P=0.005). Conclusions— Visual scores correlate highly with quantitative intracranial internal carotid artery calcification measures, with excellent observer agreements. Visual intracranial internal carotid artery scores could be a rapid and practical method for epidemiological studies. PMID:26251250

  7. Didactics and training in cardiovascular computed tomography angiography.

    PubMed

    Bhojraj, Sanjay D; Al-Mallah, Mouaz H

    2009-01-01

    As the role of cardiovascular computed tomography angiography (CCTA) is further expanded through research, the use of this technology will expand as a result of demand both from medical professionals and the public. To ensure a standardized quality of interpretation of these scans in the face of an increased demand for physicians qualified to interpret these studies, the Society of Cardiovascular Computed Tomography, along with several other professional societies, has proposed a didactic curriculum for the study of CCTA. This review highlights the currently proposed didactic curriculum for the study of CCTA, examines current trends in training for both medical trainees and physicians in practice, and proposes future directions for the study of CCTA.

  8. Single photon emission computed tomography in seizure disorders.

    PubMed Central

    Denays, R; Rubinstein, M; Ham, H; Piepsz, A; Noël, P

    1988-01-01

    Fourteen children with various seizure disorders were studied using a cerebral blood flow tracer, 123I iodoamphetamine (0.05 mCi/kg), and single photon emission computed tomography (SPECT). In the five patients with radiological lesions, SPECT showed congruent or more extensive abnormalities. Five of the nine children with a normal scan on computed tomography had abnormal SPECT studies consisting of focal hypoperfusion, diffuse hemispheric hypoperfusion, multifocal and bilateral hypoperfusion, or focal hyperperfusion. A focal lesion seen on SPECT has been found in children with tonic-clonic seizures suggesting secondarily generalised seizures. Moreover the pattern seen on SPECT seemed to be related to the clinical status. An extensive impairment found on SPECT was associated with a poor evolution in terms of intellectual performance and seizure frequency. Conversely all children with a normal result on SPECT had less than two seizures per year and normal neurological and intellectual development. Images Figure PMID:3264135

  9. Analytic reconstruction approach for parallel translational computed tomography.

    PubMed

    Kong, Huihua; Yu, Hengyong

    2015-01-01

    To develop low-cost and low-dose computed tomography (CT) scanners for developing countries, recently a parallel translational computed tomography (PTCT) is proposed, and the source and detector are translated oppositely with respect to the imaging object without a slip-ring. In this paper, we develop an analytic filtered-backprojection (FBP)-type reconstruction algorithm for two dimensional (2D) fan-beam PTCT and extend it to three dimensional (3D) cone-beam geometry in a Feldkamp-type framework. Particularly, a weighting function is constructed to deal with data redundancy for multiple translations PTCT to eliminate image artifacts. Extensive numerical simulations are performed to validate and evaluate the proposed analytic reconstruction algorithms, and the results confirm their correctness and merits.

  10. Consolidation with diffuse or focal high attenuation: computed tomography findings.

    PubMed

    Marchiori, Edson; Franquet, Tomás; Gasparetto, Taísa Davaus; Gonçalves, Letícia Pereira; Escuissato, Dante L

    2008-11-01

    This pictorial essay aims to present various lesions that could present as consolidations with diffuse of focal high attenuation on computed tomography, helping to make the diagnosis more confident and specific. The radiologic literature has limited information about such findings and the role of computed tomography in the differential diagnosis. The following diseases are presented: metastatic pulmonary calcification, pulmonary alveolar microlithiasis, amiodarone lung, talcosis, iodinated oil embolism, tuberculosis, silicoproteinosis, and amyloidosis. In conclusion, air-space consolidations can be seen in a wide variety of diseases affecting the lungs. The identification of the different patterns of consolidation with focal high attenuation narrows the differential diagnosis. We present a diagnostic approach based on appearance and distribution of these lesions.

  11. Blood-brain barrier permeability imaging using perfusion computed tomography

    PubMed Central

    Avsenik, Jernej; Bisdas, Sotirios; Popovic, Katarina Surlan

    2015-01-01

    Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases. Conclusions. Blood-brain barrier permeability can be evaluated in vivo by perfusion computed tomography - an efficient diagnostic method that involves the sequential acquisition of tomographic images during the intravenous administration of iodinated contrast material. The major clinical applications of perfusion computed tomography are in acute stroke and in brain tumor imaging. PMID:26029020

  12. Validation of cone beam computed tomography-based tooth printing using different three-dimensional printing technologies.

    PubMed

    Khalil, Wael; EzEldeen, Mostafa; Van De Casteele, Elke; Shaheen, Eman; Sun, Yi; Shahbazian, Maryam; Olszewski, Raphael; Politis, Constantinus; Jacobs, Reinhilde

    2016-03-01

    Our aim was to determine the accuracy of 3-dimensional reconstructed models of teeth compared with the natural teeth by using 4 different 3-dimensional printers. This in vitro study was carried out using 2 intact, dry adult human mandibles, which were scanned with cone beam computed tomography. Premolars were selected for this study. Dimensional differences between natural teeth and the printed models were evaluated directly by using volumetric differences and indirectly through optical scanning. Analysis of variance, Pearson correlation, and Bland Altman plots were applied for statistical analysis. Volumetric measurements from natural teeth and fabricated models, either by the direct method (the Archimedes principle) or by the indirect method (optical scanning), showed no statistical differences. The mean volume difference ranged between 3.1 mm(3) (0.7%) and 4.4 mm(3) (1.9%) for the direct measurement, and between -1.3 mm(3) (-0.6%) and 11.9 mm(3) (+5.9%) for the optical scan. A surface part comparison analysis showed that 90% of the values revealed a distance deviation within the interval 0 to 0.25 mm. Current results showed a high accuracy of all printed models of teeth compared with natural teeth. This outcome opens perspectives for clinical use of cost-effective 3-dimensional printed teeth for surgical procedures, such as tooth autotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Three-dimensional cone-beam computed tomography analysis of enlargement of the pharyngeal airway by the Herbst appliance.

    PubMed

    Iwasaki, Tomonori; Takemoto, Yoshihiko; Inada, Emi; Sato, Hideo; Saitoh, Issei; Kakuno, Eriko; Kanomi, Ryuzo; Yamasaki, Youichi

    2014-12-01

    Pharyngeal airway size is increasingly recognized as an important factor in obstructive sleep apnea. However, few studies have examined the changes of pharyngeal airway form after dental procedures for treating obstructive sleep apnea during growth. The purpose of this study was to evaluate the effect of the Herbst appliance on the 3-dimensional form of the pharyngeal airway using cone-beam computed tomography. Twenty-four Class II subjects (ANB, ≥5°; 11 boys; mean age, 11.6 years) who required Herbst therapy with edgewise treatment had cone-beam computed tomography images taken before and after Herbst treatment. Twenty Class I control subjects (9 boys; mean age, 11.5 years) received edgewise treatment only. The volume, depth, and width of the pharyngeal airway were compared between the groups using measurements from 3-dimensional cone-beam computed tomography images of the entire pharyngeal airway. The increase of the oropharyngeal airway volume in the Herbst group (5000.2 mm(3)) was significantly greater than that of the control group (2451.6 mm(3)). Similarly, the increase of the laryngopharyngeal airway volume in the Herbst group (1941.8 mm(3)) was significantly greater than that of the control group (1060.1 mm(3)). The Herbst appliance enlarges the oropharyngeal and laryngopharyngeal airways. These results may provide a useful assessment of obstructive sleep apnea treatment during growth. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. Element-sensitive computed tomography with fast neutrons.

    PubMed

    Overley, J C

    1983-02-01

    Neutrons and X-rays are mathematically equivalent as probes in computed tomography. However, structure in the energy dependence of neutron total cross sections and the feasibility of using time-of-flight techniques for energy sensitivity in neutron detection suggest that spatial distributions of specific substances can be determined from neutron transmission data. We demonstrate that this is possible by tomographically reconstructing from such data a phantom containing several different structural materials.

  15. Use of Cone Beam Computed Tomography in Endodontics

    PubMed Central

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  16. Dual-Energy Computed Tomography in Genitourinary Imaging.

    PubMed

    Mileto, Achille; Marin, Daniele

    2017-03-01

    Reignited by innovations in scanner engineering and software design, dual-energy computed tomography (CT) has come back into the clinical radiology arena in the last decade. Possibilities for noninvasive in vivo characterization of genitourinary disease, especially for renal stones and renal masses, have become the pinnacle offerings of dual-energy CT for body imaging in clinical practice. This article renders a state-of-the-art review on clinical applications of dual-energy CT in genitourinary imaging.

  17. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  18. [Detection and characterization of pulmonary nodules using multislice computed tomography].

    PubMed

    Bastarrika, G; Cano, D; Hernández, C; Alonso-Burgos, A; González, I; Villanueva, A; Vivas, I; Zulueta, J

    2007-01-01

    Pulmonary nodules are a common finding in routine chest studies. Although there are no pathognomic clinical or radiological signs that enable the exact nature of a pulmonary nodule to be determined, the clinical context and the appropriate characterization of the pulmonary nodule make it possible to reach the correct diagnosis in most cases. This article discusses the most important aspects involved in the use of multislice computed tomography in the noninvasive detection and characterization of pulmonary nodules.

  19. Early bone changes in experimental osteoarthritis using microscopic computed tomography.

    PubMed

    Dedrick, D K; Goulet, R; Huston, L; Goldstein, S A; Bole, G G

    1991-02-01

    Alterations in trabecular subchondral bone have been measured using a microscopic computed tomography scanner in the guinea pig hind-limb myectomy model of osteoarthritis. These bone changes can be found as early as histologic changes in cartilage. To evaluate the influence of the myectomy on the animals, a gait study was performed. This data reveals an alteration in acceleration at the foot-flat phase of gait in the operated limb only, providing early quantification of the interaction between mechanics and biology.

  20. Three-dimensional terahertz computed tomography of human bones.

    PubMed

    Bessou, Maryelle; Chassagne, Bruno; Caumes, Jean-Pascal; Pradère, Christophe; Maire, Philippe; Tondusson, Marc; Abraham, Emmanuel

    2012-10-01

    Three-dimensional terahertz computed tomography has been used to investigate dried human bones such as a lumbar vertebra, a coxal bone, and a skull, with a direct comparison with standard radiography. In spite of lower spatial resolution compared with x-ray, terahertz imaging clearly discerns a compact bone from a spongy one, with strong terahertz absorption as shown by additional terahertz time-domain transmission spectroscopy.

  1. Precision Medicine and PET/Computed Tomography in Cardiovascular Disorders.

    PubMed

    Dibble, Elizabeth H; Yoo, Don C

    2017-10-01

    PET/computed tomography (CT) can evaluate the metabolic and anatomic involvement of a variety of inflammatory, infectious, and malignant cardiovascular disorders. PET/CT is useful in evaluating coronary vasculature, hibernating myocardium, cardiac sarcoidosis, cardiac amyloidosis, cerebrovascular disease, acute aortic syndromes, cardiac and vascular neoplasms, cardiac and vascular infections, and vasculitis. Novel targeted radiopharmaceutical agents and novel use of established techniques show promise in diagnosing and monitoring cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparison of computed tomography and pluridirectional tomography of the temporal bone

    SciTech Connect

    Lufkin, R.; Barni, J.J.; Glen, W.; Mancuso, A.; Canalis, R.; Hanafee, W.

    1982-06-01

    During pluridirectional tomography dense bone creates ghost shadows that simulate chronic disease and soft-tissue masses within the middle ear cavity. This effect was demonstrated in three dried skulls. Cholesteatomas were simulated in three more temporal bones with a mixture of 2% iodine in paraffin. Three different high-resolution computed tomographic scanners clearly demonstrated middle ear anatomy and the simulated soft-tissue masses in the skulls.

  3. [Value of computer tomography in the managment of brain injuries].

    PubMed

    Keita, A D; Toure, M; Sissako, A; Doumbia, S; Coulibaly, Y; Doumbia, D; Kane, M; Diallo, A K; Toure, A A; Traore, I

    2005-11-01

    The purpose of this prospective study conducted from January 2001 to December 2001 was to ascertain the value of computer tomography for evaluation of brain injuries. Computer tomography was performed using a Toshiba X VID system with contiguous 5 mm axial sections through the posterior fossa and 10 mm contiguous axial sections through the subtentorial region without contrast injection. A total of 107 patients with brain injuries were enrolled over the one-year study period. These patients accounted for 0.8% of all admissions to surgical emergency unit of Gabriel Toure Hospital in Bamako, Mali. The predominant age group for brain injuries was the 20- to 29-year-old group (35 cases). The male-to-female sex ratio was 5:1. Vehicular accident was the most frequent cause of brain injury (76 cases). Trauma was severe in 48 patients with a Glasgow score less than 8. Coma occurred immediately after injury in 90 cases. Ventricular hemorrhage led to coma in 100% of cases whereas brain hemorrhage and hematoma led to coma in 93.3% and 83.3% of cases respectively. Treatment was medical in 99 cases and neurosurgical in 8. The mortality rate was 34% and the morbidity rate (permanent sequels) was 36%. Computer tomography is a valuable tool for therapeutic decision-making in medico-surgical emergencies involving brain injuries.

  4. Role of cardiac multidetector computed tomography beyond coronary angiography.

    PubMed

    Sato, Akira; Aonuma, Kazutaka

    2015-01-01

    Cardiac multidetector computed tomography (MDCT) has become a useful noninvasive modality for anatomical imaging of coronary artery disease (CAD). Currently, the main clinical advantage of coronary computed tomography angiography (CCTA) appears to be related to its high negative predictive value at low or intermediate pretest probability for CAD. With the development of technical aspects of MDCT, clinical practice and research are increasingly shifting toward defining the clinical implication of plaque morphology, myocardial perfusion, and patient outcomes. The presence of positive vessel remodeling, low-attenuation plaques, napkin-ring sign, or spotty calcification on CCTA could be useful information on high-risk vulnerable plaques. The napkin-ring sign, especially, showed higher accuracy for the detection of thin-cap fibroatheroma. Recently, it was reported that cardiac 3D single-photon emission tomography/CT fusion imaging, noninvasive fractional flow reserve computed from CT, and integrated CCTA and CT myocardial perfusion were associated with improved diagnostic accuracy for the detection of hemodynamically significant CAD. Furthermore, several randomized, large clinical trials have evaluated the clinical value of CCTA for chest pain triage in the emergency department or long-term reduction in death, myocardial infarction, or hospitalization for unstable angina. In this review we discuss the role of cardiac MDCT beyond coronary angiography, including a comparison with other currently available imaging modalities used to examine atherosclerotic plaque and myocardial perfusion.

  5. SADMFR guidelines for the use of Cone-Beam Computed Tomography/ Digital Volume Tomography.

    PubMed

    Dula, Karl; Bornstein, Michael M; Buser, Daniel; Dagassan-Berndt, Dorothea; Ettlin, Dominik A; Filippi, Andreas; Gabioud, François; Katsaros, Christos; Krastl, Gabriel; Lambrecht, J Thomas; Lauber, Roland; Luebbers, Heinz-Theo; Pazera, Pawel; Türp, Jens C

    2014-01-01

    Cone-Beam Computed Tomography (CBCT) has been introduced in 1998. This radiological imaging procedure has been provided for dentistry and is comparable to computed tomography (CT) in medicine. It is expected that CBCT will have the same success in dental diagnostic imaging as computed tomography had in medicine. Just as CT is responsible for a significant rise in radiation dose to the population from medical X-ray diagnostics, CBCT studies will be accompanied by a significant increase of the dose to our patients by dentistry. Because of the growing concern for an uncritical and consequently rapidly increasing use of CBCT the Swiss Society of Dentomaxillofacial Radiology convened a first consensus conference in 2011 to formulate indications for CBCT, which can be used as guidelines. In this meeting, oral and maxillofacial surgery, orthodontics and temporomandibular joint disorders and diseases were treated and the most important and most experienced users of DVT in these areas were asked to participate. In general, a highly restrictive use of CBCT is required. Justifying main criterion for CBCT application is that additional, therapy-relevant information is expected that should lead to a significant benefit in patient care. All users of CBCT should have completed a structured, high-level training, just like that offered by the Swiss Society of Dentomaxillofacial Radiology.

