Science.gov

Sample records for 3-dimensional discrete fracture

  1. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  2. Insight from modelling discrete fractures using GEOCRACK

    SciTech Connect

    DuTeaux, Robert; Swenson, Daniel; Hardeman, Brian

    1996-01-24

    This work analyzes the behavior of a numerical geothermal reservoir simulation with flow only in discrete fractures. GEOCRACK is a 2-D finite element model developed at Kansas State University for the Hot Dry Rock (HDR) research at Los Alamos National Laboratory. Its numerical simulations couple the mechanics of discrete fracture behavior with the state of earth stress, fluid flow, and heat transfer. This coupled model could also be of value for modeling reinjection and other reservoir operating strategies for liquid dominated fractured reservoirs. Because fracture surfaces cool quickly by fluid convection, and heat does not conduct quickly from the interior of reservoir rock, modeling the injection of cold fluid into a fractured reservoir is better simulated by a model with discrete fractures. This work contains knowledge gained from HDR reservoir simulation and continues to develop the general concept of heat mining, reservoir optimization. and the sensitivity of simulation to the uncertainties of fracture spacing and dynamic flow dispersion.

  3. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures

    PubMed Central

    Barde, Dhananjay H; Mudhol, Anupama; Ali, Fareedi Mukram; Madan, R S; Kar, Sanjay; Ustaad, Farheen

    2014-01-01

    Background: Mandibular fractures are treated surgically by either rigid or semi-rigid fixation, two techniques that reflect almost opposite concept of craniomaxillofacial osteosynthesis. The shortcomings of these fixations led to the development of 3 dimensional (3D) miniplates. This study was designed with the aim of evaluating the efficiency of 3D miniplate over Champys miniplate in anterior mandibular fractures. Materials & Methods: This study was done in 40 patients with anterior mandibular fractures. Group I consisting of 20 patients in whom 3D plates were used for fixation while in Group II consisting of other 20 patients, 4 holes straight plates were used. The efficacy of 3D miniplate over Champy’s miniplate was evaluated in terms of operating time, average pain, post operative infection, occlusion, wound dehiscence, post operative mobility and neurological deficit. Results: The mean operation time for Group II was more compared to Group I (statistically significant).There was significantly greater pain on day of surgery and at 2nd week for Group II patients but there was no significant difference between the two groups at 4th week. The post operative infection, occlusal disturbance, wound dehiscence, post operative mobility at facture site, neurological deficit was statistically insignificant (chi square test). Conclusion: The results of this study suggest that fixation of anterior mandibular fractures with 3D plates provides three dimensional stability and carries low morbidity and infection rates. The only probable limitation of these 3D plates may be excessive implant material, but they seem to be easy alternative to champys miniplate. How to cite the article: Barde DH, Mudhol A, Ali FM, Madan RS, Kar S, Ustaad F. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures. J Int Oral Health 2014;6(1):20-6. PMID:24653598

  4. Compartmentalization analysis using discrete fracture network models

    SciTech Connect

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  5. Compartmentalization analysis using discrete fracture network models

    SciTech Connect

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-12-31

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  6. An analytical thermohydraulic model for discretely fractured geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Fox, Don B.; Koch, Donald L.; Tester, Jefferson W.

    2016-09-01

    In discretely fractured reservoirs such as those found in Enhanced/Engineered Geothermal Systems (EGS), knowledge of the fracture network is important in understanding the thermal hydraulics, i.e., how the fluid flows and the resulting temporal evolution of the subsurface temperature. The purpose of this study was to develop an analytical model of the fluid flow and heat transport in a discretely fractured network that can be used for a wide range of modeling applications and serve as an alternative analysis tool to more computationally intensive numerical codes. Given the connectivity and structure of a fracture network, the flow in the system was solved using a linear system of algebraic equations for the pressure at the nodes of the network. With the flow determined, the temperature in the fracture was solved by coupling convective heat transport in the fracture with one-dimensional heat conduction perpendicular to the fracture, employing the Green's function derived solution for a single discrete fracture. The predicted temperatures along the fracture surfaces from the analytical solution were compared to numerical simulations using the TOUGH2 reservoir code. Through two case studies, we showed the capabilities of the analytical model and explored the effect of uncertainty in the fracture apertures and network structure on thermal performance. While both sources of uncertainty independently produce large variations in production temperature, uncertainty in the network structure, whenever present, had a predominant influence on thermal performance.

  7. Discrete modeling of hydraulic fracturing processes in a complex pre-existing fracture network

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rutqvist, J.; Nakagawa, S.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    Hydraulic fracturing and stimulation of fracture networks are widely used by the energy industry (e.g., shale gas extraction, enhanced geothermal systems) to increase permeability of geological formations. Numerous analytical and numerical models have been developed to help understand and predict the behavior of hydraulically induced fractures. However, many existing models assume simple fracturing scenarios with highly idealized fracture geometries (e.g., propagation of a single fracture with assumed shapes in a homogeneous medium). Modeling hydraulic fracture propagation in the presence of natural fractures and homogeneities can be very challenging because of the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and pre-existing natural fractures. In this study, the TOUGH-RBSN code for coupled hydro-mechanical modeling is utilized to simulate hydraulic fracture propagation and its interaction with pre-existing fracture networks. The simulation tool combines TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach, with the implementation of a lattice modeling approach for geomechanical and fracture-damage behavior, named Rigid-Body-Spring Network (RBSN). The discrete fracture network (DFN) approach is facilitated in the Voronoi discretization via a fully automated modeling procedure. The numerical program is verified through a simple simulation for single fracture propagation, in which the resulting fracture geometry is compared to an analytical solution for given fracture length and aperture. Subsequently, predictive simulations are conducted for planned laboratory experiments using rock-analogue (soda-lime glass) samples containing a designed, pre-existing fracture network. The results of a preliminary simulation demonstrate selective fracturing and fluid infiltration along the pre-existing fractures, with additional fracturing in part

  8. Three-phase flow simulations in discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Niessner, J.; Matthai, S. K.; Helmig, R.

    2006-12-01

    Fractures are often the key conduits for fluid flow in otherwise low permeability rocks. Their presence in hydrocarbon reservoirs leads to complex production histories, unpredictable coupling of wells, rapidly changing flow rates, possibly early water breakthrough, and low final recovery. Recently, it has been demonstrated that a combination of finite volume and finite element discretization is well suited to model incompressible, immiscible two-phase flow in 3D discrete fracture networks (DFN) representing complexly fractured rocks. Such an approach has been commercialized in Golder Associates' FracMan Reservoir Edition software. For realistic reservoir simulations, however, it would be desirable if a third compressible gas phase can be included which is often present at reservoir conditions. Here we present the extension of an existing node-centred finite volume - finite element (FEFV) discretization for the efficient and accurate simulations of three-component - three-phase flow in geologically realistic representations of fractured porous media. Two possible types of fracture networks can be used: In 2D, they are detailed geometrical representations of fractured rock masses mapped in field studies. In 3D, they are geologically constrained, stochastically generated discrete fracture networks. Flow and transport can be simulated for fractures only or for fractures and matrix combined. The governing equations are solved decoupled using an implicit-pressure, explicit-saturation (IMPES) approach. Flux and concentration terms can be treated with higher-order accuracy in the finite volume scheme to preserve shock fronts. The method is locally mass conservative and works on unstructured, spatially refined grids. Flash calculations are carried out by a new description of the Black-Oil model. Capillary and gravity effects are included in this formulation. The robustness and accuracy of this formulation is shown in several applications. First, grid convergence is

  9. Hydraulic fracturing model based on the discrete fracture model and the generalized J integral

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Liu, Z. F.; Wang, X. H.; Zeng, B.

    2016-08-01

    The hydraulic fracturing technique is an effective stimulation for low permeability reservoirs. In fracturing models, one key point is to accurately calculate the flux across the fracture surface and the stress intensity factor. To achieve high precision, the discrete fracture model is recommended to calculate the flux. Using the generalized J integral, the present work obtains an accurate simulation of the stress intensity factor. Based on the above factors, an alternative hydraulic fracturing model is presented. Examples are included to demonstrate the reliability of the proposed model and its ability to model the fracture propagation. Subsequently, the model is used to describe the relationship between the geometry of the fracture and the fracturing equipment parameters. The numerical results indicate that the working pressure and the pump power will significantly influence the fracturing process.

  10. Effects of using a continuum representation of discrete fracture networks

    SciTech Connect

    Hull, L.C.; Clemo, T.M.

    1987-01-01

    The substitution of matrix or continuum permeability for discrete fracture permeability in the simulation of complex fracture systems requires a radically different treatment of transport in the matrix. The spatial distribution of pressure is reasonably well described by inclusion of only the major fractures. Transport of tracer and heat, however, depends on a detailed knowledge of fluid velocities. Two factors are involved. First, the velocities are dependent on the active porosity of the system. Because fractures channel flow, the active porosity may be much smaller than the total porosity of the system. Secondly, the distribution of velocities is generally not normally distributed precluding the use of a Gaussian dispersion model. Characterization of the active porosity and velocity distribution are necessary to quantify tracer and heat movement.

  11. Towards effective flow simulations in realistic discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano

    2016-04-01

    We focus on the simulation of underground flow in fractured media, modeled by means of Discrete Fracture Networks. Focusing on a new recent numerical approach proposed by the authors for tackling the problem avoiding mesh generation problems, we further improve the new family of methods making a step further towards effective simulations of large, multi-scale, heterogeneous networks. Namely, we tackle the imposition of Dirichlet boundary conditions in weak form, in such a way that geometrical complexity of the DFN is not an issue; we effectively solve DFN problems with fracture transmissivities spanning many orders of magnitude and approaching zero; furthermore, we address several numerical issues for improving the numerical solution also in quite challenging networks.

  12. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    SciTech Connect

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  13. Role of preoperative 3-dimensional computed tomography reconstruction in depressed skull fractures treated with craniectomy: a case report of forensic interest.

    PubMed

    Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo

    2011-06-01

    Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.

  14. Use of an Integrated Discrete Fracture Network Code for Stochastic Stability Analyses of Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Merrien-Soukatchoff, V.; Korini, T.; Thoraval, A.

    2012-03-01

    The paper presents the Discrete Fracture Network code RESOBLOK, which couples geometrical block system construction and a quick iterative stability analysis in the same package. The deterministic or stochastic geometry of a fractured rock mass can be represented and interactively displayed in 3D using two different fracture generators: one mainly used for hydraulic purposes and another designed to allow block stability evaluation. RESOBLOK has downstream modules that can quickly compute stability (based on limit equilibrium or energy-based analysis), display geometric information and create links to other discrete software. The advantage of the code is that it couples stochastic geometrical representation and a quick iterative stability analysis to allow risk-analysis with or without reinforcement and, for the worst cases, more accurate analysis using stress-strain analysis computer codes. These different aspects are detailed for embankment and underground works.

  15. Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Lapene, A.; Pauget, L.

    2012-12-01

    During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible

  16. Characterization of fracture processes by continuum and discrete modelling

    NASA Astrophysics Data System (ADS)

    Kaliske, M.; Dal, H.; Fleischhauer, R.; Jenkel, C.; Netzker, C.

    2012-09-01

    A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples.

  17. A methodology for pseudo-genetic stochastic modeling of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bonneau, François; Henrion, Vincent; Caumon, Guillaume; Renard, Philippe; Sausse, Judith

    2013-07-01

    Stochastic simulation of fracture systems is an interesting approach to build a set of dense and complex networks. However, discrete fracture models made of planar fractures generally fail to reproduce the complexity of natural networks, both in terms of geometry and connectivity. In this study a pseudo-genetic method is developed to generate stochastic fracture models that are consistent with patterns observed on outcrops and fracture growth principles. The main idea is to simulate evolving fracture networks through geometric proxies by iteratively growing 3D fractures. The algorithm defines heuristic rules in order to mimic the mechanics of fracture initiation, propagation, interaction and termination. The growth process enhances the production of linking structure and impacts the connectivity of fracture networks. A sensitivity study is performed on synthetic examples. The method produces unbiased fracture dip and strike statistics and qualitatively reproduces the fracture density map. The fracture length distribution law is underestimated because of the early stop in fracture growth after intersection.

  18. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    NASA Astrophysics Data System (ADS)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  19. Results from a discrete fracture network model of a Hot Dry Rock system

    SciTech Connect

    Lanyon, G.W.; Batchelor, A.S.; Ledingham, P.

    1993-01-28

    The work described represents a move towards better representations of the natural fracture system. The discrete fracture network model used during the study was the NAPSAC code (Grindrod et al, 1992). The goals of the work were to investigate the application of discrete fracture network models to Hot Dry Rock systems, increase the understanding of the basic thermal extraction process and more specifically the understanding of the Rosemanowes Phase 2B system. The aim in applying the work to the Rosemanowes site was to use the discrete fracture network approach to integrate a diverse set of field measurements into as simple a model as possible.

  20. Management of mandibular angle fractures using a 1.7 mm 3-dimensional strut plate

    PubMed Central

    Pandey, Varnika; Bhutia, Ongkila; Nagori, Shakil Ahmed; Seith, Ashu; Roychoudhury, Ajoy

    2015-01-01

    Aim We report our experience with the use of 1.7 mm 3-dimentional (3D) strut plate for the management of mandibular angle fractures. Methods This prospective study enrolled 15 patients in whom mandibular angle fractures were treated with 1.7 mm 3D plate using trans-buccal trochar. Patients were evaluated at 72 h, 2 weeks, 6 weeks and 12 weeks for fracture stability, occlusion, soft-tissue swelling, infection and post-operative inferior alveolar nerve damage. Other complications like wound dehiscence, non-union, mal-union and hardware failure were also assessed. Results In the immediate post-operative period, fracture instability was seen in 1 (6.7%) patient which resolved by 2 weeks. Mild occlusal discrepancy was also noted in 1 (6.7%) patient. Wound dehiscence was seen in 5 (33.3%) patients and all resolved by local measures. 1 (6.7%) patient developed post-operative nerve paraesthesia. Immediate post-operative radiographic evaluation demonstrated optimal reduction in all cases with no inferior border gaping. No case of infection, hardware failure, non-union and mal-union was noted. Conclusion Within the limitations of the study, 1.7 mm 3D strut plate was found to be effective for management of non-communited mandibular angle fractures. PMID:26937367

  1. Comparison of Isocentric C-Arm 3-Dimensional Navigation and Conventional Fluoroscopy for Percutaneous Retrograde Screwing for Anterior Column Fracture of Acetabulum

    PubMed Central

    He, Jiliang; Tan, Guoqing; Zhou, Dongsheng; Sun, Liang; Li, Qinghu; Yang, Yongliang; Liu, Ping

    2016-01-01

    Abstract Percutaneous screw insertion for minimally displaced or reducible acetabular fracture using x-ray fluoroscopy and computer-assisted navigation system has been advocated by some authors. The purpose of this study was to compare intraoperative conditions and clinical results between isocentric C-arm 3-dimensional (Iso-C 3D) fluoroscopy and conventional fluoroscopy for percutaneous retrograde screwing of acetabular anterior column fracture. A prospective cohort study was conducted. A total of 22 patients were assigned to 2 different groups: 10 patients in the Iso-C 3D navigation group and 12 patients in the conventional group. The operative time, fluoroscopic time, time of screw insertion, blood loss, and accuracy were analyzed between the 2 groups. There were significant differences in operative time, screw insertion time, fluoroscopy time, and mean blood loss between the 2 groups. Totally 2 of 12 (16.7%) screws were misplaced in the conventional fluoroscopy group, and all 10 screws were in safe zones in the navigation group. Percutaneous screw fixation using the Iso-C 3D computer-assisted navigation system significantly reduced the intraoperative fluoroscopy time and blood loss in percutaneous screwing for acetabular anterior column fracture. The Iso-C 3D computer-assisted navigation system provided a reliable and effective method for percutaneous screw insertion in acetabular anterior column fractures compared to conventional fluoroscopy. PMID:26765448

  2. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  3. Correlation between the 2-Dimensional Extent of Orbital Defects and the 3-Dimensional Volume of Herniated Orbital Content in Patients with Isolated Orbital Wall Fractures

    PubMed Central

    Cha, Jong Hyun; Moon, Myeong Ho; Lee, Yong Hae; Koh, In Chang; Kim, Kyu Nam; Kim, Chang Gyun

    2017-01-01

    Background The purpose of this study was to assess the correlation between the 2-dimensional (2D) extent of orbital defects and the 3-dimensional (3D) volume of herniated orbital content in patients with an orbital wall fracture. Methods This retrospective study was based on the medical records and radiologic data of 60 patients from January 2014 to June 2016 for a unilateral isolated orbital wall fracture. They were classified into 2 groups depending on whether the fracture involved the inferior wall (group I, n=30) or the medial wall (group M, n=30). The 2D area of the orbital defect was calculated using the conventional formula. The 2D extent of the orbital defect and the 3D volume of herniated orbital content were measured with 3D image processing software. Statistical analysis was performed to evaluate the correlations between the 2D and 3D parameters. Results Varying degrees of positive correlation were found between the 2D extent of the orbital defects and the 3D herniated orbital volume in both groups (Pearson correlation coefficient, 0.568−0.788; R2=32.2%−62.1%). Conclusions Both the calculated and measured 2D extent of the orbital defects showed a positive correlation with the 3D herniated orbital volume in orbital wall fractures. However, a relatively large volume of herniation (>0.9 cm3) occurred not infrequently despite the presence of a small orbital defect (<1.9 cm2). Therefore, estimating the 3D volume of the herniated content in addition to the 2D orbital defect would be helpful for determining whether surgery is indicated and ensuring adequate surgical outcomes. PMID:28194344

  4. Carbonate fracture stratigraphy: An integrated outcrop and 2D discrete element modelling study

    NASA Astrophysics Data System (ADS)

    Spence, Guy; Finch, Emma

    2013-04-01

    Constraining fracture stratigraphy is important as natural fractures control primary fluid flow in low matrix permeability naturally fractured carbonate hydrocarbon reservoirs. Away from the influence of folds and faults, stratigraphic controls are known to be the major control on fracture networks. The fracture stratigraphy of carbonate nodular-chert rhythmite successions are investigated using a Discrete Element Modelling (DEM) technique and validated against observations from outcrops. Comparisons are made to the naturally fractured carbonates of the Eocene Thebes Formation exposed in the west central Sinai of Egypt, which form reservoir rocks in the nearby East Ras Budran Field. DEM allows mechanical stratigraphy to be defined as the starting conditions from which forward numerical modelling can generate fracture stratigraphy. DEM can incorporate both stratigraphic and lateral heterogeneity, and enable mechanical and fracture stratigraphy to be characterised separately. Stratally bound stratified chert nodules below bedding surfaces generate closely spaced lateral heterogeneity in physical properties at stratigraphic mechanical interfaces. This generates extra complexity in natural fracture networks in addition to that caused by bed thickness and lithological physical properties. A series of representative geologically appropriate synthetic mechanical stratigraphic models were tested. Fracture networks generated in 15 DEM experiments designed to isolate and constrain the effects of nodular chert rhythmites on carbonate fracture stratigraphy are presented. The discrete element media used to model the elastic strengths of rocks contain 72,866 individual elements. Mechanical stratigraphies and the fracture networks generated are placed in a sequence stratigraphic framework. Nodular chert rhythmite successions are shown to be a distinct type of naturally fractured carbonate reservoir. Qualitative stratigraphic rules for predicting the distribution, lengths, spacing

  5. Discrete fracture simulations of the hydrogeology at Koongarra, Northern Territory, Australia

    SciTech Connect

    Smoot, J.L.

    1992-04-01

    The US Department of Energy is studying the Alligator Rivers Natural Analogue Project site at Koongarra, Northern Territory, Australia to investigate and simulate radionuclide migration in fractured rocks. Discrete fracture simulations were conducted within a cubic volume (180-m edge length) of fractured Cahill Formation schist oriented with one major axis parallel to the trend of the Koongarra Fault. Five hundred fractures are simulated within this domain. The fractures have a mean orientation parallel to the idealized plane of the Koongarra Fault dipping 55{degrees} SE. Simple flow modeling of this fracture network was conducted by assigning constant head boundaries to upgradient and downgradient vertical faces of the cube, which trend parallel to the fault. No-flow boundaries were assigned to all other faces. The fracture network allows hydraulic communication across the block, in spite of relatively low fracture density across the block.

  6. Comparing discrete fracture and continuum models to predict contaminant transport in fractured porous media.

    PubMed

    Blessent, Daniela; Jørgensen, Peter R; Therrien, René

    2014-01-01

    We used the FRAC3Dvs numerical model (Therrien and Sudicky 1996) to compare the dual-porosity (DP), equivalent porous medium (EPM), and discrete fracture matrix diffusion (DFMD) conceptual models to predict field-scale contaminant transport in a fractured clayey till aquitard. The simulations show that the DP, EPM, and DFMD models could be equally well calibrated to reproduce contaminant breakthrough in the till aquitard for a base case. In contrast, when groundwater velocity and degradation rates are modified with respect to the base case, the DP method simulated contaminant concentrations up to three orders of magnitude different from those calculated by the DFMD model. In previous simulations of well-characterized column experiments, the DFMD method reproduced observed changes in solute transport for a range of flow and transport conditions comparable to those of the field-scale simulations, while the DP and EPM models required extensive recalibration to avoid high magnitude errors in predicted mass transport. The lack of robustness with respect to variable flow and transport conditions suggests that DP models and effective porosity EPM models have limitations for predicting cause-effect relationships in environmental planning. The study underlines the importance of obtaining well-characterized experimental data for further studies and evaluation of model key process descriptions and model suitability.

  7. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    SciTech Connect

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.

  8. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling withinmore » large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.« less

  9. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum

  10. 2.5D discrete-dual-porosity model for simulating geoelectrical experiments in fractured rock

    NASA Astrophysics Data System (ADS)

    Caballero Sanz, Victor; Roubinet, Delphine; Demirel, Serdar; Irving, James

    2017-02-01

    Previous work has demonstrated that geoelectrical measurements, acquired either along the Earth's surface or in boreholes, can be sensitive to the presence of fractures. However, a lack of numerical approaches that are well suited to modeling electric current flow in fractured media prevents us from systematically exploring the links between geoelectrical measurements and fractured rock properties. To address this issue, we present a highly computationally efficient methodology for the numerical simulation of geoelectrical data in 2.5 dimensions in complex fractured domains. Our approach is based upon a discrete-dual-porosity formulation, whereby the fractures and rock matrix are treated separately and coupled through the exchange of electric current between them. We first validate our methodology against standard analytical and finite-element solutions. Subsequent use of the approach to simulate geoelectrical data for a variety of different fracture configurations demonstrates the sensitivity of these data to important parameters such as the fracture density, depth, and orientation.

  11. From Stochastic toward Deterministic Characterization of Discrete Fracture Network via Thermal Tracer Tests

    NASA Astrophysics Data System (ADS)

    Somogyvari, M.; Jalali, M.; Bayer, P.; Jiménez Parras, S.

    2015-12-01

    The presence of fractures play an essential role in different disciplines, including hydrogeology, geothermal and hydrocarbon industries, as fractures introduce new pathways for flow and transport in the host rocks. Understanding the physical properties of these planar features would reduce the uncertainty of the numerical models and enhance the reliability of their results. Among the fracture properties, orientation and spacing are relatively easily estimated via borehole logs, core images, and outcrops, whereas the fracture geometry (i.e. length, width, and height) is more difficult to investigate. As the fracture geometry controls the hydraulic and thermal behavior of the fracture network through the strong dependency of the fracture conductivity with fracture aperture, it is possible to estimate these geometrical properties indirectly through hydraulic and thermal tomography investigations. To reach this goal, an innovative approach is introduced for discrete fracture network (DFN) characterization of heterogeneous fractured media via active thermal tracer testing. A synthetic DFN model is constructed based on the geological properties of an arbitrary fracture medium such as fracture orientation, length, spacing and persistency. Different realization are then constructed by considering all the above mentioned fracture properties except the length of fracture segments. Pressure and temperature fields are estimated inside the fracture network by means of an implicit upwind finite difference method, which is used to compute heat tracer travel times between injection and observation points and record the full temperature breakthrough curves at the monitoring points. A trans-dimensional inversion is then adopted to update the lengths fracture segment (add or remove) of the DFN model by comparison between proposed and observed travel times (Figure 1). The resulting assemble of the models can be used as an input geometry for deterministic simulations of fracture

  12. Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Yan, Chengzeng; Zheng, Hong; Sun, Guanhua; Ge, Xiurun

    2016-04-01

    Hydraulic fracturing is widely used in the exploitation of unconventional gas (such as shale gas).Thus, the study of hydraulic fracturing is of particular importance for petroleum industry. The combined finite-discrete element method (FDEM) proposed by Munjiza is an innovative numerical technique to capture progressive damage and failure processes in rock. However, it cannot model the fracturing process of rock driven by hydraulic pressure. In this study, we present a coupled hydro-mechanical model based on FDEM for the simulation of hydraulic fracturing in complex fracture geometries, where an algorithm for updating hydraulic fracture network is proposed. The algorithm can carry out connectivity searches for arbitrarily complex fracture networks. Then, we develop a new combined finite-discrete element method numerical code (Y-flow) for the simulation of hydraulic fracturing. Finally, several verification examples are given, and the simulation results agree well with the analytical or experimental results, indicating that the newly developed numerical code can capture hydraulic fracturing process correctly and effectively.

  13. Incorporating Discrete Irregular Fracture Zone Networks into 3D Paleohydrogeologic Simulations

    NASA Astrophysics Data System (ADS)

    Normani, S. D.

    2015-12-01

    Dual continuum computational models which include both porous media and discrete fracture zones are valuable tools in assessing groundwater migration and pathways in fractured rock systems. Fracture generation models can produce stochastic realizations of fracture networks which honor geological structures and fracture propagation behaviors. Surface lineament traces can be propagated to depth based on fracture zone statistics to produce representations of geological structures in rock. The generated discrete, complex and irregular fracture zone networks, represented as a triangulated mesh, are embedded using orthogonal quadrilateral elements within a three-dimensional hexahedral finite element mesh. A detailed coupled density-dependent paleohydrogeologic groundwater analysis of a hypothetical 104 km2 portion of the Canadian Shield has been conducted using the discrete-fracture dual continuum finite element model FRAC3DVS to investigate the characterization of large-scale fracture zone networks on groundwater and tracer movement during a 120,000 year paleoclimate cycle. Permeability reduction due to permafrost was also applied. Time series data for the depth of permafrost, along with ice thickness and lake depth, were provided by the University of Toronto (UofT) Glacial Systems Model. The crystalline rock between fracture zones was assigned properties characteristic of those reported for the Canadian Shield. Total dissolved solids concentrations of 300 g/L are encountered at depth. Surface water features and a Digital Elevation Model (DEM) were used in a GIS framework to define the watershed boundaries at surface water divides and to populate the finite element mesh. This work will illustrate the long-term evolution and stability of the geosphere and groundwater systems to external perturbations caused by glaciation through the use of performance measures such as Mean Life Expectancy and the migration of a unit tracer to depth over a paleoclimate cycle.

  14. Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bonneau, François; Caumon, Guillaume; Renard, Philippe

    2016-08-01

    Stochastic discrete fracture networks (DFNs) are classically simulated using stochastic point processes which neglect mechanical interactions between fractures and yield a low spatial correlation in a network. We propose a sequential parent-daughter Poisson point process that organizes fracture objects according to mechanical interactions while honoring statistical characterization data. The hierarchical organization of the resulting DFNs has been investigated in 3-D by computing their correlation dimension. Sensitivity analysis on the input simulation parameters shows that various degrees of spatial correlation emerge from this process. A large number of realizations have been performed in order to statistically validate the method. The connectivity of these correlated fracture networks has been investigated at several scales and compared to those described in the literature. Our study quantitatively confirms that spatial correlations can affect the percolation threshold and the connectivity at a particular scale.

  15. Three Dimensional Flow, Transport and Geomechanical Simulations in Discrete Fracture Network Under Condition of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ryerson, F. J.; Ezzedine, S. M.; Glascoe, L. G.; Antoun, T. H.

    2011-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Data collected are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable probabilistic assessment of flow, transport and geomechanical phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, we investigate the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport and geomechanics. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory. (Prepared by LLNL under Contract DE-AC52-07NA27344)

  16. Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997

    SciTech Connect

    Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

    1998-01-01

    This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

  17. Preliminary three-dimensional discrete fracture model, Tiva Canyon tuff, Yucca Mountain area, Nye County, Nevada

    SciTech Connect

    Anna, L.O.

    1998-09-01

    A three-dimensional discrete fracture model was completed to investigate the potential effects of fractures on the flow of water at Yucca Mountain, Nye County, Nevada. A fracture network of the Exploratory Studies Facility starter tunnel area was simulated and calibrated with field data. Two modeled volumes were used to simulate three-dimensional fracture networks of the Tiva Canyon tuff. One volume had a width and length of 150 meters, and the other had a width and length of 200 meters; both volumes were 60 meters thick. The analysis shows that the fracture system in the Exploratory Studies Facility starter tunnel area has numerous connected fractures that have relatively large permeabilities. However, pathway analysis between three radial boreholes indicated there were few pathways and little connection, which is consistent with results of cross-boreholes pressure testing. Pathway analysis also showed that at the scales used there was only one pathway connecting one end of the flow box to the opposite end. The usual vertical pathway was along one large fracture, whereas in four horizontal directions the pathway was from multiple fracture connections. As a result, the fracture network can be considered sparse. The fracture network was refined by eliminating nonconductive fractures determined from field-derived permeabilities. Small fractures were truncated from the simulated network without any effect on the overall connectivity. Fractures as long as 1.25 meters were eliminated (a large percentage of the total number of fractures) from the network without altering the number of pathways. Five directional permeabilities were computed for the 150- and 200-meter-scale flow box areas. Permeabilities for the 150-meter scale vary by almost two orders of magnitude, with the principal permeability direction being easterly. At the 200-meter scale, however, the flow box permeabilities only vary by a factor of four, with the principal permeability direction being vertical.

  18. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    NASA Astrophysics Data System (ADS)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  19. Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation

    SciTech Connect

    Shouchun Deng; Robert Podgorney; Hai Huang

    2011-02-01

    Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be

  20. A hybrid mortar virtual element method for discrete fracture network simulations

    NASA Astrophysics Data System (ADS)

    Benedetto, Matías Fernando; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialò, Stefano

    2016-02-01

    The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN) is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to "weakly" impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.

  1. Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.

    2013-12-01

    Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus

  2. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    SciTech Connect

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; Makedonska, Nataliia; Karra, Satish

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  3. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE PAGES

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  4. Discrete fracture modeling of hydro-mechanical damage processes in geological systems

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rutqvist, J.; Houseworth, J. E.; Birkholzer, J. T.

    2014-12-01

    This study presents a modeling approach for investigating coupled thermal-hydrological-mechanical (THM) behavior, including fracture development, within geomaterials and structures. In the model, the coupling procedure consists of an effective linkage between two codes: TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach; and an implementation of the rigid-body-spring network (RBSN) method, a discrete (lattice) modeling approach to represent geomechanical behavior. One main advantage of linking these two codes is that they share the same geometrical mesh structure based on the Voronoi discretization, so that a straightforward representation of discrete fracture networks (DFN) is available for fluid flow processes. The capabilities of the TOUGH-RBSN model are demonstrated through simulations of hydraulic fracturing, where fluid pressure-induced fracturing and damage-assisted flow are well represented. The TOUGH-RBSN modeling methodology has been extended to enable treatment of geomaterials exhibiting anisotropic characteristics. In the RBSN approach, elastic spring coefficients and strength parameters are systematically formulated based on the principal bedding direction, which facilitate a straightforward representation of anisotropy. Uniaxial compression tests are simulated for a transversely isotropic material to validate the new modeling scheme. The model is also used to simulate excavation fracture damage for the HG-A microtunnel in the Opalinus Clay rock, located at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. The Opalinus Clay has transversely isotropic material properties caused by natural features such as bedding, foliation, and flow structures. Preferential fracturing and tunnel breakouts were observed following excavation, which are believed to be strongly influenced by the mechanical anisotropy of the rock material. The simulation results are qualitatively

  5. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  6. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  7. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of

  8. Impact of Geological Characterization Uncertainties on Subsurface Flow & Transport Using a Stochastic Discrete Fracture Network Approach

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2009-12-01

    Fractures and fracture networks are the principal pathways for transport of water and contaminants in groundwater systems, enhanced geothermal system fluids, migration of oil and gas, carbon dioxide leakage from carbon sequestration sites, and of radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples, among other techniques. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as a stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions of fracture density, orientation, aperture and size on the flow and transport using topological measures such as fracture connectivity, physical characteristics such as effective hydraulic conductivity tensors, and

  9. A homogenization-based quasi-discrete method for the fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.

    2014-05-01

    The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.

  10. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    NASA Astrophysics Data System (ADS)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and

  11. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    SciTech Connect

    Zhou, Jing; Huang, Hai; Deo, Milind

    2015-10-01

    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.

  12. A discrete-element model for viscoelastic deformation and fracture of glacial ice

    NASA Astrophysics Data System (ADS)

    Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.

    2015-10-01

    A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.

  13. Identification of Fracture Toughness for Discrete Damage Mechanics Analysis of Glass-Epoxy Laminates

    NASA Astrophysics Data System (ADS)

    Barbero, E. J.; Cosso, F. A.; Martinez, X.

    2014-08-01

    A methodology for determination of the intralaminar fracture toughness is presented, based on fitting discrete damage mechanics (DDM) model predictions to available experimental data. DDM is constitutive model that, when incorporated into commercial finite element software via user material subroutines, is able to predict intralaminar transverse and shear damage initiation and evolution in terms of the fracture toughness of the composite. The applicability of the DDM model is studied by comparison to available experimental data for Glass-Epoxy laminates. Sensitivity of the DDM model to h- and p-refinement is studied. Also, the effect of in-situ correction of strength is highlighted.

  14. Estimating Equivalent Continuum Scales in Fractured Aquifer Watersheds Using Discrete Feature Network Simulation

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Poeter, E. P.

    2003-12-01

    Fractured aquifers serve as primary water resources throughout the western United States. In light of diminishing water supply, management practices must be improved to promote resource sustainability. Ground-water flow models are often the preferred management tool, but can be computationally expensive and difficult to implement in large-scale fractured environments. Discrete feature network (DFN) simulation is a robust approach for modeling fluid movement in fractured architecture, but numerically expensive for large-scale models. By using an equivalent continuum model (ECM) numerical expense may be substantially reduced. An intrinsic assumption of the ECM approach is that the geologic media is represented accurately as a continuum, requiring that grid scale discretization correspond to representative elementary scale (RES) at each location within a fractured aquifer. Heterogeneity and compartmentalization likely cause regions with large differences in fracture permeability and connectivity, resulting in spatially variable RES. Thus, while regional flow may be honored using essentially any grid pattern, failure to properly represent spatially variable RES could lead to erroneous predictions of local flow and transport, especially in highly heterogeneous zones. The purpose of our study is to determine whether head predictions from DFN flow simulations can delineate spatially variable RES in fractured aquifers. Provided there is a correlation of simulated hydraulic head to continuum scale, we hypothesize that RES can be identified using spatially disperse water level observations within a fractured aquifer watershed. Preliminary results suggest there is potential for using hydraulic head data to determine the RES. Ongoing research is necessary to confirm these preliminary results and our hypothesis.

  15. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  16. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures

    NASA Astrophysics Data System (ADS)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2017-04-01

    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  17. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    SciTech Connect

    Spencer, Benjamin W.; Huang, Hai; Dolbow, John E.; Hales, Jason D.

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  18. Discrete fracture hydromechanical model for the disturbed rock zone in a clay rock

    NASA Astrophysics Data System (ADS)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2013-12-01

    We have developed a coupled thermal-hydrological-mechanical (THM) fracture damage model, TOUGH-RBSN, to investigate the behavior of fracture generation and evolution in rock in the presence of perturbations to THM conditions. This model combines the capabilities of the TOUGH2 simulator to represent thermal-hydrological processes with a rigid-body-spring-network (RBSN) model, a type of discrete modeling, to treat geomechanical and fracture-damage processes. In particular, the development and evolution of fractures in the excavation damaged zone (EDZ) of a clay rock, with application to high-level nuclear waste disposal, is a focus for this model development. Previously, the TOUGH-RBSN approach has been used to model fracture damage under tensile conditions as a result of desiccation shrinkage. The next phase of model testing will be application to the HG-A test being conducted at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. This test is being conducted in a 13-m long, 1-m diameter microtunnel in the Opalinus clay rock in which a test section at the far end of the microtunnel is isolated using a packer. The test is specifically targeted to observe how fluids injected into the test section penetrate into the rock, with particular emphasis on the EDZ. The HG-A microtunnel was excavated in 2005 and subsequent mapping of the tunnel surface shows preferential fracturing and tunnel breakouts along zones where bedding planes are tangential to the tunnel wall and where faults intercept the tunnel. It appears that the EDZ fracture damage can be attributed to both tensile and shear fracturing mechanisms. A series of injection tests with water and gas have been performed which also show preferential invasion of the fluid pressure along the observed damage zones, as well as fracture self-sealing over time. The TOUGH-RBSN approach has been successfully applied to modeling fracture driven by predominately tensile loading, whereas only

  19. Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS)

    NASA Astrophysics Data System (ADS)

    Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi

    2016-09-01

    This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.

  20. Assessment of Fracture Toughness of a Discretely-Reinforced Carbon-Carbon Composite Material

    NASA Astrophysics Data System (ADS)

    Stepashkin, A. A.; Ozherelkov, D. Yu.; Sazonov, Yu. B.; Komissarov, A. A.; Mozolev, V. V.

    2015-07-01

    The stress-strain state at the tip of a crack in a discretely reinforced quasi-isotropic carbon-carbon composite material (CCCM) is studied. The stress intensity factor J 1 c and the J-integral are evaluated in accordance with domestic methods and international standards. The distribution of the fields of displacements and strains on the surface of the specimens is determined by the method of numerical correlation of digital images using a VIC-D system. The applicability of different criteria to evaluation of the fracture toughness of CCCM of type TERMAR is determined.

  1. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    SciTech Connect

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01

    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints

  2. Identifying Fracture Origin in Ceramics by Combination of Nondestructive Testing and Discrete Element Analysis

    NASA Astrophysics Data System (ADS)

    Senapati, Rajeev; Zhang, Jianmei

    2010-02-01

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing—laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  3. IDENTIFYING FRACTURE ORIGIN IN CERAMICS BY COMBINATION OF NONDESTRUCTIVE TESTING AND DISCRETE ELEMENT ANALYSIS

    SciTech Connect

    Senapati, Rajeev; Zhang Jianmei

    2010-02-22

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC{sup 2D} is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  4. A practical model for fluid flow in discrete-fracture porous media by using the numerical manifold method

    NASA Astrophysics Data System (ADS)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2016-11-01

    In this study, a numerical manifold method (NMM) model is developed to analyze flow in porous media with discrete fractures in a non-conforming mesh. This new model is based on a two-cover-mesh system with a uniform triangular mathematical mesh and boundary/fracture-divided physical covers, where local independent cover functions are defined. The overlapping parts of the physical covers are elements where the global approximation is defined by the weighted average of the physical cover functions. The mesh is generated by a tree-cutting algorithm. A new model that does not introduce additional degrees of freedom (DOF) for fractures was developed for fluid flow in fractures. The fracture surfaces that belong to different physical covers are used to represent fracture flow in the direction of the fractures. In the direction normal to the fractures, the fracture surfaces are regarded as Dirichlet boundaries to exchange fluxes with the rock matrix. Furthermore, fractures that intersect with Dirichlet or Neumann boundaries are considered. Simulation examples are designed to verify the efficiency of the tree-cutting algorithm, the calculation's independency from the mesh orientation, and accuracy when modeling porous media that contain fractures with multiple intersections and different orientations. The simulation results show good agreement with available analytical solutions. Finally, the model is applied to cases that involve nine intersecting fractures and a complex network of 100 fractures, both of which achieve reasonable results. The new model is very practical for modeling flow in fractured porous media, even for a geometrically complex fracture network with large hydraulic conductivity contrasts between fractures and the matrix.

