Science.gov

Sample records for 3-dimensional medical model

  1. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    PubMed Central

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  2. The effectiveness of an interactive 3-dimensional computer graphics model for medical education.

    PubMed

    Battulga, Bayanmunkh; Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-07-09

    Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. To determine the educational effectiveness of interactive 3DCG. We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures.

  3. 3-Dimensional Topographic Models for the Classroom

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.

    2003-01-01

    We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.

  4. 3-Dimensional Topographic Models for the Classroom

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.

    2003-01-01

    We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.

  5. Incorporating 3-dimensional models in online articles.

    PubMed

    Cevidanes, Lucia H S; Ruellas, Antonio C O; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-05-01

    The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. When submitting manuscripts, authors can now upload 3D models that will allow readers to

  6. Incorporating 3-dimensional models in online articles

    PubMed Central

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  7. [Reformatting 3-dimensional medical images. Application to MRI and scanners].

    PubMed

    Cuchet, E; Lambert, F; Derosier, C

    1994-04-01

    Several kinds of images, each giving a different information, are now available to radiologists. The MRI images have excellent contrast resolution and enable soft tissues to be differentiated, but they do not distinguish structures with low water content, notably air and bone, whereas these are easily recognized by CT. The aim of this study is to present a simple, entirely radiologist-supervised method to examine the radiological data of any patient, obtained from several kinds of images. MRI is performed using a GEMS Signa, 1.5 Tesla, 4.9 version magnet. Acquisitions are T1- or T2-weighted spin-echo or gradient sequences, with a 256 or 512 matrix, on axial sections, with of without contrast injection. CT is performed using a GEMS Hi Speed scanner. Acquisitions are obtained on a 512 matrix and with a "Soft" or "Bone" filter, without contrast injection. The two series of sections are transmitted, through an Etherne network, to a Sun console where the two corresponding volumes are reconstructed on a GEMS Voxtol by means of a 3-dimensional soft ware for image treatment. At least 3 couples define the rotation and translation required for one of the two volumes to reset it in the guide mark of the other. The soft ware then looks for the best transformation, in terms of least square, between the two 3-dimensional volumes. The calculation demands only a few seconds. One of the two objects is then recalculated in the guide mark of the other. The cursor positioned by the user on any point of the object is linked to a second cursor which will automatically position itself on the corresponding point of the other object. The accuracy obtained (about one millimeter) is specified by the soft ware which indicates how to improve resetting. In addition to its teaching value, this superimposition image can help in the diagnosis and can be used for surgical stimulation because it is possible to mix the images. This mixing gives access to a new type of imaging, since the images spared

  8. [3-Dimensional model reconstruction of penis and surrounding tissue].

    PubMed

    Wang, Rui-Heng; Cao, Chuan; Mei, Wen-Ming; Wang, Wen-Xian; Tan, Li-Wen; Li, Shi-Rong

    2012-07-01

    To evaluate the feasibility of 3-Dimensional (3-D) model reconstruction of penis and surrounding structures based on magnetic resonance images, which may provide the model building method for modeling surgery of individual penoplasty. Magnetic resonance (MR) images of penis with different imaging parameters were evaluated. With the surface rendering construction, the 3D virtual model was established by Amira software. The anatomical details imaging is better in T2-weighted fast spin-echo images with 3.0 mm slice thickness. The established model based on the MR images can show the soft-tissue, suspensory ligament of the penis. The suspensory ligament stretches between the pubic symphysis and the corpora cavernosa. The penile roots attach to inferior ramus of pubis. MR imaging provides enough anatomical information for modeling. It can be used for the development of model surgery system of individual penoplasty.

  9. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology.

    PubMed

    Cohen, Adir; Laviv, Amir; Berman, Phillip; Nashef, Rizan; Abu-Tair, Jawad

    2009-11-01

    Mandibular reconstruction can be challenging for the surgeon wishing to restore its unique geometry. Reconstruction can be achieved with titanium bone plates followed by autogenous bone grafting. Incorporation of the bone graft into the mandible provides continuity and strength required for proper esthetics and function and permitting dental implant rehabilitation at a later stage. Precious time in the operating room is invested in plate contouring to reconstruct the mandible. Rapid prototyping technologies can construct physical models from computer-aided design via 3-dimensional (3D) printers. A prefabricated 3D model is achieved, which assists in accurate contouring of plates and/or planning of bone graft harvest geometry before surgery. The 2 most commonly used rapid prototyping technologies are stereolithography and 3D printing (3DP). Three-dimensional printing is advantageous to stereolithography for better accuracy, quicker printing time, and lower cost. We present 3 clinical cases based on 3DP modeling technology. Models were fabricated before the resection of mandibular ameloblastoma and were used to prepare bridging plates before the first stage of reconstruction. In 1 case, another model was fabricated and used as a template for iliac crest bone graft in the second stage of reconstruction. The 3DP technology provided a precise, fast, and cheap mandibular reconstruction, which aids in shortened operation time (and therefore decreased exposure time to general anesthesia, decreased blood loss, and shorter wound exposure time) and easier surgical procedure.

  10. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  11. A 3-dimensional model for teaching local flaps using porcine skin.

    PubMed

    Hassan, Zahid; Hogg, Fiona; Graham, Ken

    2014-10-01

    The European Working Time Directive and streamlined training has led to reduced training time. Surgery, as an experience-dependent craft specialty is affected more than other medical specialties. Trainees want to maximize all training opportunities in the clinical setting, and having predeveloped basic skills acquired on a simulated model can facilitate this.Here we describe the use of a novel model to design and raise local flaps in the face and scalp regions. The model consists of mannequin heads draped with porcine skin which is skewered with pins at strategic points to give a 3-dimensional model which closely resembles a cadaveric head.The advantages of this model are that it is life size and incorporates all the relevant anatomical features, which can be drawn on if required.This model was used on a recent course, Intermediate Skills in Plastic Surgery: Flaps Around the Face, at the Royal College of Surgeons England. The trainees found that practicing on the porcine skin gave them an opportunity to master the basics of flap design and implementation.In summary, this innovative 3-dimensional training model has received high levels of satisfaction and is currently as close as we can get to cadaveric dissection without the constraints and cost of using human tissue.

  12. High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling.

    PubMed

    Stephenson, Robert S; Atkinson, Andrew; Kottas, Petros; Perde, Filip; Jafarzadeh, Fatemeh; Bateman, Mike; Iaizzo, Paul A; Zhao, Jichao; Zhang, Henggui; Anderson, Robert H; Jarvis, Jonathan C; Dobrzynski, Halina

    2017-08-03

    Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees.

  13. 3-dimensional modeling of transcranial magnetic stimulation: Design and application

    NASA Astrophysics Data System (ADS)

    Salinas, Felipe Santiago

    Over the past three decades, transcranial magnetic stimulation (TMS) has emerged as an effective tool for many research, diagnostic and therapeutic applications in humans. TMS delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this dissertation, we present a thorough examination of the total electric field induced by TMS in air and a realistic head model with clinically relevant coil poses. In the first chapter, a detailed account of TMS coil wiring geometry was shown to provide significant improvements in the accuracy of primary E-field calculations. Three-dimensional models which accounted for the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed primary E-field models were accurate up to the surface of the coil body (within 0.5% of measured values) whereas simple models were often inadequate (up to 32% different from measured). In the second chapter, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3-D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistic head model was used to assess the effect of multiple surfaces on the total E-field. We found that secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes were predominantly between 25% and 45% of the primary E-fields magnitude. The direction of the secondary E

  14. RCS calculations of 3-dimensional objects, modeled by CAD

    NASA Astrophysics Data System (ADS)

    Deleeneer, I.; Schweicher, E.; Barel, A.

    1991-09-01

    All the steps are detailed that one has to perform to enable efficient Radar Cross Section calculation for objects with a complex and general shape. Only cavities are supposed to be nonexistent at this state of the work. Before the actual RCS calculations, preliminary treatments like systematic modeling, Hidden Faces removal, and automatic recognition of reflection and diffraction centers are realized. After the creation of the object's geometry and its adaptation to the direction of the observator, Physical Optics (PO) was used to determine the backscattered field, and Geometrical Theory of Diffraction (GTD) was used to evaluate the diffracted fields. Only monostatic scattering (i.e., backscattering) is considered.

  15. 3-dimensional current collection model. [of Tethered Satellite System 1

    NASA Technical Reports Server (NTRS)

    Hwang, Kai-Shen; Shiah, A.; Wu, S. T.; Stone, N.

    1992-01-01

    A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967).

  16. An Innovative 3-dimensional Model of the Epitympanum for Teaching of Middle Ear Anatomy.

    PubMed

    Ng, Chew Lip; Liu, Xuandao; Chee, Shuo Chian Jeremy; Ngo, Raymond Yeow Seng

    2015-11-01

    To facilitate teaching of the anatomy of the epitympanum, we developed and evaluated the effectiveness of an interactive 3-dimensional (3D) computer model that can be viewed from all angles. Questionnaire-based prospective randomized controlled trial. Undergraduate medical education program. The model was created using Google Sketchup, a 3D modeling software. We recruited 72 graduating medical students and randomized them into 2 groups. One group was given the 3D model and reading materials on the epitympanic anatomy (3D group), while the other group relied on reading material and pictures (2-dimensional [2D] group). A questionnaire and anatomy quiz assessed the utility of the 3D model in learning the anatomy of the epitympanum. The mean age of the participants was 22 years. There were no statistically significant differences in demographics and previous experience with 3D models. The 3D group was significantly more confident in its ability to identify structures of the epitympanum on pictures and computed tomography scans when compared to the 2D group. Most participants were in favor of the model as a useful learning tool and preferred to use it with an instructor. In the anatomy quiz, the 3D group fared significantly better, achieving a mean score of 65.1% compared to 32.4% in the 2D group (P < .001). The 3D teaching model of the epitympanum is efficacious in short-term recall. By allowing the learner to visualize relations of the epitympanum from all directions, the model aids in appreciation of anatomy and identifications of structures of this region. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  17. Simple parameter estimation for complex models — Testing evolutionary techniques on 3-dimensional biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Mattern, Jann Paul; Edwards, Christopher A.

    2017-01-01

    Parameter estimation is an important part of numerical modeling and often required when a coupled physical-biogeochemical ocean model is first deployed. However, 3-dimensional ocean model simulations are computationally expensive and models typically contain upwards of 10 parameters suitable for estimation. Hence, manual parameter tuning can be lengthy and cumbersome. Here, we present four easy to implement and flexible parameter estimation techniques and apply them to two 3-dimensional biogeochemical models of different complexities. Based on a Monte Carlo experiment, we first develop a cost function measuring the model-observation misfit based on multiple data types. The parameter estimation techniques are then applied and yield a substantial cost reduction over ∼ 100 simulations. Based on the outcome of multiple replicate experiments, they perform on average better than random, uninformed parameter search but performance declines when more than 40 parameters are estimated together. Our results emphasize the complex cost function structure for biogeochemical parameters and highlight dependencies between different parameters as well as different cost function formulations.

  18. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  19. Benefits and Limitations of Entry-Level 3-Dimensional Printing of Maxillofacial Skeletal Models.

    PubMed

    Legocki, Alex T; Duffy-Peter, Andrew; Scott, Andrew R

    2017-04-01

    A protocol for creating exceptionally low-cost 3-dimensional (3-D) maxillofacial skeletal models does not require proficiency with computer software or intensive labor. Small and less affluent centers can produce models with little loss in accuracy and clinical utility. To highlight the feasibility and methods of introducing in-house, entry-level additive manufacturing (3-D printing) technology to otolaryngologic craniofacial reconstruction and to describe its clinical applications and limitations, including a comparison with available vendor models. This case series of 6 models (3 pairs) compared cost, side-by-side anatomical model fidelity, and clinical versatility using entry-level, in-house 3-D pediatric mandible model production vs high-end, third-party vendor modeling, including a review of the literature. Comparisons were made at an urban pediatric otolaryngology practice among patients who had previously undergone pediatric craniofacial reconstruction with use of a commercially produced medical model for surgical planning. Each vendor model had been produced using computed tomographic imaging data. With the use of this same data source, in-house models were printed in polylactic acid using a commercially available printer. Data were collected from November 1 to December 30, 2015. Models created from these 2 methods of production were assessed for fidelity of surface anatomy, resilience to manipulation and plate bending, cost of production, speed of production, sterilizability, virtual surgical planning options, and alveolar nerve canal and tooth root visibility in mandibles. For the quantitative comparisons between in-house models (1 neonatal, 1 pediatric, and 1 adult model) and their commercial counterparts, the mean value of 7 independent measurements was analyzed from each of 3 model pairs. Caliper measurements from models produced through entry-level, in-house manufacturing were comparable to those taken from commercially produced counterparts

  20. Automatic path searching for interactive navigation support within virtual medical 3-dimensional objects.

    PubMed

    Noser, Hansrudi; Stern, Christian; Stucki, Peter

    2004-08-01

    This article proposes the use of a disembodied autonomous actor for navigation support within complex virtual medical objects reconstructed from Computed Tomography or Magnetic Resonance Imaging. Such objects are often maze-like, and users risk getting lost within them during Virtual Reality sessions. Therefore, users need paths for guided fly-throughs when performing non-invasive diagnostic tasks. We present a synthetic vision-based actor capable of finding collision-free paths from a given position to a goal point in environments containing loops and impasses. When navigating, the actor voxelizes the virtual environment and searches for collision-free paths in voxel space by using a back tracking search algorithm. Automata and rules control its search behaviour. The resulting paths can be used in dedicated virtual endoscopy applications. Our path search method has been tested within a variety of tubular virtual anatomical structures in 3D such as aortas, colons, or blood vessels of the brain. The actor finds paths within reasonable time limits, even when considering complex anatomical surface models. The method may be used as a valuable tool for assisting virtual endoscopic diagnostic and screening activities in the near future.

  1. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    PubMed Central

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  2. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    PubMed

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-03-22

    The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.

  3. A Novel Medical Image Protection Scheme Using a 3-Dimensional Chaotic System

    PubMed Central

    Fu, Chong; Zhang, Gao-yuan; Bian, Ou; Lei, Wei-min; Ma, Hong-feng

    2014-01-01

    Recently, great concerns have been raised regarding the issue of medical image protection due to the increasing demand for telemedicine services, especially the teleradiology service. To meet this challenge, a novel chaos-based approach is suggested in this paper. To address the security and efficiency problems encountered by many existing permutation-diffusion type image ciphers, the new scheme utilizes a single 3D chaotic system, Chen's chaotic system, for both permutation and diffusion. In the permutation stage, we introduce a novel shuffling mechanism, which shuffles each pixel in the plain image by swapping it with another pixel chosen by two of the three state variables of Chen's chaotic system. The remaining variable is used for quantification of pseudorandom keystream for diffusion. Moreover, the selection of state variables is controlled by plain pixel, which enhances the security against known/chosen-plaintext attack. Thorough experimental tests are carried out and the results indicate that the proposed scheme provides an effective and efficient way for real-time secure medical image transmission over public networks. PMID:25541941

  4. Use of 3-Dimensional Printing to Create Patient-Specific Thoracic Spine Models as Task Trainers.

    PubMed

    Jeganathan, Jelliffe; Baribeau, Yanick; Bortman, Jeffrey; Mahmood, Feroze; Shnider, Marc; Ahmed, Muneeb; Mashari, Azad; Amir, Rabia; Amador, Yannis; Matyal, Robina

    Thoracic epidural anesthesia is a technically challenging procedure with a high failure rate of 24% to 32% nationwide. Residents in anesthesiology have limited opportunities to practice this technique adequately, and there are no training tools available for this purpose. Our objective was to build a low-cost patient-specific thoracic epidural training model. We obtained thoracic computed tomography scan data from patients with normal and kyphotic spine. The thoracic spine was segmented from the scan, and a 3-dimensional model of the spine was generated and printed. It was then placed in a customized wooden box and filled with different types of silicone to mimic human tissues. Attending physicians in our institution then tested the final model. They were asked to fill out a brief questionnaire after the identification of the landmarks and epidural space using ultrasound and real-time performance for a thoracic epidural on the model (Supplemental Digital Content 1, http://links.lww.com/AAP/A197). Likert scoring system was used for scoring. The time to develop this simulator model took less than 4 days, and the materials cost approximately $400. Fourteen physicians tested the model for determining the realistic sensation while palpating the spinous process, needle entry through the silicone, the "pop" sensation and ultrasound fidelity of the model. Whereas the tactile fidelity scores were "neutral" (3.08, 3.06, and 3.0, respectively), the ultrasound guidance and overall suitability for residents were highly rated as being the most realistic (4.85 and 4.0, respectively). It is possible to develop homemade, low-cost, patient-specific, and high-fidelity ultrasound guidance simulators for resident training in thoracic epidurals using 3-dimensional printing technology.

  5. Using 3-dimensional printing to create presurgical models for endodontic surgery.

    PubMed

    Bahcall, James K

    2014-09-01

    Advances in endodontic surgery--from both a technological and procedural perspective-have been significant over the last 18 years. Although these technologies and procedural enhancements have significantly improved endodontic surgical treatment outcomes, there is still an ongoing challenge of overcoming the limitations of interpreting preoperative 2-dimensional (2-D) radiographic representation of a 3-dimensional (3-D) in vivo surgical field. Cone-beam Computed Tomography (CBCT) has helped to address this issue by providing a 3-D enhancement of the 2-D radiograph. The next logical step to further improve a presurgical case 3-D assessment is to create a surgical model from the CBCT scan. The purpose of this article is to introduce 3-D printing of CBCT scans for creating presurgical models for endodontic surgery.

  6. Accuracy of 3-dimensional curvilinear measurements on digital models with intraoral scanners.

    PubMed

    Mack, Spencer; Bonilla, Tammy; English, Jeryl D; Cozad, Benjamin; Akyalcin, Sercan

    2017-09-01

    Our objectives were to evaluate and compare the digital dental models generated from 2 commercial intraoral scanners with manual measurements when performing 3-dimensional surface measurements along a curved line (curvilinear). Dry mandibles (n = 61) with intact dentition were used. The mandibles were digitized using 2 chair-side intraoral scanners: Cadent iTero (Align Technology, San Jose, Calif) and Lythos Digital Impression system (Ormco, Orange, Calif). Digitized 3-dimensional models were converted to individual stereolithography files and used with commercial software to obtain the curvilinear measurements. Manual measurements were carried out directly on the mandibular teeth. Measurements were made on different locations on the dental arch in various directions. One-sample t tests and linear regression analyses were performed. To further graphically examine the accuracy between the different methods, Bland-Altman plots were computed. The level of significance was set at P <0.05. There were no significant differences between any of the paired methods; this indicated a certain level of agreement between the methods tested (P >0.05). Bland-Altman analysis showed no fixed bias of 1 approach vs the other, and random errors were detected in all comparisons. Although the mean biases of the digital models obtained by the iTero and Lythos scanners, when compared with direct caliper measurements, were low, the comparison of the 2 intraoral scanners yielded the lowest mean bias. No comparison displayed statistical significance for the t scores; this indicated the absence of proportional bias in these comparisons. The intraoral scanners tested in this study produced digital dental models that were comparatively accurate when performing direct surface measurements along a curved line in 3 dimensions. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  7. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  8. Virtual electrophysiological study in a 3-dimensional cardiac magnetic resonance imaging model of porcine myocardial infarction.

    PubMed

    Ng, Jason; Jacobson, Jason T; Ng, Justin K; Gordon, David; Lee, Daniel C; Carr, James C; Goldberger, Jeffrey J

    2012-07-31

    This study sought to test the hypothesis that "virtual" electrophysiological studies (EPS) on an anatomic platform generated by 3-dimensional magnetic resonance imaging reconstruction of the left ventricle can reproduce the reentrant circuits of induced ventricular tachycardia (VT) in a porcine model of myocardial infarction. Delayed-enhancement magnetic resonance imaging has been used to characterize myocardial infarction and "gray zones," which are thought to reflect heterogeneous regions of viable and nonviable myocytes. Myocardial infarction by coronary artery occlusion was induced in 8 pigs. After a recovery period, 3-dimensional cardiac magnetic resonance images were obtained from each pig in vivo. Normal areas, gray zones, and infarct cores were classified based on voxel intensity. In the computer model, gray zones were assigned slower conduction and longer action potential durations than those for normal myocardium. Virtual EPS was performed and compared with results of actual in vivo programmed stimulation and noncontact mapping. The left ventricular volumes ranged from 97.8 to 166.2 cm(3), with 4.9% to 17.5% of voxels classified as infarct zones. Six of the 7 pigs in which VT developed during actual EPS were also inducible with virtual EPS. Four of the 6 pigs that had simulated VT had reentrant circuits that approximated the circuits seen with noncontact mapping, whereas the remaining 2 had similar circuits but propagating in opposite directions. This initial study demonstrates the feasibility of applying a mathematical model to magnetic resonance imaging reconstructions of the left ventricle to predict VT circuits. Virtual EPS may be helpful to plan catheter ablation strategies or to identify patients who are at risk of future episodes of VT. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model.

    PubMed

    Chen, C-Y Oliver; Smith, Avi; Liu, Yuntao; Du, Peng; Blumberg, Jeffrey B; Garlick, Jonathan

    2017-01-25

    Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.

  10. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  11. [Establishment of 3-dimensional finite element model of human knee joint and its biomechanics].

    PubMed

    Yuan, Ping; Wang, Wanchun

    2010-01-01

    To establish a 3-dimensional (3-D) finite element knee model in healthy Chinese males, to verify the validity of the model, and to analyze the biomechanics of this model under axial load, flexion moment, varus/valgus torque, and internal/external axial torque. A set of consecutive transectional computerized tomography images of normal male knee joints in upright weight-bearing position was selected. With image processing and inversion technology, the 3-D finite element model of the normal knee joint was established through the software ABAQOUS/STANDARD Version-6.5.Biomechanical analysis of this model was processed under axial load, flexion moment, varus/valgus torque, and internal/external axial torque. A 3-D finite element model of healthy Chinese males was successfully established. The ranges of motion of varus and valgus were both small and the difference between them has no statistical significance (P>0.05). The motion of internal and external rotation of the knee took place only in flexion situation.The range of motion of external rotation was larger than that of internal rotation in the same knee (P<0.05). The 3-D geometrical model of the knee resembles the actual knee segments. It can imitate the knee response to different loads. This model could be used for further study on knee biomechanics.

  12. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report.

    PubMed

    Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott

    2016-03-01

    Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor.

  13. A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.

    PubMed

    Hathout, Leith; Patel, Vishal; Wen, Patrick

    2016-09-01

    Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model.

  14. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  15. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  16. Modeling Biofilm-Induced Hydraulic Changes In 3-Dimensional Prefractal Porous Media

    NASA Astrophysics Data System (ADS)

    Kim, J.; Choi, H.; Perfect, E.; Pachepsky, Y. A.

    2008-12-01

    Biofilm-induced clogging is the significant phenomenon in subsurface hydrology that may affect aquifer recharge and solute transport. Modeling biofilm impact on flow and transport at pore scale should include characterization of the heterogeneity of both biofilm and medium. In this study, a numerical model of biofilm- induced hydraulic changes in porous media was developed based on the individual-based model (IbM) for the biofilm growth according to the Monod equation, and the Lattice Boltzmann model (LBM) for the water flow. The LBM was modified to consider biofilm growth in each grid cell, and IbM was synchronized with the LBM. The model behavior was first investigated for simple geometry of the prismatic void space with constant flow and concentration boundary conditions at the inflow boundary, no-gradient condition on the outflow side, and periodic boundary condition on the other sides. The mass conservation was tested by varying Peclet number and computing the solute breakthrough. The breakthrough was retarded when a solid sphere was placed in the prism, and the retardation was increasing as flow velocity was increasing. Increase in the biofilm volume surrounding solid sphere increased pressure at the windward side of sphere, and the flow velocity in the narrow passage between biofilms was increased. The biofilm grew more vigorously on the windward side compared with the leeward side of the sphere because the biofilm growth interrupted the supply of the dissolved substrate to the leeward side. Darcy relation was better to estimate hydraulic conductivity than Kozeny-Carman relation which assumes that biofilms are uniformly distributed on the surface. Finally, 3- dimensional mass and pore-solid prefractal lattices as models of heterogeneous porous media were generated by iterated function system and used as the simulation domain. The flow in these domains reached the steady state at threshold porosities (hydrostatic threshold) that were estimated to be about 0

  17. A 3-dimensional rigid cluster thorax model for kinematic measurements during gait.

    PubMed

    Kiernan, D; Malone, A; O'Brien, T; Simms, C K

    2014-04-11

    The trunk has been shown to work as an active segment rather than a passenger unit during gait and it is felt that trunk kinematics should be given more consideration during gait assessment. While 3-dimensional assessment of the thorax with respect to the pelvis and laboratory can provide a comprehensive description of trunk movement, the majority of existing 3-D thorax models demonstrate shortcomings such as the need for multiple skin marker configurations, difficult landmark identification and practical issues for assessment on female subjects. A small number of studies have used rigid cluster models to quantify thorax movement, however the models and points of attachment are not well described and validation rarely considered. The aim of this study was to propose an alternative rigid cluster 3-D thorax model to quantify movement during gait and provide validation of this model. A rigid mount utilising active markers was developed and applied over the 3rd thoracic vertebra, previously reported as an area of least skin movement artefact on the trunk. The model was compared to two reference thorax models through simultaneous recording during gait on 15 healthy subjects. Excellent waveform similarity was demonstrated between the proposed model and the two reference models (CMC range 0.962-0.997). Agreement of discrete parameters was very-good to excellent. In addition, ensemble average graphs demonstrated almost identical curve displacement between models. The results suggest that the proposed model can be confidently used as an alternative to other thorax models in the clinical setting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  19. Evaluation of pharyngeal airway space changes after bimaxillary orthognathic surgery with a 3-dimensional simulation and modeling program.

    PubMed

    Gokce, Sila Mermut; Gorgulu, Serkan; Gokce, Hasan Suat; Bengi, Ali Osman; Karacayli, Umit; Ors, Fatih

    2014-10-01

    The aims of this study were to use 3-dimensional simulation and modeling programs to evaluate the effects of bimaxillary orthognathic surgical correction of Class III malocclusions on pharyngeal airway space volume, and to compare them with the changes in obstructive sleep apnea measurements from polysomnography. Twenty-five male patients (mean age, 21.6 years) with mandibular prognathism were treated with bilateral sagittal split osteotomy and LeFort I advancement. Polysomnography and computed tomography were performed before surgery and 1.4 ± 0.2 years after surgery. All computed tomography data were transferred to a computer, and the pharyngeal airway space was segmented using SimPlant OMS (Materialise Medical, Leuven, Belgium) programs. The pretreatment and posttreatment pharyngeal airway space determinants in volumetric, linear distance, and cross-sectional measurements, and polysomnography changes were compared with the paired samples t test. Pearson correlation was used to analyze the association between the computed tomography and polysomnography measurements. The results indicated that setback procedures produce anteroposterior narrowing of the pharyngeal airway space at the oropharyngeal and hypopharyngeal levels and the middle and inferior pharyngeal volumes (P <0.05). In contrast, advancement of the maxilla causes widening of the airway in the nasopharyngeal and retropalatal dimensions and increases the superior pharyngeal volume (P <0.05). Distinctively, bimaxillary orthognathic surgery induces significant increases in the total airway volume and the transverse dimensions of all airway areas (P <0.05). Significant correlations were found between the measurements on the computed tomography scans and crucial polysomnography parameters. Bimaxillary orthognathic surgery for correction of Class III malocclusion caused an increase of the total airway volume and improvement of polysomnography parameters. A proposed treatment plan can be modified

  20. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization

    PubMed Central

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J.; Luo, Oscar J.; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz

    2016-01-01

    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures. PMID:27789526

  1. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.

    PubMed

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz

    2016-12-01

    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.

  2. [Constructing 3-dimensional colorized digital dental model assisted by digital photography].

    PubMed

    Ye, Hong-qiang; Liu, Yu-shu; Liu, Yun-song; Ning, Jing; Zhao, Yi-jiao; Zhou, Yong-sheng

    2016-02-18

    To explore a method of constructing universal 3-dimensional (3D) colorized digital dental model which can be displayed and edited in common 3D software (such as Geomagic series), in order to improve the visual effect of digital dental model in 3D software. The morphological data of teeth and gingivae were obtained by intra-oral scanning system (3Shape TRIOS), constructing 3D digital dental models. The 3D digital dental models were exported as STL files. Meanwhile, referring to the accredited photography guide of American Academy of Cosmetic Dentistry (AACD), five selected digital photographs of patients'teeth and gingivae were taken by digital single lens reflex camera (DSLR) with the same exposure parameters (except occlusal views) to capture the color data. In Geomagic Studio 2013, after STL file of 3D digital dental model being imported, digital photographs were projected on 3D digital dental model with corresponding position and angle. The junctions of different photos were carefully trimmed to get continuous and natural color transitions. Then the 3D colorized digital dental model was constructed, which was exported as OBJ file or WRP file which was a special file for software of Geomagic series. For the purpose of evaluating the visual effect of the 3D colorized digital model, a rating scale on color simulation effect in views of patients'evaluation was used. Sixteen patients were recruited and their scores on colored and non-colored digital dental models were recorded. The data were analyzed using McNemar-Bowker test in SPSS 20. Universal 3D colorized digital dental model with better color simulation was constructed based on intra-oral scanning and digital photography. For clinical application, the 3D colorized digital dental models, combined with 3D face images, were introduced into 3D smile design of aesthetic rehabilitation, which could improve the patients' cognition for the esthetic digital design and virtual prosthetic effect. Universal 3D colorized

  3. Influence of standardization on the precision (reproducibility) of dental cast analysis with virtual 3-dimensional models.

    PubMed

    Hayashi, Kazuo; Chung, Onejune; Park, Seojung; Lee, Seung-Pyo; Sachdeva, Rohit C L; Mizoguchi, Itaru

    2015-03-01

    Virtual 3-dimensional (3D) models obtained by scanning of physical casts have become an alternative to conventional dental cast analysis in orthodontic treatment. If the precision (reproducibility) of virtual 3D model analysis can be further improved, digital orthodontics could be even more widely accepted. The purpose of this study was to clarify the influence of "standardization" of the target points for dental cast analysis using virtual 3D models. Physical plaster models were also measured to obtain additional information. Five sets of dental casts were used. The dental casts were scanned with R700 (3Shape, Copenhagen, Denmark) and REXCAN DS2 3D (Solutionix, Seoul, Korea) scanners. In this study, 3 system and software packages were used: SureSmile (OraMetrix, Richardson, Tex), Rapidform (Inus, Seoul, Korea), and I-DEAS (SDRC, Milford, Conn). Without standardization, the maximum differences were observed between the SureSmile software and the Rapidform software (0.39 mm ± 0.07). With standardization, the maximum differences were observed between the SureSmile software and measurements with a digital caliper (0.099 mm ± 0.01), and this difference was significantly greater (P <0.05) than the 2 other mean difference values. Furthermore, the results of this study showed that the mean differences "WITH" standardization were significantly lower than those "WITHOUT" standardization for all systems, software packages, or methods. The results showed that elimination of the influence of usability or habituation is important for improving the reproducibility of dental cast analysis. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  4. Evaluation of Nitinol Stents Using a 3-Dimensional Printed Superficial Femoral Artery Model: A Preliminary Study.