  6. Incorporating 3-dimensional models in online articles.

    PubMed

    Cevidanes, Lucia H S; Ruellas, Antonio C O; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-05-01

    The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. When submitting manuscripts, authors can now upload 3D models that will allow readers to

  7. Incorporating 3-dimensional models in online articles

    PubMed Central

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  8. Impact of cavity and infiltration on pulmonary function and health-related quality of life in pulmonary Mycobacterium avium complex disease: A 3-dimensional computed tomographic analysis.

    PubMed

    Asakura, Takanori; Yamada, Yoshitake; Namkoong, Ho; Suzuki, Shoji; Niijima, Yuki; Kamata, Hirofumi; Funatsu, Yohei; Yagi, Kazuma; Okamori, Satoshi; Sugiura, Hiroaki; Ishii, Makoto; Jinzaki, Masahiro; Betsuyaku, Tomoko; Hasegawa, Naoki

    2017-05-01

    Pulmonary Mycobacterium avium complex (pMAC) disease manifests as various types of lesions, such as infiltrates, nodules, cavities, and bronchiectasis. However, the important determinants for clinical parameters in lung involvement are poorly understood. The objective of this study was to obtain quantitative parameters by 3-dimensional CT, and investigate the relationship between these parameters and the pulmonary function tests (PFTs) and health-related quality of life. Quantitative analysis using CT was performed in 67 pMAC patients. The relationship between new quantitative parameters for evaluating lung involvement using 3-dimensional CT and PFTs or St George's Respiratory Questionnaire (SGRQ) was evaluated. The ratio of infiltration to total lung volume showed significant correlation with the PFT results, especially the percent-predicted forced vital capacity (%FVC; ρ = -0.52), residual volume (ρ = -0.51), and total lung capacity (ρ = -0.59). The cavity volume was strongly correlated with the %FVC (ρ = -0.78) in the cavity group, while the ratio of infiltration to total lung volume was strongly correlated with the %FVC (ρ = -0.53) in the non-cavity group. The ratio of infiltration to total lung volume was significantly correlated with all SGRQ parameters (ρ = 0.41-0.52) in the non-cavity group. Infiltration was an important parameter for the PFTs and SGRQ in pMAC patients according to the 3-dimensional CT analysis. Moreover, cavity volume was an important parameter of the PFTs in the cavity group. Therefore, infiltration and cavity volume are key features for the management of pMAC disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Validation of visual surface measurement using computed tomography

    NASA Astrophysics Data System (ADS)

    VanBerlo, Amy M.; Campbell, Aaron R.; Ellis, Randy E.

    2011-03-01

    Although dysesthesia is a common and persistent surgical complication, there is no accepted method for quantitatively tracking affected skin. To address this, two types of computer vision technologies were tested in a total of four configurations. Surface regions on plastic models of limbs were delineated with colored tape, imaged, and compared with computed tomography scans. The most accurate system used visually projected texture captured by a binocular stereo camera, capable of measuring areas to within 0.05% of the ground-truth areas with 1.4% variance. This simple, inexpensive technology shows promise for postoperative monitoring of dysesthesia surrounding surgical scars.

  10. Perfusion computed tomography in patients with stroke thrombolysis

    PubMed Central

    Kawano, Hiroyuki; Bivard, Andrew; Lin, Longting; Ma, Henry; Cheng, Xin; Aviv, Richard; O’Brien, Billy; Butcher, Kenneth; Lou, Min; Zhang, Jingfen; Jannes, Jim; Dong, Qiang; Levi, Christopher R.

    2017-01-01

    Abstract See Saver (doi:10.1093/awx020) for a scientific commentary on this article. Stroke shortens an individual’s disability-free life. We aimed to assess the relative prognostic influence of pre- and post-treatment perfusion computed tomography imaging variables (e.g. ischaemic core and penumbral volumes) compared to standard clinical predictors (such as onset-to-treatment time) on long-term stroke disability in patients undergoing thrombolysis. We used data from a prospectively collected international, multicentre, observational registry of acute ischaemic stroke patients who had perfusion computed tomography and computed tomography angiography before treatment with intravenous alteplase. Baseline perfusion computed tomography and follow-up magnetic resonance imaging were analysed to derive the baseline penumbra volume, baseline ischaemic core volume, and penumbra salvaged from infarction. The primary outcome measure was the effect of imaging and clinical variables on Disability-Adjusted Life Year. Clinical variables were age, sex, National Institutes of Health Stroke Scale score, and onset-to-treatment time. Age, sex, country, and 3-month modified Rankin Scale were extracted from the registry to calculate disability-adjusted life-year due to stroke, such that 1 year of disability-adjusted life-year equates to 1 year of healthy life lost due to stroke. There were 772 patients receiving alteplase therapy. The number of disability-adjusted life-year days lost per 1 ml of baseline ischaemic core volume was 17.5 (95% confidence interval, 13.2–21.9 days, P < 0.001). For every millilitre of penumbra salvaged, 7.2 days of disability-adjusted life-year days were saved (β = −7.2, 95% confidence interval, −10.4 to −4.1 days, P < 0.001). Each minute of earlier onset-to-treatment time resulted in a saving of 4.4 disability-free days after stroke (1.3–7.5 days, P = 0.006). However, after adjustment for imaging variables, onset-to-treatment time was not

  11. Optic nerve sheath meningioma detected by single- photon emission computed tomography/computed tomography somatostatin receptor scintigraphy: a case report.

    PubMed

    Nussbaum-Hermassi, Lucie; Ahle, Guido; Zaenker, Chistophe; Duca, Camelia; Namer, Izzie Jacques

    2016-04-22

    Optic nerve sheath meningiomas account for only 2% of orbital lesions and 42% of optic nerve tumors. Diagnosis remains difficult because histologic confirmation carries a high risk of visual loss. Therefore, a less invasive and specific diagnostic method for differentiating optic nerve sheath meningiomas from other optic nerve lesions is needed to overcome the limitations of computed tomography and magnetic resonance imaging, and make the best individualized treatment decision. This case is a good illustration of the clinical and imaging difficulties inherent in this rare tumor, which may be hard to differentiate from other causes. A 51-year-old Caucasian woman developed a central scotoma, visual loss, and abnormal visual evoked potentials. The first magnetic resonance imaging scan classified the optic nerve damage as retrobulbar optic neuritis. After magnetic resonance imaging follow-up at 3 months, a negative lumbar puncture and biological workup, and clinical worsening, an optic nerve sheath meningioma was suspected. We confirmed this diagnosis with 111In-pentetreotide single-photon emission computed tomography, which is able to bind with very high affinity to somatostatin receptor subtype 2 expressed on meningiomas. In the diagnosis of optic nerve sheath meningiomas, [111In]-pentetreotide single-photon emission computed tomography-fused magnetic resonance imaging is a valuable additional tool, optimizing the diagnosis and obviating the need for a more invasive procedure.

  12. Cardiothoracic Applications of 3-dimensional Printing.

    PubMed

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.

  13. Technical developments for computed tomography on the CENBG nanobeam line

    NASA Astrophysics Data System (ADS)

    Gordillo, N.; Habchi, C.; Daudin, L.; Sakellariou, A.; Delalée, F.; Barberet, Ph.; Incerti, S.; Seznec, H.; Moretto, Ph.

    2011-10-01

    The use of ion microbeams as probes for computed tomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeam line at the Applications Interdisciplinaires des Faisceaux d'Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications. The implementation of computed tomography on the nanobeam line of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion.

  14. [Spiral computed tomography in the diagnosis of limb osteomyelitis].

    PubMed

    Vasil'ev, A Iu; Bulanova, T V; Panin, M G; Onishchenko, M P

    2002-01-01

    The results of radiation studies in 121 patients of different age (4 to 75 years) examined for limb osteomyelitis are analyzed. All the patients underwent routine X-ray study and computed tomography (CT), 26 patients had X-ray fistulography; 8, linear tomography; 10, CT fistulography; 6, scintigraphy, and 15, ultrasound study. Acute hematogenous osteomyelitis (AHO), chronic hematogenous osteomyelitis (CHO), and atypical (here Garre's sclerosing osteomyelitis and Brodie's abscess) osteomyelitis were ascertained in 10.6, 26.4, and 10.1% of cases, respectively. Posttraumatic osteomyelitis was diagnosed in almost 50% of the patients. CT defined the phase of chronic limb osteomyelitis. Spiral CT has proven to be the most effective technique for diagnosing limb osteomyelitis as compared with routine X-ray study: the accuracy of X-ray study was 81.8%, its sensitivity, 84.9%, and specificity, 60.0% and those of computed tomography were 96.7, 99.1, and 80.0%, respectively.

  15. [Spiral computed tomography in the diagnosis of limb osteomyelitis].

    PubMed

    Vasil'ev, A Iu; Bulanova, T V; Onishchenko, M P

    2003-01-01

    The results of radiation studies in 121 patients of different age (4 to 75 years) examined for limb osteomyelitis are analyzed. All the patients underwent routine X-ray study and computed tomography (CT), 26 patients had X-ray fistulography; 8, linear tomography; 10, CT fistulography; 6, scintigraphy, and 15, ultrasound study. Acute hematogenous osteomyelitis (AHO), chronic hematogenous osteomyelitis (CHO), and atypical (here Garre's sclerosing osteomyelitis and Brodie's abscess) osteomyelitis were ascertained in 10.6, 26.4, and 10.1% of cases, respectively. Posttraumatic osteomyelitis was diagnosed in almost 50% of the patients. CT defined the phase of chronic limb osteomyelitis. Spiral CT has proven to be the most effective technique for diagnosing limb osteomyelitis as compared with routine X-ray study: the accuracy of X-ray study was 81.8%, its sensitivity, 84.9%, and specificity, 60.0% and those of computed tomography were 96.7, 99.1, and 80.0%, respectively.

  16. Mycosis fungoides staged by 18F-flurodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Xu, Lu; Pang, Hua; Zhu, Jin; Chen, Xi; Guan, Lili; Wang, Jie; Chen, Jing; Liu, Ying

    2016-01-01

    Abstract Introduction: Mycosis fungoides is a kind of malignant lymphoma arising from T cells, but primarily occurs in skin, and it is the most common type of cutaneous lymphoma. Mycosis fungoides (MF) is a rare non-Hodgkin lymphoma but the most common type of primary cutaneous T-cell lymphomas. Because of unknown etiology and mechanism, and lack of typical clinical and histophysiological manifestations, the final diagnosis of MF is currently dependent on pathology and immunohistochemistry. Subsequently, tumor staging is very important. Different approaches would be taken according to varying degrees of cutaneous and extracutaneous lesions. Computed tomography (CT) scan has been chosen to stage tumors customarily. However, CT could only provide morphological information and analyze lymphadenopathy by the size criteria. 18F-flurodeoxyglucose positron emission tomography/computed tomography (PET/CT) could provide morphological information and metabolic conditions simultaneously, which is helpful to locate and stage lesion. Conclusion: 18F-flurodeoxyglucose PET/CT could identify cutaneous and extracutaneous lesions in patients with MF. It could provide the range of lesions and biopsy target. PMID:27828842

  17. Is there any role of positron emission tomography computed tomography for predicting resectability of gallbladder cancer?

    PubMed

    Kim, Jaihwan; Ryu, Ji Kon; Kim, Chulhan; Paeng, Jin Chul; Kim, Yong-Tae

    2014-05-01

    The role of integrated (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography computed tomography (PET-CT) is uncertain in gallbladder cancer. The aim of this study was to show the role of PET-CT in gallbladder cancer patients. Fifty-three patients with gallbladder cancer underwent preoperative computed tomography (CT) and PET-CT scans. Their medical records were retrospectively reviewed. Twenty-six patients underwent resection. Based on the final outcomes, PET-CT was in good agreement (0.61 to 0.80) with resectability whereas CT was in acceptable agreement (0.41 to 0.60) with resectability. When the diagnostic accuracy of the predictions for resectability was calculated with the ROC curve, the accuracy of PET-CT was higher than that of CT in patients who underwent surgical resection (P=0.03), however, there was no difference with all patients (P=0.12). CT and PET-CT had a discrepancy in assessing curative resection in nine patients. These consisted of two false negative and four false positive CT results (11.3%) and three false negative PET-CT results (5.1%). PET-CT was in good agreement with the final outcomes compared to CT. As a complementary role of PEC-CT to CT, PET-CT tended to show better prediction about resectability than CT, especially due to unexpected distant metastasis.

  18. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly.

  19. Right parietal stroke with Gerstmann's syndrome. Appearance on computed tomography, magnetic resonance imaging, and single-photon emission computed tomography.

    PubMed

    Moore, M R; Saver, J L; Johnson, K A; Romero, J A

    1991-04-01

    We examined a patient who exhibited Gerstmann's syndrome (left-right disorientation, finger agnosia, dyscalculia, and dysgraphia) in association with a perioperative stroke in the right parietal lobe. This is the first description of the Gerstmann tetrad occurring in the setting of discrete right hemisphere pathologic findings. A well-localized vascular lesion was demonstrated by computed tomography, magnetic resonance imaging, and single-photon emission computed tomographic studies. The patient had clinical evidence of reversed functional cerebral dominance and radiologic evidence of reversed anatomic cerebral asymmetries.

  20. Computed Tomography Angiography in Microsurgery: Indications, Clinical Utility, and Pitfalls

    PubMed Central

    Lee, Gordon K.; Fox, Paige M.; Riboh, Jonathan; Hsu, Charles; Saber, Sepideh; Rubin, Geoffrey D.; Chang, James

    2013-01-01

    Objective: Computed tomographic angiography (CTA) can be used to obtain 3-dimensional vascular images and soft-tissue definition. The goal of this study was to evaluate the reliability, usefulness, and pitfalls of CTA in preoperative planning of microvascular reconstructive surgery. Methods: A retrospective review of patients who obtained preoperative CTA in preparation for planned microvascular reconstruction was performed over a 5-year period (2001–2005). The influence of CTA on the original operative plan was assessed for each patient, and CTA results were correlated to the operative findings. Results: Computed tomographic angiography was performed on 94 patients in preparation for microvascular reconstruction. In 48 patients (51%), vascular abnormalities were noted on CTA. Intraoperative findings correlated with CTA results in 97% of cases. In 42 patients (45%), abnormal CTA findings influenced the original operative plan, such as the choice of vessels, side of harvest, or nature of the reconstruction (local flap instead of free tissue transfer). Technical difficulties in performing CTA were encountered in 5 patients (5%) in whom interference from external fixation devices was the main cause. Conclusions: This large study of CTA obtained for preoperative planning of reconstructive microsurgery at both donor and recipient sites study demonstrates that CTA is safe and highly accurate. Computed tomographic angiography can alter the surgeon's reconstructive plan when abnormalities are noted preoperatively and consequently improve results by decreasing vascular complication rates. The use of CTA should be considered for cases of microsurgical reconstruction where the vascular anatomy may be questionable. PMID:24023972

  1. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  2. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  3. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  4. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography

    PubMed Central

    Bénard, François; Turcotte, Éric

    2005-01-01

    Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites. PMID:15987467

  5. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  6. Extramedullary Plasmacytoma of the Gallbladder Detected on Fluorine 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Fakhri, Asif Ali; Rodrigue, Paul David; Fakhri, Amena Fatima

    2016-01-01

    Extramedullary plasmacytoma is rare in patients with diagnosed multiple myeloma. Soft tissue plasmacytoma of the gallbladder is particularly uncommon and has been described in only a handful of cases. Diagnosis of gallbladder plasmacytoma with fluorine 18-fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (PET/CT) has not previously been reported. We present a 65-year-old female with a history of multiple myeloma who underwent a restaging F18-FDG-PET/CT which showed a focal area of hypermetabolic activity, corresponding to a nodular lesion within the posterior gallbladder wall. The patient underwent successful cholecystectomy, with surgical pathology revealing gallbladder plasmacytoma. A follow-up scan was negative for active malignancy. This is a novel case of gallbladder plasmacytoma diagnosed on whole-body F18-FDG PET/CT – thus demonstrating the clinical value of this imaging modality in staging, restaging, and surveillance for patients with multiple myeloma. PMID:27761300

  7. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  8. Positron emission tomography and single-photon emission computed tomography in substance abuse research.