  5. Inter-observer agreement between 2-dimensional CT versus 3-dimensional I-Space model in the Diagnosis of Occult Scaphoid Fractures

    PubMed Central

    Drijkoningen, Tessa; Knoter, Robert; Coerkamp, Emile G.; Koning, Anton H.J.; Rhemrev, Steven J.; Beeres, Frank J.

    2016-01-01

    Background: The I-Space is a radiological imaging system in which Computed Tomography (CT)-scans can be evaluated as a three dimensional hologram. The aim of this study is to analyze the value of virtual reality (I-Space) in diagnosing acute occult scaphoid fractures. Methods: A convenient cohort of 24 patients with a CT-scan from prior studies, without a scaphoid fracture on radiograph, yet high clinical suspicion of a fracture, were included in this study. CT-scans were evaluated in the I-Space by 7 observers of which 3 observers assessed the scans in the I-Space twice. The observers in this study assessed in the I-Space whether the patient had a scaphoid fracture. The kappa value was calculated for inter- and intra-observer agreement. Results: The Kappa value varied from 0.11 to 0.33 for the first assessment. For the three observers who assessed the CT-scans twice; observer 1 improved from a kappa of 0.33 to 0.50 (95% CI 0.26-0.74, P=0.01), observer 2 from 0.17 to 0.78 (95% CI 0.36-1.0, P<0.001), and observer 3 from 0.11 to 0.24 (95% CI 0.0-0.77, P=0.24). Conclusion: Following our findings the I-Space has a fast learning curve and has a potential place in the diagnostic modalities for suspected scaphoid fractures. PMID:27847847

  6. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE PAGES

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.« less

  7. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    SciTech Connect

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.

  8. Simulating the hydraulic stimulation of multiple fractures in an anisotropic stress field applying the discrete element method

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Frühwirt, Thomas; Konietzky, Heinz

    2015-04-01

    Key to a successful exploitation of deep geothermal reservoirs in a petrothermal environment is the hydraulic stimulation of the host rock to increase permeability. The presented research investigates the fracture propagation and interaction during hydraulic stimulation of multiple fractures in a highly anisotropic stress field. The presented work was conducted within the framework of the OPTIRISS project, which is a cooperation of industry partners and universities in Thuringia and Saxony (Federal States of Germany) and was funded by the European Fond for Regional Development. One objective was the design optimization of the subsurface geothermal heat exchanger (SGHE) by means of numerical simulations. The presented simulations were conducted applying 3DEC (Itasca™), a software tool based on the discrete element method. The simulation results indicate that the main direction of fracture propagation is towards lower stresses and thus towards the biosphere. Therefore, barriers might be necessary to limit fracture propagation to the designated geological formation. Moreover, the hydraulic stimulation significantly alters the stresses in the vicinity of newly created fractures. Especially the change of the minimum stress component affects the hydraulic stimulation of subsequent fractures, which are deflected away from the previously stimulated fractures. This fracture deflection can render it impossible to connect all fractures with a second borehole for the later production. The results of continuative simulations indicate that a fracture deflection cannot be avoided completely. Therefore, the stage alignment was modified to minimize fracture deflection by varying (1) the pauses between stages, (2) the spacing's between adjacent stages, and (3) the angle between stimulation borehole and minimum stress component. An optimum SGHE design, which implies that all stimulated fractures are connected to the production borehole, can be achieved by aligning the stimulation

  9. Analysis and Visualization of Discrete Fracture Networks Using a Flow Topology Graph.

    PubMed

    Aldrich, Garrett; Hyman, Jeffrey; Karra, Satish; Gable, Carl; Makedonska, Nataliia; Viswanathan, Hari; Woodring, Jonathan; Hamann, Bernd

    2016-06-20

    We present an analysis and visualization prototype using the concept of a flow topology graph (FTG) for characterization of flow in constrained networks, with a focus on discrete fracture networks (DFN), developed collaboratively by geoscientists and visualization scientists. Our method allows users to understand and evaluate flow and transport in DFN simulations by computing statistical distributions, segment paths of interest, and cluster particles based on their paths. The new approach enables domain scientists to evaluate the accuracy of the simulations, visualize features of interest, and compare multiple realizations over a specific domain of interest. Geoscientists can simulate complex transport phenomena modeling large sites for networks consisting of several thousand fractures without compromising the geometry of the network. However, few tools exist for performing higher-level analysis and visualization of simulated DFN data. The prototype system we present addresses this need. We demonstrate its effectiveness for increasingly complex examples of DFNs, covering two distinct use cases - hydrocarbon extraction from unconventional resources and transport of dissolved contaminant from a spent nuclear fuel repository.

  10. Properties of a pair of fracture networks produced by triaxial deformation experiments: insights on fluid flow using discrete fracture network models

    NASA Astrophysics Data System (ADS)

    Ghislain, Trullenque; Rishi, Parashar; Clément, Delcourt; Lucille, Collet; Pauline, Villard; Sébastien, Potel

    2016-09-01

    Results of a series of deformation experiments conducted on gabbro samples and numerical models for computation of flow are presented. Rocks were subjected to triaxial tests (σ1 > σ2 = σ3) under σ3 = 150 MPa confining pressure at room temperature, to generate fracture network patterns. These patterns were either produced by keeping a constant confining pressure and loading the sample up to failure (conventional test: CT), or by building up a high differential stress and suddenly releasing the confining pressure (confining pressure release test: CPR). The networks are similar in overall density but differ primarily in the orientation of smaller fractures. In the case of CT tests, a conjugate fracture set is observed with one dominant fracture zone running at about 20° from σ1. CPR tests do not show such a conjugate pattern and the mean fracture orientation is at around 35° from σ1. Discrete fracture network (DFN) methodology was used to determine the distribution of flow and hydraulic head for both fracture sets under simple boundary conditions and uniform transmissivity values. The fracture network generated by CT and CPR tests exhibit different patterns of flow field and hydraulic head configurations, but convey approximately the same amount of flow at all scales for which DFN models were simulated. The numerical modelling results help to develop understanding of qualitative differences in flow distribution that may arise in rocks of the same mineralogical composition and mechanical properties, but under the influence of different stress conditions, albeit at similar overall stress magnitude.

  11. Three-dimensional discrete fracture network simulations of flow and particle transport based on Laxemar site data (Sweden).

    NASA Astrophysics Data System (ADS)

    Frampton, A.; Cvetkovic, V.

    2008-12-01

    Implementing site characterization data to models for simulating flow and transport still remains a formidable challenge, in particular for sparsely fracture rock environments. We present advective flow and particle transport simulations in three-dimensional discrete fracture networks based on Laxemar site characterisation data in Sweden, which is a candidate repository site for high level radioactive waste in the Swedish nuclear waste management program. Field measurements have revealed at least five background fracture sets based on statistically significant orientation data, exhibiting power-law behaviour for fracture size and inferred transmissivity distributions. We study the effect of various interpretations of these background fracture populations, all consistent with the field data, and expose their impact on the behaviour of small scale advective particle transport. In particular, we analyse the inferred correlation between fracture size and transmissivity, together with implications on particle injection mode (flux and resident) and transport law. Furthermore, a fundamental aspect towards understanding tracer migration in subsurface sparsely fractured rock formations is the relationship between the Eulerian flow distribution at a sub-fracture scale with the Lagrangian flow distribution at a characteristic model domain scale. We present a novel approach of accurately inferring the segment-scale Lagrangian distributions from Eulerian distributions obtained from flow simulations. Also, we discuss the potential link to field measurements of fracture specific flow, and how such approaches can be used to improve confidence in model assessment.

  12. Preliminary three-dimensional discrete fracture model of the Topopah Spring tuff in the Exploratory Studies Facility, Yucca Mountain area, Nye County, Nevada

    SciTech Connect

    Anna, L.O.

    1998-09-01

    Discrete-fracture modeling is part of site characterization for evaluating Yucca Mountain, Nye County, Nevada, as a potential high-level radioactive-waste repository site. Because most of the water and gas flow may be in fractures in low-porosity units, conventional equivalent-continuum models do not adequately represent the flow system. Discrete-fracture modeling offers an alternative to the equivalent-continuum method. This report describes how discrete-fracture networks can be constructed and used to answer concerns about the flow system at Yucca Mountain, including quantifying fracture connectivity, deriving directional-permeability distributions for one-and two-phase flow, determining parameters of anisotropy at different scales, and determining at what scale the rock functions as an equivalent continuum. A three-dimensional discrete-fracture model was developed to investigate the effects of fractures on flow of water and gas in the Topopah Spring tuff of Miocene age in the Exploratory Studies Facility at Yucca Mountain. Fracture data, used as model input, were taken exclusively from detailed line surveys in the Exploratory Studies Facility and converted into input parameters for simulation. A simulated fracture network was calibrated to field data. The simulated discrete fracture network was modified by eliminating nonconductive fractures determined from field-derived permeabilities. Small fractures also were removed from the simulated network without affecting the overall connectivity. Fractures, as much as 1.50 meters in length, were eliminated (a large percentage of the total number of fractures) from the network without altering the number of connected pathways. The analysis indicates that the fracture system in the Exploratory Studies Facility has numerous connected fractures that have relatively large permeabilities, but there are relatively few connected pathways across the simulated region. The fracture network was, therefore, sparse.

  13. A contribution to the modeling of metal plasticity and fracture: From continuum to discrete descriptions

    NASA Astrophysics Data System (ADS)

    Keralavarma, Shyam Mohan

    behavior of a large number of nano and micro scale defects such as dislocations, vacancies and grain boundaries. Continuum models relate macroscopically observable quantities such as stress and strain by coarse graining the discrete defect microstructure. While continuum models provide a good approximation for the effective behavior of bulk materials, several deviations have been observed in experiments at small scales such as an intrinsic size dependence of the material strength. Discrete dislocation dynamics (DD) is a mesoscale method for obtaining the mechanical response of a material by direct simulation of the motion and interactions of dislocations. The model incorporates an intrinsic length scale in the dislocation Burgers vector and potentially allows for size dependent mechanical behavior to emerge naturally from the dynamics of the dislocation ensemble. In the second part of this dissertation, a simplified twodimensional DD model is employed to study several phenomena of practical interest such as strain hardening under homogeneous deformation, growth of microvoids in a crystalline matrix and creep of single crystals at elevated temperatures. These studies have been enabled by several recent enhancements to the existing two-dimensional DD framework described in Chapter V. The main contributions from this research are: (i) development of a fully anisotropic continuum model of void growth for use in ductile fracture simulations and (ii) enhancing the capabilities of an existing two-dimensional DD framework for large scale simulations in complex domains and at elevated temperatures.

  14. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a

  15. Implementation of an Empirical Joint Constitutive Model into Finite-Discrete Element Analysis of the Geomechanical Behaviour of Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Latham, John-Paul; Xiang, Jiansheng

    2016-12-01

    An empirical joint constitutive model (JCM) that captures the rough wall interaction behaviour of individual fractures associated with roughness characteristics observed in laboratory experiments is combined with the solid mechanical model of the finite-discrete element method (FEMDEM). The combined JCM-FEMDEM formulation gives realistic fracture behaviour with respect to shear strength, normal closure, and shear dilatancy and includes the recognition of fracture length influence as seen in experiments. The validity of the numerical model is demonstrated by a comparison with the experimentally established empirical solutions. A 2D plane strain geomechanical simulation is conducted using an outcrop-based naturally fractured rock model with far-field stresses loaded in two consecutive phases, i.e. take-up of isotropic stresses and imposition of two deviatoric stress conditions. The modelled behaviour of natural fractures in response to various stress conditions illustrates a range of realistic behaviour including closure, opening, shearing, dilatancy, and new crack propagation. With the increase in stress ratio, significant deformation enhancement occurs in the vicinity of fracture tips, intersections, and bends, where large apertures can be generated. The JCM-FEMDEM model is also compared with conventional approaches that neglect the scale dependency of joint properties or the roughness-induced additional frictional resistance. The results of this paper have important implications for understanding the geomechanical behaviour of fractured rocks in various engineering activities.

  16. Effect of Internal Aperture Variability on Tracer Transport in Large Discrete Fracture Networks (DFN)

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Hyman, J.; Karra, S.; Gable, C. W.; Viswanathan, H. S.

    2015-12-01

    Aperture variability within individual fractures is usually neglected in modeling flow and transport through fractured media. Typically, individual fractures are assumed to be homogeneous. However, in reality, individual fractures are heterogeneous, which may affect flow and transport in fractured media. The relative importance of including in-fracture variability in flow and transport modeling has been under debate for a long time. Previous studies have shown flow channeling on an individual fracture with internal variability, where the fracture is considered isolated from the rest of the fracture network. Although these studies yield some clear insights into the process, the boundary conditions are impractical for field-scale networks, where the realistic boundary conditions are determined by fracture connections in the network. Therefore, flow in a single fracture is controlled not only by in-fracture variability but also by boundary conditions. In order to address the question of the importance of in-fracture variability, the internal heterogeneity of every individual fracture is incorporated into a three-dimensional fracture network, represented by a composition of intersecting fractures. The new DFN simulation capability, dfnWorks, is used to generate a kilometer scale DFNs similar to the Forsmark, Sweden site. In our DFN model, the in-fracture aperture variability is scattered over each cell of the computational mesh along the fracture, representing by a stationary Gaussian random field with various correlation lengths. The Lagrangian particle tracking is conducted in multiple DFN realizations and the flow-dependent Lagrangian parameters, non-reacting travel time, τ, and cumulative reactivity parameter, β, are obtained along particles streamlines. It is shown that early particle travel times are more sensitive to in-fracture aperture variability than tails of travel time distributions, where no significant effect of the aperture variations and spatial

  17. Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs

    NASA Astrophysics Data System (ADS)

    Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan

    2016-04-01

    This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.

  18. Reservoir Characterization and Flow Simulation for CO 2-EOR in the Tensleep Formation Using Discrete Fracture Networks, Teapot Dome, Wyoming

    NASA Astrophysics Data System (ADS)

    Kavousi Ghahfarokhi, Payam

    The Tensleep oil reservoir at Teapot Dome, Wyoming, USA, is a naturally fractured tight sandstone reservoir that has been considered for carbon-dioxide enhanced oil recovery (CO2-EOR) and sequestration. CO2-EOR analysis requires a thorough understanding of the Tensleep fracture network. Wireline image logs from the field suggest that the reservoir fracture network is dominated by early formed structural hinge oblique fractures with interconnectivity enhanced by hinge parallel and hinge perpendicular fracture sets. Available post stack 3D seismic data are used to generate a seismic fracture intensity attribute for the reservoir fracture network. The resulting seismic fracture intensity is qualitatively correlated to the field production history. Wells located on hinge-oblique discontinuities are more productive than other wells in the field. We use Oda's method to upscale the fracture permeabilities in the discrete fracture network for use in a dual porosity fluid flow simulator. We analytically show that Oda's method is sensitive to the grid orientation relative to fracture set strike. Results show that the calculated permeability tensors have maximum geometric mean for the non-zero permeability components (kxx,kyy,kzz,kxy) when the dominant fracture set cuts diagonally through the grid cell at 45° relative to the grid cell principal directions (i,j). The geometric mean of the permeability tensor components falls to a minimum when the dominant fracture set is parallel to either grid wall (i or j principal directions). The latter case has off-diagonal permeability terms close to zero. We oriented the Tensleep reservoir grid to N72°W to minimize the off-diagonal permeability terms. The seismic fracture intensity attribute is then used to generate a realization of the reservoir fracture network. Subsequently, fracture properties are upscaled to the reservoir grid scale for a fully compositional flow simulation. We implemented a PVT analysis using CO2 swelling test

  19. The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing

    NASA Astrophysics Data System (ADS)

    Virgo, Simon; Abe, Steffen; Urai, Janos L.

    2014-12-01

    Veins are ubiquitous in upper and middle crustal rocks. Due to strength and stiffness contrast to the host rock, veins can influence crack propagation. Here we present Discrete Element Models to investigate crack-vein interactions by simulating cycles of fracturing of a rock mass, sealing the cracks to form veins, and refracturing the rock mass after rotating the stress field. We observe different styles of interaction between new fractures and existing veins, depending on the strength ratio between vein and host rock and on the changes in the stress field between the different deformation stages. If the orientation of stress field does not change between deformation stages, ataxial crack seal veins are produced if the veins are weak and a bundle of subparallel microveins if the veins are strong. If the stress field is rotated between deformation stages, the interactions include reactivation, fracture deflection, and crosscutting. Reactivation of weak veins occurs even if the vein orientation is highly unfavorable relative to the stress field. Relays of fractures between reactivated veins form at a higher angle to the veins than expected. This demonstrates that the orientation of secondary veins does not reflect the regional stress field in a simple manner and that veins can strongly influence fracture connectivity, with implications for paleostress analysis and basin modeling. Simulation results compare well with field examples of multiphase vein networks in carbonates from Jebel Akhdar, Oman.

  20. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  1. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  2. Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications

    SciTech Connect

    Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

    2011-01-18

    The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

  3. Simulation of a field scale tritium tracer experiment in a fractured, weathered shale using discrete-fracture/matrix-diffusion and equivalent porous medium models

    SciTech Connect

    Stafford, Paige L.

    1996-05-01

    Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ``tail`` of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, αL, of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, αT, of 0.8 to 0.08 meters was used indicating an αLT ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations.

  4. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    DOE PAGES

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; ...

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less

  5. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    SciTech Connect

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; Makedonska, N.; Karra, S.

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approach to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.

  6. Discrete element modeling of Martian pit crater formation in response to extensional fracturing and dilational normal faulting

    NASA Astrophysics Data System (ADS)

    Smart, Kevin J.; Wyrick, Danielle Y.; Ferrill, David A.

    2011-04-01

    Pit craters, circular to elliptical depressions that lack a raised rim or ejecta deposits, are common on the surface of Mars. Similar structures are also found on Earth, Venus, the Moon, and smaller planetary bodies, including some asteroids. While it is generally accepted that these pits form in response to material drainage into a subsurface void space, the primary mechanism(s) responsible for creating the void is a subject of debate. Previously proposed mechanisms include collapse into lave tubes, dike injection, extensional fracturing, and dilational normal faulting. In this study, we employ two-dimensional discrete element models to assess both extensional fracturing and dilational normal faulting as mechanisms for forming pit craters. We also examine the effect of mechanical stratigraphy (alternating strong and weak layers) and variation in regolith thickness on pit morphology. Our simulations indicate that both extensional fracturing and dilational normal faulting are viable mechanisms. Both mechanisms lead to generally convex (steepening downward) slope profiles; extensional fracturing results in generally symmetric pits, whereas dilational normal faulting produces strongly asymmetric geometries. Pit width is established early, whereas pit depth increases later in the deformation history. Inclusion of mechanical stratigraphy results in wider and deeper pits, particularly for the dilational normal faulting, and the presence of strong near-surface layers leads to pits with distinct edges as observed on Mars. The modeling results suggest that a thicker regolith leads to wider but shallower pits that are less distinct and may be more difficult to detect in areas of thick regolith.

  7. Discrete fracture modeling-ESF North Portal Area, Yucca Mountain Nevada

    USGS Publications Warehouse

    Anna, Lawrence O.; ,

    1995-01-01

    Statistical parameters from three-dimensional fracture network and hydraulic parameters were developed to be used in site scale models. This approach utilizes geometric fracture models and assess their impact on flow characteristics and parameters. Laboratory and field-testing data will be integrated to calibrate the flow models and to determine sensitivities of the system.

  8. Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models

    NASA Astrophysics Data System (ADS)

    Maillot, J.; Davy, P.; Le Goc, R.; Darcel, C.; de Dreuzy, J. R.

    2016-11-01

    A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest. This so-called "kinematic fracture model" is characterized by a large proportion of T intersections, and a smaller number of intersections per fracture. Several kinematic models were tested and compared with Poisson DFN models with the same density, length, and orientation distributions. Connectivity, permeability, and flow distribution were calculated for 3-D networks with a self-similar power law fracture length distribution. For the same statistical properties in orientation and density, the permeability is systematically and significantly smaller by a factor of 1.5-10 for kinematic than for Poisson models. In both cases, the permeability is well described by a linear relationship with the areal density p32, but the threshold of kinematic models is 50% larger than of Poisson models. Flow channeling is also enhanced in kinematic DFN models. This analysis demonstrates the importance of choosing an appropriate DFN organization for predicting flow properties from fracture network parameters.

  9. dfnWorks: A HPC Workflow for Discrete Fracture Network Modeling with Subsurface Flow and Transport Applications

    NASA Astrophysics Data System (ADS)

    Gable, C. W.; Hyman, J.; Karra, S.; Makedonska, N.; Painter, S. L.; Viswanathan, H. S.

    2015-12-01

    dfnWorks generates discrete fracture networks (DFN) of planar polygons, creates a high quality conforming Delaunay triangulation of the intersecting DFN polygons, assigns properties (aperture, permeability) using geostatistics, sets boundary and initial conditions, solves pressure/flow in single or multi-phase fluids (water, air, CO2) using the parallel PFLOTRAN or serial FEHM, and solves for transport using Lagrangian particle tracking. We outline the dfnWorks workflow and present applications from a range of fractured rock systems. dfnWorks (http://www.lanl.gov/expertise/teams/view/dfnworks) is composed of three main components, all of which are freely available. dfnGen generates a distribution of fracture polygons from site characterization data (statistics or deterministic fractures) and utilizes the FRAM (Feature Rejection Algorithm for Meshing) to guarantee the mesh generation package LaGriT (lagrit.lanl.gov) will generate a high quality conforming Delaunay triangular mesh. dfnWorks links the mesh to either PFLOTRAN (pflotran.org) or FEHM (fehm.lanl.gov) for solving flow and transport. The various physics options available in FEHM and PFLOTRAN such as single and multi-phase flow and reactive transport are all available with appropriate initial and boundary conditions and material property models. dfnTrans utilizes explicit Lagrangian particle tracking on the DFN using a velocity field reconstructed from the steady state pressure/flow field solution obtained in PFLOTRAN or FEHM. Applications are demonstrated for nuclear waste repository in fractured granite, CO2 sequestration and extraction of unconventional hydrocarbon resources.

  10. The Combined Finite-Discrete Element Method applied to the Study of Rock Fracturing Behavior in 3D

    SciTech Connect

    Rougier, Esteban; Bradley, Christopher R.; Broom, Scott T.; Knight, Earl E.; Munjiza, Ante; Sussman, Aviva J.; Swift, Robert P.

    2011-01-01

    Since its introduction the combined finite-discrete element method (FEM/DEM), has become an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids. Within the context of rock mechanics, the FEM/DEM method has been applied to many complex industrial problems such as block caving, deep mining techniques, rock blasting, seismic waves, packing problems, rock crushing problems, etc. In the real world most of the problems involving fracture and fragmentation of solids are three dimensional problems. With the aim of addressing these problems an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory (LANL). These capabilities include state of the art 3D contact detection, contact interaction, constitutive material models, and fracture models. In this paper, Split Hopkinson Pressure Bar (SHPB) Brazilian experiments are simulated using this improved 2D/3D FEM/DEM approach which is implemented in LANL's MUNROU (Munjiza-Rougier) code. The results presented in this work show excellent agreement with both the SHPB experiments and previous 2D numerical simulations performed by other FEM/DEM research groups.

  11. An optimization approach for large scale simulations of discrete fracture network flows

    NASA Astrophysics Data System (ADS)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano

    2014-01-01

    In recent papers [1,2] the authors introduced a new method for simulating subsurface flow in a system of fractures based on a PDE-constrained optimization reformulation, removing all difficulties related to mesh generation and providing an easily parallel approach to the problem. In this paper we further improve the method removing the constraint of having on each fracture a non-empty portion of the boundary with Dirichlet boundary conditions. This way, Dirichlet boundary conditions are prescribed only on a possibly small portion of DFN boundary. The proposed generalization of the method in [1,2] relies on a modified definition of control variables ensuring the non-singularity of the operator on each fracture. A conjugate gradient method is also introduced in order to speed up the minimization process.

  12. A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Follin, Sven; Hartley, Lee; Rhén, Ingvar; Jackson, Peter; Joyce, Steven; Roberts, David; Swift, Ben

    2014-03-01

    The large-scale geological structure of the crystalline rock at the proposed high-level nuclear waste repository site at Forsmark, Sweden, has been classified in terms of deformation zones of elevated fracture frequency. The rock between deformation zones was divided into fracture domains according to fracture frequency. A methodology to constrain the geometric and hydraulic parameters that define a discrete fracture network (DFN) model for each fracture domain is presented. The methodology is based on flow logging and down-hole imaging in cored boreholes in combination with DFN realizations, fracture connectivity analysis and pumping test simulations. The simulations suggest that a good match could be obtained for a power law size distribution where the value of the location parameter equals the borehole radius but with different values for the shape parameter, depending on fracture domain and fracture set. Fractures around 10-100 m in size are the ones that typically form the connected network, giving inflows in the simulations. The report also addresses the issue of up-scaling of DFN properties to equivalent continuous porous medium (ECPM) bulk flow properties. Comparisons with double-packer injection tests provide confidence that the derived DFN formulation of detailed flows within individual fractures is also suited to simulating mean bulk flow properties and their spatial variability.

  13. Intrinsic and Carrier Colloid-facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.

    2015-12-01

    Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.

  14. A discrete dislocation analysis of mixed mode fracture at bimaterial interfaces

    NASA Astrophysics Data System (ADS)

    O'Day, Michael; Curtin, William

    2004-03-01

    The influence of mode mixity on crack growth and failure at a metal/ceramic bimaterial interface is examined within the discrete dislocation (DD) plasticity framework. In this method, plasticity occurs via the motion of a large number of dislocations embedded in a linearly elastic medium. No plastic constitutive law is required, however a set of rules governing dislocation nucleation, motion and annihilation is necessary. The numerical procedure uses a superposition technique, developed specifically to allow the efficient solution of DD problems with elastic inhomogeneities. An interface crack exists in the unloaded configuration, and a mode independent cohesive zone law characterizes the interface ahead of the crack tip. The influence of mode mixity on crack growth resistance curve (R-curve) behavior is qualitatively similar to continuum plasticity calculations, where increasing mode mixity leads to increasing toughness. However, deviations can arise due to (i) statistical effects, and (ii) the discrete nature of plasticity. Crack blunting, dislocation patterning and the existence of preferential slip planes all emerge naturally from the boundary value problem solution and give insight into observed R-curve trends.

  15. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    -deterministic, outcrop constrained discrete fracture network modeling code to derive volumetric fault intensity measures (fault area per unit volume / fault volume per unit volume). Producing per-vertex measures of volumetric intensity; our method captures the spatial variability in 3D fault density across a surveyed outcrop, enabling first order controls to be probed. We demonstrate our approach on pervasively faulted exposures of a Permian aged reservoir analogue from the Vale of Eden Basin, UK.

  16. Comparison of Hydraulic Methods and Tracer Experiments as Applied to the Development of Conceptual Models for Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Novakowski, K. S.

    2015-12-01

    The development of conceptual models for solute migration in discrete fracture networks has typically been based on a combination of core logs, borehole geophysics, and some form of single-well hydraulic test using discrete zones. More rarely, interwell hydraulic tests and interwell tracer experiments are utilised to directly explore potential transport pathways. The latter methods are less widely employed simply due to potentially significant increases in the cost and effort in site characterization. To date however there is a paucity of literature comparing the efficacy of the standard procedure with what should be more definitive identification of transport pathways using interwell methods. In the present study, a detailed comparison is conducted by developing conceptual models from three separate data sets, the first based on core logs, geology and single-well hydraulic tests, the second based on a large suite of pulse interference tests, and the third based on a series of radially-divergent and injection-withdrawal tracer experiments. The study was conducted in an array of five HQ-sized wells, 28-32 m in depth and arranged in a five star pattern, 10 m on a side. The wells penetrate the contact between a Cambrian-aged limestone, and underlying Precambrian gneiss. The core was logged for potentially open fractures using a ranking system, and 87 contiguous hydraulic tests were conducted using a 0.85-m packer spacing. A total of 57 pulse interference tests were conducted using two wells as injection points, and 11 tracer experiments were conducted using either sample collection or in-situ detection via a submersible fluorometer. The results showed very distinct conceptual models depending on the data set, with the model based on the single-well testing significantly over-predicting the number and connection of solute transport pathways. The results of the pulse interference tests also over predict the transport pathways, but to a lesser degree. Quantification of

  17. Depth-discrete specific storage in fractured sedimentary rock using steady-state and transient single-hole hydraulic tests

    NASA Astrophysics Data System (ADS)

    Quinn, Patryk M.; Cherry, John A.; Parker, Beth L.

    2016-11-01

    A method is presented for obtaining depth-discrete values of specific storage (Ss) from single-hole hydraulic tests in fractured rock boreholes using straddle packers (1.5-17 m test intervals). Low flow constant head (CH) step tests analyzed using the Thiem method provide transmissivity (T) values free from non-Darcian error. Short-term, constant-rate pumping tests (0.5-2 h) analyzed using the Cooper-Jacob approximation of the Theis method provide S from the hydraulic diffusivity using the Darcian T value from the CH step test. This synergistic use of two types of hydraulic tests avoids the common source of error when pumping tests (injection or withdrawal) are conducted at higher flow rates and thereby induce non-Darcian flow resulting in the underestimation of T. Other errors, such as well bore storage and leakage, can also substantially influence S by causing a shift in the time axis of the Cooper-Jacob semi-log plot. In this approach, the Darcian T values from the CH step tests are used in the analysis of the transient pumping test data for calculating S throughout the pumping test using the Cooper-Jacob approximation to minimize all of the aforementioned errors, resulting in more representative S values. The effect of these non-idealities on the measured drawdown is illustrated using the Theis equation with the Darcian T and S values to calculate drawdown for comparison to measured data. The Ss values for tests in sandstone obtained from this approach are more consistent with confined aquifer conditions than values derived from the traditional Cooper-Jacob method, and are within the range of field and lab values presented from a compilation of literature values for fractured sandstone. (10-7-10-5 m-1) This method for obtaining Ss values from short-interval, straddle packer tests improves the estimation of both K and Ss and provides opportunity to study their spatial distribution in fractured rock.

  18. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    SciTech Connect

    Makedonska, Nataliia; Kwicklis, Edward Michael; Birdsell, Kay Hanson; Harrod, Jeremy Ashcraft; Karra, Satish

    2016-10-18

    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  19. Tight gas reservoir simulation: Modeling discrete irregular strata-bound fracture network flow, including dynamic recharge from the matrix

    SciTech Connect

    McKoy, M.L., Sams, W.N.

    1997-10-01

    The US Department of Energy, Federal Energy Technology Center, has sponsored a project to simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular discontinuous, or clustered networks of fractures. New FORTRAN codes have been developed to generate fracture networks, or simulate reservoir drainage/recharge, and to plot the fracture networks and reservoirs pressures. Ancillary codes assist with raw data analysis.

  20. Quality assessment of reservoirs by means of outcrop data and "discrete fracture network" models: The case history of Rosario de La Frontera (NW Argentina) geothermal system

    NASA Astrophysics Data System (ADS)

    Maffucci, R.; Bigi, S.; Corrado, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.

    2015-04-01

    We report the results of a systematic study carried out on the fracture systems exposed in the Sierra de La Candelaria anticline, in the central Andean retrowedge of northwestern Argentina. The aim was to elaborate a kinematic model of the anticline and to assess the dimensional and spatial properties of the fracture network characterizing the Cretaceous sandstone reservoir of the geothermal system of Rosario de La Frontera. Special regard was devoted to explore how tectonics may affect fluid circulation at depth and control fluids' natural upwelling at surface. With this aim we performed a Discrete Fracture Network model in order to evaluate the potential of the reservoir of the studied geothermal system. The results show that the Sierra de La Candelaria regional anticline developed according to a kinematic model of transpressional inversion compatible with the latest Andean regional WNW-ESE shortening, acting on a pre-orogenic N-S normal fault. A push-up geometry developed during positive inversion controlling the development of two minor anticlines: Termas and Balboa, separated by further NNW-SSE oblique-slip fault in the northern sector of the regional anticline. Brittle deformation recorded at the outcrop scale is robustly consistent with the extensional and transpressional events recognized at regional scale. In terms of fluid circulation, the NNW-SSE and NE-SW fault planes, associated to the late stage of the positive inversion, are considered the main structures controlling the migration paths of hot fluids from the reservoir to the surface. The results of the fracture modeling performed show that fractures related to the same deformation stage, are characterized by the highest values of secondary permeability. Moreover, the DFN models performed in the reservoir volume indicates that fracture network enhances its permeability: its secondary permeability is of about 49 mD and its fractured portion represents the 0.03% of the total volume.

  1. Fractures

    MedlinePlus

    A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...

  2. FRACVAL: Validation (nonlinear least squares method) of the solution of one-dimensional transport of decaying species in a discrete planar fracture with rock matrix diffusion

    SciTech Connect

    Gureghian, A.B.

    1990-08-01

    Analytical solutions based on the Laplace transforms are presented for the one-dimensional, transient, advective-dispersive transport of a reacting radionuclide through a discrete planar fracture with constant aperture subject to diffusion in the surrounding rock matrix where both regions of solute migration display residual concentrations. The dispersion-free solutions, which are of closed form, are also reported. The solution assumes that the ground-water flow regime is under steady-state and isothermal conditions and that the rock matrix is homogeneous, isotropic, and saturated with stagnant water. The verification of the solution was performed by means of related analytical solutions dealing with particular aspects of the transport problem under investigation on the one hand, and a numerical solution capable of handling the complete problem on the other. The integrals encountered in the general solution are evaluated by means of a composite Gauss-Legendre quadrature scheme. 9 refs., 8 figs., 32 tabs.

  3. Three-dimensional discrete fracture network simulations of flow and particle transport based on the Laxemar site data (Sweden).

    NASA Astrophysics Data System (ADS)

    Frampton, A.

    2007-12-01

    We study particle transport in a 3D DFN scenario based on the Laxemar site characterisation data in Sweden, which is a candidate repository site for high level radioactive waste in the Swedish nuclear waste management program. The site characterisation data has revealed several interesting geometric and hydraulic fracture properties, such as power-law distributed fracture sizes and transmissivities. Our study involves investigating the relationship between the resulting Eulerian flow field at a segment (sub- fracture) scale with Lagrangian trajectories at the characteristic (model domain) transport scale. We present results from a new technique for upscaling particle transitions obtained from Eulerian flow statistics to predictions of tracer discharge at the characteristic transport scale, based on previously developed methods used for 2D DFN's. This includes a mapping algorithm for transforming Eulerian into Lagrangian flow statistics without a priori knowledge of network connectivity, and by retaining the correlation between the water residence time τ and the hydrodynamic control of retention β we present accurate tracer discharge predictions. These results are illustrated using the unlimited diffusion model, and for some hypothetical tracers with properties designed to capture the behaviour of many common radionuclides. Finally we emphasise the importance of capturing the early arrival and peak of tracer breakthrough curves, i.e. to capture the bulk of the tracer mass arrival, in order to make accurate and conservative predictions.

  4. The Stochastic-Deterministic Transition in Discrete Fracture Network Models and its Implementation in a Safety Assessment Application by Means of Conditional Simulation

    NASA Astrophysics Data System (ADS)

    Selroos, J. O.; Appleyard, P.; Bym, T.; Follin, S.; Hartley, L.; Joyce, S.; Munier, R.

    2015-12-01

    In 2011 the Swedish Nuclear Fuel and Waste Management Company (SKB) applied for a license to start construction of a final repository for spent nuclear fuel at Forsmark in Northern Uppland, Sweden. The repository is to be built at approximately 500 m depth in crystalline rock. A stochastic, discrete fracture network (DFN) concept was chosen for interpreting the surface-based (incl. boreholes) data, and for assessing the safety of the repository in terms of groundwater flow and flow pathways to and from the repository. Once repository construction starts, also underground data such as tunnel pilot borehole and tunnel trace data will become available. It is deemed crucial that DFN models developed at this stage honors the mapped structures both in terms of location and geometry, and in terms of flow characteristics. The originally fully stochastic models will thus increase determinism towards the repository. Applying the adopted probabilistic framework, predictive modeling to support acceptance criteria for layout and disposal can be performed with the goal of minimizing risks associated with the repository. This presentation describes and illustrates various methodologies that have been developed to condition stochastic realizations of fracture networks around underground openings using borehole and tunnel trace data, as well as using hydraulic measurements of inflows or hydraulic interference tests. The methodologies, implemented in the numerical simulators ConnectFlow and FracMan/MAFIC, are described in some detail, and verification tests and realistic example cases are shown. Specifically, geometric and hydraulic data are obtained from numerical synthetic realities approximating Forsmark conditions, and are used to test the constraining power of the developed methodologies by conditioning unconditional DFN simulations following the same underlying fracture network statistics. Various metrics are developed to assess how well the conditional simulations compare to

  5. 3-Dimensional Topographic Models for the Classroom

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.

    2003-01-01

    We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.

  6. 3-dimensional imaging at nanometer resolutions

    DOEpatents

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  7. 3-dimensional fabrication of soft energy harvesters

    NASA Astrophysics Data System (ADS)

    McKay, Thomas; Walters, Peter; Rossiter, Jonathan; O'Brien, Benjamin; Anderson, Iain

    2013-04-01

    Dielectric elastomer generators (DEG) provide an opportunity to harvest energy from low frequency and aperiodic sources. Because DEG are soft, deformable, high energy density generators, they can be coupled to complex structures such as the human body to harvest excess mechanical energy. However, DEG are typically constrained by a rigid frame and manufactured in a simple planar structure. This planar arrangement is unlikely to be optimal for harvesting from compliant and/or complex structures. In this paper we present a soft generator which is fabricated into a 3 Dimensional geometry. This capability will enable the 3-dimensional structure of a dielectric elastomer to be customised to the energy source, allowing efficient and/or non-invasive coupling. This paper demonstrates our first 3 dimensional generator which includes a diaphragm with a soft elastomer frame. When the generator was connected to a self-priming circuit and cyclically inflated, energy was accumulated in the system, demonstrated by an increased voltage. Our 3D generator promises a bright future for dielectric elastomers that will be customised for integration with complex and soft structures. In addition to customisable geometries, the 3D printing process may lend itself to fabricating large arrays of small generator units and for fabricating truly soft generators with excellent impedance matching to biological tissue. Thus comfortable, wearable energy harvesters are one step closer to reality.