    PubMed

    Girsowicz, Elie; Georg, Yannick; Seiller, Hélène; Lejay, Anne; Thaveau, Fabien; Heim, Frédéric; Chakfe, Nabil

    2016-05-01

    Mechanical tests assessing Nitinol stents used for the superficial femoral artery (SFA) are designed without taking into account their deployment environments. The objectives of this study were (1) to create normal and pathologic femoral artery models, (2) to run mechanical tests reproducing the stresses of the SFA, and (3) to study and compare Nitinol stents in those conditions. Femoral artery models with identical mechanical properties to the SFA were created using the 3-dimensional printing technology. Those models were designed with and without an asymmetric focal 50% stenosis. Three mechanical tests (bending-compression, bending-compression-torsion, and multiple bending tests) were created and 1 flexible stent was tested, of 6 and 7-mm diameter. Three samples of the stent, LifeStent (Bard(®)), were deployed and tested in the models. Stents alone were evaluated in the same conditions. The analysis focused on the comparison of rheologic curves, level of kink, and the energy deployed for each stent to kink. In the 3 tests, all stents deployed in the models presented a kink during their evaluation. When tested alone, during the compression-bending and bending-compression-torsion tests, no plicature was observed. During the multiple bending test, the energy deployed to plicature for the stent tested alone was of 1.4 ± 0.10 and 2.84 ± 0.1 J compared with 9.7 ± 0.6 and 8.25 ± 0.6 J when deployed in the model for the Lifestent 6 × 80 and 7 × 80 mm, respectively. For all of these 3 tests, 6-mm diameter stents exhibited a level of kink and energy of kink higher than 7 mm stents. The behavior of the stents changed in the stenosed model whatever diameter is taken into account. Analysis of the rheologic curves showed a decrease in the inflection of the curve related to the plication. In the bending-compression test, the presence of a stenosis lead to an early plication of the model, with less deployed kinking energy whereas in the bending

  5. Fenofibrate inhibits tumour intravasation by several independent mechanisms in a 3-dimensional co-culture model.

    PubMed

    Nguyen, Chi Huu; Huttary, Nicole; Atanasov, Atanas G; Chatuphonprasert, Waranya; Brenner, Stefan; Fristiohady, Adryan; Hong, Junli; Stadler, Serena; Holzner, Silvio; Milovanovic, Daniela; Dirsch, Verena M; Kopp, Brigitte; Saiko, Philipp; Krenn, Liselotte; Jäger, Walter; Krupitza, Georg

    2017-05-01

    Lymph node metastasis of breast cancer is a clinical marker of poor prognosis. Yet, there exist no therapies targeting mechanisms of intravasation into lymphatics. Herein we report on an effect of the antidyslipidemic drug fenofibrate with vasoprotective activity, which attenuates breast cancer intravasation in vitro, and describe the potential mechanisms. To measure intravasation in a 3-dimensional co-culture model MDA-MB231 and MCF-7 breast cancer spheroids were placed on immortalised lymphendothelial cell (LEC) monolayers. This provokes the formation of circular chemorepellent induced defects (CCIDs) in the LEC barrier resembling entry ports for the intravasating tumour. Furthermore, the expression of adhesion molecules ICAM-1, CD31 and FAK was investigated in LECs by western blotting as well as cell-cell adhesion and NF-κB activity by respective assays. In MDA-MB231 cells the activity of CYP1A1 was measured by EROD assay. Fenofibrate inhibited CCID formation in the MDA-MB231/LEC- and MCF-7/LEC models and the activity of NF-κB, which in turn downregulated ICAM-1 in LECs and the adhesion of cancer cells to LECs. Furthermore, CD31 and the activity of FAK were inhibited. In MDA-MB231 cells, fenofibrate attenuated CYP1A1 activity. Combinations with other FDA-approved drugs, which reportedly inhibit different ion channels, attenuated CCID formation additively or synergistically. In summary, fenofibrate inhibited NF-κB and ICAM-1, and inactivated FAK, thereby attenuating tumour intravasation in vitro. A combination with other FDA-approved drugs further improved this effect. Our new concept may lead to a novel therapy for cancer patients.

  6. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity

  7. 3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers

    NASA Astrophysics Data System (ADS)

    Wu, X.; Yang, T.

    2013-12-01

    In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney

  8. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.

    PubMed

    Stefaniak, Aleksandr B; LeBouf, Ryan F; Yi, Jinghai; Ham, Jason; Nurkewicz, Timothy; Schwegler-Berry, Diane E; Chen, Bean T; Wells, J Raymond; Duling, Matthew G; Lawrence, Robert B; Martin, Stephen B; Johnson, Alyson R; Virji, M Abbas

    2017-07-01

    Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m(3) chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49-3552 µg h(-1)) compared to the laser printers (5782-7735 µg h(-1)). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene

  9. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity.

    PubMed

    Azuma, Masaki; Yanagawa, Toru; Ishibashi-Kanno, Naomi; Uchida, Fumihiko; Ito, Takaaki; Yamagata, Kenji; Hasegawa, Shogo; Sasaki, Kaoru; Adachi, Koji; Tabuchi, Katsuhiko; Sekido, Mitsuru; Bukawa, Hiroki

    2014-10-23

    Recently, medical rapid prototyping (MRP) models, fabricated with computer-aided design and computer-aided manufacture (CAD/CAM) techniques, have been applied to reconstructive surgery in the treatment of head and neck cancers. Here, we tested the use of preoperatively manufactured reconstruction plates, which were produced using MRP models. The clinical efficacy and esthetic outcome of using these products in mandibular reconstruction was evaluated. A series of 28 patients with malignant oral tumors underwent unilateral segmental resection of the mandible and simultaneous mandibular reconstruction. Twelve patients were treated with prebent reconstruction plates that were molded to MRP mandibular models designed with CAD/CAM techniques and fabricated on a combined powder bed and inkjet head three-dimensional printer. The remaining 16 patients were treated using conventional reconstruction methods. The surgical and esthetic outcomes of the two groups were compared by imaging analysis using post-operative panoramic tomography. The mandibular symmetry in patients receiving the MRP-model-based prebent plates was significantly better than that in patients receiving conventional reconstructive surgery. Patients with head and neck cancer undergoing reconstructive surgery using a prebent reconstruction plate fabricated according to an MRP mandibular model showed improved mandibular contour compared to patients undergoing conventional mandibular reconstruction. Thus, use of this new technology for mandibular reconstruction results in an improved esthetic outcome with the potential for improved quality of life for patients.

  10. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model

    PubMed Central

    Tezera, Liku B; Bielecka, Magdalena K; Chancellor, Andrew; Reichmann, Michaela T; Shammari, Basim Al; Brace, Patience; Batty, Alex; Tocheva, Annie; Jogai, Sanjay; Marshall, Ben G; Tebruegge, Marc; Jayasinghe, Suwan N; Mansour, Salah; Elkington, Paul T

    2017-01-01

    Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches. DOI: http://dx.doi.org/10.7554/eLife.21283.001 PMID:28063256

  11. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines.

    PubMed

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC.

  12. The Keilson and Storer 3-dimensional (KS-3D) line shape model: applications to optical diagnostic in combustion media

    SciTech Connect

    Joubert, Pierre

    2008-10-22

    High-resolution infrared and Raman spectroscopies require refine spectral line shape model to account for all observed features. For instance, for gaseous mixtures of light molecules with heavy perturbers, drastic changes arise particularly in the collision regime, resulting from the inhomogeneous effects due to the radiator speed-dependence of the collisional line broadening and line shifting parameters. Following our previous work concerning the collision regime, we have developed a new line shape modelization called the Keilson and Storer 3-dimensional line shape model to lower densities, when the Doppler contribution, and the collisional confinement narrowing can be no longer neglected. The consequences for optical diagnostics, particularly for H{sub 2}-N{sub 2} mixtures with high pressure and high temperature are presented. The effects of collisional relaxation on the spectral line shapes are discussed.

  13. Analytical study of twin-jet shielding development of a 3-dimensional model

    NASA Technical Reports Server (NTRS)

    Gerhold, C. H.

    1980-01-01

    The solution for a point source impinging on a cylinder of heated flow is presented. The indefinite integral is solved approximately using a saddle of point method. Comparison of the three-dimensional model to a previously obtained two-dimensional model of twin jet noise indicate the the approximate solution of the integral is valid. The model was analyzed to differentiate among the mechanims of shielding. Zone in which diffraction and transmission dominate are identified. The model was found to compare to experimental shielding results.

  14. Fast time variations of supernova neutrino signals from 3-dimensional models

    DOE PAGES

    Lund, Tina; Wongwathanarat, Annop; Janka, Hans -Thomas; ...

    2012-11-19

    Here, we study supernova neutrino flux variations in the IceCube detector, using 3D models based on a simplified neutrino transport scheme. The hemispherically integrated neutrino emission shows significantly smaller variations compared with our previous study of 2D models, largely because of the reduced activity of the standing accretion shock instability in this set of 3D models which we interpret as a pessimistic extreme. For the studied cases, intrinsic flux variations up to about 100 Hz frequencies could still be detected in a supernova closer than about 2 kpc.

  15. Visualization of the 3-dimensional flow around a model with the aid of a laser knife

    NASA Technical Reports Server (NTRS)

    Borovoy, V. Y.; Ivanov, V. V.; Orlov, A. A.; Kharchenko, V. N.

    1984-01-01

    A method for visualizing the three-dimensional flow around models of various shapes in a wind tunnel at a Mach number of 5 is described. A laser provides a planar light flux such that any plane through the model can be selectively illuminated. The shape of shock waves and separation regions is then determined by the intensity of light scattered by soot particles in the flow.

  16. Remanent magnetization and 3-dimensional density model of the Kentucky anomaly region

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.; Myers, D. M.

    1984-01-01

    A three-dimensional model of the Kentucky body was developed to fit surface gravity and long wavelength aeromagnetic data. Magnetization and density parameters for the model are much like those of Mayhew et al (1982). The magnetic anomaly due to the model at satellite altitude is shown to be much too small by itself to account for the anomaly measured by Magsat. It is demonstrated that the source region for the satellite anomaly is considerably more extensive than the Kentucky body sensu stricto. The extended source region is modeled first using prismatic model sources and then using dipole array sources. Magnetization directions for the source region found by inversion of various combinations of scalar and vector data are found to be close to the main field direction, implying the lack of a strong remanent component. It is shown by simulation that in a case (such as this) where the geometry of the source is known, if a strong remanent component is present its direction is readily detectable, but by scalar data as readily as vector data.

  17. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.

    1988-01-01

    A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.

  18. Accretion Onto Supermassive Black Holes: Observational Signals from 3-Dimensional Disk Models

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Miller, Warner A.

    2003-01-01

    Our project was to model accretion flows onto supermassive black holes which reside in the centers of many galaxies. In this report we summarize the results which we obtained with the support of our NASA ATP grant. The scientific results associated with the grant are given in approximately chronological order. We also provide a list of references which acknowledge funding from this grant.

  19. Accretion Onto Supermassive Black Holes: Observational Signals from 3-Dimensional Disk Models

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Miller, Warner A.

    2003-01-01

    Our project was to model accretion flows onto supermassive black holes which reside in the centers of many galaxies. In this report we summarize the results which we obtained with the support of our NASA ATP grant. The scientific results associated with the grant are given in approximately chronological order. We also provide a list of references which acknowledge funding from this grant.

  20. Estimation of Nasal Tip Support Using Computer-Aided Design and 3-Dimensional Printed Models

    PubMed Central

    Gray, Eric; Maducdoc, Marlon; Manuel, Cyrus; Wong, Brian J. F.

    2016-01-01

    IMPORTANCE Palpation of the nasal tip is an essential component of the preoperative rhinoplasty examination. Measuring tip support is challenging, and the forces that correspond to ideal tip support are unknown. OBJECTIVE To identify the integrated reaction force and the minimum and ideal mechanical properties associated with nasal tip support. DESIGN, SETTING, AND PARTICIPANTS Three-dimensional (3-D) printed anatomic silicone nasal models were created using a computed tomographic scan and computer-aided design software. From this model, 3-D printing and casting methods were used to create 5 anatomically correct nasal models of varying constitutive Young moduli (0.042, 0.086, 0.098, 0.252, and 0.302 MPa) from silicone. Thirty rhinoplasty surgeons who attended a regional rhinoplasty course evaluated the reaction force (nasal tip recoil) of each model by palpation and selected the model that satisfied their requirements for minimum and ideal tip support. Data were collected from May 3 to 4, 2014. RESULTS Of the 30 respondents, 4 surgeons had been in practice for 1 to 5 years; 9 surgeons, 6 to 15 years; 7 surgeons, 16 to 25 years; and 10 surgeons, 26 or more years. Seventeen surgeons considered themselves in the advanced to expert skill competency levels. Logistic regression estimated the minimum threshold for the Young moduli for adequate and ideal tip support to be 0.096 and 0.154 MPa, respectively. Logistic regression estimated the thresholds for the reaction force associated with the absolute minimum and ideal requirements for good tip recoil to be 0.26 to 4.74 N and 0.37 to 7.19 N during 1- to 8-mm displacement, respectively. CONCLUSIONS AND RELEVANCE This study presents a method to estimate clinically relevant nasal tip reaction forces, which serve as a proxy for nasal tip support. This information will become increasingly important in computational modeling of nasal tip mechanics and ultimately will enhance surgical planning for rhinoplasty. LEVEL OF EVIDENCE

  1. 3-dimensional spatially organized PEG-based hydrogels for an aortic valve co-culture model

    PubMed Central

    Puperi, Daniel S.; Balaoing, Liezl R.; O’Connell, Ronan W.; West, Jennifer L.; Grande-Allen, K. Jane

    2015-01-01

    Physiologically relevant in vitro models are needed to study disease progression and to develop and screen potential therapeutic interventions for disease. Heart valve disease, in particular, has no early intervention or non-invasive treatment because there is a lack of understanding the cellular mechanisms which lead to disease. Here, we establish a novel, customizable synthetic hydrogel platform that can be used to study cell-cell interactions and the factors which contribute to valve disease. Spatially localized cell adhesive ligands bound in the scaffold promote cell growth and organization of valve interstitial cells and valve endothelial cells in 3D co-culture. Both cell types maintained phenotypes, homeostatic functions, and produced zonally localized extracellular matrix. This model extends the capabilities of in vitro research by providing a platform to perform direct contact co-culture with cells in their physiologically relevant spatial arrangement. PMID:26241755

  2. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    SciTech Connect

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  3. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.

    PubMed

    Solares, Santiago D

    2015-01-01

    This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  4. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    DOE PAGES

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less

  5. 3-dimensional numerical modeling of an industrial radio frequency heating system using finite elements.

    PubMed

    Chan, T V Chow Ting; Tang, J; Younce, F

    2004-01-01

    This paper presents a new, yet simple and effective approach to modeling industrial Radio Frequency heating systems, using the wave equation applied in three dimensions instead of the conventional electrostatics method. The central idea is that the tank oscillatory circuit is excited using an external source. This then excites the applicator circuit which is then used to heat or dry the processed load. Good agreement was obtained between the experimental and numerical data, namely the S11-parameter, phase, and heating patterns for different sized loads and positions.

  6. Goddard Institute for Space Studies (GISS) 3-Dimensional (3-D) Global Tracer Transport Model

    DOE Data Explorer

    Fung, I.

    1993-01-01

    This directory contains the input files used in simulations of atmospheric CO2 using the GISS 3-D global tracer transport model. The directory contains 16 files including a help file (CO2FUNG.HLP), 12 files containing monthly exchanges with vegetation and soils (CO2VEG.JAN . . . DEC), 1 file containing releases of CO2 from fossil fuel burning (CO2FOS.MRL), 1 file containing releases of CO2 from land transformations (CO2DEF.HOU), and 1 file containing the patterns of CO2 exchange with the oceans (CO2OCN.TAK).

  7. 3-DIMENSIONAL Geometric Survey and Structural Modelling of the Dome of Pisa Cathedral

    NASA Astrophysics Data System (ADS)

    Aita, D.; Barsotti, R.; Bennati, S.; Caroti, G.; Piemonte, A.

    2017-02-01

    This paper aims to illustrate the preliminary results of a research project on the dome of Pisa Cathedral (Italy). The final objective of the present research is to achieve a deep understanding of the structural behaviour of the dome, through a detailed knowledge of its geometry and constituent materials, and by taking into account historical and architectural aspects as well. A reliable survey of the dome is the essential starting point for any further investigation and adequate structural modelling. Examination of the status quo on the surveys of the Cathedral dome shows that a detailed survey suitable for structural analysis is in fact lacking. For this reason, high-density and high-precision surveys have been planned, by considering that a different survey output is needed, according both to the type of structural model chosen and purposes to be achieved. Thus, both range-based (laser scanning) and image-based (3D Photogrammetry) survey methodologies have been used. This contribution introduces the first results concerning the shape of the dome derived from surveys. Furthermore, a comparison is made between such survey outputs and those available in the literature.

  8. Evaluation of 3-Dimensional Superimposition Techniques on Various Skeletal Structures of the Head Using Surface Models

    PubMed Central

    Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    Objectives To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Methods Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. Results There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.790.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Conclusions Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In

  9. Longitudinal evaluation of dental arch asymmetry in Class II subdivision malocclusion with 3-dimensional digital models.

    PubMed

    Veli, Ilknur; Yuksel, Burcin; Uysal, Tancan

    2014-06-01

    Class II subdivision malocclusions with their asymmetric occlusal relationships often pose treatment difficulties. The aim of this study was to evaluate the longitudinal changes of dental arch asymmetry in untreated subjects with Class II subdivision malocclusion. From 706 files from the University of Michigan Growth Study, longitudinal records of 17 untreated subjects with Class II subdivision malocclusion were included this study. Dental arch changes at 3 consecutive longitudinal intervals, defined by the cervical vertebral maturation method, were analyzed on digital dental models. The average ages of the subjects were 12.4, 15.1, and 19.1 years at the 3 time periods, respectively. Maxillary and mandibular reference lines were constructed and used for the intra-arch asymmetry measurements. The Friedman test and analysis of variance with repeated measures were used to determine dental arch asymmetries at the P <0.05 level. All subjects were found to have a type 1 Class II subdivision malocclusion characterized by distal positioning of the mandibular first molar on the Class II side. No statistically significant intra-arch asymmetry changes were found for the maxillary and mandibular dental arches in any time period. Between the baseline and the final follow-up, the data indicated decreases in maxillary and mandibular intercanine arch widths and arch lengths symmetrically. The results of this study indicate that the dental arch asymmetry in patients with Class II subdivision malocclusions did not improve or worsen with growth. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Reconstituted 3-dimensional human skin as a novel in vitro model for studies of carcinogenesis.

    PubMed

    Zhao, J F; Zhang, Y J; Kubilus, J; Jin, X H; Santella, R M; Athar, M; Wang, Z Y; Bickers, D R

    1999-01-08

    EpiDerm (MatTek Co., MA) is a reconstituted human skin equivalent which exhibits morphological and growth characteristics similar to human skin. This model has previously been utilized to evaluate the cytotoxicity and irritant potential of various cosmetic and household products. In this study, we show for the first time that EpiDerm can be used successfully to evaluate the genotoxicity of different types of known carcinogenic agents such as benzo[a]pyrene (BaP), ultraviolet B radiation (UVB), ultraviolet A radiation (UVA), and psoralen-ultraviolet A radiation (PUVA) at the molecular level. The topical application of 50 microg/cm2 BaP to EpiDerm resulted in the accumulation of BaP-DNA adducts and c-fos and p53 proteins as evidenced by immunohistochemical localization. Similarly, exposure to UVB (50 mJ/cm2) and UVA (2.5 J/cm2) enhanced the epidermal expression of c-fos and p53 proteins in the human skin equivalent. PUVA treatment of EpiDerm, however, resulted in the formation of both DNA-8-MOP adducts and augmented expression of c-fos and p53 proteins. Most of these changes reached a peak 8 h after the treatments except in the case of UVA where maximum changes in the expression of c-fos and p53 proteins were observed 24 h after treatment. These results are similar to those previously reported in human and murine skin following exposure to BaP, UVB, UVA, or PUVA indicating that human skin equivalents can be used as a convenient and cost-effective alternative to animal testing for assessing the genotoxicity and mechanism of action of mutagens/carcinogens in human skin. Copyright 1999 Academic Press.

  11. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  12. Is a 3-Dimensional Stress Balance Ice-Stream Model Really Better Than a 2-Dimensional "Reduced Order" Ice-Stream Model?

    NASA Astrophysics Data System (ADS)

    Sergienko, O.; Macayeal, D. R.

    2007-12-01

    With growing observational awareness of numerous ice-stream processes occurring on short time and spatial scales, e.g., sub-ice-stream lake volume changes and grounding-line sediment wedge build-up, the question of how well models based on "reduced-order" dynamics can simulate ice-stream behavior becomes paramount. Reduced-order models of ice-streams are typically 2-dimensional, and capture only the largest-magnitude terms in the stress tensor (with other terms being constrained by various assumptions). In predicting the overall magnitude and large-scale pattern of ice-stream flow, the reduced-order models appear to be adequate. Efforts underway in the Glaciological Community to create 3-dimensional models of the "full" ice-stream stress balance, which relax the assumptions associated with reduced-order models, suggest that a cost/benefit analysis should be done to determine how likely these efforts will be fruitful. To assess the overall benefits of full 3-dimensional models in relation to the simpler 2-dimensional counterparts, we present model solutions of the full Stokes equations for ice-stream flow over a variety of basal perturbations (e.g., a sticky spot, a subglacial lake, a grounding line). We also present the solutions derived from reduced 2-dimensional models, and compare the two solutions to estimate effects of simplifications and neglected terms, as well as to advise on what circumstances 3-dimensional models are preferable to 2-dimensional models.

  13. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles.

    PubMed

    Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne

    2013-04-01

    Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.

  14. Accuracy of both virtual and printed 3-dimensional models for volumetric measurement of alveolar clefts before grafting with alveolar bone compared with a validated algorithm: a preliminary investigation.

    PubMed

    Kasaven, C P; McIntyre, G T; Mossey, P A

    2017-01-01

    Our objective was to assess the accuracy of virtual and printed 3-dimensional models derived from cone-beam computed tomographic (CT) scans to measure the volume of alveolar clefts before bone grafting. Fifteen subjects with unilateral cleft lip and palate had i-CAT cone-beam CT scans recorded at 0.2mm voxel and sectioned transversely into slices 0.2mm thick using i-CAT Vision. Volumes of alveolar clefts were calculated using first a validated algorithm; secondly, commercially-available virtual 3-dimensional model software; and finally 3-dimensional printed models, which were scanned with microCT and analysed using 3-dimensional software. For inter-observer reliability, a two-way mixed model intraclass correlation coefficient (ICC) was used to evaluate the reproducibility of identification of the cranial and caudal limits of the clefts among three observers. We used a Friedman test to assess the significance of differences among the methods, and probabilities of less than 0.05 were accepted as significant. Inter-observer reliability was almost perfect (ICC=0.987). There were no significant differences among the three methods. Virtual and printed 3-dimensional models were as precise as the validated computer algorithm in the calculation of volumes of the alveolar cleft before bone grafting, but virtual 3-dimensional models were the most accurate with the smallest 95% CI and, subject to further investigation, could be a useful adjunct in clinical practice. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. A Novel 3 Dimensional Stromal-based Model for In Vitro Chemotherapy Sensitivity Testing of Leukemia Cells

    PubMed Central

    Aljitawi, Omar S.; Li, Dandan; Xiao, Yinghua; Zhang, Da; Ramachandran, Karthik; Stehno-Bittel, Lisa; Van Veldhuizen, Peter; Lin, Tara L.; Kambhampati, Suman; Garimella, Rama

    2014-01-01

    The disparate responses of leukemia cells to chemotherapy in vivo, compared to in vitro, is partly related to the interactions of leukemic cells and the 3 dimensional (3D) bone marrow stromal microenvironment. We investigated the effects of chemotherapy agents on leukemic cell lines co-cultured with human bone marrow mesenchymal stem cell (hu-BM-MSC) in 3D. Comparison was made to leukemic cells treated in suspension, or grown on a hu-BM-MSC monolayer (2D conditions). We demonstrated that leukemic cells cultured in 3D were more resistant to drug-induced apoptosis compared to cells cultured in 2D or in suspension. We also demonstrated significant differences in leukemic cell response to chemotherapy using different leukemic cell lines cultured in 3D. We suggest that the differential responses to chemotherapy in 3D may be related to the expression of N-cadherin in the co-culture system. This unique model provides an opportunity to study leukemic cell responses to chemotherapy in 3D. PMID:23566162

  16. A 3-Dimensional Numerical Modelling Study on the Effects of Different Stress Regimes on the Magnitude of Induced Seismic Events

    NASA Astrophysics Data System (ADS)

    Amini, A.; Eberhardt, E.

    2016-12-01

    Producing oil and gas from shale reservoirs requires permeability enhancement treatments. This is achieved by injecting fluid under pressure to either propagate cracks through the rock (hydraulic fracture) or to stimulate slip across pre-existing fractures (hydroshear), which allows gas or oil to flow more readily into the well bore. After treatment is performed, the fluid is disposed of by injecting it back into the ground. The injection of these fluids, whether related to permeability enhancement or waste water disposal , into deep formations serves to create localized increases in pore pressures and reductions in the effective normal stresses acting on critically stressed faults, resulting in induced earthquakes. There have been numerous reports of anomalous seismic events with high magnitudes felt on surface that have given rise to public concerns. However, it must be recognized that different producing fields in Canada and the U.S. are situated in different tectonic regimes that favour different fault slip mechanisms. This study will explore the importance of stress regime, comparing the generation of induced seismicity under thrust versus strike slip conditions, with focus on their respective magnitudes distributions. To do so, we will first study empirical data pertaining to recorded seismicity related to hydraulic fracture operations with respect to source mechanisms and magnitude distributions. These will be analyzed in parallel with a series of advanced 3-dimensional numerical models using the distinct element code 3DEC to simulate fault slip under different stress regimes.

  17. Mycoplasma genitalium Infection Activates Cellular Host Defense and Inflammation Pathways in a 3-Dimensional Human Endocervical Epithelial Cell Model

    PubMed Central

    McGowin, Chris L.; Radtke, Andrea L.; Abraham, Kyle; Martin, David H.; Herbst-Kralovetz, Melissa

    2013-01-01

    Background. Because Mycoplasma genitalium is a prevalent and emerging cause of sexually transmitted infections, understanding the mechanisms by which M. genitalium elicits mucosal inflammation is an essential component to managing lower and upper reproductive tract disease syndromes in women. Methods. We used a rotating wall vessel bioreactor system to create 3-dimensional (3-D) epithelial cell aggregates to model and assess endocervical infection by M. genitalium. Results. Attachment of M. genitalium to the host cell's apical surface was observed directly and confirmed using immunoelectron microscopy. Bacterial replication was observed from 0 to 72 hours after inoculation, during which time host cells underwent ultrastructural changes, including reduction of microvilli, and marked increases in secretory vesicle formation. Using genome-wide transcriptional profiling, we identified a host defense and inflammation signature activated by M. genitalium during acute infection (48 hours after inoculation) that included cytokine and chemokine activity and secretion of factors for antimicrobial defense. Multiplex bead-based protein assays confirmed secretion of proinflammatory cytokines, several of which are involved in leukocyte recruitment and hypothesized to enhance susceptibility to human immunodeficiency type 1 infection. Conclusions. These findings provide insight into key molecules and pathways involved in innate recognition of M. genitalium and the response to acute infection in the human endocervix. PMID:23493725

  18. A Geometric Modelling Approach to Determining the Best Sensing Coverage for 3-Dimensional Acoustic Target Tracking in Wireless Sensor Networks

    PubMed Central

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Existing 3-dimensional acoustic target tracking methods that use wired/wireless networked sensor nodes to track targets based on four sensing coverage do not always compute the feasible spatio-temporal information of target objects. To investigate this discrepancy in a formal setting, we propose a geometric model of the target tracking problem alongside its equivalent geometric dual model that is easier to solve. We then study and prove some properties of dual model by exploiting its relationship with algebra. Based on these properties, we propose a four coverage axis line method based on four sensing coverage and prove that four sensing coverage always yields two dual correct answers; usually one of them is infeasible. By showing that the feasible answer can be only sometimes identified by using a simple time test method such as the one proposed by ourselves, we prove that four sensing coverage fails to always yield the feasible spatio-temporal information of a target object. We further prove that five sensing coverage always gives the feasible position of a target object under certain conditions that are discussed in this paper. We propose three extensions to four coverage axis line method, namely, five coverage extent point method, five coverage extended axis lines method, and five coverage redundant axis lines method. Computation and time complexities of all four proposed methods are equal in the worst cases as well as on average being equal to Θ(1) each. Proposed methods and proved facts about capabilities of sensing coverage degree in this paper can be used in all other methods of acoustic target tracking like Bayesian filtering methods. PMID:22423198

  19. Assessment and Treatment of Peritumoral Cortical Veins in Parasagittal Meningiomas with Application of 3-Dimensional Imaging Fusion Model.

    PubMed

    Yin, Tengkun; Gu, Jianjun; Huang, Yinxing; Wei, Liangfeng; Gao, Jinxi; Wang, Shousen

    2017-08-01

    Operation of cortical veins is the keystone of parasagittal meningioma (PSM) resection. Little is known about pathologic changes of the veins and proper treatment. We built 3-dimensional (3D) image fusion models by neuronavigation to analyze the features of peritumoral cortical veins for PSMs and explore intraoperative treatment options. We performed a prospective study of 42 consecutive surgically treated PSM patients who underwent preoperative evaluation of peritumoral cortical veins using a 3D venous-tumor fusion model established by a neuronavigation system. We categorized cortical veins into 3 types: single-end anastomosis (type a), tumor-to-end anastomosis (type b), and end-to-end anastomosis (type c). We present surgical strategies to operate these veins. Preoperative evaluation demonstrated 39 patients with peritumoral cortical veins. The 3D models show 100% of the veins (95 in total), which were confirmed intraoperation. The postoperative complication rates after vein injury were 60% (type a), 16.7% (type c), and 0% (type b). Ten patients (23.8%) had residual tumor because of venous protection (equal to Simpson grade III). After correlation analysis, type b and c cortical veins were positively correlated with tumor volume. The anastomoses of cortical veins may provide compensation for venous transaction. There may be a time-evolution relationship between different cortical veins (type a to c to b). Treatment of cortical veins should follow the following principles: single-end veins must be protected, tumor-to-end veins should be transacted directly, and end-to-end veins could be cut selectivity based on the degree of occlusion of the superior sagittal sinus. Detailed preoperative assessment of peritumoral cortical veins is critical for proper treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty.