    PubMed

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2003-04-01

    Many advances in the conceptualization of addiction as a disease of the brain have come from the application of imaging technologies directly in the human drug abuser. New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) and single-photon emission computed tomography (SPECT) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology, and medicine. This topic cuts across the medical specialties of neurology, psychiatry, oncology, and cardiology because of the high medical, social, and economic toll that drugs of abuse, including the legal drugs, cigarettes and alcohol, take on society. This article highlights recent advances in the use of PET and SPECT imaging to measure the pharmacokinetic and pharmacodynamic effects of drugs of abuse on the human brain.

  9. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  10. The role of positron emission tomography/computed tomography in planning radiotherapy in endometrial cancer.

    PubMed

    Simcock, Bryony; Narayan, Kailash; Drummond, Elizabeth; Bernshaw, David; Wells, Elizabeth; Hicks, Rodney J

    2015-05-01

    The optimal method of assessing disease distribution in endometrial cancer is widely debated. Knowledge of disease distribution assists in planning adjuvant radiotherapy; in this study we used positron emission tomography/computed tomography (PET/CT) to assess disease distribution before radiotherapy. Seventy-three consecutive patients referred to the Peter MacCallum Cancer Centre for adjuvant radiotherapy for endometrial cancer, with either high-risk disease after a hysterectomy or recurrent disease, had a PET/CT before treatment. The findings on PET/CT and clinical course were recorded. PET/CT found additional disease in 35% of postoperative patients, changing planned treatment in 31%. In the group with known recurrence, additional disease was found in 72%, changing management in 36%. PET/CT is a valuable tool for planning radiotherapy in endometrial cancer.

  11. Utility of emergency cranial computed tomography in patients without trauma.

    PubMed

    Narayanan, Vignesh; Keniston, Angela; Albert, Richard K

    2012-09-01

    The objectives of this study were to determine, in patients admitted to the hospital from the emergency department (ED) without evidence of trauma, 1) the prevalence of clinically important abnormalities on cranial computed tomography (CCT) and 2) the frequency of emergent therapeutic interventions required because of these abnormalities. The authors retrospectively reviewed the records of all patients from 2007 between the ages of 18 and 89 years who had CCT as part of their ED evaluations prior to hospitalization. Patients with any indication of trauma were excluded, as were those who had a lumbar puncture (LP). Chief complaint, results of the ED neurologic examination, tomogram findings, and whether patients had emergent interventions were recorded. Patients presenting with altered mental status (AMS) were analyzed separately. Of the 766 patients meeting inclusion criteria, 83 (11%) had focal neurologic findings, and 61 (8%) had clinically important abnormalities on computed tomography. Emergent interventions occurred in only 12 (1.6%), 11 (92%) of whom had focal neurologic findings. In the subgroup of 287 patients with AMS as their presenting problem, 14 (4.9%) had focal findings, six (2%) had clinically important abnormalities on tomography, and only two (0.7%) required emergent interventions, both of whom had focal findings. Patients presenting with AMS were less likely to have positive findings on tomography (odds ratio [OR] = 0.16, 95% confidence interval [CI] = 0.07 to 0.39). Patients presenting with motor weakness or speech abnormalities, or who were unresponsive, were more likely to have positive findings on tomography (OR = 4.7, 95% CI = 2.6 to 8.6; OR = 4.4, 95% CI = 1.5 to 2.7; and OR = 3.3, 95% CI = 1.6 to 7.1, respectively). Of patients without evidence of trauma who receive CCT in the ED, the prevalence of focal neurologic findings and clinically important abnormalities on tomography is low, the need for emergent intervention is very low, and the

  12. Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

    PubMed Central

    Borsic, A.; Attardo, E. A.; Halter, R. J.

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of

  13. Impact of window setting optimization on accuracy of computed tomography and computed tomography angiography source image-based Alberta Stroke Program Early Computed Tomography Score.

    PubMed

    Arsava, Ethem Murat; Saarinen, Jukka T; Unal, Ali; Akpinar, Erhan; Oguz, Kader K; Topcuoglu, Mehmet Akif

    2014-01-01

    The use of narrower window width settings on computed tomography (CT) improves sensitivity for detection of early ischemic changes in acute ischemic stroke. This study analyzed the effect of optimization of window settings on the accuracy of Alberta Stroke Program Early Computed Tomography Score (ASPECTS) performed on noncontrast CT (NCCT) and CT angiography source images (CTA-SI). ASPECTS was calculated on NCCT and CTA-SI with standard and optimized window width/center settings in a consecutive series of patients with acute ishcemic stroke. The difference between CT-based ASPECTS and ASPECTS performed on follow-up magnetic resonance imaging (MRI) were calculated to determine the disparity between initial estimates of the extent of ischemia on CT and follow-up lesion imaging by MRI. Forty-four patients were included into the study. The mean difference with respect to follow-up MRI-ASPECTS was 4.1 ± 2.2 for standard NCCT-ASPECTS, 3.7 ± 2.3 for optimized NCCT-ASPECTS, 3.0 ± 2.2 for standard CTA-SI-ASPECTS, and 2.7 ± 2.1 for optimized CTA-SI-ASPECTS. The improvement introduced by the optimization of window settings and use of CTA-SI was statistically significant (P < .01). Our data indicate that the accuracy of ASPECTS is improved with optimized window display settings. This improvement is irrespective of experience or specialty of the rater performing the assessment. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Reconstruction of limited computed tomography data of fuel cell components using Direct Iterative Reconstruction of Computed Tomography Trajectories

    NASA Astrophysics Data System (ADS)

    Lange, Axel; Kupsch, Andreas; Hentschel, Manfred P.; Manke, Ingo; Kardjilov, Nikolay; Arlt, Tobias; Grothausmann, Roman

    CT (computed tomography) reconstructions of fuel cell components of a yet unrivaled spatial resolution and quality are presented. This is achieved by application of the novel DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm. We focus on two different key issues which essentially rule the fuel cell's durability on different length scales and physical interactions. On the resolution scale of some 100 μm agglomerations of condensed water in flow-field channels are detected by means of quasi- in situ neutron CT (after operation). Five orders of magnitude below nanometer sized Ru catalyst particles on carbon black support are visualized by electron tomography. Both types of experiments are especially adapted to the type of material involved but they are accompanied by severe deviations from ideal CT measuring conditions, as well. In order to overcome the tremendous reconstruction artifacts of standard algorithms, we employ DIRECTT which is described in detail. Comparisons of DIRECTT reconstructions to the conventional filtered back projection, prove the significant improvements in both experimental methods.

  15. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.

    PubMed

    Horger, Marius; Bares, Roland

    2006-10-01

    Radiological (plain radiographs, computed tomography [CT], magnetic resonance imaging [MRI]) and nuclear medicine methods (bone scan, leukocyte scan) both provide unique information about the status of the skeleton. Both have typical strengths and weaknesses, which often lead to the sequential use of different procedures in daily routine. This use causes the unnecessary loss of time and sometimes money, if redundant information is obtained without establishing a final diagnosis. Recently, new devices for hybrid imaging (single-photon emission computed tomography/computed tomography [SPECT/CT], positron emission tomography/computed tomography [PET/CT]) were introduced, which allow for direct fusion of morphological (CT) and functional (SPECT, PET) data sets. With regard to skeletal abnormalities, this approach appears to be extremely useful because it combines the advantages of both techniques (high-resolution imaging of bone morphology and high sensitivity imaging of bone metabolism). By the accurate correlation of both, a new quality of bone imaging has now become accessible. Although researchers undertaking the initial studies exclusively used low-dose CT equipment, a new generation of SPECT/CT devices has emerged recently. By integrating high-resolution spiral CT, quality of bone imaging may improve once more. Ongoing prospective studies will have to show whether completely new diagnostic algorithms will come up for classification of bone disease as a consequence of this development. Besides, the role of ultrasonography and MRI for bone and soft-tissue imaging also will have to be re-evaluated. Looking at the final aim of all imaging techniques--to achieve correct diagnosis in a fast, noninvasive, comprehensive, and inexpensive way--we are now on the edge of a new era of multimodality imaging that will probably change the paths and structure of medicine in many ways. Presently, hybrid imaging using SPECT/CT has been proven to increase sensitivity and specificity

  16. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in a Patient with HIV (-) Kaposi Sarcoma

    PubMed Central

    Cengiz, Arzu; Şavk, Ekin; Tataroğlu, Canten; Yürekli, Yakup

    2016-01-01

    Kaposi sarcoma (KS) is a vascular neoplasm that often manifests with multiple vascular nodules on the skin and other organs. Various imaging modalities can be used to display disease extent. Herein we present a 65-year-old female patient with human immunodeficiency virus negative KS along with her whole-body positron emission tomography/computed tomography imaging findings. PMID:27751977

  17. Rare case of an ovarian vein tumor thrombosis identified on fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    Fludeoxyglucose positron emission tomography/computed tomography is valuable in the identification of tumor thrombus and differentiating it from bland thrombus which has implications in initiating anticoagulation. We present a rare case of tumor thrombosis in ovarian vein, in a recurrent case of uterine carcinosarcoma. PMID:27833321

  18. Clinical efficacy of 2-phase versus 4-phase computed tomography for localization in primary hyperparathyroidism

    PubMed Central

    Ramirez, Adriana G.; Shada, Amber L.; Martin, Allison N.; Raghavan, Prashant; Durst, Christopher R.; Mukherjee, Sugoto; Gaughen, John R.; Ornan, David A.; Hanks, John B.; Smith, Philip W.

    2016-01-01

    Background Four-dimensional computed tomography is being used increasingly for localization of abnormal glands in primary hyperparathyroidism. We hypothesized that compared with traditional 4-phase imaging, 2-phase imaging would halve the radiation dose without compromising parathyroid localization and clinical outcomes. Methods A transition from 4-phase to 2-phase imaging was instituted between 2009 and 2010. A pre-post analysis was performed on patients undergoing operative treatment with a parathyroid protocol computed tomography, and relevant data were correlated with operative findings. Sensitivity, positive predictive value, technical success, and cure rates were calculated. The Fisher exact test or χ2 test assessed the significance of 2-phase and 4-phase imaging and operative findings. Results Twenty-seven patients had traditional four-dimensional computed tomography and 35 had modified 2-phase computed tomography. Effective radiation doses were 6.8 mSy for 2-phase and 14 mSv for 4-phase. Four-phase computed tomography had a sensitivity and positive predictive value of 93% and 96%, respectively. Two-phase computed tomography had a comparable sensitivity and positive predictive value of 97% and 94%, respectively. Eight patients with discordant imaging had an average parathyroid weight of 240 g compared with 1,300 g for all patients. Technical surgical success (90% for 4-phase computed tomography versus 91% 2-phase computed tomography) and normocalcemia rates at 6 months (88% for both) did not differ between computed tomography protocols. Computed tomography correctly predicted multiglandular disease and localization for reoperations in 88% and 90% of cases, respectively, with no difference by computed tomography protocol. Conclusion With regard to surgical outcomes and localization, 2-phase parathyroid computed tomography is equivalent to 4-phase for parathyroid localization, including small adenomas, reoperative cases, and multiglandular disease. Two

  19. [Producing the third dimension of flat radiographic images: analogue tomography - computer tomography].

    PubMed

    Praestholm, J

    1995-01-01

    The inventor of computer tomography, Godfrey N. Hounsfield, mentioned in his Nobel Foundation lecture the following three main problems of conventional radiography: 1. It depicts the sum of shadows from several tissue elements at the same spot of the film. 2. The sensitivity of the employed photographic medium does not allow to differentiate between various soft tissue densities. 3. It gives no exact measure characterizing tissue densities. The first part of this article is dealing with the solution of problem number one. Researchers within medical imaging from many countries developed independently of each other a variety of methods for body-sectional imaging methods, but he did not construct any equipment. Alessandro Vallebona constructed equipment and published the first clinical body-section imaging material ever in 1930, but his method was not ideal. The first clinical material employing an ideal method was published by Bernhard Ziedses des Plantes in 1932. Methods for transverse axial tomography was independently described by William Watson in 1937, Jean Kieffer in 1938, and Shinji Takahashi in 1947. The limitation in sensitivity of the photographic medium was revealed in parallel to this development. In 1963 Allan M. Cormack described the mathematical model for absorption of ionizing rays in inhomogenous tissue. Godfrey N. Hounsfield combined this knowledge of mathematics with the fast developing computer technology and the medical need for a more sensitive registration medium. In 1971 computer tomography was a reality. One of the greatest conquests in medicine of this century had been made. Recent developments within scanner technology predict still better and safer diagnostic possibilities.

  20. Neurologic applications of whole-brain volumetric multidetector computed tomography.

    PubMed

    Snyder, Kenneth V; Mokin, Maxim; Bates, Vernice E

    2014-02-01

    The introduction of computed tomography (CT) scanning in the 1970s revolutionized the way clinicians could diagnose and treat stroke. Subsequent advances in CT technology significantly reduced radiation dose, reduced metallic artifact, and achieved speeds that enable dynamic functional studies. The recent addition of whole-brain volumetric CT perfusion technology has given clinicians a powerful tool to assess parenchymal perfusion parameters as well as visualize dynamic changes in blood vessel flow throughout the brain during a single cardiac cycle. This article reviews clinical applications of volumetric multimodal CT that helped to guide and manage care.

  1. Precision Medicine and PET/Computed Tomography: Challenges and Implementation.

    PubMed

    Subramaniam, Rathan M

    2017-01-01

    Precision Medicine is about selecting the right therapy for the right patient, at the right time, specific to the molecular targets expressed by disease or tumors, in the context of patient's environment and lifestyle. Some of the challenges for delivery of precision medicine in oncology include biomarkers for patient selection for enrichment-precision diagnostics, mapping out tumor heterogeneity that contributes to therapy failures, and early therapy assessment to identify resistance to therapies. PET/computed tomography offers solutions in these important areas of challenges and facilitates implementation of precision medicine.

  2. Differential diagnosis of intrasellar tumors by computed tomography

    SciTech Connect

    Daniels, D.L.; Williams, A.L.; Thornton, R.S.; Meyer, G.A.; Cusick, J.F.; Haughton, V.M.

    1981-12-01

    The specificity of the computed tomography (CT) diagnosis of intrasellar adenoma has not been studied. We compared the CT findings in intrasellar meningiomas, craniopharyngiomas, aneurysms, and metastases with those of pituitary adenomas. Calcification was a feature of intrasellar meningiomas, aneurysms, and craniopharyngiomas, but not a typical feature of adenomas. Low-density regions representing necrosis or cyst were found in most types of intrasellar tumors. Eccentricity, hyperostosis, and bone destruction were useful signs of aneurysm, meningioma, and metastasis, respectively. Since adenoma cannot always be distinghished from another intrasellar mass, angiography to demonstrate tumor angioarchitecture may be needed to characterize some neoplasms or to confirm an intrasellar aneurysm.

  3. Computed tomography and magnetic resonance imaging evaluation of pericardial disease

    PubMed Central

    Shahid, Muhammad; Watkin, Richard W.