  8. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  9. 3-Dimensional Analysis of Dynamic Behavior of Bearing of Nielsen Bridge

    NASA Astrophysics Data System (ADS)

    Tanimura, Shinji; Heya, Hiroyuki; Umeda, Tsutomu; Mimura, Koji; Yoshikawa, Osamu

    In 1995, the great Hanshin-Awaji earthquake caused a large amount of destruction and structural failures. One example, whose mechanism is not fully clear, is the fracture of a bridge bearing of a Nielsen type bridge that does not occur under the ordinary static or dynamic loading conditions. The fracture probably resulted from very high stress due to an unexpected dynamic mechanism. In this paper, the 3-dimensional dynamic behavior of a Nielsen type bridge was analyzed by assuming a collision between the upper and the lower parts of the bearing, which might have occurred in the great Hanshin-Awaji earthquake. The numerical results show that an impact due to a relative velocity of 5˜6m/s between the upper and the lower parts of the bearing generates a stress sufficient to cause a fracture in the upper bearing. The observed features of the actual fracture surface was also simulated fairly closely.

  10. Reconstructing a 3-dimensional image of the results of antinuclear antibody testing by indirect immunofluorescence.

    PubMed

    Murai, Ryosei; Yamada, Koji; Tanaka, Maki; Kuribayashi, Kageaki; Kobayashi, Daisuke; Tsuji, Naoki; Watanabe, Naoki

    2013-01-31

    Indirect immunofluorescence anti-nuclear antibody testing (IIF-ANAT) is an essential screening tool in the diagnosis of various autoimmune disorders. ANA titer quantification and interpretation of immunofluorescence patterns are determined subjectively, which is problematic. First, we determined the examination conditions under which IIF-ANAT fluorescence intensities are quantified. Next, IIF-ANAT was performed using homogeneous, discrete speckled, and mixed serum samples. Images were obtained using Bio Zero BZ-8000, and 3-dimensional images were reconstructed using the BZ analyzer software. In the 2-dimensional analysis, homogeneous ANAs hid the discrete speckled pattern, resulting in a diagnosis of homogeneous immunofluorescence. However, 3-dimensional analysis of the same sample showed discrete speckled-type ANA in the homogeneous background. This study strengthened the current IIF-ANAT method by providing a new approach to quantify the fluorescence intensity and enhance the resolution of IIF-ANAT fluorescence patterns. Reconstructed 3-dimensional imaging of IIF-ANAT can be a powerful tool for routine laboratory examination.

  11. Discrete Fracture Network Characterization and Modeling in the Swedish Program for Nuclear Waste Disposal in Crystalline Rocks Using Information Acquired by Difference Flow Logging and Borehole Wall Image Logging

    NASA Astrophysics Data System (ADS)

    Follin, S.; Stigsson, M.; Levén, J.

    2006-12-01

    Difference flow logging is a relatively new hydraulic test method. It offers a superior geometrical resolution compared to the classic double-packer injection test method. Other significant features of the difference flow logging method are the long duration of the test period and the line source flow regime. These three features are vital for the characterization and the modeling of the conductive fracture frequency in crystalline rocks. Further, combining difference flow logging with core mapping and in situ borehole wall image logging (BIPS) allows for an enhanced geological cross correlation and structural interpretation. The data and analyses presented here come from the ongoing site investigations for a high-level nuclear waste repository in Forsmark managed by the Swedish Nuclear Fuel and Waste Management Co. First, we demonstrate the statistical properties of the fracture transmissivities acquired by difference flow logging for a number of one-kilometer-long cored boreholes. Secondly, we make a hydraulic comparison between these data and the transmissivities acquired by double-packer injection tests. Thirdly, we present a method for investigating the geometrical connectivity of open fractures in fracture network simulations and how this connectivity can be cross correlated to the fracture transmissivity distribution acquired by difference flow logging. Finally, we discuss the geometrical properties of flowing fractures as acquired by BIPS data and the correlation to the current stress situation in Forsmark. The geometrical anisotropy observed in the transmissivity data suggests that the current stress situation is very important for the flow field in Forsmark. This puts constraints on the collection and use of geological/structural data for hydrogeological discrete fracture network modeling.

  12. A Simple 3-Dimensional Printed Aid for a Corrective Palmar Opening Wedge Osteotomy of the Distal Radius.

    PubMed

    Honigmann, Philipp; Thieringer, Florian; Steiger, Regula; Haefeli, Mathias; Schumacher, Ralf; Henning, Julia

    2016-03-01

    The reconstruction of malunited distal radius fractures is often challenging. Virtual planning techniques and guides for drilling and resection have been used for several years to achieve anatomic reconstruction. These guides have the advantage of leading to better operative results and faster surgery. Here, we describe a technique using a simple implant independent 3-dimensional printed drill guide and template to simplify the surgical reconstruction of a malunited distal radius fracture.

  13. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures.

  14. Cardiothoracic Applications of 3-dimensional Printing.

    PubMed

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.

  15. On material fracture criteria

    NASA Astrophysics Data System (ADS)

    Kremnev, L. S.

    2017-01-01

    Based on the nonlinear mechanics of material fracture, a model of the fracture of materials with actual (discrete) structures has been constructed. The model is supported by proofs that crack resistance K 1 c and fracture toughness G 1 c obtained from the energy conservation law without using the assumptions adopted in the linear material fracture mechanics serve as the force and energy criteria in the nonlinear fracture mechanics. It has been shown that energy criterion G 1 c in the nonlinear mechanics is much greater than G 1 c in the linear fracture mechanics.

  16. Incorporating 3-dimensional models in online articles

    PubMed Central

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  17. Chaotic Advection in a Bounded 3-Dimensional Potential Flow

    NASA Astrophysics Data System (ADS)

    Metcalfe, Guy; Smith, Lachlan; Lester, Daniel

    2012-11-01

    3-dimensional potential, or Darcy flows, are central to understanding and designing laminar transport in porous media; however, chaotic advection in 3-dimensional, volume-preserving flows is still not well understood. We show results of advecting passive scalars in a transient 3-dimensional potential flow that consists of a steady dipole flow and periodic reorientation. Even for the most symmetric reorientation protocol, neither of the two invarients of the motion are conserved; however, one invarient is closely shadowed by a surface of revolution constructed from particle paths of the steady flow, creating in practice an adiabatic surface. A consequence is that chaotic regions cover 3-dimensional space, though tubular regular regions are still transport barriers. This appears to be a new mechanism generating 3-dimensional chaotic orbits. These results contast with the experimental and theoretical results for chaotic scalar transport in 2-dimensional Darcy flows. Wiggins, J. Fluid Mech. 654 (2010).

  18. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners.

    PubMed

    Kovacs, Laszlo; Yassouridis, Alexander; Zimmermann, Alexander; Brockmann, Gernot; Wöhnl, Antonia; Blaschke, Matthias; Eder, Maximilian; Schwenzer-Zimmerer, Katja; Rosenberg, Robert; Papadopulos, Nikolaos A; Biemer, Edgar

    2006-03-01

    The anatomic conditions of the female breast require imaging the breast region 3-dimensionally in a normal standing position for quality assurance and for surgery planning or surgery simulation. The goal of this work was to optimize the imaging technology for the mammary region with a 3-dimensional (3D) laser scanner, to evaluate the precision and accuracy of the method, and to allow optimum data reproducibility. Avoiding the influence of biotic factors, such as mobility, we tested the most favorable imaging technology on dummy models for scanner-related factors such as the scanner position in comparison with the torso and the number of scanners and single shots. The influence of different factors of the breast region, such as different breast shapes or premarking of anatomic landmarks, was also first investigated on dummies. The findings from the dummy models were then compared with investigations on test persons, and the accuracy of measurements on the virtual models was compared with a coincidence analysis of the manually measured values. The best precision and accuracy of breast region measurements were achieved when landmarks were marked before taking the shots and when shots at 30 degrees left and 30 degrees right, relative to the sagittal line, were taken with 2 connected scanners mounted with a +10-degree upward angle. However, the precision of the measurements on test persons was significantly lower than those measured on dummies. Our findings show that the correct settings for 3D imaging of the breast region with a laser scanner can achieve an acceptable degree of accuracy and reproducibility.

  19. Nose fracture

    MedlinePlus

    Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It ... with other fractures of the face. Sometimes a blunt injury can ...

  20. Effect of Natural Fractures on Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Ben, Y.; Wang, Y.; Shi, G.

    2012-12-01

    Hydraulic Fracturing has been used successfully in the oil and gas industry to enhance oil and gas production in the past few decades. Recent years have seen the great development of tight gas, coal bed methane and shale gas. Natural fractures are believed to play an important role in the hydraulic fracturing of such formations. Whether natural fractures can benefit the fracture propagation and enhance final production needs to be studied. Various methods have been used to study the effect of natural fractures on hydraulic fracturing. Discontinuous Deformation Analysis (DDA) is a numerical method which belongs to the family of discrete element methods. In this paper, DDA is coupled with a fluid pipe network model to simulate the pressure response in the formation during hydraulic fracturing. The focus is to study the effect of natural fractures on hydraulic fracturing. In particular, the effect of rock joint properties, joint orientations and rock properties on fracture initiation and propagation will be analyzed. The result shows that DDA is a promising tool to study such complex behavior of rocks. Finally, the advantages of disadvantages of our current model and future research directions will be discussed.

  1. 3-Dimensional wireless sensor network localization: A review

    NASA Astrophysics Data System (ADS)

    Najib, Yasmeen Nadhirah Ahmad; Daud, Hanita; Aziz, Azrina Abd; Razali, Radzuan

    2016-11-01

    The proliferation of wireless sensor network (WSN) has shifted the focus to 3-Dimensional geometry rather than 2-Dimensional geometry. Since exact location of sensors has been the fundamental issue in wireless sensor network, node localization is essential for any wireless sensor network applications. Most algorithms mainly focus on 2-Dimensional geometry, where the application of this algorithm will decrease the accuracy on 3-Dimensional geometry. The low rank attribute in WSN's node estimation makes the application of nuclear norm minimization as a viable solution for dimensionality reduction problems. This research proposes a novel localization algorithm for 3-Dimensional WSN which is nuclear norm minimization. The node localization is formulated via Euclidean Distance Matrix (EDM) and is then optimized using Nuclear-Norm Minimization (NNM).

  2. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  3. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect

    Abbas Firoozabadi

    2002-04-12

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  4. Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty.

    PubMed

    Sembrano, Jonathan N; Yson, Sharon C; Polly, David W; Ledonio, Charles Gerald T; Nuckley, David J; Santos, Edward R G

    2015-01-01

    Balloon kyphoplasty is a common treatment for osteoporotic and pathologic compression fractures. Advantages include minimal tissue disruption, quick recovery, pain relief, and in some cases prevention of progressive sagittal deformity. The benefit of image-based navigation in kyphoplasty has not been established. The goal of this study was to determine whether there is a difference between fluoroscopy-guided balloon kyphoplasty and 3-dimensional image-based navigation in terms of needle malposition rate, cement leakage rate, and radiation exposure time. The authors compared navigated and nonnavigated needle placement in 30 balloon kyphoplasty procedures (47 levels). Intraoperative 3-dimensional image-based navigation was used for needle placement in 21 cases (36 levels); conventional 2-dimensional fluoroscopy was used in the other 9 cases (11 levels). The 2 groups were compared for rates of needle malposition and cement leakage as well as radiation exposure time. Three of 11 (27%) nonnavigated cases were complicated by a malpositioned needle, and 2 of these had to be repositioned. The navigated group had a significantly lower malposition rate (1 of 36; 3%; P=.04). The overall rate of cement leakage was also similar in both groups (P=.29). Radiation exposure time was similar in both groups (navigated, 98 s/level; nonnavigated, 125 s/level; P=.10). Navigated kyphoplasty procedures did not differ significantly from nonnavigated procedures except in terms of needle malposition rate, where navigation may have decreased the need for needle repositioning.

  5. Grain boundary segregation in boron added interstitial free steels studied by 3-dimensional atom probe

    SciTech Connect

    Seto, K.; Larson, D.J.; Warren, P.J.; Smith, G.D.W.

    1999-04-09

    The development of deep-drawable sheet steels is of particular significance for the automotive industry. Titanium and/or niobium added extra-low carbon interstitial free (IF) steels are key materials. The virtually complete removal of carbon and nitrogen should lead to superior forming properties. However, the lack of solute carbon at grain boundaries significantly decreases the bonding force at the interfaces, which often causes intergranular brittle fracture when deeply drawn steel sheets are subjected to impact deformation at low temperature. This phenomenon is called secondary working embrittlement (SWE), and is a major problem when solute atoms such as phosphorus, manganese or silicon are added to increase the tensile strength of the steels. Small amounts of boron, which does not affect the formability of the steels significantly, are usually added as a remedial measure in such cases. The 3-dimensional atom probe (3DAP) combined with field ion microscopy (FIM) has the ability to produce 3-dimensional images from regions approximately 20nm*20nm*100nm in size, and identify each atomic species and the relative location of each atom with nearly lattice resolution. In this study, a combination of these methods was applied to produce FIM tips of IF steel containing grain boundaries. The authors report here the first observations of the segregation of boron in IF steels using 3DAP.

  6. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  7. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.

  8. Fractures in anisotropic media

    NASA Astrophysics Data System (ADS)

    Shao, Siyi

    theory and experimental results in this report demonstrate that the presence of fractures in anisotropic material can be unambiguously interpreted if experimental measurements are made as a function of stress, which eliminates many fracture-generated discrete modes (e.g., interface waves, and leaky guided-modes). Orthogonal fracture networks that are often encountered in field exploration bring in additional challenges for seismic/acoustic data interpretation. An innovative wavefront imaging system with a bi-axial load frame was designed and implemented on orthogonally-fractured samples to determine the effect of fracture networks on elastic wave propagation. The effects of central wave guiding and extra time delays along a fracture intersection were observed in experiments and was analyzed. Interpreting data from media with intersecting fracture sets must account for fracture intersections and the non-uniformity of fracture properties caused by local tectonic conditions or other physical process such as non-uniform fluid distributions within a network and/or chemical alterations.

  9. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    SciTech Connect

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale and well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.

  10. 3-dimensional electronic structures of CaC6

    NASA Astrophysics Data System (ADS)

    Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Junsung; Kim, Yeongwook; Kim, Keunsu; Rotenberg, Eli; Kim, Changyoung; Postech Collaboration; Advanced Light Source Collaboration; Yonsei University Team

    2014-03-01

    There is still remaining issues on origin of superconductivity in graphite intercalation compounds, especially CaC6 because of its relatively high transition temperature than other GICs. There are two competing theories on where the superconductivity occurs in this material; intercalant metal or charge doped graphene layer. To elucidate this issue, it is necessary to confirm existence of intercalant driven band. Therefore, we performed 3 dimensional electronic structure studies with ARPES to find out 3d dispersive intercalant band. However, we could not observe it, instead observed 3d dispersive carbon band. This support the aspect of charge doped graphene superconductivity more than intercalant driving aspect.

  11. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  12. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  13. Automated feature extraction for 3-dimensional point clouds

    NASA Astrophysics Data System (ADS)

    Magruder, Lori A.; Leigh, Holly W.; Soderlund, Alexander; Clymer, Bradley; Baer, Jessica; Neuenschwander, Amy L.

    2016-05-01

    Light detection and ranging (LIDAR) technology offers the capability to rapidly capture high-resolution, 3-dimensional surface data with centimeter-level accuracy for a large variety of applications. Due to the foliage-penetrating properties of LIDAR systems, these geospatial data sets can detect ground surfaces beneath trees, enabling the production of highfidelity bare earth elevation models. Precise characterization of the ground surface allows for identification of terrain and non-terrain points within the point cloud, and facilitates further discernment between natural and man-made objects based solely on structural aspects and relative neighboring parameterizations. A framework is presented here for automated extraction of natural and man-made features that does not rely on coincident ortho-imagery or point RGB attributes. The TEXAS (Terrain EXtraction And Segmentation) algorithm is used first to generate a bare earth surface from a lidar survey, which is then used to classify points as terrain or non-terrain. Further classifications are assigned at the point level by leveraging local spatial information. Similarly classed points are then clustered together into regions to identify individual features. Descriptions of the spatial attributes of each region are generated, resulting in the identification of individual tree locations, forest extents, building footprints, and 3-dimensional building shapes, among others. Results of the fully-automated feature extraction algorithm are then compared to ground truth to assess completeness and accuracy of the methodology.

  14. Scientific visualization of 3-dimensional optimized stellarator configurations

    SciTech Connect

    Spong, D.A.

    1998-01-01

    The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a variety of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood.

  15. Thermal crosstalk in 3-dimensional RRAM crossbar array

    NASA Astrophysics Data System (ADS)

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  16. The first 3-dimensional assemblies of organotin-functionalized polyanions.

    PubMed

    Piedra-Garza, Luis Fernando; Reinoso, Santiago; Dickman, Michael H; Sanguineti, Michael M; Kortz, Ulrich

    2009-08-21

    Reaction of the (CH(3))(2)Sn(2+) electrophile toward trilacunary [A-alpha-XW(9)O(34)](n-) Keggin polytungstates (X = P(V), As(V), Si(IV)) with guanidinium as templating-cation resulted in the isostructural compounds Na[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-PW(9)O(34))] x 9 H(2)O (1), Na[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-AsW(9)O(34))] x 8 H(2)O (2) and Na(2)[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-SiW(9)O(34))] x 10 H(2)O (3). Compounds 1-3 constitute the first 3-dimensional assemblies of organotin-functionalized polyanions, as well as the first example of a dimethyltin-containing tungstosilicate in the case of 3, and they show a similar chiral architecture based on tetrahedrally-arranged {(CH(3))(2)Sn}(3)(A-alpha-XW(9)O(34)) monomeric building-blocks connected via intermolecular Sn-O=W bridges regardless of the size and/or charge of the heteroatom.

  17. Thermal crosstalk in 3-dimensional RRAM crossbar array

    PubMed Central

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-01-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537

  18. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology.

    PubMed

    Cohen, Adir; Laviv, Amir; Berman, Phillip; Nashef, Rizan; Abu-Tair, Jawad

    2009-11-01

    Mandibular reconstruction can be challenging for the surgeon wishing to restore its unique geometry. Reconstruction can be achieved with titanium bone plates followed by autogenous bone grafting. Incorporation of the bone graft into the mandible provides continuity and strength required for proper esthetics and function and permitting dental implant rehabilitation at a later stage. Precious time in the operating room is invested in plate contouring to reconstruct the mandible. Rapid prototyping technologies can construct physical models from computer-aided design via 3-dimensional (3D) printers. A prefabricated 3D model is achieved, which assists in accurate contouring of plates and/or planning of bone graft harvest geometry before surgery. The 2 most commonly used rapid prototyping technologies are stereolithography and 3D printing (3DP). Three-dimensional printing is advantageous to stereolithography for better accuracy, quicker printing time, and lower cost. We present 3 clinical cases based on 3DP modeling technology. Models were fabricated before the resection of mandibular ameloblastoma and were used to prepare bridging plates before the first stage of reconstruction. In 1 case, another model was fabricated and used as a template for iliac crest bone graft in the second stage of reconstruction. The 3DP technology provided a precise, fast, and cheap mandibular reconstruction, which aids in shortened operation time (and therefore decreased exposure time to general anesthesia, decreased blood loss, and shorter wound exposure time) and easier surgical procedure.

  19. Thermal crosstalk in 3-dimensional RRAM crossbar array.

    PubMed

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-27

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  20. In vitro measurement of muscle volume with 3-dimensional ultrasound.

    PubMed

    Delcker, A; Walker, F; Caress, J; Hunt, C; Tegeler, C

    1999-05-01

    The aim was to test the accuracy of muscle volume measurements with a new 3-dimensional (3-D) ultrasound system, which allows a freehand scanning of the transducer with an improved quality of the ultrasound images and therefore the outlines of the muscles. Five resected cadaveric hand muscles were insonated and the muscle volumes calculated by 3-D reconstructions of the acquired 2-D ultrasound sections. Intra-reader, inter-reader and follow-up variability were calculated, as well as the volume of the muscle tissue measured by water displacement. In the results, 3-D ultrasound and water displacement measurements showed an average deviation of 10.1%; Data of 3-D ultrasound measurements were: intra-reader variability 2.8%; inter-reader variability 2.4% and follow-up variability 2.3%. 3-D measurements of muscle volume are valid and reliable. Serial sonographic measurements of muscle may be able to quantitate changes in muscle volume that occur in disease and recovery.

  1. Invasive 3-Dimensional Organotypic Neoplasia from Multiple Normal Human Epithelia

    PubMed Central

    Ridky, Todd W.; Chow, Jennifer M.; Wong, David J.; Khavari, Paul A.

    2013-01-01

    Refined cancer models are required to assess the burgeoning number of potential targets for cancer therapeutics within a rapid and clinically relevant context. Here we utilize tumor-associated genetic pathways to transform primary human epithelial cells from epidermis, oropharynx, esophagus, and cervix into genetically defined tumors within a human 3-dimensional (3-D) tissue environment incorporating cell-populated stroma and intact basement membrane. These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through basement membrane, a complex process critically required for biologic malignancy in 90% of human cancers. Invasion was rapid, and potentiated by stromal cells. Oncogenic signals in 3-D tissue, but not 2-D culture, resembled gene expression profiles from spontaneous human cancers. Screening well-characterized signaling pathway inhibitors in 3-D organotypic neoplasia helped distil a clinically faithful cancer gene signature. Multi-tissue 3-D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterize cancer progression. PMID:21102459

  2. Shoulder Fractures

    MedlinePlus

    ... Journal of Hand Surgery (JHS) Home Anatomy Shoulder Fractures Email to a friend * required fields From * To * ... create difficulty with its function. Types of Shoulder Fractures The type of fracture varies by age. Most ...

  3. Stress Fractures

    MedlinePlus

    Stress fractures Overview By Mayo Clinic Staff Stress fractures are tiny cracks in a bone. They're caused by ... up and down or running long distances. Stress fractures can also arise from normal use of a ...

  4. Greenstick Fractures

    MedlinePlus

    Greenstick fractures Overview By Mayo Clinic Staff A greenstick fracture occurs when a bone bends and cracks, instead of breaking completely into separate pieces. The fracture looks similar to what happens when you try ...

  5. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  6. 3-Dimensional shear wave elastography of breast lesions

    PubMed Central

    Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning

    2016-01-01

    Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820

  7. The 3-dimensional construction of the Rae craton, central Canada

    NASA Astrophysics Data System (ADS)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  8. A new preclinical 3-dimensional agarose colony formation assay.

    PubMed

    Kajiwara, Yoshinori; Panchabhai, Sonali; Levin, Victor A

    2008-08-01

    The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines. Colonies were grown in a two-tiered agarose that had 0.7% agarose on the bottom and 0.3% agarose on top. We then studied the effects of DFMO, carboplatin, and SAHA over a 3-log dose range and over multiple days of drug exposure. Using GelCount we approximated the area under the curve (AUC) of colony volumes as the sum of colony volumes (microm2xOD) in each plate to calculate IC50 values. Adenocarcinoma colonies were recognized by GelCount scanning at 3-4 days, while it took 6-7 days to detect glioma colonies. The growth rate of MiaPaCa and SW480 cells was rapid, with 100 colonies counted in 5-6 days; glioma cells grew more slowly, with 100 colonies counted in 9-10 days. Reliable log dose versus AUC curves were observed for all drugs studied. In conclusion, the GelCount method that we describe is more quantitative than traditional colony assays and allows precise study of drug effects with respect to both dose and time of exposure using fewer culture plates.

  9. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  10. Testing the influence of vertical, pre-existing joints on normal faulting using analogue and 3D discrete element models (DEM)

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Virgo, Simon; Urai, Janos L.

    2015-04-01

    Brittle rocks are often affected by different generations of fractures that influence each other. We study pre-existing vertical joints followed by a faulting event. Understanding the effect of these interactions on fracture/fault geometries as well as the development of dilatancy and the formation of cavities as potential fluid pathways is crucial for reservoir quality prediction and production. Our approach combines scaled analogue and numerical modeling. Using cohesive hemihydrate powder allows us to create open fractures prior to faulting. The physical models are reproduced using the ESyS-Particle discrete element Modeling Software (DEM), and different parameters are investigated. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. We observe that no faults or fractures occur parallel to basement-fault strike. Secondary fractures are mostly oriented normal to primary joints. At the final stage of the experiments we analyzed semi-quantitatively the number of connected joints, number of secondary fractures, degree of segmentation (i.e. number of joints accommodating strain), damage zone width, and the map-view area fraction of open gaps. Whereas the area fraction does not change

  11. DEM Particle Fracture Model

    SciTech Connect

    Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  12. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Durlofsky, L. J.

    2016-10-01

    A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.

  13. 3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers

    NASA Astrophysics Data System (ADS)

    Wu, X.; Yang, T.

    2013-12-01

    In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney

  14. A compendium of fracture flow models, 1994

    SciTech Connect

    Diodato, D.M.

    1994-11-01

    The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.

  15. Hydraulic fracture propagation modeling and data-based fracture identification

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  16. [Atlas fractures].

    PubMed

    Schären, S; Jeanneret, B

    1999-05-01

    Fractures of the atlas account for 1-2% of all vertebral fractures. We divide atlas fractures into 5 groups: isolated fractures of the anterior arch of the atlas, isolated fractures of the posterior arch, combined fractures of the anterior and posterior arch (so-called Jefferson fractures), isolated fractures of the lateral mass and fractures of the transverse process. Isolated fractures of the anterior or posterior arch are benign and are treated conservatively with a soft collar until the neck pain has disappeared. Jefferson fractures are divided into stable and unstable fracture depending on the integrity of the transverse ligament. Stable Jefferson fractures are treated conservatively with good outcome while unstable Jefferson fractures are probably best treated operatively with a posterior atlanto-axial or occipito-axial stabilization and fusion. The authors preferred treatment modality is the immediate open reduction of the dislocated lateral masses combined with a stabilization in the reduced position using a transarticular screw fixation C1/C2 according to Magerl. This has the advantage of saving the atlanto-occipital joints and offering an immediate stability which makes immobilization in an halo or Minerva cast superfluous. In late instabilities C1/2 with incongruency of the lateral masses occurring after primary conservative treatment, an occipito-cervical fusion is indicated. Isolated fractures of the lateral masses are very rare and may, if the lateral mass is totally destroyed, be a reason for an occipito-cervical fusion. Fractures of the transverse processes may be the cause for a thrombosis of the vertebral artery. No treatment is necessary for the fracture itself.

  17. Skull fracture

    MedlinePlus

    ... compress the underlying brain tissue (subdural or epidural hematoma). A simple fracture is a break in the bone without damage ... Causes of skull fracture can include: Head trauma Falls, automobile accidents, physical assault, and sports

  18. Rib Fractures

    MedlinePlus

    ... From Brain Injury Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Department of ... Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  19. Hand Fractures

    MedlinePlus

    ... Thumb Arthritis Thumb Sprains Trigger Finger Tumors Wrist Fracture Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety ... Tunnel Ganglion Cysts Thumb Arthritis Trigger Finger Wrist Fracture Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety ...

  20. Tracer mixing at fracture intersections

    SciTech Connect

    Li, Guomin

    2001-02-10

    Discrete network models are one of the approaches used to simulate a dissolved contaminant, which is usually represented as a tracer in modeling studies, in fractured rocks. The discrete models include large numbers of individual fractures within the network structure, with flow and transport described on the scale of an individual fracture. Numerical simulations for the mixing characteristics and transfer probabilities of a tracer through a fracture intersection are performed for this study. A random-walk, particle-tracking model is applied to simulate tracer transport in fracture intersections by moving particles through space using individual advective and diffusive steps. The simulation results are compared with existing numerical and analytical solutions for a continuous intersection over a wide range of Peclet numbers. This study attempts to characterize the relative concentration at the outflow branches for a continuous intersection with different flow fields. The simulation results demonstrate that the mixing characteristics at the fracture intersections are a function not only of the Peclet number but also of the flow field pattern.

  1. Facial fractures.

    PubMed Central

    Carr, M. M.; Freiberg, A.; Martin, R. D.

    1994-01-01

    Emergency room physicians frequently see facial fractures that can have serious consequences for patients if mismanaged. This article reviews the signs, symptoms, imaging techniques, and general modes of treatment of common facial fractures. It focuses on fractures of the mandible, zygomaticomaxillary region, orbital floor, and nose. Images p520-a p522-a PMID:8199509

  2. Control of Grasp and Manipulation by Soft Fingers with 3-Dimensional Deformation

    NASA Astrophysics Data System (ADS)

    Nakashima, Akira; Shibata, Takeshi; Hayakawa, Yoshikazu

    In this paper, we consider control of grasp and manipulation of an object in a 3-dimensional space by a 3-fingered hand robot with soft finger tips. We firstly propose a 3-dimensional deformation model of a hemispherical soft finger tip and verify its relevance by experimental data. Second, we consider the contact kinematics and derive the dynamical equations of the fingers and the object where the 3-dimensional deformation is considered. For the system, we thirdly propose a method to regulate the object and the internal force with the information of the hand, the object and the deformation. A simulation result is presented to show the effectiveness of the control method.

  3. Hydrodynamics of a vertical hydraulic fracture

    SciTech Connect

    Narasimhan, T.N.

    1987-03-24

    We have developed a numerical algorithm, HUBBERT, to simulate the hydrodynamics of a propagating vertical, rectangular fracture in an elastic porous medium. Based on the IFD method, this algorithm assumes fracture geometry to be prescribed. The breakdown and the creation of the incipient fracture is carried out according to the Hubbert-Willis theory. The propagation of the fracture is based on the criterion provided by Griffith, based on energy considerations. The deformation properties of the open fracture are based on simple elasticity solutions. The fracture is assumed to have an elliptical shape to a distance equal to the fracture height, beyond which the shape is assumed to be parallel plate. A consequence of Griffith's criterion is that the fracture must propagate in discrete steps. The parametric studies carried out suggest that for a clear understanding of the hydrodynamics of the hydraulic fracture many hitherto unrecognized parameters must be better understood. Among these parameters one might mention, efficiency, aperture of the newly formed fracture, stiffness of the newly formed fracture, relation between fracture aperture and permeability, and well bore compliance. The results of the studies indicate that the patterns of pressure transients and the magnitudes of fracture length appear to conform to field observations. In particular, the discrete nature of fracture propagation as well as the relevant time scales of interest inferred from the present work seem to be corroborated by seismic monitoring in the field. The results suggest that the estimation of least principal stress can be reliably made either with shut in data or with reinjection data provided that injection rates are very small.

  4. Macroscopic properties of fractured porous media

    NASA Astrophysics Data System (ADS)

    Thovert, J.; Mourzenko, V. V.; Adler, P. M.

    2007-12-01

    The determination of the local fields in fractured porous media is a challenging problem, because of the multiple scales that are involved and of the possible nonlinearity of the governing equations. The purpose of this paper is to provide an overall view of the numerical technique which has been used to solve numerous problems. It is based on a three-dimensional discrete description of the fracture network and of the embedding matrix. Any fracture network geometry, any type of boundary condition, and any distribution of the fracture and matrix properties can be addressed, without simplifying approximations. The first step is to mesh the fracture network as it is by triangles of a controlled size. This meshing by an advancing front technique is done successively for each fracture and the intersections between fractures are taken into account. Then, the space in between the fractures is meshed by tetrahedra by the advancing front technique again. The faces of the tetrahedra which are in contact with fractures, coincide with the corresponding triangles in these fractures. The performances of these meshing codes will be illustrated by a few examples. The second step consists in discretizing the conservation equations by the finite volume technique. Specific properties are given to each fracture such as a surface permeability or a joint rigidity. This general technique has been applied to the basic and most important properties of fracture networks and of fractured porous media (1). These properties are single and two phase flows, wether they are accompagnied or not by dispersion of a solute and mechanical properties possibly coupled with flow. These applications will be briefly illustrated by some examples, including when possible comparison with real data. Ref: (1) P.M. Adler, V.V. Mourzenko, J.-F. Thovert, I. Bogdanov, in Dynamics of fluids and transport in fractured rock, ed. B. Faybishenko, Geophysical Monograph Series, 162, 33, 2005.

  5. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity

  6. Effects of fracture reactivation and diagenesis on fracture network evolution: Cambrian Eriboll Formation, NW Scotland

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Eichhubl, P.; Xu, G.; Ahn, H.; Fall, A.; Hargrove, P.; Laubach, S.; Ukar, E.

    2011-12-01

    The Cambrian Eriboll Formation quartzarenites contain abundant fractures with varying degrees of quartz cement infill. Fractures exist that are entirely sealed; are locally sealed by bridging cements but preserve pore space among bridges; are mostly open but lined with veneers of cement; or are devoid of cement. Fracture propagation in the Eriboll Formation is highly sensitive to the presence of pre-existing fractures. Fracture reactivation occurs in opening mode as individual fractures repeatedly open and are filled or bridged by syn-kinematic cements. As well, reactivation occurs in shear as opening of one fracture orientation coincides with shear displacement along pre-existing fractures of different orientations. The tendency for pre-existing fractures to slip varies in part by the extent of cement infill, yet we observe shear and opening-mode reactivation even among sealed fractures. Paleotemperature analysis of fluid inclusions within fracture cements suggests some fractures now in outcrop formed deep in the subsurface. Fractures within the Eriboll Formation may therefore affect later fracture propagation throughout geologic time. With progressive strain, fault zones develop within fracture networks by a sequence of opening-mode fracture formation, fracture reactivation and linkage, fragmentation, cataclasis, and the formation of slip surfaces. Cataclasite within fault zones is commonly more thoroughly cemented than fractures in the damage zone or outside the fault zone. This variance of cement abundance is likely the result of (1) continued exposure of freshly broken quartz surfaces within cataclasite, promoting quartz precipitation, and (2) possibly more interconnected pathways for mass transfer within the fault zone. Enhanced cementation of cataclasite results in strengthening or diagenetic strain hardening of the evolving fault zone. Further slip is accommodated by shear localization along discrete slip surfaces. With further linkage of fault segments

  7. Comment on "Depth-discrete specific storage in fractured sedimentary rock using steady-state and transient single-hole hydraulic tests" by Patryk M. Quinn, John A. Cherry, Beth L. Parker, J. Hydrol. 542 (2016) 756-771

    NASA Astrophysics Data System (ADS)

    Çimen, Mesut

    2017-03-01

    Quinn et al. (2016) presented a method to estimate storativity (S) of fractured sedimentary rock from straddle packer tests after transmissivity (T) of aquifer was determined from low-flow constant-head (CH) step tests. Constant-rate pumping tests were carried out to determine S by using the Cooper and Jacob (1946) approximation. Estimating the aquifer parameters depends on a matching of observation data to theoretical response which is mathematically obtained from a physical model. The results of both constant rate injection and withdrawal tests in the borehole C6zone17 cannot show this simulation. This comment proposes a reasonable procedure to estimate storativity.

  8. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  9. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect

    Dershowitz, William S.; Cladouhos, Trenton

    2001-09-06

    This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.

  10. Preoperative 3-dimensional Magnetic Resonance Imaging of Uterine Myoma and Endometrium Before Myomectomy.

    PubMed

    Kim, Young Jae; Kim, Kwang Gi; Lee, Sa Ra; Lee, Seung Hyun; Kang, Byung Chul

    2017-02-01

    Uterine myomas are the most common gynecologic benign tumor affecting women of childbearing age, and myomectomy is the main surgical option to preserve the uterus and fertility. During myomectomy for women with multiple myomas, it is advisable to identify and remove as many as possible to decrease the risk of future myomectomies. With deficient preoperative imaging, gynecologists are challenged to identify the location and size of myomas and the endometrium, which, in turn, can lead to uterine rupture during future pregnancies. Current conventional 2-dimensional imaging has limitations in identifying precise locations of multiple myomas and the endometrium. In our experience, we preferred to use 3-dimensional imaging to delineate the myomas, endometrium, or blood vessels, which we were able to successfully reconstruct by using the following imaging method. To achieve 3-dimensional imaging, we matched T2 turbo spin echo images to detect uterine myomas and endometria with T1 high-resolution isotropic volume excitation-post images used to detect blood vessels by using an algorithm based on the 3-dimensional region growing method. Then, we produced images of the uterine myomas, endometria, and blood vessels using a 3-dimensional surface rendering method and successfully reconstructed selective 3-dimensional imaging for uterine myomas, endometria, and adjacent blood vessels. A Web-based survey was sent to 66 gynecologists concerning imaging techniques used before myomectomy. Twenty-eight of 36 responding gynecologists answered that the 3-dimensional image produced in the current study is preferred to conventional 2-dimensional magnetic resonance imaging in identifying precise locations of uterine myomas and endometria. The proposed 3-dimensional magnetic resonance imaging method successfully reconstructed uterine myomas, endometria, and adjacent vessels. We propose that this will be a helpful adjunct to uterine myomectomy as a preoperative imaging technique in future

  11. Fracture-permeability behavior of shale

    SciTech Connect

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  12. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  13. Where Does Water Go During Hydraulic Fracturing?

    PubMed

    O'Malley, D; Karra, S; Currier, R P; Makedonska, N; Hyman, J D; Viswanathan, H S

    2016-07-01

    During hydraulic fracturing millions of gallons of water are typically injected at high pressure into deep shale formations. This water can be housed in fractures, within the shale matrix, and can potentially migrate beyond the shale formation via fractures and/or faults raising environmental concerns. We describe a generic framework for producing estimates of the volume available in fractures and undamaged shale matrix where water injected into a representative shale site could reside during hydraulic fracturing, and apply it to a representative site that incorporates available field data. The amount of water that can be stored in the fractures is estimated by calculating the volume of all the fractures associated with a discrete fracture network (DFN) based on real data and using probability theory to estimate the volume of smaller fractures that are below the lower cutoff for the fracture radius in the DFN. The amount of water stored in the matrix is estimated utilizing two distinct methods-one using a two-phase model at the pore-scale and the other using a single-phase model at the continuum scale. Based on these calculations, it appears that most of the water resides in the matrix with a lesser amount in the fractures.

  14. Ductile fracture theories for pressurised pipes and containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Two mechanisms of fracture are distinguished. Plane strain fractures occur in materials which do not undergo large-scale plastic deformations prior to and during a possible fracture deformation. Plane stress or high energy fractures are generally accompanied by large inelastic deformations. Theories for analyzing plane stress are based on the concepts of critical crack opening stretch, K(R) characterization, J-integral, and plastic instability. This last is considered in some detail. The ductile fracture process involves fracture initiation followed by a stable crack growth and the onset of unstable fracture propagation. The ductile fracture propagation process may be characterized by either a multiparameter (discrete) model, or some type of a resistance curve which may be considered as a continuous model expressed graphically. These models are studied and an alternative model is also proposed for ductile fractures which cannot be modeled as progressive crack growth phenomena.