    PubMed

    Cheung, Carling L; Looi, Thomas; Lendvay, Thomas S; Drake, James M; Farhat, Walid A

    2014-01-01

    Pediatric laparoscopy poses unique training challenges owing to smaller workspaces, finer sutures used, and potentially more delicate tissues that require increased surgical dexterity when compared with adult analogs. We describe the development and face validation of a pediatric pyeloplasty simulator using a low-cost laparoscopic dry-laboratory model developed with 3-dimensional (3D) printing and silicone modeling. The organs (the kidney, renal pelvis, and ureter) were created in a 3-step process where molds were created with 3D modeling software, printed with a Spectrum Z510 3D printer, and cast with Dragon Skin 30 silicone rubber. The model was secured in a laparoscopy box trainer. A pilot study was conducted at a Canadian Urological Association meeting. A total of 24 pediatric urology fellows and 3 experienced faculty members then assessed our skills module during a minimally invasive surgery training course. Participants had 60 minutes to perform a right-side pyeloplasty using laparoscopic tools and 5-0 VICRYL suture. Face validity was demonstrated on a 5-point Likert scale. The dry-laboratory model consists of a kidney, a replaceable dilated renal pelvis and ureter with an obstructed ureteropelvic junction, and an overlying peritoneum with an inscribed fundamentals of laparoscopic surgery pattern-cutting exercise. During initial validation at the Canadian Urological Association, participants rated (out of 5) 4.75 ± 0.29 for overall impression, 4.50 ± 0.41 for realism, and 4.38 ± 0.48 for handling. During the minimally invasive surgery course, 22 of 24 fellows and all the faculty members completed the scoring. Usability was rated 4 or 5 by 14 participants (overall, 3.6 ± 1.22 by novices and 3.7 ± 0.58 by experts), indicating that they would use the model in their own training and teaching. Esthetically, the model was rated 3.5 ± 0.74 (novices) and 3.3 ± 0.58 (experts). We developed a pediatric pyeloplasty simulator by applying a low-cost reusable model

  1. Femoral Graft-Tunnel Angles in Posterior Cruciate Ligament Reconstruction: Analysis with 3-Dimensional Models and Cadaveric Experiments

    PubMed Central

    Kim, Sung-Jae; Chun, Yong-Min; Moon, Hong-Kyo; Jang, Jae-Won

    2013-01-01

    Purpose The purpose of this study was to compare four graft-tunnel angles (GTA), the femoral GTA formed by three different femoral tunneling techniques (the outside-in, a modified inside-out technique in the posterior sag position with knee hyperflexion, and the conventional inside-out technique) and the tibia GTA in 3-dimensional (3D) knee flexion models, as well as to examine the influence of femoral tunneling techniques on the contact pressure between the intra-articular aperture of the femoral tunnel and the graft. Materials and Methods Twelve cadaveric knees were tested. Computed tomography scans were performed at different knee flexion angles (0°, 45°, 90°, and 120°). Femoral and tibial GTAs were measured at different knee flexion angles on the 3D knee models. Using pressure sensitive films, stress on the graft of the angulation of the femoral tunnel aperture was measured in posterior cruciate ligament reconstructed cadaveric knees. Results Between 45° and 120° of knee flexion, there were no significant differences between the outside-in and modified inside-out techniques. However, the femoral GTA for the conventional inside-out technique was significantly less than that for the other two techniques (p<0.001). In cadaveric experiments using pressure-sensitive film, the maximum contact pressure for the modified inside-out and outside-in technique was significantly lower than that for the conventional inside-out technique (p=0.024 and p=0.017). Conclusion The conventional inside-out technique results in a significantly lesser GTA and higher stress at the intra-articular aperture of the femoral tunnel than the outside-in technique. However, the results for the modified inside-out technique are similar to those for the outside-in technique. PMID:23709438

  2. Development and Application of a 3-Dimensional Finite Element Model for Remediation Wellfield Management at Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Mansoor, K.; Maley, M. P.; Demir, Z.; Noyes, C.

    2001-12-01

    Lawrence Livermore National Laboratory (LLNL), which is on the Superfund National Priorities List, is implementing an extensive ground water remediation program. The environmental investigation covers an area of about 2 square miles, and is underlain by a thick sequence of heterogeneous alluvial sediments. These sediments have been subdivided into hydrostratigraphic units (HSUs) bounded by thin confining layers that were identified using a deterministic approach. LLNL currently operates a large ground water extraction system that includes 80 ground water extraction wells connected to 25 separate treatment facilities. These combined facilities treated about 308 million gallons of ground water at an average combined flow rate of 600 gpm, and removed about 270 kg of volatile organic compounds (VOC's). To better manage this large complex remediation system, a 3-dimensional, finite-element numerical model was developed using FEFLOW. The model simulated a 7 square-mile portion of the large Livermore Valley ground water basin. The quality of the input data varied from highly detailed, in the environmental investigation areas, to sparse, near some of the model domain boundaries. These different data sets had to be integrated to obtain the necessary boundary conditions and input parameters for the model. Hydraulic conductivities were averaged from measured lithologic descriptions and hydraulic test data. Boundary conditions were based on a local and regional assessment of groundwater elevation data representative of observed inflow/outflow boundaries. The model was initially calibrated to a set of 8 distinct hydrologic stress periods over 12 years. Initial flow calibration for the model was achieved using the parameter estimation tool PEST. Through successive data analysis and calibration, optimal parameters were established for each HSU and expanded to 35 hydrologic stress periods covering the entire recorded hydrologic history. VOC transport was calibrated to 9 years of

  3. A 3-Dimensional Model of Water-Bearing Sequences in the Dominguez Gap Region, Long Beach, California

    USGS Publications Warehouse

    Ponti, Daniel J.; Ehman, Kenneth D.; Edwards, Brian D.; Tinsley, John C.; Hildenbrand, Thomas; Hillhouse, John W.; Hanson, Randall T.; McDougall, Kristen; Powell, Charles L.; Wan, Elmira; Land, Michael; Mahan, Shannon; Sarna-Wojcicki, Andrei M.

    2007-01-01

    A 3-dimensional computer model of the Quaternary sequence stratigraphy in the Dominguez gap region of Long Beach, California has been developed to provide a robust chronostratigraphic framework for hydrologic and tectonic studies. The model consists of 13 layers within a 16.5 by 16.1 km (10.25 by 10 mile) square area and extends downward to an altitude of -900 meters (-2952.76 feet). Ten sequences of late Pliocene to Holocene age are identified and correlated within the model. Primary data to build the model comes from five reference core holes, extensive high-resolution seismic data obtained in San Pedro Bay, and logs from several hundred water and oil wells drilled in the region. The model is best constrained in the vicinity of the Dominguez gap seawater intrusion barrier where a dense network of subsurface data exist. The resultant stratigraphic framework and geologic structure differs significantly from what has been proposed in earlier studies. An important new discovery from this approach is the recognition of ongoing tectonic deformation throughout nearly all of Quaternary time that has impacted the geometry and character of the sequences. Anticlinal folding along a NW-SE trend, probably associated with Quaternary reactivation of the Wilmington anticline, has uplifted and thinned deposits along the fold crest, which intersects the Dominguez gap seawater barrier near Pacific Coast Highway. A W-NW trending fault system that approximately parallels the fold crest has also been identified. This fault progressively displaces all but the youngest sequences down to the north and serves as the southern termination of the classic Silverado aquifer. Uplift and erosion of fining-upward paralic sequences along the crest of the young fold has removed or thinned many of the fine-grained beds that serve to protect the underlying Silverado aquifer from seawater contaminated shallow groundwater. As a result of this process, the potential exists for vertical migration of

  4. V-stand--a versatile surgical platform for oromandibular reconstruction using a 3-dimensional virtual modeling system.

    PubMed

    Reiser, Vadim; Alterman, Michael; Shuster, Amir; Kleinman, Shlomi; Shlomi, Benjamin; Yanko-Arzi, Ravit; Zaretski, Arik; Amir, Aharon; Fliss, Dan M

    2015-06-01

    The challenge of oromandibular reconstruction (OMR) after oncologic resections has been repeatedly addressed in the literature. Although final oncologic margins can be decided only during surgery, various attempts have been made to create an ideal and accurate platform for OMR. The purpose of this article is to present the V-stand, a versatile surgical platform for OMR using a 3-dimensional (3D) virtual modeling system. Seventeen patients requiring an OMR were included in the study. A presurgical computed tomogram was obtained and virtual resection and reconstruction with a free fibular flap were planned using 3D virtual surgery software. The mandible was reconstructed intraoperatively using the V-stand, which served as a template for the lower border of the mandible and the lateral aspects of the stand were fixed to the proximal mandibular segments using 2-mm titanium screws. Patients' average age was 53 years (5 to 72 yr). Median follow-up was 19 months (2 to 35 months). All reconstructed mandibles resulted in good function and esthetics. The V-stand offers a safe and time-efficient method for OMR. It provides an excellent means for accurate spatial positioning of a fibular free flap. The V-stand preserves the original dimensions of the reconstructed mandible and can overcome surgical ablation modifications because it is not dependent on the precision of the resection, but rather provides a mold for the entire mandible. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Use of 3-Dimensional Volumetric Modeling of Adrenal Gland Size in Patients with Primary Pigmented Nodular Adrenocortical Disease.

    PubMed

    Chrysostomou, P P; Lodish, M B; Turkbey, E B; Papadakis, G Z; Stratakis, C A

    2016-04-01

    Primary pigmented nodular adrenocortical disease (PPNAD) is a rare type of bilateral adrenal hyperplasia leading to hypercortisolemia. Adrenal nodularity is often appreciable with computed tomography (CT); however, accurate radiologic characterization of adrenal size in PPNAD has not been studied well. We used 3-dimensional (3D) volumetric analysis to characterize and compare adrenal size in PPNAD patients, with and without Cushing's syndrome (CS). Patients diagnosed with PPNAD and their family members with known mutations in PRKAR1A were screened. CT scans were used to create 3D models of each adrenal. Criteria for biochemical diagnosis of CS included loss of diurnal variation and/or elevated midnight cortisol levels, and paradoxical increase in urinary free cortisol and/or urinary 17-hydroxysteroids after dexamethasone administration. Forty-five patients with PPNAD (24 females, 27.8±17.6 years) and 8 controls (19±3 years) were evaluated. 3D volumetric modeling of adrenal glands was performed in all. Thirty-eight patients out of 45 (84.4%) had CS. Their mean adrenal volume was 8.1 cc±4.1, 7.2 cc±4.5 (p=0.643) for non-CS, and 8.0cc±1.6 for controls. Mean values were corrected for body surface area; 4.7 cc/kg/m(2)±2.2 for CS, and 3.9 cc/kg/m(2)±1.3 for non-CS (p=0.189). Adrenal volume and midnight cortisol in both groups was positively correlated, r=0.35, p=0.03. We conclude that adrenal volume measured by 3D CT in patients with PPNAD and CS was similar to those without CS, confirming empirical CT imaging-based observations. However, the association between adrenal volume and midnight cortisol levels may be used as a marker of who among patients with PPNAD may develop CS, something that routine CT cannot do.

  6. Assessing agreement in measurements of orthodontic study models: Digital caliper on plaster models vs 3-dimensional software on models scanned by structured-light scanner.

    PubMed

    Wan Hassan, Wan Nurazreena; Othman, Siti Adibah; Chan, Chee Seng; Ahmad, Roshahida; Ali, Siti Nor'Ain; Abd Rohim, Anis

    2016-11-01

    In this study we aimed to compare measurements on plaster models using a digital caliper, and on 3-dimensional (3D) digital models, produced using a structured-light scanner, using 3D software. Fifty digital models were scanned from the same plaster models. Arch and tooth size measurements were made by 2 operators, twice. Calibration was done on 10 sets of models and checked using the Pearson correlation coefficient. Data were analyzed by error variances, repeatability coefficient, repeated-measures analysis of variance, and Bland-Altman plots. Error variances ranged between 0.001 and 0.044 mm for the digital caliper method, and between 0.002 and 0.054 mm for the 3D software method. Repeated-measures analysis of variance showed small but statistically significant differences (P <0.05) between the repeated measurements in the arch and buccolingual planes (0.011 and 0.008 mm, respectively). There were no statistically significant differences between methods and between operators. Bland-Altman plots showed that the mean biases were close to zero, and the 95% limits of agreement were within ±0.50 mm. Repeatability coefficients for all measurements were similar. Measurements made on models scanned by the 3D structured-light scanner were in good agreement with those made on conventional plaster models and were, therefore, clinically acceptable. Copyright © 2016. Published by Elsevier Inc.

  7. Normal growth and development of the lips: a 3-dimensional study from 6 years to adulthood using a geometric model

    PubMed Central

    FERRARIO, VIRGILIO F.; SFORZA, CHIARELLA; SCHMITZ, JOHANNES H.; CIUSA, VERONICA; COLOMBO, ANNA

    2000-01-01

    A 3-dimensional computerised system with landmark representation of the soft-tissue facial surface allows noninvasive and fast quantitative study of facial growth. The aims of the present investigation were (1) to provide reference data for selected dimensions of lips (linear distances and ratios, vermilion area, volume); (2) to quantify the relevant growth changes; and (3) to evaluate sex differences in growth patterns. The 3-dimensional coordinates of 6 soft-tissue landmarks on the lips were obtained by an optoelectronic instrument in a mixed longitudinal and cross-sectional study (2023 examinations in 1348 healthy subjects between 6 y of age and young adulthood). From the landmarks, several linear distances (mouth width, total vermilion height, total lip height, upper lip height), the vermilion height-to-mouth width ratio, some areas (vermilion of the upper lip, vermilion of the lower lip, total vermilion) and volumes (upper lip volume, lower lip volume, total lip volume) were calculated and averaged for age and sex. Male values were compared with female values by means of Student's t test. Within each age group all lip dimensions (distances, areas, volumes) were significantly larger in boys than in girls (P < 0.05), with some exceptions in the first age groups and coinciding with the earlier female growth spurt, whereas the vermilion height-to-mouth width ratio did not show a corresponding sexual dimorphism. Linear distances in girls had almost reached adult dimensions in the 13–14 y age group, while in boys a large increase was still to occur. The attainment of adult dimensions was faster in the upper than in the lower lip, especially in girls. The method used in the present investigation allowed the noninvasive evaluation of a large sample of nonpatient subjects, leading to the definition of 3-dimensional normative data. Data collected in the present study could represent a data base for the quantitative description of human lip morphology from childhood to

  8. Verification and transfer of thermal pollution model. Volume 3: Verification of 3-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.

  9. Verification and transfer of thermal pollution model. Volume 2: User's manual for 3-dimensional free-surface model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1982-01-01

    The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  10. ABSTRACTION OF INFORMATION FROM 2- AND 3-DIMENSIONAL PORFLOW MODELS INTO A 1-D GOLDSIM MODEL - 11404

    SciTech Connect

    Taylor, G.; Hiergesell, R.

    2010-11-16

    The Savannah River National Laboratory has developed a 'hybrid' approach to Performance Assessment modeling which has been used for a number of Performance Assessments. This hybrid approach uses a multi-dimensional modeling platform (PorFlow) to develop deterministic flow fields and perform contaminant transport. The GoldSim modeling platform is used to develop the Sensitivity and Uncertainty analyses. Because these codes are performing complementary tasks, it is incumbent upon them that for the deterministic cases they produce very similar results. This paper discusses two very different waste forms, one with no engineered barriers and one with engineered barriers, each of which present different challenges to the abstraction of data. The hybrid approach to Performance Assessment modeling used at the SRNL uses a 2-D unsaturated zone (UZ) and a 3-D saturated zone (SZ) model in the PorFlow modeling platform. The UZ model consists of the waste zone and the unsaturated zoned between the waste zone and the water table. The SZ model consists of source cells beneath the waste form to the points of interest. Both models contain 'buffer' cells so that modeling domain boundaries do not adversely affect the calculation. The information pipeline between the two models is the contaminant flux. The domain contaminant flux, typically in units of moles (or Curies) per year from the UZ model is used as a boundary condition for the source cells in the SZ. The GoldSim modeling component of the hybrid approach is an integrated UZ-SZ model. The model is a 1-D representation of the SZ, typically 1-D in the UZ, but as discussed below, depending on the waste form being analyzed may contain pseudo-2-D elements. A waste form at the Savannah River Site (SRS) which has no engineered barriers is commonly referred to as a slit trench. A slit trench, as its name implies, is an unlined trench, typically 6 m deep, 6 m wide, and 200 m long. Low level waste consisting of soil, debris, rubble, wood

  11. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding.

    PubMed

    Wan Hassan, Wan Nurazreena; Yusoff, Yusnilawati; Mardi, Noor Azizi

    2017-01-01

    Rapid prototyping models can be reconstructed from stereolithographic digital study model data to produce hard-copy casts. In this study, we aimed to compare agreement and accuracy of measurements made with rapid prototyping and stone models for different degrees of crowding. The Z Printer 450 (3D Systems, Rock Hill, SC) reprinted 10 sets of models for each category of crowding (mild, moderate, and severe) scanned using a structured-light scanner (Maestro 3D, AGE Solutions, Pisa, Italy). Stone and RP models were measured using digital calipers for tooth sizes in the mesiodistal, buccolingual, and crown height planes and for arch dimension measurements. Bland-Altman and paired t test analyses were used to assess agreement and accuracy. Clinical significance was set at ±0.50 mm. Bland-Altman analysis showed the mean bias of measurements between the models to be within ±0.15 mm (SD, ±0.40 mm), but the 95% limits of agreement exceeded the cutoff point of ±0.50 mm (lower range, -0.81 to -0.41 mm; upper range, 0.34 to 0.76 mm). Paired t tests showed statistically significant differences for all planes in all categories of crowding except for crown height in the moderate crowding group and arch dimensions in the mild and moderate crowding groups. The rapid prototyping models were not clinically comparable with conventional stone models regardless of the degree of crowding. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Accuracy and mechanical properties of orthodontic models printed 3-dimensionally from calcium sulfate before and after various postprinting treatments.

    PubMed

    Ledingham, Austin D; English, Jeryl D; Akyalcin, Sercan; Cozad, Benjamin E; Ontiveros, Joe C; Kasper, F Kurtis

    2016-12-01

    Dental models fabricated with 3-dimensional printing technologies are revolutionizing the practice of orthodontics, but they generally comprise polymeric materials that may not be suitable for certain applications, such as soldering appliances. The objective of this study was to investigate the dimensional accuracy and mechanical properties of 3-dimensional printed ceramic-based models before and after various treatments intended to improve their mechanical properties. Thirty identical models were printed 3-dimensionally from a calcium sulfate-based substrate and divided into 3 groups for treatment: high heat (250°C for 30 minutes), low heat (150°C for 30 minutes), and Epsom salt treatment. Each model was scanned before and after treatment with a laser scanner, and dimensional stability was analyzed by digital superimpositions using a best-fit algorithm. The models were weighed before and after treatment to evaluate mass changes. Additionally, 3-dimensional printed cylinders treated as described above and an untreated control group were subjected to compressive mechanical testing (n = 11 per group). The Epsom salt treatment group had statistically significant increases in both peak compressive stress and modulus of elasticity when compared with the other treatment groups. All treatment groups had statistically significant changes in mass, with the Epsom salt group gaining mass and the 2 heat-treatment groups losing mass. The low-temperature treatment group had a statistically significantly lower mean average for dimensional deviations (0.026 ± 0.010 mm) than did the other treatment groups (0.069 ± 0.006 and 0.059 ± 0.010 mm for high temperature and Epsom salt, respectively). Dental models printed 3-dimensionally with calcium sulfate and treated with Epsom salt showed significant improvement in compressive mechanical properties and retained clinically acceptable dimensional stability. Copyright © 2016 American Association of Orthodontists

  13. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Butler, Douglas J.; Kerstman, Eric

    2010-01-01

    This slide presentation reviews the goals and approach for the Integrated Medical Model (IMM). The IMM is a software decision support tool that forecasts medical events during spaceflight and optimizes medical systems during simulations. It includes information on the software capabilities, program stakeholders, use history, and the software logic.

  14. Average 3-dimensional models for the comparison of Orbscan II and Pentacam pachymetry maps in normal corneas.

    PubMed

    Bourges, Jean-Louis; Alfonsi, Nicolas; Laliberté, Jean-François; Chagnon, Miguel; Renard, Gilles; Legeais, Jean-Marc; Brunette, Isabelle

    2009-11-01

    To assess the reliability of Orbscan (Bausch & Lomb, Salt Lake City, UT) and Pentacam (Oculus, Wetzlar, Germany) central corneal thickness (CCT) and peripheral corneal thickness (PCT) measurements based on 2 methodologies. Evaluation of a diagnostic technology. Thirty healthy volunteers were recruited prospectively at the Department of Ophthalmology of the Hôtel-Dieu Hospital, Paris, France. Central corneal thickness and PCT were assessed, using ultrasound pachymetry (USP) as the gold standard. Two methodologies were used: (1) the traditional analysis of pachymetry data from 1 central and 8 peripheral reference positions on the cornea, and (2) a 3-dimensional (3-D) analysis based on average corneal pachymetry maps constructed for each system (Orbscan, Pentacam, and USP), each operator (operators 1 and 2), and each visit (visits A and B). Repeatability, intersystem reproducibility, interoperator reproducibility, reproducibility over time, and accuracy of Orbscan and Pentacam CCT and PCT measurements. Distribution and statistical significance of the differences between 3-D average maps. Repeatability (Orbscan intraclass correlation coefficients [ICCs], 0.967-0.992; Pentacam ICCs, 0.986-0.997), interoperator reproducibility, and reproducibility over time (ICCs, 0.976-0.997) were excellent to almost perfect for both systems. Intersystem agreement was almost perfect for CCT (ICC, 0.980), but less strong for PCT (ICCs, 0.928-0.979). Despite a good to excellent agreement between the optical systems and USP (ICCs, 0.608-0.958), USP CCT readings were thicker (mean difference, up to 15.2 microm; P<0.05), and USP PCT readings were thinner (P<0.05). Orbscan and Pentacam average maps allowed comprehensive interpretation of differences between populations according to the magnitude, distribution, and statistical significance, minimizing the risk of giving excessive weight to few data measured at specific locations on the cornea. Both methodologies showed that Orbscan and

  15. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity.

    PubMed

    Maherally, Zaynah; Fillmore, Helen L; Tan, Sim Ling; Tan, Suk Fei; Jassam, Samah A; Quack, Friederike I; Hatherell, Kathryn E; Pilkington, Geoffrey J

    2017-09-07

    The blood-brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins-laminin, fibronectin, collagen type IV, agrin, and perlecan-on adhesion and TEER was assessed using an electric cell-substrate impedance-sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.-Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity. © FASEB.

  16. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  17. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  18. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  19. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    SciTech Connect

    Bodvarsson, G.; Chen, G.; Haukwa, C.

    1995-03-01

    The three-dimensional site-scale numerical model of the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km{sup 2} and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Further information about the three-dimensional site-scale model is given by Wittwer et al. and Bodvarsson et al.

  20. Next Generation, Waveform Based 3-Dimensional Models & Metrics to Improve Nuclear Explosion Monitoring in the Middle East

    DTIC Science & Technology

    2012-04-20

    Indian tectonic plates . Without knowing the true lateral changes in anisotropy and including large continental provinces within the model it is...between recordings of seismic waves traversing the region from Tibet to the Red Sea compared to synthetics from the current iteration model is the...also significantly increase anomaly strength while sharpening the anomaly edges to create stronger and more pronounced tectonic structures. The

  1. Modified flapless dental implant surgery for planning treatment in a maxilla including sinus lift augmentation through use of virtual surgical planning and a 3-dimensional model.

    PubMed

    Nikzad, Sakineh; Azari, Abbas; Ghassemzadeh, Amanollah

    2010-09-01

    The concept of "prosthetic-driven implantology" may be considered a turning point in the history of modern dental implantology. On the basis of this sophisticated approach, the available bone and the optimal prosthetic position of the future restoration are checked before surgical intervention. However, the major drawback of today's prosthodontic discipline is that it is inherently 2-dimensional in nature, which may prevent the appropriate treatment; this problem can be overcome by the 3-dimensional capability of a computer-assisted approach when performed judiciously. It was proposed that this technique has the potential to provide a high level of safety and accuracy in comparison to traditional surgical procedures. Using a novel approach, we performed modified flapless implant surgery accompanied by a simultaneous sinus-lifting procedure. The technique used a 3-dimensional life-sized computer-aided design/computer-aided manufacturing (CAD/CAM) model prepared from the computed tomography images for prosthetic/surgical diagnosis and treatment planning. The procedure of implant planning, model surgery, and sinus floor augmentation in this sophisticated flapless surgical approach has the potential to provide substantial benefits for both patients and practitioners. The versatility of the described technique not only allows more accurate implementation of the treatment plan to the patient's mouth but also may offer many additional significant benefits, including the use of custom surgical guides, life-sized bone model manipulation, and surgical rehearsal, all of which are very difficult to achieve with current traditional procedures. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Scan, plan, print, practice, perform: Development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery.

    PubMed

    Hermsen, Joshua L; Burke, Thomas M; Seslar, Stephen P; Owens, David S; Ripley, Beth A; Mokadam, Nahush A; Verrier, Edward D

    2017-01-01

    Static 3-dimensional printing is used for operative planning in cases that involve difficult anatomy. An interactive 3D print allowing deliberate surgical practice would represent an advance. Two patients with hypertrophic cardiomyopathy had 3-dimensional prints constructed preoperatively. Stereolithography files were generated by segmentation of chest computed tomographic scans. Prints were made with hydrogel material, yielding tissue-like models that can be surgically manipulated. Septal myectomy of the print was performed preoperatively in the simulation laboratory. Volumetric measures of print and patient resected specimens were compared. An assessment tool was developed and used to rate the utility of this process. Clinical and echocardiographic data were reviewed. There was congruence between volumes of print and patient resection specimens (patient 1, 3.5 cm(3) and 3.0 cm(3), respectively; patient 2, 4.0 cm(3) and 4.0 cm(3), respectively). The prints were rated useful (3.5 and 3.6 on a 5-point Likert scale) for preoperative visualization, planning, and practice. Intraoperative echocardiographic assessment showed adequate relief of left ventricular outflow tract obstruction (patient 1, 80 mm Hg to 18 mm Hg; patient 2, 96 mm Hg to 9 mm Hg). Both patients reported symptomatic improvement (New York Heart Association functional class III to class I). Three-dimensional printing of interactive hypertrophic cardiomyopathy heart models allows for patient-specific preoperative simulation. Resection volume relationships were congruous on both specimens and suggest evidence of construct validity. This model also holds educational promise for simulation of a low-volume, high-risk operation that is traditionally difficult to teach. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  3. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  4. New 3-dimensional CFD modeling of CO2 and H2S simultaneous stripping from water within PVDF hollow fiber membrane contactor

    NASA Astrophysics Data System (ADS)

    Bahlake, Ahmad; Farivar, Foad; Dabir, Bahram

    2016-07-01

    In this paper a 3-dimensional modeling of simultaneous stripping of carbon dioxide (CO2) and hydrogen sulfide (H2S) from water using hollow fiber membrane made of polyvinylidene fluoride is developed. The water, containing CO2 and H2S enters to the membrane as feed. At the same time, pure nitrogen flow in the shell side of a shell and tube hollow fiber as the solvent. In the previous methods of modeling hollow fiber membranes just one of the membranes was modeled and the results expand to whole shell and tube system. In this research the whole hollow fiber shell and tube module is modeled to reduce the errors. Simulation results showed that increasing the velocity of solvent flow and decreasing the velocity of the feed are leads to increase in the system yield. However the effect of the feed velocity on the process is likely more than the influence of changing the velocity of the gaseous solvent. In addition H2S stripping has higher yield in comparison with CO2 stripping. This model is compared to the previous modeling methods and shows that the new model is more accurate. Finally, the effect of feed temperature is studied using response surface method and the operating conditions of feed temperature, feed velocity, and solvent velocity is optimized according to synergistic effects. Simulation results show that, in the optimum operating conditions the removal percentage of H2S and CO2 are 27 and 21 % respectively.

  5. Knee rotation influences the femoral tunnel angle measurement after anterior cruciate ligament reconstruction: a 3-dimensional computed tomography model study.

    PubMed

    Tang, Jing; Thorhauer, Eric; Marsh, Chelsea; Fu, Freddie H; Tashman, Scott

    2014-07-01

    Femoral tunnel angle (FTA) has been proposed as a metric for evaluating whether ACL reconstruction was performed anatomically. In clinic, radiographic images are typically acquired with an uncertain amount of internal/external knee rotation. The extent to which knee rotation will influence FTA measurement is unclear. Furthermore, differences in FTA measurement between the two common positions (0° and 45° knee flexion) have not been established. The purpose of this study was to investigate the influence of knee rotation on FTA measurement after ACL reconstruction. Knee CT data from 16 subjects were segmented to produce 3D bone models. Central axes of tunnels were identified. The 0° and 45° flexion angles were simulated. Knee internal/external rotations were simulated in a range of ± 20°. FTA was defined as the angle between the tunnel axis and femoral shaft axis, orthogonally projected into the coronal plane. Femoral tunnel angle was positively/negatively correlated with knee rotation angle at 0°/45° knee flexion. At 0° knee flexion, FTA for anterio-medial (AM) tunnels was significantly decreased at 20° of external knee rotation. At 45° knee flexion, more than 16° external or 19° internal rotation significantly altered FTA measurements for single-bundle tunnels; smaller rotations (± 9° for AM, ± 5° for PL) created significant errors in FTA measurements after double-bundle reconstruction. Femoral tunnel angle measurements were correlated with knee rotation. Relatively small imaging malalignment introduced significant errors with knee flexed 45°. This study supports using the 0° flexion position for knee radiographs to reduce errors in FTA measurement due to knee internal/external rotation.

  6. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  7. Integrated Medical Model Overview

    NASA Technical Reports Server (NTRS)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; hide

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  8. Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp.

    PubMed

    Fuller, Sam M; Butz, Daniel R; Vevang, Curt B; Makhlouf, Mansour V

    2014-09-01

    Three-dimensional printing is being rapidly incorporated in the medical field to produce external prosthetics for improved cosmesis and fabricated molds to aid in presurgical planning. Biomedically engineered products from 3-dimensional printers are also utilized as implantable devices for knee arthroplasty, airway orthoses, and other surgical procedures. Although at first expensive and conceptually difficult to construct, 3-dimensional printing is now becoming more affordable and widely accessible. In hand surgery, like many other specialties, new or customized instruments would be desirable; however, the overall production cost restricts their development. We are presenting our step-by-step experience in creating a bone reduction clamp for finger fractures using 3-dimensional printing technology. Using free, downloadable software, a 3-dimensional model of a bone reduction clamp for hand fractures was created based on the senior author's (M.V.M.) specific design, previous experience, and preferences for fracture fixation. Once deemed satisfactory, the computer files were sent to a 3-dimensional printing company for the production of the prototypes. Multiple plastic prototypes were made and adjusted, affording a fast, low-cost working model of the proposed clamp. Once a workable design was obtained, a printing company produced the surgical clamp prototype directly from the 3-dimensional model represented in the computer files. This prototype was used in the operating room, meeting the expectations of the surgeon. Three-dimensional printing is affordable and offers the benefits of reducing production time and nurturing innovations in hand surgery. This article presents a step-by-step description of our design process using online software programs and 3-dimensional printing services. As medical technology advances, it is important that hand surgeons remain aware of available resources, are knowledgeable about how the process works, and are able to take advantage of

  9. Cardiothoracic Applications of 3-dimensional Printing.

    PubMed

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.

  10. A Validation Study of a Novel 3-Dimensional MRI Modeling Technique to Identify the Anatomic Insertions of the Anterior Cruciate Ligament

    PubMed Central

    Hui, Catherine; Pi, Yeli; Swami, Vimarsha; Mabee, Myles; Jaremko, Jacob L.