    2016-01-01

    Pericardial diseases are commonly encountered in clinical practice and may present as an isolated process or in association with various systemic conditions. Traditionally transthoracic echocardiography (TTE) has been the method of choice for the evaluation of suspected pericardial disease but increasingly computed tomography (CT) and magnetic resonance imaging (MRI) are also being used as part of a rational multi-modality imaging approach tailored to the specific clinical scenario. This paper reviews the role of CT and MRI across the spectrum of pericardial diseases. PMID:27429911

  4. X-Ray Computed Tomography of Tranquility Base Moon Rock

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Garvin, Jim; Viens, Mike; Kent, Ryan; Munoz, Bruno

    2016-01-01

    X-ray Computed Tomography (CT) was used for the first time on the Apollo 11 Lunar Sample number 10057.30, which had been previously maintained by the White House, then transferred back to NASA under the care of Goddard Space Flight Center. Results from this analysis show detailed images of the internal structure of the moon rock, including vesicles (pores), crystal needles, and crystal bundles. These crystals, possibly the common mineral ilmenite, are found in abundance and with random orientation. Future work, in particular a greater understanding of these crystals and their formation, may lead to a more in-depth understanding of the lunar surface evolution and mineral content.

  5. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  6. Computed tomography of CNS disease. A teaching file

    SciTech Connect

    Yock, D.H.

    1985-01-01

    This ''teaching file'' comprises a clinically representative collection of over 400 cases of neuropathology diagnosed by computed tomography. Each case is accompanied by a discussion of CT interpretation. Comments on clinical presentation, pathophysiological findings, and therapy are included where appropriate. Abnormalities covered include metastases, meningiomas, posterior fossa tumors inflammatory and degenerative diseases, infarction and anoxia, and spinal lesions. Each pathological category demonstrates a range of CT findings from ''classic'' patterns to atypical examples. Anatomical variants are included only if they mimic pathology. Diverse lesions that potentially resemble each other are highlighted throughout the book in special sections entitled, ''Differential Diagnoses''.

  7. Multidetector computer tomography: evaluation of blunt chest trauma in adults.

    PubMed

    Palas, João; Matos, António P; Mascarenhas, Vasco; Herédia, Vasco; Ramalho, Miguel

    2014-01-01

    Imaging plays an essential part of chest trauma care. By definition, the employed imaging technique in the emergency setting should reach the correct diagnosis as fast as possible. In severe chest blunt trauma, multidetector computer tomography (MDCT) has become part of the initial workup, mainly due to its high sensitivity and diagnostic accuracy of the technique for the detection and characterization of thoracic injuries and also due to its wide availability in tertiary care centers. The aim of this paper is to review and illustrate a spectrum of characteristic MDCT findings of blunt traumatic injuries of the chest including the lungs, mediastinum, pleural space, and chest wall.

  8. Multidetector Computer Tomography: Evaluation of Blunt Chest Trauma in Adults

    PubMed Central

    Matos, António P.; Mascarenhas, Vasco; Herédia, Vasco

    2014-01-01

    Imaging plays an essential part of chest trauma care. By definition, the employed imaging technique in the emergency setting should reach the correct diagnosis as fast as possible. In severe chest blunt trauma, multidetector computer tomography (MDCT) has become part of the initial workup, mainly due to its high sensitivity and diagnostic accuracy of the technique for the detection and characterization of thoracic injuries and also due to its wide availability in tertiary care centers. The aim of this paper is to review and illustrate a spectrum of characteristic MDCT findings of blunt traumatic injuries of the chest including the lungs, mediastinum, pleural space, and chest wall. PMID:25295188

  9. Micro Computer Tomography for medical device and pharmaceutical packaging analysis.

    PubMed

    Hindelang, Florine; Zurbach, Raphael; Roggo, Yves

    2015-04-10

    Biomedical device and medicine product manufacturing are long processes facing global competition. As technology evolves with time, the level of quality, safety and reliability increases simultaneously. Micro Computer Tomography (Micro CT) is a tool allowing a deep investigation of products: it can contribute to quality improvement. This article presents the numerous applications of Micro CT for medical device and pharmaceutical packaging analysis. The samples investigated confirmed CT suitability for verification of integrity, measurements and defect detections in a non-destructive manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bleeding Meckel's diverticulum diagnosis: an unusual indication for computed tomography.

    PubMed

    Danzer, D; Gervaz, P; Platon, A; Poletti, P A

    2003-01-01

    Despite the wide use of modern investigation techniques, the diagnosis of complications related to Meckel's diverticulum (MD) remains difficult. Arteriography is commonly indicated for acute bleeding, and radionuclide scans may help in identifying the site of intestinal hemorrhage. In contrast, computed tomography (CT) is usually considered little use in the diagnosis of bleeding MD. We present the case of a young patient with massive gastrointestinal hemorrhage, in whom the diagnosis of MD bleeding was preoperatively made with contrast-enhanced CT after two negatives arteriographies.

  11. The value of computed tomography in myasthenia gravis

    SciTech Connect

    Brown, L.R.; Muhm, J.R.; Sheedy, P.F. II; Unni, K.K.; Bernatz, P.E.; Hermann, R.C. Jr.

    1983-01-01

    In a 5 year study, 19 patients with myasthenia gravis were studied by computed tomography (CT) and underwent thymectomy. CT was accurate in detecting the nine true thymic masses but could not differentiate thymomas from nonthymomatous masses, including thymic cysts. No thymoma was found in a patient under 25 years of age. In one case, the 18 sec scanner could not differentiate a large gland from a thymoma. In eight cases, glands with histologic thymic hyperplasia and histologically normal thymus appeared to be similar and could not be differentiated by CT.

  12. Patient doses using multidetector computed tomography scanners in Kenya.

    PubMed

    Korir, G K; Wambani, J S; Korir, I K

    2012-08-01

    Assessment of patient dose attributed to multislice computed tomography (CT) examination. A questionnaire method was developed and used in recording the patient dose and scanning parameters for the head, chest, abdomen and lumbar spine examinations. The patient doses due to brain, chest and abdomen examination were above the international diagnostic reference levels (DRLs) by factors of between one and four. The study demonstrated that the use of multislice CT elevates patient radiation dose, justifying the need for local optimised scanning protocols and the use of institutional DRL for dose management without affecting diagnostic image quality.

  13. Non-functioning adrenal adenomas discovered incidentally on computed tomography

    SciTech Connect

    Mitnick, J.S.; Bosniak, M.A.; Megibow, A.J.; Naidich, D.P.

    1983-08-01

    Eighteen patients with unilateral non-metastatic non-functioning adrenal masses were studied with computed tomography (CT). Pathological examination in cases revealed benign adrenal adenomas. The others were followed up with serial CT scans and found to show no change in tumor size over a period of six months to three years. On the basis of these findings, the authors suggest certain criteria of a benign adrenal mass, including (a) diameter less than 5 cm, (b) smooth contour, (c) well-defined margin, and (d) no change in size on follow-up. Serial CT scanning can be used as an alternative to surgery in the management of many of these patients.

  14. Detecting Aortic Graft Complications: A Spectrum of Computed Tomography Findings.

    PubMed

    Nicola, Refky; Shaqdan, Khalid W; Aran, Shima; Singh, Ajay K; Abujudeh, Hani H

    2016-01-01

    Endovascular aneurysm repair (EVAR) is a successful technique as well as an excellent alternative to the surgical management of abdominal aortic aneurysms. EVAR has improved the mortality and morbidity of many patients who would have otherwise suffered greatly from the consequences of abdominal aortic aneurysms. However, EVAR is not without complications. Some complications require lifelong surveillance, whereas others may necessitate immediate surgical intervention. We discuss the various modalities available for the surveillance as well as the common complications that can be seen on computed tomography. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. PET/Computed Tomography in Renal, Bladder, and Testicular Cancer.

    PubMed

    Bouchelouche, Kirsten; Choyke, Peter L

    2015-07-01

    Imaging plays an important role in the clinical management of cancer patients. Hybrid imaging with PET/computed tomography (CT) is having a broad impact in oncology, and in recent years PET/CT is beginning to have an impact in urooncology. In both bladder and renal cancers, there is a need to study the efficacy of other tracers than F-18 fluorodeoxyglucose (FDG), particularly tracers with limited renal excretion. Thus, new tracers are being introduced. This review focuses on the clinical role of FDG and other PET agents in renal, bladder, and testicular cancers.

  16. Evaluation of renal masses considered indeterminate on computed tomography

    SciTech Connect

    Balfe, D.M.; McClennan, B.L.; Stanley, R.J.; Weyman, P.J.; Sagel, S.S.

    1982-02-01

    Of 815 renal masses studied by computed tomography (CT), 60 did not fit the criteria for cyst or neoplasm and thus were called indeterminate. When artifacts were present, the likely diagnosis was a simple cyst; when no artifacts were present to explain atypical features in cyst-like masses, further investigation was necessary. Angiography was useful in only 16%, while ultrasound combined with cyst aspiration was diagnostic in 84%. All solid lesions required surgical investigation. Ultrasound with or without aspiration is recommended for all cyst-like renal masses thought to be indeterminate on CT.

  17. Multimodality Imaging in Coronary Artery Disease: Focus on Computed Tomography

    PubMed Central

    Lee, Ji Hyun; Han, Donghee; Danad, Ibrahim; Hartaigh, Bríain ó; Lin, Fay Y.

    2016-01-01

    Coronary artery disease (CAD) is the leading cause of mortality worldwide, and various cardiovascular imaging modalities have been introduced for the purpose of diagnosing and determining the severity of CAD. More recently, advances in computed tomography (CT) technology have contributed to the widespread clinical application of cardiac CT for accurate and noninvasive evaluation of CAD. In this review, we focus on imaging assessment of CAD based upon CT, which includes coronary artery calcium screening, coronary CT angiography, myocardial CT perfusion, and fractional flow reserve CT. Further, we provide a discussion regarding the potential implications, benefits and limitations, as well as the possible future directions according to each modality. PMID:27081438

  18. Real-time computed tomography of composites during destructive testing

    NASA Astrophysics Data System (ADS)

    Scheinman, Elan; Roder, Fredrick L.

    1993-02-01

    The feasibility of utilizing real-time computed tomography (CT) to characterize and monitor the growth of defects in composite materials as they undergo destructive testing was investigated. The equipment consisted of an Imatron C-100 Ultrafast CT Scanner, a modified high-temperature laboratory oven, and a motor driven hydraulic ram. Three types of composites were studied: carbon-carbon, carbon-phenolic, and glass-phenolic. Time-density profiles were obtained for each type. In general, the density of the samples decreased slightly upon impact of the ram, then sharply increased before dropping back to a slightly lower constant value.

  19. MWIR computed-tomography imaging spectrometer: calibration and imaging experiments

    NASA Astrophysics Data System (ADS)

    Volin, Curtis E.; Garcia, John P.; Dereniak, Eustace L.; Descour, Michael R.; Sass, David T.; Simi, Christopher G.

    1999-10-01

    We report results of experimentation with a MWIR non-scanning, high speed imaging spectrometer capable of simultaneously recording spatial and spectral data from a rapidly varying target scene. High speed spectral imaging was demonstrated by collecting spectral and spatial snapshots of filtered blackbodies, combustion products and a coffee cup. The instrument is based on computed tomography concepts and operates in a mid-wave infrared band of 3.0 to 4.6 micrometer. Raw images were recorded at a video frame rate of 30 fps using a 160 X 120 InSb focal plane array. Reconstructions of simple objects are presented.

  20. Differentiation of orbital cellulitis from preseptal cellulitis by computed tomography.

    PubMed

    Goldberg, F; Berne, A S; Oski, F A

    1978-12-01

    Computed tomography (CT) was used in the management of four patients with periorbital inflammation. These patients were selected for CT scanning because of the difficulty, on clinical examination alone, in determining the degree of orbital disease. The CT scans confirmed the presence and defined the location of an orbital abscess in three patients and eliminated the presence of an abscess in the fourth. On the basis of this experience, CT scanning is recommended in the evaluation of children with periorbital inflammation in whom proptosis, ophthalmoplegia, or loss of visual acuity develops, or in whom severe eyelid edema prevents adequate eye examination.

  1. Compressive sampling in computed tomography: Method and application

    NASA Astrophysics Data System (ADS)

    Hu, Zhanli; Liang, Dong; Xia, Dan; Zheng, Hairong

    2014-06-01

    Since Donoho and Candes et al. published their groundbreaking work on compressive sampling or compressive sensing (CS), CS theory has attracted a lot of attention and become a hot topic, especially in biomedical imaging. Specifically, some CS based methods have been developed to enable accurate reconstruction from sparse data in computed tomography (CT) imaging. In this paper, we will review the progress in CS based CT from aspects of three fundamental requirements of CS: sparse representation, incoherent sampling and reconstruction algorithm. In addition, some potential applications of compressive sampling in CT are introduced.

  2. Contraindications to lumbar puncture as defined by computed cranial tomography.

    PubMed Central

    Gower, D J; Baker, A L; Bell, W O; Ball, M R

    1987-01-01

    Papilloedema is not always an adequate predictor of potential complications from lumbar puncture, and many clinicians are using computed tomography (CT) before lumbar puncture in an effort to identify more accurately the "at risk" patient. This paper identifies the following anatomical criteria defined by CT scanning that correlate with unequal pressures between intracranial compartments and predispose a patient to herniation following decompression of the spinal compartment: lateral shift of midline structures, loss of the suprachiasmatic and basilar cisterns, obliteration of the fourth ventricle, or obliteration of the superior cerebellar and quadrigeminal plate cisterns with sparing of the ambient cisterns. These criteria should be considered to be contraindications to lumbar puncture. Images PMID:3655817

  3. Material reconstruction for spectral computed tomography with detector response function

    NASA Astrophysics Data System (ADS)

    Liu, Jiulong; Gao, Hao

    2016-11-01

    Different from conventional computed tomography (CT), spectral CT using energy-resolved photon-counting detectors is able to provide the unprecedented material compositions. However accurate spectral CT needs to account for the detector response function (DRF), which is often distorted by factors such as pulse pileup and charge-sharing. In this work, we propose material reconstruction methods for spectral CT with DRF. The simulation results suggest that the proposed methods reconstructed more accurate material compositions than the conventional method without DRF. Moreover, the proposed linearized method with linear data fidelity from spectral resampling had improved reconstruction quality from the nonlinear method directly based on nonlinear data fidelity.

  4. Lung cancer screening with low-dose computed tomography.

    PubMed

    Chiles, Caroline

    2014-01-01

    Current guidelines endorse low-dose computed tomography (LDCT) screening for smokers and former smokers aged 55 to 74, with at least a 30-pack-year smoking history. Adherence to published algorithms for nodule follow-up is strongly encouraged. Future directions for screening research include risk stratification for selection of the screening population and improvements in the diagnostic follow-up for indeterminate pulmonary nodules. Screening for lung cancer with LDCT has revealed that there are indolent lung cancers that may not be fatal. More research is necessary if the risk-benefit ratio in lung cancer screening is to be maximized. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Pulmonary Thromboembolic Disease: A New Role for Computed Tomography

    PubMed Central

    Olsan, Adam D.; Matthews, Charles C.; Sullivan, Michael A.

    2002-01-01

    Over the past few years, computed tomography (CT) has emerged as a common noninvasive, definitive, alternative to ventilation-perfusion scintigraphy scan and pulmonary angiography in the evaluation of patients suspected of having pulmonary emboli. Additionally, recent articles have investigated the possibility of using CT to identify deep venous thrombi following a spiral CT pulmonary angiogram. Using the same bolus of contrast as that administered for a CT pulmonary angiogram, the ultimate goal is to design a single test that defines both aspects of pulmonary thromboembolic disease. More studies are needed and controversy exists, but CT's role in the evaluation of pulmonary thromboembolic disease appears promising. PMID:22822310

  6. Computed tomography of localized dilatation of the intrahepatic bile ducts

    SciTech Connect

    Araki, T.; Itai Y.; Tasaka, A.