  15. Fracture size scaling of hydraulic fracture stimulations in shale reservoirs

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2014-12-01

    It is becoming widely evident that hydraulic fracture stimulations in shale reservoirs can result in the generation of events with magnitudes M>0. These events are of concern both to the public as potential geo-hazards possibly affecting groundwater conditions and surface infra-structure, and to engineers for optimizing productivity and engineering design. Typically, in these environments, recording bandwidth limitations has resulted in a bias towards the consideration of events with M<0. This in turn has limited the observable fracture sizes to those constrained within lithological units. By extending the recording bandwidth to lower frequencies, the dimensions of the observable fractures are also extended to include larger fractures/faults activated during the stimulation. Our observations suggest that these larger-scale events can contribute upwards of 80% of the overall seismic budget or energy release associated with the stimulation process. Effective analysis of scaling relations independent of recording further suggests that breakdowns in scaling can be related to the presence of barriers to growth such as contrasts in rock properties associated with different lithological units. Generally, detected larger-magnitude events are associated with smaller-magnitude events, M<0, suggesting that these latter events can be used to characterize aspects of the rupture process whereas their associated signals observed with the low-frequency network can be used to characterize the overall fracture/fault behavior. By accounting for the presence of larger events, additional activated fracture surface area within the reservoir results in a significant increase in surface area. In an example provided, these events account for a further ~10 km2 of additional activated fracture surface area than estimated based on only utilizing high-frequency band-limited recordings. Overall, the identification of the actual discrete fracture network over many size scales allows for a better

  16. Ankle fracture - aftercare

    MedlinePlus

    Malleolar fracture; Tri-malleolar; Bi-malleolar; Distal tibia fracture; Distal fibula fracture; Malleolus fracture ... Some ankle fractures may require surgery when: The ends of the bone are out of line with each other (displaced). The ...

  17. Simulating conservative tracers in fractured till under realistic timescales.

    PubMed

    Helmke, M F; Simpkins, W W; Horton, R

    2005-01-01

    Discrete-fracture and dual-porosity models are infrequently used to simulate solute transport through fractured unconsolidated deposits, despite their more common application in fractured rock where distinct flow regimes are hypothesized. In this study, we apply four fracture transport models--the mobile-immobile model (MIM), parallel-plate discrete-fracture model (PDFM), and stochastic and deterministic discrete-fracture models (DFMs)--to demonstrate their utility for simulating solute transport through fractured till. Model results were compared to breakthrough curves (BTCs) for the conservative tracers potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid (PIPES) in a large-diameter column of fractured till. Input parameters were determined from independent field and laboratory methods. Predictions of Br BTCs were not significantly different among models; however, the stochastic and deterministic DFMs were more accurate than the MIM or PDFM when predicting PFBA and PIPES BTCs. DFMs may be more applicable than the MIM for tracers with small effective diffusion coefficients (De) or for short timescales due to differences in how these models simulate diffusion or incorporate heterogeneities by their fracture networks. At large scales of investigation, the more computationally efficient MIM and PDFM may be more practical to implement than the three-dimensional DFMs, or a combination of model approaches could be employed. Regardless of the modeling approach used, fractures should be incorporated routinely into solute transport models in glaciated terrain.

  18. Discrete Element Modeling

    SciTech Connect

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  19. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter

  20. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  1. Synchronous Discrete Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-01

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2π in phase space, is an integral multiple N of the discrete time step Δt. It is fully synchronous when N is even. It is pseudo-synchronous when T/Δt is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is "blue shifted" relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval Δt. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  2. Natural thermal convection in fractured porous media

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.

    2015-12-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50fracture density and fracture aperture on the Nusselt number (Nu) is highly Ra dependent. The effect of the damaged zone on Nu is roughly proportional to its size. All these models also allows us to determine for which range of fracture density the fractured porous medium is in good agreement with an unfractured porous medium of the same bulk permeability.

  3. Discrete dislocations in graphene

    NASA Astrophysics Data System (ADS)

    Ariza, M. P.; Ortiz, M.

    2010-05-01

    In this work, we present an application of the theory of discrete dislocations of Ariza and Ortiz (2005) to the analysis of dislocations in graphene. Specifically, we discuss the specialization of the theory to graphene and its further specialization to the force-constant model of Aizawa et al. (1990). The ability of the discrete-dislocation theory to predict dislocation core structures and energies is critically assessed for periodic arrangements of dislocation dipoles and quadrupoles. We show that, with the aid of the discrete Fourier transform, those problems are amenable to exact solution within the discrete-dislocation theory, which confers the theory a distinct advantage over conventional atomistic models. The discrete dislocations exhibit 5-7 ring core structures that are consistent with observation and result in dislocation energies that fall within the range of prediction of other models. The asymptotic behavior of dilute distributions of dislocations is characterized analytically in terms of a discrete prelogarithmic energy tensor. Explicit expressions for this discrete prelogarithmic energy tensor are provided up to quadratures.

  4. Fracture Management

    MedlinePlus

    ... to hold the fracture in the correct position. • Fiberglass casting is lighter and stronger and the exterior ... with your physician if this occurs. • When a fiberglass cast is used in conjunction with a GORE- ...

  5. Hip Fracture

    MedlinePlus

    ... make older people more likely to trip and fall — one of the most common causes of hip ... Taking steps to maintain bone density and avoid falls can help prevent hip fracture. Signs and symptoms ...

  6. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    ERIC Educational Resources Information Center

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  7. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  8. Discrete density of states

    NASA Astrophysics Data System (ADS)

    Aydin, Alhun; Sisman, Altug

    2016-03-01

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic.

  9. Lisfranc fractures.

    PubMed

    Wright, Amanda; Gerhart, Ann E

    2009-01-01

    Injuries of the tarsometatarsal, or Lisfranc, joint are rarely seen. Lisfranc fractures and fracture dislocations are among the most frequently misdiagnosed foot injuries in the emergency department. A misdiagnosed injury may have severe consequences including chronic pain and loss of foot biomechanics. Evaluation of a foot injury should include a high level of suspicion of a Lisfranc injury, and a thorough work-up is needed for correct diagnosis.

  10. Colles' fracture.

    PubMed

    Altizer, Linda L

    2008-01-01

    Many people "slip and fall", especially in the icy areas of the winter season. To prevent an injury to the head, most people put their hand out to hit the ground first, so the wrist usually gets injured. The most frequent injury from this type of "intervention" is a fracture to the distal radius and/or ulna, which is frequently called a "Colles' fracture."

  11. Boxer's fracture.

    PubMed

    Altizer, Linda

    2006-01-01

    Boxer's fracture is a common name for a fracture of the distal fifth metacarpal and received its name from one of its most common causes, punching an object with a closed fist. It can occur from a fistfight or from punching a hard object. The injury of a "Boxer's Fracture" earned the name from the way in which the injury occurred, punching an immovable object with a closed fist and no boxing mitt (Figure 1). Naturally, a "Boxer" usually punches his fist into his opponent's face or body. An angry person may perform the same action into a person, or into the wall. The third person may be performing a task and strike something with his fist with forceful action accidentally. In any event, if the closed fist "punches" into an immovable or firm object with force, the most frequent injury sustained would be a fracture of the fifth metacarpal neck. Some caregivers would also call a fourth metacarpal neck fracture a boxer's fracture.

  12. Focusing of eruptions by fracture wall erosion

    NASA Astrophysics Data System (ADS)

    Hieronymus, Christoph F.; Bercovici, David

    Lithospheric flexural stresses beneath volcanic loads are horizontally strongly compressive towards the top of the lithosphere. Thus, while magma transport through the brittle lithosphere occurs via fractures, the fracture paths under the volcanic center are predicted by stress trajectories to be horizontal and thus unable to supply melt to the volcanic edifice where eruptions are observed. Moreover, the magnitude of the compressive stresses under large loads would close down any vertical magma paths. Both problems may be resolved by additional stresses due to melting or thermomechanical erosion of fracture walls developing over the life-span of the volcano. Fractures form and close frequently in the seismogenic zone of the lithosphere, with each fracture eroding away a small amount of material. The total amount of material removed makes the stress field more tensile, thereby facilitating the long-lived and vertically oriented magma pathways necessary to build discrete volcanic structures.

  13. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  14. Idea Exchange: On Discrete.

    ERIC Educational Resources Information Center

    Crisler, Nancy; Froelich, Gary

    1990-01-01

    Discussed are summary recommendations concerning the integration of some aspects of discrete mathematics into existing secondary mathematics courses. Outlines of course activities are grouped into the three levels of prealgebra, algebra, and geometry. Some sample problems are included. (JJK)

  15. Fracture-correlated lineaments at Great Bay, southeastern New Hampshire

    USGS Publications Warehouse

    Degnan, James R.; Clark, Stewart F.

    2002-01-01

    Analysis by remote-sensing techniques and observations of exposed bedrock structure were preliminary steps taken in a study to locate potential bedrock-fracture zones that may store and transmit ground water near Great Bay, N.H. To help correlate lineaments on the surface with fractures, structural measurements were made at exposed bedrock, largely along the shoreline of the bay, and analyzed to identify fracture trends and fracture characteristics. With these fracture data, lineament-filtering techniques, such as (1) buffer analysis around individual lineaments, (2) discrete-measurement analysis by domain, and (3) spacing-normalized analysis by domain, identified 'fracture-correlated lineaments.' Of the 927 lineaments identified in the study area (180 square kilometers), 406 (44 percent) were evaluated because they either were located within 305 meters of an outcrop with fracture data or intersected one of five 3,300-meter-square grid domain cells that encompassed the fracture data. Of the 406 lineaments, 190 (47 percent) are fracture correlated, although only 15 percent were correlated by more than one filtering technique. The large number of lineaments found in areas of thin glacial overburden and high densities of fractured outcrops suggests that filtering techniques are useful in these areas to selectively identify fracture-correlated lineaments. Fractures parallel to bedding in the Kittery Formation are open locally and often associated with vugs, with up to 1-centimeter aperture, and may provide appreciable secondary porosity in this rock unit. Discrete-measurement analysis by domain identified fracture-correlated lineaments with orientations parallel to these open and vug-filled fractures. Fracture-correlated lineaments related to closely spaced fractures were identified by the spacing-normalized analysis by domain. Analysis results may be used to indicate the potential bedrock pathways for ground-water-discharge points along the shoreline of Great Bay.

  16. Physics-based preconditioners for flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Sandve, T. H.; Keilegavlen, E.; Nordbotten, J. M.

    2014-02-01

    Discrete fracture models are an attractive alternative to upscaled models for flow in fractured media, as they provide a more accurate representation of the flow characteristics. A major challenge in discrete fracture simulation is to overcome the large computational cost associated with resolving the individual fractures in large-scale simulations. In this work, two characteristics of the fractured porous media are utilized to construct efficient preconditioners for the discretized flow equations. First, the preconditioners are tailored to the fracture geometry and presumed flow properties so that the dominant features are well represented there. This assures good scalability of the preconditioners in terms of problem size and permeability contrast. For fracture dominated problems, numerical examples show that such geometric preconditioners are comparable or preferable when compared to state-of-the-art algebraic multigrid preconditioners. The robustness of the physics-based preconditioner for less favorable fracture conditions is further demonstrated by a systematic degradation of the fracture hierarchy. Second, the preconditioners are physics preserving in the sense that conservative fluxes can be computed even for an inexact pressure solutions. This facilitates a scheme where accuracy in the linear solver can be traded for efficiency by terminating the iterative solvers based on error estimates, and without sacrificing basic physical modeling principles. With the combination of these two properties a novel preconditioner is obtained which bridges the gap between multiscale approximations and iterative linear solvers.

  17. Characteristic Fracture Spacing in Primary and Secondary Recovery from Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Gong, J.; Rossen, W.

    2015-12-01

    factor or repeating-unit size for waterflood or EOR should reflect only those fractures that carry most of the flow. References:Gong, and Rossen, 14th ECMOR Conf., Catania, Sicily, 2014(a). Gong, and Rossen, Intl. Discrete Fracture Network Eng. Conf., Vancouver, Canada, 2014(b).

  18. Nonlocal Theory for Fracturing of Quasibrittle Materials.

    DTIC Science & Technology

    1994-03-01

    fracture behavior and its impact on design code, ACI Fall Con- vention, San Juan, Puerto Rico, October 29, 1992. 1621 Discrete element modeling of...eaeieengf’em Mi.Heweitser Uxirenris^ His research mieieests i’clairt faitie andfract applicatioms to htictcura destga. p Fiv. 2- TesI etrup ’eIr

  19. Well test analysis in fractured media

    SciTech Connect

    Karasaki, K.

    1986-04-01

    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  20. Developing fracture density models using terrestrial laser scan data

    NASA Astrophysics Data System (ADS)

    Pollyea, R.; Fairley, J. P.; Podgorney, R. K.; McLing, T. L.

    2010-12-01

    Characterizing fracture heterogeneity for subsurface flow and transport modeling has been of interest to the hydrogeologic community for many years. Currently, stochastic continuum and discrete fracture representations have come to be accepted as two of the most commonly used tools for incorporating fracture heterogeneity into subsurface flow and transport models. In this research, ground-based lidar data are used to model the surface roughness of vertical basalt exposures in the East Snake River Plain, Idaho (ESRP) as a surrogate for fracture density. The surface roughness is modeled by discretizing the dataset over a regular grid and fitting a regression plane to each gridblock. The standard deviation of distance from the block data to the regression plane is then assumed to represent a measure of roughness for each gridblock. Two-dimensional plots of surface roughness from ESRP exposures indicate discrete fractures can be quantitatively differentiated from unfractured rock at 0.25- meter resolution. This methodology may have broad applications for characterizing fracture heterogeneity. One application, demonstrated here, is to capture high resolution (low noise) covariance statistics for building stochastic property sets to be used in large scale flow simulations. Additional applications may include using surface roughness datasets as training images for multiple-point geostatistics analysis and for constraining discrete fracture models.

  1. Fracture types (1) (image)

    MedlinePlus

    ... fracture which goes at an angle to the axis Comminuted - a fracture of many relatively small fragments Spiral - a fracture which runs around the axis of the bone Compound - a fracture (also called ...

  2. Hydraulic fracturing-1

    SciTech Connect

    Not Available

    1990-01-01

    This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

  3. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  4. Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes

    NASA Technical Reports Server (NTRS)

    Schubert, S.

    1985-01-01

    The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.

  5. DETECTORS AND EXPERIMENTAL METHODS: Decay vertex reconstruction and 3-dimensional lifetime determination at BESIII

    NASA Astrophysics Data System (ADS)

    Xu, Min; He, Kang-Lin; Zhang, Zi-Ping; Wang, Yi-Fang; Bian, Jian-Ming; Cao, Guo-Fu; Cao, Xue-Xiang; Chen, Shen-Jian; Deng, Zi-Yan; Fu, Cheng-Dong; Gao, Yuan-Ning; Han, Lei; Han, Shao-Qing; He, Miao; Hu, Ji-Feng; Hu, Xiao-Wei; Huang, Bin; Huang, Xing-Tao; Jia, Lu-Kui; Ji, Xiao-Bin; Li, Hai-Bo; Li, Wei-Dong; Liang, Yu-Tie; Liu, Chun-Xiu; Liu, Huai-Min; Liu, Ying; Liu, Yong; Luo, Tao; Lü, Qi-Wen; Ma, Qiu-Mei; Ma, Xiang; Mao, Ya-Jun; Mao, Ze-Pu; Mo, Xiao-Hu; Ning, Fei-Peng; Ping, Rong-Gang; Qiu, Jin-Fa; Song, Wen-Bo; Sun, Sheng-Sen; Sun, Xiao-Dong; Sun, Yong-Zhao; Tian, Hao-Lai; Wang, Ji-Ke; Wang, Liang-Liang; Wen, Shuo-Pin; Wu, Ling-Hui; Wu, Zhi; Xie, Yu-Guang; Yan, Jie; Yan, Liang; Yao, Jian; Yuan, Chang-Zheng; Yuan, Ye; Zhang, Chang-Chun; Zhang, Jian-Yong; Zhang, Lei; Zhang, Xue-Yao; Zhang, Yao; Zheng, Yang-Heng; Zhu, Yong-Sheng; Zou, Jia-Heng

    2009-06-01

    This paper focuses mainly on the vertex reconstruction of resonance particles with a relatively long lifetime such as K0S, Λ, as well as on lifetime measurements using a 3-dimensional fit. The kinematic constraints between the production and decay vertices and the decay vertex fitting algorithm based on the least squares method are both presented. Reconstruction efficiencies including experimental resolutions are discussed. The results and systematic errors are calculated based on a Monte Carlo simulation.

  6. Fast Apriori-based Graph Mining Algorithm and application to 3-dimensional Structure Analysis

    NASA Astrophysics Data System (ADS)

    Nishimura, Yoshio; Washio, Takashi; Yoshida, Tetsuya; Motoda, Hiroshi; Inokuchi, Akihiro; Okada, Takashi

    Apriori-based Graph Mining (AGM) algorithm efficiently extracts all the subgraph patterns which frequently appear in graph structured data. The algorithm can deal with general graph structured data with multiple labels of vartices and edges, and is capable of analyzing the topological structure of graphs. In this paper, we propose a new method to analyze graph structured data for a 3-dimensional coordinate by AGM. In this method the distance between each vertex of a graph is calculated and added to the edge label so that AGM can handle 3-dimensional graph structured data. One problem in our approach is that the number of edge labels increases, which results in the increase of computational time to extract subgraph patterns. To alleviate this problem, we also propose a faster algorithm of AGM by adding an extra constraint to reduce the number of generated candidates for seeking frequent subgraphs. Chemical compounds with dopamine antagonist in MDDR database were analyzed by AGM to characterize their 3-dimensional chemical structure and correlation with physiological activity.

  7. Discrete Driver Assistance

    NASA Astrophysics Data System (ADS)

    Klette, Reinhard; Jiang, Ruyi; Morales, Sandino; Vaudrey, Tobi

    Applying computer technology, such as computer vision in driver assistance, implies that processes and data are modeled as being discretized rather than being continuous. The area of stereo vision provides various examples how concepts known in discrete mathematics (e.g., pixel adjacency graphs, belief propagation, dynamic programming, max-flow/min-cut, or digital straight lines) are applied when aiming for efficient and accurate pixel correspondence solutions. The paper reviews such developments for a reader in discrete mathematics who is interested in applied research (in particular, in vision-based driver assistance). As a second subject, the paper also discusses lane detection and tracking, which is a particular task in driver assistance; recently the Euclidean distance transform proved to be a very appropriate tool for obtaining a fairly robust solution.

  8. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  9. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  10. Condylar fractures.

    PubMed

    Sawhney, Raja; Brown, Ryan; Ducic, Yadranko

    2013-10-01

    The purpose of this article is to review the basic indications for different treatments of condylar and subcondylar fractures. It also reviews the steps of different surgical approaches to access the surgical area and explains the pros and cons of each procedure.

  11. Discrete breathers in crystals

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite

  12. A Multi-Scale Approach for fracture characterization

    NASA Astrophysics Data System (ADS)

    Collombin, Maxime; Derron, Marc-Henri; Sartori, Mario; Jaboyedoff, Michel; Matasci, Battista; Humair, Florian

    2016-04-01

    The study of fractured reservoirs is of primary importance for hydrocarbons, water and geothermal exploration. The investigation of natural fracture networks affecting potential reservoir is a key point in the present field of research since fracturing may constitute preferential flow paths for fluids consequently to an increase of the secondary permeability. Performed in the context of a geothermal project in the Western Alps of Switzerland, the present work focuses on the characterization of the fracturing pattern in order to better understand water circulations affecting a gneissic geology (tectonic unit of the "Aiguilles Rouges Massif"). The fracturing interpretation is here mainly based on a terrestrial LiDAR survey of outcrops close to (future) production wells as well as on discrete fracture network (DFN) modelling. The different sets of fractures are characterized in terms of orientation, spacing and trace length. In addition, traditional field survey observations and measurements from outcrops allow documenting the fracture aperture, types of fillings and the evidences of past and present-day fluid circulations. Fracturing patterns from outcrops and LIDAR analysis are then compared to regional structures observed on a DEM. Main objectives of this study are: (1) to compare and check the consistence of various sets of fracturing data, acquired by various methods at different scales; (2) to develop the most representative fracture model (DFN), taking into account these datasets. Once a DFN model established, each of the different fracture sets will be associated with permeability values in order to get a preliminary hydrodynamic model that will be confronted to borehole tests data and eventually used as inputs for flow simulation. Keywords: Fracturing analysis, LiDAR, borehole, Discrete Fracture Network, Flow simulation

  13. Multi-scale approach to invasion percolation of rock fracture networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Wittel, Falk K.; Araújo, Nuno A. M.; Herrmann, Hans J.

    2014-11-01

    A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

  14. Efficient and robust compositional two-phase reservoir simulation in fractured media

    NASA Astrophysics Data System (ADS)

    Zidane, A.; Firoozabadi, A.

    2015-12-01

    Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.

  15. Discrete surface solitons.

    PubMed

    Makris, Konstantinos G; Suntsov, Sergiy; Christodoulides, Demetrios N; Stegeman, George I; Hache, Alain

    2005-09-15

    It is theoretically shown that discrete nonlinear surface waves are possible in waveguide lattices. These self-trapped states are located at the edge of the array and can exist only above a certain power threshold. The excitation characteristics and stability properties of these surface waves are systematically investigated.

  16. Facial Fractures

    PubMed Central

    White, Lawrence M.; Marotta, Thomas R.; McLennan, Michael K.; Kassel, Edward E.

    1992-01-01

    Appropriate clinical radiographic investigation, together with an understanding of the normal radiographic anatomy of the facial skeleton, allows for precise delineation of facial fracutres and associated soft tissue injuries encountered in clinical practice. A combination of multiple plain radiographic views and coronal and axial computed tomographic images allow for optimal delineation of fracture patterns. This information is beneficial in the clinical and surgical management patients with facial injuries

  17. Multimodality imaging of intrauterine devices with an emphasis on the emerging role of 3-dimensional ultrasound.

    PubMed

    Reiner, Jeffrey S; Brindle, Kathleen A; Khati, Nadia Juliet

    2012-12-01

    The intrauterine contraceptive device (IUD) is one of the most widely used reversible contraception methods throughout the world. With advancing technology, it has rapidly gained acceptance through its increased effectiveness and practicality compared with more invasive means such as laparoscopic tubal ligation. This pictorial essay will present the IUDs most commonly used today. It will illustrate both normal and abnormal positions of IUDs across all cross-sectional imaging modalities including 2-dimensional ultrasound, computed tomography, and magnetic resonance imaging, with a focus on the emerging role of 3-dimensional ultrasound as the modality of choice.

  18. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  19. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    PubMed

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc.

  20. Introducing a well-ordered volume porosity in 3-dimensional gold microcantilevers

    NASA Astrophysics Data System (ADS)

    Ayela, Cédric; Lalo, Hélène; Kuhn, Alexander

    2013-02-01

    The purpose of the present work is the introduction of a combined bottom-up and top-down approach to generate 3-dimensional gold microcantilevers, where the porosity in the volume of the free-standing microstructure is well-controlled. By combining the elaboration of a colloidal crystal, followed by electrodeposition, with a sacrificial layer process, free-standing macroporous gold cantilevers are fabricated collectively. In order to validate the proposed concept, a simple application to humidity sensing is evaluated using the devices as mass sensors. A large sensitivity of -529 ppm/%RH and low discrepancy are obtained experimentally, confirming the promising application potential of this original architecture.

  1. Brief communications: visualization of coronary arteries in rats by 3-dimensional real-time contrast echocardiography.

    PubMed

    Ishikura, Fuminobu; Hirayama, Hideo; Iwata, Akiko; Toshida, Tsutomu; Masuda, Kasumi; Otani, Kentaro; Asanuma, Toshihiko; Beppu, Shintaro

    2008-05-01

    Angiogenesis is under intense investigation to advance the treatment of various ischemic diseases. Small animals, such as mice and rats, are often used for this purpose. However, evaluating the structure of coronary arteries in small animals in situ is not easy. We succeeded in visualizing the coronary artery in rats on 3-dimensional real-time contrast echocardiography using a high-frequency transducer. These methods will be applied for more convenient assessment in a new study, examining issues such as angiogenesis using rats in situ.

  2. Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map

    PubMed Central

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J.; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2010-01-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at ∼50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a 3-dimensional discrete neural map are unclear. Here we show that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) is differentially expressed in different classes of PNs. Loss- and gain-of-function studies indicate that Caps instructs the segregation of Caps-positive and negative PN dendrites to discrete glomerular targets. Moreover, Caps does not mediate homophilic interactions and regulates PN dendrite targeting independent of pre-synaptic ORNs. The closely related protein Tartan plays a partially redundant function with Capricious. These LRR proteins are likely part of a combinatorial cell-surface code that instructs discrete olfactory map formation. PMID:19915565

  3. Discrete Variational Optimal Control

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Kobilarov, Marin; Martín de Diego, David

    2013-06-01

    This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.

  4. Steerable Discrete Fourier Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Magli, Enrico

    2017-03-01

    Directional transforms have recently raised a lot of interest thanks to their numerous applications in signal compression and analysis. In this letter, we introduce a generalization of the discrete Fourier transform, called steerable DFT (SDFT). Since the DFT is used in numerous fields, it may be of interest in a wide range of applications. Moreover, we also show that the SDFT is highly related to other well-known transforms, such as the Fourier sine and cosine transforms and the Hilbert transforms.

  5. The Discrete Wavelet Transform

    DTIC Science & Technology

    1991-06-01

    Split- Band Coding," Proc. ICASSP, May 1977, pp 191-195. 12. Vetterli, M. "A Theory of Multirate Filter Banks ," IEEE Trans. ASSP, 35, March 1987, pp 356...both special cases of a single filter bank structure, the discrete wavelet transform, the behavior of which is governed by one’s choice of filters . In...B-1 ,.iii FIGURES 1.1 A wavelet filter bank structure ..................................... 2 2.1 Diagram illustrating the dialation and

  6. Discrete minimal flavor violation

    SciTech Connect

    Zwicky, Roman; Fischbacher, Thomas

    2009-10-01

    We investigate the consequences of replacing the global flavor symmetry of minimal flavor violation (MFV) SU(3){sub Q}xSU(3){sub U}xSU(3){sub D}x{center_dot}{center_dot}{center_dot} by a discrete D{sub Q}xD{sub U}xD{sub D}x{center_dot}{center_dot}{center_dot} symmetry. Goldstone bosons resulting from the breaking of the flavor symmetry generically lead to bounds on new flavor structure many orders of magnitude above the TeV scale. The absence of Goldstone bosons for discrete symmetries constitute the primary motivation of our work. Less symmetry implies further invariants and renders the mass-flavor basis transformation observable in principle and calls for a hierarchy in the Yukawa matrix expansion. We show, through the dimension of the representations, that the (discrete) symmetry in principle does allow for additional {delta}F=2 operators. If though the {delta}F=2 transitions are generated by two subsequent {delta}F=1 processes, as, for example, in the standard model, then the four crystal-like groups {sigma}(168){approx_equal}PSL(2,F{sub 7}), {sigma}(72{phi}), {sigma}(216{phi}) and especially {sigma}(360{phi}) do provide enough protection for a TeV-scale discrete MFV scenario. Models where this is not the case have to be investigated case by case. Interestingly {sigma}(216{phi}) has a (nonfaithful) representation corresponding to an A{sub 4} symmetry. Moreover we argue that the, apparently often omitted, (D) groups are subgroups of an appropriate {delta}(6g{sup 2}). We would like to stress that we do not provide an actual model that realizes the MFV scenario nor any other theory of flavor.

  7. A 3-dimensional model for teaching local flaps using porcine skin.

    PubMed

    Hassan, Zahid; Hogg, Fiona; Graham, Ken

    2014-10-01

    The European Working Time Directive and streamlined training has led to reduced training time. Surgery, as an experience-dependent craft specialty is affected more than other medical specialties. Trainees want to maximize all training opportunities in the clinical setting, and having predeveloped basic skills acquired on a simulated model can facilitate this.Here we describe the use of a novel model to design and raise local flaps in the face and scalp regions. The model consists of mannequin heads draped with porcine skin which is skewered with pins at strategic points to give a 3-dimensional model which closely resembles a cadaveric head.The advantages of this model are that it is life size and incorporates all the relevant anatomical features, which can be drawn on if required.This model was used on a recent course, Intermediate Skills in Plastic Surgery: Flaps Around the Face, at the Royal College of Surgeons England. The trainees found that practicing on the porcine skin gave them an opportunity to master the basics of flap design and implementation.In summary, this innovative 3-dimensional training model has received high levels of satisfaction and is currently as close as we can get to cadaveric dissection without the constraints and cost of using human tissue.

  8. Simple parameter estimation for complex models — Testing evolutionary techniques on 3-dimensional biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Mattern, Jann Paul; Edwards, Christopher A.

    2017-01-01

    Parameter estimation is an important part of numerical modeling and often required when a coupled physical-biogeochemical ocean model is first deployed. However, 3-dimensional ocean model simulations are computationally expensive and models typically contain upwards of 10 parameters suitable for estimation. Hence, manual parameter tuning can be lengthy and cumbersome. Here, we present four easy to implement and flexible parameter estimation techniques and apply them to two 3-dimensional biogeochemical models of different complexities. Based on a Monte Carlo experiment, we first develop a cost function measuring the model-observation misfit based on multiple data types. The parameter estimation techniques are then applied and yield a substantial cost reduction over ∼ 100 simulations. Based on the outcome of multiple replicate experiments, they perform on average better than random, uninformed parameter search but performance declines when more than 40 parameters are estimated together. Our results emphasize the complex cost function structure for biogeochemical parameters and highlight dependencies between different parameters as well as different cost function formulations.

  9. Automated 3-Dimensional Brain Atlas Fitting to Microelectrode Recordings from Deep Brain Stimulation Surgeries

    PubMed Central

    Luján, J. Luis; Noecker, Angela M.; Butson, Christopher R.; Cooper, Scott E.; Walter, Benjamin L.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-01-01

    Objective Deep brain stimulation (DBS) surgeries commonly rely on brain atlases and microelectrode recordings (MER) to help identify the target location for electrode implantation. We present an automated method for optimally fitting a 3-dimensional brain atlas to intraoperative MER and predicting a target DBS electrode location in stereotactic coordinates for the patient. Methods We retrospectively fit a 3-dimensional brain atlas to MER points from 10 DBS surgeries targeting the subthalamic nucleus (STN). We used a constrained optimization algorithm to maximize the MER points correctly fitted (i.e., contained) within the appropriate atlas nuclei. We compared our optimization approach to conventional anterior commissure-posterior commissure (AC/PC) scaling, and to manual fits performed by four experts. A theoretical DBS electrode target location in the dorsal STN was customized to each patient as part of the fitting process and compared to the location of the clinically defined therapeutic stimulation contact. Results The human expert and computer optimization fits achieved significantly better fits than the AC/PC scaling (80, 81, and 41% of correctly fitted MER, respectively). However, the optimization fits were performed in less time than the expert fits and converged to a single solution for each patient, eliminating interexpert variance. Conclusions and Significance DBS therapeutic outcomes are directly related to electrode implantation accuracy. Our automated fitting techniques may aid in the surgical decision-making process by optimally integrating brain atlas and intraoperative neurophysiological data to provide a visual guide for target identification. PMID:19556832

  10. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XμCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XμCT-equipment. The developed calibration procedure of the X-ray-μCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XμCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.

  11. Particle trajectory computation on a 3-dimensional engine inlet. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, J. J.

    1986-01-01

    A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated.

  12. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang

    2015-11-01

    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).

  13. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct.

    PubMed

    Rouwkema, Jeroen; de Boer, Jan; Van Blitterswijk, Clemens A

    2006-09-01

    To engineer tissues with clinically relevant dimensions, one must overcome the challenge of rapidly creating functional blood vessels to supply cells with oxygen and nutrients and to remove waste products. We tested the hypothesis that endothelial cells, cocultured with osteoprogenitor cells, can organize into a prevascular network in vitro. When cultured in a spheroid coculture model with human mesenchymal stem cells, human umbilical vein endothelial cells (HUVECs) form a 3-dimensional prevascular network within 10 days of in vitro culture. The formation of the prevascular network was promoted by seeding 2% or fewer HUVECs. Moreover, the addition of endothelial cells resulted in a 4-fold upregulation of the osteogenic marker alkaline phosphatase. The addition of mouse embryonic fibroblasts did not result in stabilization of the prevascular network. Upon implantation, the prevascular network developed further and structures including lumen could be seen regularly. However, anastomosis with the host vasculature was limited. We conclude that endothelial cells are able to form a 3-dimensional (3D) prevascular network in vitro in a bone tissue engineering setting. This finding is a strong indication that in vitro prevascularization is a promising strategy to improve implant vascularization in bone tissue engineering.

  14. A paradigm for discrete physics

    SciTech Connect

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.

  15. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    SciTech Connect

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek; Hirsch, Ariel E.; Kachnic, Lisa A.; Specht, Michelle; Gadd, Michele; Smith, Barbara L.; Powell, Simon N.; Recht, Abram; Taghian, Alphonse G.

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.

  16. Simulation of Solute Flow and Transport in a Geostatistically Generated Fractured Porous System

    NASA Astrophysics Data System (ADS)

    Assteerawatt, A.; Helmig, R.; Haegland, H.; Bárdossy, A.

    2007-12-01

    Fractured aquifer systems have provided important natural resources such as petroleum, gas, water and geothermal energy and have also been recently under investigation for their suitability as storage sites for high-level nuclear waste. The resource exploitation and potential utilization have led to extensive studies aiming of understanding, characterizing and finally predicting the behavior of fractured aquifer systems. By applying a discrete model approach to study flow and transport processes, fractures are determined discretely and the effect of individual fractures can be explicitly investigated. The critical step for the discrete model is the generation of a representative fracture network since the development of flow paths within a fractured system strongly depends on its structure. The geostatistical fracture generation (GFG) developed in this study aims to create a representative fracture network, which combines the spatial structures and connectivity of a fracture network, and the statistical distribution of fracture geometries. The spatial characteristics are characterized from indicator fields, which are evaluated from fracture trace maps. A global optimization, Simulated annealing, is utilized as a generation technique and the spatial characteristics are formulated to its objective function. We apply the GFG to a case study at a Pliezhausen field block, which is a sandstone of a high fracture density. The generated fracture network from the GFG are compared with the statistically generated fracture network in term of structure and hydraulic behavior. As the GFG is based on a stochastic concept, several realizations of the same descriptions can be generated, hence, an overall behavior of the fracture-matrix system have to be investigated from various realizations which leads to a problem of computational demand. In order to overcome this problem, a streamline method for a solute transport in a fracture porous system is presented. The results obtained

  17. Fracture Mechanics

    DTIC Science & Technology

    1974-01-31

    2219 -T851 aluminum (fractures at low stresses). The parameter KF is alloy compact specimens 1 2 and demonstrate consistent a function of specimen...Congress of 20. Walker, E. K., "The Effect of Stress Ratio Applied Mechanics, 1924. During Crack Propagation and Fatigue for 2024-T3 and 7015- T6 Aluminum ...34Stress- Corrosion Cracking in 12. Kaufman, J. G., and Nelson, F. G., "More Ti-6A1-4V Titanium Alloy in Nitrogen Tetroxide," on Specimen Size Effect in 2219

  18. A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks

    NASA Astrophysics Data System (ADS)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui

    2016-06-01

    This paper presents a semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. The model dynamically couples an analytical dual-porosity model with a numerical discrete fracture model. The small-scale fractures with the matrix are idealized as a dual-porosity continuum and an analytical flow solution is derived based on source functions in Laplace domain. The large-scale fractures are represented explicitly as the major fluid conduits and the flow is numerically modeled, also in Laplace domain. This approach allows us to include finer details of the fracture network characteristics while keeping the computational work manageable. For example, the large-scale fracture network may have complex geometry and varying conductivity, and the computations can be done at predetermined, discrete times, without any grids in the dual-porosity continuum. The validation of the semi-analytical model is demonstrated in comparison to the solution of ECLIPSE reservoir simulator. The simulation is fast, gridless and enables rapid model setup. On the basis of the model, we provide detailed analysis of the flow behavior of a horizontal production well in fractured reservoir with multi-scale fracture networks. The study has shown that the system may exhibit six flow regimes: large-scale fracture network linear flow, bilinear flow, small-scale fracture network linear flow, pseudosteady-state flow, interporosity flow and pseudoradial flow. During the first four flow periods, the large-scale fracture network behaves as if it only drains in the small-scale fracture network; that is, the effect of the matrix is negligibly small. The characteristics of the bilinear flow and the small-scale fracture network linear flow are predominantly determined by the dimensionless large-scale fracture conductivity. And low dimensionless fracture conductivity will generate large pressure drops in the large-scale fractures surrounding the wellbore. With

  19. Radial head fracture - aftercare

    MedlinePlus

    Elbow fracture - radial head - aftercare ... to 2 weeks. If you have a small fracture and your bones did not move around much, ... to see a bone doctor (orthopedic surgeon). Some fractures require surgery to: Insert pins and plates to ...

  20. Hand fracture - aftercare

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000552.htm Hand fracture - aftercare To use the sharing features on ... need to be repaired with surgery. Types of Hand Fractures Your fracture may be in one of ...

  1. Discretization of the Schwarzian derivative

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2016-10-01

    Numerical treatment of the Schwarzian derivatives from the exact discretization point is useful for many applications. Since we found the discrete counterpart of Schwarzian derivative is the Cross-ratio, we can regard the Cross-ratio to the discrete conformal mapping function instead of the Schwarzian derivative. By this approach we found some integrable system of special functions are derived by the classical treatment of 2nd order ODE and difference equations. Such discrete integrable system is composed of simultameous equation of the two Möbius transformations or discrete Riccati's eqautions.

  2. Fracture Toughness Determination of Cracked Chevron Notched Brazilian Disc Rock Specimen via Griffith Energy Criterion Incorporating Realistic Fracture Profiles

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng; Zhao, Tao; Xu, Nu-wen; Liu, Yi

    2016-08-01

    The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to measure the mode I fracture toughness of rocks, and has been widely adopted in laboratory tests. Nevertheless, a certain discrepancy has been observed in results when compared with those derived from methods using straight through cracked specimens, which might be due to the fact that the fracture profiles of rock specimens cannot match the straight through crack front as assumed in the measuring principle. In this study, the progressive fracturing of the CCNBD specimen is numerically investigated using the discrete element method (DEM), aiming to evaluate the impact of the realistic cracking profiles on the mode I fracture toughness measurements. The obtained results validate the curved fracture fronts throughout the fracture process, as reported in the literature. The fracture toughness is subsequently determined via the proposed G-method originated from Griffith's energy theory, in which the evolution of the realistic fracture profile as well as the accumulated fracture energy is quantified by DEM simulation. A comparison between the numerical tests and the experimental results derived from both the CCNBD and the semi-circular bend (SCB) specimens verifies that the G-method incorporating realistic fracture profiles can contribute to narrowing down the gap between the fracture toughness values measured via the CCNBD and the SCB method.

  3. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion

    PubMed Central

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.