    2016-01-01

    Background: Anatomic single bundle anterior cruciate ligament (ACL) reconstruction is the current gold standard in ACL reconstructive surgery. However, placement of femoral and tibial tunnels at the anatomic center of the ACL insertion sites can be difficult intraoperatively. We developed a “virtual arthroscopy” program that allows users to identify ACL insertions on preoperative knee magnetic resonance images (MRIs) and generates a 3-dimensional (3D) bone model that matches the arthroscopic view to help guide intraoperative tunnel placement. Purpose: To test the validity of the ACL insertion sites identified using our 3D modeling program and to determine the accuracy of arthroscopic ACL reconstruction guided by our “virtual arthroscopic” model. Study Design: Descriptive laboratory study. Methods: Sixteen cadaveric knees were prescanned using routine MRI sequences. A trained, blinded observer then identified the center of the ACL insertions using our program. Eight knees were dissected, and the centers of the ACL footprints were marked with a screw. In the remaining 8 knees, arthroscopic ACL tunnels were drilled into the center of the ACL footprints based on landmarks identified using our virtual arthroscopic model. Postprocedural MRI was performed on all 16 knees. The 3D distance between pre- and postoperative 3D centers of the ACL were calculated by 2 trained, blinded observers and a musculoskeletal radiologist. Results: With 2 outliers removed, the postoperative femoral and tibial tunnel placements in the open specimens differed by 2.5 ± 0.9 mm and 2.9 ± 0.7 mm from preoperative centers identified on MRI. Postoperative femoral and tibial tunnel centers in the arthroscopic specimens differed by 3.2 ± 0.9 mm and 2.9 ± 0.7 mm, respectively. Conclusion: Our results show that MRI-based 3D localization of the ACL and our virtual arthroscopic modeling program is feasible and does not show a statistically significant difference to an open arthrotomy approach

  11. Rigorous 3-dimensional spectral data activity relationship approach modeling strategy for ToxCast estrogen receptor data classification, validation, and feature extraction.

    PubMed

    Slavov, Svetoslav H; Beger, Richard D

    2017-03-01

    The estrogenic potential (expressed as a score composite of 18 high throughput screening bioassays) of 1528 compounds from the ToxCast database was modeled by a 3-dimensional spectral data activity relationship approach (3D-SDAR). Due to a lack of (17) O nuclear magnetic resonance (NMR) simulation software, the most informative carbon-carbon 3D-SDAR fingerprints were augmented with indicator variables representing oxygen atoms from carbonyl and carboxamide, ester, sulfonyl, nitro, aliphatic hydroxyl, and phenolic hydroxyl groups. To evaluate the true predictive performance of the authors' model the United States Environmental Protection Agency provided them with a blind test set consisting of 2008 compounds. Of these, 543 had available literature data-their binding affinity served to estimate the external classification accuracy of the developed model: predictive accuracy of 0.62, sensitivity of 0.71, and specificity of 0.53 were obtained. Compared with alternative modeling techniques, the authors' model displayed very little reduction in performance between the modeling and the prediction set. A 3D-SDAR mapping technique allowed identification of structural features essential for estrogenicity: 1) the presence of a phenolic OH group or cyclohexenone, 2) a second aromatic or phenolic ring at a distance of 6 Å to 8 Å from the oxygen of the first phenol ring, 3) the presence of a methyl group approximately 6 Å away from the centroid of a phenol ring, and 4) a carbonyl group in close proximity (∼4 Å measured to the centroid) to 1 of the phenol rings. Environ Toxicol Chem 2017;36:823-830. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  12. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  13. A thermodynamic and mechanical model for formation of the Solar System via 3-dimensional collapse of the dusty pre-solar nebula

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Criss, Robert E.

    2012-03-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive -ΔUg≅Δ.R.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing 3-d pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain to the rarified PSN until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E.≅R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.≅R.E.f(1-If/Ii), where I is the moment of inertia. Orbital data for the inner planets follow 0.04×R.E.f≅-Ug which confirms conservation of angular momentum. Significant loss of spin, attributed to viscous dissipation during differential rotation, masks the initial spin of the un-ignited protoSun predicted by R.E.=-Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d

  14. Evaluation of the Diagnostic Accuracy of Conventional 2-Dimensional and 3-Dimensional Computed Tomography for Assessing Canine Sacral and Pelvic Fractures by Radiologists, Orthopedic Surgeons, and Veterinary Medical Students.

    PubMed

    Stieger-Vanegas, Susanne M; Senthirajah, Sri Kumar Jamie; Nemanic, Sarah; Baltzer, Wendy; Warnock, Jennifer; Hollars, Katelyn; Lee, Scott S; Bobe, Gerd

    2015-08-01

    To determine, using 3 groups of evaluators of varying experience reading orthopedic CT studies, if 3-dimensional computed tomography (3D-CT) provides a more accurate and time efficient method for diagnosis of canine sacral and pelvic fractures, and displacements of the sacroiliac and coxofemoral joints compared with 2-dimensional computed tomography (2D-CT). Retrospective clinical and prospective study. Dogs (n = 23): 12 dogs with traumatic pelvic fractures, 11 canine cadavers with pelvic trauma induced by a lateral impactor. All dogs had a 2D-CT exam of the pelvis and subsequent 3D-CT reconstructions from the 2D-CT images. Both 2D-CT and 3D-CT studies were anonymized and randomly presented to 2 veterinary radiologists, 2 veterinary orthopedic surgeons, and 2 veterinary medical students. Evaluators classified fractures using a confidence scale and recorded the duration of evaluation for each modality and case. 3D-CT was a more time-efficient technique for evaluation of traumatic sacral and pelvic injuries compared with 2D-CT in all evaluator groups irrespective of experience level reading orthopedic CT studies. However, for radiologists and surgeons, 2D-CT was the more accurate technique for evaluating sacral and pelvic fractures. 3D-CT improves sacral and pelvic fracture diagnosis when added to 2D-CT; however, 3D-CT has a reduced accuracy for evaluation of sacral and pelvic fractures if used without concurrent evaluation of 2D-CT images. © Copyright 2014 by The American College of Veterinary Surgeons.

  15. With the advent of domestic 3-dimensional (3D) printers and their associated reduced cost, is it now time for every medical school to have their own 3D printer?

    PubMed

    Balestrini, Christopher; Campo-Celaya, Tatiana

    2016-01-01

    Anatomy is the backbone of medical education and new techniques to improve learning are frequently explored. With the introduction of 3D printers specifically for the home market, the price of this technology has reached affordable levels. Using patient scan data, accurate 3D models can be printed that represent real human variation in anatomy to provide an innovative, inexpensive and valuable adjunct to anatomical teaching. Is it now time for every medical school to have their own 3D printer?

  16. 3-dimensional bioprinting for tissue engineering applications.

    PubMed

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds.

  17. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  18. Labial morphology: a 3-dimensional anthropometric study.

    PubMed

    Ferrario, Virgilio F; Rosati, Riccardo; Peretta, Redento; Dellavia, Claudia; Sforza, Chiarella

    2009-09-01

    To develop a noninvasive 3-dimensional method to evaluate labial morphology and to assess gender-related differences in healthy young adults. Dental and lip impressions of 11 men and 10 women aged 21 to 34 years, with sound, full, permanent dentition were obtained. The models were digitized and 3-dimensional virtual reproductions obtained. The labial thickness, vermilion area, and volume of the upper and lower lips were measured from the digital reconstructions. The male and female data were compared using Student's t test. The mean lip thickness was significantly larger (P = .02) in men (14.3 mm) than in women (12.3 mm). The lower lip was thicker than the upper lip. The vermilion width was larger in men (75 mm) than in women (70 mm), and no differences were found for vermilion height (10 mm). In the upper lip, the height/width ratio was significantly larger in women (14.1%) than in men (12.3%). The vermilion surface area was slightly larger in men than in women (upper lip area: women, 467 mm(2); men, 501 mm(2); lower lip area: women, 491 mm(2); men, 569 mm(2)). The labial volume was significantly larger in men (upper lip, 2,390 mm(3); lower lip, 2,902 mm(3)) than in women (upper lip, 1,743 mm(3); lower lip, 1,764 mm(3); P = .021). The upper/lower lip area and volume ratios were similar in the 2 genders. Overall, men had larger lips than women. The inferior lip height/width ratio was similar in both genders, and men had a relatively thinner upper lip than women.

  19. 3-dimensional Oil Drift Simulations

    NASA Astrophysics Data System (ADS)

    Wettre, C.; Reistad, M.; Hjøllo, B.Å.

    Simulation of oil drift has been an ongoing activity at the Norwegian Meteorological Institute since the 1970's. The Marine Forecasting Centre provides a 24-hour service for the Norwegian Pollution Control Authority and the oil companies operating in the Norwegian sector. The response time is 30 minutes. From 2002 the service is extended to simulation of oil drift from oil spills in deep water, using the DeepBlow model developed by SINTEF Applied Chemistry. The oil drift model can be applied both for instantaneous and continuous releases. The changes in the mass of oil and emulsion as a result of evaporation and emulsion are computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into account. The properties of the oil depend on the oil type, and in the present version 64 different types of oil can be simulated. For accurate oil drift simulations it is important to have the best possible data on the atmospheric and oceanic conditions. The oil drift simulations at the Norwegian Meteorological Institute are always based on the most updated data from numerical models of the atmosphere and the ocean. The drift of the surface oil is computed from the vectorial sum of the surface current from the ocean model and the wave induced Stokes drift computed from wave energy spectra from the wave prediction model. In the new model the current distribution with depth is taken into account when calculating the drift of the dispersed oil droplets. Salinity and temperature profiles from the ocean model are needed in the DeepBlow model. The result of the oil drift simulations can be plotted on sea charts used for navigation, either as trajectory plots or particle plots showing the situation at a given time. The results can also be sent as data files to be included in the user's own GIS system.

  20. Requirements for Medical Modeling Languages

    PubMed Central

    van der Maas, Arnoud A.F.; Ter Hofstede, Arthur H.M.; Ten Hoopen, A. Johannes

    2001-01-01

    Objective: The development of tailor-made domain-specific modeling languages is sometimes desirable in medical informatics. Naturally, the development of such languages should be guided. The purpose of this article is to introduce a set of requirements for such languages and show their application in analyzing and comparing existing modeling languages. Design: The requirements arise from the practical experience of the authors and others in the development of modeling languages in both general informatics and medical informatics. The requirements initially emerged from the analysis of information modeling techniques. The requirements are designed to be orthogonal, i.e., one requirement can be violated without violation of the others. Results: The proposed requirements for any modeling language are that it be “formal” with regard to syntax and semantics, “conceptual,” “expressive,” “comprehensible,” “suitable,” and “executable.” The requirements are illustrated using both the medical logic modules of the Arden Syntax as a running example and selected examples from other modeling languages. Conclusion: Activity diagrams of the Unified Modeling Language, task structures for work flows, and Petri nets are discussed with regard to the list of requirements, and various tradeoffs are thus made explicit. It is concluded that this set of requirements has the potential to play a vital role in both the evaluation of existing domain-specific languages and the development of new ones. PMID:11230383

  1. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT (EPA/600/SR-98/159)

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  2. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT (EPA/600/SR-98/159)

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  3. Phase diagram of quark-antiquark and diquark condensates in the 3-dimensional Gross-Neveu model with the 4-component spinor representation

    SciTech Connect

    Kohyama, Hiroaki

    2008-07-01

    We construct the phase diagram of the quark-antiquark and diquark condensates at finite temperature and density in the 2+1 dimensional (3D) two flavor massless Gross-Neveu (GN) model with the 4-component quarks. In contrast to the case of the 2-component quarks, there appears the coexisting phase of the quark-antiquark and diquark condensates. This is the crucial difference between the 2-component and 4-component quark cases in the 3D GN model. The coexisting phase is also seen in the 4D Nambu Jona-Lasinio model. Then we see that the 3D GN model with the 4-component quarks bears closer resemblance to the 4D Nambu Jona-Lasinio model.

  4. Utility of a 3-dimensional full-scale NaCl model for rib strut grafting for anterior fusion for cervicothoracic kyphosis

    PubMed Central

    Kobayashi, Kazuyoshi; Imagama, Shiro; Muramoto, Akio; Ito, Zenya; Ando, Kei; Yagi, Hideki; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Ishiguro, Naoki

    2015-01-01

    ABSTRACT In severe spinal deformity, pain and neurological disorder may be caused by spinal cord compression. Surgery for spinal reconstruction is desirable, but may be difficult in a case with severe deformity. Here, we show the utility of a 3D NaCl (salt) model in preoperative planning of anterior reconstruction using a rib strut in a 49-year-old male patient with cervicothoracic degenerative spondylosis. We performed surgery in two stages: a posterior approach with decompression and posterior instrumentation with a pedicle screw; followed by a second operation using an anterior approach, for which we created a 3D NaCl model including the cervicothoracic lesion, spinal deformity, and ribs for anterior reconstruction. The 3D NaCl model was easily scraped compared with a conventional plaster model and was useful for planning of resection and identification of a suitable rib for grafting in a preoperative simulation. Surgery was performed successfully with reference to the 3D NaCl model. We conclude that preoperative simulation with a 3D NaCl model contributes to performance of anterior reconstruction using a rib strut in a case of cervicothoracic deformity. PMID:26412901

  5. A 3-dimensional trimeric β-barrel model for Chlamydia MOMP contains conserved and novel elements of Gram-negative bacterial porins.

    PubMed

    Feher, Victoria A; Randall, Arlo; Baldi, Pierre; Bush, Robin M; de la Maza, Luis M; Amaro, Rommie E

    2013-01-01

    Chlamydia trachomatis is the most prevalent cause of bacterial sexually transmitted diseases and the leading cause of preventable blindness worldwide. Global control of Chlamydia will best be achieved with a vaccine, a primary target for which is the major outer membrane protein, MOMP, which comprises ~60% of the outer membrane protein mass of this bacterium. In the absence of experimental structural information on MOMP, three previously published topology models presumed a16-stranded barrel architecture. Here, we use the latest β-barrel prediction algorithms, previous 2D topology modeling results, and comparative modeling methodology to build a 3D model based on the 16-stranded, trimeric assumption. We find that while a 3D MOMP model captures many structural hallmarks of a trimeric 16-stranded β-barrel porin, and is consistent with most of the experimental evidence for MOMP, MOMP residues 320-334 cannot be modeled as β-strands that span the entire membrane, as is consistently observed in published 16-stranded β-barrel crystal structures. Given the ambiguous results for β-strand delineation found in this study, recent publications of membrane β-barrel structures breaking with the canonical rule for an even number of β-strands, findings of β-barrels with strand-exchanged oligomeric conformations, and alternate folds dependent upon the lifecycle of the bacterium, we suggest that although the MOMP porin structure incorporates canonical 16-stranded conformations, it may have novel oligomeric or dynamic structural changes accounting for the discrepancies observed.

  6. Should oral implants be splinted in a mandibular implant-supported fixed complete denture? A 3-dimensional-model finite element analysis.

    PubMed

    Alvarez-Arenal, Angel; Brizuela-Velasco, Aritza; DeLlanos-Lanchares, Hector; Gonzalez-Gonzalez, Ignacio

    2014-09-01

    The design of a mandibular fixed complete denture can influence periimplant bone loss. However, the design that transfers the greatest stress to the periimplant bone is not well documented. The purpose of this study was to assess the stress distribution associated with splinted and nonsplinted implant-supported mandibular fixed complete denture designs. Three-dimensional finite element models simulating 6 osseointegrated implants were created in the mandible to support a cobalt-chromium alloy and feldspathic porcelain veneering framework. One model simulated a 1-piece framework, and the other models simulated 2-piece and 3-piece frameworks. Axial and oblique loads were applied to the frameworks. For all the models, the greatest stress values were recorded in the periimplant bone of posterior implants, with differences between the left and right sides. The axial load transferred greater stress values to the periimplant bone than did the oblique load. The lowest periimplant bone stress values were observed in the 3-piece framework model at all implant locations, with the exception of implants placed in the canine region. A framework separated into 3 pieces transfers the least stress to the periimplant bone. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media

    NASA Astrophysics Data System (ADS)

    Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea

    2016-10-01

    Engineered nanoparticles (NPs) in the environment can act both as contaminants, when they are unintentionally released, and as remediation agents when injected on purpose at contaminated sites. In this work two carbon-based NPs are considered, namely CARBO-IRON®, a new material developed for contaminated site remediation, and single layer graphene oxide (SLGO), a potential contaminant of the next future. Understanding and modeling the transport and deposition of such NPs in aquifer systems is a key aspect in both cases, and numerical models capable to simulate NP transport in groundwater in complex 3D scenarios are necessary. To this aim, this work proposes a modeling approach based on modified advection-dispersion-deposition equations accounting for the coupled influence of flow velocity and ionic strength on particle transport. A new modeling tool (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) is presented for the simulation of NPs injection and transport in 3D scenarios. MNM3D is the result of the integration of the numerical code MNMs (Micro and Nanoparticle transport, filtration and clogging Model - Suite) in the well-known transport model RT3D (Clement et al., 1998). The injection in field-like conditions of CARBO-IRON® (20 g/l) amended by CMC (4 g/l) in a 2D vertical tank (0.7 × 1.0 × 0.12 m) was simulated using MNM3D, and compared to experimental results under the same conditions. Column transport tests of SLGO at a concentration (10 mg/l) representative of a possible spill of SLGO-containing waste water were performed at different values of ionic strength (0.1 to 35 mM), evidencing a strong dependence of SLGO transport on IS, and a reversible blocking deposition. The experimental data were fitted using the numerical code MNMs and the ionic strength-dependent transport was up-scaled for a full scale 3D simulation of SLGO release and long-term transport in a heterogeneous aquifer. MNM3D showed to potentially represent a valid tool for

  8. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media.

    PubMed

    Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea

    2016-10-01

    Engineered nanoparticles (NPs) in the environment can act both as contaminants, when they are unintentionally released, and as remediation agents when injected on purpose at contaminated sites. In this work two carbon-based NPs are considered, namely CARBO-IRON®, a new material developed for contaminated site remediation, and single layer graphene oxide (SLGO), a potential contaminant of the next future. Understanding and modeling the transport and deposition of such NPs in aquifer systems is a key aspect in both cases, and numerical models capable to simulate NP transport in groundwater in complex 3D scenarios are necessary. To this aim, this work proposes a modeling approach based on modified advection-dispersion-deposition equations accounting for the coupled influence of flow velocity and ionic strength on particle transport. A new modeling tool (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) is presented for the simulation of NPs injection and transport in 3D scenarios. MNM3D is the result of the integration of the numerical code MNMs (Micro and Nanoparticle transport, filtration and clogging Model - Suite) in the well-known transport model RT3D (Clement et al., 1998). The injection in field-like conditions of CARBO-IRON® (20g/l) amended by CMC (4g/l) in a 2D vertical tank (0.7×1.0×0.12m) was simulated using MNM3D, and compared to experimental results under the same conditions. Column transport tests of SLGO at a concentration (10mg/l) representative of a possible spill of SLGO-containing waste water were performed at different values of ionic strength (0.1 to 35mM), evidencing a strong dependence of SLGO transport on IS, and a reversible blocking deposition. The experimental data were fitted using the numerical code MNMs and the ionic strength-dependent transport was up-scaled for a full scale 3D simulation of SLGO release and long-term transport in a heterogeneous aquifer. MNM3D showed to potentially represent a valid tool for the

  9. Upregulated expression of La ribonucleoprotein domain family member 6 and collagen type I gene following water-filtered broad-spectrum near-infrared irradiation in a 3-dimensional human epidermal tissue culture model as revealed by microarray analysis.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2017-02-27

    Water-filtered broad-spectrum near-infrared irradiation can induce various biological effects, as our previous clinical, histological, and biochemical investigations have shown. However, few studies that examined the changes thus induced in gene expression. The aim was to investigate the changes in gene expression in a 3-dimensional reconstructed epidermal tissue culture exposed to water-filtered broad-spectrum near-infrared irradiation. DNA microarray and quantitative real-time polymerase chain reaction (PCR) analysis was used to assess gene expression levels in a 3-dimensional reconstructed epidermal model composed of normal human epidermal cells exposed to water-filtered broad-spectrum near-infrared irradiation. The water filter allowed 1000-1800 nm wavelengths and excluded 1400-1500 nm wavelengths, and cells were exposed to 5 or 10 rounds of near-infrared irradiation at 10 J/cm(2) . A DNA microarray with over 50 000 different probes showed 18 genes that were upregulated or downregulated by at least twofold after irradiation. Quantitative real-time PCR revealed that, relative to control cells, the gene encoding La ribonucleoprotein domain family member 6 (LARP6), which regulates collagen expression, was significantly and dose-dependently upregulated (P < 0.05) by water-filtered broad-spectrum near-infrared exposure. Gene encoding transcripts of collagen type I were significantly upregulated compared with controls (P < 0.05). This study demonstrates the ability of water-filtered broad-spectrum near-infrared irradiation to stimulate the production of type I collagen. © 2017 The Australasian College of Dermatologists.

  10. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners.

    PubMed

    Kovacs, Laszlo; Yassouridis, Alexander; Zimmermann, Alexander; Brockmann, Gernot; Wöhnl, Antonia; Blaschke, Matthias; Eder, Maximilian; Schwenzer-Zimmerer, Katja; Rosenberg, Robert; Papadopulos, Nikolaos A; Biemer, Edgar

    2006-03-01

    The anatomic conditions of the female breast require imaging the breast region 3-dimensionally in a normal standing position for quality assurance and for surgery planning or surgery simulation. The goal of this work was to optimize the imaging technology for the mammary region with a 3-dimensional (3D) laser scanner, to evaluate the precision and accuracy of the method, and to allow optimum data reproducibility. Avoiding the influence of biotic factors, such as mobility, we tested the most favorable imaging technology on dummy models for scanner-related factors such as the scanner position in comparison with the torso and the number of scanners and single shots. The influence of different factors of the breast region, such as different breast shapes or premarking of anatomic landmarks, was also first investigated on dummies. The findings from the dummy models were then compared with investigations on test persons, and the accuracy of measurements on the virtual models was compared with a coincidence analysis of the manually measured values. The best precision and accuracy of breast region measurements were achieved when landmarks were marked before taking the shots and when shots at 30 degrees left and 30 degrees right, relative to the sagittal line, were taken with 2 connected scanners mounted with a +10-degree upward angle. However, the precision of the measurements on test persons was significantly lower than those measured on dummies. Our findings show that the correct settings for 3D imaging of the breast region with a laser scanner can achieve an acceptable degree of accuracy and reproducibility.

  11. 3-dimensional imaging at nanometer resolutions

    DOEpatents

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  12. [Publishing models in medical journals].

    PubMed

    Reyes, Humberto B

    2012-02-01

    Medical journals are published by scientific societies, universities, publishing agencies and other for-profit or non-profit organizations. The traditional way to cover the expenses in printed journals has been a "subscribers pay" model. The rise of electronic versions in the internet, either together with the printed version or replacing it entirely, plus a progressive adherence to an "open access" for electronic versions, has created financial difficulties. Therefore, the "authors pay" model has been added. Both models can be subsidized by commercial or institutional advertising, but still a main source for financing relies either in subscriptions or in authors' payments. A small source of income that helps to cover publishing costs is a "charge for manuscript reception", currently applied by several journals. Those authors whose work has institutional or external support can use their grants to cover any charges, but the situation is more difficult for those who do not have such support. Since 1872, Sociedad Médica de Santiago-Chilean Society of Internal Medicine, owner and publisher of Revista Médica de Chile, has employed the "subscribers pay" model, subsidized by commercial advertising and temporary sponsors (Chilean government and others). The printed journal is reproduced in an open access electronic version, in www.scielo.cl. The increasing cost of both publications systems demands a time for reflection.

  13. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  14. Optimizing medical resources for spaceflight using the integrated medical model.

    PubMed

    Minard, Charles G; de Carvalho, Mary Freire; Iyengar, M Sriram

    2011-09-01

    Efficient allocation of medical resources for spaceflight is important for crew health. The Integrated Medical Model (IMM) was developed to estimate medical event occurrences, mitigation, and resource requirements. An optimization module was created for IMM that uses a systematic process of elimination and preservation to maximize crew health outcomes subject to resource constraints. A maximum medical kit is identified and resources are eliminated according to their relative impact on outcomes of interest. Additional steps allow opportunities for resources to be added back into the medical kit if possible. The effectiveness of the module is demonstrated under six alternative mission profiles by optimizing the medical kit to maximize the expected Crew Health Index (CHI), and comparisons are made with minimum and maximum kits. The optimum and maximum kits had similar expected CHI, but CHI was more variable for the optimum kit. The maximum kit resulted in the best outcomes, but required at least 13.7 times the mass of the optimum kit and 26.6 times the volume. The largest difference in mean CHI between the optimum and maximum kits occurred for four crewmembers on a 180-d mission (91.1% vs. 95.4%). The optimization module may be used as an objective tool to assist with the efficient allocation of medical resources for spaceflight. The module provides a flexible algorithm that may be used in conjunction with the IMM model to assist in medical kit requirements and design.

  15. 3-dimensional fabrication of soft energy harvesters

    NASA Astrophysics Data System (ADS)

    McKay, Thomas; Walters, Peter; Rossiter, Jonathan; O'Brien, Benjamin; Anderson, Iain

    2013-04-01

    Dielectric elastomer generators (DEG) provide an opportunity to harvest energy from low frequency and aperiodic sources. Because DEG are soft, deformable, high energy density generators, they can be coupled to complex structures such as the human body to harvest excess mechanical energy. However, DEG are typically constrained by a rigid frame and manufactured in a simple planar structure. This planar arrangement is unlikely to be optimal for harvesting from compliant and/or complex structures. In this paper we present a soft generator which is fabricated into a 3 Dimensional geometry. This capability will enable the 3-dimensional structure of a dielectric elastomer to be customised to the energy source, allowing efficient and/or non-invasive coupling. This paper demonstrates our first 3 dimensional generator which includes a diaphragm with a soft elastomer frame. When the generator was connected to a self-priming circuit and cyclically inflated, energy was accumulated in the system, demonstrated by an increased voltage. Our 3D generator promises a bright future for dielectric elastomers that will be customised for integration with complex and soft structures. In addition to customisable geometries, the 3D printing process may lend itself to fabricating large arrays of small generator units and for fabricating truly soft generators with excellent impedance matching to biological tissue. Thus comfortable, wearable energy harvesters are one step closer to reality.

  16. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  17. Modeling Manipulation in Medical Education

    ERIC Educational Resources Information Center

    Dailey, Jason I.

    2010-01-01

    As residents and medical students progress through their medical training, they are presented with multiple instances in which they feel they must manipulate the healthcare system and deceive others in order to efficiently treat their patients. This, however, creates a culture of manipulation resulting in untoward effects on trainees' ethical and…

  18. Modeling Manipulation in Medical Education

    ERIC Educational Resources Information Center

    Dailey, Jason I.

    2010-01-01

    As residents and medical students progress through their medical training, they are presented with multiple instances in which they feel they must manipulate the healthcare system and deceive others in order to efficiently treat their patients. This, however, creates a culture of manipulation resulting in untoward effects on trainees' ethical and…

  19. Cellular Changes of Stem Cells in 3-Dimensional Culture.

    PubMed

    Green, Matthew P; Hou, Bo

    2017-06-12

    During various operations and procedures, such as distraction osteogenesis and orthodontics, skeletal tissues use mechanotransduction. Mechanotransduction is important for maintaining bone health and converting mechanical forces into biochemical signals. We hypothesized that cells put under mechanical stress would adapt and change morphologically and respond with a decrease in cellular proliferation to accommodate the stress differences. These differences will be measured at the molecular and genetic level. We also wanted to test the practicality of an in vitro 3-dimensional gel model system. We implemented a 3-dimensional cell culture model. The sample was composed of isolated mouse mesenchymal prefibroblast bone marrow cells from the femurs and tibias of 6- to 8-week-old wild-type C57BL6 mice. The cells were seeded on fibronectin-coated hydrogels along with fibrin and nodulin growth factors. The variables tested were a no-force model (control) and a force model. The force model required two 0.1-mm suture pins put through one 0.25-cm length of cell-gel matrix. After the experiments were run to completion, the samples were fixed with 4% paraformaldehyde and embedded in paraffin. Serial sections were cut at a thickness of 5 μm along the long axis for the force construct and encompassing the entire circular area of the control construct. Descriptive and bivariate statistics were computed, and the P value was set at 5%. There was a statistically significant difference between the 2 models. The force model had longer and straighter primary cilia, less apoptosis, and an increase in cell proliferation. In addition, the shape of the cells was markedly different after the experiment. The results of the study suggest cells put under tensile stress have the ability to mechanically sense the environment to provide improved adaptation. Our work also confirms the usefulness of the in vitro 3-dimensional gel model system to mimic in vivo applications. Published by Elsevier

  20. Advanced 3-dimensional planning in neurosurgery.

    PubMed

    Ferroli, Paolo; Tringali, Giovanni; Acerbi, Francesco; Schiariti, Marco; Broggi, Morgan; Aquino, Domenico; Broggi, Giovanni

    2013-01-01

    During the past decades, medical applications of virtual reality technology have been developing rapidly, ranging from a research curiosity to a commercially and clinically important area of medical informatics and technology. With the aid of new technologies, the user is able to process large amounts of data sets to create accurate and almost realistic reconstructions of anatomic structures and related pathologies. As a result, a 3-diensional (3-D) representation is obtained, and surgeons can explore the brain for planning or training. Further improvement such as a feedback system increases the interaction between users and models by creating a virtual environment. Its use for advanced 3-D planning in neurosurgery is described. Different systems of medical image volume rendering have been used and analyzed for advanced 3-D planning: 1 is a commercial "ready-to-go" system (Dextroscope, Bracco, Volume Interaction, Singapore), whereas the others are open-source-based software (3-D Slicer, FSL, and FreesSurfer). Different neurosurgeons at our institution experienced how advanced 3-D planning before surgery allowed them to facilitate and increase their understanding of the complex anatomic and pathological relationships of the lesion. They all agreed that the preoperative experience of virtually planning the approach was helpful during the operative procedure. Virtual reality for advanced 3-D planning in neurosurgery has achieved considerable realism as a result of the available processing power of modern computers. Although it has been found useful to facilitate the understanding of complex anatomic relationships, further effort is needed to increase the quality of the interaction between the user and the model.

  1. A Probabilistic Model for Reducing Medication Errors

    PubMed Central

    Nguyen, Phung Anh; Syed-Abdul, Shabbir; Iqbal, Usman; Hsu, Min-Huei; Huang, Chen-Ling; Li, Hsien-Chang; Clinciu, Daniel Livius; Jian, Wen-Shan; Li, Yu-Chuan Jack

    2013-01-01

    Background Medication errors are common, life threatening, costly but preventable. Information technology and automated systems are highly efficient for preventing medication errors and therefore widely employed in hospital settings. The aim of this study was to construct a probabilistic model that can reduce medication errors by identifying uncommon or rare associations between medications and diseases. Methods and Finding(s) Association rules of mining techniques are utilized for 103.5 million prescriptions from Taiwan’s National Health Insurance database. The dataset included 204.5 million diagnoses with ICD9-CM codes and 347.7 million medications by using ATC codes. Disease-Medication (DM) and Medication-Medication (MM) associations were computed by their co-occurrence and associations’ strength were measured by the interestingness or lift values which were being referred as Q values. The DMQs and MMQs were used to develop the AOP model to predict the appropriateness of a given prescription. Validation of this model was done by comparing the results of evaluation performed by the AOP model and verified by human experts. The results showed 96% accuracy for appropriate and 45% accuracy for inappropriate prescriptions, with a sensitivity and specificity of 75.9% and 89.5%, respectively. Conclusions We successfully developed the AOP model as an efficient tool for automatic identification of uncommon or rare associations between disease-medication and medication-medication in prescriptions. The AOP model helps to reduce medication errors by alerting physicians, improving the patients’ safety and the overall quality of care. PMID:24312659

  2. Classification of (n+3)-dimensional metric n-Lie algebras

    SciTech Connect

    Geng Qiaozhi; Ren Mingming; Chen Zhiqi

    2010-10-15

    In this paper, we focus on (n+3)-dimensional metric n-Lie algebras. To begin with, we give some properties on (n+3)-dimensional n-Lie algebras. Then based on the properties, we obtain the classification of (n+3)-dimensional metric n-Lie algebras.