    1981-12-01

    Twenty-nine patients showed localized dilatation of the intrahepatic bile ducts on computed tomography, usually unaccompanied by jaundice. Congenital dilatation was diagnosed when associated with a choledochal cyst, while cholangiographic contrast material was helpful in differentiating such dilatation from a simple cyst by showing its communication with the biliary tract when no choledochal cyst was present. Obstructive dilatation was associated with intrahepatic calculi in 4 cases, hepatoma in 9, cholangioma in 5, metastatic tumor in 5, and polycystic disease in 2. Cholangioma and intrahepatic calculi had a greater tendency to accompany such localized dilatation; in 2 cases, the dilatation was the only clue to the underlying disorder.

  7. Hemoptysis: Beyond routine chest computed tomography and bronchoscopy

    PubMed Central

    Mall, Saurabh; Sharma, Rahul Kumar; Prajapat, Deepak; Gupta, Samir K; Talwar, Deepak

    2017-01-01

    Hemoptysis is considered as a medical emergency which requires urgent stabilization with identification and correction of underlying etiology. Diagnosis of the cause of hemoptysis is not always readily identified after bronchoscopy and conventional computed tomography (CT) chest. Arteriovenous malformation (AVM) is a rare but important cause of massive hemoptysis which can be easily picked up by the use of double turn contrast CT chest. We here report a rare congenital AVM anomaly called Klippel-Trenaunay-Parks-Weber syndrome as a cause of massive hemoptysis and utility of double turn CT in diagnosing AVM as a cause of hemoptysis. PMID:28671169

  8. Radiation dose reduction in computed tomography: techniques and future perspective

    PubMed Central

    Yu, Lifeng; Liu, Xin; Leng, Shuai; Kofler, James M; Ramirez-Giraldo, Juan C; Qu, Mingliang; Christner, Jodie; Fletcher, Joel G; McCollough, Cynthia H

    2011-01-01

    Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented. PMID:22308169

  9. Industrial applications of computed tomography at Los Alamos Scientific Laboratory

    SciTech Connect

    Kruger, R.P.; Morris, R.A.; Wecksung, G.W.; Wonn, G.; London, R.

    1980-06-01

    A research and development program was begun two years ago at the Los Alamos Scientific Laboratory (LASL) to study nonmedical applications of computed tomography. This program had several goals. The first goal was to develop the necessary reconstruction algorithms to accurately reconstruct cross sections of nonmedical industrial objects. The second goal was to be able to perform extensive tomographic simulations to determine the efficacy of tomographic reconstruction with a variety of hardware configurations. The final goal was to construct an inexpensive industrial prototype scanner with a high degree of design flexibility. The implementation of these program goals is described.

  10. Computed tomography in the evaluation of thyroid disease

    SciTech Connect

    Silverman, P.M.; Newman, G.E.; Korobkin, M.; Workman, J.B.; Moore, A.V.; Coleman, R.E.

    1984-05-01

    Traditionally, thyroid imaging has been performed primarily using radionuclide scanning. High-resolution computed tomography (CT) was performed in 18 patients to evaluate the CT appearance of various thyroid abnormalities including diffuse toxic goiter, multinodular goiter, Hashimoto thyroiditis, thyroid adenoma, and malignant thyroid tumors. CT images of the thyroid were correlated with radionuclide scanning, surgical findings, and clinical and laboratory results. CT provided a complementary method for evaluation of the thyroid by defining the morphology of the thyroid gland and more precisely defining the anatomic extent of thyroid abnormalities in relation to the normal structures of the neck and mediastinum.

  11. Radiation dose reduction in computed tomography: techniques and future perspective.

    PubMed

    Yu, Lifeng; Liu, Xin; Leng, Shuai; Kofler, James M; Ramirez-Giraldo, Juan C; Qu, Mingliang; Christner, Jodie; Fletcher, Joel G; McCollough, Cynthia H

    2009-10-01

    Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented.

  12. PET/Computed Tomography Using New Radiopharmaceuticals in Targeted Therapy.

    PubMed

    Sharma, Punit; Kumar, Rakesh; Alavi, Abass

    2015-10-01

    Targeted therapy is gaining prominence in the management of different cancers. Given different mechanism of action compared with traditional chemoradiotherapy, selection of patients for targeted therapy and monitoring response to these agents is difficult with conventional imaging. Various new PET radiopharmaceuticals have been evaluated for molecular imaging of these targets to achieve specific patient selection and response monitoring. These PET/computed tomography (CT) agents target the cell surface receptors, hormone receptors, receptor tyrosine kinases, or angiogenesis components. This article reviews the established and potential role of PET/CT with new radiopharmaceuticals for guiding targeted therapy.

  13. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  14. Ptychographic X-ray computed tomography at the nanoscale.

    PubMed

    Dierolf, Martin; Menzel, Andreas; Thibault, Pierre; Schneider, Philipp; Kewish, Cameron M; Wepf, Roger; Bunk, Oliver; Pfeiffer, Franz

    2010-09-23

    X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.

  15. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging.

    PubMed

    Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo

    2017-01-01

    To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. © 2017 The Author(s) Published by S. Karger AG, Basel.

  16. Prevalence and Morphologic Characteristics of Ponticulus Posticus: Analysis Using Cone-Beam Computed Tomography

    PubMed Central

    Sekerci, Ahmet Ercan; Soylu, Emrah; Arikan, Mehtap Payveren; Ozcan, Gozde; Amuk, Mehmet; Kocoglu, Fatma

    2015-01-01

    Objective This study evaluated the prevalence and morphologic characteristics of ponticulus posticus (PP) by using cervical 3-dimensional (3-D) cone-beam computed tomography (CBCT) scan images. Methods This was a retrospective study conducted by selecting cervical 3-D CBCT images of 698 patients, which were examined for the presence and types of PP. Results In 257 patients, 438 PPs, complete or partial, bilateral or unilateral, were identified on the 698 cervical 3-D CBCT scans; therefore, the prevalence was 36.8%. Bilateral complete PP and partial PP were observed in 6.3% and 16.2% of subjects, respectively. There was a significant difference in the prevalence between males and females (P = .001) and between the right and left sides between males and females, but not between age groups. Conclusion Ponticulus posticus is a relatively common anomaly in this Turkish sample, which may have implications for those who perform clinical procedures on the upper cervical spine. PMID:26778928

  17. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  18. Multidetector computed tomography in the adolescent and young adult with congenital heart disease.

    PubMed

    Cook, Stephen C; Raman, Subha V

    2008-01-01

    As a result of improved postoperative management and transcatheter interventions, the number of adults with congenital heart disease in the United States has grown exponentially. Consequently, noninvasive imaging has taken an essential role in the evaluation of this patient population. Although standard noninvasive imaging tools such as transthoracic echocardiography and cardiovascular magnetic resonance may be invaluable to this group, occasionally there may be contraindications to their use or limitations in their utility. Multidetector computed tomography (MDCT) has only recently been used in the assessment of the adult with congenital heart disease. The ever-increasing availability of MDCT, along with its increased spatial and temporal resolution and rapidity of postprocessing, makes this an attractive first-choice to study this complex group. A successful scan requires familiarity with the complexity of the underlying anatomy and prior palliative or complete surgical repairs. It is with this knowledge in mind that MDCT provides exquisite detail of complex, 3-dimensional anatomic relations. This review illustrates the spectrum of MDCT findings in the adult with simple and complex forms of congenital heart disease.

  19. Prenatal diagnosis of skeletal dysplasias: contribution of three-dimensional computed tomography.

    PubMed

    Ulla, Marina; Aiello, Horacio; Cobos, María Paz; Orioli, Iêda; García-Mónaco, Ricardo; Etchegaray, Adolfo; Igarzábal, María Laura; Otaño, Lucas

    2011-01-01

    To describe the contribution of 3-dimensional computed tomography (3D-CT) in the prenatal diagnosis of skeletal dysplasias (SD) in a cohort of patients with inconclusive diagnosis by ultrasound (US). Between May 2007 and February 2010, six pregnant women with suspected fetal SD on US examination but with no specific diagnosis were studied with 3D-CT. The images were evaluated by a multidisciplinary team who proposed a likely diagnosis. Further postnatal workup included clinical and radiological evaluation in all cases. Prenatal and postnatal diagnoses were compared. The use of 3D-CT provided a precise diagnosis confirmed postnatally in 5/6 patients. These included osteogenesis imperfecta type II (n = 2), osteogenesis imperfecta type III (n = 1), chondrodysplasia punctata (n = 1) and thanatophoric dysplasia type I (n = 1). A precise diagnosis could not be made in 1 case - either pre- or postnatally. Prenatal 3D-CT contributed to the diagnosis of the specific fetal SD in the majority of these cases. 3D-CT may have a complementary role to US where fetal SD is suspected, but no specific diagnosis can be made using US alone. Further studies on clinical performance and risk-benefit analysis are needed. Copyright © 2011 S. Karger AG, Basel.

  20. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging

    PubMed Central

    Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo

    2017-01-01

    Objective To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Background Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. Methods DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Results Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Conclusion Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. PMID:28601874

  1. Positioning Standardized Acupuncture Points on the Whole Body Based on X-Ray Computed Tomography Images

    PubMed Central

    Kim, Jungdae

    2014-01-01

    Abstract Objective: The goal of this research was to position all the standardized 361 acupuncture points on the entire human body based on a 3-dimensional (3D) virtual body. Materials and Methods: Digital data from a healthy Korean male with a normal body shape were obtained in the form of cross-sectional images generated by X-ray computed tomography (CT), and the 3D models for the bones and the skin's surface were created through the image-processing steps. Results: The reference points or the landmarks were positioned based on the standard descriptions of the acupoints, and the formulae for the proportionalities between the acupoints and the reference points were presented. About 37% of the 361 standardized acupoints were automatically linked with the reference points, the reference points accounted for 11% of the 361 acupoints, and the remaining acupoints (52%) were positioned point-by-point by using the OpenGL 3D graphics libraries. Based on the projective 2D descriptions of the standard acupuncture points, the volumetric 3D acupoint model was developed; it was extracted from the X-ray CT images. Conclusions: This modality for positioning acupoints may modernize acupuncture research and enable acupuncture treatments to be more personalized. PMID:24761187

  2. Facial soft tissue esthetic predictions: validation in craniomaxillofacial surgery with cone beam computed tomography data.

    PubMed

    Bianchi, Alberto; Muyldermans, Louis; Di Martino, Mirko; Lancellotti, Lorenzo; Amadori, Sara; Sarti, Alessandro; Marchetti, Claudio

    2010-07-01

    Facial soft tissue prediction in orthognathic surgery could be a valuable aid to preview the results and determine the best surgical treatment. After many years, considerable difficulties are still present in the prediction of the clinical final aspect. The object of the present study was to validate new soft tissue simulation software (SurgiCase CMF; Materialise, Leuven, Belgium), using data acquired by cone beam computed tomography (CBCT), that makes it possible to foresee the final result. Ten patients with craniomaxillofacial deformations underwent CBCT before surgery. Using the SurgiCase CMF software, the data were reconstructed in 3 dimensions, and various osteotomies were simulated in a 3-dimensional virtual environment by applying different surgical procedures. At 6 months after surgery, the patients underwent repeat CBCT. Thus, it was possible to superimpose the pre- and postoperative CBCT studies to evaluate the reproducibility and reliability of the software. CBCT simulations defined an average absolute error of 0.94 mm, a standard deviation of 0.90 mm, and a percentage of error less than 2 mm of 86.80%. The preliminary results have allowed us to conclude that simulations in orthognathic surgery for skull-maxillofacial deformities using CBCT acquisition are reliable, in addition to the low radiation exposure, and could become the reference standard to plan surgical treatment. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Positioning Standardized Acupuncture Points on the Whole Body Based on X-Ray Computed Tomography Images.

    PubMed

    Kim, Jungdae; Kang, Dae-In

    2014-02-01

    Objective: The goal of this research was to position all the standardized 361 acupuncture points on the entire human body based on a 3-dimensional (3D) virtual body. Materials and Methods: Digital data from a healthy Korean male with a normal body shape were obtained in the form of cross-sectional images generated by X-ray computed tomography (CT), and the 3D models for the bones and the skin's surface were created through the image-processing steps. Results: The reference points or the landmarks were positioned based on the standard descriptions of the acupoints, and the formulae for the proportionalities between the acupoints and the reference points were presented. About 37% of the 361 standardized acupoints were automatically linked with the reference points, the reference points accounted for 11% of the 361 acupoints, and the remaining acupoints (52%) were positioned point-by-point by using the OpenGL 3D graphics libraries. Based on the projective 2D descriptions of the standard acupuncture points, the volumetric 3D acupoint model was developed; it was extracted from the X-ray CT images. Conclusions: This modality for positioning acupoints may modernize acupuncture research and enable acupuncture treatments to be more personalized.

  4. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  5. Quantification of nasal airflow resistance in English bulldogs using computed tomography and computational fluid dynamics.

    PubMed

    Hostnik, Eric T; Scansen, Brian A; Zielinski, Rachel; Ghadiali, Samir N

    2017-09-01

    Stenotic nares, edematous intranasal turbinates, mucosal swelling, and an elongated, thickened soft palate are common sources of airflow resistance for dogs with brachycephalic airway syndrome. Surgery has focused on enlarging the nasal apertures and reducing tissue of the soft palate. However, objective measures of surgical efficacy are lacking. Twenty-one English bulldogs without previous surgery were recruited for this prospective, pilot study. Computed tomography was performed using conscious sedation and without endotracheal intubation using a 128 multidetector computed tomography scanner. Raw multidetector computed tomography data were rendered to create a three-dimensional surface mesh model by automatic segmentation of the air-filled nasal passage from the nares to the caudal soft palate. Three-dimensional surface models were used to construct computational fluid dynamics models of nasal airflow resistance from the nares to the caudal aspect of the soft palate. The computational fluid dynamics models were used to simulate airflow in each dog and airway resistance varied widely with a median 36.46 (Pa/mm)/(l/s) and an interquartile range of 19.84 to 90.74 (Pa/mm)/(/s). In 19/21 dogs, the rostral third of the nasal passage exhibited a larger airflow resistance than the caudal and middle regions of the nasal passage. In addition, computational fluid dynamics data indicated that overall measures of airflow resistance may significantly underestimate the maximum local resistance. We conclude that computational fluid dynamics models derived from nasal multidetector computed tomography can quantify airway resistance in brachycephalic dogs. This methodology represents a novel approach to noninvasively quantify airflow resistance and may have utility for objectively studying effects of surgical interventions in canine brachycephalic airway syndrome. © 2017 American College of Veterinary Radiology.

  6. Observation of the pulp horn by swept source optical coherence tomography and cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Iino, Yoshiko; Yoshioka, Toshihiko; Hanada, Takahiro; Ebihara, Arata; Sunakawa, Mitsuhiro; Sumi, Yasunori; Suda, Hideaki

    2015-02-01

    Cone-beam computed tomography (CBCT) is one of the most useful diagnostic techniques in dentistry but it involves ionizing radiation, while swept source optical coherence tomography (SS-OCT) has been introduced recently as a nondestructive, real-time, high resolution imaging technique using low-coherence interferometry, which involves no ionizing radiation. The purpose of this study was to evaluate the ability of SS-OCT to detect the pulp horn (PH) in comparison with that of CBCT. Ten extracted human mandibular molars were used. After horizontally removing a half of the tooth crown, the distance from the cut dentin surface to PH was measured using microfocus computed tomography (Micro CT) (SL) as the gold standard, by CBCT (CL) and by SS-OCT (OL). In the SS-OCT images, only when PH was observed beneath the overlying dentin, the distance from the cut dentin surface to PH was recorded. If the pulp was exposed, it was defined as pulp exposure (PE). The results obtained by the above three methods were statistically analyzed by Spearman's rank correlation coefficient at a significance level of p < 0.01. SS-OCT detected the presence of PH when the distance from the cut dentin surface to PH determined by SL was 2.33 mm or less. Strong correlations of the measured values were found between SL and CL (r=0.87), SL and OL (r=0.96), and CL and OL (r=0.86). The results showed that SS-OCT images correlated closely with CBCT images, suggesting that SS-OCT can be a useful tool for the detection of PH.