    2017-01-01

    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Methods Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant

  4. Chopart fractures.

    PubMed

    Klaue, Kaj

    2004-09-01

    The Chopart articular space was described by François Chopart (1743-1795) as a practical space for amputations in cases of distal foot necrosis. It corresponds to the limit between the anatomical hind-foot and the mid-foot. The bones involved are the talus and the calcaneus proximally, and the navicular and the cuboid distally. This space thus holds two functionally distinct entities, the anterior part of the coxa pedis (an essential functional joint) and the calcaneo-cuboidal joint,which can be considered to be an "adaptive joint" within a normal foot. Trauma to this region may cause fractures and/or dislocations and, in high energy trauma,compartment syndromes. Principles of treatment are immediate reduction of dislocations and realignment of the medial and lateral column of the foot in length and orientation. Open reduction and internal fixation of talus and navicular fractures are often indicated to restore the "coxa pedis". Open reconstruction or fusion in correct length of the calcaneo-cuboidal joint is occasionally indicated. Salvage procedures in malunions include navicular osteotomies and calcaneo-cuboidal bone block fusions. Treatment of joint destructions, especially involving the talo-navicular joint, include triple arthrodesis.

  5. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  6. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    USGS Publications Warehouse

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  7. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze

    NASA Astrophysics Data System (ADS)

    Park, Hyeongsik; Shin, Myunghun; Kim, Hyeongseok; Kim, Sunbo; Le, Anh Huy Tuan; Kang, Junyoung; Kim, Yongjun; Pham, Duy Phong; Jung, Junhee; Yi, Junsin

    2017-04-01

    A comparative study of 3-dimensional textured glass morphologies with variable haze value and chemical texturing of the glass substrates was conducted to enhance light trapping in silicon (Si) thin film solar cells (TFSCs). The light trapping characteristics of periodic honeycomb structures show enhanced transmittance and haze ratio in numerical and experimental approaches. The periodic honeycomb structure of notched textures is better than a random or periodic carved structure. It has high transmittance of ∼95%, and haze ratio of ∼52.8%, and the haze property of the angular distribution function of transmittance shows wide scattering angles in the long wavelength region because of the wide spacing and aspect ratio of the texture. The numerical and experimental approaches of the 3-D texture structures in this work will be useful in developing high-performance Si TFSCs with light trapping.

  8. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  9. Experimental determination of thermal profiles during laser spike annealing with quantitative comparison to 3-dimensional simulations

    SciTech Connect

    Iyengar, Krishna; Jung, Byungki; Willemann, Michael; Thompson, Michael O.; Clancy, Paulette

    2012-05-21

    Thin film platinum resistors were used to directly measure temperature profiles during laser spike annealing (LSA) with high spatial and temporal resolution. Observed resistance changes were calibrated to absolute temperatures using the melting points of the substrate silicon and thin gold films. Both the time-dependent temperature experienced by the sample during passage of the focussed laser beam and profiles across the spatially dependent laser intensity were obtained with sub-millisecond time resolution and 50 {mu}m spatial resolution. Full 3-dimensional simulations incorporating both optical and thermal variations of material parameters were compared with these results. Accounting properly for the specific material parameters, good agreement between experiments and simulations was achieved. Future temperature measurements in complex environments will permit critical evaluation of LSA simulations methodologies.

  10. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  11. Surface compositional heterogeneity of (4) Vesta from Dawn FC using a 3 dimensional spectral approach

    NASA Astrophysics Data System (ADS)

    Thangjam, G.; Nathues, A.; Mengel, K.; Hoffmann, M.; Schäfer, M.; Mann, P.; Cloutis, E. A.; Behrens, H.; Platz, T.; Schäfer, T.; Sierks, H.; Christensen, U.; Russell, C. T.

    2015-10-01

    The historic journey of the Dawn spacecraft in 2011- 2012 was a turning point in understanding asteroid (4) Vesta. The surface composition and lithology were analysed and mapped in earlier studies using Dawn imageries [1], [2]. We introduce here a 3 dimensional spectral approach to analyze and map the surface composition using Dawn Framing Camera (FC) color data. Various laboratory spectra of available HEDs and their mixtures, including new spectra measured in this work, were used. Band parameters were reviewed and modified wherever necessary to make the best use of the data. We particularly focused on carbonaceous-chondrite-bearing and olivine-bearing lithologies. An attempt has been made to distinguish glass/impact-melt lithologies.

  12. A 3-Dimensional Cockpit Display with Traffic and Terrain Information for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.

    2004-01-01

    The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.

  13. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model.

    PubMed

    Chen, C-Y Oliver; Smith, Avi; Liu, Yuntao; Du, Peng; Blumberg, Jeffrey B; Garlick, Jonathan

    2017-01-25

    Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.

  14. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability

    PubMed Central

    Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad

    2015-01-01

    Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768

  15. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes.

    PubMed

    Degner-Leisso, Stephanie C; Feeney, Ann J

    2010-12-01

    V(D)J recombination is a crucial component of the adaptive immune response, allowing for the production of a diverse antigen receptor repertoire (Ig and TCR). This review will focus on how epigenetic regulation and 3-dimensional (3D) interactions may control V(D)J recombination at Ig loci. The interplay between transcription factors and post-translational modifications at the Igh, Igκ, and Igλ loci will be highlighted. Furthermore, we propose that the spatial organization and epigenetic boundaries of each Ig loci before and during V(D)J recombination may be influenced in part by the CTCF/cohesin complex. Taken together, the many epigenetic and 3D layers of control ensure that Ig loci are only rearranged at appropriate stages of B cell development.

  16. Can Abdominal Hypopressive Technique Change Levator Hiatus Area?: A 3-Dimensional Ultrasound Study.

    PubMed

    Resende, Ana Paula Magalhães; Torelli, Luiza; Zanetti, Miriam Raquel Diniz; Petricelli, Carla Dellabarba; Jármy-Di Bella, Zsuzsanna IIona Katalin; Nakamura, Mary Uchiyama; Araujo Júnior, E; Moron, Antonio Fernandes; Girão, Manoel João Batista Castello; Sartori, Marair Gracio Ferreira

    2016-06-01

    This study aimed to evaluate the levator hiatus area (LHA) at rest and during the performance of maximal pelvic floor muscle (PFM) contractions, during the abdominal hypopressive technique (AHT), and during the combination of PFM contractions (PFMCs) and the AHT. The study included 17 healthy nulliparous women who had no history of pelvic floor disorders. The LHA was evaluated with the patients in the lithotomy position. After a physiotherapist instructed the patients on the proper performance of the PFM and AHT exercises, 1 gynecologist performed the 3-dimensional translabial ultrasound examinations. The LHA was measured with the patients at rest. The PFMC alone, the AHT alone or the AHT in combination with a PFMC with 30 seconds of rest between the evaluations were performed. Each measurement was performed 2 times, and the mean value was used for statistical analysis. The Wilcoxon test was used to test the differences between the 2 maneuvers. Similar values were observed when comparing the LHA of the PFM at rest (12.2 ± 2.4) cm and during the AHT (11.7 ± 2.6) cm (P = 0.227). The AHT+ PFMC (10.2 ± 1.9) cm demonstrated lower values compared with AHT alone (11.7 ± 2.6) cm (P = 0.002). When comparing the PFMC (10.4 ± 2.1) cm with the AHT + PFMC (10.2 ± 1.9) cm, no significant difference (P = 0.551) was observed. During PFMC, the constriction was 1.8 cm; during the AHT, the constriction was 0.5 cm; and during the AHT + PFMC, it was 2 cm. The LHA assessed by 3-dimensional ultrasound did not significantly change with AHT. These results support the theory that AHT does not strengthen PFM.

  17. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  18. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    PubMed Central

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  19. Selection of massive bone allografts using shape-matching 3-dimensional registration

    PubMed Central

    Docquier, Pierre-Louis; Cartiaux, Olivier; Cornu, Olivier; Delloye, Christian; Banse, Xavier

    2010-01-01

    Background and purpose Massive bone allografts are used when surgery causes large segmental defects. Shape-matching is the primary criterion for selection of an allograft. The current selection method, based on 2-dimensional template comparison, is inefficient for 3-dimensional complex bones. We have analyzed a 3-dimensional (3-D) registration method to match the anatomy of the allograft with that of the recipient. Methods 3-D CT-based registration was performed to match the shapes of both bones. We used the registration to align the allograft volume onto the recipient's bone. Hemipelvic allograft selection was tested in 10 virtual recipients with a panel of 10 potential allografts, including one from the recipient himself (trap graft). 4 observers were asked to visually inspect the superposition of allograft over the recipient, to classify the allografts into 4 categories according to the matching of anatomic zones, and to select the 3 best matching allografts. The results obtained using the registration method were compared with those from a previous study on the template method. Results Using the registration method, the observers systematically detected the trap graft. Selections of the 3 best matching allografts performed using registration and template methods were different. Selection of the 3 best matching allografts was improved by the registration method. Finally, reproducibility of the selection was improved when using the registration method. Interpretation 3-D CT registration provides more useful information than the template method but the final decision lies with the surgeon, who should select the optimal allograft according to his or her own preferences and the needs of the recipient. PMID:20175643

  20. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  1. Geomechanical paleostress inversion using fracture data

    NASA Astrophysics Data System (ADS)

    Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa; Gillespie, Paul

    2016-08-01

    We describe a fast geomechanically-based paleostress inversion technique that uses observed fracture data to constrain stress through multiple simulations. The method assumes that the local stress field around individual fractures is heterogeneous and derives the far field tectonic stress, that we also call the far field boundary conditions. We show how such far field tectonic stress can be recovered through a mechanical stress inversion technique using local observations of natural fractures (i.e. mechanical type, orientation and location). We test the paleostress inversion against outcrop analogues of fractured carbonates from both Nash Point, U.K., where there are well exposed faults and joints and the Matelles, France, where there are well exposed faults, veins and stylolites. We demonstrate through these case studies how the method can be efficiently applied to natural examples and we highlight its advantages and limitations. We discuss how such method could be applied to subsurface problems and how it can provide complementary constraints to drive discrete fracture models for better fractured reservoir characterization and modelling.

  2. Fractal characterization of subsurface fracture network for geothermal energy extraction system

    SciTech Connect

    Watanabe; Takahashi, H.

    1993-01-28

    As a new modeling procedure of geothermal energy extraction systems, the authors present two dimensional and three dimensional modeling techniques of subsurface fracture network, based on fractal geometry. Fluid flow in fractured rock occurs primarily through a connected network of discrete fractures. The fracture network approach, therefore, seeks to model fluid flow and heat transfer through such rocks directly. Recent geophysical investigations have revealed that subsurface fracture networks can be described by "fractal geometry". In this paper, a modeling procedure of subsurface fracture network is proposed based on fractal geometry. Models of fracture networks are generated by distributing fractures randomly, following the fractal relation between fracture length r and the number of fractures N expressed with fractal dimension D as N =C·r-D, where C is a constant to signify the fracture density of the rock mass. This procedure makes it possible to characterize geothermal reservoirs by the parameters measured from field data, such as core sampling. In this characterization, the fractal dimension D and the fracture density parameter C of a geothermal reservoir are used as parameters to model the subsurface fracture network. Using this model, the transmissivities between boreholes are also obtained as a function of the fracture density parameter C, and a parameter study of system performances, such as heat extraction, is performed. The results show the dependence of thermal recovery of geothermal reservoir on fracture density parameter C.

  3. Computational Modeling of Fluid Flow through a Fracture in Permeable Rock

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2010-01-01

    Laminar, single-phase, finite-volume solutions to the Navier–Stokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcy’s Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting frictionfactor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.

  4. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    SciTech Connect

    Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.

    1995-09-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.

  5. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle

    PubMed Central

    Roig, Andres I.; Hight, Suzie K.; Minna, John D.; Shay, Jerry W.; Rusek, Adam; Story, Michael D.

    2012-01-01

    Purpose The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). Materials and methods 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Results Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. Conclusions These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression. PMID:20201648

  6. Manpower Analysis Using Discrete Simulation

    DTIC Science & Technology

    2015-12-01

    building using Discrete Event Simulation (DES) and experimentation using Design of Experiments (DOE). We derived five metamodels to identify the most...objectives were met. 14. SUBJECT TERMS manpower policy analysis, discrete event simulation, Simkit 15. NUMBER OF PAGES 85 16. PRICE CODE 17. SECURITY...using Discrete Event Simulation (DES) and experimentation using Design of Experiments (DOE). We derived five metamodels to identify the most

  7. Integrable discrete PT symmetric model.

    PubMed

    Ablowitz, Mark J; Musslimani, Ziad H

    2014-09-01

    An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.

  8. Fracture channel waves

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  9. Thermodynamics of discrete quantum processes

    NASA Astrophysics Data System (ADS)

    Anders, Janet; Giovannetti, Vittorio

    2013-03-01

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  10. Discrete Pearson distributions

    SciTech Connect

    Bowman, K.O.; Shenton, L.R.; Kastenbaum, M.A.

    1991-11-01

    These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

  11. Discrete bisoliton fiber laser

    PubMed Central

    Liu, X. M.; Han, X. X.; Yao, X. K.

    2016-01-01

    Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats. PMID:27767075

  12. Discrete Reliability Projection

    DTIC Science & Technology

    2014-12-01

    Defense, Handbook MIL - HDBK -189C, 2011 Hall, J. B., Methodology for Evaluating Reliability Growth Programs of Discrete Systems, Ph.D. thesis, University...pk,i ] · [ 1− (1− θ̆k) · ( N k · T )]k−m , (2.13) 5 2 Hall’s Model where m is the number of observed failure modes and d∗i estimates di (either based...Mode Failures FEF Ni d ∗ i 1 1 0.95 2 1 0.70 3 1 0.90 4 1 0.90 5 4 0.95 6 2 0.70 7 1 0.80 Using equations 2.1 and 2.2 we can calculate the failure

  13. Discrete anti-gravity

    SciTech Connect

    Noyes, H.P. ); Starson, S. )

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.

  14. Discrete anti-gravity

    NASA Astrophysics Data System (ADS)

    Noyes, H. Pierre; Starson, Scott

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields with the relativistic Wheeler-Feynman action at a distance, allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound.

  15. Discrete bisoliton fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Han, X. X.; Yao, X. K.

    2016-10-01

    Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats.

  16. Immigration and Prosecutorial Discretion.

    PubMed

    Apollonio, Dorie; Lochner, Todd; Heddens, Myriah

    Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration.

  17. Steerable Discrete Cosine Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Fosson, Sophie M.; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  18. Steerable Discrete Cosine Transform.

    PubMed

    Fracastoro, Giulia; Fosson, Sophie M; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely, a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  19. Nonintegrable Schrodinger discrete breathers.

    PubMed

    Gómez-Gardeñes, J; Floría, L M; Peyrard, M; Bishop, A R

    2004-12-01

    In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.

  20. Immigration and Prosecutorial Discretion

    PubMed Central

    Apollonio, Dorie; Lochner, Todd; Heddens, Myriah

    2015-01-01

    Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration. PMID:26146530

  1. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  2. Critically Stressed Fractures as Conduits: Mechanically-Chemically-Mediated Anisotropy of the Effective Permeability of Fractured Rock

    NASA Astrophysics Data System (ADS)

    Lang, P. S.; Nejati, M.; Paluszny, A.; Zimmerman, R. W.

    2015-12-01

    It has long been suggested that fractures that are critically oriented with respect to the in situ stress field are the most likely to be hydraulically conductive. This observation is revisited from the point of view of chemically mediated compaction processes, using numerical multi-physics, multi-scale simulations. Fracture contact is computed explicitly for discrete fracture networks, to find local displacements and contact tractions, which govern the initial permeability of the fractures. Subsequent flow simulations compute the full permeability tensor of the network. Local normal tractions then inform a series of transient reactive-transport, elastic-contact simulations at the grain scale that model the compaction of the fracture void space due to pressure-solution and free-face precipitation, assuming the pore-fluid in equilibrium concentration. The ensuing change of fracture transmissivity feeds back to the discrete fracture network model, wherein changes in the permeability tensor are evaluated. The eigenvectors of the initial permeability tensor reflect the higher permeability of fractures having shear/normal stress ratios near 0.6, which are characterized by relatively high permeability due to their combination of shear displacement and normal compression. The resulting preferred flow direction of the network becomes more pronounced over time as fractures that are subject to larger normal stresses experience stronger compaction, for two reasons. Firstly, larger normal traction over the surfaces provides a stronger drive for pressure solution at the contacting asperities. Secondly, these fractures are subject to smaller shear displacement. Their void space has less pronounced channels and is more sensitive to hydraulic sealing due to contact-zone percolation during the compaction process. It is concluded that mechanically-chemically mediated closure processes contribute to critically stressed fractures being likely hydraulic conduits.

  3. Modern Workflows for Fracture Rock Hydrogeology

    NASA Astrophysics Data System (ADS)

    Doe, T.

    2015-12-01

    Discrete Fracture Network (DFN) is a numerical simulation approach that represents a conducting fracture network using geologically realistic geometries and single-conductor hydraulic and transport properties. In terms of diffusion analogues, equivalent porous media derive from heat conduction in continuous media, while DFN simulation is more similar to electrical flow and diffusion in circuits with discrete pathways. DFN modeling grew out of pioneering work of David Snow in the late 1960s with additional impetus in the 1970's from the development of the development of stochastic approaches for describing of fracture geometric and hydrologic properties. Research in underground test facilities for radioactive waste disposal developed the necessary linkages between characterization technologies and simulation as well as bringing about a hybrid deterministic stochastic approach. Over the past 40 years DFN simulation and characterization methods have moved from the research environment into practical, commercial application. The key geologic, geophysical and hydrologic tools provide the required DFN inputs of conductive fracture intensity, orientation, and transmissivity. Flow logging either using downhole tool or by detailed packer testing identifies the locations of conducting features in boreholes, and image logging provides information on the geology and geometry of the conducting features. Multi-zone monitoring systems isolate the individual conductors, and with subsequent drilling and characterization perturbations help to recognize connectivity and compartmentalization in the fracture network. Tracer tests and core analysis provide critical information on the transport properties especially matrix diffusion unidentified conducting pathways. Well test analyses incorporating flow dimension boundary effects provide further constraint on the conducting geometry of the fracture network.

  4. Stress analysis in platform-switching implants: a 3-dimensional finite element study.

    PubMed

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito

    2012-10-01

    The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

  5. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-10-01

    Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.

  6. [Periprosthetic Acetabulum Fractures].

    PubMed

    Schreiner, A J; Stuby, F; de Zwart, P M; Ochs, B G

    2016-12-01

    In contrast to periprosthetic fractures of the femur, periprosthetic fractures of the acetabulum are rare complications - both primary fractures and fractures in revision surgery. This topic is largely under-reported in the literature; there are a few case reports and no long term results. Due to an increase in life expectancy, the level of patients' activity and the number of primary joint replacements, one has to expect a rise in periprosthetic complications in general and periprosthetic acetabular fractures in particular. This kind of fracture can be intra-, peri- or postoperative. Intraoperative fractures are especially associated with insertion of cementless press-fit acetabular components or revision surgery. Postoperative periprosthetic fractures of the acetabulum are usually related to osteolysis, for example, due to polyethylene wear. There are also traumatic fractures and fractures missed intraoperatively that lead to some kind of insufficiency fracture. Periprosthetic fractures of the acetabulum are treated conservatively if the implant is stable and the fracture is not dislocated. If surgery is needed, there are many possible different surgical techniques and challenging approaches. That is why periprosthetic fractures of the acetabulum should be treated by experts in pelvic surgery as well as revision arthroplasty and the features specific to the patient, fracture and prosthetic must always be considered.

  7. Understanding hydraulic fracturing: a multi-scale problem.

    PubMed

    Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N

    2016-10-13

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'.

  8. 3-dimensionally integrated photo-detector for neutrino physics and beyond

    NASA Astrophysics Data System (ADS)

    Retiere, Fabrice

    2016-09-01

    Silicon photo-multipliers (SiPMs) are a promising solution for the detection of scintillation light of liquid Xenon and Argon in applications requiring minimum radioactivity content such as neutrinoless double beta decay. The nEXO experiment in particular is planning to use SiPM planes covering 5 m2 for the detection of the light emitted within 5tons of liquid Xenon. The 3-dimensionally digital integrated SiPMs (3DdSiPMs) is an emerging technology that if successful would challenge the analog SiPM technology. Indeed, by combining separate photo-detector and electronics chips within a single package, 3DdSiPM achieve excellent performances for photon counting and time stamping, while dissipating minimum power. Being mostly based on high purity silicon chips, 3DdSiPMs are also expected to achieve excellent radiopurity.The development of 3DdSiPMs for applications in liquid Xenon is expected to progress rapidly by altering the design of the first successful chip assembly developed for medical imaging, focusing on minimizing power dissipation and large area (> cm2) scaling. In this talk we will describe the 3DdSiPM concept a solution for ``light to bit conversion'' within a single package and show how it may revolutionize light detection in noble-gas liquids and beyond.

  9. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    PubMed

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  10. The Effect of Asymmetric flow on the 3-Dimensional Symmetric Bogus Vortex

    NASA Astrophysics Data System (ADS)

    LEE, J.; Cheong, H.; Hwang, J.

    2013-12-01

    The effect of asymmetric flow on the 3-dimensional symmetric bogus vortex called as Structure Adjustable Balanced Vortex (SABV) is investigated for 9 tropical cyclones (TCs) observed in Northwest Pacific. NCEP global reanalysis data were used as initial condition, and the high order spectral filter (HSF) were employed to separate asymmetric flow from disturbance flow as following: The first step is that the global field is decomposed into environment and disturbance field. And secondly, the disturbance field is transformed into cylindrical coordinates, and the Fourier transform is applied to the transformed data along the azimuth. Lastly, the inverse Fourier transform is carried out except for wavenumber (WN) 0 component, and it is added to SABV. To investigate the effect of asymmetric flow on the SABV, the Weather Research and Forecasting (WRF) V3.2.1 was employed, which was set to have a single domain with 12 km resolution and YSU, WSM 6 and Kain-Fritsch schemes are used. With these methods, it was found that the track error at 48 h and 72 h was improved by about 13% and 16%, respectively, implying the asymmetric flow should be added to SABV for better performance.

  11. Vaginal High Pressure Zone Assessed by Dynamic 3-Dimensional Ultrasound Images of the Pelvic Floor

    PubMed Central

    JUNG, Sung-Ae; PRETORIUS, Dolores H.; PADDA, Bikram S.; WEINSTEIN, Milena M.; NAGER, Charles W.; den BOER, Derkina J.; MITTAL, Ravinder K.

    2009-01-01

    Objective To study the shape and characteristics of the vaginal high pressure zone (HPZ) by imaging a compliant fluid-filled bag placed in the vaginal HPZ with the 3-dimensional ultrasound (3D US) system. Study Design Nine nulliparous asymptomatic women underwent 3D US imaging and vaginal pressure measurements. A compliant bag was placed in the vagina and filled with various volumes of water. 3D US volumes of the pelvic floor were obtained at each bag volume while the subjects were at rest and during pelvic floor contraction. Results At low volumes, the bag was collapsed for a longitudinal extent of approximately 3.3 ± 0.2 cm (length of vaginal HPZ). With increasing bag volume, there was opening of the vaginal HPZ in the lateral dimension before the anterior-posterior (AP) dimension. Pelvic floor contraction produced a decrease in the AP dimension but not the lateral dimension of the bag in the region of the vaginal HPZ. Conclusion We propose that the shape and characteristics of the vaginal HPZ are consistent with the hypothesis that the puborectalis muscle is responsible for the genesis of the vaginal HPZ. PMID:17618755

  12. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  13. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    PubMed Central

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf , Muhammad N.

    2016-01-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity. PMID:28008983

  14. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model

    PubMed Central

    Tezera, Liku B; Bielecka, Magdalena K; Chancellor, Andrew; Reichmann, Michaela T; Shammari, Basim Al; Brace, Patience; Batty, Alex; Tocheva, Annie; Jogai, Sanjay; Marshall, Ben G; Tebruegge, Marc; Jayasinghe, Suwan N; Mansour, Salah; Elkington, Paul T

    2017-01-01

    Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches. DOI: http://dx.doi.org/10.7554/eLife.21283.001 PMID:28063256

  15. Inter-surface interactions in a 3-dimensional topological insulator : Bi2Se3 thin film

    NASA Astrophysics Data System (ADS)

    Jin, Hosub; Song, Jung-Hwan; Freeman, Arthur

    2010-03-01

    Recently much attention has focused on 3-dimensional strong topological insulators as a new quantum state of matter, such as Bi2Se3 and Bi2Te3. One of their intriguing features is a topologically protected surface state whose quasiparticle dispersion shows a Dirac cone. Due to lack of backscattering and robustness against disorder and interaction, surface states have the potential to be perfect conducting channels which carry not only charge but also spin currents. Here, we present a theoretical study of electronic structures and surfaces of thin film Bi2Se3 using the highly precise FLAPW methodfootnotetext Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B, 24, 864 (1981). Our calculated results focus on the interaction between surface states on opposing sides of the slab. The gap opening from the inter-surface interaction can be easily explained by simple symmetry arguments considering both time-reversal and spatial inversion. For a 6 quintuple layer slab (˜6 nm), a 1.06 meV gap at the γ point survives due to the inter-surface interactions, and we discuss how to preserve the massless excitations despite this inter-surface interaction.

  16. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines.

    PubMed

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC.

  17. Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode

    NASA Astrophysics Data System (ADS)

    Li, Xuanhua; Choy, Wallace C. H.; Ren, Xingang; Xin, Jianzhuo; Lin, Peng; Leung, Dennis C. W.

    2013-04-01

    Plasmonic back reflectors have recently become a promising strategy for realizing efficient organic solar cell (OSCs). Since plasmonic effects are strongly sensitive to light polarization, it is highly desirable to simultaneously achieve polarization-independent response and enhanced power conversion efficiency (PCE) by designing the nanostructured geometry of plasmonic reflector electrode. Here, through a strategic analysis of 2-dimensional grating (2D) and 3-dimensional patterns (3D), with similar periodicity as a plasmonic back reflector, we find that the OSCs with 3D pattern achieve the best PCE enhancement by 24.6%, while the OSCs with 2D pattern can offer 17.5% PCE enhancement compared to the optimized control OSCs. Importantly, compared with the 2D pattern, the 3D pattern shows a polarization independent plasmonic response, which will greatly extend its uses in photovoltaic applications. This work shows the significances of carefully selecting and designing geometry of plasmonic nanostructures in achieving high-efficient, polarization-independent plasmonic OSCs.

  18. Embedding and publishing interactive, 3-dimensional, scientific figures in Portable Document Format (PDF) files.

    PubMed

    Barnes, David G; Vidiassov, Michail; Ruthensteiner, Bernhard; Fluke, Christopher J; Quayle, Michelle R; McHenry, Colin R

    2013-01-01

    With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2).

  19. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report.

    PubMed

    Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott

    2016-03-01

    Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor.

  20. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    PubMed Central

    Galati, Domenico F.; Abuin, David S.; Tauber, Gabriel A.; Pham, Andrew T.; Pearson, Chad G.

    2016-01-01

    ABSTRACT Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722

  1. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  2. MAPAG: a computer program to construct 2- and 3-dimensional antigenic maps.

    PubMed

    Aguilar, R C; Retegui, L A; Roguin, L P

    1994-01-01

    The contact area between an antibody (Ab) and the antigen (Ag) is called antigenic determinant or epitope. The first step in the characterization of an Ag by using monoclonal antibodies (MAb) is to map the relative distribution of the corresponding epitopes on the Ag surface. The computer program MAPAG has been devised to automatically construct antigenic maps. MAPAG is fed with a binary matrix of experimental data indicating the ability of paired MAb to bind or not simultaneously to the Ag. The program is interactive menu-driven and allows the user an easy data handling. MAPAG utilizes iterative processes to construct and to adjust the final map, which is graphically shown as a 2- or a 3-dimensional model. Additionally, the antigenic map obtained can be optionally modified by the user or readjusted by the program. The suitability of MAPAG was illustrated by running experimental data from literature and comparing antigenic maps constructed by the program with those elaborated by the investigators without the assistance of a computer. Furthermore, since some MAb could present negative allosteric effects leading to misinterpretation of data, MAPAG has been provided with an approximate reasoning module to solve such anomalous situations. Results indicated that the program can be successfully employed as a simple, fast and reliable antigenic model-builder.

  3. Fusion of radar data to extract 3-dimensional objects LDRD final report

    SciTech Connect

    Fellerhoff, R.; Hensley, B.; Carande, R.; Burkhart, G.; Ledner, R.

    1997-03-01

    Interferometric Synthetic Aperture Radar (IFSAR) is a very promising technology for remote mapping of 3-Dimensional objects. In particular, 3-D maps of urban areas are extremely important to a wide variety of users, both civilian and military. However, 3-D maps produced by traditional optical stereo (stereogrammetry) techniques can be quite expensive to obtain, and accurate urban maps can only be obtained with a large amount of human-intensive interpretation work. IFSAR has evolved over the last decade as a mapping technology that promises to eliminate much of the human-intensive work in producing elevation maps. However, IFSAR systems have only been robustly demonstrated in non-urban areas, and have not traditionally been able to produce data with enough detail to be of general use in urban areas. Sandia Laboratories Twin Otter IFSAR was the first mapping radar system with the proper parameter set to provide sufficiently detailed information in a large number of urban areas. The goal of this LDRD was to fuse previously unused information derived from IFSAR data in urban areas that can be used to extract accurate digital elevation models (DEMs) over wide areas without intensive human interaction.

  4. Cerebral Degeneration in Amyotrophic Lateral Sclerosis Revealed by 3-Dimensional Texture Analysis

    PubMed Central

    Maani, Rouzbeh; Yang, Yee-Hong; Emery, Derek; Kalra, Sanjay

    2016-01-01

    Introduction: Routine MR images do not consistently reveal pathological changes in the brain in ALS. Texture analysis, a method to quantitate voxel intensities and their patterns and interrelationships, can detect changes in images not apparent to the naked eye. Our objective was to evaluate cerebral degeneration in ALS using 3-dimensional texture analysis of MR images of the brain. Methods: In a case-control design, voxel-based texture analysis was performed on T1-weighted MR images of 20 healthy subjects and 19 patients with ALS. Four texture features, namely, autocorrelation, sum of squares variance, sum average, and sum variance were computed. Texture features were compared between the groups by statistical parametric mapping and correlated with clinical measures of disability and upper motor neuron dysfunction. Results: Texture features were different in ALS in motor regions including the precentral gyrus and corticospinal tracts. To a lesser extent, changes were also found in the thalamus, cingulate gyrus, and temporal lobe. Texture features in the precentral gyrus correlated with disease duration, and in the corticospinal tract they correlated with finger tapping speed. Conclusions: Changes in MR image textures are present in motor and non-motor regions in ALS and correlate with clinical features. Whole brain texture analysis has potential in providing biomarkers of cerebral degeneration in ALS. PMID:27064416

  5. The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process.

    PubMed

    Stockmarr, Anders

    2002-11-01

    Populations of particles dispersed in the 2-dimensional plane from a single point-source may be grouped as focus expansion patterns, with an exponentially decreasing density, and more diffuse patterns with thicker tails. Exponentially decreasing distributions are often modelled as the result of 2-dimensional diffusion processes acting to disperse the particles, while thick-tailed distributions tend to be modelled by purely descriptive distributions. Models based on the Cauchy distribution have been suggested, but these have not been related to diffusion modelling. However, the distribution of particles dispersed from a point source by a 3-dimensional Brownian motion that incorporates a constant drift, under the condition that the particle starts at a given height and is stopped when it reaches the xy plane (zero height) may be shown to result in both slim-tailed exponentially decreasing densities, and thick-tailed polynomially decreasing densities with infinite mean travel distance from the source, depending on parameter values. The drift in the third coordinate represents gravitation, while the drift in the first and second represents a (constant) wind. Conditions for the density having exponentially decreasing tails is derived in terms of gravitation and wind, with a special emphasis on applications to light-weighted particles such as fungal spores.

  6. Embedding and Publishing Interactive, 3-Dimensional, Scientific Figures in Portable Document Format (PDF) Files

    PubMed Central

    Barnes, David G.; Vidiassov, Michail; Ruthensteiner, Bernhard; Fluke, Christopher J.; Quayle, Michelle R.; McHenry, Colin R.

    2013-01-01

    With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2). PMID:24086243

  7. 3-Dimensional analysis for class III malocclusion patients with facial asymmetry

    PubMed Central

    Ki, Eun-Jung; Cheon, Hae-Myung; Choi, Eun-Joo; Kwon, Kyung-Hwan

    2013-01-01

    Objectives The aim of this study is to investigate the correlation between 2-dimensional (2D) cephalometric measurement and 3-dimensional (3D) cone beam computed tomography (CBCT) measurement, and to evaluate the availability of 3D analysis for asymmetry patients. Materials and Methods A total of Twenty-seven patients were evaluated for facial asymmetry by photograph and cephalometric radiograph, and CBCT. The 14 measurements values were evaluated and those for 2D and 3D were compared. The patients were classified into two groups. Patients in group 1 were evaluated for symmetry in the middle 1/3 of the face and asymmetry in the lower 1/3 of the face, and those in group 2 for asymmetry of both the middle and lower 1/3 of the face. Results In group 1, significant differences were observed in nine values out of 14 values. Values included three from anteroposterior cephalometric radiograph measurement values (cant and both body height) and six from lateral cephalometric radiographs (both ramus length, both lateral ramal inclination, and both gonial angles). In group 2, comparison between 2D and 3D showed significant difference in 10 factors. Values included four from anteroposterior cephalometric radiograph measurement values (both maxillary height, both body height) and six from lateral cephalometric radiographs (both ramus length, both lateral ramal inclination, and both gonial angles). Conclusion Information from 2D analysis was inaccurate in several measurements. Therefore, in asymmetry patients, 3D analysis is useful in diagnosis of asymmetry. PMID:24471038

  8. Casting of 3-dimensional footwear prints in snow with foam blocks.

    PubMed

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear.

  9. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  10. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  11. 3-dimensional (orthogonal) structural complexity of time-series data using low-order moment analysis

    NASA Astrophysics Data System (ADS)

    Law, Victor J.; O'Neill, Feidhlim T.; Dowling, Denis P.

    2012-09-01

    The recording of atmospheric pressure plasmas (APP) electro-acoustic emission data has been developed as a plasma metrology tool in the last couple of years. The industrial applications include automotive and aerospace industry for surface activation of polymers prior to bonding [1, 2, and 3]. It has been shown that as the APP jets proceeds over a treatment surface, at a various fixed heights, two contrasting acoustic signatures are produced which correspond to two very different plasma-surface entropy states (blow arc ˜ 1700 ± 100 K; and; afterglow ˜ 300-400 K) [4]. The metrology challenge is now to capture deterministic data points within data clusters. For this to be achieved new real-time data cluster measurement techniques needs to be developed [5]. The cluster information must be extracted within the allotted process time period if real-time process control is to be achieved. This abstract describes a theoretical structural complexity analysis (in terms crossing points) of 2 and 3-dimentional line-graphs that contain time-series data. In addition LabVIEW implementation of the 3-dimensional data analysis is performed. It is also shown the cluster analysis technique can be transfer to other (non-acoustic) datasets.

  12. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications.

  13. Scene-of-crime analysis by a 3-dimensional optical digitizer: a useful perspective for forensic science.

    PubMed

    Sansoni, Giovanna; Cattaneo, Cristina; Trebeschi, Marco; Gibelli, Daniele; Poppa, Pasquale; Porta, Davide; Maldarella, Monica; Picozzi, Massimo

    2011-09-01

    Analysis and detailed registration of the crime scene are of the utmost importance during investigations. However, this phase of activity is often affected by the risk of loss of evidence due to the limits of traditional scene of crime registration methods (ie, photos and videos). This technical note shows the utility of the application of a 3-dimensional optical digitizer on different crime scenes. This study aims in fact at verifying the importance and feasibility of contactless 3-dimensional reconstruction and modeling by optical digitization to achieve an optimal registration of the crime scene.

  14. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE PAGES

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  15. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    SciTech Connect

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipated during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.

  16. Discrete Mathematics and Its Applications

    ERIC Educational Resources Information Center

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  17. Micromechanical Aspects of Hydraulic Fracturing Processes

    NASA Astrophysics Data System (ADS)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the

  18. Paratrooper's Ankle Fracture: Posterior Malleolar Fracture

    PubMed Central

    Young, Ki Won; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-01-01

    Background We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Methods Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. Results The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Conclusions Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were

  19. Upscaling Multiphase Fluid Flow in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Matthai, S.; Maghami-Nick, H.; Belayneh, M.; Geiger, S.

    2009-04-01

    Hydrocarbon recovery from fractured porous reservoirs is difficult to predict as it depends on the focusing of the flow and the local balance of viscous, gravitational, and capillary forces. Hecto-metre scale sub-volumes of fractured oil reservoirs contain thousands of fractures with highly variable flow properties, dimensions and orientations. This complexity precludes direct geometric incorporation into field scale multiphase flow models. Macroscopic laws of their integral effects on multiphase flow are required. These can be investigated by DFM (discrete fracture and matrix) numerical simulations based on discrete fracture models representing fractured reservoir analogues. Here we present DFM results indicating that hecto-metre-scale relative permeability, the time to water breakthrough, and the subsequent water cut primarily depend on the fracture-to-rock matrix flux ratio, qf/qm, quantifying the proportion of the cross-sectional flux that occurs through the fractures. Relative permeability during imbibition runs is best approximated by a rate-dependent new model taking into account capillary fracture-matrix transfer. The up-scaled fractional flow function fo(sw) derived from this new kri formulation is convex with a near-infinity slope at the residual water saturation. This implies that the hector-metre scale spatially averaged Buckley-Leverett equation for fractured porous media does not contain a shock, but a long leading edge in the averaged profile of the invading phase. This dispersive behaviour marks the progressively widening saturation front and an early water breakthrough observed in the discrete fracture reservoir analogues. Since fracture porosity φf is usually only a fraction of a percent, a cross-over from krw < kro to krw/kro ≈ qf/qm occurs after the first few percent of recovery, and because qf/qm ranges between 10-1,000, sweep efficiency ignoring the positive influence of counter-current imbibition is extremely low. The accuracy of reservoir

  20. [Fractures of the forefoot].

    PubMed

    Richter, M

    2011-10-01

    Fractures of the forefoot are common and comprise approximately two thirds of all foot fractures. Forefoot fractures are caused by direct impact or the effect of indirect force. The forces exerted can range from repetitive minor load (stress fractures) to massive destructive forces (complex trauma). The clinical course in forefoot fractures is typically more favourable than in fractures of the mid- and hindfoot. The incidence of complications like infection or pseudarthrosis is low. Exceptions are rare fractures of the proximal shaft of the fifth metatarsal and the sesamoids with higher pseudarthrosis rates. Malunited metatarsal fractures can cause painful conditions that should even be treated operatively. Differences in structure and function of the different forefoot areas and specific fracture types require an adapted management of these special injuries.

  1. Management of metacarpal fractures.

    PubMed

    McNemar, Thomas B; Howell, Julianne Wright; Chang, Eric

    2003-01-01

    Fractures of the hand are the most common fractures of the human skeleton. Metacarpal fractures account for 30% to 50% of all of hand fractures. The mechanisms of these injuries vary from axial loading forces to direct blows to the dorsal hand. Resulting deformities include malrotation, angulation, and shortening. Treatment modalities vary from nonoperative reduction to open reduction and internal fixation. The treatment algorithm is guided by the location of the fracture, the stability of the fracture, and the resultant deformity. Operative procedures, although they may lead to excellent radiographic reduction of fractures, often lead to debilitating stiffness from the inflammatory reaction of the surgical procedure. Operative fixation must be employed judiciously and offered only when confident that non-operative therapy can be improved on with operative intervention. This article reviews the various types of metacarpal fractures, with the treatment options available for each fracture. The indications for each treatment modality, postoperative care, and rehabilitation are presented.