  3. Fingernail Injuries and NASA's Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Butler, Doug

    2008-01-01

    The goal of space medicine is to optimize both crew health and performance. Currently, expert opinion is primarily relied upon for decision-making regarding medical equipment and supplies flown in space. Evidence-based decisions are preferred due to mass and volume limitations and the expense of space flight. The Integrated Medical Model (IMM) is an attempt to move us in that direction!

  4. Control of Grasp and Manipulation by Soft Fingers with 3-Dimensional Deformation

    NASA Astrophysics Data System (ADS)

    Nakashima, Akira; Shibata, Takeshi; Hayakawa, Yoshikazu

    In this paper, we consider control of grasp and manipulation of an object in a 3-dimensional space by a 3-fingered hand robot with soft finger tips. We firstly propose a 3-dimensional deformation model of a hemispherical soft finger tip and verify its relevance by experimental data. Second, we consider the contact kinematics and derive the dynamical equations of the fingers and the object where the 3-dimensional deformation is considered. For the system, we thirdly propose a method to regulate the object and the internal force with the information of the hand, the object and the deformation. A simulation result is presented to show the effectiveness of the control method.

  5. Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma.

    PubMed

    Anil, S M; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T

    2007-04-01

    Advances in computer imaging and technology have facilitated enhancement in surgical planning with a 3-dimensional model of the surgical plan of action utilizing advanced visualization tools in order to plan individual interactive operations with the aid of the dextroscope. This provides a proper 3-dimensional imaging insight to the pathological anatomy and sets a new dimension in collaboration for training and education. The case of a seventeen-year-old female, being operated with the aid of a preoperative 3-dimensional virtual reality planning and the practical application of the neurosurgical operation, is presented. This young lady presented with a two-year history of recurrent episodes of severe, global, throbbing headache with episodes of projectile vomiting associated with shoulder pain which progressively worsened. She had no obvious neurological deficits on clinical examination. CT and MRI showed a contrast-enhancing midline posterior fossa space-occupying lesion. Utilizing virtual imaging technology with the aid of a dextroscope which generates stereoscopic images, a 3-dimensional image was produced with the CT and MRI images. A preoperative planning for excision of the lesion was made and a real-time 3-dimensional volume was produced and surgical planning with the dextroscope was made and the lesion excised. Virtual reality has brought new proportions in 3-dimensional planning and management of various complex neuroanatomical problems that are faced during various operations. Integration of 3-dimensional imaging with stereoscopic vision makes understanding the complex anatomy easier and helps improve decision making in patient management.

  6. Correlation of 3D Shift and 3D Tilt of the Patella in Patients With Recurrent Dislocation of the Patella and Healthy Volunteers: An In Vivo Analysis Based on 3-Dimensional Computer Models.

    PubMed

    Yamada, Yuzo; Toritsuka, Yukiyoshi; Nakamura, Norimasa; Horibe, Shuji; Sugamoto, Kazuomi; Yoshikawa, Hideki; Shino, Konsei

    2017-08-01

    The concepts of lateral deviation and lateral inclination of the patella, characterized as shift and tilt, have been applied in combination to evaluate patellar malalignment in patients with patellar dislocation. It is not reasonable, however, to describe the 3-dimensional (3D) positional relation between the patella and the femur according to measurements made on 2-dimensional (2D) images. The current study sought to clarify the relation between lateral deviation and inclination of the patella in patients with recurrent dislocation of the patella (RDP) by redefining them via 3D computer models as 3D shift and 3D tilt. Descriptive laboratory study. Altogether, 60 knees from 56 patients with RDP and 15 knees from 10 healthy volunteers were evaluated. 3D shift and tilt of the patella were analyzed with 3D computer models created by magnetic resonance imaging scans obtained at 10° intervals of knee flexion (0°-50°). 3D shift was defined as the spatial distance between the patellar reference point and the midsagittal plane of the femur; it is expressed as a percentage of the interepicondylar width. 3D tilt was defined as the spatial angle between the patellar reference plane and the transepicondylar axis. Correlations between the 2 parameters were assessed with the Pearson correlation coefficient. The patients' mean Pearson correlation coefficient was 0.895 ± 0.186 (range, -0.073 to 0.997; median, 0.965). In all, 56 knees (93%) had coefficients >0.7 (strong correlation); 1 knee (2%), >0.4 (moderate correlation); 2 knees (3%), >0.2 (weak correlation); and 1 knee (2%), <0.2 (no correlation). The mean correlation coefficient of the healthy volunteers was 0.645 ± 0.448 (range, -0.445 to 0.982; median, 0.834). A statistically significant difference was found in the distribution of the correlation coefficients between the patients and the healthy volunteers ( P = .0034). When distribution of the correlation coefficients obtained by the 3D analyses was compared with that

  7. Multilingual Medical Data Models in ODM Format

    PubMed Central

    Breil, B.; Kenneweg, J.; Fritz, F.; Bruland, P.; Doods, D.; Trinczek, B.; Dugas, M.

    2012-01-01

    Background Semantic interoperability between routine healthcare and clinical research is an unsolved issue, as information systems in the healthcare domain still use proprietary and site-specific data models. However, information exchange and data harmonization are essential for physicians and scientists if they want to collect and analyze data from different hospitals in order to build up registries and perform multicenter clinical trials. Consequently, there is a need for a standardized metadata exchange based on common data models. Currently this is mainly done by informatics experts instead of medical experts. Objectives We propose to enable physicians to exchange, rate, comment and discuss their own medical data models in a collaborative web-based repository of medical forms in a standardized format. Methods Based on a comprehensive requirement analysis, a web-based portal for medical data models was specified. In this context, a data model is the technical specification (attributes, data types, value lists) of a medical form without any layout information. The CDISC Operational Data Model (ODM) was chosen as the appropriate format for the standardized representation of data models. The system was implemented with Ruby on Rails and applies web 2.0 technologies to provide a community based solution. Forms from different source systems – both routine care and clinical research – were converted into ODM format and uploaded into the portal. Results A portal for medical data models based on ODM-files was implemented (http://www.medical-data-models.org). Physicians are able to upload, comment, rate and download medical data models. More than 250 forms with approximately 8000 items are provided in different views (overview and detailed presentation) and in multiple languages. For instance, the portal contains forms from clinical and research information systems. Conclusion The portal provides a system-independent repository for multilingual data models in ODM

  8. Infants’ Representations of 3-Dimensional Occluded Objects

    PubMed Central

    Woods, Rebecca J.; Wilcox, Teresa; Armstrong, Jennifer; Alexander, Gerianne

    2012-01-01

    Infants’ ability to represent objects has received significant attention from the developmental research community. With the advent of eye-tracking technology, detailed analysis of infants’ looking patterns during object occlusion have revealed much about the nature of infants’ representations. The current study continues this research by analyzing infants’ looking patterns in a novel manner and by comparing infants’ looking at a simple display in which a single 3-dimensional (3-D) object moves along a continuous trajectory to a more complex display in which two 3-D objects undergo trajectories that are interrupted behind an occluder. Six-month-old infants saw an occlusion sequence in which a ball moved along a linear path, disappeared behind a rectangular screen, and then a ball (ball-ball event) or a box (ball-box event) emerged at the other edge. An eye-tracking system recorded infants’ eye-movements during the event sequence. Results from examination of infants’ attention to the occluder indicate that during the occlusion interval infants looked longer to the side of the occluder behind which the moving occluded object was located, shifting gaze from one side of the occluder to the other as the object(s) moved behind the screen. Furthermore, when events included two objects, infants attended to the spatiotemporal coordinates of the objects longer than when a single object was involved. These results provide clear evidence that infants’ visual tracking is different in response to a one-object display than to a two-object display. Furthermore, this finding suggests that infants may require more focused attention to the hidden position of objects in more complex multiple-object displays and provides additional evidence that infants represent the spatial location of moving occluded objects. PMID:20926138

  9. Automated feature extraction for 3-dimensional point clouds

    NASA Astrophysics Data System (ADS)

    Magruder, Lori A.; Leigh, Holly W.; Soderlund, Alexander; Clymer, Bradley; Baer, Jessica; Neuenschwander, Amy L.

    2016-05-01

    Light detection and ranging (LIDAR) technology offers the capability to rapidly capture high-resolution, 3-dimensional surface data with centimeter-level accuracy for a large variety of applications. Due to the foliage-penetrating properties of LIDAR systems, these geospatial data sets can detect ground surfaces beneath trees, enabling the production of highfidelity bare earth elevation models. Precise characterization of the ground surface allows for identification of terrain and non-terrain points within the point cloud, and facilitates further discernment between natural and man-made objects based solely on structural aspects and relative neighboring parameterizations. A framework is presented here for automated extraction of natural and man-made features that does not rely on coincident ortho-imagery or point RGB attributes. The TEXAS (Terrain EXtraction And Segmentation) algorithm is used first to generate a bare earth surface from a lidar survey, which is then used to classify points as terrain or non-terrain. Further classifications are assigned at the point level by leveraging local spatial information. Similarly classed points are then clustered together into regions to identify individual features. Descriptions of the spatial attributes of each region are generated, resulting in the identification of individual tree locations, forest extents, building footprints, and 3-dimensional building shapes, among others. Results of the fully-automated feature extraction algorithm are then compared to ground truth to assess completeness and accuracy of the methodology.

  10. Modelling empathy in medical and nursing education.

    PubMed

    Malpas, Phillipa J; Corbett, Andrea

    2012-03-30

    Medical and nursing student numbers are expected to increase significantly in NZ over the next few years. The ethical, and professional and clinical skills' training of trainee health practitioners is a central and crucial component in medical and nursing education and is underpinned by a strong commitment to improve patient health and well being. In this discussion we reflect on the virtue of empathy and the importance of role modelling in the education of nurses and doctors. We endorse the claim that as medical educators, how and what we teach matters.

  11. An event model of medical information representation.

    PubMed Central

    Huff, S M; Rocha, R A; Bray, B E; Warner, H R; Haug, P J

    1995-01-01

    OBJECTIVE: Develop a model for structured and encoded representation of medical information that supports human review, decision support applications, ad hoc queries, statistical analysis, and natural-language processing. DESIGN: A medical information representation model was developed from manual and semiautomated analysis of patient data. The key assumption of the model is that medical information can be represented as a series of linked events. The event representation has two main components. The first component is a frame or template definition that specifies the attributes of the event. The second component is a structured vocabulary, the terms of which are taken as the values of the slots in the event template structure. Individual event instances are linked by specific named relationships. RESULTS: The proposed model was used to represent a chest-radiograph report. CONCLUSIONS: The event model of medical information representation provides a mechanism for formal definition of the logical structure of medical data and allows explicit time-oriented and associative relationships between event instances. PMID:7743315

  12. Crime, criminals, and cures: medical model revisited.

    PubMed

    Sampson, R J

    2000-06-01

    David Lykken's target article assesses the causes of crime and advocates a controversial "cure"--parental licensure. Although Lykken gets many of the facts about criminals right, ultimately the disease metaphor breaks down. Crime requires three things--motivated offenders ("criminals"), suitable targets or victims, and the absence of capable guardians to prevent the act. Typical of medical model approaches, failure to consider the convergence in time and space of the three necessary elements for crime results in a misdiagnosis. In this invited commentary, I briefly note three reasons why Lykken's cure, along with the medical model in general, is unlikely to bear fruit.

  13. Live sequence charts to model medical information.

    PubMed

    Aslakson, Eric; Szekely, Smadar; Vernon, Suzanne D; Bateman, Lucinda; Baumbach, Jan; Setty, Yaki

    2012-06-15

    Medical records accumulate data concerning patient health and the natural history of disease progression. However, methods to mine information systematically in a form other than an electronic health record are not yet available. The purpose of this study was to develop an object modeling technique as a first step towards a formal database of medical records. Live Sequence Charts (LSC) were used to formalize the narrative text obtained during a patient interview. LSCs utilize a visual scenario-based programming language to build object models. LSC extends the classical language of UML message sequence charts (MSC), predominantly through addition of modalities and providing executable semantics. Inter-object scenarios were defined to specify natural history event interactions and different scenarios in the narrative text. A simulated medical record was specified into LSC formalism by translating the text into an object model that comprised a set of entities and events. The entities described the participating components (i.e., doctor, patient and record) and the events described the interactions between elements. A conceptual model is presented to illustrate the approach. An object model was generated from data extracted from an actual new patient interview, where the individual was eventually diagnosed as suffering from Chronic Fatigue Syndrome (CFS). This yielded a preliminary formal designated vocabulary for CFS development that provided a basis for future formalism of these records. Translation of medical records into object models created the basis for a formal database of the patient narrative that temporally depicts the events preceding disease, the diagnosis and treatment approach. The LSCs object model of the medical narrative provided an intuitive, visual representation of the natural history of the patient's disease.

  14. Model observers in medical imaging research.

    PubMed

    He, Xin; Park, Subok

    2013-10-04

    Model observers play an important role in the optimization and assessment of imaging devices. In this review paper, we first discuss the basic concepts of model observers, which include the mathematical foundations and psychophysical considerations in designing both optimal observers for optimizing imaging systems and anthropomorphic observers for modeling human observers. Second, we survey a few state-of-the-art computational techniques for estimating model observers and the principles of implementing these techniques. Finally, we review a few applications of model observers in medical imaging research.

  15. Visualization and model building in medical imaging.

    PubMed

    McDonald, J P; Siebert, J P; Fryer, R J; Urquhart, C W

    1994-01-01

    We present technologies and ideas, developed from the JFIT 'Active Stereo Probe Project', which are applicable to problems within medical measurement and monitoring. Two related areas are considered. The first concerns patient body surface modelling. During the project two state-of-the-art non-contact surface measurement techniques have been developed which are applicable to medical situations requiring dense and accurate body surface modelling. Such applications include, for example, prosthetic appliance fabrication, presurgical planning and non-invasive deformity analysis. The second is concerned with overlay projection. Using this enabling technology the information content of a scene can be enhanced as an aid to medical personnel. Results and illustrative applications of the newly developed technology are presented.

  16. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.

    PubMed

    Vakharia, Vejay N; Vakharia, Nilesh N; Hill, Ciaran S

    2016-04-01

    Shorter working times, reduced operative exposure to complex procedures, and increased subspecialization have resulted in training constraints within most surgical fields. Simulation has been suggested as a possible means of acquiring new surgical skills without exposing patients to the surgeon's operative "learning curve." Here we review the potential impact of 3-dimensional printing on simulation and training within cranial neurosurgery and its implications for the future. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a comprehensive search of PubMed, OVID MEDLINE, Embase, and the Cochrane Database of Systematic Reviews was performed. In total, 31 studies relating to the use of 3-dimensional (3D) printing within neurosurgery, of which 16 were specifically related to simulation and training, were identified. The main impact of 3D printing on neurosurgical simulation training was within vascular surgery, where patient-specific replication of vascular anatomy and pathologies can aid surgeons in operative planning and clip placement for reconstruction of vascular anatomy. Models containing replicas of brain tumors have also been reconstructed and used for training purposes, with some providing realistic representations of skin, subcutaneous tissue, bone, dura, normal brain, and tumor tissue. 3D printing provides a unique means of directly replicating patient-specific pathologies. It can identify anatomic variation and provide a medium in which training models can be generated rapidly, allowing the trainee and experienced neurosurgeon to practice parts of operations preoperatively. Future studies are required to validate this technology in comparison with current simulators and show improved patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A Database Model for Medical Consultation.

    ERIC Educational Resources Information Center

    Anvari, Morteza

    1991-01-01

    Describes a relational data model that can be used for knowledge representation and manipulation in rule-based medical consultation systems. Fuzzy queries or attribute values and fuzzy set theory are discussed, functional dependencies are described, and an example is presented of a system for diagnosing causes of eye inflammation. (15 references)…

  18. A Database Model for Medical Consultation.

    ERIC Educational Resources Information Center

    Anvari, Morteza

    1991-01-01

    Describes a relational data model that can be used for knowledge representation and manipulation in rule-based medical consultation systems. Fuzzy queries or attribute values and fuzzy set theory are discussed, functional dependencies are described, and an example is presented of a system for diagnosing causes of eye inflammation. (15 references)…

  19. The Medical Research Model: No Magic Formula

    ERIC Educational Resources Information Center

    Kingsbury, G. Gage

    2006-01-01

    In the No Child Left Behind Act and the What Works Clearinghouse, the federal government has attempted to establish guidelines for the type of education research that U.S. schools should consider in selecting instructional programs and resources. The government's clear preference for the medical model--a powerful research design in such fields as…

  20. Medical image segmentation by MDP model

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2011-11-01

    MDP (Dirichlet Process Mixtures) model is applied to segment medical images in this paper. Segmentation can been automatically done without initializing segmentation class numbers. The MDP model segmentation algorithm is used to segment natural images and MR (Magnetic Resonance) images in the paper. To demonstrate the accuracy of the MDP model segmentation algorithm, many compared experiments, such as EM (Expectation Maximization) image segmentation algorithm, K-means image segmentation algorithm and MRF (Markov Field) image segmentation algorithm, have been done to segment medical MR images. All the methods are also analyzed quantitatively by using DSC (Dice Similarity Coefficients). The experiments results show that DSC of MDP model segmentation algorithm of all slices exceed 90%, which show that the proposed method is robust and accurate.

  1. Chaotic Advection in a Bounded 3-Dimensional Potential Flow

    NASA Astrophysics Data System (ADS)

    Metcalfe, Guy; Smith, Lachlan; Lester, Daniel

    2012-11-01

    3-dimensional potential, or Darcy flows, are central to understanding and designing laminar transport in porous media; however, chaotic advection in 3-dimensional, volume-preserving flows is still not well understood. We show results of advecting passive scalars in a transient 3-dimensional potential flow that consists of a steady dipole flow and periodic reorientation. Even for the most symmetric reorientation protocol, neither of the two invarients of the motion are conserved; however, one invarient is closely shadowed by a surface of revolution constructed from particle paths of the steady flow, creating in practice an adiabatic surface. A consequence is that chaotic regions cover 3-dimensional space, though tubular regular regions are still transport barriers. This appears to be a new mechanism generating 3-dimensional chaotic orbits. These results contast with the experimental and theoretical results for chaotic scalar transport in 2-dimensional Darcy flows. Wiggins, J. Fluid Mech. 654 (2010).

  2. [3-dimensional photogrammetry assessment of facial contours].

    PubMed

    Kakoschke, D; Gäbel, H; Schettler, D

    1997-02-01

    In Germany, three-dimensional non-invasive measurement techniques are not in routine use for medical purposes. Completely integrated applications of photogrammetric technology are lacking. The results of clinical examination, X-rays and pre- and postoperative photographs from different angles have been used for medical analysis. In an interdisciplinary research project we tested the general applicability of photogrammetric measurement systems. We examined patients with malformations of the mandible-maxilla complex by taking pictures of the face. In order to assess the surface structure we projected regular patterns onto the surface. We calculated about 500 points on the surface with accuracy better than 0.2 mm. Graphical analyses of measurement results are presented in clinically relevant form. We produce representations of the faces in auto-CAD by means of regular meshes which allow views from any perspective, longitudinal and lateral sections. In addition to calculating angles, distances, surfaces and volumes, visualisation of shape is a useful aid in documentation and quantification of changes of soft tissue of the human face under surgery treatment.

  3. The usefulness of 3-dimensional endoscope systems in endoscopic surgery.

    PubMed

    Egi, Hiroyuki; Hattori, Minoru; Suzuki, Takahisa; Sawada, Hiroyuki; Kurita, Yuichi; Ohdan, Hideki

    2016-10-01

    The image quality and performance of 3-dimensional video image systems has improved along with improvements in technology. However, objective evaluation on the usefulness of 3-dimensional video image systems is insufficient. Therefore, we decided to investigate the usefulness of 3-dimensional video image systems using the objective endoscopic surgery technology evaluating apparatus that we have developed, the Hiroshima University Endoscopic Surgical Assessment Device (HUESAD). The participants were 28 student volunteers enrolled in Hiroshima University (17 men and 11 women, age: median 22.5, range 20-25), with no one having experienced endoscopic surgery training. Testing was carried out by dividing the subjects into two groups to initially carry out HUESAD with 2-dimensional video imaging (N = 14) and with 3-dimensional video imaging (N = 14). Questionnaires were carried out along with the investigation regarding both 2-dimensional and 3-dimensional video imaging. The task was carried out for approximately 15 min regarding both 2-dimensional and 3-dimensional video imaging. Lastly, the Mental Rotation Test, which is a standard space perception ability test, was used to evaluate the space perception ability. No difference was observed in the nauseous and uncomfortable feeling of practitioners between the two groups. Regarding smoothness, no difference was observed between 2-dimensional and 3-dimensional video imaging (p = 0.8665). Deviation (space perception ability) and approaching time (accuracy) were significantly lower with 3-dimensional video imaging compared to 2-dimensional video imaging. Moreover, the approaching time (accuracy) significantly improved in 3-dimensional video imaging compared to 2-dimensional video imaging in the group with low space perception ability (p = 0.0085). Objective evaluation using HUESAD and subjective evaluation by questionnaire revealed that endoscopic surgery techniques significantly improved in 3-dimensional video

  4. Quantitative 3-dimensional computed tomography analysis of olecranon fractures.

    PubMed

    Lubberts, Bart; Janssen, Stein; Mellema, Jos; Ring, David

    2016-05-01

    Olecranon fractures have variable size of the proximal fragment, patterns of fragmentation, and subluxation of the ulnohumeral joint that might be better understood and categorized on the basis of quantitative 3-dimensional computed tomography analysis. Mayo type I fractures are undisplaced, Mayo type II are displaced and stable, and Mayo type III are displaced and unstable. The last is categorized into anterior and posterior dislocations. The purpose of this study was to further clarify fracture morphology between Mayo type I, II, and III fractures. Three-dimensional models were created for a consecutive series of 78 patients with olecranon fractures that were evaluated with computed tomography. We determined the total number of fracture fragments, the volume and articular surface area of each fracture fragment, and the degree of displacement of the most proximal olecranon fracture fragment. Displaced olecranon fractures were more comminuted than nondisplaced fractures (P = .02). Displaced fractures without ulnohumeral subluxation were smallest in terms of both volume (P < .001) and articular surface involvement (P < .001) of the most proximal olecranon fracture fragment. There was no difference in average displacement of the proximal fragment between displaced fractures with and without ulnohumeral subluxation (P = .74). Anterior olecranon fracture-dislocations created more displaced (P = .04) and smaller proximal fragments than posterior fracture-dislocations (P = .005), with comparable fragmentation on average (P = .60). The ability to quantify volume, articular surface area, displacement, and fragmentation using quantitative 3-dimensional computed tomography should be considered when increased knowledge of fracture morphology and fracture patterns might be useful. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. 3-Dimensional Facial Analysis—Facing Precision Public Health

    PubMed Central

    Baynam, Gareth; Bauskis, Alicia; Pachter, Nicholas; Schofield, Lyn; Verhoef, Hedwig; Palmer, Richard L.; Kung, Stefanie; Helmholz, Petra; Ridout, Michael; Walker, Caroline E.; Hawkins, Anne; Goldblatt, Jack; Weeramanthri, Tarun S.; Dawkins, Hugh J. S.; Molster, Caron M.

    2017-01-01

    Precision public health is a new field driven by technological advances that enable more precise descriptions and analyses of individuals and population groups, with a view to improving the overall health of populations. This promises to lead to more precise clinical and public health practices, across the continuum of prevention, screening, diagnosis, and treatment. A phenotype is the set of observable characteristics of an individual resulting from the interaction of a genotype with the environment. Precision (deep) phenotyping applies innovative technologies to exhaustively and more precisely examine the discrete components of a phenotype and goes beyond the information usually included in medical charts. This form of phenotyping is a critical component of more precise diagnostic capability and 3-dimensional facial analysis (3DFA) is a key technological enabler in this domain. In this paper, we examine the potential of 3DFA as a public health tool, by viewing it against the 10 essential public health services of the “public health wheel,” developed by the US Centers for Disease Control. This provides an illustrative framework to gage current and emergent applications of genomic technologies for implementing precision public health. PMID:28443272

  6. Improving Perceptual Skills with 3-Dimensional Animations.

    ERIC Educational Resources Information Center

    Johns, Janet Faye; Brander, Julianne Marie

    1998-01-01

    Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)

  7. 3DIVS: 3-Dimensional Immersive Virtual Sculpting

    SciTech Connect

    Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I; Uva, A E

    2001-10-03

    Virtual Environments (VEs) have the potential to revolutionize traditional product design by enabling the transition from conventional CAD to fully digital product development. The presented prototype system targets closing the ''digital gap'' as introduced by the need for physical models such as clay models or mockups in the traditional product design and evaluation cycle. We describe a design environment that provides an intuitive human-machine interface for the creation and manipulation of three-dimensional (3D) models in a semi-immersive design space, focusing on ease of use and increased productivity for both designer and CAD engineers.

  8. [New business model for medical specialists].

    PubMed

    Houwen, L G H J Louis

    2013-01-01

    The reforms in the field of medical specialist care have important implications for the professional practice of medical specialists and their working relationship with the hospital. This leads to a considerable amount of pressure placed upon the way physicians have traditionally practiced their liberal professions, which is by forming partnerships and practicing from within the hospitals based on an admission agreement. As of 2015, the tax benefits for entrepreneurs will be abolished and the formation of regional partnerships will be discouraged. These developments not only pose threats but also offer opportunities for both the entrepreneurial medical specialist and the innovative hospital. In this article, the prospect of a future business model for specialist medical care will be outlined and explored by proposing three new organizational forms. The central vision of this model is that physicians who wish to retain their status of liberal professional practitioners in the twenty-first century should be more involved in the ownership structure of hospitals. The social importance of responsible patient care remains paramount.

  9. 3-Dimensional simulation of the grain formation in investment castings

    SciTech Connect

    Gandin, C.A.; Rappaz, M. ); Tintillier, R. . Dept. Materiaux et Procedes-Direction Technique)

    1994-03-01

    A 3-dimensional (3-D) probabilistic model which has been developed previously for the prediction of grain structure formation during solidification is applied to thin superalloy plates produced using the investment-casting process. This model considers the random nucleation and orientation of nuclei formed at the mold surface and in the bulk of the liquid, the growth kinetics of the dendrite tips, and the preferential growth directions of the dendrite trunks and arms. In the present study, the grains are assumed to nucleate at the surface of the mold only. The computed grain structures, as observed in 2-dimensional (2-D) sections made parallel to the mold surface, are compared with experimental micrographs. The grain densities are then deduced as a function of the distance from the mold surface for both the experiment and the simulation. It is shown that these values are in good agreement, thus, providing validation of the grain formation mechanisms built into the 3-D probabilistic model. Finally, this model is further extended to more complex geometries and the 3-D computed grain structure of an equiaxed turbine-blade airfoil is compared with the experimental transverse section micrograph.

  10. 3-Dimensional Reproducibility of Natural Head Position

    DTIC Science & Technology

    2012-04-12

    software in which polygon meshes, accurate freeform, non-uniform rationale B-spline surfaces, and geometrically accurate solid models were created...position for a laser scan using a novel morphometric analysis for orthognathic surgery. Int J Oral Max Surg 2000; 29(2): 86-90. Vig PS, Showfety KJ

  11. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    NASA Technical Reports Server (NTRS)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  12. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    NASA Technical Reports Server (NTRS)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  13. Axes of resistance for tooth movement: does the center of resistance exist in 3-dimensional space?

    PubMed

    Viecilli, Rodrigo F; Budiman, Amanda; Burstone, Charles J

    2013-02-01

    The center of resistance is considered the most important reference point for tooth movement. It is often stated that forces through this point will result in tooth translation. The purpose of this article is to report the results of numeric experiments testing the hypothesis that centers of resistance do not exist in space as 3-dimensional points, primarily because of the geometric asymmetry of the periodontal ligament. As an alternative theory, we propose that, for an arbitrary tooth, translation references can be determined by 2-dimensional projection intersections of 3-dimensional axes of resistance. Finite element analyses were conducted on a maxillary first molar model to determine the position of the axes of rotation generated by 3-dimensional couples. Translation tests were performed to compare tooth movement by using different combinations of axes of resistance as references. The couple-generated axes of rotation did not intersect in 3 dimensions; therefore, they do not determine a 3-dimensional center of resistance. Translation was obtained by using projection intersections of the 2 axes of resistance perpendicular to the force direction. Three-dimensional axes of resistance, or their 2-dimensional projection intersections, should be used to plan movement of an arbitrary tooth. Clinical approximations to a small 3-dimensional "center of resistance volume" might be adequate in nearly symmetric periodontal ligament cases. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. A 3-Dimensional Atlas of Human Tongue Muscles

    PubMed Central

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  15. Invasive 3-Dimensional Organotypic Neoplasia from Multiple Normal Human Epithelia

    PubMed Central

    Ridky, Todd W.; Chow, Jennifer M.; Wong, David J.; Khavari, Paul A.

    2013-01-01

    Refined cancer models are required to assess the burgeoning number of potential targets for cancer therapeutics within a rapid and clinically relevant context. Here we utilize tumor-associated genetic pathways to transform primary human epithelial cells from epidermis, oropharynx, esophagus, and cervix into genetically defined tumors within a human 3-dimensional (3-D) tissue environment incorporating cell-populated stroma and intact basement membrane. These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through basement membrane, a complex process critically required for biologic malignancy in 90% of human cancers. Invasion was rapid, and potentiated by stromal cells. Oncogenic signals in 3-D tissue, but not 2-D culture, resembled gene expression profiles from spontaneous human cancers. Screening well-characterized signaling pathway inhibitors in 3-D organotypic neoplasia helped distil a clinically faithful cancer gene signature. Multi-tissue 3-D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterize cancer progression. PMID:21102459

  16. A Seafloor Benchmark for 3-dimensional Geodesy

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone

  17. Learning medical diagnosis models from multiple experts.

    PubMed

    Valizadegan, Hamed; Nguyen, Quang; Hauskrecht, Milos

    2012-01-01

    Building classification models from clinical data often requires labeling examples by human experts. However, it is difficult to obtain a perfect set of labels everyone agrees on because medical data are typically very complicated and it is quite common that different experts have different opinions on the same patient data. A solution that has been recently explored by the research community is learning from multiple experts/annotators. The objective of learning from multiple experts is to model different characteristics of the human experts and combine them to obtain a consensus model. In this work, we study and develop a new probabilistic approach for learning classification models from labels provided by multiple experts. Our method explicitly models and incorporates three characteristics of annotators into the learning process: their specific prediction model, consistency and bias. We show that in addition to building a superior classification model, our method also helps to model behavior of annotators. We applied the proposed method to learn different characteristics of Physicians labeling clinical records for Heparin Induced Thrombocytopenia (HIT) and combine them in order to obtain a final classifier.