  7. Deformable registration of 4D computed tomography data.

    PubMed

    Rietzel, Eike; Chen, George T Y

    2006-11-01

    Four-dimensional radiotherapy requires deformable registration to track delivered dose across varying anatomical states. Deformable registration based on B-splines was implemented to register 4D computed tomography data to a reference respiratory phase. To assess registration performance, anatomical landmarks were selected across ten respiratory phases in five patients. These point landmarks were transformed according to global registration parameters between different respiratory phases. Registration uncertainties were computed by subtraction of transformed and reference landmark positions. The selection of appropriate registration masks to separate independently moving anatomical subunits is crucial to registration performance. The average registration error for five landmarks for each of five patients was 2.1 mm. This level of accuracy is acceptable for most radiotherapy applications.

  8. Temporomandibular joint computed tomography: development of a direct sagittal technique

    SciTech Connect

    van der Kuijl, B.; Vencken, L.M.; de Bont, L.G.; Boering, G. )

    1990-12-01

    Radiology plays an important role in the diagnosis of temporomandibular disorders. Different techniques are used with computed tomography offering simultaneous imaging of bone and soft tissues. It is therefore suited for visualization of the articular disk and may be used in patients with suspected internal derangements and other disorders of the temporomandibular joint. Previous research suggests advantages to direct sagittal scanning, which requires special positioning of the patient and a sophisticated scanning technique. This study describes the development of a new technique of direct sagittal computed tomographic imaging of the temporomandibular joint using a specially designed patient table and internal light visor positioning. No structures other than the patient's head are involved in the imaging process, and misleading artifacts from the arm or the shoulder are eliminated. The use of the scanogram allows precise correction of the condylar axis and selection of exact slice level.

  9. Computed tomography of the craniocervical junction in rheumatoid arthritis.

    PubMed

    Castor, W R; Miller, J D; Russell, A S; Chiu, P L; Grace, M; Hanson, J

    1983-02-01

    Thirty-three patients with rheumatoid arthritis had computed tomographic examination of the craniocervical junction. This demonstrated soft tissue features which have not previously been described in published reports. A low attenuation lesion between the odontoid and the transverse ligament shown in 11 patients was considered a premonitory sign of rupture of the transverse ligament or a manifestation of active disease. Computed tomography revealed spinal cord compression in 3 patients and ligamentous changes in the transverse ligament and the alar and spinal ligaments in 26 patients. Erosion of the odontoid was shown in 19 patients and subluxation in 20 patients. No relationship could be found between the clinical signs and symptoms and the radiological abnormalities except in the case of cord compression.

  10. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  11. Boxers--computed tomography, EEG, and neurological evaluation

    SciTech Connect

    Ross, R.J.; Cole, M.; Thompson, J.S.; Kim, K.H.

    1983-01-14

    During the last three years, 40 ex-boxers were examined to determine the effects of boxing in regard to their neurological status and the computed tomographic (CT) appearance of the brain. Thirty-eight of these patients had a CT scan of the brain, and 24 had a complete neurological examination including an EEG. The results demonstrate a significant relationship between the number of bouts fought and CT changes indicating cerebral atrophy. Positive neurological findings were not significantly correlated with the number of bouts. Electroencephalographic abnormalities were significantly correlated with the number of bouts fought. Computed tomography and EEG of the brain should be considered as part of a regular neurological examination for active boxers and, if possible, before and after each match, to detect not only the effects of acute life-threatening brain trauma such as subdural hematomas and brain hemorrhages, but the more subtle and debilitating long-term changes of cerebral atrophy.

  12. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  13. Computed tomography findings of paracoccidiodomycosis in musculoskeletal system

    PubMed Central

    Lima Júnior, Francisco Valtenor Araújo; Savarese, Leonor Garbin; Monsignore, Lucas Moretti; Martinez, Roberto; Nogueira-Barbosa, Marcello Henrique

    2015-01-01

    Objective To evaluate musculoskeletal involvement in paracoccidioidomycosis at computed tomography. Materials and Methods Development of a retrospective study based on a review of radiologic and pathologic reports in the institution database. Patients with histopathologically confirmed musculoskeletal paracoccidioidomycosis and submitted to computed tomography were included in the present study. The imaging findings were consensually described by two radiologists. In order to avoid bias in the analysis, one patient with uncountable bone lesions was excluded from the study. Results A total of seven patients were included in the present study. A total of 18 bone lesions were counted. The study group consisted of 7 patients. A total number of 18 bone lesions were counted. Osteoarticular lesions were the first manifestation of the disease in four patients (57.14%). Bone lesions were multiple in 42.85% of patients. Appendicular and axial skeleton were affected in 85.71% and 42.85% of cases, respectively. Bone involvement was characterized by well-demarcated osteolytic lesions. Marginal osteosclerosis was identified in 72.22% of the lesions, while lamellar periosteal reaction and soft tissue component were present in 5.55% of them. One patient showed multiple small lesions with bone sequestra. Conclusion Paracoccidioidomycosis can be included in the differential diagnosis of either single or multiple osteolytic lesions in young patients even in the absence of a previous diagnosis of pulmonary or visceral paracoccidioidomycosis PMID:25798000

  14. Glandular dose in breast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Fedon, C.; Di Lillo, F.; Longo, R.; Sarno, A.; Tromba, G.; Russo, P.

    2016-01-01

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported.

  15. Simulation of computed tomography dose based on voxel phantom

    NASA Astrophysics Data System (ADS)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  16. Proton Computed Tomography: iterative image reconstruction and dose evaluation

    NASA Astrophysics Data System (ADS)

    Civinini, C.; Bonanno, D.; Brianzi, M.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Lo Presti, D.; Maccioni, G.; Pallotta, S.; Randazzo, N.; Scaringella, M.; Romano, F.; Sipala, V.; Talamonti, C.; Vanzi, E.; Bruzzi, M.

    2017-01-01

    Proton Computed Tomography (pCT) is a medical imaging method with a potential for increasing accuracy of treatment planning and patient positioning in hadron therapy. A pCT system based on a Silicon microstrip tracker and a YAG:Ce crystal calorimeter has been developed within the INFN Prima-RDH collaboration. The prototype has been tested with a 175 MeV proton beam at The Svedberg Laboratory (Uppsala, Sweden) with the aim to reconstruct and characterize a tomographic image. Algebraic iterative reconstruction methods (ART), together with the most likely path formalism, have been used to obtain tomographies of an inhomogeneous phantom to eventually extract density and spatial resolutions. These results will be presented and discussed together with an estimation of the average dose delivered to the phantom and the dependence of the image quality on the dose. Due to the heavy computation load required by the algebraic algorithms the reconstruction programs have been implemented to fully exploit the high calculation parallelism of Graphics Processing Units. An extended field of view pCT system is in an advanced construction stage. This apparatus will be able to reconstruct objects of the size of a human head making possible to characterize this pCT approach in a pre-clinical environment.

  17. Assessment of metabolic bone diseases by quantitative computed tomography

    SciTech Connect

    Richardson, M.L.; Genant, H.K.; Cann, C.E.; Ettinger, B.; Gordan, G.S.; Kolb, F.O.; Reiser, U.J.

    1985-05-01

    Advances in the radiologic sciences have permitted the development of numerous noninvasive techniques for measuring the mineral content of bone, with varying degrees of precision, accuracy, and sensitivity. The techniques of standard radiography, radiogrammetry, photodensitometry, Compton scattering, neutron activation analysis, single and dual photon absorptiometry, and quantitative computed tomography (QCT) are described and reviewed in depth. Results from previous cross-sectional and longitudinal QCT investigations are given. They then describe a current investigation in which they studied 269 subjects, including 173 normal women, 34 patients with hyperparathyroidism, 24 patients with steroid- induced osteoporosis, and 38 men with idiopathic osteoporosis. Spinal quantitative computed tomography, radiogrammetry, and single photon absorptiometry were performed, and a spinal fracture index was calculated on all patients. The authors found a disproportionate loss of spinal trabecular mineral compared to appendicular mineral in the men with idiopathic osteoporosis and the patients with steroid-induced osteoporosis. They observed roughly equivalent mineral loss in both the appendicular and axial regions in the hyperparathyroid patients. The appendicular cortical measurements correlated moderately well with each other but less well with spinal trabecular QCT. The spinal fracture index correlated well with QCT and less well with the appendicular measurements.

  18. X-ray computed tomography using curvelet sparse regularization

    SciTech Connect

    Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.

    2015-04-15

    Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  19. Computed tomography angiography in patients with active gastrointestinal bleeding*

    PubMed Central

    Reis, Fatima Regina Silva; Cardia, Patricia Prando; D'Ippolito, Giuseppe

    2015-01-01

    Gastrointestinal bleeding represents a common medical emergency, with considerable morbidity and mortality rates, and a prompt diagnosis is essential for a better prognosis. In such a context, endoscopy is the main diagnostic tool; however, in cases where the gastrointestinal hemorrhage is massive, the exact bleeding site might go undetected. In addition, a trained professional is not always present to perform the procedure. In an emergency setting, optical colonoscopy presents limitations connected with the absence of bowel preparation, so most of the small bowel cannot be assessed. Scintigraphy cannot accurately demonstrate the anatomic location of the bleeding and is not available at emergency settings. The use of capsule endoscopy is inappropriate in the acute setting, particularly in the emergency department at night, and is a highly expensive method. Digital angiography, despite its high sensitivity, is invasive, presents catheterization-related risks, in addition to its low availability at emergency settings. On the other hand, computed tomography angiography is fast, widely available and minimally invasive, emerging as a promising method in the diagnostic algorithm of these patients, being capable of determining the location and cause of bleeding with high accuracy. Based on a critical literature review and on their own experience, the authors propose a computed tomography angiography protocol to assess the patient with gastrointestinal bleeding. PMID:26811556

  20. Computed tomography angiography in patients with active gastrointestinal bleeding.

    PubMed

    Reis, Fatima Regina Silva; Cardia, Patricia Prando; D'Ippolito, Giuseppe

    2015-01-01

    Gastrointestinal bleeding represents a common medical emergency, with considerable morbidity and mortality rates, and a prompt diagnosis is essential for a better prognosis. In such a context, endoscopy is the main diagnostic tool; however, in cases where the gastrointestinal hemorrhage is massive, the exact bleeding site might go undetected. In addition, a trained professional is not always present to perform the procedure. In an emergency setting, optical colonoscopy presents limitations connected with the absence of bowel preparation, so most of the small bowel cannot be assessed. Scintigraphy cannot accurately demonstrate the anatomic location of the bleeding and is not available at emergency settings. The use of capsule endoscopy is inappropriate in the acute setting, particularly in the emergency department at night, and is a highly expensive method. Digital angiography, despite its high sensitivity, is invasive, presents catheterization-related risks, in addition to its low availability at emergency settings. On the other hand, computed tomography angiography is fast, widely available and minimally invasive, emerging as a promising method in the diagnostic algorithm of these patients, being capable of determining the location and cause of bleeding with high accuracy. Based on a critical literature review and on their own experience, the authors propose a computed tomography angiography protocol to assess the patient with gastrointestinal bleeding.

  1. Fundamentals of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10-70 s) and radiation dosages reportedly up to 15-100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  2. Applications of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  3. Computed tomography of air pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Stephen; Murphy, John G.; Smith, Niall J.

    2003-03-01

    We present the results of preliminary research investigating the generation of two-dimensional pollutant gas concentration maps of street canyons. This research uses computed tomography (CT) to reconstruct the spatial distribution of gas concentrations from path-integral data obtained using differential optical absorption spectroscopy (DOAS). This work represents a novel application of these two techniques and is aimed at the validation of theoretical gas distribution models in selected urban settings. The derived results are based on model data and investigate the viability of constrained geometry sensing networks and the accuracy of current computed tomography algorithms. We also present results on the use of an evolutionary algorithm applied to pollutant reconstruction in an open area as part of initial investigations into its applicability to street canyon pollutant reconstruction. Future work will include the reconstruction of gas distributions in a real urban setting with the long-term goal of a system that is capable of performing this task in near real-time allowing the visualisation of short to medium time scale spatial dynamics.

  4. Limited-data computed tomography algorithms for the physical sciences.

    PubMed

    Verhoeven, D

    1993-07-10

    Five limited-data computed tomography algorithms are compared. The algorithms used are adapted versions of the algebraic reconstruction technique, the multiplicative algebraic reconstruction technique, the Gerchberg-Papoulis algorithm, a spectral extrapolation algorithm descended from that of Harris [J. Opt. Soc. Am. 54, 931-936 (1964)], and an algorithm based on the singular value decomposition technique. These algorithms were used to reconstruct phantom data with realistic levels of noise from a number of different imaging geometries. The phantoms, the imaging geometries, and the noise were chosen to simulate the conditions encountered in typical computed tomography applications in the physical sciences, and the implementations of the algorithms were optimized for these applications. The multiplicative algebraic reconstruction technique algorithm gave the best results overall; the algebraic reconstruction technique gave the best results for very smooth objects or very noisy (20-dB signal-to-noise ratio) data. My implementations of both of these algorithms incorporate apriori knowledge of the sign of the object, its extent, and its smoothness. The smoothness of the reconstruction is enforced through the use of an appropriate object model (by use of cubic B-spline basis functions and a number of object coefficients appropriate to the object being reconstructed). The average reconstruction error was 1.7% of the maximum phantom value with the multiplicative algebraic reconstruction technique of a phantom with moderate-to-steep gradients by use of data from five viewing angles with a 30-dB signal-to-noise ratio.

  5. Applications of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice – from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors’ clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:27134420

  6. Evaluation of myocarditis with delayed-enhancement computed tomography.

    PubMed

    Axsom, Kelly; Lin, Fay; Weinsaft, Jonathan W; Min, James K

    2009-01-01

    A healthy 19-year-old man with no history of substance abuse presented with 3 days of dyspnea and chest pressure relieved by leaning forward associated with nausea, emesis, and diarrhea. Cardiac computed tomography angiography (CCTA) showed normal coronary artery anatomy and no evidence of coronary artery plaque. The delayed-enhancement CCTA showed patchy epicardial and mid-myocardial enhancement of the wall and apex, consistent with myocardial inflammation. Delayed-enhancement cardiac magnetic resonance imaging (CMR) performed the following day confirmed patchy, diffuse epicardial hyperenhancement of the lateral wall, septum, and apex consistent with myocardial inflammation. Both CCTA and CMR supported the diagnosis of acute myocarditis. Delayed-enhancement CCTA is correlated with delayed-enhancement CMR in acute myocarditis by territory and extent and can show late hyperenhancement that can be transmural, subepicardial, or confined to small foci within a layer of the myocardium. Delayed-enhancement CCTA has potential utility for simultaneous evaluation of coronary arteries and myocardial inflammation in suspected myocarditis. Copyright (c) 2009 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of the gastrointestinal tract in dogs using computed tomography.

    PubMed

    Hoey, Seamus; Drees, Randi; Hetzel, Scott

    2013-01-01

    Abdominal computed tomography (CT) studies of 19 dogs with no history or clinical signs of gastrointestinal disease, and two dogs with a histological diagnosis of gastrointestinal neoplasia were examined retrospectively. Gastrointestinal segments were evaluated subjectively for conspicuity, contrast enhancement, and wall layering after contrast medium administration. In dogs without gastrointestinal disease, there were 62.8% of gastrointestinal segments (serosa to serosa) and 77.7% of gastrointestinal walls (serosa to mucosa) visualized. Wall layering on postcontrast images was seen in 21.8% of gastrointestinal segments. There was significant association between gastrointestinal diameter and wall thickness. There was significant association between weight and gastrointestinal wall thickness in the following regions: gastric fundus, gastric body, gastric pylorus, gastric pyloric antrum, duodenal cranial flexure, jejunum and ascending colon, and between patient weight and gastrointestinal diameter in cranial duodenal flexure, descending duodenum, transverse duodenum, ascending duodenum, and jejunum. Measurements acquired from CT studies correlated well with previously published normal reference ranges for radiographic and ultrasonographic studies. Gastrointestinal neoplasia, diagnosed in two dogs, had a gastrointestinal wall thickness greater than the range of the dogs without gastrointestinal disease. Computed tomography offers identification of the gastrointestinal tract segments in dogs, allows for evaluation of gastrointestinal diameter and aids in investigation of gastrointestinal wall thickness. © 2012 Veterinary Radiology & Ultrasound.