  2. An upscaling procedure for fractured reservoirs with embedded grids

    NASA Astrophysics Data System (ADS)

    Fumagalli, Alessio; Pasquale, Luca; Zonca, Stefano; Micheletti, Stefano

    2016-08-01

    Upscaling of geological models for reservoir simulation is an active and important area of research. In particular, we are interested in reservoirs where the rock matrix exhibits an intricate network of fractures, which usually acts as a preferential path to the flow. Accounting for fractures' contribution in the simulation of a reservoir is of paramount importance. Here we have focused on obtaining effective parameters (e.g., transmissibility) on a 3-D computational grid on the reservoir scale, which account for the presence, at a finer spatial scale, of fractures and a network of fractures. We have essentially followed the idea illustrated in Karimi-Fard et al. (2006), yet this work has some notable aspects of innovation in the way the procedure has been implemented, and in its capability to consider rather general corner-point grids, like the ones normally used in reservoir simulations in the industry, and complex and realistic fracture networks, possibly not fully connected inside the coarse cells. In particular, novel contribution is the employment of an Embedded Discrete Fracture Model (EDFM) for computing fracture-fracture and matrix-fracture transmissibilities, with a remarkable gain in speedup. The output is in the form of transmissibility that, although obtained by considering single-phase flow, can be used for coarse-scale multiphase reservoir simulations, also via industrial software, such as Eclipse, Intersect, or GPRS. The results demonstrate the effectiveness and computational efficiency of the numerical procedure which is now ready for further testing and industrialization.

  3. Effects of foot posture on fifth metatarsal fracture healing: a finite element study.

    PubMed

    Brilakis, Emmanuel; Kaselouris, Evaggelos; Xypnitos, Frank; Provatidis, Christopher G; Efstathopoulos, Nicolas

    2012-01-01

    The goal of this study was to evaluate the effects of maintaining different foot postures during healing of proximal fifth metatarsal fractures for each of 3 common fracture types. A 3-dimensional (3D) finite element model of a human foot was developed and 3 loading situations were evaluated, including the following: (1) normal weightbearing, (2) standing with the affected foot in dorsiflexion at the ankle, and (3) standing with the affected foot in eversion. Three different stages of the fracture-healing process were studied, including: stage 1, wherein the material interposed between the fractured edges was the initial connective tissue; stage 2, wherein connective tissue had been replaced by soft callus; and stage 3, wherein soft callus was replaced by mature bone. Thus, 30 3D finite element models were analyzed that took into account fracture type, foot posture, and healing stage. Different foot postures did not statistically significantly affect the peak-developed strains on the fracture site. When the fractured foot was everted or dorsiflexed, it developed a slightly higher strain within the fracture than when it was in the normal weightbearing position. In Jones fractures, eversion of the foot caused further torsional strain and we believe that this position should be avoided during foot immobilization during the treatment of fifth metatarsal base fractures. Tuberosity avulsion fractures and Jones fractures seem to be biomechanically stable fractures, as compared with shaft fractures. Our understanding of the literature and experience indicate that current clinical observations and standard therapeutic options are in accordance with the results that we observed in this investigation, with the exception of Jones fractures.

  4. Uranus - Discrete Cloud

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This false-color Voyager picture of Uranus shows a discrete cloud seen as a bright streak near the planet's limb. The picture is a highly processed composite of three images obtained Jan. 14, 1986, when the spacecraft was 12.9 million kilometers (8.0 million miles) from the planet. The cloud visible here is the most prominent feature seen in a series of Voyager images designed to track atmospheric motions. (The occasional donut-shaped features, including one at the bottom, are shadows cast by dust in the camera optics; the processing necessary to bring out the faint features on the planet also brings out these camera blemishes.) Three separate images were shuttered through violet, blue and orange filters. Each color image showed the cloud to a different degree; because they were not exposed at exactly the same time, the images were processed to provide a correction for a good spatial match. In a true-color image, the cloud would be barely discernible; the false color helps bring out additional details. The different colors imply variations in vertical structure, but as yet is not possible to be specific about such differences. One possibility is that the Uranian atmosphere contains smog-like constituents, in which case some color differences may represent differences in how these molecules are distributed. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  5. Discreteness inducing coexistence

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira

    2013-12-01

    Consider two species that diffuse through space. Consider further that they differ only in initial densities and, possibly, in diffusion constants. Otherwise they are identical. What happens if they compete with each other in the same environment? What is the influence of the discrete nature of the interactions on the final destination? And what are the influence of diffusion and additive fluctuations corresponding to random migration and immigration of individuals? This paper aims to answer these questions for a particular competition model that incorporates intra and interspecific competition between the species. Based on mean field theory, the model has a stationary state dependent on the initial density conditions. We investigate how this initial density dependence is affected by the presence of demographic multiplicative noise and additive noise in space and time. There are three main conclusions: (1) Additive noise favors denser populations at the expense of the less dense, ratifying the competitive exclusion principle. (2) Demographic noise, on the other hand, favors less dense populations at the expense of the denser ones, inducing equal densities at the quasi-stationary state, violating the aforementioned principle. (3) The slower species always suffers the more deleterious effects of statistical fluctuations in a homogeneous medium.

  6. A continuous damage random thresholds model for simulating the fracture behavior of nacre.

    PubMed

    Nukala, Phani K V V; Simunovic, Srdan

    2005-10-01

    This study investigates the fracture properties of nacre using a discrete lattice model based on continuous damage random threshold fuse network. The discrete lattice topology of the model is based on nacre's unique brick and mortar microarchitecture. The mechanical behavior of each of the bonds in the discrete lattice model is governed by the characteristic modular damage evolution of the organic matrix and the mineral bridges between the aragonite platelets. The numerical results obtained using this simple discrete lattice model are in very good agreement with the previously obtained experimental results, such as nacre's stiffness, tensile strength, and work of fracture. The analysis indicates that nacre's superior toughness is a direct consequence of ductility (maximum shear strain) of the organic matrix in terms of repeated unfolding of protein molecules, and its fracture strength is a result of its ordered brick and mortar architecture with significant overlap of the platelets, and shear strength of the organic matrix.

  7. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  8. Hip fracture risk estimation based on principal component analysis of QCT atlas: a preliminary study

    NASA Astrophysics Data System (ADS)

    Li, Wenjun; Kornak, John; Harris, Tamara; Lu, Ying; Cheng, Xiaoguang; Lang, Thomas

    2009-02-01

    We aim to capture and apply 3-dimensional bone fragility features for fracture risk estimation. Using inter-subject image registration, we constructed a hip QCT atlas comprising 37 patients with hip fractures and 38 age-matched controls. In the hip atlas space, we performed principal component analysis to identify the principal components (eigen images) that showed association with hip fracture. To develop and test a hip fracture risk model based on the principal components, we randomly divided the 75 QCT scans into two groups, one serving as the training set and the other as the test set. We applied this model to estimate a fracture risk index for each test subject, and used the fracture risk indices to discriminate the fracture patients and controls. To evaluate the fracture discrimination efficacy, we performed ROC analysis and calculated the AUC (area under curve). When using the first group as the training group and the second as the test group, the AUC was 0.880, compared to conventional fracture risk estimation methods based on bone densitometry, which had AUC values ranging between 0.782 and 0.871. When using the second group as the training group, the AUC was 0.839, compared to densitometric methods with AUC values ranging between 0.767 and 0.807. Our results demonstrate that principal components derived from hip QCT atlas are associated with hip fracture. Use of such features may provide new quantitative measures of interest to osteoporosis.

  9. Numerical study of the directed polymer in a 1 + 3 dimensional random medium

    NASA Astrophysics Data System (ADS)

    Monthus, C.; Garel, T.

    2006-09-01

    The directed polymer in a 1+3 dimensional random medium is known to present a disorder-induced phase transition. For a polymer of length L, the high temperature phase is characterized by a diffusive behavior for the end-point displacement R2 ˜L and by free-energy fluctuations of order ΔF(L) ˜O(1). The low-temperature phase is characterized by an anomalous wandering exponent R2/L ˜Lω and by free-energy fluctuations of order ΔF(L) ˜Lω where ω˜0.18. In this paper, we first study the scaling behavior of various properties to localize the critical temperature Tc. Our results concerning R2/L and ΔF(L) point towards 0.76 < Tc ≤T2=0.79, so our conclusion is that Tc is equal or very close to the upper bound T2 derived by Derrida and coworkers (T2 corresponds to the temperature above which the ratio bar{Z_L^2}/(bar{Z_L})^2 remains finite as L ↦ ∞). We then present histograms for the free-energy, energy and entropy over disorder samples. For T ≫Tc, the free-energy distribution is found to be Gaussian. For T ≪Tc, the free-energy distribution coincides with the ground state energy distribution, in agreement with the zero-temperature fixed point picture. Moreover the entropy fluctuations are of order ΔS ˜L1/2 and follow a Gaussian distribution, in agreement with the droplet predictions, where the free-energy term ΔF ˜Lω is a near cancellation of energy and entropy contributions of order L1/2.

  10. Development of a 3-dimensional dosimetry system for Leksell Gamma Knife Perfexion

    NASA Astrophysics Data System (ADS)

    Yoon, KyoungJun; Kwak, JungWon; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-07-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife Perfexion (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S:Tb phosphor sheets for dosimetric measurements. Also, to compensate for the lack of backscatter, we located a 1-cm-thick poly methyl methacrylate (PMMA) plate downstream of the active layer. The PMMA plate was transparent to scintillation light to reach the CCD with 1200 × 1200 pixels and a 5.2 µm pitch. With this system, 300 images with a 0.2-mm slice gap were acquired under each of three collimator setups, i.e. 4-mm, 8-mm, and 16-mm, respectively. The 2D projected images taken by the CCD camera were compared with the dose distributions measured by the EBT3 films under the same conditions. All 2D distributions were normalized to the maximum values derived by fitting peaks for each collimator setup. The differences in the full widths at half maximum (FWHM) of 2D profiles between CCD images and film doses were measured to be less than 0.3-mm. The scanning task for all peak regions took less than three minutes with the new instrument. So it can be utilized as a QA tool for the Gamma knife radiosurgery system instead of film dosimetry, the use of which requires much more time and many more resources.

  11. Immediate 3-dimensional ridge augmentation after extraction of periodontally hopeless tooth using chinblock graft

    PubMed Central

    Desai, Ankit; Thomas, Raison; A. Baron, Tarunkumar; Shah, Rucha; Mehta, Dhoom-Singh

    2015-01-01

    Background The aim of the present study was to evaluate clinically and radiographically, the efficacy of immediate ridge augmentation to reconstruct the vertical and horizontal dimensions at extraction sites of periodontally hopeless tooth using an autogenous chin block graft. Material and Methods A total of 11 patients (7 male & 4 female) with localized advanced bone loss around single rooted teeth having hopeless prognosis and indicated for extraction were selected for the study. The teeth were atraumatically extracted and deficient sites were augmented using autogenous chin block graft. Parameters like clinically soft tissue height - width and also radiographic ridge height -width were measured before and 6 months after augmentation. Obtained results were tabulated and analysed statistically. Results After 6 months of immediate ridge augmentation, the mean gain in radiographic vertical height and horizontal width was 7.64 + 1.47 mm (P = 0.005) and 5.28 + 0.46 mm (P = 0.007) respectively which was found to be statistically significant (P < 0.05). Mean change of width gain of 0.40mm and height loss of 0.40mm of soft tissue parameters, from the baseline till completion of the study at 6 months was observed. Conclusions The present study showed predictable immediate ridge augmentation with autogenous chin block graft at periodontally compromised extraction site. It can provide adequate hard and soft tissue foundation for perfect 3-Dimensional prosthetic positioning of implant in severely deficient ridges. Key words:Immediate ridge augmentation, periondontally hopeless tooth, autogenous chin graft, dental implant. PMID:26644832

  12. Technique for comprehensive head and neck irradiation using 3-dimensional conformal proton therapy

    SciTech Connect

    McDonald, Mark W.; Walter, Alexander S.; Hoene, Ted A.

    2015-01-01

    Owing to the technical and logistical complexities of matching photon and proton treatment modalities, we developed and implemented a technique of comprehensive head and neck radiation using 3-dimensional (3D) conformal proton therapy. A monoisocentric technique was used with a 30-cm snout. Cervical lymphatics were treated with 3 fields: a posterior-anterior field with a midline block and a right and a left posterior oblique field. The matchline of the 3 cervical nodal fields with the primary tumor site fields was staggered by 0.5 cm. Comparative intensity-modulated photon plans were later developed for 12 previously treated patients to provide equivalent target coverage, while matching or improving on the proton plans' sparing of organs at risk (OARs). Dosimetry to OARs was evaluated and compared by treatment modality. Comprehensive head and neck irradiation using proton therapy yielded treatment plans with significant dose avoidance of the oral cavity and midline neck structures. When compared with the generated intensity-modulated radiation therapy (IMRT) plans, the proton treatment plans yielded statistically significant reductions in the mean and integral radiation dose to the oral cavity, larynx, esophagus, and the maximally spared parotid gland. There was no significant difference in mean dose to the lesser-spared parotid gland by treatment modality or in mean or integral dose to the spared submandibular glands. A technique for cervical nodal irradiation using 3D conformal proton therapy with uniform scanning was developed and clinically implemented. Use of proton therapy for cervical nodal irradiation resulted in large volume of dose avoidance to the oral cavity and low dose exposure to midline structures of the larynx and the esophagus, with lower mean and integral dose to assessed OARs when compared with competing IMRT plans.

  13. Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.

    PubMed

    Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin

    2013-12-01

    Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency.

  14. Surgical Classification of the Mandibular Deformity in Craniofacial Microsomia Using 3-Dimensional Computed Tomography

    PubMed Central

    Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.

    2016-01-01

    Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097

  15. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Shimazu, T.; Yuda, T.; Miyamoto, K.; Yamashita, M.; Ueda, J.

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.

  16. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    SciTech Connect

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  17. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.

    PubMed

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz

    2016-12-01

    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.

  18. Predicting diffusive transport of cationic liposomes in 3-dimensional tumor spheroids.

    PubMed

    Wientjes, Michael G; Yeung, Bertrand Z; Lu, Ze; Wientjes, M Guillaume; Au, Jessie L S

    2014-10-28

    Nanotechnology is widely used in cancer research. Models that predict nanoparticle transport and delivery in tumors (including subcellular compartments) would be useful tools. This study tested the hypothesis that diffusive transport of cationic liposomes in 3-dimensional (3D) systems can be predicted based on liposome-cell biointerface parameters (binding, uptake, retention) and liposome diffusivity. Liposomes comprising different amounts of cationic and fusogenic lipids (10-30mol% DOTAP or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1-20mol% DOPE or 1,2-dioleoyl-3-trimethylammonium-propane, +25 to +44mV zeta potential) were studied. We (a) measured liposome-cell biointerface parameters in monolayer cultures, and (b) calculated effective diffusivity based on liposome size and spheroid composition. The resulting parameters were used to simulate the liposome concentration-depth profiles in 3D spheroids. The simulated results agreed with the experimental results for liposomes comprising 10-30mol% DOTAP and ≤10mol% DOPE, but not for liposomes with higher DOPE content. For the latter, model modifications to account for time-dependent extracellular concentration decrease and liposome size increase did not improve the predictions. The difference among low- and high-DOPE liposomes suggests concentration-dependent DOPE properties in 3D systems that were not captured in monolayers. Taken together, our earlier and present studies indicate the diffusive transport of neutral, anionic and cationic nanoparticles (polystyrene beads and liposomes, 20-135nm diameter, -49 to +44mV) in 3D spheroids, with the exception of liposomes comprising >10mol% DOPE, can be predicted based on the nanoparticle-cell biointerface and nanoparticle diffusivity. Applying the model to low-DOPE liposomes showed that changes in surface charge affected the liposome localization in intratumoral subcompartments within spheroids.

  19. Usefulness of 3-dimensional stereotactic surface projection FDG PET images for the diagnosis of dementia

    PubMed Central

    Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun

    2016-01-01

    Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593

  20. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    SciTech Connect

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  1. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.

    PubMed

    Moroni, L; Hendriks, J A A; Schotel, R; de Wijn, J R; van Blitterswijk, C A

    2007-02-01

    This report describes a novel system to create rapid prototyped 3-dimensional (3D) fibrous scaffolds with a shell-core fiber architecture in which the core polymer supplies the mechanical properties and the shell polymer acts as a coating providing the desired physicochemical surface properties. Poly[(ethylene oxide) terephthalate-co-poly(butylene) terephthalate] (PEOT/PBT) 3D fiber deposited (3DF) scaffolds were fabricated and examined for articular cartilage tissue regeneration. The shell polymer contained a higher molecular weight of the initial poly(ethylene glycol) (PEG) segments used in the copolymerization and a higher weight percentage of the PEOT domains compared with the core polymer. The 3DF scaffolds entirely produced with the shell or with the core polymers were also considered. After 3 weeks of culture, scaffolds were homogeneously filled with cartilage tissue, as assessed by scanning electron microscopy. Although comparable amounts of entrapped chondrocytes and of extracellular matrix formation were found for all analyzed scaffolds, chondrocytes maintained their rounded shape and aggregated during the culture period on shell-core 3DF scaffolds, suggesting a proper cell differentiation into articular cartilage. This finding was also observed in the 3DF scaffolds fabricated with the shell composition only. In contrast, cells spread and attached on scaffolds made simply with the core polymer, implying a lower degree of differentiation into articular cartilaginous tissue. Furthermore, the shell-core scaffolds displayed an improved dynamic stiffness as a result of a "prestress" action of the shell polymer on the core one. In addition, the dynamic stiffness of the constructs increased compared with the stiffness of the bare scaffolds before culture. These findings suggest that shell-core 3DF PEOT/PBT scaffolds with desired mechanical and surface properties are a promising solution for improved cartilage tissue engineering.

  2. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament

    PubMed Central

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-01-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics. PMID:28105122

  3. Future directions in 3-dimensional imaging and neurosurgery: stereoscopy and autostereoscopy.

    PubMed

    Christopher, Lauren A; William, Albert; Cohen-Gadol, Aaron A

    2013-01-01

    Recent advances in 3-dimensional (3-D) stereoscopic imaging have enabled 3-D display technologies in the operating room. We find 2 beneficial applications for the inclusion of 3-D imaging in clinical practice. The first is the real-time 3-D display in the surgical theater, which is useful for the neurosurgeon and observers. In surgery, a 3-D display can include a cutting-edge mixed-mode graphic overlay for image-guided surgery. The second application is to improve the training of residents and observers in neurosurgical techniques. This article documents the requirements of both applications for a 3-D system in the operating room and for clinical neurosurgical training, followed by a discussion of the strengths and weaknesses of the current and emerging 3-D display technologies. An important comparison between a new autostereoscopic display without glasses and current stereo display with glasses improves our understanding of the best applications for 3-D in neurosurgery. Today's multiview autostereoscopic display has 3 major benefits: It does not require glasses for viewing; it allows multiple views; and it improves the workflow for image-guided surgery registration and overlay tasks because of its depth-rendering format and tools. Two current limitations of the autostereoscopic display are that resolution is reduced and depth can be perceived as too shallow in some cases. Higher-resolution displays will be available soon, and the algorithms for depth inference from stereo can be improved. The stereoscopic and autostereoscopic systems from microscope cameras to displays were compared by the use of recorded and live content from surgery. To the best of our knowledge, this is the first report of application of autostereoscopy in neurosurgery.

  4. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament.

    PubMed

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-12-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics.

  5. New Stereoacuity Test Using a 3-Dimensional Display System in Children

    PubMed Central

    Kim, Jonghyun; Hong, Keehoon; Lee, Byoungho; Hwang, Jeong-Min

    2015-01-01

    The previously developed 3-dimensional (3D) display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years) with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle) with a wide range of crossed horizontal disparities (3000 to 20 arcsec) were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA) and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional) or behind (proposed) the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed) were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus. PMID:25693034

  6. New stereoacuity test using a 3-dimensional display system in children.

    PubMed

    Han, Sang Beom; Yang, Hee Kyung; Kim, Jonghyun; Hong, Keehoon; Lee, Byoungho; Hwang, Jeong-Min

    2015-01-01

    The previously developed 3-dimensional (3D) display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years) with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle) with a wide range of crossed horizontal disparities (3000 to 20 arcsec) were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA) and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional) or behind (proposed) the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed) were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus.

  7. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles.

    PubMed

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin

    2013-07-01

    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  8. Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components.

    PubMed

    Wilson, Nicole A; Sheehan, Frances T

    2009-08-25

    The purpose of this study was to provide the first in vivo 3-dimensional (3D) measures of knee extensor moment arms, measured during dynamic volitional activity. The hypothesis was that the vastus lateralis (VL) and vastus medialis (VM) have significant off-axis moment arms compared to the central quadriceps components. After obtaining informed consent, three 3D dynamic cine phase contrast (PC) MRI sets (x,y,z velocity and anatomic images) were acquired from 22 subjects during active knee flexion and extension. Using a sagittal-oblique and two coronal-oblique imaging planes, the origins and insertions of each quadriceps muscle were identified and tracked through each time frame by integrating the cine-PC velocity data. The moment arm (MA) and relative moment (RM, defined as the cross product of the tendon line-of-action and a line connecting the line-of-action with the patellar center of mass) were calculated for each quadriceps component. The tendencies of the VM and VL to produce patellar tilt were evenly balanced. Interestingly, the magnitude of RM-P(Spin) for the VM and VL is approximately four times greater than the magnitude of RM-P(Tilt) for the same muscles suggesting that patellar spin may play a more important role in patellofemoral kinematics than previously thought. Thus, a force imbalance that leads to excessive lateral tilt, such as VM weakness in patellofemoral pain syndrome, would produce excessive negative spin (positive spin: superior patellar pole rotates laterally) and to a much greater degree. This would explain the increased negative spin found in recent studies of patellar maltracking. Assessing the contribution of each quadriceps component in three dimensions provides a more complete understanding of muscle functionality.

  9. Influence of White-Coat Hypertension on Left Ventricular Deformation 2- and 3-Dimensional Speckle Tracking Study.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare; Ivanovic, Branislava; Ilic, Irena; Celic, Vera; Kocijancic, Vesna

    2016-03-01

    We sought to compare left ventricular deformation in subjects with white-coat hypertension to normotensive and sustained hypertensive patients. This cross-sectional study included 139 untreated subjects who underwent 24-hour ambulatory blood pressure monitoring and completed 2- and 3-dimensional examination. Two-dimensional left ventricular multilayer strain analysis was also performed. White-coat hypertension was diagnosed if clinical blood pressure was elevated and 24-hour blood pressure was normal. Our results showed that left ventricular longitudinal and circumferential strains gradually decreased from normotensive controls across subjects with white-coat hypertension to sustained hypertensive group. Two- and 3-dimensional left ventricular radial strain, as well as 3-dimensional area strain, was not different between groups. Two-dimensional left ventricular longitudinal and circumferential strains of subendocardial and mid-myocardial layers gradually decreased from normotensive control to sustained hypertensive group. Longitudinal and circumferential strains of subepicardial layer did not differ between the observed groups. We concluded that white-coat hypertension significantly affects left ventricular deformation assessed by 2-dimensional traditional strain, multilayer strain, and 3-dimensional strain.

  10. Understanding Hydraulic Fracture Stimulations in Oil-Gas Developments Using Microseismicity (M<0)

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2011-12-01

    Microseismic monitoring is widely recognized as a powerful production optimization tool in the oil and gas industry. In particular, microseismic imaging has been shown to provide insight into the dynamic behavior of reservoirs during hydraulic fracture stimulations. In this presentation, we explore ideas and provide examples of preliminary work linking microseismicity, geology and engineering to build predictive reservoir models and to assist with their calibration and validation. Generally, microseismic imaging of hydraulic fractures focuses on mapping event locations. By simply examining the spatial and temporal variations in microseismicity, overall geometric measures such as orientation, fracture extent (height, length, and width) and fracture growth can be assessed. Examining fracture growth in the context of traditional hydraulic fracture models, estimates of fracture geometry based on microseismic data have been used to support the accepted fracture behavior. In hydraulic fracture stimulations, fractures are generally considered to develop along a single fracture azimuth or along a plane of fracturing controlled by regional stresses (i.e. along the direction of maximum principle stress), even within the context of a three-dimensional fracture network. In this study, we show how seismic moment tensors and source parameters have been used to assess the orientation of newly formed or reactivated fractures, as well as evaluate their size or time-dependent response to fluid injections. As well, using nearest-neighbor statistics, events can be grouped into behavioral domains, such as near-treatment-well and fracture extension regions, and used to outline a Discrete Fracture Network (DFN). Evaluating the spatial-temporal development of the DFN within the defined volumes can then be used to assess the fracture connectivity and enhanced permeability associated with the treatment. With moment tensor analysis, we show how petroleum engineers can also assess the

  11. Barometric Pumping of a Fractured Porous Medium

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Mourzenko, V.; Thovert, J. F.; Pili, E.; Guillon, S.

    2014-12-01

    Fluctuations in the ambient atmospheric pressure result in motion of air in porous fractured media. This mechanism, known as barometric pumping, efficiently transports gaseous species through the vadose zone to the atmosphere. This is of interest in fields, such as transport of trace gases from soil to atmosphere, remediation of contaminated sites, radon in buildings, leakage from carbon sequestration sites and detection of nuclear explosions. The fractures are modeled as polygonal plane surfaces with a given transmissivity embedded in a permeable matrix. The slightly compressible fluid obeys Darcy's law in these two media with exchanges between them. The solute obeys convection-diffusion equations in both media again with exchanges. The fractures and the porous medium are meshed by triangles and tetrahedra, respectively. The equations are discretized by the finite volume method. A Flux Limiting Scheme diminishes numerical dispersion ; the solute transfer between the fractures and the porous medium is precisely evaluated. The resulting equations are solved by conjugate gradient algorithms. This model is applied to the Roselend Natural Laboratory. At a 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. The fractures are hexagons with a radius of 5m; their density is larger than 2.4 10-3 m-3; the aperture is about 0.5 mm. The pressure fluctuations are sinusoidal, of amplitude 0.01 bar and period 1 week. The solute concentration is equal to 1 at the bottom. Systematic results will be presented. First, the precision of the calculations is assessed. Second, the pressure and solute concentration fields are displayed and discussed. Third, the influence of the major parameters (fracture density, aperture, porosity, diffusion coefficient,…) is illustrated and discussed. These results are discussed in terms of the amplification of solute transfer to the ground surface by the pressure fluctuations.

  12. Reaction induced fractures in 3D

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders

    2014-05-01

    The process of fracture formation due to volume changing processes has been studied numerically in a variety of different settings, e.g. fracture initiation in general volume increasing reactions by Ulven et al.[4], weathering of dolerites by Røyne et al.[2], and volume reduction during chemical decomposition prosesses by Malthe-Sørenssen et al.[1]. Common to many previous works is that the simulations were performed in a 2D setting, due to computational limitations. Fractures observed both in field studies and in experiments are in many cases three dimensional. It remains an open question in what cases the simplification to 2D systems is applicable, and when a full 3D simulation is necessary. In this study, we use a newly developed 3D code combining elements from the discrete element model (DEM) with elements from Peridynamics[3]. We study fracture formation in fully three dimensional simulations, and compare them with simulation results from 2D DEM, thus gaining insight in both qualitative and quantitative differences between results from 2D and 3D simulations. References [1] Malthe-Sørenssen, A., Jamtveit, B., and Meakin, P., 'Fracture Patterns Generated by Diffusion Controlled Volume Changing Reactions,' Phys. Rev. Lett. 96, 2006, pp. 245501-1 - 245501-4. [2] Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., 'Controls on rock weathering rates by reaction-induced hierarchial fracturing,' Earth Planet. Sci. Lett. 275, 2008, pp. 364 - 369. [3] Silling, S. A., 'Reformulation of elasticity theory for discontinuities and long-range forces,' J. Mech. Phys. Solids, 48, Issue 1, 2000, pp. 175 - 209 [4] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A., 'Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration', Earth Planet. Sci. Lett. 389C, 2014, pp. 132 - 142.

  13. Metatarsal stress fractures - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000553.htm Metatarsal stress fractures - aftercare To use the sharing features on ... that connect your ankle to your toes. A stress fracture is a break in the bone that ...

  14. Infant skull fracture (image)

    MedlinePlus

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  15. Rib fracture - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000539.htm Rib fracture - aftercare To use the sharing features on this page, please enable JavaScript. A rib fracture is a crack or break in one or ...

  16. Forearm Fractures in Children

    MedlinePlus

    .org Forearm Fractures in Children The forearm is the part of the arm between the wrist and the elbow. It is ... two bones: the radius and the ulna. Forearm fractures are common in childhood, accounting for more than ...

  17. Pediatric Thighbone (Femur) Fracture

    MedlinePlus

    .org Thighbone (Femur) Fractures In Children Page ( 1 ) The thighbone (femur) is the largest and strongest bone in the body. It can break ... Cause Statistics The most common cause of thighbone fractures in infants under 1 year old is child ...

  18. Nasal fracture (image)

    MedlinePlus

    A nasal fracture is a break in the bone over the ridge of the nose. It usually results from a blunt ... and is one of the most common facial fracture. Symptoms of a broken nose include pain, blood ...

  19. Bone fracture repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100077.htm Bone fracture repair - series—Indications To use the sharing features ... Go to slide 4 out of 4 Overview Fractures of the bones are classified in a number ...

  20. Femur fracture repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000166.htm Femur fracture repair - discharge To use the sharing features on this page, please enable JavaScript. You had a fracture (break) in the femur in your leg. It ...

  1. Lisfranc (Midfoot) Fractures

    MedlinePlus

    ... that disrupts multiple different joints and includes multiple fractures. Lisfranc injuries tend to damage the cartilage of ... include ligament strains and tears, as well as fractures and dislocations of bone (far right). (Le ) This ...

  2. Growth Plate Fractures

    MedlinePlus

    .org Growth Plate Fractures Page ( 1 ) The bones of children and adults share many of the same risks for injury. But because they ... to a unique injury called a growth plate fracture. Growth plates are areas of cartilage located near ...

  3. Hip fracture surgery

    MedlinePlus

    ... neck fracture repair; Trochanteric fracture repair; Hip pinning surgery; Osteoarthritis-hip ... You may receive general anesthesia before this surgery. This means ... spinal anesthesia. With this kind of anesthesia, medicine is ...

  4. Orbital fractures: a review

    PubMed Central

    Joseph, Jeffrey M; Glavas, Ioannis P

    2011-01-01

    This review of orbital fractures has three goals: 1) to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2) to explain how to assess and examine a patient after periorbital trauma, and 3) to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training. PMID:21339801

  5. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    SciTech Connect

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures.

  6. Workflow Integrating Fracture Permeability Characterization and Multiphase Flow Modeling for CO2 Storage and Risk Assessments in Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Jin, G.; Pashin, J. C.

    2014-12-01

    Ensuring safe and permanent storage of sequestered CO2in naturally fractured geological media is vital for the success of geologic storage projects. Critical needs exist to develop advanced techniques to characterize and model fluid transport in naturally fractured reservoirs and seals. We have developed a scale-independent 3-D stochastic fracture permeability characterization workflow that employs multiple discrete fracture network (DFN) realizations. The workflow deploys a multidirectional flux-based upwind weighting scheme that is capable of modeling multiphase flow in highly heterogeneous fractured media. The techniques employed herein show great promise for increasing the accuracy of capacity determinations and the prediction of pressure footprints associated with injected CO2 plumes. The proposed workflow has been conducted in a simulation study of flow transport and risk assessment of CO2 injection into a deep fractured saline formation using geological parameters from Knox Group carbonate and Red Mountain shale rocks in central Alabama. A 3-D fracture permeability map was generated from multiple realizations of DFN models. A multiphase flow model composed of supercritical CO2 and saline water was applied to simulate CO2 plume evolution during and after injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes. The spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant lateral spreading of CO2 near the top of the fractured formations because of the buoyancy of injectate in rock matrix and strata-bound vertical fractures. Risk assessment shows that although pressure drops faster in the fractured formations than in those lacking fractures, lateral movement of CO2 along natural fractures necessitates that the injectate be confined by widespread seals with high integrity.

  7. Intermittent Flow Regimes in Unsaturated Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Or, D.

    2001-12-01

    Flow regimes in unsaturated fractured rocks are significantly influenced by interplay between gravitational and capillary forces and by abrupt changes in media pore space properties. These interactions give rise to complex flow mechanisms that are not amenable to representation by standard continuum theories. Even when the flux of water into the fracture is uniform, actual flow of liquid occurs through preferential pathways. We developed a model for interactions between a uniform flux and local variations in fracture aperture, leading to fragmentation of the liquid into discrete elements (bridges) and subsequent initiation of avalanches. Liquid bridges form and grow in local asperities along the preferential pathways, with subsequent breakup of the bridges at a critical bridge size. The detached bridge has a potential of sweeping other bridges along the pathway downhill from the initiation point, creating an avalanche of growing mass. Consequently, the outflow at the end of the fracture occurs as a series of discrete discharge events. The size and interval of the discharge events depend on the flux of liquid into the fracture and the fracture geometry on the pathway (e.g., number of apertures and aperture sizes). Such complex flow structure was observed in other studies involving gravity-driven unsaturated flow.

  8. From Multi-Porosity to Multiple-Scale Permeability Models of Natural Fractured Media

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J. R.; Davy, P.; Meheust, Y.; Bour, O.

    2014-12-01

    Classical dual-porosity models and homogenization approaches fail to represent the permeability scaling, the high flow channeling and the broad variability observed in natural fractured media. More critically, most modeling frameworks cannot restitute simultaneously the permeability increase with scale and the persistence of channeling. In fact, channeling enhances the impact of bottlenecks, reduces permeability, and increases permeability variability with scale. It is the case of percolation theory but also of more advanced large-range correlated theories including power-law scaling of some of the fracture properties including their length or their mutual distances. More generally, we show with extensive numerical studies on 3D Discrete Fracture Networks (DFNs) that hydraulic behaviors come from a number of local and global fracture characteristics. The concept of effective properties like effective permeability itself appears quite weak and should be replaced by new modeling frameworks. We propose three alternative approaches combining the specificies of fracture flow and transport of DFNs and the simplicity of continuum approaches: 1- Discrete dual porosity media for high flow localization in a subset of the fracture network. 2- Structured Interacting Continua for highly organized diffusive processes in poorly connected fracture structures. 3- Multiple-scale permeability models for hierarchically structured fractured media with 3D concurrent fracture percolating networks. These different approaches can be combined and specified with a limited number of parameters. They are also efficient in representing the potentially large hydraulic impact of minor modification of the fracture network geometry and local connectivity.

  9. [Epidemiological view of fracture risk].

    PubMed

    Fujiwara, Saeko

    2010-09-01

    Incidence of hip fracture increases exponentially with age. Women had two times higher hip fracture incidence than men. Major risk factors for the hip fracture are age, sex, bone mineral density, and previous fracture and others, but each risk factor contributes differently to development of the fracture by sites. Factors related to fall are important role in developing hip fracture.

  10. Chaos in Periodic Discrete Systems

    NASA Astrophysics Data System (ADS)

    Shi, Yuming; Zhang, Lijuan; Yu, Panpan; Huang, Qiuling

    This paper focuses on chaos in periodic discrete systems, whose state space may vary with time. Some close relationships between some chaotic dynamical behaviors of a periodic discrete system and its autonomous induced system are given. Based on these relationships, several criteria of chaos are established and some sufficient conditions for no chaos are given for periodic discrete systems. Further, it is shown that a finite-dimensional linear periodic discrete system is not chaotic in the sense of Li-Yorke or Wiggins. In particular, an interesting problem of whether nonchaotic rules may generate a chaotic system is studied, with some examples provided, one of which surprisingly shows that a composition of globally asymptotically stable maps can be chaotic. In addition, some properties of sign pattern matrices of non-negative square matrices are given for convenience of the study.

  11. Microscopic derivation of discrete hydrodynamics.

    PubMed

    Español, Pep; Anero, Jesús G; Zúñiga, Ignacio

    2009-12-28

    By using the standard theory of coarse graining based on Zwanzig's projection operator, we derive the dynamic equations for discrete hydrodynamic variables. These hydrodynamic variables are defined in terms of the Delaunay triangulation. The resulting microscopically derived equations can be understood, a posteriori, as a discretization on an arbitrary irregular grid of the Navier-Stokes equations. The microscopic derivation provides a set of discrete equations that exactly conserves mass, momentum, and energy and the dissipative part of the dynamics produces strict entropy increase. In addition, the microscopic derivation provides a practical implementation of thermal fluctuations in a way that the fluctuation-dissipation theorem is satisfied exactly. This paper points toward a close connection between coarse-graining procedures from microscopic dynamics and discretization schemes for partial differential equations.

  12. [Osteoporosis and Colles' fracture].

    PubMed

    Hindsø, K; Lauritzen, J B

    2001-10-01

    We describe the connection between osteoporosis and Colles' fractures of the distal radius from an epidemiological and aetiological point of view. In addition, the value of these fractures as markers of osteoporosis and future risk of fracture is assessed. Several studies have clearly shown an epidemiological association between osteoporosis and fractures of the distal radius, with the association strongest for women up to 65 years of age and for osteoporosis located in the forearm. The association weakens for other locations and for older women. Osteoporosis may have some aetiologic significance for the development of Colles' fractures, but several extraskeletal factors are of equal or further importance. The occurrence of a Colles' fracture in the first 10-15 years after the postmenopause indicates an increased relative risk of sustaining another fracture in the future. However the relative risk approaches one after a few years and, because of the comparatively low absolute risk in this age-group, Colles' fracture as a risk factor contributes little to an assessment of the lifetime fracture risk. In a few longitudinal studies, Colles' fractures could not predict the long-term risk of osteoporosis. The presence of a Colles' fracture should lead to considerations concerning the skeletal and extraskeletal causes of the fracture for the purpose of initiating preventive and therapeutic measures.

  13. Elbow fractures and dislocations.

    PubMed

    Little, Kevin J

    2014-07-01

    Elbow fractures are common in pediatric patients. Most injuries to the pediatric elbow are stable and require simple immobilization; however, more severe fractures can occur, often requiring operative stabilization and/or close monitoring. This article highlights the common fractures and dislocations about the pediatric elbow and discusses the history, evaluation, and treatment options for specific injuries.

  14. Discrete solitons in graphene metamaterials

    NASA Astrophysics Data System (ADS)

    Bludov, Yu. V.; Smirnova, D. A.; Kivshar, Yu. S.; Peres, N. M. R.; Vasilevskiy, M. I.

    2015-01-01

    We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schrödinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states.

  15. Concurrency and discrete event control

    NASA Technical Reports Server (NTRS)

    Heymann, Michael

    1990-01-01

    Much of discrete event control theory has been developed within the framework of automata and formal languages. An alternative approach inspired by the theories of process-algebra as developed in the computer science literature is presented. The framework, which rests on a new formalism of concurrency, can adequately handle nondeterminism and can be used for analysis of a wide range of discrete event phenomena.