  18. The 3-dimensional grid: a novel approach to stereoelectroencephalography.

    PubMed

    Munyon, Charles; Sweet, Jennifer; Luders, Hans; Lhatoo, Samden; Miller, Jonathan

    2015-03-01

    Successful surgical treatment of epilepsy requires accurate definition of areas of ictal onset and eloquent brain. Although invasive monitoring can help, subdural grids cannot sample sulci or subcortical tissue; traditional stereoelectroencephalography depth electrodes are usually placed too far apart to provide sufficient resolution for mapping. To report a strategy of depth electrode placement in a dense array to allow precise anatomic localization of epileptic and eloquent cortex. Twenty patients with medically intractable epilepsy either poorly localized or found to arise adjacent to eloquent areas underwent placement of arrays of depth electrodes into and around the putative area of seizure onset with the use of framed stereotaxy. Each array consisted of a "grid" of parallel electrodes in a rectangular pattern with 1 cm between entry sites. In a subset of patients, a few electrodes were placed initially, with additional electrodes placed in a second stage. Trajectories were modified to avoid cortical vessels defined on magnetic resonance imaging. Patients were monitored for 4 to 21 days to establish the precise location of seizure onset. Stimulation was performed to map cortical and subcortical eloquent regions. Electrode locations were coregistered for frameless stereotaxy during subsequent resection of seizure focus. Two hundred fifty-four electrodes were implanted. Discrete regions of seizure onset and functional cortex were identified, which were used during resection to remove epileptogenic tissue while preserving eloquent areas. There were no hemorrhagic or infectious complications; no patient suffered permanent neurological deficit. The 3-dimensional intraparenchymal grid is useful for identifying the location and extent of epileptic and eloquent brain.

  19. Collaborative practice model: Madigan Army Medical Center.

    PubMed

    Nielsen, Peter E; Munroe, Michelle; Foglia, Lisa; Piecek, Roxanne I; Backman, Mary Paul; Cypher, Rebecca; Smith, Denise C

    2012-09-01

    In 2007, Madigan Army Medical Center implemented a new maternity care delivery model, integrating obstetricians and certified nurse-midwives (CNMs) in a collaborative practice. The change was driven by multiple factors, including patient preference, changes in the resident workweek, and low provider satisfaction. This article describes the elements of successful collaboration, including the structure, effective teamwork principles, role of the CNM in resident education, and preliminary data on mode of delivery, the number of CNM-supervised resident births, and procedures, such as episiotomy and epidural use.

  20. Comparison of 2-Dimensional and 3-Dimensional Metacarpal Fracture Plating Constructs Under Cyclic Loading.

    PubMed

    Tannenbaum, Eric P; Burns, Geoffrey T; Oak, Nikhil R; Lawton, Jeffrey N

    2017-03-01

    Metacarpal fractures are commonly treated by a variety of means including casting or open reduction internal fixation when unacceptable alignment is present following attempted closed reduction. Dorsal plating with either single-row 2-dimensional or double-row 3-dimensional plates has been proposed. This study's purpose was to determine if there are any differences in fixation construct stability under cyclic loading and subsequent load to failure between the lower profile 3-dimensional and the larger 2-dimensional plates in a metacarpal fracture gap sawbone model. Thirty metacarpal cortico-cancellous synthetic bones were cut with a 1.75-mm gap between the 2 fragments simulating mid-diaphyseal fracture comminution. Half of the metacarpals were plated with 2.0-mm locking 2-dimensional plates and half with 1.5-mm locking 3-dimensional plates. The plated metacarpals were mounted into a materials testing apparatus and cyclically loaded under cantilever bending for 2,000 cycles at 70 N, then 2,000 cycles at 120 N, and finally monotonically loaded to failure. Throughout testing, fracture gap sizes were measured, failure modes were recorded, and construct strength and stiffness values were calculated. All 3-dimensional constructs survived both cyclic loading conditions. Ten (67%) 2-dimensional constructs survived both loading conditions, whereas 5 (33%) failed the 120-N loading at 1377 ± 363 cycles. When loaded to failure, the 3-dimensional constructs failed at 265 N ± 21 N, whereas the 2-dimensional constructs surviving cyclic loading failed at 190 N ± 17 N. The shorter, thinner 3-dimensional metacarpal plates demonstrated increased resistance to failure in a cyclic loading model and increased load to failure compared with the relatively longer, thicker 2-dimensional metacarpal plates. The lower-profile 3-dimensional metacarpal plate fixation demonstrated greater stability for early postoperative resistance than the thicker 2-dimensional fixation, whereas the smaller

  1. Quantitative 3-dimensional computed tomography measurements of coronoid fractures.

    PubMed

    Mellema, Jos J; Janssen, Stein J; Guitton, Thierry G; Ring, David

    2015-03-01

    Using quantitative 3-dimensional computed tomography (Q3DCT) modeling, we tested the null hypothesis that there was no difference in fracture fragment volume, articular surface involvement, and number of fracture fragments between coronoid fracture types and patterns of traumatic elbow instability. We studied 82 patients with a computed tomography scan of a coronoid fracture using Q3DCT modeling. Fracture fragments were identified and fragment volume and articular surface involvement were measured within fracture types and injury patterns. Kruskal-Wallis test was used to evaluate the Q3DCT data of the coronoid fractures. Fractures of the coronoid tip (n = 45) were less fragmented and had the smallest fragment volume and articular surface area involvement compared with anteromedial facet fractures (n = 20) and base fractures (n = 17). Anteromedial facet and base fractures were more fragmented than tip fractures, and base fractures had the largest fragment volume and articular surface area involvement compared with tip and anteromedial facet fractures. We found similar differences between fracture types described by Regan and Morrey. Furthermore, fractures associated with terrible triad fracture dislocation (n = 42) had the smallest fragment volume, and fractures associated with olecranon fracture dislocations (n = 17) had the largest fragment volume and articular surface area involvement compared with the other injury patterns. Analyzing fractures of the coronoid using Q3DCT modeling demonstrated that fracture fragment characteristics differ significantly between fracture types and injury patterns. Detailed knowledge of fracture characteristics and their association with specific patterns of traumatic elbow instability may assist decision making and preoperative planning. Quantitative 3DCT modeling can provide a more detailed understanding of fracture morphology, which might guide decision making and implant development. Copyright © 2015 American Society for

  2. Integrated Medical Model Verification, Validation, and Credibility

    NASA Technical Reports Server (NTRS)

    Walton, Marlei; Kerstman, Eric; Foy, Millennia; Shah, Ronak; Saile, Lynn; Boley, Lynn; Butler, Doug; Myers, Jerry

    2014-01-01

    The Integrated Medical Model (IMM) was designed to forecast relative changes for a specified set of crew health and mission success risk metrics by using a probabilistic (stochastic process) model based on historical data, cohort data, and subject matter expert opinion. A probabilistic approach is taken since exact (deterministic) results would not appropriately reflect the uncertainty in the IMM inputs. Once the IMM was conceptualized, a plan was needed to rigorously assess input information, framework and code, and output results of the IMM, and ensure that end user requests and requirements were considered during all stages of model development and implementation. METHODS: In 2008, the IMM team developed a comprehensive verification and validation (VV) plan, which specified internal and external review criteria encompassing 1) verification of data and IMM structure to ensure proper implementation of the IMM, 2) several validation techniques to confirm that the simulation capability of the IMM appropriately represents occurrences and consequences of medical conditions during space missions, and 3) credibility processes to develop user confidence in the information derived from the IMM. When the NASA-STD-7009 (7009) was published, the IMM team updated their verification, validation, and credibility (VVC) project plan to meet 7009 requirements and include 7009 tools in reporting VVC status of the IMM. RESULTS: IMM VVC updates are compiled recurrently and include 7009 Compliance and Credibility matrices, IMM VV Plan status, and a synopsis of any changes or updates to the IMM during the reporting period. Reporting tools have evolved over the lifetime of the IMM project to better communicate VVC status. This has included refining original 7009 methodology with augmentation from the NASA-STD-7009 Guidance Document. End user requests and requirements are being satisfied as evidenced by ISS Program acceptance of IMM risk forecasts, transition to an operational model and

  3. 3-Dimensional wireless sensor network localization: A review

    NASA Astrophysics Data System (ADS)

    Najib, Yasmeen Nadhirah Ahmad; Daud, Hanita; Aziz, Azrina Abd; Razali, Radzuan

    2016-11-01

    The proliferation of wireless sensor network (WSN) has shifted the focus to 3-Dimensional geometry rather than 2-Dimensional geometry. Since exact location of sensors has been the fundamental issue in wireless sensor network, node localization is essential for any wireless sensor network applications. Most algorithms mainly focus on 2-Dimensional geometry, where the application of this algorithm will decrease the accuracy on 3-Dimensional geometry. The low rank attribute in WSN's node estimation makes the application of nuclear norm minimization as a viable solution for dimensionality reduction problems. This research proposes a novel localization algorithm for 3-Dimensional WSN which is nuclear norm minimization. The node localization is formulated via Euclidean Distance Matrix (EDM) and is then optimized using Nuclear-Norm Minimization (NNM).

  4. Modelling medical care usage under medical insurance scheme for urban non-working residents.

    PubMed

    Xiong, Linping; Tian, Wenhua; Tang, Weidong

    2013-06-01

    This research investigates and evaluates China's urban medical care usage for non-working residents using microsimulation techniques. It focuses on modelling medical services usage and simulating medical expenses on hospitalization treatments as well as clinic services for serious illness in an urban area for the period of 2008-2010. A static microsimulation model was created to project the impact of the medical insurance scheme. Four kinds of achievements have been made. For three different scenarios, the model predicted the hospitalization services costs and payments, as well as the balance of the social pool fund and the medical burden on families.

  5. A medical model for criminalistics education.

    PubMed

    Stoney, D A

    1988-07-01

    The history of medical education during the period of 1870 to 1926 is examined in the context of current issues confronting education in the forensic laboratory sciences. Medical education was radically altered during this period, changing from a rudimentary lecture/apprenticeship system into its modern form. Although the motivating forces had developed over some time, the actual change was quite rapid. By examining how this change occurred, we gain insight into how changes in our own profession might be initiated. Parallels between our current situation and that in medical education 117 years ago include: (1) the primary burden of professional education is borne outside the university in an apprenticeship system, (2) the apprenticeship system is overburdened by a dramatic expansion in the knowledge and skills needed for professional practice, (3) there is no standardized curriculum or accreditation process for educational programs, and (4) there is no educational program that incorporates formal clinical education. Based on this historical analysis, three major goals are proposed: (1) active entreprenurial promotion of professional educational programs by academics, (2) creation of a committee within the American Academy of Forensic Sciences to critique and rate university programs, and (3) the development of a well-defined clinical education program. A model for formalized clinical education in the forensic laboratory sciences is proposed, incorporating clinical professors, student clerkships, and university control over instruction within an operational forensic science laboratory. Benefits from this arrangement include: efficient combination of physical plants, added personnel resources in the laboratory, rapid introduction of research into the laboratory, enhanced prestige for both academics and practitioners, and relief of the laboratory's in-house training burden.

  6. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  7. The 3-dimensional construction of the Rae craton, central Canada

    NASA Astrophysics Data System (ADS)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  8. Brain tumor surgery with 3-dimensional surface navigation.

    PubMed

    Mert, Ayguel; Buehler, Katja; Sutherland, Garnette R; Tomanek, Boguslaw; Widhalm, Georg; Kasprian, Gregor; Knosp, Engelbert; Wolfsberger, Stefan

    2012-12-01

    Precise lesion localization is necessary for neurosurgical procedures not only during the operative approach, but also during the preoperative planning phase. To evaluate the advantages of 3-dimensional (3-D) brain surface visualization over conventional 2-dimensional (2-D) magnetic resonance images for surgical planning and intraoperative guidance in brain tumor surgery. Preoperative 3-D brain surface visualization was performed with neurosurgical planning software in 77 cases (58 gliomas, 7 cavernomas, 6 meningiomas, and 6 metastasis). Direct intraoperative navigation on the 3-D brain surface was additionally performed in the last 20 cases with a neurosurgical navigation system. For brain surface reconstruction, patient-specific anatomy was obtained from MR imaging and brain volume was extracted with skull stripping or watershed algorithms, respectively. Three-dimensional visualization was performed by direct volume rendering in both systems. To assess the value of 3-D brain surface visualization for topographic lesion localization, a multiple-choice test was developed. To assess accuracy and reliability of 3-D brain surface visualization for intraoperative orientation, we topographically correlated superficial vessels and gyral anatomy on 3-D brain models with intraoperative images. The rate of correct lesion localization with 3-D was significantly higher (P = .001, χ), while being significantly less time consuming (P < .001, χ) compared with 2-D images. Intraoperatively, visual correlation was found between the 3-D images, superficial vessels, and gyral anatomy. The proposed method of 3-D brain surface visualization is fast, clinically reliable for preoperative anatomic lesion localization and patient-specific planning, and, together with navigation, improves intraoperative orientation in brain tumor surgery and is relatively independent of brain shift.

  9. A 3-Dimensional Anatomic Study of the Distal Biceps Tendon

    PubMed Central

    Walton, Christine; Li, Zhi; Pennings, Amanda; Agur, Anne; Elmaraghy, Amr

    2015-01-01

    Background Complete rupture of the distal biceps tendon from its osseous attachment is most often treated with operative intervention. Knowledge of the overall tendon morphology as well as the orientation of the collagenous fibers throughout the musculotendinous junction are key to intraoperative decision making and surgical technique in both the acute and chronic setting. Unfortunately, there is little information available in the literature. Purpose To comprehensively describe the morphology of the distal biceps tendon. Study Design Descriptive laboratory study. Methods The distal biceps terminal musculature, musculotendinous junction, and tendon were digitized in 10 cadaveric specimens and data reconstructed using 3-dimensional modeling. Results The average length, width, and thickness of the external distal biceps tendon were found to be 63.0, 6.0, and 3.0 mm, respectively. A unique expansion of the tendon fibers within the distal muscle was characterized, creating a thick collagenous network along the central component between the long and short heads. Conclusion This study documents the morphologic parameters of the native distal biceps tendon. Reconstruction may be necessary, especially in chronic distal biceps tendon ruptures, if the remaining tendon morphology is significantly compromised compared with the native distal biceps tendon. Knowledge of normal anatomical distal biceps tendon parameters may also guide the selection of a substitute graft with similar morphological characteristics. Clinical Relevance A thorough description of distal biceps tendon morphology is important to guide intraoperative decision making between primary repair and reconstruction and to better select the most appropriate graft. The detailed description of the tendinous expansion into the muscle may provide insight into better graft-weaving and suture-grasping techniques to maximize proximal graft incorporation. PMID:26665092

  10. Medical Surveillance System & Medical Effect Modeling Thrust Areas

    DTIC Science & Technology

    2007-06-01

    Equations ( PFE ) developed for this project model physiological systems in biological organisms as 1D liquid or gas flows. Special attention is given...in the model to capturing 2D viscous effects and branching effects. Multiple PFE representations of physiological systems (e.g. the respiratory and

  11. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  12. Controlled teleportation of a 3-dimensional bipartite quantum state

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Chen, Zhong-Hua; Song, He-Shan

    2008-07-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.

  13. Airway growth and development: a computerized 3-dimensional analysis.

    PubMed

    Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri

    2012-09-01

    The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. 3-dimensional bundle adjustments in industrial metrology: A comparison

    SciTech Connect

    Gaydosh, M.; LeCocq, C.; Ruland, R.; Wand, B.

    1992-07-01

    Several theodolite measurement systems are available for use in the industrial metrology market. Many of them offer a rigorous 3-dimensional bundle adjustment routine. In this paper several systems in use and available for evaluation purposes at the Stanford Linear Accelerator Center will be tested and their results compared.

  15. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer

    NASA Astrophysics Data System (ADS)

    Joosten, A.; Bochud, F.; Moeckli, R.

    2014-08-01

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  16. Medical models and metaphors for depression.

    PubMed

    Patten, S B

    2015-08-01

    The aetiology of depression is not fully understood, which allows many different perspectives on aetiology to be adopted. Researchers and clinicians may be attracted to concepts of aetiology that parallel other diagnoses with which they are familiar. Such parallels may assume the role of informal models or metaphors for depressive disorders. They may even function as informal scientific theories of aetiology, energising research activities by guiding hypothesis generation and organising new knowledge. Parallels between different types of disease may ultimately prove valuable as frameworks supporting the emergence and maturation of new knowledge. However, such models may be counterproductive if their basis, which is likely to lay at least partially in analogy, is unacknowledged or overlooked. This could cause such models to appear more compelling than they really are. Listing examples of situations in which models of depression may arise from, or be strengthened by, parallels to other familiar conditions may increase the accessibility of such models either to criticism or support. However, such a list has not yet appeared in the literature. The present paper was written with the modest goal of stating several examples of models or metaphors for depression. This paper adopted narrative review methods. The intention was not to produce a comprehensive list of such ideas, but rather to identify prominent examples of ways of thinking about depression that may have been invigorated as a result parallels with other types of disease. Eight possible models are identified: depressive disorders as chemical imbalances (e.g., a presumed or theoretical imbalance of normally balanced neurotransmission in the brain), degenerative conditions (e.g., a brain disease characterised by atrophy of specified brain structures), toxicological syndromes (a result of exposure to a noxious psychological environment), injuries (e.g., externally induced brain damage related to stress), deficiency

  17. Computerized 3-dimensional localization of a video capsule in the abdominal cavity: validation by digital radiography.

    PubMed

    Marya, Neil; Karellas, Andrew; Foley, Anne; Roychowdhury, Abhijit; Cave, David

    2014-04-01

    Wireless video capsule endoscopy allows the noninvasive visualization of the small intestine. Currently, capsules do not provide localization information while traversing the GI tract. To report on the radiological validation of 3-dimensional localization software incorporated in a newly developed capsule. By using radiofrequency transmission, the software measures the strength of the capsule's signal to locate the position of the capsule. This study was performed at the University of Massachusetts Medical Center, Worcester, Mass. Thirty healthy volunteers consented to the experimental procedure. After ingestion of the capsule, subjects had 5 sets of anteroposterior and lateral radiographs taken every 30 minutes while the software calculated the position of the capsule. By using the radiographs, we calculated the location of the capsule in the abdominal cavity and compared the results with those generated by the software. Average error (and standard deviation) among the 3-dimensional coordinates was X, 2.00 cm (1.64); Y, 2.64 cm (2.39); and Z, 2.51 cm (1.83). The average total spatial error among all measurements was 13.26 cm(3) (22.72). There was a correlation between increased subject body mass index and the 3-dimensional software measurement error. This study was performed in healthy volunteers and needs further validation in patients with small intestinal disorders. The new 3-dimensional software provides localization of the capsule consistent with radiological observations. However, further validation of the software's clinical utility is required with a prospective clinical trial. Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  18. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    PubMed Central

    Lambros, Maria P.; Kondapalli, Lavanya; Parsa, Cyrus; Mulamalla, Hari Chandana; Orlando, Robert; Pon, Doreen; Huang, Ying; Chow, Moses S. S.

    2015-01-01

    Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors. PMID:25705238

  19. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  20. Casualty modeling for real-time medical training.

    PubMed

    Chi, D M; Clarke, J R; Webber, B L; Badler, N I

    1996-01-01

    We present a model for simulating casualties in virtual environments for real-time medical training. It allows a user to choose diagnostic and therapeutic actions to carry out on a simulated casualty who will manifest appropriate physiological, behavioral, and physical responses. Currently, the user or a "stealth instructor" can specify one or more injuries that the casualty has sustained. The model responds by continuously determining the state of the casualty, responding appropriately to medical assessment and treatment procedures. So far, we have modeled four medical conditions and over 20 procedures. The model has been designed to handle the addition of other injuries and medical procedures.

  1. Development of a career coaching model for medical students

    PubMed Central

    Hur, Yera

    2016-01-01

    Purpose: Deciding on a future career path or choosing a career specialty is an important academic decision for medical students. The purpose of this study is to develop a career coaching model for medical students. Methods: This research was carried out in three steps. The first step was systematic review of previous studies. The second step was a need assessment of medical students. The third step was a career coaching model using the results acquired from the researched literature and the survey. Results: The career coaching stages were defined as three big phases: The career coaching stages were defined as the “crystallization” period (Pre-medical year 1 and 2), “specification” period (medical year 1 and 2), and “implementation” period (medical year 3 and 4). Conclusion: The career coaching model for medical students can be used in programming career coaching contents and also in identifying the outcomes of career coaching programs at an institutional level. PMID:26867586

  2. Development of a career coaching model for medical students.

    PubMed

    Hur, Yera

    2016-03-01

    Deciding on a future career path or choosing a career specialty is an important academic decision for medical students. The purpose of this study is to develop a career coaching model for medical students. This research was carried out in three steps. The first step was systematic review of previous studies. The second step was a need assessment of medical students. The third step was a career coaching model using the results acquired from the researched literature and the survey. The career coaching stages were defined as three big phases: The career coaching stages were defined as the "crystallization" period (Pre-medical year 1 and 2), "specification" period (medical year 1 and 2), and "implementation" period (medical year 3 and 4). The career coaching model for medical students can be used in programming career coaching contents and also in identifying the outcomes of career coaching programs at an institutional level.

  3. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.

  4. A Flexible Model for Correlated Medical Costs, with Application to Medical Expenditure Panel Survey Data

    PubMed Central

    Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T.; Zhang, Daowen; Severini, Thomas A.

    2016-01-01

    We propose a flexible model for correlated medical cost data with several appealing features. First, the mean function is partially linear. Second, the distributional form for the response is not specified. Third, the covariance structure of correlated medical costs has a semiparametric form. We use extended generalized estimating equations to simultaneously estimate all parameters of interest. B-splines is used to estimate unknown functions, and a modification to Akaike Information Criterion is proposed for selecting knots in spline bases. We apply the model to correlated medical costs in the Medical Expenditure Panel Survey (MEPS) dataset. Simulation studies are conducted to assess the performance of our method. PMID:26403805

  5. A flexible model for correlated medical costs, with application to medical expenditure panel survey data.

    PubMed

    Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T; Zhang, Daowen; Severini, Thomas A

    2016-03-15

    We propose a flexible model for correlated medical cost data with several appealing features. First, the mean function is partially linear. Second, the distributional form for the response is not specified. Third, the covariance structure of correlated medical costs has a semiparametric form. We use extended generalized estimating equations to simultaneously estimate all parameters of interest. B-splines are used to estimate unknown functions, and a modification to Akaike information criterion is proposed for selecting knots in spline bases. We apply the model to correlated medical costs in the Medical Expenditure Panel Survey dataset. Simulation studies are conducted to assess the performance of our method.

  6. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    NASA Astrophysics Data System (ADS)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  7. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    PubMed Central

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  8. A model for enhancing Internet medical document retrieval with "medical core metadata".

    PubMed

    Malet, G; Munoz, F; Appleyard, R; Hersh, W

    1999-01-01

    Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and MEDLINE-type content descriptions. The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines.

  9. A Model for Enhancing Internet Medical Document Retrieval with “Medical Core Metadata”

    PubMed Central

    Malet, Gary; Munoz, Felix; Appleyard, Richard; Hersh, William

    1999-01-01

    Objective: Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. Design: The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and Medline-type content descriptions. Results: The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. Conclusions: The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines. PMID:10094069

  10. 3-Dimensional modeling of protein structures distinguishes closely related phytoplasmas

    USDA-ARS?s Scientific Manuscript database

    Phytoplasmas (formerly mycoplasmalike organisms, MLOs) are cell wall-less bacteria that inhabit phloem tissue of plants and are transmitted from plant-to-plant by phloem-feeding insects. Numerous diseases affecting hundreds of plant species in many botanical families are attributed to infections by...

  11. Morphological analysis and preoperative simulation of a double-chambered right ventricle using 3-dimensional printing technology.

    PubMed

    Shirakawa, Takashi; Koyama, Yasushi; Mizoguchi, Hiroki; Yoshitatsu, Masao

    2016-05-01

    We present a case of a double-chambered right ventricle in adulthood, in which we tried a detailed morphological assessment and preoperative simulation using 3-dimensional (3D) heart models for improved surgical planning. Polygonal object data for the heart were constructed from computed tomography images of this patient, and transferred to a desktop 3D printer to print out models in actual size. Medical staff completed all of the work processes. Because the 3D heart models were examined by hand, observed from various viewpoints and measured by callipers with ease, we were able to create an image of the complete form of the heart. The anatomical structure of an anomalous bundle was clearly observed, and surgical approaches to the lesion were simulated accurately. During surgery, we used an incision on the pulmonary infundibulum and resected three muscular components of the stenosis. The similarity between the models and the actual heart was excellent. As a result, the operation for this rare defect was performed safely and successfully. We concluded that the custom-made model was useful for morphological analysis and preoperative simulation. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. Medical Models for Teachers' Learning: Asking for a Second Opinion

    ERIC Educational Resources Information Center

    Philpott, Carey

    2017-01-01

    Recently there has been renewed interest in basing teachers' professional learning on medically derived models. This interest has included clinical practice models and evidence-based teaching as well as the use of various forms of "Rounds" which claim to derive from medical rounds. However, many arguing for these approaches may well not…

  13. Medical Models for Teachers' Learning: Asking for a Second Opinion

    ERIC Educational Resources Information Center

    Philpott, Carey

    2017-01-01

    Recently there has been renewed interest in basing teachers' professional learning on medically derived models. This interest has included clinical practice models and evidence-based teaching as well as the use of various forms of "Rounds" which claim to derive from medical rounds. However, many arguing for these approaches may well not…

  14. Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.

    PubMed

    Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B

    2017-01-01

    In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.

  15. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    PubMed

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Medical record review conduction model for improving interrater reliability of abstracting medical-related information.

    PubMed

    Engel, Lisa; Henderson, Courtney; Fergenbaum, Jennifer; Colantonio, Angela

    2009-09-01

    Medical record review (MRR) is often used in clinical research and evaluation, yet there is limited literature regarding best practices in conducting a MRR, and there are few studies reporting interrater reliability (IRR) from MRR data. The aim of this research was twofold: (a) to develop a MRR abstraction tool and standardize the MRR process and (b) to examine the IRR from MRR data. This study introduces the MRR-Conduction Model, which was used to implement a MRR, and examines the IRR between two abstractors who collected preinjury medical and psychiatric, incident-related medical and postinjury head symptom information from the medical records of 47 neurologically injured workers. Results showed that the percentage agreement was > or =85% and the unweighted kappa statistic was > or =.60 for most variables, indicating substantial IRR. An effective and reliable MRR to abstract medical-related information requires planning and time. The MRR-Conduction Model is proposed to guide the process of creating a MRR.

  17. Modelling Medications for Public Health Research

    PubMed Central

    van Gaans, D.; Ahmed, S.; D’Onise, K.; Moyon, J.; Caughey, G.; McDermott, R.

    2016-01-01

    Most patients with chronic disease are prescribed multiple medications, which are recorded in their personal health records. This is rich information for clinical public health researchers but also a challenge to analyse. This paper describes the method that was undertaken within the Public Health Research Data Management System (PHReDMS) to map medication data retrieved from individual patient health records for population health researcher’s use. The PHReDMS manages clinical, health service, community and survey research data within a secure web environment that allows for data sharing amongst researchers. The PHReDMS is currently used by researchers to answer a broad range of questions, including monitoring of prescription patterns in different population groups and geographic areas with high incidence/prevalence of chronic renal, cardiovascular, metabolic and mental health issues. In this paper, we present the general notion of abstraction network, a higher level network that sits above a terminology and offers compact and more easily understandable view of its content. We demonstrate the utilisation of abstraction network methodology to examine medication data from electronic medical records to allow a compact and more easily understandable view of its content. PMID:28149446

  18. [Bile duct reconstruction using 3-dimensional collagen tubes].

    PubMed

    Pérez Alonso, Alejandro José; del Olmo Rivas, Carlos; Machado Romero, Ignacio; Pérez Cabrera, Beatriz; Cañizares Garcia, Francisco Javier; Torne Poyatos, Pablo

    2013-11-01

    In recent years, with widespread laparoscopic cholecystectomy and liver transplantation, complications involving the biliary system are increasing. All current techniques have a high risk of recurrence or high-morbidity. A 3-dimensional collagen bile duct modified with agarose hydrogel was developed to substitute the affected extrahepatic bile duct. It was used in 40 guinea pigs and the histology and physiology was studied at 4 weeks, 3 and 6 months after transplantation. The graft shows to have a high potential in applications to treat hepatobiliary diseases which require surgery. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  19. 3-dimensional electronic structures of CaC6

    NASA Astrophysics Data System (ADS)

    Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Junsung; Kim, Yeongwook; Kim, Keunsu; Rotenberg, Eli; Kim, Changyoung; Postech Collaboration; Advanced Light Source Collaboration; Yonsei University Team

    2014-03-01

    There is still remaining issues on origin of superconductivity in graphite intercalation compounds, especially CaC6 because of its relatively high transition temperature than other GICs. There are two competing theories on where the superconductivity occurs in this material; intercalant metal or charge doped graphene layer. To elucidate this issue, it is necessary to confirm existence of intercalant driven band. Therefore, we performed 3 dimensional electronic structure studies with ARPES to find out 3d dispersive intercalant band. However, we could not observe it, instead observed 3d dispersive carbon band. This support the aspect of charge doped graphene superconductivity more than intercalant driving aspect.

  20. Portal of medical data models: information infrastructure for medical research and healthcare.

    PubMed

    Dugas, Martin; Neuhaus, Philipp; Meidt, Alexandra; Doods, Justin; Storck, Michael; Bruland, Philipp; Varghese, Julian

    2016-01-01

    Information systems are a key success factor for medical research and healthcare. Currently, most of these systems apply heterogeneous and proprietary data models, which impede data exchange and integrated data analysis for scientific purposes. Due to the complexity of medical terminology, the overall number of medical data models is very high. At present, the vast majority of these models are not available to the scientific community. The objective of the Portal of Medical Data Models (MDM, https://medical-data-models.org) is to foster sharing of medical data models. MDM is a registered European information infrastructure. It provides a multilingual platform for exchange and discussion of data models in medicine, both for medical research and healthcare. The system is developed in collaboration with the University Library of Münster to ensure sustainability. A web front-end enables users to search, view, download and discuss data models. Eleven different export formats are available (ODM, PDF, CDA, CSV, MACRO-XML, REDCap, SQL, SPSS, ADL, R, XLSX). MDM contents were analysed with descriptive statistics. MDM contains 4387 current versions of data models (in total 10,963 versions). 2475 of these models belong to oncology trials. The most common keyword (n = 3826) is 'Clinical Trial'; most frequent diseases are breast cancer, leukemia, lung and colorectal neoplasms. Most common languages of data elements are English (n = 328,557) and German (n = 68,738). Semantic annotations (UMLS codes) are available for 108,412 data items, 2453 item groups and 35,361 code list items. Overall 335,087 UMLS codes are assigned with 21,847 unique codes. Few UMLS codes are used several thousand times, but there is a long tail of rarely used codes in the frequency distribution. Expected benefits of the MDM portal are improved and accelerated design of medical data models by sharing best practice, more standardised data models with semantic annotation and better information

  1. Teaching leadership: the medical student society model.

    PubMed

    Matthews, Jacob H; Morley, Gabriella L; Crossley, Eleanor; Bhanderi, Shivam

    2017-05-05

    All health care professionals in the UK are expected to have the medical leadership and management (MLM) skills necessary for improving patient care, as stipulated by the UK General Medical Council (GMC). Newly graduated doctors reported insufficient knowledge about leadership and quality improvement skills, despite all UK medical schools reporting that MLM is taught within their curriculum. A medical student society organised a series of extracurricular educational events focusing on leadership topics. The society recognised that the events needed to be useful and interesting to attract audiences. Therefore, clinical leaders in exciting fields were invited to talk about their experiences and case studies of personal leadership challenges. The emphasis on personal stories, from respected leaders, was a deliberate strategy to attract students and enhance learning. Evaluation data were collected from the audiences to improve the quality of the events and to support a business case for an intercalated degree in MLM. When leadership and management concepts are taught through personal stories, students find it interesting and are prepared to give up their leisure time to engage with the subject. Students appear to recognise the importance of MLM knowledge to their future careers, and are able to organise their own, and their peers', learning and development. Organising these events and collecting feedback can provide students with opportunities to practise leadership, management and quality improvement skills. These extracurricular events, delivered through a student society, allow for subjects to be discussed in more depth and can complement an already crowded undergraduate curriculum. Newly graduated doctors reported insufficient knowledge about leadership and quality improvement skills. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  2. Analyses of medical data models - identifying common concepts and items in a repository of medical forms.