  8. Use of cone beam computed tomography in periodontology.

    PubMed

    Acar, Buket; Kamburoğlu, Kıvanç

    2014-05-28

    Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination.

  9. Computed tomography in predicting gall stone solubility: a prospective trial.

    PubMed Central

    Caroli, A; Del Favero, G; Di Mario, F; Spigariol, F; Scalon, P; Meggiato, T; Zambelli, C; Naccarato, R

    1992-01-01

    This prospective study was undertaken to evaluate the correlation between densitometric values of gall stones assessed by computed tomography and the success rate of litholytic therapy in 28 patients eligible for oral treatment. A densitometric study of the stones was performed in all patients before treatment. A cut off point of 60 Hounsfield units (HU) was chosen to divide the subjects into two groups--group 1, 14 patients with low density stones (less than 60 HU) and group 2, 14 patients with high density stones (greater than 60 HU). All patients were treated with ursodeoxycholic acid (8-10 mg/kg/day) for 12 months and followed up by ultrasound. In group 1, dissolution was complete in 50% of the patients and partial in a further 20%. In group 2 patients, complete dissolution was not observed but 33% showed partial dissolution. The number of patients with total dissolution at 12 months was significantly higher in group 1 compared with group 2 (p less than 0.02). These results suggest that computed tomography can be used to select patients with a better likelihood of successful stone dissolution after bile acid therapy. PMID:1612490

  10. Glandular dose in breast computed tomography with synchrotron radiation.

    PubMed

    Mettivier, G; Fedon, C; Di Lillo, F; Longo, R; Sarno, A; Tromba, G; Russo, P

    2016-01-21

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported.

  11. Computed tomography screening for lung cancer: back to basics.

    PubMed

    Ellis, S M; Husband, J E; Armstrong, P; Hansell, D M

    2001-09-01

    After some years in the doldrums, interest in screening for lung cancer is resurging. Conflicting evidence from previous lung cancer screening trials, based on plain chest radiography, has been the subject of much debate: the failure to demonstrate a reduction in mortality has led to the widely held conclusion that screening for lung cancer is ineffective. The validity of this assumption has been questioned sporadically and a large study currently under way in the U.S.A. should help settle the issue. Recently, there has been interest in the use of computed tomography to screen for lung cancer; radiation doses have been reduced to 'acceptable' levels and the superiority of computed tomography (CT) over chest radiography for the identification of pulmonary nodules is unquestioned. However, whether improved nodule detection will result in a reduction in mortality has not yet been demonstrated. The present review provides a historical background to the current interest in low-dose CT screening, explains the arguments that previous studies have provoked, and discusses the recent and evolving status of lung cancer screening with CT. Ellis, S. M. et al. (2001).

  12. Evaluation of defects in composite components using Computed Tomography

    SciTech Connect

    Muralidhar, C.; George, Sheri

    1999-12-02

    Non Destructive Evaluation (NDE) techniques such as Ultrasonic and X-ray Radiography are not often suitable for Fibre Reinforced Plastic (FRP) composite structures because of its multilayered, anisotropic and heterogeneous nature. X-ray Computed Tomography (CT) generates an image of a thin, cross sectional slice of an object. The CT image represents point by point linear attenuation coefficients in the slice. X-ray Computed Tomography inspection has been carried out on composite components of i) high silica glass phenolic cylindrical liner of 2 mm thick bonded to an aluminum casing of 2 mm thick ii) a dish liner bonded to an aluminum casing. The tomograms revealed the various defects such as debonds, delaminations, voids, foreign inclusions and interply density variations. The linear attenuation coefficients in terms of Hounsfield values (HU) have been measured, compared and correlated on the CT images at the contrasts observed to identify the above defects. The density profile at the location marked differentiates debonds/delaminations from Interply density variations. Images of planes could be cut from 3-D data for mapping delamination/debond. The relative advantages of CT in identifying and analysing the defects over conventional NDE techniques have been brought out.

  13. Forensic imaging of projectiles using cone-beam computed tomography.

    PubMed

    von See, Constantin; Bormann, Kai-Hendrik; Schumann, Paul; Goetz, Friedrich; Gellrich, Nils-Claudius; Rücker, Martin

    2009-09-10

    In patients with gunshot injuries, it is easy to detect a projectile within the body due to the high-density of the object, but artefacts make it difficult to obtain information about the deformation and the exact location of the projectile in surrounding tissues. Cone-beam computed tomography (CBCT) is a new radiological imaging modality that allows radio-opaque objects to be localised and assessed in three dimensions. The full potential of the use of CBCT in forensic medicine has not yet been explored. In this study, three different modern projectiles were fired into the heads of pig cadavers (n=6) under standardised conditions. Tissue destruction and the location of the projectiles were analysed separately using CBCT and multi-slice computed tomography (MDCT). The projectiles had the same kinetic energy but showed considerable differences in deformation behaviour. Within the study groups, tissue destruction was reproducible. CBCT is less severely affected by metallic artefacts than MDCT. Therefore CBCT is superior in visualising bone destruction in the immediate vicinity of the projectile and projectile deformation, whereas MDCT allows soft tissue to be evaluated in more detail. CBCT is an improved diagnostic tool for the evaluation of gunshot injuries. In particular, it is superior to MDCT in detecting structural hard-tissue damage in the immediate vicinity of high-density metal projectiles and in identifying the precise location of a projectile in the body.

  14. Incidental Findings on Cone Beam Computed Tomography Images

    PubMed Central

    Allareddy, Veeratrishul; Vincent, Steven D.; Hellstein, John W.; Qian, Fang; Smoker, Wendy R. K.; Ruprecht, Axel

    2012-01-01

    Background. Cone beam computed tomography (CBCT) has gained widespread acceptance in dentistry for a variety of applications. Most dentists who are not radiologists/trained in radiology are generally not familiar with interpretation of anatomical structures and/or pathosis outside their area of primary interest, as often this was not within the scope of their training. Objectives. To assess that the number of incidental findings on a CBCT scan is high both within and outside of the primary area of interest, thereby emphasizing the importance of interpretation of all areas visualized on the scan. Materials and Methods. An oral and maxillofacial radiologist reviewed 1000 CBCT scans (382 males and 618 females) for findings both in- and outside the area of interest. Results. Of the 1000 subjects that were reviewed, 943 scans showed findings in the primary regions of interest and/or outside the regions of interest, and 76 different conditions were visualized in these scans both in and outside the areas of interest. Conclusion. From the wide scope of findings noted on these scans, it can be concluded that it is essential that a person trained in advanced interpretation techniques in radiology interprets cone beam computed tomography scans. PMID:23304148

  15. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    NASA Astrophysics Data System (ADS)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bakar, K. A.; Haron, M. R.; Kayun, Z.

    2016-04-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDIw), dose length product (DLP) and effective dose (E). The mean values of CTDIw, DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts.

  16. Computed tomography of nonanesthetized cats with upper airway obstruction.

    PubMed

    Stadler, Krystina; O'Brien, Robert

    2013-01-01

    Upper airway obstruction is a potentially life-threatening problem in cats and for which a noninvasive, sensitive method rapid diagnosis is needed. The purposes of this prospective study were to describe a computed tomography (CT) technique for nonanesthetized cats with upper airway obstruction, CT characteristics of obstructive diseases, and comparisons between CT findings and findings from other diagnostic tests. Ten cats with clinical signs of upper airway obstruction were recruited for the study. Four cats with no clinical signs of upper airway obstruction were recruited as controls. All cats underwent computed tomography imaging without sedation or anesthesia, using a 16-slice helical CT scanner and a previously described transparent positional device. Three-dimensional (3D) internal volume rendering was performed on all CT image sets and 3D external volume rendering was also performed on cats with evidence of mass lesions. Confirmation of upper airway obstruction was based on visual laryngeal examination, endoscopy, fine-needle aspirate, biopsy, or necropsy. Seven cats were diagnosed with intramural upper airway masses, two with laryngotracheitis, and one with laryngeal paralysis. The CT and 3D volume-rendered images identified lesions consistent with upper airway disease in all cats. In cats with mass lesions, CT accurately identified the mass and location. Findings from this study supported the use of CT imaging as an effective technique for diagnosing upper airway obstruction in nonanesthetized cats.

  17. Estimation of feline renal volume using computed tomography and ultrasound.

    PubMed

    Tyson, Reid; Logsdon, Stacy A; Werre, Stephen R; Daniel, Gregory B

    2013-01-01

    Renal volume estimation is an important parameter for clinical evaluation of kidneys and research applications. A time efficient, repeatable, and accurate method for volume estimation is required. The purpose of this study was to describe the accuracy of ultrasound and computed tomography (CT) for estimating feline renal volume. Standardized ultrasound and CT scans were acquired for kidneys of 12 cadaver cats, in situ. Ultrasound and CT multiplanar reconstructions were used to record renal length measurements that were then used to calculate volume using the prolate ellipsoid formula for volume estimation. In addition, CT studies were reconstructed at 1 mm, 5 mm, and 1 cm, and transferred to a workstation where the renal volume was calculated using the voxel count method (hand drawn regions of interest). The reference standard kidney volume was then determined ex vivo using water displacement with the Archimedes' principle. Ultrasound measurement of renal length accounted for approximately 87% of the variability in renal volume for the study population. The prolate ellipsoid formula exhibited proportional bias and underestimated renal volume by a median of 18.9%. Computed tomography volume estimates using the voxel count method with hand-traced regions of interest provided the most accurate results, with increasing accuracy for smaller voxel sizes in grossly normal kidneys (-10.1 to 0.6%). Findings from this study supported the use of CT and the voxel count method for estimating feline renal volume in future clinical and research studies.

  18. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  19. Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography

    PubMed Central

    Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2013-01-01

    OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer

  20. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  1. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  2. Blast-Loading Assessment of Multi-Energy Flash Computed Tomography (MEFCT) Diagnostic

    DTIC Science & Technology

    2016-08-01

    ARL-TR-7741 ● AUG 2016 US Army Research Laboratory Blast-Loading Assessment of Multi- Energy Flash Computed Tomography (MEFCT...2016 US Army Research Laboratory Blast-Loading Assessment of Multi- Energy Flash Computed Tomography (MEFCT) Diagnostic Michael B Zellner...Assessment of Multi- Energy Flash Computed Tomography (MEFCT) Diagnostic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  3. Relationship between previous training and experience and results of the certification examination in cardiovascular computed tomography.

    PubMed

    Taylor, Allen J; Patrick, Jonathan; Abbara, Suhny; Berman, Daniel S; Halliburton, Sandra S; Hines, Jerome L; Hodgson, John McB; Lesser, John R; Wann, L Samuel; Williams, Kim A; Ziffer, Jack A; Lennon, Lorraine J; Edgerton, Dawn M; Cerqueira, Manuel D

    2010-09-01

    Examinees of the first Certifying Examination in Cardiovascular Computed Tomography were surveyed regarding their training and experience in cardiac computed tomography. The results support the current training pathways within the American College of Cardiology/American Heart Association competency criteria that include either experience-based or formal training program in cardiovascular computed tomography. Increased duration in clinical practice, the number of scans clinically interpreted in practice, and level 3 competency were associated with higher passing rates.

  4. Use of cone beam computed tomography and a laser intraoral scanner in virtual dental implant surgery: part 1.

    PubMed

    Lee, Cameron Y S; Ganz, Scott D; Wong, Natalie; Suzuki, Jon B

    2012-08-01

    To describe a new procedure capable of coupling 2 data sets from cone beam computed tomography (CBCT) and an intraoral laser digital scanner to produce a stereolithographic model and surgical guide. Use of DICOM (digital imaging and communications in medicine) format data obtained from CBCT scan images merged with standard triangulation language (STL) file data obtained from digital impressions using an intraoral laser scanner. The 2 data sets were electronically sent to a 3-dimensional imaging and technology software company over the Internet to fabricate a stereolithographic model of the jaws and surgical guide without the use of stone or plaster models obtained from traditional dental impressions. STL file data are able to accurately fabricate a stereolithographic model and surgical guide for implant surgery.

  5. Evaluation of external beam hardening filters on image quality of computed tomography and single photon emission computed tomography/computed tomography.

    PubMed

    Rana, Nivedita; Rawat, Dinesh; Parmar, Madan; Dhawan, Devinder Kumar; Bhati, Ashok Kumar; Mittal, Bhagwant Rai

    2015-01-01

    This study was undertaken to evaluate the effect of external metal filters on the image quality of computed tomography (CT) and single photon emission computed tomography (SPECT)/CT images. Images of Jaszack phantom filled with water and containing iodine contrast filled syringes were acquired using CT (120 kV, 2.5 mA) component of SPECT/CT system, ensuring fixation of filter on X-ray collimator. Different thickness of filters of Al and Cu (1 mm, 2 mm, 3 mm, and 4 mm) and filter combinations Cu 1 mm, Cu 2 mm, Cu 3 mm each in combination with Al (1 mm, 2 mm, 3 mm, and 4 mm), respectively, were used. All image sets were visually analyzed for streak artifacts and contrast to noise ratio (CNR) was derived. Similar acquisition was done using Philips CT quality control (QC) phantom and CNR were calculated for its lexan, perspex, and teflon inserts. Attenuation corrected SPECT/CT images of Jaszack phantom filled with 444-555 MBq (12-15 mCi) of (99m)Tc were obtained by applying attenuation correction map generated by hardened X-ray beam for different filter combination, on SPECT data. Uniformity, root mean square (rms) and contrast were calculated in all image sets. Less streak artifacts at iodine water interface were observed in images acquired using external filters as compared to those without a filter. CNR for syringes, spheres, and inserts of Philips CT QC phantom was almost similar to Al 2 mm, Al 3 mm, and without the use of filters. CNR decreased with increasing copper thickness and other filter combinations. Uniformity and rms were lower, and value of contrast was higher for SPECT/CT images when CT was acquired with Al 2 mm and 3 mm filter than for images acquired without a filter. The study suggests that for Infinia Hawkeye 4, SPECT/CT system, Al 2 mm, and 3 mm are the optimum filters for improving image quality of SPECT/CT images of Jaszack or Philips CT QC phantom keeping other parameters of CT constant.

  6. Evaluation of external beam hardening filters on image quality of computed tomography and single photon emission computed tomography/computed tomography

    PubMed Central

    Rana, Nivedita; Rawat, Dinesh; Parmar, Madan; Dhawan, Devinder Kumar; Bhati, Ashok Kumar; Mittal, Bhagwant Rai

    2015-01-01

    This study was undertaken to evaluate the effect of external metal filters on the image quality of computed tomography (CT) and single photon emission computed tomography (SPECT)/CT images. Images of Jaszack phantom filled with water and containing iodine contrast filled syringes were acquired using CT (120 kV, 2.5 mA) component of SPECT/CT system, ensuring fixation of filter on X-ray collimator. Different thickness of filters of Al and Cu (1 mm, 2 mm, 3 mm, and 4 mm) and filter combinations Cu 1 mm, Cu 2 mm, Cu 3 mm each in combination with Al (1 mm, 2 mm, 3 mm, and 4 mm), respectively, were used. All image sets were visually analyzed for streak artifacts and contrast to noise ratio (CNR) was derived. Similar acquisition was done using Philips CT quality control (QC) phantom and CNR were calculated for its lexan, perspex, and teflon inserts. Attenuation corrected SPECT/CT images of Jaszack phantom filled with 444–555 MBq (12–15 mCi) of 99mTc were obtained by applying attenuation correction map generated by hardened X-ray beam for different filter combination, on SPECT data. Uniformity, root mean square (rms) and contrast were calculated in all image sets. Less streak artifacts at iodine water interface were observed in images acquired using external filters as compared to those without a filter. CNR for syringes, spheres, and inserts of Philips CT QC phantom was almost similar to Al 2 mm, Al 3 mm, and without the use of filters. CNR decreased with increasing copper thickness and other filter combinations. Uniformity and rms were lower, and value of contrast was higher for SPECT/CT images when CT was acquired with Al 2 mm and 3 mm filter than for images acquired without a filter. The study suggests that for Infinia Hawkeye 4, SPECT/CT system, Al 2 mm, and 3 mm are the optimum filters for improving image quality of SPECT/CT images of Jaszack or Philips CT QC phantom keeping other parameters of CT constant. PMID:26865755

  7. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  8. Is there a role for the use of volumetric cone beam computed tomography in periodontics?