  16. Numerical simulation of fluid implementing heat transfer in naturally fractured geothermal reservoir with DFN method

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kim, K.; Lee, K.; Lee, H.; Lee, W.

    2015-12-01

    Natural fractures have an effect on the fluid flow and heat transfer in the naturally fractured geothermal reservoir. However, most of the previous works in this area assumed that reservoir systems are continuum model whether it is single continuum or dual continuum. Moreover, some people have studied without continuum model but, it was just pipeline model. In this paper, we developed a generalized discrete fracture network (DFN) geothermal reservoir simulator. In the model, 2D flow is possible within a rectangular fracture, which is important in thick naturally fractured reservoirs. The DFN model developed in this study was validated for two synthetic fracture systems using a commercial thermal model, TETRAD. Comparison results showed an excellent matching between both models. However, this model is only fracture model and it can't calculate simulation of fluid flow and heat transfer in matrix. Therefore, matrix flow model will be added to this model.

  17. Acromiohumeral Distance and 3-Dimensional Scapular Position Change After Overhead Muscle Fatigue

    PubMed Central

    Maenhout, Annelies; Dhooge, Famke; Van Herzeele, Maarten; Palmans, Tanneke; Cools, Ann

    2015-01-01

    Context: Muscle fatigue due to repetitive and prolonged overhead sports activity is considered an important factor contributing to impingement-related rotator cuff pathologic conditions in overhead athletes. The evidence on scapular and glenohumeral kinematic changes after fatigue is contradicting and prohibits conclusions about how shoulder muscle fatigue affects acromiohumeral distance. Objective: To investigate the effect of a fatigue protocol resembling overhead sports activity on acromiohumeral distance and 3-dimensional scapular position in overhead athletes. Design: Cross-sectional study. Setting: Institutional laboratory. Patients or Other Participants: A total of 29 healthy recreational overhead athletes (14 men, 15 women; age = 22.23 ± 2.82 years, height = 178.3 ± 7.8 cm, mass = 71.6 ± 9.5 kg). Intervention(s) The athletes were tested before and after a shoulder muscle-fatiguing protocol. Main Outcome Measure(s) Acromiohumeral distance was measured using ultrasound, and scapular position was determined with an electromagnetic motion-tracking system. Both measurements were performed at 3 elevation positions (0°, 45°, and 60° of abduction). We used a 3-factor mixed model for data analysis. Results: After fatigue, the acromiohumeral distance increased when the upper extremity was actively positioned at 45° (Δ = 0.78 ± 0.24 mm, P = .002) or 60° (Δ = 0.58 ± 0.23 mm, P = .02) of abduction. Scapular position changed after fatigue to a more externally rotated position at 45° (Δ = 4.97° ± 1.13°, P < .001) and 60° (Δ = 4.61° ± 1.90°, P = .001) of abduction, a more upwardly rotated position at 45° (Δ = 6.10° ± 1.30°, P < .001) and 60° (Δ = 7.20° ± 1.65°, P < .001) of abduction, and a more posteriorly tilted position at 0°, 45°, and 60° of abduction (Δ = 1.98° ± 0.41°, P < .001). Conclusions: After a fatiguing protocol, we found changes in acromiohumeral distance and scapular position that corresponded with an impingement

  18. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    SciTech Connect

    Ju, Sang Gyu; Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho; Shin, Dongho; Lee, Se Byeong

    2014-02-01

    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  19. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated

  20. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  1. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality.

    PubMed

    Rousian, M; Groenenberg, I A L; Hop, W C; Koning, A H J; van der Spek, P J; Exalto, N; Steegers, E A P

    2013-08-01

    The aim of our study was to evaluate the first trimester cerebellar growth and development using 2 different measuring techniques: 3-dimensional (3D) and virtual reality (VR) ultrasound visualization. The cerebellum measurements were related to gestational age (GA) and crown-rump length (CRL). Finally, the reproducibility of both the methods was tested. In a prospective cohort study, we collected 630 first trimester, serially obtained, 3D ultrasound scans of 112 uncomplicated pregnancies between 7 + 0 and 12 + 6 weeks of GA. Only scans with high-quality images of the fossa posterior were selected for the analysis. Measurements were performed offline in the coronal plane using 3D (4D view) and VR (V-Scope) software. The VR enables the observer to use all available dimensions in a data set by visualizing the volume as a "hologram." Total cerebellar diameter, left, and right hemispheric diameter, and thickness were measured using both the techniques. All measurements were performed 3 times and means were used in repeated measurements analysis. After exclusion criteria were applied 177 (28%) 3D data sets were available for further analysis. The median GA was 10 + 0 weeks and the median CRL was 31.4 mm (range: 5.2-79.0 mm). The cerebellar parameters could be measured from 7 gestational weeks onward. The total cerebellar diameter increased from 2.2 mm at 7 weeks of GA to 13.9 mm at 12 weeks of GA using VR and from 2.2 to 13.8 mm using 3D ultrasound. The reproducibility, established in a subset of 35 data sets, resulted in intraclass correlation coefficient values ≥0.98. It can be concluded that cerebellar measurements performed by the 2 methods proved to be reproducible and comparable with each other. However, VR-using all three dimensions-provides a superior method for the visualization of the cerebellum. The constructed reference values can be used to study normal and abnormal cerebellar growth and development.

  2. Barometric pumping of a fractured porous medium

    NASA Astrophysics Data System (ADS)

    Adler, Pierre; Varloteaux, Clément; Mourzenko, Valeri; François Thovert, Jean; Guillon, Sophie; Pili, Eric

    2014-05-01

    Fluctuations in the ambient atmospheric pressure result in motion of air in porous and fractured media. This mechanism, known as barometric (or atmospheric) pumping, efficiently transports gaseous species through the vadose zone to the atmosphere. This is of interest in many environmental and engineering fields, such as transport of trace gases from soil to atmosphere, environmental remediation of contaminated sites, radon in buildings and last but not least detection of nuclear explosions or leakage from carbon sequestration sites. The physical situation has been addressed in the following way. The fractures are modeled as polygonal plane surfaces with a given transmissivity embedded in a porous medium with a given permeability. The fluid is slightly compressible and is assumed to obey Darcy's law in the fractures and the porous medium with exchanges between them. The solute obeys convection-diffusion equations in both media again with exchanges between them. The fractures and the porous medium located in between them are meshed by triangles and tetrahedra. The equations are discretized by the finite volume method. In order to improve numerical precision, a Flux Limiting Scheme is applied to the transport equations ; moreover, special care is devoted to the description of the solute transfer between the fractures and the porous medium. The resulting equations are solved by conjugate gradient algorithms. This model is applied to the Roselend Natural Laboratory. At a 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. The fractures are hexagons with a radius of 5m; their density is larger than 2.4 10-3 m-3; the aperture is of the order of 0.5 mm. The pressure fluctuations are sinusoidal, of amplitude 0.01 bar and period 1 week. The solute concentration is supposed to be equal to 1 at the bottom of the site. Systematic results will be presented. First, the precision of the calculations is assessed

  3. Characterization of the hydraulic properties of fractures in chalk.

    PubMed

    Nativ, Ronit; Adar, Eilon; Assaf, Lior; Nygaard, Erik

    2003-01-01

    The fracture systems intersecting Eocene chalk formations in the Negev desert, Israel, and their hydraulic properties were characterized using a variety of geologic and hydrologic techniques. These included identification of the prevailing directions of fracture systems in outcrops, in cores retrieved from inclined coreholes, in coreholes using video logs, and in trenches. The orientation and inclination of these fracture systems were determined, and evidence of ground water flow on the fracture surfaces was described and ranked. Their hydraulic conductivity was determined through slug and pumping tests performed at discrete intervals. Temperature, electrical conductivity, caliper, gamma and heat-pulse logs were conducted in the same coreholes. The results from the logs, tests, and core descriptions were compared to identify reliable and cost-effective tools for investigating the hydraulic characteristics of fracture systems. We concluded that in the study area: (1) fracture mapping in outcrops and coreholes (including downhole video and caliper logs) must be supplemented by hydraulic testing of the mapped fracture sets in the coreholes; (2) inclined coreholes provide information regarding the orientation of the hydraulically active fracture systems that cannot be obtained from vertical boreholes; (3) hydraulic testing of unpacked holes provides a reasonable estimate of the maximum hydraulic conductivity; and (4) the hydraulic conductivity distribution with depth is log normal and all significant ground water flow takes place within the upper 25 m.

  4. Proximal humerus fractures.

    PubMed

    Price, Matthew C; Horn, Pamela L; Latshaw, James C

    2013-01-01

    Proximal humerus fractures are among the most common fractures associated with osteoporosis. With an aging population, incidence of these fractures will only increase. The proximal humerus not only forms the lateral portion of the shoulder articulation but also has significant associations with musculoskeletal and neurovascular structures. As a result, fractures of the proximal humerus can significantly impact not only the function of the shoulder joint, but the health and function of the entire upper extremity as well. Understanding of these fractures, the management options, and associated nursing care, can help reduce morbidity rate and improve functional outcomes.

  5. Stress fractures in runners.

    PubMed

    McCormick, Frank; Nwachukwu, Benedict U; Provencher, Matthew T

    2012-04-01

    Stress fractures are a relatively common entity in athletes, in particular, runners. Physicians and health care providers should maintain a high index of suspicion for stress fractures in runners presenting with insidious onset of focal bone tenderness associated with recent changes in training intensity or regimen. It is particularly important to recognize “high-risk” fractures, as these are associated with an increased risk of complication. A patient with confirmed radiographic evidence of a high-risk stress fracture should be evaluated by an orthopedic surgeon. Runners may benefit from orthotics, cushioned sneakers, interval training, and vitamin/calcium supplementation as a means of stress fracture prevention.

  6. Fracture toughness of silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1980-01-01

    The paper presents a study to determine the fracture toughness and to characterize fracture modes of silicon as a function of the orientation of single-crystal and polycrystalline material. It is shown that bar specimens cracked by Knoop microhardness indentation and tested to fracture under four-point bending at room temperature were used to determine the fracture toughness values. It is found that the lowest fracture toughness value of single crystal silicon was 0.82 MN/m to the 3/2 in the 111 plane type orientation, although the difference in values in the 111, 110, and 100 planes was small.

  7. [Rarely seen fractures].

    PubMed

    Subaşi, M; Kapukaya, A; Kesemenli, C; Coban, V

    2001-10-01

    Rarely seen fractures are presented in this study. One case was a calcaneal spur, 2 cases osteochondroma pedicule fractures and talus posteromedial tubercle fracture due to direct trauma. Calcaneal spur and osteochondromas were removed surgically and posteromedial tubercle was treated by short-leg cast immobilization. In conclusion, we think that fractures of osteochondroma and calcaneal spur may be treated by surgical removal which do not cause any functional disorders after this operation, but fractures like the talus posteromedial tubercle should be treated conservatively by short-leg immobilization in the early period.

  8. Permeability testing of fractures in climax stock granite at the Nevada Test Site

    SciTech Connect

    Murray, W.A.

    1980-12-31

    Permeability tests conducted in the Climax stock granitic rock mass indicate that the bulk rock permeability can be highly variable. If moderately to highly fractured zones are encountered, the permeability values may lie in the range of 10{sup -4} to 10{sup -1} darcies. If, on the other hand, only intact rock or healed fractures are encountered, the permeability is found to be less than 10{sup -9} darcies. In order to assess the thermomechanical effect on fracture permeability, discrete fractures will be packed off and tested periodically throughout the thermal cycle caused by the emplacement of spent nuclear fuel in the Climax stock.

  9. Subsurface fracture spacing

    SciTech Connect

    Lorenz, J.C. ); Hill, R.E. )

    1991-01-01

    This study was undertaken in order to document and analyze the unique set of data on subsurface fracture characteristics, especially spacing, provided by the US Department of Energy's Slant Hole Completion Test well (SHCT-1) in the Piceance Basin, Colorado. Two hundred thirty-six (236) ft (71.9 m) of slant core and 115 ft (35.1 m) of horizontal core show irregular, but remarkably close, spacings for 72 natural fractures cored in sandstone reservoirs of the Mesaverde Group. Over 4200 ft (1280 m) of vertical core (containing 275 fractures) from the vertical Multiwell Experiment wells at the same location provide valuable information on fracture orientation, termination, and height, but only data from the SHCT-1 core allow calculations of relative fracture spacing. Within the 162-ft (49-m) thick zone of overlapping core from the vertical and deviated wellbores, only one fracture is present in vertical core whereas 52 fractures occur in the equivalent SHCT-1 core. The irregular distribution of regional-type fractures in these heterogeneous reservoirs suggests that measurements of average fracture spacing'' are of questionable value as direct input parameters into reservoir engineering models. Rather, deviated core provides data on the relative degree of fracturing, and confirms that cross fractures can be rare in the subsurface. 13 refs., 11 figs.

  10. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    SciTech Connect

    Cui, Xia Yuan, Guang-wei; Shen, Zhi-jun

    2016-05-15

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.

  11. Atraumatic sternum fracture

    PubMed Central

    Abrahamsen, Sebastian Ørskov; Madsen, Christina Friis

    2014-01-01

    The spine, pelvic bones and long bones of the lower extremities are common sites for insufficiency fractures. Cases of sternum insufficiency fractures have rarely been reported among elderly patients. Insufficiency fractures tend to occur in bones with decreased mechanical strength especially among elderly patients, in postmenopausal women and patients with underlying diseases. We describe a case of spontaneous sternum insufficiency fracture in a healthy man, with no known risk factors to fracture, or previous history of fractures. Sternum insufficiency fracture is a rare cause of chest pain. This case serves to remind the emergency physician to remain vigilant for other non-cardiac, non-pulmonary and non-traumatic causes of chest pain, especially among patients with known risk factors such as osteoporosis, chronic obstructive pulmonary disease, rheumatoid arthritis, systemic lupus erythematosus and patients on long-term steroid treatment. If diagnosed correctly, these patients can be discharged and treated as outpatients as this case emphasises. PMID:25326566

  12. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  13. Evaluation of Forming Limit by the 3 Dimensional Local Bifurcation Theory

    SciTech Connect

    Nishimura, Ryuichi; Nakazawa, Yoshiaki; Ito, Koichi; Uemura, Gen; Mori, Naomichi

    2007-05-17

    A theoretical prediction and evaluation method for the sheet metal formability is developed on the basis of the three-dimensional local bifurcation theory previously proposed by authors. The forming limit diagram represented on the plane defined by the ratio of stress component to work-hardening rate is perfectly independent of plastic strain history. The upper and the lower limit of the sheet formability are indicated by the 3D critical line and the Stoeren-Rice's critical line on this plane, respectively. In order to verify the above mentioned behavior of the proposed forming limit diagram, the experimental research is also conducted. From the standpoint of the mechanical instability theory, a new concept called instability factor is introduced. It represents a degree of acceleration by current stress for developing the local bifurcation mode toward a fracture. The instability factor provides a method to evaluate a forming allowance which is useful to appropriate identification for a forming limit and to optimize the forming condition. The proposed criterion provides not only the moment to initiate the necking but also the local bifurcation mode vector and the direction of necking line.

  14. Use of 3-dimensional computed tomography to detect a barium-masked fish bone causing esophageal perforation.

    PubMed

    Tsukiyama, Atsushi; Tagami, Takashi; Kim, Shiei; Yokota, Hiroyuki

    2014-01-01

    Computed tomography (CT) is useful for evaluating esophageal foreign bodies and detecting perforation. However, when evaluation is difficult owing to the previous use of barium as a contrast medium, 3-dimensional CT may facilitate accurate diagnosis. A 49-year-old man was transferred to our hospital with the diagnosis of esophageal perforation. Because barium had been used as a contrast medium for an esophagram performed at a previous hospital, horizontal CT and esophageal endoscopy could not be able to identify the foreign body or characterize the lesion. However, 3-dimensional CT clearly revealed an L-shaped foreign body and its anatomical relationships in the mediastinum. Accordingly, we removed the foreign body using an upper gastrointestinal endoscope. The foreign body was the premaxillary bone of a sea bream. The patient was discharged without complications.

  15. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume.

    PubMed

    Brand, Jefferson C

    2016-01-01

    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use.

  16. Preliminary 3-Dimensional Geologic Map of the Santa Rosa Plain, Northern California

    NASA Astrophysics Data System (ADS)

    McCabe, C. A.; McPhee, D. K.; Valin, Z. C.; McLaughlin, R. J.; Jachens, R. C.; Langenheim, V. E.; Wentworth, C. M.

    2004-12-01

    We have constructed a preliminary 3-dimensional geologic map of the Santa Rosa Plain as a tool to address earthquake hazard and groundwater issues. The map allows integration of diverse datasets to produce a stratigraphic and structural architecture for the region. This framework can then be used to predict pathways of ground water flow and potential areas of enhanced or focused seismic shaking beneath the Santa Rosa Plain. The 3D map also allows us to identify relations which will require further refinement to develop a coherent 3D image of the crust. The 3D map, built using EarthVision 3D geologic mapping software, consists of three bounding components: fault surfaces, stratigraphic surfaces, and a basement upper surface. Fault surfaces are derived from geologic mapping, subsurface projection of fault dips from the surface geology and earthquake hypocenters. Stratigraphic surfaces are derived from the mapped geology, a digital elevation model and stratigraphic information from wells. A basement surface, predominantly composed of Mesozoic rocks of the Franciscan Complex, the mafic Coast Range Ophiolite and strata of the Great Valley Sequence, is derived from inversion of regional gravity measurements and constrained by well data. The preliminary 3D map of the Santa Rosa Plain area highlights two large basins (>2 km deep): the Windsor and Cotati basins. These basins are divided by a structural high associated with the W-NW-trending, NE-dipping Trenton thrust fault. The Cotati basin is further subdivided by a deeper basement ridge subparallel to the Trenton fault, which separates the basin beneath Cotati from the basin of Petaluma Valley to the southeast. Neither of the basement ridges breaks the surface, yet faults associated with the ridges could displace or truncate aquifers, provide channelways for groundwater flow between aquifers, or create zones of impermeability that disrupt the vertical and lateral continuity of groundwater flow. The complex configuration

  17. Diagnosis of mitral valve cleft using real-time 3-dimensional echocardiography

    PubMed Central

    Zhou, Aiyun; Chen, Li; Zhang, Cheng; Zhang, Yan; Xu, Pan

    2017-01-01

    Background Mitral valve cleft (MVC) is the most common cause of congenital mitral insufficiency, and MVC may occur alone or in association with other congenital heart lesions. Direct suture and valvuloplasty are the major and effective treatments for mitral regurgitation (MR) caused by MVC. Therefore, it is important to determine the location and magnitude of the pathological damage due to MVC when selecting a surgical procedure for treatment. This study explored the application value of transthoracic real-time 3-dimensional (3D) echocardiography (RT-3DE) in the diagnosis of MVC. Methods From October 2012 to June 2016, 19 consecutive patients with MVC diagnosed by 2-dimensional (2D) echocardiography in our hospital were selected for this study. Full-volume RT-3DE was performed on all patients. The 3D-imaging data were cropped and rotated in 3 views (horizontal, sagittal, and coronal) with 6 directions to observe the position and shape of the MVC and the spatial position between the cleft and its surrounding structures. The maximum longitudinal diameter and the maximum width of the cleft were measured. The origin of the mitral regurgitant jet and the severity of MR were evaluated, and these RT-3DE data were compared with the intraoperative findings. Results Of the 19 patients studied, 4 patients had isolated cleft mitral valve, and cleft mitral valves combined with other congenital heart lesions were detected in 15 patients. The clefts of 6 patients were located in the A2 segment, the clefts of 4 patients were located in the A1 segment, the clefts of 4 patients were located in the A3 segment, the clefts of 4 patients were located in the A2–A3 segment, and the cleft of 1 patient was located in the P2 segment. Regarding the shape of the cleft, 13 patients had V-shaped clefts, and the others had C- or S-shaped clefts. The severity of the MR at presentation was mild in 2 patients, moderate in 9 and severe in 8. Two of the patients with mild MR did not undergo surgery

  18. Prenatal visualization of the pituitary gland using 2- and 3-dimensional sonography: comparison to prenatal magnetic resonance imaging.

    PubMed

    Katorza, Eldad; Bault, Jean-Philippe; Gilboa, Yinon; Yinon, Yoav; Hoffmann, Chen; Achiron, Reuven

    2012-10-01

    The pituitary gland is crucially important in the function of the endocrine axis. So far, antenatal depiction of the pituitary gland was possible only using magnetic resonance imaging. We describe antenatal visualization of the pituitary gland using 2- and 3-dimensional sonography. The appearance of the gland on sonography seems to be superior compares to prenatal magnetic resonance imaging. In cases with midline anomalies of the brain, face, or cranium, depiction of the pituitary gland is feasible and recommended.

  19. Geomechanical Fracturing with Flow and Heat

    SciTech Connect

    2009-01-01

    The GeoFracFH model is a particle-based discrete element model (DEM) that has been coupled with fluid flow and heat conduction/convection. In this model, the rock matrix material is represented by a network of DEM particles connected by mechanical bonds (elastic beams in this case, see Figure 1, gray particles connected by beams). During the simulation process, the mechanical bonds that have been stretched or bent beyond a critical strain (both tensile and shear failures are simulated) are broken and removed from the network in a progressive manner. Bonds can be removed from the network with rates or probabilities that depend on their stress or strain, or the properties of the discrete elements and bonds can be varied continuously to represent phenomena such as creep, strain hardening, and chemical degradation. The coupling of a DEM geomechanical model with models for Darcy flow and heat transport is also illustrated in Figure 1. Darcy flow and heat transport equations are solved on an underlying fixed finite difference grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as the DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which then deforms and fractures the rock matrix. The deformation/fracturing in turn changes the permeability which again changes the evolution of fluid pressure, coupling the two phenomena. The intimate coupling between fracturing, fluid flow, and thermal transport makes the GeoFracFH model, rather than conventional continuum mechanical models, necessary for coupled hydro-thermal-mechanical problems in the subsurface.

  20. Synthetic benchmark for modeling flow in 3D fractured media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, Jean-Raynald; Pichot, Géraldine; Poirriez, Baptiste; Erhel, Jocelyne

    2013-01-01

    Intensity and localization of flows in fractured media have promoted the development of a large range of different modeling approaches including Discrete Fracture Networks, pipe networks and equivalent continuous media. While benchmarked usually within site studies, we propose an alternative numerical benchmark based on highly-resolved Discrete Fracture Networks (DFNs) and on a stochastic approach. Test cases are built on fractures of different lengths, orientations, aspect ratios and hydraulic apertures, issuing the broad ranges of topological structures and hydraulic properties classically observed. We present 18 DFN cases, with 10 random simulations by case. These 180 DFN structures are provided and fully documented. They display a representative variety of the configurations that challenge the numerical methods at the different stages of discretization, mesh generation and system solving. Using a previously assessed mixed hybrid finite element method (Erhel et al., 2009a), we systematically provide reference flow and head solutions. Because CPU and memory requirements stem mainly from system solving, we study direct and iterative sparse linear solvers. We show that the most cpu-time efficient method is a direct multifrontal method for small systems, while conjugate gradient preconditioned by algebraic multrigrid is more relevant at larger sizes. Available results can be used further as references for building up alternative numerical and physical models in both directions of improving accuracy and efficiency.

  1. Effect of mandibular advancement on the natural position of the head: a preliminary study of 3-dimensional cephalometric analysis.

    PubMed

    Lin, Xiaozhen; Liu, Yanpu; Edwards, Sean P

    2013-10-01

    Our aim was to investigate the potential effect of advancement by bilateral sagittal split osteotomy (BSSO) on the natural position of the head by using 3-dimensional cephalomentric analysis. Seven consecutive patients who had had only BSSO advancement, and had had preoperative and 6-week postoperative cone beam computed tomography (CT) scans, were recruited to this retrospective study. Two variables, SNB and SNC2, were used to indicate the craniomandibular alignment and craniocervical inclination, respectively, in the midsagittal plane. Using 3-dimensional cephalometric analysis software, the SNB and the SNC2 were recorded in volume and measured in the midsagittal plane at 3 independent time-points. The reliability was measured and a paired t test used to assess the significance of differences between the means of SNB and SNC2 before and after operation. The 3-dimensional cephalometric measurement showed good reliability. The SNB was increased as planned in all the mandibles that were advanced, the cervical vertebrae were brought forward after BSSO, and the SNC2 was significantly increased in 6 of the 7 patients. Three-dimensional cephalometric analysis may provide an alternative way of assessing cephalometrics. After BSSO advancement, the natural position of the head changed by increasing the craniocervical inclination in an anteroposterior direction.

  2. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    SciTech Connect

    Daniel R. Burns; M. Nafi Toksoz

    2004-07-19

    Expanded details and additional results are presented on two methods for estimating fracture orientation and density in subsurface reservoirs from scattered seismic wavefield signals. In the first, fracture density is estimated from the wavenumber spectra of the integrated amplitudes of the scattered waves as a function of offset in pre-stack data. Spectral peaks correctly identified the 50m, 35m, and 25m fracture spacings from numerical model data using a 40Hz source wavelet. The second method, referred to as the Transfer Function-Scattering Index Method, is based upon observations from 3D finite difference modeling that regularly spaced, discrete vertical fractures impart a ringing coda-type signature to any seismic energy that is transmitted through or reflected off of them. This coda energy is greatest when the acquisition direction is parallel to the fractures, the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function, which quantifies the change in an apparent source wavelet propagating through a fractured interval. The transfer function for an interval with low scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. A Scattering Index is developed based on a time lag weighting of the transfer function. When a 3D survey is acquired with a full range of azimuths, the Scattering Index allows the identification of subsurface areas with high fracturing and the orientation (or strike) of those fractures. The method was calibrated with model data and then applied to field data from a fractured reservoir giving results that agree with known field measurements. As an aid to understanding the scattered wavefield seen in finite difference models, a series of simple point scatterers was used to create synthetic seismic shot records collected over

  3. Discrete solitons in electromechanical resonators.

    PubMed

    Syafwan, M; Susanto, H; Cox, S M

    2010-02-01

    We consider a particular type of parametrically driven discrete Klein-Gordon system describing microdevices and nanodevices, with integrated electrical and mechanical functionality. Using a multiscale expansion method we reduce the system to a discrete nonlinear Schrödinger equation. Analytical and numerical calculations are performed to determine the existence and stability of fundamental bright and dark discrete solitons admitted by the Klein-Gordon system through the discrete Schrödinger equation. We show that a parametric driving can not only destabilize onsite bright solitons, but also stabilize intersite bright discrete solitons and onsite and intersite dark solitons. Most importantly, we show that there is a range of values of the driving coefficient for which dark solitons are stable, for any value of the coupling constant, i.e., oscillatory instabilities are totally suppressed. Stability windows of all the fundamental solitons are presented and approximations to the onset of instability are derived using perturbation theory, with accompanying numerical results. Numerical integrations of the Klein-Gordon equation are performed, confirming the relevance of our analysis.

  4. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  5. New discrete element models for elastoplastic problems

    NASA Astrophysics Data System (ADS)

    Cheng, Ming; Liu, Weifu; Liu, Kaixin

    2009-10-01

    The discrete element method (DEM) has attractive features for problems with severe damages, but lack of theoretical basis for continua behavior especially for nonlinear behavior has seriously restricted its application. The present study proposes a new approach to developing the DEM as a general and robust technique for modeling the elastoplastic behavior of solid materials. New types of connective links between elements are proposed, the inter-element parameters are theoretically determined based on the principle of energy equivalence and a yield criterion and a flow rule for DEM are given for describing nonlinear behavior of materials. Moreover, a numerical scheme, which can be applied to modeling the behavior of a continuum as well as the transformation from a continuum to a discontinuum, is obtained by introducing a fracture criterion and a contact model into the DEM. The elastoplastic stress wave propagations and the tensile failure process of a steel plate are simulated, and the numerical results agree well with those obtained from the finite element method (FEM) and corresponding experiment, and thus the accuracy and efficiency of the DEM scheme are demonstrated.

  6. A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian Grids in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2003-10-01

    In 3 + 1 numerical simulations of dynamic black hole spacetimes, it's useful to be able to find the apparent horizon(s) (AH) in each slice of a time evolution. A number of AH finders are available, but they often take many minutes to run, so they're too slow to be practically usable at each time step. Here I present a new AH finder, AHFINDERDIRECT, which is very fast and accurate, typically taking only a few seconds to find an AH to ~ 10-5m accuracy on a GHz-class processor. I assume that an AH to be searched for is a Strahlkörper (``star-shaped region'') with respect to some local origin, and so parameterize the AH shape by r = h(angle) for some single-valued function h: S2 --> R+. The AH equation then becomes a nonlinear elliptic PDE in h on S2, whose coefficients are algebraic functions of gij, Kij, and the Cartesian-coordinate spatial derivatives of gij. I discretize S2 using 6 angular patches (one each in the neighborhood of the +/-x, +/-y, and +/-z axes) to avoid coordinate singularities, and finite difference the AH equation in the angular coordinates using 4th order finite differencing. I solve the resulting system of nonlinear algebraic equations (for h at the angular grid points) by Newton's method, using a ``symbolic differentiation'' technique to compute the Jacobian matrix. AHFINDERDIRECT is implemented as a thorn in the CACTUS computational toolkit, and will be made freely available starting in fall 2003.

  7. Discrete-element model for the interaction between ocean waves and sea ice

    SciTech Connect

    Xu, Zhijie; Tartakovsky, Alexandre M.; Pan, Wenxiao

    2012-01-05

    We present a discrete element method (DEM) model to simulate the mechanical behavior of sea ice in response to ocean waves. The wave/ice interaction can potentially lead to the fracture and fragmentation of sea ice depending on the wave amplitude and period. The fracture behavior of sea ice is explicitly modeled by a DEM method, where sea ice is modeled by densely packed spherical particles with finite size. These particles are bonded together at their contact points through mechanical bonds that can sustain both tensile & compressive forces and moments. Fracturing can be naturally represented by the sequential breaking of mechanical bonds. For a given amplitude and period of incident ocean wave, the model provides information for the spatial distribution and time evolution of stress and micro-fractures and the fragment size distribution. We demonstrate that the fraction of broken bonds,, increases with increasing wave amplitude. In contrast, the ice fragment size decreases with increasing amplitude.

  8. Application of a 3-dimensional printed navigation template in Bernese periacetabular osteotomies

    PubMed Central

    Zhou, You; Kang, Xiaopeng; Li, Chuan; Xu, Xiaoshan; Li, Rong; Wang, Jun; Li, Wei; Luo, Haotian; Lu, Sheng

    2016-01-01

    Abstract The aim of the present study was to describe the application of 3D printed templates for intraoperative navigation and simulation of periacetabular osteotomies (PAOs) in a cadaveric model. Five cadaveric specimens (10 sides) underwent thin-slice computed tomographic scans of the ala of ilium downwards to the proximal end of femoral shaft. Bernese PAO was performed. Using Mimics v10.1 software (Materialise, Leuven, Belgium), 3D computed tomographic reconstructions were created and the 4 standard PAO bone cuts—ischial, pubic, anterior, and posterior aspects of the ilium—as well as rotation of the dislocated acetabular bone blocks were simulated for each specimen. Using these data, custom 3D printed bone-drilling templates of the pelvis were manufactured, to guide surgical placement of the PAO bone cuts. An angle fix wedge was designed and printed, to help accurately achieve the predetermined rotation angle of the acetabular bone block. Each specimen underwent a conventional PAO. Preoperative, postsimulation, and postoperative lateral center-edge angles, acetabular indices, extrusion indices, and femoral head coverage were measured and compared; P and t values were calculated for above-mentioned measurements while comparing preoperative and postoperative data, and also in postsimulation and postoperative data comparison. All 10 PAO osteotomies were successfully completed using the 3D printed bone-drilling template and angle fix wedge. No osteotomy entered the hip joint and a single posterior column fracture was observed. Comparison of preoperative and postoperative measurements of the 10 sides showed statistically significant changes, whereas no statistically significant differences between postsimulation and postoperative values were noted, demonstrating the accuracy and utility of the 3D printed templates. The application of patient-specific 3D printed bone-drilling and rotation templates in PAO is feasible and may facilitate improved clinical outcomes

  9. Application of a 3-dimensional printed navigation template in Bernese periacetabular osteotomies: A cadaveric study.

    PubMed

    Zhou, You; Kang, Xiaopeng; Li, Chuan; Xu, Xiaoshan; Li, Rong; Wang, Jun; Li, Wei; Luo, Haotian; Lu, Sheng

    2016-12-01

    The aim of the present study was to describe the application of 3D printed templates for intraoperative navigation and simulation of periacetabular osteotomies (PAOs) in a cadaveric model.Five cadaveric specimens (10 sides) underwent thin-slice computed tomographic scans of the ala of ilium downwards to the proximal end of femoral shaft. Bernese PAO was performed. Using Mimics v10.1 software (Materialise, Leuven, Belgium), 3D computed tomographic reconstructions were created and the 4 standard PAO bone cuts-ischial, pubic, anterior, and posterior aspects of the ilium-as well as rotation of the dislocated acetabular bone blocks were simulated for each specimen. Using these data, custom 3D printed bone-drilling templates of the pelvis were manufactured, to guide surgical placement of the PAO bone cuts. An angle fix wedge was designed and printed, to help accurately achieve the predetermined rotation angle of the acetabular bone block. Each specimen underwent a conventional PAO. Preoperative, postsimulation, and postoperative lateral center-edge angles, acetabular indices, extrusion indices, and femoral head coverage were measured and compared; P and t values were calculated for above-mentioned measurements while comparing preoperative and postoperative data, and also in postsimulation and postoperative data comparison.All 10 PAO osteotomies were successfully completed using the 3D printed bone-drilling template and angle fix wedge. No osteotomy entered the hip joint and a single posterior column fracture was observed. Comparison of preoperative and postoperative measurements of the 10 sides showed statistically significant changes, whereas no statistically significant differences between postsimulation and postoperative values were noted, demonstrating the accuracy and utility of the 3D printed templates.The application of patient-specific 3D printed bone-drilling and rotation templates in PAO is feasible and may facilitate improved clinical outcomes, through the use

  10. The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB)

    NASA Astrophysics Data System (ADS)

    Shah, Swej; Møyner, Olav; Tene, Matei; Lie, Knut-Andreas; Hajibeygi, Hadi

    2016-08-01

    A novel multiscale method for multiphase flow in heterogeneous fractured porous media is devised. The discrete fine-scale system is described using an embedded fracture modeling approach, in which the heterogeneous rock (matrix) and highly-conductive fractures are represented on independent grids. Given this fine-scale discrete system, the method first partitions the fine-scale volumetric grid representing the matrix and the lower-dimensional grids representing fractures into independent coarse grids. Then, basis functions for matrix and fractures are constructed by restricted smoothing, which gives a flexible and robust treatment of complex geometrical features and heterogeneous coefficients. From the basis functions one constructs a prolongation operator that maps between the coarse- and fine-scale systems. The resulting method allows for general coupling of matrix and fracture basis functions, giving efficient treatment of a large variety of fracture conductivities. In addition, basis functions can be adaptively updated using efficient global smoothing strategies to account for multiphase flow effects. The method is conservative and because it is described and implemented in algebraic form, it is straightforward to employ it to both rectilinear and unstructured grids. Through a series of challenging test cases for single and multiphase flow, in which synthetic and realistic fracture maps are combined with heterogeneous petrophysical matrix properties, we validate the method and conclude that it is an efficient and accurate approach for simulating flow in complex, large-scale, fractured media.

  11. Integrable structure in discrete shell membrane theory

    PubMed Central

    Schief, W. K.

    2014-01-01

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755

  12. Discretization errors in particle tracking

    NASA Astrophysics Data System (ADS)

    Carmon, G.; Mamman, N.; Feingold, M.

    2007-03-01

    High precision video tracking of microscopic particles is limited by systematic and random errors. Systematic errors are partly due to the discretization process both in position and in intensity. We study the behavior of such errors in a simple tracking algorithm designed for the case of symmetric particles. This symmetry algorithm uses interpolation to estimate the value of the intensity at arbitrary points in the image plane. We show that the discretization error is composed of two parts: (1) the error due to the discretization of the intensity, bD and (2) that due to interpolation, bI. While bD behaves asymptotically like N-1 where N is the number of intensity gray levels, bI is small when using cubic spline interpolation.

  13. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    SciTech Connect

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  14. Discrete cloud structure on Neptune

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.

    1989-01-01

    Recent CCD imaging data for the discrete cloud structure of Neptune shows that while cloud features at CH4-band wavelengths are manifest in the southern hemisphere, they have not been encountered in the northern hemisphere since 1986. A literature search has shown the reflected CH4-band light from the planet to have come from a single discrete feature at least twice in the last 10 years. Disk-integrated photometry derived from the imaging has demonstrated that a bright cloud feature was responsible for the observed 8900 A diurnal variation in 1986 and 1987.

  15. [Epidemiology of hip fracture].

    PubMed

    Hagino, Hiroshi

    2006-12-01

    Age- and gender-specific numbers of patients with hip fracture increase with age and peaked at the age 80-84; however, age- and gender-specific incidences increase exponentially with age. According to the recent nation-wide survey, the most common cause of hip fractures was a simple fall, 68.8% sustained fractures in-doors, and the incidences were higher in the winter than the summer period. More than 90% of patients with hip fracture were treated surgically and about 3/4 of patients with femoral neck fractures were treated with hemi-arthroplasty. Hip fractures for Asian people including Japanese are lower than those for Caucasians living in Northern Europe and North America; however, recent reports from the Asian area indicated an increase in the incidence with time.

  16. Dyslipidemia and sternum fracture.

    PubMed

    Can, Cagdas; Gulactı, Umut; Sarıhan, Aydin; Topacoglu, Hakan

    2013-06-01

    Tenderness over the sternum is a clue for possible sternal fracture. Sternal fractures usually occur at the body or manubrium. Lateral chest radiography could detect a sternum fracture, but the diagnosis is usually made by chest tomography. Traumatic sternum fracture considered as a marker of seriously life-threatening, high-energy injury. In hyperlipidemia, oxidized lipids accumulate in vascular tissues and trigger atherosclerosis. Such lipids also deposit in bone tissues where they may promote osteoporosis. In the literature, there is no previously reported traumatic sternal fracture due to hyperlipidemia-induced osteoporosis. Here, we report a case of a combined mixed type familial hyperlipidemia-induced osteoporosis in which the patient having seat belt on had an unexpected sternum fracture in a low-energy motor vehicle accident.

  17. Analysis of compressive fracture in rock using statistical techniques

    SciTech Connect

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  18. Dynamic Fracture Behavior of Plastic-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team

    2011-06-01

    Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.

  19. Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin

    NASA Technical Reports Server (NTRS)

    Kuuskraa, Vello

    1997-01-01

    Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.

  20. [Nasal fractures in adults].