    PubMed

    Breil, Bernhard; Dugas, Martin

    2013-01-01

    One year ago the portal of Medical Data Models (http://medical-data-models.org) was presented as a resource for the scientific community. As of November 2012 there are approximately 3,300 forms with 102,000 items available in the CDISC ODM format. First descriptive analyses regarding form metadata demonstrate the capability of such a repository to identify commonly used medical concepts. Most common items are administrative attributes which indicates that more clinical information are needed to increase the secondary use of data documented within these forms.

  3. Advances in 3-Dimensional Printing in Otolaryngology: A Review.

    PubMed

    VanKoevering, Kyle K; Hollister, Scott J; Green, Glenn E

    2017-02-01

    Three-dimensional (3-D) printing is an exponentially growing technology that enables the use of a patient's image data to create patient-specific models, devices, and implants. Three-dimensional printing, developed in the 1980s, has emerged in the past decade with the potential to create new paradigms in personalized medicine. The field of otolaryngology has advanced many current and evolving future medical applications of 3-D printing. The predominant uses of 3-D printing have rapidly progressed from patient-specific models and simulators to intraoperative guides. Continued advancements now include 3-D-printed implants and future tissue-engineered constructs, which bring new regulatory challenges. This review summarizes the literature and provides a comprehensive guide to the background, applications, and current limitations of 3-D printing across the head and neck. Three-dimensional printing enables the rapid production of patient-specific devices for personalized medicine. The field of otolaryngology has pioneered many of the underlying advancements in medical 3-D printing and will continue to remain at the forefront of 3-D printing technology.

  4. Four Models of Medical Education about Elder Mistreatment.

    ERIC Educational Resources Information Center

    Heath, John M.; Dyer, Carmel B.; Kerzner, Lawrence J.; Mosqueda, Laura; Murphy, Carole

    2002-01-01

    Describe four models of incorporating elder-mistreatment curriculum and collaboration with adult protective services into geriatrics medical education. Draws on efforts at the University of Medicine and Dentistry of New Jersey--Robert Wood Johnson Medical School; the University of California, Irvine College of Medicine; Hennepin County Medical…

  5. Micmac medical student becomes role model for his community.

    PubMed

    Robb, N

    1997-01-01

    When Robert Johnson graduates from medical school in 1998, he will become Canada's first Micmac physician. For him, going to medical school is a major responsibility because he is a role model for an entire community. He hopes he is only the first of many Micmacs to make this career choice.

  6. Micmac medical student becomes role model for his community

    PubMed Central

    Robb, N

    1997-01-01

    When Robert Johnson graduates from medical school in 1998, he will become Canada's first Micmac physician. For him, going to medical school is a major responsibility because he is a role model for an entire community. He hopes he is only the first of many Micmacs to make this career choice. PMID:9006570

  7. Four Models of Medical Education about Elder Mistreatment.

    ERIC Educational Resources Information Center

    Heath, John M.; Dyer, Carmel B.; Kerzner, Lawrence J.; Mosqueda, Laura; Murphy, Carole

    2002-01-01

    Describe four models of incorporating elder-mistreatment curriculum and collaboration with adult protective services into geriatrics medical education. Draws on efforts at the University of Medicine and Dentistry of New Jersey--Robert Wood Johnson Medical School; the University of California, Irvine College of Medicine; Hennepin County Medical…

  8. Expanded Medical Home Model Works for Children in Foster Care

    ERIC Educational Resources Information Center

    Jaudes, Paula Kienberger; Champagne, Vince; Harden, Allen; Masterson, James; Bilaver, Lucy A.

    2012-01-01

    The Illinois Child Welfare Department implemented a statewide health care system to ensure that children in foster care obtain quality health care by providing each child with a medical home. This study demonstrates that the Medical Home model works for children in foster care providing better health outcomes in higher immunization rates. These…

  9. Expanded Medical Home Model Works for Children in Foster Care

    ERIC Educational Resources Information Center

    Jaudes, Paula Kienberger; Champagne, Vince; Harden, Allen; Masterson, James; Bilaver, Lucy A.

    2012-01-01

    The Illinois Child Welfare Department implemented a statewide health care system to ensure that children in foster care obtain quality health care by providing each child with a medical home. This study demonstrates that the Medical Home model works for children in foster care providing better health outcomes in higher immunization rates. These…

  10. Medical Specialty Decision Model: Utilizing Social Cognitive Career Theory

    ERIC Educational Resources Information Center

    Gibson, Denise D.; Borges, Nicole J.

    2004-01-01

    Objectives: The purpose of this study was to develop a working model to explain medical specialty decision-making. Using Social Cognitive Career Theory, we examined personality, medical specialty preferences, job satisfaction, and expectations about specialty choice to create a conceptual framework to guide specialty choice decision-making.…

  11. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    PubMed

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Novel 3-dimensional virtual hepatectomy simulation combined with real-time deformation

    PubMed Central

    Oshiro, Yukio; Yano, Hiroaki; Mitani, Jun; Kim, Sangtae; Kim, Jaejeong; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2015-01-01

    AIM: To develop a novel 3-dimensional (3D) virtual hepatectomy simulation software, Liversim, to visualize the real-time deformation of the liver. METHODS: We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions: viewing 3D models from arbitrary directions, changing the colors and opacities of the models, deforming the models based on user interaction, and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013, 99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013, 11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim was used. Furthermore, medical students and surgical residents were asked to complete questionnaires regarding the new software. RESULTS: There were no obvious discrepancies (i.e., the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min (range, 110 to 846) in the VINCENT group and 397 min (range, 232 to 497) in the Liversim group (P = 0.30). The median amount of intraoperative bleeding was 510 mL (range, 18 to 5120) in the VINCENT group and 470 mL (range, 130 to 1600) in the Liversim group (P = 0.44). The median postoperative stay was 12 d (range, 6 to 100) in the VINCENT group and 13 d (range, 9 to 21) in the Liversim group (P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically

  13. Novel 3-dimensional virtual hepatectomy simulation combined with real-time deformation.

    PubMed

    Oshiro, Yukio; Yano, Hiroaki; Mitani, Jun; Kim, Sangtae; Kim, Jaejeong; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2015-09-14

    To develop a novel 3-dimensional (3D) virtual hepatectomy simulation software, Liversim, to visualize the real-time deformation of the liver. We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions: viewing 3D models from arbitrary directions, changing the colors and opacities of the models, deforming the models based on user interaction, and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013, 99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013, 11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim was used. Furthermore, medical students and surgical residents were asked to complete questionnaires regarding the new software. There were no obvious discrepancies (i.e., the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min (range, 110 to 846) in the VINCENT group and 397 min (range, 232 to 497) in the Liversim group (P = 0.30). The median amount of intraoperative bleeding was 510 mL (range, 18 to 5120) in the VINCENT group and 470 mL (range, 130 to 1600) in the Liversim group (P = 0.44). The median postoperative stay was 12 d (range, 6 to 100) in the VINCENT group and 13 d (range, 9 to 21) in the Liversim group (P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically inferior to SYNAPSE

  14. Medical Countermeasure Models. Volume 8. Botulinum Neurotoxin

    DTIC Science & Technology

    2013-04-12

    Neurologists and the threat of bioterrorism.” Journal of the Neurological Sciences. 249(1). 2006. 9 Smith LA. “Botulism and vaccines for its prevention...toxin as a biological weapon.” Journal of the American Medical Association. 285(1059). 2001. 24 Tacket CO et al. “ Equine Antitoxin Use and Other...antitoxin available for non-infant cases of botulism in the United States.69,70 HBAT, an equine antitoxin, targets BoNT serotypes A, B, C, D, E, F and G

  15. A Medication Safety Model: A Case Study in Thai Hospital

    PubMed Central

    Rattanarojsakul, Phichai; Thawesaengskulthai, Natcha

    2013-01-01

    Reaching zero defects is vital in medication service. Medication error can be reduced if the causes are recognized. The purpose of this study is to search for a conceptual framework of the causes of medication error in Thailand and to examine relationship between these factors and its importance. The study was carried out upon an in-depth case study and survey of hospital personals who were involved in the drug use process. The structured survey was based on Emergency Care Research Institute (ECRI) (2008) questionnaires focusing on the important factors that affect the medication safety. Additional questionnaires included content to the context of Thailand's private hospital, validated by five-hospital qualified experts. By correlation Pearson analysis, the result revealed 14 important factors showing a linear relationship with drug administration error except the medication reconciliation. By independent sample t-test, the administration error in the hospital was significantly related to external impact. The multiple regression analysis of the detail of medication administration also indicated the patient identification before administration of medication, detection of the risk of medication adverse effects and assurance of medication administration at the right time, dosage and route were statistically significant at 0.05 level. The major implication of the study is to propose a medication safety model in a Thai private hospital. PMID:23985110

  16. Students are not customers: a better model for medical education.

    PubMed

    Albanese, M

    1999-11-01

    The author argues that the student-as-customer model of medical education has many failings that result in interactions that are educationally dysfunctional. Ten "pathologies" resulting from the adoption of this model are presented (e.g., "The student-customer model seduces students into believing that they know what is best for them"). Part of the reason for the unprofessional conduct often demonstrated by students and faculty alike may be a result of the influence of this model on medical education and the consequent inappropriate empowerment of students in the role of customers, the diminishment of faculty in the role of workers who provide instruction, and the view that instruction is the service or product of medical education. The author proposes a new model of medical education in which faculty are managers of instruction, students are learning workers, the product is successful learning, and the customers are faculty, residency supervisors, patients, managed care organizations, and society. The implications of this new model are profound and are described in terms of Deming's 14 principles for achieving quality in business. The author maintains that the proposed model is the critical first step in clarifying and identifying the proper roles of all those involved in the medical education process, which in turn will diminish or eliminate the pathologies that currently plague medical education and lead to the achievement of real quality.

  17. [Models and practical games in training the medical service officers to control the medical care quality].

    PubMed

    Kartashov, V T; Romanovskiĭ, V V

    2006-02-01

    The 3-component structure of the model of medical service quality (MSQ) control is proposed. The model reflects the functional dependence of qualitative parameters of military treatment-and-prophylactic institutions' (TPI) activities: Qn = f(Rn, Mn), where the independent variables are the following: Rn is the provision of n-TPI with resources, Mn is the level of administrative activities and Qn function is MSQ. It allows transferring to information-and-analytical modeling of TPI as the triad of indices that reflect the resource quality (cadre, financial, material and technical), management and medical-and-statistical indices of medical service quality. For each of the model's component the information-and-analytical indices and criteria of their assessment are proposed. The scenario of practical games is based on abovementioned peculiarities of the model and consists of logically interconnected and successively solved situational problems. The methods and problems described can be used during medical service officers' training, for studying TPI physicians, in educational process of some departments of military medical higher schools. The specific feature of proposed models and methods is their applicability both in educational process and in practical work.

  18. 3-Dimensional Resin Casting and Imaging of Mouse Portal Vein or Intrahepatic Bile Duct System

    PubMed Central

    Walter, Teagan J.; Sparks, Erin E.; Huppert, Stacey S.

    2012-01-01

    In organs, the correct architecture of vascular and ductal structures is indispensable for proper physiological function, and the formation and maintenance of these structures is a highly regulated process. The analysis of these complex, 3-dimensional structures has greatly depended on either 2-dimensional examination in section or on dye injection studies. These techniques, however, are not able to provide a complete and quantifiable representation of the ductal or vascular structures they are intended to elucidate. Alternatively, the nature of 3-dimensional plastic resin casts generates a permanent snapshot of the system and is a novel and widely useful technique for visualizing and quantifying 3-dimensional structures and networks. A crucial advantage of the resin casting system is the ability to determine the intact and connected, or communicating, structure of a blood vessel or duct. The structure of vascular and ductal networks are crucial for organ function, and this technique has the potential to aid study of vascular and ductal networks in several ways. Resin casting may be used to analyze normal morphology and functional architecture of a luminal structure, identify developmental morphogenetic changes, and uncover morphological differences in tissue architecture between normal and disease states. Previous work has utilized resin casting to study, for example, architectural and functional defects within the mouse intrahepatic bile duct system that were not reflected in 2-dimensional analysis of the structure1,2, alterations in brain vasculature of a Alzheimer's disease mouse model3, portal vein abnormalities in portal hypertensive and cirrhotic mice4, developmental steps in rat lymphatic maturation between immature and adult lungs5, immediate microvascular changes in the rat liver, pancreas, and kidney in response in to chemical injury6. Here we present a method of generating a 3-dimensional resin cast of a mouse vascular or ductal network, focusing

  19. FMEA: a model for reducing medical errors.

    PubMed

    Chiozza, Maria Laura; Ponzetti, Clemente

    2009-06-01

    Patient safety is a management issue, in view of the fact that clinical risk management has become an important part of hospital management. Failure Mode and Effect Analysis (FMEA) is a proactive technique for error detection and reduction, firstly introduced within the aerospace industry in the 1960s. Early applications in the health care industry dating back to the 1990s included critical systems in the development and manufacture of drugs and in the prevention of medication errors in hospitals. In 2008, the Technical Committee of the International Organization for Standardization (ISO), licensed a technical specification for medical laboratories suggesting FMEA as a method for prospective risk analysis of high-risk processes. Here we describe the main steps of the FMEA process and review data available on the application of this technique to laboratory medicine. A significant reduction of the risk priority number (RPN) was obtained when applying FMEA to blood cross-matching, to clinical chemistry analytes, as well as to point-of-care testing (POCT).

  20. Scene-of-crime analysis by a 3-dimensional optical digitizer: a useful perspective for forensic science.

    PubMed

    Sansoni, Giovanna; Cattaneo, Cristina; Trebeschi, Marco; Gibelli, Daniele; Poppa, Pasquale; Porta, Davide; Maldarella, Monica; Picozzi, Massimo

    2011-09-01

    Analysis and detailed registration of the crime scene are of the utmost importance during investigations. However, this phase of activity is often affected by the risk of loss of evidence due to the limits of traditional scene of crime registration methods (ie, photos and videos). This technical note shows the utility of the application of a 3-dimensional optical digitizer on different crime scenes. This study aims in fact at verifying the importance and feasibility of contactless 3-dimensional reconstruction and modeling by optical digitization to achieve an optimal registration of the crime scene.

  1. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XμCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XμCT-equipment. The developed calibration procedure of the X-ray-μCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XμCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.

  2. Organizational Models of Medical School Relationships to the Clinical Enterprise.

    ERIC Educational Resources Information Center

    Culbertson, Richard A.; And Others

    1996-01-01

    Analyzed existing relationships between medical schools and clinical enterprises to develop models of these relationships. Four conceptual models were identified: (1) "single ownership, owned integrated system"; (2) "general partner"; (3) "limited partner"; and (4) "wholly owned, subsidiary." The advantages and disadvantages of each model are…

  3. Scientific visualization of 3-dimensional optimized stellarator configurations

    SciTech Connect

    Spong, D.A.

    1998-01-01

    The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a variety of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood.

  4. From medical imaging data to 3D printed anatomical models.

    PubMed

    Bücking, Thore M; Hill, Emma R; Robertson, James L; Maneas, Efthymios; Plumb, Andrew A; Nikitichev, Daniil I

    2017-01-01

    Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D) printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT)) to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  5. From medical imaging data to 3D printed anatomical models

    PubMed Central

    Hill, Emma R.; Robertson, James L.; Maneas, Efthymios; Plumb, Andrew A.; Nikitichev, Daniil I.

    2017-01-01

    Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D) printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT)) to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer. PMID:28562693

  6. Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.

    PubMed

    Kockro, Ralf A; Hwang, Peter Y K

    2009-05-01

    We have developed an interactive virtual model of the temporal bone for the training and teaching of cranial base surgery. The virtual model was based on the tomographic data of the Visible Human Project. The male Visible Human's computed tomographic data were volumetrically reconstructed as virtual bone tissue, and the individual photographic slices provided the basis for segmentation of the middle and inner ear structures, cranial nerves, vessels, and brainstem. These structures were created by using outlining and tube editing tools, allowing structural modeling either directly on the basis of the photographic data or according to information from textbooks and cadaver dissections. For training and teaching, the virtual model was accessed in the previously described 3-dimensional workspaces of the Dextroscope or Dextrobeam (Volume Interactions Pte, Ltd., Singapore), whose interfaces enable volumetric exploration from any perspective and provide virtual tools for drilling and measuring. We have simulated several cranial base procedures including approaches via the floor of the middle fossa and the lateral petrous bone. The virtual model suitably illustrated the core facts of anatomic spatial relationships while simulating different stages of bone drilling along a variety of surgical corridors. The system was used for teaching during training courses to plan and discuss operative anatomy and strategies. The Virtual Temporal Bone and its surrounding 3-dimensional workspace provide an effective way to study the essential surgical anatomy of this complex region and to teach and train operative strategies, especially when used as an adjunct to cadaver dissections.

  7. 3-dimensional analysis of regenerative endodontic treatment outcome.

    PubMed

    EzEldeen, Mostafa; Van Gorp, Gertrude; Van Dessel, Jeroen; Vandermeulen, Dirk; Jacobs, Reinhilde

    2015-03-01

    A growing body of evidence supports the regeneration potential of dental tissues after regenerative endodontic treatment (RET). Nevertheless, a standard method for the evaluation of RET outcome is lacking. The aim of this study was to develop a standardized quantitative method for RET outcome analysis based on cone-beam computed tomographic (CBCT) volumetric measurements. Five human teeth embedded in mandibular bone samples were scanned using both an Accuitomo 170 CBCT machine (Morita, Kyoto, Japan) and a SkyScan 1174 micro-computed tomographic (μCT) system (SkyScan, Antwerp, Belgium). For subsequent clinical application, clinical data and low-dose CBCT scans (preoperatively and follow-up) from 5 immature permanent teeth treated with RET were retrieved. In vitro and clinical 3-dimensional image data sets were imported into a dedicated software tool. Two segmentation steps were applied to extract the teeth of interest from the surrounding tissue (livewire) and to separate tooth hard tissue and root canal space (level set methods). In vitro and clinical volumetric measurements were assessed separately for differences using Wilcoxon matched pairs test. Pearson correlation analysis and Bland-Altman plots were used to evaluate the relation and agreement between the segmented CBCT and μCT volumes. The results showed no statistical differences and strong agreement between CBCT and μCT volumetric measurements. Volumetric comparison of the root hard tissue showed significant hard tissue formation. (The mean volume of newly formed hard tissue was 27.9 [±10.5] mm(3) [P < .05]). Analysis of 3-dimensional data for teeth treated with RET offers valuable insights into the treatment outcome and patterns of hard tissue formation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  9. Design of 3-dimensional complex airplane configurations with specified pressure distribution via optimization

    NASA Technical Reports Server (NTRS)

    Kubrynski, Krzysztof

    1991-01-01

    A subcritical panel method applied to flow analysis and aerodynamic design of complex aircraft configurations is presented. The analysis method is based on linearized, compressible, subsonic flow equations and indirect Dirichlet boundary conditions. Quadratic dipol and linear source distribution on flat panels are applied. In the case of aerodynamic design, the geometry which minimizes differences between design and actual pressure distribution is found iteratively, using numerical optimization technique. Geometry modifications are modeled by surface transpiration concept. Constraints in respect to resulting geometry can be specified. A number of complex 3-dimensional design examples are presented. The software is adopted to personal computers, and as result an unexpected low cost of computations is obtained.

  10. Sleep Disruption Medical Intervention Forecasting (SDMIF) Module for the Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Brooker, John; Mallis, Melissa; Hursh, Steve; Caldwell, Lynn; Myers, Jerry

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fatigue due to sleep disruption is a condition that could lead to operational errors, potentially resulting in loss of mission or crew. Pharmacological consumables are mitigation strategies used to manage the risks associated with sleep deficits. The likelihood of medical intervention due to sleep disruption was estimated with a well validated sleep model and a Monte Carlo computer simulation in an effort to optimize the quantity of consumables. METHODS: The key components of the model are the mission parameter program, the calculation of sleep intensity and the diagnosis and decision module. The mission parameter program was used to create simulated daily sleep/wake schedules for an ISS increment. The hypothetical schedules included critical events such as dockings and extravehicular activities and included actual sleep time and sleep quality. The schedules were used as inputs to the Sleep, Activity, Fatigue and Task Effectiveness (SAFTE) Model (IBR Inc., Baltimore MD), which calculated sleep intensity. Sleep data from an ISS study was used to relate calculated sleep intensity to the probability of sleep medication use, using a generalized linear model for binomial regression. A human yes/no decision process using a binomial random number was also factored into sleep medication use probability. RESULTS: These probability calculations were repeated 5000 times resulting in an estimate of the most likely amount of sleep aids used during an ISS mission and a 95% confidence interval. CONCLUSIONS: These results were transferred to the parent IMM for further weighting and integration with other medical conditions, to help inform operational decisions. This model is a potential planning tool for ensuring adequate sleep during sleep disrupted periods of a mission.

  11. Modeling Medical Ethics through Intelligent Agents

    NASA Astrophysics Data System (ADS)

    Machado, José; Miranda, Miguel; Abelha, António; Neves, José; Neves, João

    The amount of research using health information has increased dramatically over the last past years. Indeed, a significative number of healthcare institutions have extensive Electronic Health Records (EHR), collected over several years for clinical and teaching purposes, but are uncertain as to the proper circumstances in which to use them to improve the delivery of care to the ones in need. Research Ethics Boards in Portugal and elsewhere in the world are grappling with these issues, but lack clear guidance regarding their role in the creation of and access to EHRs. However, we feel we have an effective way to handle Medical Ethics if we look to the problem under a structured and more rational way. Indeed, we felt that physicians were not aware of the relevance of the subject in their pre-clinical years, but their interest increase when they were exposed to patients. On the other hand, once EHRs are stored in machines, we also felt that we had to find a way to ensure that the behavior of machines toward human users, and perhaps other machines as well, is ethically acceptable. Therefore, in this article we discuss the importance of machine ethics and the need for machines that represent ethical principles explicitly. It is also shown how a machine may abstract an ethical principle from a logical representation of ethical judgments and use that principle to guide its own behavior.

  12. A smart medication recommendation model for the electronic prescription.

    PubMed

    Syed-Abdul, Shabbir; Nguyen, Alex; Huang, Frank; Jian, Wen-Shan; Iqbal, Usman; Yang, Vivian; Hsu, Min-Huei; Li, Yu-Chuan

    2014-11-01

    The report from the Institute of Medicine, To Err Is Human: Building a Safer Health System in 1999 drew a special attention towards preventable medical errors and patient safety. The American Reinvestment and Recovery Act of 2009 and federal criteria of 'Meaningful use' stage 1 mandated e-prescribing to be used by eligible providers in order to access Medicaid and Medicare incentive payments. Inappropriate prescribing has been identified as a preventable cause of at least 20% of drug-related adverse events. A few studies reported system-related errors and have offered targeted recommendations on improving and enhancing e-prescribing system. This study aims to enhance efficiency of the e-prescribing system by shortening the medication list, reducing the risk of inappropriate selection of medication, as well as in reducing the prescribing time of physicians. 103.48 million prescriptions from Taiwan's national health insurance claim data were used to compute Diagnosis-Medication association. Furthermore, 100,000 prescriptions were randomly selected to develop a smart medication recommendation model by using association rules of data mining. The important contribution of this model is to introduce a new concept called Mean Prescription Rank (MPR) of prescriptions and Coverage Rate (CR) of prescriptions. A proactive medication list (PML) was computed using MPR and CR. With this model the medication drop-down menu is significantly shortened, thereby reducing medication selection errors and prescription times. The physicians will still select relevant medications even in the case of inappropriate (unintentional) selection. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Using Modeling to Predict Medical Requirements for Special Operations Missions

    DTIC Science & Technology

    2008-07-30

    military force. Information operations involve adversely affecting the information systems of an adversary.1 Many of these missions are joint...Medical System . In 2007, the Air Force asked NHRC to conduct another proof-of-concept study to demonstrate the benefits of modeling medical supply...are used for this purpose. (NHRC is currently in the process of matching these patient conditions to International Classification of Diseases codes

  14. [Medical product designing model for the "BOP" in China].

    PubMed

    Jiang, Xie-hui; Yan, Zhuang-zhi; Shi, Jun; Wanigasekara, N R

    2006-01-01

    China has a large population under the average economy. This group of people is often referred to those at the Bottom of the Pyramid (BOP). In order to meet their special medical needs, this paper is to discuss a topic on how to create medical products for the "BOP" in China, especially under sustainable developments based on the investigation and analysis in Shanghai. Also, a new possible development model including the government's support, knowledge exchange and communication is introduced.

  15. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty.

    PubMed

    Wijdh-den Hamer, Inez J; Bouma, Wobbe; Lai, Eric K; Levack, Melissa M; Shang, Eric K; Pouch, Alison M; Eperjesi, Thomas J; Plappert, Theodore J; Yushkevich, Paul A; Hung, Judy; Mariani, Massimo A; Khabbaz, Kamal R; Gleason, Thomas G; Mahmood, Feroze; Acker, Michael A; Woo, Y Joseph; Cheung, Albert T; Gillespie, Matthew J; Jackson, Benjamin M; Gorman, Joseph H; Gorman, Robert C

    2016-09-01

    Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Intraoperative transesophageal 2-dimensional echocardiography and 3-dimensional echocardiography were performed in 50 patients undergoing undersized annuloplasty for ischemic mitral regurgitation. Two-dimensional echocardiography annular diameter and tethering parameters were measured in the apical 2- and 4-chamber views. A customized protocol was used to assess 3-dimensional annular geometry and regional leaflet tethering. Recurrence (grade ≥2) was assessed with 2-dimensional transthoracic echocardiography at 6 months. Preoperative 2- and 3-dimensional annular geometry were similar in all patients with ischemic mitral regurgitation. Preoperative 2- and 3-dimensional leaflet tethering were significantly higher in patients with recurrence (n = 13) when compared with patients without recurrence (n = 37). Multivariate logistic regression revealed preoperative 2-dimensional echocardiography posterior tethering angle as an independent predictor of recurrence with an optimal cutoff value of 32.0° (area under the curve, 0.81; 95% confidence interval, 0.68-0.95; P = .002) and preoperative 3-dimensional echocardiography P3 tethering angle as an independent predictor of recurrence with an optimal cutoff value of 29.9° (area under the curve, 0.92; 95% confidence interval, 0.84-1.00; P < .001). The predictive value of the 3-dimensional geometric multivariate model can be augmented by adding basal aneurysm/dyskinesis (area under the curve, 0.94; 95% confidence interval, 0.87-1.00; P < .001). Preoperative 3-dimensional echocardiography P3 tethering angle is a stronger predictor of ischemic mitral regurgitation recurrence after annuloplasty than preoperative 2-dimensional echocardiography posterior

  16. Revisiting "Discrepancy Analysis in Continuing Medical Education: A Conceptual Model"

    ERIC Educational Resources Information Center

    Fox, Robert D.

    2011-01-01

    Based upon a review and analysis of selected literature, the author presents a conceptual model of discrepancy analysis evaluation for planning, implementing, and assessing the impact of continuing medical education (CME). The model is described in terms of its value as a means of diagnosing errors in the development and implementation of CME. The…

  17. Students Are Not Customers: A Better Model for Medical Education.

    ERIC Educational Resources Information Center

    Albanese, Mark

    1999-01-01

    Argues that the student-as-customer model of medical education has many failings that result in educationally dysfunctional interactions. Proposes a new model (based on Deming's 14 principles for quality in business) in which faculty are managers of instruction, students are learning workers, the product is successful learning, and the customers…

  18. Video Editing and Medication to Produce a Therapeutic Self Model

    ERIC Educational Resources Information Center

    Dowrick, Peter W.; Raeburn, John M.

    1977-01-01

    Self-modeling requires the production of a videotape in which the subject is seen to perform in a model way. A 4-year-old "hyperactive" boy, initially under psychotropic medication, was unable to role play suitable behaviors. Video editing was used to produce a videotape that when watched by the subject, had therapeutic effects as compared with an…

  19. Revisiting "Discrepancy Analysis in Continuing Medical Education: A Conceptual Model"

    ERIC Educational Resources Information Center

    Fox, Robert D.

    2011-01-01

    Based upon a review and analysis of selected literature, the author presents a conceptual model of discrepancy analysis evaluation for planning, implementing, and assessing the impact of continuing medical education (CME). The model is described in terms of its value as a means of diagnosing errors in the development and implementation of CME. The…

  20. Students Are Not Customers: A Better Model for Medical Education.

    ERIC Educational Resources Information Center

    Albanese, Mark

    1999-01-01

    Argues that the student-as-customer model of medical education has many failings that result in educationally dysfunctional interactions. Proposes a new model (based on Deming's 14 principles for quality in business) in which faculty are managers of instruction, students are learning workers, the product is successful learning, and the customers…

  1. Medical Updates Number 5 to the International Space Station Probability Risk Assessment (PRA) Model Using the Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Butler, Doug; Bauman, David; Johnson-Throop, Kathy

    2011-01-01

    The Integrated Medical Model (IMM) Project has been developing a probabilistic risk assessment tool, the IMM, to help evaluate in-flight crew health needs and impacts to the mission due to medical events. This package is a follow-up to a data package provided in June 2009. The IMM currently represents 83 medical conditions and associated ISS resources required to mitigate medical events. IMM end state forecasts relevant to the ISS PRA model include evacuation (EVAC) and loss of crew life (LOCL). The current version of the IMM provides the basis for the operational version of IMM expected in the January 2011 timeframe. The objectives of this data package are: 1. To provide a preliminary understanding of medical risk data used to update the ISS PRA Model. The IMM has had limited validation and an initial characterization of maturity has been completed using NASA STD 7009 Standard for Models and Simulation. The IMM has been internally validated by IMM personnel but has not been validated by an independent body external to the IMM Project. 2. To support a continued dialogue between the ISS PRA and IMM teams. To ensure accurate data interpretation, and that IMM output format and content meets the needs of the ISS Risk Management Office and ISS PRA Model, periodic discussions are anticipated between the risk teams. 3. To help assess the differences between the current ISS PRA and IMM medical risk forecasts of EVAC and LOCL. Follow-on activities are anticipated based on the differences between the current ISS PRA medical risk data and the latest medical risk data produced by IMM.

  2. Medical Device Integration Model Based on the Internet of Things.

    PubMed

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  3. Medical Device Integration Model Based on the Internet of Things

    PubMed Central

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  4. Optimization Routine for Generating Medical Kits for Spaceflight Using the Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Graham, Kimberli; Myers, Jerry; Goodenow, Deb

    2017-01-01

    The Integrated Medical Model (IMM) is a MATLAB model that provides probabilistic assessment of the medical risk associated with human spaceflight missions.Different simulations or profiles can be run in which input conditions regarding both mission characteristics and crew characteristics may vary. For each simulation, the IMM records the total medical events that occur and “treats” each event with resources drawn from import scripts. IMM outputs include Total Medical Events (TME), Crew Health Index (CHI), probability of Evacuation (pEVAC), and probability of Loss of Crew Life (pLOCL).The Crew Health Index is determined by the amount of quality time lost (QTL). Previously, an optimization code was implemented in order to efficiently generate medical kits. The kits were optimized to have the greatest benefit possible, given amass and/or volume constraint. A 6-crew, 14-day lunar mission was chosen for the simulation and run through the IMM for 100,000 trials. A built-in MATLAB solver, mixed-integer linear programming, was used for the optimization routine. Kits were generated in 10% increments ranging from 10%-100% of the benefit constraints. Conditions wheremass alone was minimized, volume alone was minimized, and where mass and volume were minimizedjointly were tested.