    PubMed

    du Bois, A H; Kardachi, B; Bartold, P M

    2012-03-01

    Volumetric computed cone beam tomography offers a number of significant advantages over conventional intraoral and extraoral panoramic radiography, as well as computed tomography. To date, periodontal diagnosis has relied heavily on the assessment of both intraoral radiographs and extraoral panoramic radiographs. With emerging technology in radiology there has been considerable interest in the role that volumetric cone beam computed tomography might play in periodontal diagnostics. This narrative reviews the current evidence and considers whether there is a role for volumetric cone beam computed tomography in periodontics.

  9. Comparison of micro-computed tomography and laser scanning for reverse engineering orthopaedic component geometries.

    PubMed

    Teeter, Matthew G; Brophy, Paul; Naudie, Douglas D R; Holdsworth, David W

    2012-03-01

    A significant amount of research has been undertaken to evaluate the function of implanted joint replacement components. Many of these studies require the acquisition of an accurate three-dimensional geometric model of the various implant components, using methods such as micro-computed tomography or laser scanning. The purpose of this study was to compare micro-computed tomography and laser scanning for obtaining component geometries. Five never-implanted polyethylene tibial inserts of one type were scanned with both micro-computed tomography and laser scanning to determine the repeatability of each method and measured for any deviations between the geometries acquired from the different scans. Overall, good agreement was found between the micro-computed tomography and laser scans, to within 71 microm on average. Micro-computed tomography was found to have superior repeatability to laser scanning (mean of 1 microm for micro-computed tomography versus 19 microm for laser scans). Micro-computed tomography may be preferred for visualizing small surface features, whereas laser scanning may be preferred for acquiring the geometry of metal objects to avoid computed tomography artifacts. In conclusion, the choice of micro-computed tomography versus laser scanning for acquiring orthopaedic component geometries will likely involve considerations of user preference, the specific application the scan will be used for, and the availability of each system.

  10. Complementary roles of brain scintigraphy and computed tomography in multiple sclerosis

    SciTech Connect

    Moreno, A.J.; Brown, J.M.; Waller, S.F.; Lundy, M.M.; Brown, T.J.

    1983-12-01

    Cerebral computed tomography, with and without iodinated contrast, revealed the appearance and evolution of lesions in a 32-year-old man with multiple sclerosis. Two areas were enhanced with contrast, with one showing a mild mass effect and rim of enhancement. Serial brain scintigraphy using technetium-/sub 99m/ glucoheptonate, following the computed tomography, showed the appearance and regression of corresponding regions of increased uptake. Computed tomography one day prior to brain scintigraphy failed to demonstrate a region of increased accumulation of radiotracer. One week later, however, evidence of a corresponding unenhanced defect was noted on computed tomography. Clinical correlation is given additionally.

  11. Orbital positron emission tomography/computed tomography (PET/CT) imaging findings in graves ophthalmopathy

    PubMed Central

    2013-01-01

    Background We aimed to describe orbital positron emission tomography/computed tomography (PET/CT) imaging findings, both structural and metabolic, in different clinical stages of Graves ophthalmopathy (GO). This prospective, observational, cross-sectional study examined 32 eyes of 16 patients with GO. Methods Patients were assessed with a complete ophthalmological evaluation and assigned a VISA classification for GO. All patients underwent serum thyroid hormone measurement, antibody profile, and 18-fluorodeoxyglucose positron emission tomography/computed tomography (18-FDG PET/CT) of the orbits. The 18-FDG uptake on PET images was expressed in terms of maximum standard uptake value (SUVmax). CT images were analyzed, and orbital structures were measured in millimeters. Vision, inflammation, strabismus, and overall appearance were assessed according to the VISA classification system, thyroid hormone levels, antibody values, 18-FDG uptake, and thickness of orbital structures. Results Altogether, 32 eyes of 16 patients (10 women, 6 men; mean age 44.31 ± 13 years, range 20–71 years) were included. Three patients were hypothyroid, seven were euthyroid, and six were hyperthyroid. CT measurements of extraocular muscle diameter were elevated (P < 0.05), and muscle 18-FDG uptake values were increased. Eyes with a clinical VISA inflammation score of ≤ 4 had an average extraocular muscle SUVmax of 3.09, and those with a score of ≥ 5 had an average SUVmax of 3.92 (P = 0.09), showing no clear correlation between clinically observed inflammation and 18-FDG uptake. 18-FDG uptake values also did not show a correlation with extraocular muscle diameter as measured by CT (R2 = 0.0755, P > 0.05). Conclusions We demonstrated a lack of correlation between 18-FDG extraocular muscle uptake and either clinical inflammation score or muscle diameter. Although 18-FDG uptake has been used as an inflammation marker in other pathologies, inflammation in GO may

  12. Technetium-99m Methylene Diphosphonate Single-photon Emission Computed Tomography/Computed Tomography of the Foot and Ankle

    PubMed Central

    Upadhyay, Bhavin; Mo, Jonathan; Beadsmoore, Clare; Marshall, Tom; Toms, Andoni; Buscombe, John

    2017-01-01

    The complex anatomy and function of the foot and ankle can make it difficult to determine the cause of symptoms in patients with foot and ankle pathology. Following initial clinical and radiographic assessment, additional imaging with magnetic resonance imaging may be required, which is often seen as the modality of choice. Although sensitive to pathological changes in bone metabolism and vascularity, technetium-99m (Tc-99m) bone scintigraphy often lacks the specificity and resolution required to evaluate the structures of the foot and ankle. Tc-99m methylene diphosphonate single-photon emission computed tomography/computed tomography (SPECT/CT) combines this sensitivity with the superior anatomical detail of CT, enabling better localization of pathological uptake and evaluation of associated structural changes. As a result, SPECT/CT has been growing in popularity for the assessment of patients with foot and ankle pathology where it can provide additional information that may change the initial diagnosis and subsequent management plan. Studies have reported modification of the surgical approach and site of intra-articular local anesthetic injections following SPECT/CT with good results. Interpretation of SPECT/CT studies requires an understanding of the pathological changes that result in increased tracer accumulation in addition to the CT changes that may be seen. This review aims to highlight the advantages of SPECT/CT, potential applications and explain the imaging appearances of common pathologies that may be observed. PMID:28553174

  13. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice

    PubMed Central

    Zhang, Minfang; Jasim, Dhifaf A; Ménard-Moyon, Cécilia; Nunes, Antonio; Iijima, Sumio; Bianco, Alberto; Yudasaka, Masako; Kostarelos, Kostas

    2016-01-01

    In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30–50 nm; S-CNHs) and large-sized CNHs (80–100 nm; L-CNHs) were chemically functionalized and radiolabeled with [111In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver. PMID:27524892

  14. Imaging of the midpalatal suture in a porcine model: flat-panel volume computed tomography compared with multislice computed tomography.

    PubMed

    Hahn, Wolfram; Fricke-Zech, Susanne; Fialka-Fricke, Julia; Dullin, Christian; Zapf, Antonia; Gruber, Rudolf; Sennhenn-kirchner, Sabine; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza

    2009-09-01

    An investigation was conducted to compare the image quality of prototype flat-panel volume computed tomography (fpVCT) and multislice computed tomography (MSCT) of suture structures. Bone samples were taken from the midpalatal suture of 5 young (16 weeks) and 5 old (200 weeks) Sus scrofa domestica and fixed in formalin solution. An fpVCT prototype and an MSCT were used to obtain images of the specimens. The facial reformations were assessed by 4 observers using a 1 (excellent) to 5 (poor) rating scale for the weighted criteria visualization of the suture structure. A linear mixed model was used for statistical analysis. Results with P < .05 were considered to be statistically significant. The visualization of the suture of young specimens was significantly better than that of older animals (P < .001). The visualization of the suture with fpVCT was significantly better than that with MSCT (P < .001). Compared with MSCT, fpVCT produces superior results in the visualization of the midpalatal suture in a Sus scrofa domestica model.

  15. Technetium-99m Methylene Diphosphonate Single-photon Emission Computed Tomography/Computed Tomography of the Foot and Ankle.

    PubMed

    Upadhyay, Bhavin; Mo, Jonathan; Beadsmoore, Clare; Marshall, Tom; Toms, Andoni; Buscombe, John

    2017-01-01

    The complex anatomy and function of the foot and ankle can make it difficult to determine the cause of symptoms in patients with foot and ankle pathology. Following initial clinical and radiographic assessment, additional imaging with magnetic resonance imaging may be required, which is often seen as the modality of choice. Although sensitive to pathological changes in bone metabolism and vascularity, technetium-99m (Tc-99m) bone scintigraphy often lacks the specificity and resolution required to evaluate the structures of the foot and ankle. Tc-99m methylene diphosphonate single-photon emission computed tomography/computed tomography (SPECT/CT) combines this sensitivity with the superior anatomical detail of CT, enabling better localization of pathological uptake and evaluation of associated structural changes. As a result, SPECT/CT has been growing in popularity for the assessment of patients with foot and ankle pathology where it can provide additional information that may change the initial diagnosis and subsequent management plan. Studies have reported modification of the surgical approach and site of intra-articular local anesthetic injections following SPECT/CT with good results. Interpretation of SPECT/CT studies requires an understanding of the pathological changes that result in increased tracer accumulation in addition to the CT changes that may be seen. This review aims to highlight the advantages of SPECT/CT, potential applications and explain the imaging appearances of common pathologies that may be observed.

  16. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  17. Assessing stapes piston position using computed tomography: a cadaveric study.

    PubMed

    Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary

    2009-02-01

    Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.

  18. Low Utility of Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Detecting Hepatocellular Carcinoma in Patients Before Liver Transplantation.

    PubMed

    Alotaibi, Faisal; Kabbani, Monther; Abaalkhail, Faisal; Chorley, Alicia; Elbeshbeshy, Hany; Al-Hamoudi, Waleed; Alabbad, Saleh; Boehnert, Markus U; Alsofayan, Mohammad; Al-Kattan, Wael; Ahmed, Baderaldeen; Broering, Dieter; Al Sebayel, Mohamed; Elsiesy, Hussien

    2017-02-01

    Our program routinely used fluorodeoxyglucose-positron emission tomography/computed tomography as part of the liver transplant evaluation of patients with hepatocellular carcinoma. The aim of this study was to evaluate the role of this imaging modality in the pretransplant work-up. This was a retrospective chart review of our liver transplant database from January 2011 to December 2014 for all patients with hepatocellular carcinoma who underwent a liver transplant. Collected data included age, sex, cause of liver disease, imaging modality, fluorodeoxyglucose-positron emission tomography/computed tomography results, explant tissue analysis, type of transplant, and transplant outcome. During the study period, 275 liver transplants were performed. Fifty-three patients had hepatocellular carcinoma; 41 underwent fluorodeoxyglucose-positron emission tomography/computed tomography. Twenty-nine patients underwent living-donor liver transplant, and 12 patients underwent deceased-donor liver transplant. One of the 41 patients with negative FDG-imaging results had no evidence of hepatocellular carcinoma in the explant and was excluded from the study. The patients' average age was 58 years (range, 22-72 y), and 28 patients were men. The cause of liver disease was hepatitis C virus in 24 patients, cryptogenic cirrhosis in 12 patients, and hepatitis B virus in 5 patients. One patient had no hepatocellular carcinoma on explants and was excluded from the study. Twenty-five patients had hepatocellular carcinoma that met the Milan criteria, 7 were within the UCSF (University of California, San Francisco) criteria, and 8 exceeded the UCSF criteria. Of the 40 patients, 11 had positive fluorodeoxyglucose-positron emission tomography/computed tomography results (27.5%) with evidence of hepatocellular carcinoma in the explant; the remaining 29 patients (72.5%) had negative results. The fluorodeoxyglucose-positron emission tomography/computed tomography results were positive in 16% (4 of

  19. Diagnosis of simulated condylar bone defects using panoramic radiography, spiral tomography and cone-beam computed tomography: A comparison study

    PubMed Central

    Salemi, Fatemeh; Shokri, Abbas; Baharvand, Maryam

    2015-01-01

    Objectives: Radiographic examination is one of the most important parts of the clinical assessment routine for temporomandibular disorders. The aim of this study was to compare the diagnostic accuracy of cone-beam computed tomography(CBCT) with panoramic radiography and spiral computed tomography for the detection of the simulated mandibular condyle bone lesions. Study Design: The sample consisted of 10 TMJs from 5 dried human skulls. Simulated erosive and osteophytic lesions were created in 3 different sizes using round diamond bur and bone chips, respectively. Panoramic radiography, spiral tomography and cone-beam computed tomography were used in defect detection. Data were statistically analyzed with the Mann-Whitney test. The reliability and degrees of agreement between two observers were also determined by the mean of Cohen’s Kappa analysis. Results: CBCT had a statistically significant superiority than other studied techniques in detection of both erosive and osteophytic lesions with different sizes. There were significant differences between tomography and panoramic in correct detection of both erosive and osteophytic lesions with 1mm and 1.5 mm in size. However, there were no significant differences between Tomography and Panoramic in correct detection of both erosive and osteophytic lesions with 0.5 mm in size. Conclusions: CBCT images provide a greater diagnostic accuracy than spiral tomography and panoramic radiography in the detection of condylar bone erosions and osteophytes. Key words:Bone defect, Condyle, CBCT, Panoramic, radiography. PMID:25810839

  20. Prediction of pulmonary function after lung lobectomy by subsegments counting, computed tomography, single photon emission computed tomography and computed tomography: a comparative study.

    PubMed

    Yoshimoto, Kentaro; Nomori, Hiroaki; Mori, Takeshi; Kobayashi, Hironori; Ohba, Yasuomi; Shibata, Hidekatsu; Shiraishi, Shinya; Kobayashi, Toshiaki

    2009-03-01

    The aim of the present study was to determine the optimal method of predicting postoperative pulmonary function (PPF) after lung lobectomy. The forced expiratory volume in 1s (FEV(1)) was measured in 37 patients before and after lobectomy, and the following three methods of predicting the PPF were evaluated: (1) the number of functioning subsegments to be resected were counted (subsegments counting [SC]); (2) the volume of the functioning lung was calculated using CT images (quantitative CT); and (3) perfusion scintigraphy was performed using co-registered single photon emission computed tomography and CT imaging (SPECT/CT). The FEV(1) values predicted using these three methods were then compared with the measured postoperative FEV(1), and the correlations and differences were analyzed. While a paired t-test showed the SPECT/CT method to have the smallest difference between the measured and the predicted FEV(1) values (0.05 l, p=0.33), followed by the quantitative CT method (0.07 l, p=0.07), and finally the SC method (0.15 l, p<0.001), the difference between the two values was not significantly different between the quantitative CT and SPECT/CT method (p=0.22). While the SC method is inferior to both the quantitative CT and the SPECT/CT methods for predicting the PPF after lobectomy, the latter two methods are almost equally accurate.