    PubMed

    Sjöstedt, Sannia; Larsen, Christian Grønhøj; Bilde, Anders; von Buchwald, Christian

    2016-03-07

    The risk of complications warrants treatment of most dislocated nasal fractures. Other injuries including other facial fractures and septal haematoma must be treated if present at the initial presentation. The usual treatment for a simple nasal fracture is closed reduction in local anaesthesia after five to seven days. Complicated cases require open reduction in general anaesthesia. Later revision of the deviated nose may become necessary in patients suffering from complications such as persistent nasal stenosis and/or deformity.

  1. Pediatric Hand Fractures

    PubMed Central

    Nellans, Kate W.; Chung, Kevin C.

    2014-01-01

    Summary Pediatric hand fractures are common childhood injuries. Identification of the fractures in the emergency room setting can be challenging owing to the physes and incomplete ossification of the carpus that are not revealed in the xrays. Most simple fractures can be treated with appropriate immobilization through buddy taping, finger splints, or casting. If correctly diagnosed, reduced and immobilized, these fractures usually result in excellent clinical outcomes. However, fractures may require operative stabilization if they have substantial angulation or rotation, extend into the joint, or cannot be held in a reduced position with splinting alone. Most fractures can be treated operatively with closed reduction and percutaneous pinning if addressed within the first week following the injury. In children, the thick, vascular-rich periosteum and bony remodeling potential make anatomic reductions and internal fixation rarely necessary. Most fractures complete bony healing in 3-4 weeks, with the scaphoid being a notable exception. Following immobilization, children rarely develop hand stiffness and formal occupational therapy is usually not necessary. Despite the high potential for excellent outcomes in pediatric hand fractures, some fractures remain difficult to diagnose and treat. PMID:24209954

  2. [Chondral and osteochondral fractures].

    PubMed

    Kayaoğlu, E Esin; Binnet, Mehmet S

    2007-01-01

    The incidence of traumatic chondral and osteochondral fractures and their role in the development of joint degeneration are not fully elucidated. While assessing traumatic knee injuries, one important criterion for the diagnosis of chondral fractures is to remember the possibility of a chondral or osteochondral fracture. Symptoms in osteochondral fractures are more obvious and cause severe pain and difficulty in movement of knee with hemarthrosis. The presence of hemarthrosis facilitates the diagnosis of an osteochondral fracture. Chondral and osteochondral fractures may be associated with other intra-articular pathologies. There are two main mechanisms of these fractures, including a direct effect causing avulsion or impaction and, a more common mechanism, flexion-rotation force to the knee, which is also the mechanism for an acute patellar dislocation. It is known that arthroscopic treatment is the best method for the diagnosis and treatment of chondral and osteochondral fractures. In osteochondral lesions, the aim of treatment is to restore the congruity of articular surfaces. In agreement with literature data, our clinical experience favors internal fixation as the most effective method for the treatment of osteochondral fractures.

  3. Natural fracture systems studies

    SciTech Connect

    Lorenz, J.C.; Warpinski, N.R.

    1992-09-01

    The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing a structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.

  4. Fracture detection logging tool

    DOEpatents

    Benzing, William M.

    1992-06-09

    A method and apparatus by which fractured rock formations are identified and their orientation may be determined includes two orthogonal motion sensors which are used in conjunction with a downhole orbital vibrator. The downhole vibrator includes a device for orienting the sensors. The output of the sensors is displayed as a lissajou figure. The shape of the figure changes when a subsurface fracture is encountered in the borehole. The apparatus and method identifies fractures rock formations and enables the azimuthal orientation of the fractures to be determined.

  5. SEGMENTAL CLAVICLE FRACTURE

    PubMed Central

    Grossi, Evander Azevedo

    2015-01-01

    The aim here was to present an unusual case of segmental clavicle fracture associated with ipsilateral rib fracture. Although the clavicle is very superficial, undetected cases of both types of fracture may occur, because these patients usually suffer multiple trauma. The case of a patient with a fracture of the diaphysis and lateral extremity of the clavicle is described: the patient was treated surgically and an excellent result was achieved. Similar cases in the literature are reviewed and their management is discussed. PMID:27047835

  6. [(Impending) pathological fracture].

    PubMed

    Sutter, P M; Regazzoni, P

    2002-01-01

    Pathological fractures will be encountered in increasing frequency due to more patients with cancer, surviving a longer period. The skeleton is the third most frequent localization for metastases. Breast cancer is still the most common primary tumor, but bone metastases from lung cancer seem to be diagnosed more and more. Despite of finding metastases most often in the spinal column, fractures are seen mostly at the femoral site. A pathological fracture and, in almost all cases, an impending fracture are absolute indication for operation. An exact definition of an "impending fracture" is still lacking; it is widely accepted, that 50 per cent of bone mass must be destroyed before visualization in X-ray is possible, thus defining an impending fracture. The score system by Mirels estimates the fracture risk by means of four parameters (localization, per cent of destructed bone mass, type of metastasis, pain). Improving quality of life, relieving pain, preferably with a single operation and a short length of stay are the goals of (operative) treatment. For fractures of the proximal femur, prosthetic replacement, for fractures of the subtrochanteric region or the shaft, intramedullary nails are recommended. Postoperative radiation therapy possibly avoids tumor progression. In patient with a good long term prognosis, tumor should be removed locally aggressive.

  7. Value of 3-D CT in classifying acetabular fractures during orthopedic residency training.

    PubMed

    Garrett, Jeffrey; Halvorson, Jason; Carroll, Eben; Webb, Lawrence X

    2012-05-01

    The complex anatomy of the pelvis and acetabulum have historically made classification and interpretation of acetabular fractures difficult for orthopedic trainees. The addition of 3-dimensional (3-D) computed tomography (CT) scan has gained popularity in preoperative planning, identification, and education of acetabular fractures given their complexity. Therefore, the authors examined the value of 3-D CT compared with conventional radiography in classifying acetabular fractures at different levels of orthopedic training. Their hypothesis was that 3-D CT would improve correct identification of acetabular fractures compared with conventional radiography.The classic Letournel fracture pattern classification system was presented in quiz format to 57 orthopedic residents and 20 fellowship-trained orthopedic traumatologists. A case consisted of (1) plain radiographs and 2-dimensional axial CT scans or (2) 3-D CT scans. All levels of training showed significant improvement in classifying acetabular fractures with 3-D vs 2-D CT, with the greatest benefit from 3-D CT found in junior residents (postgraduate years 1-3).Three-dimensional CT scans can be an effective educational tool for understanding the complex spatial anatomy of the pelvis, learning acetabular fracture patterns, and correctly applying a widely accepted fracture classification system.

  8. Reduced discretization error in HZETRN

    SciTech Connect

    Slaba, Tony C.; Blattnig, Steve R.; Tweed, John

    2013-02-01

    The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.

  9. Discrete tomography in neutron radiography

    NASA Astrophysics Data System (ADS)

    Kuba, Attila; Rodek, Lajos; Kiss, Zoltán; Ruskó, László; Nagy, Antal; Balaskó, Márton

    2005-04-01

    Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT.

  10. Police Discretion: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Brenner, Robert N.; Kravitz, Marjorie

    This bibliography was compiled with two goals. The first goal is to provide police administrators and officers with an overview of the issues involved in developing guidelines for police discretion and a discussion of the options available. The second goal is to demonstrate the need for continuing dialogue and interaction between lawmakers, law…

  11. Analysis of zygomatic fractures.

    PubMed

    Hwang, Kun; Kim, Dong Hyun

    2011-07-01

    The purpose of this study was to evaluate the natural history of zygomatic fractures in 469 cases over 14 years. The medical records of patients seeking treatment for zygomatic fractures were reviewed. The zygomatic fractures were classified as monopod, dipod, or tripod fractures for most patients. The monopod fractures included (1) zygomaticofrontal, (2) zygomaticomaxillary, and (3) zygomatic arch fractures. The dipod fractures were subclassified into 3 types according to combination of the previously mentioned 3 sites, which were 1 and 2, 1 and 3, and 2 and 3. Tripod fracture included all 1, 2, and 3. Among 469 cases of zygomatic fractures, tripod fractures (n = 238, 50.7%), zygomaticomaxillary fracture (n = 121, 25.8%), and isolated fracture of the zygomatic arch (n = 98 20.9%) formed most of the cases (n = 457, 97.4%). About one-half cases were tripod fractures (n = 238, 50.7%), and another half cases were monopod fractures (n = 220, 46.9%). Only 11 cases (2.4%) were dipod fractures. Most of the monopod fractures were zygomaticomaxillary (n = 121, 25.8%) and zygomatic arch fractures (n = 98, 20.9%). Among the dipod fractures, no cases of zygomaticofrontal and zygomatic arch fractures were reported. An open reduction was performed in 73.8% (346 cases), closed reduction in 24.5% (115 cases), and conservative treatment in only 1.7%. In tripod fracture (n = 238), an open reduction and internal fixation was performed for most of the cases (n = 225, 94.5%), and closed reduction was performed in only 11 cases (4.6%). In monopod zygomaticomaxillary fracture (n = 121), internal fixation was performed for most of the cases (n = 108, 89.3%), and closed reduction was performed in only 9 cases (7.7%). However, in monopod fracture of the zygomatic arch (n = 98), most of the cases (n = 95, 96.9%) were treated with closed reduction; open reduction was performed in only 1 case (1.0%). At zygomaticofrontal area (n = 241), internal fixation was performed in most of the cases (n

  12. The Process of Hydraulic Fracturing

    EPA Pesticide Factsheets

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  13. Compression fractures of the back

    MedlinePlus

    Vertebral compression fractures ... the most common cause of this type of fracture. Osteoporosis is a disease in which bones become ... the spine, such as multiple myeloma Having many fractures of the vertebrae can lead to kyphosis . This ...

  14. Hip Fractures among Older Adults

    MedlinePlus

    ... training for health care providers. Learn More Hip Fractures Among Older Adults Recommend on Facebook Tweet Share ... older. What You Can Do to Prevent Hip Fractures You can prevent hip fractures by taking steps ...

  15. Normal growth and development of the lips: a 3-dimensional study from 6 years to adulthood using a geometric model

    PubMed Central

    FERRARIO, VIRGILIO F.; SFORZA, CHIARELLA; SCHMITZ, JOHANNES H.; CIUSA, VERONICA; COLOMBO, ANNA

    2000-01-01

    A 3-dimensional computerised system with landmark representation of the soft-tissue facial surface allows noninvasive and fast quantitative study of facial growth. The aims of the present investigation were (1) to provide reference data for selected dimensions of lips (linear distances and ratios, vermilion area, volume); (2) to quantify the relevant growth changes; and (3) to evaluate sex differences in growth patterns. The 3-dimensional coordinates of 6 soft-tissue landmarks on the lips were obtained by an optoelectronic instrument in a mixed longitudinal and cross-sectional study (2023 examinations in 1348 healthy subjects between 6 y of age and young adulthood). From the landmarks, several linear distances (mouth width, total vermilion height, total lip height, upper lip height), the vermilion height-to-mouth width ratio, some areas (vermilion of the upper lip, vermilion of the lower lip, total vermilion) and volumes (upper lip volume, lower lip volume, total lip volume) were calculated and averaged for age and sex. Male values were compared with female values by means of Student's t test. Within each age group all lip dimensions (distances, areas, volumes) were significantly larger in boys than in girls (P < 0.05), with some exceptions in the first age groups and coinciding with the earlier female growth spurt, whereas the vermilion height-to-mouth width ratio did not show a corresponding sexual dimorphism. Linear distances in girls had almost reached adult dimensions in the 13–14 y age group, while in boys a large increase was still to occur. The attainment of adult dimensions was faster in the upper than in the lower lip, especially in girls. The method used in the present investigation allowed the noninvasive evaluation of a large sample of nonpatient subjects, leading to the definition of 3-dimensional normative data. Data collected in the present study could represent a data base for the quantitative description of human lip morphology from childhood to

  16. [Fracture arthroplasty of femoral neck fractures].

    PubMed

    Braun, K F; Hanschen, M; Biberthaler, P

    2016-04-01

    A paradigm shift in the treatment of elderly patients has recently taken place leading to an increase in joint replacement surgery. The aim of this article is to highlight new developments and to present a treatment algorithm for femoral neck fractures. The age limit must be individually determined considering the comorbidities and perioperative risk profile. Pertrochanteric femoral fractures are nearly exclusively treated by osteosynthesis regardless of age. The situation for femoral neck fractures is more complex. Patients younger than 65 years should generally be treated by osteosynthesis but patients older than 65 years benefit from hemiarthroplasty or total hip arthroplasty. In patients aged between 65 and 75 years with high functional demands and a justifiable perioperative risk, total joint replacement is the treatment of choice. In physically less active patients older than 75 years and poor general condition, preference should be given to hemiarthroplasty.

  17. Avulsion fractures in athletes.

    PubMed Central

    Orava, S.; Ala-Ketola, L.

    1977-01-01

    34 cases of avulsion fractures are described. Each fracture took place during athletic training or competition. Excepting six sportsmen participating in a general fitness programme, every patient was an active competitive athlete. There were six women and 28 men; their average age was 20.1 years, raised by a few middle-aged "fitness sportsmen". Most avulsion fractures took place in sprinters and hurdlers; next were middle and long distance renner, footballers, fitness joggers, skiers and ice-hockey players. The most usual location of a fracture was the anterior pelvic spines; avulsion fractures were also detected in various parts of lower limbs. There were fewer avulsion fractures in the area of the trunk and upper extremities. Roetgenologically, the diagnosis of an avulsion fracture is generally easy to make. However, the diagnosis is facilitated by knowing the mechanism of the injury, the technique of the athletic event, and some of the training methods. Generally, a fracture heals well, even if it requires both sufficient immobilisation and some delay in resuming physical exertion. PMID:884433

  18. Fracture of glass

    NASA Technical Reports Server (NTRS)

    Henshaw, John M.

    1993-01-01

    The objectives of this educational exercise are the following: to observe and understand the fracture behavior of a brittle material; and to quantify the effects of various treatments on that material designed to modify its strength. A brief introduction to beam bending, fracture mechanics, influence of surface defects, residual stress, and static fatigue is presented. A test procedure for specimen testing is also presented.

  19. TIBIAL SHAFT FRACTURES

    PubMed Central

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2015-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures. PMID:27026999

  20. TIBIAL SHAFT FRACTURES.

    PubMed

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  1. Vertebroplasty for Spine Fracture Pain

    MedlinePlus

    ... Resources Drugs, Procedures & Devices Procedures & Devices Vertebroplasty for Spine Fracture Pain Vertebroplasty for Spine Fracture Pain Drugs, Procedures & DevicesProcedures & DevicesYour Health Resources ...

  2. Transient dual-porosity simulations of unsaturated flow in fractured rocks

    SciTech Connect

    Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

    1995-01-01

    This report describes the development and use of a semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but is accurate in both early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module that acts as a source/sink term for fracture elements; this module is compatible with the unsaturated flow simulator TOUGH. Flow processes are then simulated using only fracture elements in the computational grid. This semi-analytical dual-porosity module has been tested with TOUGH on various problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new semi-analytical dual-porosity model accurately simulates flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks.

  3. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    SciTech Connect

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables.

  4. Transphyseal Distal Humerus Fracture.

    PubMed

    Abzug, Joshua; Ho, Christine Ann; Ritzman, Todd F; Brighton, Brian

    2016-01-01

    Transphyseal distal humerus fractures typically occur in children younger than 3 years secondary to birth trauma, nonaccidental trauma, or a fall from a small height. Prompt and accurate diagnosis of a transphyseal distal humerus fracture is crucial for a successful outcome. Recognizing that the forearm is not aligned with the humerus on plain radiographs may aid in the diagnosis of a transphyseal distal humerus fracture. Surgical management is most commonly performed with the aid of an arthrogram. Closed reduction and percutaneous pinning techniques similar to those used for supracondylar humerus fractures are employed. Cubitus varus caused by a malunion, osteonecrosis of the medial condyle, or growth arrest is the most common complication encountered in the treatment of transphyseal distal humerus fractures. A corrective lateral closing wedge osteotomy can be performed to restore a nearly normal carrying angle.

  5. Spatial data discretization methods for geocomputation

    NASA Astrophysics Data System (ADS)

    Cao, Feng; Ge, Yong; Wang, Jinfeng

    2014-02-01

    Geocomputation provides solutions to complex geographic problems. Continuous and discrete spatial data are involved in the geocomputational process; however, geocomputational methods for discrete spatial data cannot be directly applied to continuous or mixed spatial data. Therefore, discretization methods for continuous or mixed spatial data are involved in the process. Since spatial data has spatial features, such as association, heterogeneity and spatial structure, these features cannot be handled by traditional discretization methods. Therefore, this work develops feature-based spatial data discretization methods that achieve optimal discretization results for spatial data using spatial information implicit in those features. Two discretization methods considering the features of spatial data are presented. One is an unsupervised method considering autocorrelation of spatial data and the other is a supervised method considering spatial heterogeneity. Discretization processes of the two methods are exemplified using neural tube defects (NTD) for Heshun County in Shanxi Province, China. Effectiveness is also assessed.

  6. Particle transport in unsaturated fractured chalk under arid conditions.

    PubMed

    Weisbrod, Noam; Dahan, Ofer; Adar, Eilon M

    2002-05-01

    A series of field and laboratory experiments were conducted to study the mechanisms of particle detachment and transport from fractures in vadose chalk. Experiments of intermittent flow events along fracture surfaces were carried out in the laboratory. In the field, water was percolated from land surface via a discrete fracture into a compartmental sampler installed inside a horizontal corehole located I m below the surface. The mass, size distribution, and composition of the particles drained from the fracture voids were examined along with flow rates and salt dissolution. Two boreholes penetrating the underlying saturated zone were sampled and analyzed for colloidal concentration and composition. Most of the particle and solute release at the drained effluents occurred during the first several hours of flow, but erratic pulses of particles were still observed after long periods of time. Most of the detached particles had a mean diameter of >2 microm, while the mobile colloidal phase in the groundwater had a mean diameter of approximately 1 microm. Mineralogical composition of the groundwater colloids and the particles detached from the upper vadose fracture were similar. Laboratory observations demonstrated the importance of the existence of a coating layer, made of weathered particles and salts, on particle detachment. The results of this study suggest that: (1) particle detachment causes flow-rate variability in the unsaturated fracture; (2) the mechanisms of particle detachment and salt dissolution within the fracture are linked: and (3) although most of the detached particles are large and likely to accumulate inside fractures, some colloidal particles also eroded from the fracture void and are likely to be transported to the groundwater.

  7. Site characterization in densely fractured dolomite: Comparison of methods

    USGS Publications Warehouse

    Muldoon, M.; Bradbury, K.R.

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.

  8. Site characterization in densely fractured dolomite: comparison of methods.

    PubMed

    Muldoon, Maureen; Bradbury, Ken R

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.

  9. Studies of Cosmic Ray Modulation and Energetic Particle Propagation in Time-Dependent 3-Dimensional Heliospheric Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    The primary goal of this project was to perform theoretical calculations of propagation of cosmic rays and energetic particles in 3-dimensional heliospheric magnetic fields. We used Markov stochastic process simulation to achieve to this goal. We developed computation software that can be used to study particle propagation in, as two examples of heliospheric magnetic fields that have to be treated in 3 dimensions, a heliospheric magnetic field suggested by Fisk (1996) and a global heliosphere including the region beyond the termination shock. The results from our model calculations were compared with particle measurements from Ulysses, Earth-based spacecraft such as IMP-8, WIND and ACE, Voyagers and Pioneers in outer heliosphere for tests of the magnetic field models. We particularly looked for features of particle variations that can allow us to significantly distinguish the Fisk magnetic field from the conventional Parker spiral field. The computer code will eventually lead to a new generation of integrated software for solving complicated problems of particle acceleration, propagation and modulation in realistic 3-dimensional heliosphere of realistic magnetic fields and the solar wind with a single computation approach.

  10. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    PubMed

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls.

  11. LADCP Observations of the 3-Dimensional Velocity Field Associated with Internal Waves and Boundary-Layer Flows

    NASA Astrophysics Data System (ADS)

    Thurnherr, A.; St Laurent, L.; Jacobs, S. S.; Kanzow, T.; Naveira Garabato, A. C.; Ledwell, J. R.

    2012-12-01

    While low-frequency processes in the ocean are primarily associated with (quasi-)horizontal, i.e. 2-dimensional, flows energetic high-frequency finescale processes, such as internal waves, hydraulic and other boundary-layer currents, are much more 3-dimensional. Due to recent advances in LADCP processing, it is now possible to derive full-depth snapshots of the 3-dimensional velocity field from standard CTD/LADCP casts. Applying the new method to data obtained in energetic regions of the ocean reveals velocity fields associated with vertical speeds ranging from a few cm/s to more than 20cm/s. Outside boundary layers, the vertical velocities are dominated by high-frequency (near-N) internal waves associated with small horizontal scales and the shapes of the corresponding vertical-velocity spectra in the finescale band are consistent with the Garrett-Munk model. In individual data sets the vertical-velocity spectral levels are correlated with coincident dissipation measurements derived from velocity microstructure, suggesting that a new finescale parameterization method for oceanic turbulence and diapycnal mixing based on LADCP-derived vertical velocities is possible. Near boundaries, there is evidence for large vertical velocities associated not just with waves, but also with seawater upwelling from beneath a fast-melting Antarctic ice shelf, with hydraulic overflow processes of the Mid-Atlantic Ridge, and even with very large "overturns" over the flank of a ridge in Luzon strait.;

  12. Systoles in discrete dynamical systems

    NASA Astrophysics Data System (ADS)

    Fernandes, Sara; Grácio, Clara; Ramos, Carlos Correia

    2013-01-01

    The fruitful relationship between Geometry and Graph Theory has been explored by several authors benefiting also the Theory of discrete dynamical systems seen as Markov chains in graphs. In this work we will further explore the relation between these areas, giving a geometrical interpretation of notions from dynamical systems. In particular, we relate the topological entropy with the systole, here defined in the context of discrete dynamical systems. We show that for continuous interval maps the systole is trivial; however, for the class of interval maps with one discontinuity point the systole acquires relevance from the point of view of the dynamical behavior. Moreover, we define the geodesic length spectrum associated to a Markov interval map and we compute the referred spectrum in several examples.

  13. Dark Energy from Discrete Spacetime

    PubMed Central

    Trout, Aaron D.

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502

  14. Dark energy from discrete spacetime.

    PubMed

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  15. Epidemiology of hip fractures.

    PubMed

    Kannus, P; Parkkari, J; Sievänen, H; Heinonen, A; Vuori, I; Järvinen, M

    1996-01-01

    There were an estimated 1.66 million hip fractures world-wide in 1990. According to the epidemiologic projections, this worldwide annual number will rise to 6.26 million by the year 2050. This rise will be in great part due to the huge increase in the elderly population of the world. However, the age-specific incidence rates of hip fractures have also increased during the recent decades and in many countries this rise has not leveled off. In the districts where this increase has either showed or leveled off, the change seems to especially concern women's cervical fractures. In men, the increase has continued unabated almost everywhere. Reasons for the age-specific increase are not known: increase in the age-adjusted incidence of falls of the elderly individuals with accompanying deterioration in the age-adjusted bone quality (strength, mineral density) may partially explain the phenomenon. The growth of the elderly population will be more marked in Asia, Latin America, the Middle East, and Africa than in Europe and North America, and it is in the former regions that the greatest increments in hip fracture are projected so that these regions will account for over 70% of the 6.26 million hip fractures in the year 2050. The incidence rates of hip fractures vary considerably from population to population and race to race but increase exponentially with age in every group. Highest incidences have been described in the whites of Northern Europe (Scandinavia) and North America. In Finland, for example, the 1991 incidence of hip fractures was 1.1% for women and 0.7% for men over 70 years of age. Among elderly nursing home residents, the figures can be as high as 6.2% and 4.9%. The lifetime risk of a hip fracture is 16%-18% in white women and 5%-6% in white men. At the age of 80 years, every fifth woman and at the age of 90 years almost every second woman has suffered a hip fracture. Since populations are aging worldwide, the mean age of the hip fracture patients are

  16. Geomechanically Coupled Simulation of Flow in Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Barton, C.; Moos, D.; Hartley, L.; Baxter, S.; Foulquier, L.; Holl, H.; Hogarth, R.

    2012-12-01

    Capturing the necessary and sufficient detail of reservoir hydraulics to accurately evaluate reservoir behavior remains a significant challenge to the exploitation and management of fracture-dominated geothermal reservoirs. In these low matrix permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks, which are in turn controlled by the in situ stresses, the fracture distribution and connectivity and the hydraulic behavior of the fractures. This complex interaction of fracture flow systems with the present-day stress field compounds the problem of developing an effective and efficient simulation to characterize, model and predict fractured reservoir performance. We discuss here a case study of the integration of geological, geophysical, geomechanical, and reservoir engineering data to characterize the in situ stresses, the natural fracture network and the controls on fracture permeability in geothermal reservoirs. A 3D geomechanical reservoir model includes constraints on stress magnitudes and orientations, and constraints on mechanical rock properties and the fractures themselves. Such a model is essential to understanding reservoir response to stimulation and production in low matrix permeability, fracture-dominated reservoirs. The geomechanical model for this study was developed using petrophysical, drilling, and wellbore image data along with direct well test measurements and was mapped to a 3D structural grid to facilitate coupled simulation of the fractured reservoir. Wellbore image and stimulation test data were used along with microseismic data acquired during the test to determine the reservoir fracture architecture and to provide control points for a realistic inter-connected discrete fracture network. As most fractures are stress-sensitive, their hydraulic conductivities will change with changes in bottomhole flowing and reservoir pressures, causing variations in production profiles

  17. Observability of discretized partial differential equations

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  18. Umbral Deformations on Discrete SPACE TIME

    NASA Astrophysics Data System (ADS)

    Zachos, Cosmas K.

    Given a minimum measurable length underlying spacetime, the latter may be effectively regarded as discrete, at scales of order the Planck length. A systematic discretization of continuum physics may be effected most efficiently through the umbral deformation. General functionals yielding such deformations at the level of solutions are furnished and illustrated, and broad features of discrete oscillations and wave propagation are outlined.

  19. Tibial fractures in children

    PubMed Central

    Palmu, Sauli A; Auro, Sampo; Lohman, Martina; Paukku, Reijo T; Peltonen, Jari I; Nietosvaara, Yrjänä

    2014-01-01

    Background Tibial fracture is the third most common long-bone fracture in children. Traditionally, most tibial fractures in children have been treated non-operatively, but there are no long-term results. Methods 94 children (64 boys) were treated for a tibial fracture in Aurora City Hospital during the period 1980–89 but 20 could not be included in the study. 58 of the remaining 74 patients returned a written questionnaire and 45 attended a follow-up examination at mean 27 (23–32) years after the fracture. Results 89 children had been treated by manipulation under anesthesia and cast-immobilization, 4 by skeletal traction, and 1 with pin fixation. 41 fractures had been re-manipulated. The mean length of hospital stay was 5 (1–26) days. Primary complications were recorded in 5 children. The childrens’ memories of treatment were positive in two-thirds of cases. The mean subjective VAS score (range 0–10) for function appearance was 9. Leg-length discrepancy (5–10 mm) was found clinically in 10 of 45 subjects and rotational deformities exceeding 20° in 4. None of the subjects walked with a limp. None had axial malalignment exceeding 10°. Osteoarthritis of the hip and/or knee was seen in radiographs from 2 subjects. Interpretation The long-term outcome of tibial fractures in children treated non-operatively is generally good. PMID:24786903

  20. Impact of ductility on hydraulic fracturing in shales

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  1. Fractured porous medium flow analysis using numerical manifold method with independent covers

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Hua; Lin, Shao-Zhong; Xie, Zhi-Qiang; Su, Hai-Dong

    2016-11-01

    Due to the complexity of geometry and the difficulty of mesh discretization of 3D (three-dimensional) blocks cut by complexly distributed fractures, explicitly considering arbitrary fracture network in fractured porous medium (FPM) flow analysis is very challenging for various numerical methods. In this study, we developed a FPM flow model by taking full advantage of numerical manifold method (NMM) with independent covers. With the independent covers, arbitrarily-shaped 3D blocks identified by block-cutting analysis can be directly used as basic computational elements. Along the boundaries of the divided blocks, fractures elements are generated according to the fractures' apertures. Therefore, it is able to handle very complicated fracture network in 3D flow analysis without need to subdivide 3D blocks into computational meshes. In order to refine the meshes, we introduced artificial fractures with same material properties as surrounding rock into a fracture network, without need to coordinate with the shapes of the blocks. We demonstrated our new model on different 2D examples. At last, we applied our model to 2D and 3D examples with complexly distributed fractures, and achieved reasonable results. The results show that our model is very powerful to analyze fluid flow in arbitrarily and complexly fractured rock mass in 3D.

  2. Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture

    SciTech Connect

    Crandall, D.M.; Ahmadi, Goodarz; Smith, D.H.

    2008-04-01

    Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The ‘roughness’ of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.

  3. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na

    2016-11-01

    Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

  4. Numerical Investigation into the Influence of Bedding Plane on Hydraulic Fracture Network Propagation in Shale Formations

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Shicheng, Zhang; Tong, Zhou; Han, Li

    2016-09-01

    Shale formations are often characterized by low matrix permeability and contain numerous bedding planes (BPs) and natural fractures (NFs). Massive hydraulic fracturing is an important technology for the economic development of shale formations in which a large-scale hydraulic fracture network (HFN) is generated for hydrocarbon flow. In this study, HFN propagation is numerically investigated in a horizontally layered and naturally fractured shale formation by using a newly developed complex fracturing model based on the 3D discrete element method. In this model, a succession of continuous horizontal BP interfaces and vertical NFs is explicitly represented and a shale matrix block is considered impermeable, transversely isotropic, and linearly elastic. A series of simulations is performed to illustrate the influence of anisotropy, associated with the presence of BPs, on the HFN propagation geometry in shale formations. Modeling results reveal that the presence of BP interfaces increases the injection pressure during fracturing. HF deflection into a BP interface tends to occur under high strength and elastic anisotropy as well as in low vertical stress anisotropy conditions, which generate a T-shaped or horizontal fracture. Opened BP interfaces may limit the growth of the fracture upward and downward, resulting in a very low stimulated thickness. However, the opened BP interfaces favor fracture complexity because of the improved connection between HFs and NFs horizontally under moderate vertical stress anisotropy. This study may help predict the HF growth geometry and optimize the fracturing treatment designs in shale formations with complex depositional heterogeneity.

  5. An efficient numerical model for multicomponent compressible flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Firoozabadi, Abbas

    2014-12-01

    An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant-Freidricks-Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20-130 times in 2D. In 3D, one may expect even a higher computational efficiency.

  6. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    SciTech Connect

    Zhou, Jing; Huang, Hai; Deo, Milind; Jiang, Shu

    2015-10-01

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flow in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of

  7. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion

  8. Fracture and mechanical stratigraphy for Mississippian-Pennsylvanian age carbonates, Ozark Dome, NW Arkansas

    NASA Astrophysics Data System (ADS)

    Peppers, M.; Burberry, C. M.

    2014-12-01

    Identifying natural fracture patterns in an area gives a detailed look into the local tectonic history. Comparing those fractures to the mechanical properties of the rocks provides key insights into predicting fractures in the subsurface. The Ozark Dome is an ideal study area for fracture research due to multiple fracturing events resulting from the multi-stage deformation Ouachita Orogeny during the late Paleozoic. This study used field observations of lithology and fracture attributes over ~10 outcrops in the Mississppian-Pennsylvanian (360-298 ma) carbonate sequence of the Ozark Plateau. Outcrops were chosen having excellent lithological exposure up the sequence from the Boone to Atoka formations and with 3D representations of the fracture patterns. In all, the area investigated covered nearly 60 square miles. Fracture attributes collected included fracture intensity, length, and abutting relationships; and rock hardness data collected from a Schmidt Hammer. Data was analyzed using programs such as Stereonet and MOVE structural software that generated rose diagrams, structural cross sections, and products. Initial results indicate 4 main fracture orientations that resulted from at least 3 discrete phases of deformation during the Miss-Penn. Initial results also indicate that the present-day mechanical stratigraphy is not the same one that existed during the deformation phases. Work done at the Tiger Blvd. outcrops showed at least 2 distinct mechanical units. Fractures observed at the outcrop did not respect mechanical bed boundaries, and showed no relationship to the differences in mechanical properties observed. This study will aid in the interpretation of fractures in regards to mechanical stratigraphy, which allows for a better understanding of subsurface fracture prediction in carbonate sequences worldwide. Finally, the fracture work here will also help in elucidating the tectonic history of the field area during the Mississippian and Pennsylvanian.

  9. Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Chia, Y.; Chuang, P. Y.

    2015-12-01

    Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.

  10. Occult fractures of extremities.

    PubMed

    Ahn, Joong Mo; El-Khoury, Georges Y

    2007-05-01

    Recent advances in cross-sectional imaging, particularly in CT and MR imaging, have given these modalities a prominent role in the diagnosis of fractures of the extremities. This article describes the clinical application and imaging features of cross-sectional imaging (CT and MR imaging) in the evaluation of patients who have occult fractures of the extremities. Although CT or MR imaging is not typically required for evaluation of acute fractures, these modalities could be helpful in the evaluation of the occult osseous injuries in which radiographic findings are equivocal or inconclusive.

  11. Haemodynamically Unstable Pelvic Fractures

    DTIC Science & Technology

    2009-01-01

    patients with pelvic fractures. Ann Surg 2001;233:843–50. 12. Blackmore CC, Cummings P, Jurkovich GJ , et al. Predicting major hemorrhage in patients...with pelvic fracture. J Trauma 2006;61:346–52. 13. Blackmore CC, Jurkovich GJ , Linnau KF, et al. Assessment of volume of hemorrhage and outcome from...outcome of blunt trauma patients sustaining pelvic fractures. Injury 2000;31:677–82. 55. Haidukewych GJ , Kumar S, Prpa B. Placement of half-pins for

  12. Modeling interfacial fracture in Sierra.

    SciTech Connect

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  13. A fractured rock geophysical toolbox method selection tool

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  14. Clinical survey of fractured teeth.

    PubMed

    Gher, M E; Dunlap, R M; Anderson, M H; Kuhl, L V

    1987-02-01

    Through a standardized procedure using clinical examination, interviews, and dental history, this 2-year study documents 100 cases of tooth fracture in 98 patients. For comparison, pertinent information was also recorded for more than 2,000 teeth in a randomly selected sample population. Two chief types of fracture were found: incomplete crown-root fractures and root fractures associated with earlier endodontic therapy.

  15. Mechanical Coal-Face Fracturer

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Radial points on proposed drill bit take advantage of natural fracture planes of coal. Radial fracture points retracted during drilling and impacted by piston to fracture coal once drilling halts. Group of bits attached to array of pneumatic drivers to fracture large areas of coal face.

  16. Effects Of Fracture Density And Anisotropy On Delineation Of Wellhead-Projection Areas In Fractured-Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Bradbury, K. R.; Muldoon, M. A.

    1994-03-01

    Most wellhead protection studies in fractured-rock aquifers rely on the assumption that the aquifer approximates a porous medium at the scale of the wellhead protection area. Significant errors can result if the assumption is incorrectly applied. Some authors have developed theoretical and subjective criteria for determining when the porous-media approximation is appropriate. Most of these criteria, however, require detailed field work to test the validity of the porous-media approximation. Experiments have been carried out with Roucleau's two-dimensional discrete fracture flow model coupled with a particle-tracking code to determine when the porous-media approximation is appropriate for delineating the capture zone of a well drilled in fractured rock. Specifically, the effects of anisotropy and fracture density on the capture-zone determination have been examined. It has been found that, even in densely fractured aquifers, the zone of contribution determined by the fracture-flow model is significantly larger than the capture zone determined by porous-media-based models.

  17. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  18. Multipulses in discrete Hamiltonian nonlinear systems.

    PubMed

    Kevrekidis, P G

    2001-08-01

    In this work, the behavior of multipulses in discrete Hamiltonian nonlinear systems is investigated. The discrete nonlinear Schrödinger equation is used as the benchmark system for this study. A singular perturbation methodology as well as a variational approach are implemented in order to identify the dominant factors in the discrete problem. The results of the two methodologies are shown to coincide in assessing the interplay of discreteness and exponential tail-tail pulse interaction. They also allow one to understand why, contrary to what is believed for their continuum siblings, discrete systems can sustain (static) multipulse configurations, a conclusion that is subsequently verified by numerical experiment.

  19. On equivalence of discrete-discrete and continuum-discrete design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Choi, Kyung K.; Twu, Sung-Ling

    1989-01-01

    Developments in design sensitivity analysis (DSA) method have been made using two fundamentally different approaches as shown. In the first approach, a discretized structural finite element model is used to carry out DSA. There are three different methods in the discrete DSA approach: finite difference, semi-analytical, and analytical methods. The finite difference method is a popular one due to its simplicity, but a serious shortcoming of the method is the uncertainty in the choice of a perturbation step size of design variables. In the semi-analytical method, the derivatives of stiffness matrix is computed by finite differences, whereas in the analytical method, the derivatives are obtained analytically. For the shape design variable, computation of analytical derivative of stiffness matrix is quite costly. Because of this, the semi-analytical method is a popular choice in discrete shape DSA approach. However, recently, Barthelemy and Haftka presented that the semi-analytical method can have serious accuracy problems for shape design variables in structures modeled by beam, plate, truss, frame, and solid elements. They found that accuracy problems occur even for a simple cantilever beam. In the second approach, a continuum model of the structure is used to carry out DSA.

  20. Effect of matrix resin on the impact fracture characteristics of graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Hertzberg, P. E.; Smith, B. W.; Miller, A. G.

    1982-01-01

    The effect of resin chemistry on basic impact energy absorbent mechanisms exibited by graphite-epoxy composites was investigated. Impact fracture modes and microscopic resin deformation characteristics were examined for 26 NASA-impacted graphite epoxy laminates with different resin chemistries. Discrete specimen fracture modes were identified through cross sectional examination after impact, and subsequently compared with measured glass transition temperatures, cure cycles, and residual impact capabilities. Microscopic resin deformation mechanisms and their overall relationship to impact loading conditions, voids, and resin content were also characterized through scanning electron microscopic examination of separated fracture surfaces.

  1. Geothermal Ultrasonic Fracture Imager

    SciTech Connect

    Patterson, Doug; Leggett, Jim

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  2. Clavicle Fracture (Broken Collarbone)

    MedlinePlus

    ... risks and benefits of surgery for your clavicle fracture. There are risks associated with any surgery, including: • Infection • Bleeding • Pain • Blood clots in your leg • Damage to ...

  3. Calcaneal stress fractures.

    PubMed

    Weber, Jason M; Vidt, Louis G; Gehl, Richard S; Montgomery, Travis

    2005-01-01

    The majority of plantar heel pain is diagnosed as plantar fasciitis or heel spur syndrome. When historic or physical findings are unusual or when routine treatment proves ineffective, one should consider an atypical cause of heel pain. Stress fractures of the calcaneus are a frequently unrecognized source of heel pain. In some cases they can continue to go unrecognized because the symptoms of calcaneal stress fractures sometimes improves with treatments aimed at plantar fasciitis. Calcaneal stress fractures can occur in any population of adults and even children and are common among active people, such as athletes, sports enthusiasts, and military personnel. It is likely that the number of diagnosed calcaneal stress fractures will rise among practitioners with an increased recognition of their possibility.