  5. In vitro measurement of muscle volume with 3-dimensional ultrasound.

    PubMed

    Delcker, A; Walker, F; Caress, J; Hunt, C; Tegeler, C

    1999-05-01

    The aim was to test the accuracy of muscle volume measurements with a new 3-dimensional (3-D) ultrasound system, which allows a freehand scanning of the transducer with an improved quality of the ultrasound images and therefore the outlines of the muscles. Five resected cadaveric hand muscles were insonated and the muscle volumes calculated by 3-D reconstructions of the acquired 2-D ultrasound sections. Intra-reader, inter-reader and follow-up variability were calculated, as well as the volume of the muscle tissue measured by water displacement. In the results, 3-D ultrasound and water displacement measurements showed an average deviation of 10.1%; Data of 3-D ultrasound measurements were: intra-reader variability 2.8%; inter-reader variability 2.4% and follow-up variability 2.3%. 3-D measurements of muscle volume are valid and reliable. Serial sonographic measurements of muscle may be able to quantitate changes in muscle volume that occur in disease and recovery.

  6. Thermal crosstalk in 3-dimensional RRAM crossbar array.

    PubMed

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-27

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  7. Thermal crosstalk in 3-dimensional RRAM crossbar array

    NASA Astrophysics Data System (ADS)

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  8. Thermal crosstalk in 3-dimensional RRAM crossbar array

    PubMed Central

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-01-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537

  9. A 3-Dimensional Printed Ultrasound Probe Visuospatial Trainer.

    PubMed

    McKenna, Ryan T; Dove, Jesse C; Ratzlaff, Robert A; Diaz-Gomez, Jose L; Cox, Daniel J; Simon, Leslie V

    2017-09-04

    Training adult learners to use ultrasound in clinical practice relies on the ability of the learner to apply visuospatial concepts to the anatomy of the human body. We describe a visuospatial trainer that replicates the housing of an ultrasound transducer, through which a linear laser projects light in the same plane and orientation as the ultrasonic sound waves. We use this trainer in combination with a porcine heart dissection laboratory to teach bedside cardiac ultrasound and transthoracic echocardiography (TTE). Off-the-shelf components, including an on/off switch, a laser, and 2 ampere batteries are connected in series and placed inside the 3-dimensional (3D)-printed housing. The trainer's laser emission projects a red line that visually represents the ultrasound's field. Learners project the laser against a porcine or human heart in the orientation of the TTE window they wish to obtain and then dissect the heart in that plane, allowing for visualization of how grayscale images are obtained from 3D structures. Previous research has demonstrated that visuospatial aptitude is correlated with ultrasound procedural performance. We present this trainer and educational method as a specific training intervention that could enhance the visuospatial ability of the ultrasound learner. This visuospatial trainer and educational method present a novel process for enhancing learner understanding of 2-dimensional ultrasound images as they relate to 3D structures. Having a clear understanding of how images are generated in cross section may translate into more proficient adaptation of cardiac ultrasound and TTE.

  10. The first 3-dimensional assemblies of organotin-functionalized polyanions.

    PubMed

    Piedra-Garza, Luis Fernando; Reinoso, Santiago; Dickman, Michael H; Sanguineti, Michael M; Kortz, Ulrich

    2009-08-21

    Reaction of the (CH(3))(2)Sn(2+) electrophile toward trilacunary [A-alpha-XW(9)O(34)](n-) Keggin polytungstates (X = P(V), As(V), Si(IV)) with guanidinium as templating-cation resulted in the isostructural compounds Na[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-PW(9)O(34))] x 9 H(2)O (1), Na[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-AsW(9)O(34))] x 8 H(2)O (2) and Na(2)[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-SiW(9)O(34))] x 10 H(2)O (3). Compounds 1-3 constitute the first 3-dimensional assemblies of organotin-functionalized polyanions, as well as the first example of a dimethyltin-containing tungstosilicate in the case of 3, and they show a similar chiral architecture based on tetrahedrally-arranged {(CH(3))(2)Sn}(3)(A-alpha-XW(9)O(34)) monomeric building-blocks connected via intermolecular Sn-O=W bridges regardless of the size and/or charge of the heteroatom.

  11. Finger Character Recognition Using 3-Dimensional Template Matching

    NASA Astrophysics Data System (ADS)

    Higashiyama, Kazuhiro; Ono, Satoshi; Wang, Yu; Nakayama, Shigeru

    This paper proposes a method for Japanese finger character recognition, using a 3-dimensional (3D) scanner. A hand is a complex dexterous manipulator, evolved to be more complex than any other animals. The hand, being capable of making many different complex shapes, it is ideal for communicating using gestures. The recognition of a whole language, such as the Japanese finger characters, requires the differentiation of subtle similar positioning of each digit. To know the exact 3D position of the hand's digits and overall shape, data gloves had been developed, but these are inconvenient to use. 2D image recognition systems struggle with recreating the 3D information. To capture the 3D information, the proposed method uses a 3D scanner, and then makes matches with 3D templates representing each unique character. Experimental results show that the proposed method recognizes a greater number of characters than existing 2D-based systems with recognition accuracy, on average of 93% for 9 testees, and a peak of over 98% for 4 of them.

  12. The International Intercomparison of 3-Dimensional Radiation Codes

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    I3RC (International Intercomparison of 3-dimensional Radiation Codes) has as its primary goal to compare a wide variety of three-dimensional (3D) radiative transfer methods applied to Earth's atmosphere, with a few selected cloud fields as input, and a few selected radiative quantities as output. Phases 1 and 2 are now complete, and participants represented institutions in Canada, France, Germany, Russia, the United Kingdom, and the USA, who met for two workshops in Tucson, Arizona USA, and compared results from 5 cloud fields of varying complexity, beginning with simplified atmosphere and surface, and proceeding to more realistic cases. Phase 3 is now underway, focusing on improvement and sharing of 3D radiation code, aided by working groups on "Approximations" and "Open Source". The "Approximations" group has so far focused on diffusive approximate methods in an attempt to gain advantages in execution time, and also to advance the understanding of 3D radiation processes. The "Open Source" subgroup is developing a Monte Carlo radiative transfer toolkit that makes state-of-the-art techniques available to a wide range of users. Activities of both subgroups are further explained at the I3RC website http://i3rc.gsfc.nasa.gov. Participants in 13RC are forming a 3D Working Group under the auspices of the International Radiation Commission, and will meet for this and related activities at a workshop in Tucson in November 2002.

  13. Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera.

    PubMed

    Koh, Kyung Suk; Oh, Tae Suk; Kim, Hoon; Chung, In Wook; Lee, Kang Woo; Lee, Hyo Bo; Park, Eun Jung; Jung, Jae Seob; Shin, Il Seob; Ra, Jeong Chan; Choi, Jong Woo

    2012-09-01

    Parry-Romberg disease is a rare condition that results in progressive hemifacial atrophy, involving the skin, dermis, subcutaneous fat, muscle, and, finally, cartilage and bone. Patients have been treated with dermofat or fat grafts or by microvascular free flap transfer. We hypothesized that adipose-derived stem cells (ASCs) may improve the results of microfat grafting through enhancing angiogenesis. We evaluated the utility of ASC in microfat grafting of patients with Parry-Romberg disease by measuring the change in the hemifacial volumes after injection of ASCs with microfat grafts or microfat grafts alone. In April 2008, this investigation was approved by the Korean Food and Drug Administration and the institutional review board of the Asan Medical Center (Seoul, Korea) that monitor investigator-initiated trials. Between May 2008 and January 2009, 10 volunteers with Parry-Romberg disease (5 men and 5 women; mean age, 28 y) were recruited; 5 received ASC and microfat grafts and 5 received microfat grafts only. The mean follow-up period was 15 months. Adipose-derived stem cells were obtained from abdominal fat by liposuction and were cultured for 2 weeks. On day 14, patients were injected with fat grafts alone or plus (in the test group) 1 × 10 ASCs. Patients were evaluated postoperatively using a 3-dimensional camera and 3-dimensional CT scans, and grafted fat volumes were objectively calculated. Successful outcomes were evident in all 5 patients receiving microfat grafts and ASCs, and the survival of grafted fat was better than in patients receiving microfat grafts alone. Before surgery, the mean difference between ipsilateral and contralateral hemiface volume in patients receiving microfat grafts and ASCs was 21.71 mL decreasing to 4.47 mL after surgery. Overall resorption in this ASC group was 20.59%. The mean preoperative difference in hemiface volume in those receiving microfat grafts alone was 8.32 mL decreasing to 3.89 mL after surgery. Overall

  14. An electro-dynamic 3-dimensional vibration test bed for engineering testing

    NASA Astrophysics Data System (ADS)

    Saadatzi, Mohammadsadegh; Saadatzi, Mohammad Nasser; Ahmed, Riaz; Banerjee, Sourav

    2017-04-01

    Primary objective of the work is to design, fabrication and testing of a 3-dimensional Mechanical vibration test bed. Vibration testing of engineering prototype devices in mechanical and industrial laboratories is essential to understand the response of the envisioned model under physical excitation conditions. Typically, two sorts of vibration sources are available in physical environment, acoustical and mechanical. Traditionally, test bed to simulate unidirectional acoustic or mechanical vibration is used in engineering laboratories. However, a device may encounter multiple uncoupled and/or coupled loading conditions. Hence, a comprehensive test bed in essential that can simulate all possible sorts of vibration conditions. In this article, an electrodynamic vibration exciter is presented which is capable of simulating 3-dimensional uncoupled (unidirectional) and coupled excitation, in mechanical environments. The proposed model consists of three electromagnetic shakers (for mechanical excitation). A robust electrical control circuit is designed to regulate the components of the test bed through a self-developed Graphical User Interface. Finally, performance of the test bed is tested and validated using commercially available piezoelectric sensors.

  15. Model selection and inference for censored lifetime medical expenditures.

    PubMed

    Johnson, Brent A; Long, Qi; Huang, Yijian; Chansky, Kari; Redman, Mary

    2016-09-01

    Identifying factors associated with increased medical cost is important for many micro- and macro-institutions, including the national economy and public health, insurers and the insured. However, assembling comprehensive national databases that include both the cost and individual-level predictors can prove challenging. Alternatively, one can use data from smaller studies with the understanding that conclusions drawn from such analyses may be limited to the participant population. At the same time, smaller clinical studies have limited follow-up and lifetime medical cost may not be fully observed for all study participants. In this context, we develop new model selection methods and inference procedures for secondary analyses of clinical trial data when lifetime medical cost is subject to induced censoring. Our model selection methods extend a theory of penalized estimating function to a calibration regression estimator tailored for this data type. Next, we develop a novel inference procedure for the unpenalized regression estimator using perturbation and resampling theory. Then, we extend this resampling plan to accommodate regularized coefficient estimation of censored lifetime medical cost and develop postselection inference procedures for the final model. Our methods are motivated by data from Southwest Oncology Group Protocol 9509, a clinical trial of patients with advanced nonsmall cell lung cancer, and our models of lifetime medical cost are specific to this population. But the methods presented in this article are built on rather general techniques and could be applied to larger databases as those data become available.

  16. Four models of medical education about elder mistreatment.

    PubMed

    Heath, John M; Dyer, Carmel B; Kerzner, Lawrence J; Mosqueda, Laura; Murphy, Carole

    2002-11-01

    The authors describe four models of incorporating elder-mistreatment curricular content and collaboration with adult protective service (APS) community service agencies into geriatrics medical education. Geriatrics education programs at four academic health centers-the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School; the University of California, Irvine College of Medicine; Hennepin County Medical Center, Minneapolis, Minnesota; and Baylor College of Medicine Geriatrics Program at the Harris County Hospital District, Houston, Texas-were surveyed and information collated. All programs incorporated direct interactions between learners and APS workers into their teaching programs. Learners were fellows, residents, and medical students. While two programs provided direct patient care, two others restricted learners to consultant roles, supporting the APS service providers with medical input. In addition to directly meeting curricular training needs of elder abuse and neglect, clinical cases provided valued learning experiences in applied clinical ethics, the role of physicians with community-based programs, the interaction between the medical and legal professions in cases of financial exploitation, and assessment of elder individuals' decision-making capacity. In two programs APS workers also contribute to the assessment of trainees' humanistic competencies. The authors conclude that APS community service agencies can successfully be incorporated into medical training programs to address a wide range of curricular goals.

  17. Flexner's model and the future of medical education.

    PubMed

    Ebert, R H

    1992-11-01

    Less attention has been paid to Flexner's educational philosophy as compared with the recommendations he made to reform American medical education in Bulletin No. 4 of the Carnegie Foundation, the so-called "Flexner Report." His philosophy begins with the education of the child, having much in common with the educational theories of John Dewey, and is based on learning by observing and doing. Flexner believed that all education should be utilitarian and should prepare the individual for the responsibilities of citizenship and for an occupation or a profession. He also believed that general education lasted too long in this country. Based on Flexner's educational philosophy rather than the four-year medical school model that bears his name, the education of the physician is reexamined. Recommendations are made concerning the interface between the last two years of college and the first two years of medical school that would better equip the future physician to face the complexities of medical practice in the next century. Further, if medical schools were given responsibility for graduate medical education, as has been recommended by prestigious committees in the past, it would be possible to integrate the medical school clinical years with those of residency training and thereby improve the educational experience. A consideration of the education of the physician as a continuum, beginning in the third year of college and ending with the conclusion of residency training, also would be entirely consistent with Flexner's educational views.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Semantic concept-enriched dependence model for medical information retrieval.

    PubMed

    Choi, Sungbin; Choi, Jinwook; Yoo, Sooyoung; Kim, Heechun; Lee, Youngho

    2014-02-01

    In medical information retrieval research, semantic resources have been mostly used by expanding the original query terms or estimating the concept importance weight. However, implicit term-dependency information contained in semantic concept terms has been overlooked or at least underused in most previous studies. In this study, we incorporate a semantic concept-based term-dependence feature into a formal retrieval model to improve its ranking performance. Standardized medical concept terms used by medical professionals were assumed to have implicit dependency within the same concept. We hypothesized that, by elaborately revising the ranking algorithms to favor documents that preserve those implicit dependencies, the ranking performance could be improved. The implicit dependence features are harvested from the original query using MetaMap. These semantic concept-based dependence features were incorporated into a semantic concept-enriched dependence model (SCDM). We designed four different variants of the model, with each variant having distinct characteristics in the feature formulation method. We performed leave-one-out cross validations on both a clinical document corpus (TREC Medical records track) and a medical literature corpus (OHSUMED), which are representative test collections in medical information retrieval research. Our semantic concept-enriched dependence model consistently outperformed other state-of-the-art retrieval methods. Analysis shows that the performance gain has occurred independently of the concept's explicit importance in the query. By capturing implicit knowledge with regard to the query term relationships and incorporating them into a ranking model, we could build a more robust and effective retrieval model, independent of the concept importance. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  20. Medical Problem and Document Model for Natural Language Understanding

    PubMed Central

    Meystre, Stephane; Haug, Peter J.

    2003-01-01

    We are developing tools to help maintain a complete, accurate and timely problem list within a general purpose Electronic Medical Record system. As a part of this project, we have designed a system t o automatically retrieve medical problems from free-text documents. Here we describe an information model based on XML (eXtensible Markup Language) and compliant with the CDA (Clinical Document Architecture). This model is used to ease the exchange of clinical data between the Natural Language Understanding application that retrieves potential problems from narrative document, and the problem list management application. PMID:14728214

  1. Medical problem and document model for natural language understanding.

    PubMed

    Meystre, Stephanie; Haug, Peter J

    2003-01-01

    We are developing tools to help maintain a complete, accurate and timely problem list within a general purpose Electronic Medical Record system. As a part of this project, we have designed a system to automatically retrieve medical problems from free-text documents. Here we describe an information model based on XML (eXtensible Markup Language) and compliant with the CDA (Clinical Document Architecture). This model is used to ease the exchange of clinical data between the Natural Language Understanding application that retrieves potential problems from narrative document, and the problem list management application.

  2. The 3-dimensional numerical simulation of artificially altitude-triggered negative lightning

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Chen, Bin; Shi, Lihua; Chen, Qiang

    2013-03-01

    A 3-dimensional numerical model for artificially altitude-triggered negative lightning is developed based on an analytic thunderstorm model and the Dielectric Breakdown Model (DBM). Two major parameters are concerned, they are the thundercloud electric field and the length of the nylon wire which isolates the triggering wire from the ground. A few groups of contrast numerical experiments are done to study their effects on the success rates of altitude-triggered lightning. It is found that the success rates of altitude-triggered lightning increase when the thundercloud electric field enhances or the length of the nylon wire increases. Another interesting phenomenon is that the upward positive leader is always initiated earlier than the downward negative leader in either case.

  3. E-mail communication between medical students and schoolchildren: A model for medical education.

    PubMed

    Bernhardt, A M; Dalton, M A; Sargent, J D; Stevens, M M

    2000-12-01

    To examine e-mail communication between student physicians and schoolchildren, in the context of a school-based tobacco prevention program, as a way to teach communication skills and model physician-patient interactions. Twenty medical students and pediatric residents were partnered with groups of children as part of HealthQuest, a tobacco prevention program implemented in 2 kindergarten through grade 12 Vermont schools. Medical students and residents acted as mentors for their group and provided support to the schoolchildren through e-mail and occasional site visits. E-mail messages were transmitted and stored in a Web server and monitored by preceptors. Content analysis of the messages was performed to identify emerging themes. During the 2-year intervention period, 1187 messages were exchanged between children, teachers, and the student physicians. Thirty-two percent (n = 383) of the messages involved tobacco, of which 54% addressed health effects; 23% were related to social influences of tobacco use, 15% to cessation by parents and others, and 7% to cessation by students. Other categories included nontobacco health issues (n = 135), personal questions (n = 294), and classroom information (n = 735). Many inquiries required medical students and residents to research their answers, and several required collaboration with preceptors, because the questions raised serious medical or psychosocial issues. With feedback, medical students and residents adjusted their responses so that they were appropriate for the developmental level of the children. The e-mail component of this program provided important learning opportunities for student physicians in tobacco control, child development, communication skills, and developing a physician-patient relationship. This model also offers potential benefits for medically underserved pediatric populations. Arch Pediatr Adolesc Med. 2000;154:1258-1262.

  4. Visual computing model for immune system and medical system.

    PubMed

    Gong, Tao; Cao, Xinxue; Xiong, Qin

    2015-01-01

    Natural immune system is an intelligent self-organizing and adaptive system, which has a variety of immune cells with different types of immune mechanisms. The mutual cooperation between the immune cells shows the intelligence of this immune system, and modeling this immune system has an important significance in medical science and engineering. In order to build a comprehensible model of this immune system for better understanding with the visualization method than the traditional mathematic model, a visual computing model of this immune system was proposed and also used to design a medical system with the immune system, in this paper. Some visual simulations of the immune system were made to test the visual effect. The experimental results of the simulations show that the visual modeling approach can provide a more effective way for analyzing this immune system than only the traditional mathematic equations.

  5. Video Based Sensor for Tracking 3-Dimensional Targets

    NASA Technical Reports Server (NTRS)

    Howard, R. T.; Book, Michael L.; Bryan, Thomas C.

    2000-01-01

    Video-Based Sensor for Tracking 3-Dimensional Targets The National Aeronautics and Space Administration's (NASAs) Marshall Space Flight Center (MSFC) has been developing and testing video-based sensors for automated spacecraft guidance for several years, and the next generation of video sensor will have tracking rates up to 100 Hz and will be able to track multiple reflectors and targets. The Video Guidance Sensor (VGS) developed over the past several years has performed well in testing and met the objective of being used as the terminal guidance sensor for an automated rendezvous and capture system. The first VGS was successfully tested in closed-loop 3-degree-of-freedom (3- DOF) tests in 1989 and then in 6-DOF open-loop tests in 1992 and closed-loop tests in 1993-4. Development and testing continued, and in 1995 approval was given to test the VGS in an experiment on the Space Shuttle. The VGS flew in 1997 and in 1998, performing well for both flights. During the development and testing before, during, and after the flight experiments, numerous areas for improvement were found. The VGS was developed with a sensor head and an electronics box, connected by cables. The VGS was used in conjunction with a target that had wavelength-filtered retro-reflectors in a specific pattern, The sensor head contained the laser diodes, video camera, and heaters and coolers. The electronics box contained a frame grabber, image processor, the electronics to control the components in the sensor head, the communications electronics, and the power supply. The system works by sequentially firing two different wavelengths of laser diodes at the target and processing the two images. Since the target only reflects one wavelength, it shows up well in one image and not at all in the other. Because the target's dimensions are known, the relative positions and attitudes of the target and the sensor can be computed from the spots reflected from the target. The system was designed to work from I

  6. Integrated Medical Model (IMM) 4.0 Enhanced Functionalities

    NASA Technical Reports Server (NTRS)

    Young, M.; Keenan, A. B.; Saile, L.; Boley, L. A.; Walton, M. E.; Shah, R. V.; Kerstman, E. L.; Myers, J. G.

    2015-01-01

    The Integrated Medical Model is a probabilistic simulation model that uses input data on 100 medical conditions to simulate expected medical events, the resources required to treat, and the resulting impact to the mission for specific crew and mission characteristics. The newest development version of IMM, IMM v4.0, adds capabilities that remove some of the conservative assumptions that underlie the current operational version, IMM v3. While IMM v3 provides the framework to simulate whether a medical event occurred, IMMv4 also simulates when the event occurred during a mission timeline. This allows for more accurate estimation of mission time lost and resource utilization. In addition to the mission timeline, IMMv4.0 features two enhancements that address IMM v3 assumptions regarding medical event treatment. Medical events in IMMv3 are assigned the untreated outcome if any resource required to treat the event was unavailable. IMMv4 allows for partially treated outcomes that are proportional to the amount of required resources available, thus removing the dichotomous treatment assumption. An additional capability IMMv4 is to use an alternative medical resource when the primary resource assigned to the condition is depleted, more accurately reflecting the real-world system. The additional capabilities defining IMM v4.0the mission timeline, partial treatment, and alternate drug result in more realistic predicted mission outcomes. The primary model outcomes of IMM v4.0 for the ISS6 mission, including mission time lost, probability of evacuation, and probability of loss of crew life, are be compared to those produced by the current operational version of IMM to showcase enhanced prediction capabilities.

  7. A new preclinical 3-dimensional agarose colony formation assay.

    PubMed

    Kajiwara, Yoshinori; Panchabhai, Sonali; Levin, Victor A

    2008-08-01

    The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines. Colonies were grown in a two-tiered agarose that had 0.7% agarose on the bottom and 0.3% agarose on top. We then studied the effects of DFMO, carboplatin, and SAHA over a 3-log dose range and over multiple days of drug exposure. Using GelCount we approximated the area under the curve (AUC) of colony volumes as the sum of colony volumes (microm2xOD) in each plate to calculate IC50 values. Adenocarcinoma colonies were recognized by GelCount scanning at 3-4 days, while it took 6-7 days to detect glioma colonies. The growth rate of MiaPaCa and SW480 cells was rapid, with 100 colonies counted in 5-6 days; glioma cells grew more slowly, with 100 colonies counted in 9-10 days. Reliable log dose versus AUC curves were observed for all drugs studied. In conclusion, the GelCount method that we describe is more quantitative than traditional colony assays and allows precise study of drug effects with respect to both dose and time of exposure using fewer culture plates.

  8. Distance stereotest using a 3-dimensional monitor for adult subjects.

    PubMed

    Kim, Jongshin; Yang, Hee Kyung; Kim, Youngmin; Lee, Byoungho; Hwang, Jeong-Min

    2011-06-01

    To evaluate the validity and test-retest reliability of a contour-based 3-dimensional (3-D) monitor distance stereotest (distance 3-D stereotest) and to measure the maximum horizontal disparity that can be fused with disparity vergence for determining the largest measurable disparity of true stereopsis. Observational case series. Sixty-four normal adult subjects (age range, 23 to 39 years) were recruited. Contour-based circles (crossed disparity, 5000 to 20 seconds of arc; Microsoft Visual Studio C(++) 6.0; Microsoft, Inc, Seattle, Washington, USA) were generated on a 3-D monitor (46-inch stereoscopic display) using polarization glasses and were presented to subjects with normal binocularity at 3 m. While the position of the stimulus changed among 4 possible locations, the subjects were instructed to press the corresponding position of the stimulus on a keypad. The results with the new distance 3-D stereotest were compared with those from the distance Randot stereotest. The results of the distance 3-D stereotest and the distance Randot stereotests were identical in 64% and within 1 disparity level in 97% of normal adults. Scores obtained with the 2 tests showed a statistically significant correlation (r = 0.324, P = .009). The half-width of the 95% limit of agreement was 0.47 log seconds of arc (1.55 octaves) using the distance 3-D stereotest--similar to or better than that obtained with conventional distance stereotests. The maximum binocular disparity that can be fused with vergence was 1828 ± 794 seconds of arc (range, 4000 to 500). The distance 3-D stereotest showed good concordance with the distance Randot stereotest and relatively good test-retest reliability, supporting the validity of the distance 3-D stereotest. The normative data set obtained from the present study can serve as a useful reference for quantitative assessment of a wide range of binocular sensory abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. 3-Dimensional shear wave elastography of breast lesions

    PubMed Central

    Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning

    2016-01-01

    Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820

  10. Role modelling in medical education: the importance of teaching skills.

    PubMed

    Burgess, Annette; Oates, Kim; Goulston, Kerry

    2016-04-01

    By observation of role models, and participation in activities, students develop their attitudes, values and professional competencies. Literature suggests that clinical skills and knowledge, personality, and teaching skills are three main areas that students consider central to the identification of positive role models. The aim of this study was to explore junior medical students' opinions of the ideal attributes of a good role model in clinical tutors. The study was conducted with one cohort (n = 301) of students who had completed year 1 of the medical programme in 2013. All students were asked to complete a questionnaire regarding the ideal attributes of a good role model in a clinical tutor. The questionnaire consisted of seven closed items and one open-ended question. The response rate to the questionnaire was 265/301 (88%). Although students found all three key areas important in a good role model, students emphasised the importance of excellence in teaching skills. Specifically, students see good role models as being able to provide a constructive learning environment, a good understanding of the curriculum and an ability to cater to the learning needs of all students. Students see good role models as being able to provide a constructive learning environment While acknowledging the importance of a patient-centred approach, as well as clinical knowledge and skills, our findings reinforce the importance of the actual teaching abilities of role models within medical education. © 2015 John Wiley & Sons Ltd.

  11. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang

    2015-11-01

    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).

  12. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct.

    PubMed

    Rouwkema, Jeroen; de Boer, Jan; Van Blitterswijk, Clemens A

    2006-09-01

    To engineer tissues with clinically relevant dimensions, one must overcome the challenge of rapidly creating functional blood vessels to supply cells with oxygen and nutrients and to remove waste products. We tested the hypothesis that endothelial cells, cocultured with osteoprogenitor cells, can organize into a prevascular network in vitro. When cultured in a spheroid coculture model with human mesenchymal stem cells, human umbilical vein endothelial cells (HUVECs) form a 3-dimensional prevascular network within 10 days of in vitro culture. The formation of the prevascular network was promoted by seeding 2% or fewer HUVECs. Moreover, the addition of endothelial cells resulted in a 4-fold upregulation of the osteogenic marker alkaline phosphatase. The addition of mouse embryonic fibroblasts did not result in stabilization of the prevascular network. Upon implantation, the prevascular network developed further and structures including lumen could be seen regularly. However, anastomosis with the host vasculature was limited. We conclude that endothelial cells are able to form a 3-dimensional (3D) prevascular network in vitro in a bone tissue engineering setting. This finding is a strong indication that in vitro prevascularization is a promising strategy to improve implant vascularization in bone tissue engineering.

  13. The regulation of cognitive enhancement devices: extending the medical model

    PubMed Central

    Maslen, Hannah; Douglas, Thomas; Cohen Kadosh, Roi; Levy, Neil; Savulescu, Julian

    2014-01-01

    This article presents a model for regulating cognitive enhancement devices (CEDs). Recently, it has become very easy for individuals to purchase devices which directly modulate brain function. For example, transcranial direct current stimulators are increasingly being produced and marketed online as devices for cognitive enhancement. Despite posing risks in a similar way to medical devices, devices that do not make any therapeutic claims do not have to meet anything more than basic product safety standards. We present the case for extending existing medical device legislation to cover CEDs. Medical devices and CEDs operate by the same or similar mechanisms and pose the same or similar risks. This fact coupled with the arbitrariness of the line between treatment and enhancement count in favour of regulating these devices in the same way. In arguing for this regulatory model, the paper highlights potential challenges to its implementation, and suggests solutions. PMID:25243073

  14. Object-oriented modeling of patients in a medical federation.

    PubMed

    Proctor, M D; Creech, G S

    2001-09-01

    This research explores the development of an object-oriented model to support inter-operation of simulations within a federation for the purpose of conducting medical analysis and training over a distributed infrastructure. The medical federation is referred to as the combat trauma patient simulation system and is composed using high level architecture. The infrastructure contains components that were separately developed and are heterogeneous in nature. This includes a general anatomical computer database capable of generating human injuries, referred to as operational requirements-based casualty assessment, an animated mannequin called the human patient simulator, and other components. The research develops an object model that enables bodily injury data to be shared across the simulation, conducts analysis on that data, and considers possible applications of the technique in expanded medical infrastructures.

  15. Creation of a Bariatric Surgery Medication Therapy Management Model.

    PubMed

    Schuh, Michael J

    2015-07-01

    To describe how pharmacist-provided medication therapy management (MTM) services can be applied to bariatric surgery. A pharmacy MTM consult service located in a multispecialty medical clinic with a bariatric department attached to a hospital where bariatric surgeries are performed. MTM bariatric surgery office practice where patients are seen before surgery by a pharmacist to identify medication problems and determine how best to administer alternative dosage forms post-operatively to patients. Practice innovations are a creation of a specialized service and accompanying specialized medication database within a pharmacotherapy practice. Outcome measures are number of patients referred per month and polypharmacy consults scheduled downstream from the bariatric surgery. Improved patient outcomes and prescribing efficiency from usage of the newly developed database of drugs that can be crushed. All bariatric patients are now referred to the pharmacist MTM pharmacotherapy service for medication review before bariatric surgery. Bariatric surgery is a source of another useful MTM practice model. Utilizing MTM pharmacists to consult with bariatric patients presurgery helps ease the physician burden of writing alternative dose prescriptions and helps identify medication problems with patients before their surgery.

  16. Implications of the Hospitalist Model for Medical Students' Education.

    ERIC Educational Resources Information Center

    Hauer, Karen E.; Wachter, Robert M.

    2001-01-01

    Proposes a research agenda to investigate the educational impact for medical students of the hospitalist model, suggests strategies to mitigate the limitations in students' exposures to subspecialty faculty, and recommends professional development in teaching for hospitalists to ensure that student education thrives in this new environment of…

  17. Medical preparedness: Chernobyl as a model for southeastern Michigan

    SciTech Connect

    Rogers, F.J.; Apsey, D.; Kantor, K.; Hann, E.; Dienst, S.

    1987-08-07

    The Detroit Chapter of Physicians for Social Responsibility developed a project to evaluate the potential response of the local medical community to a small nuclear disaster involving radiation injuries. The model was patterned after the Chernobyl nuclear power plant disaster of April 26, 1986. They surveyed the potential response to a hypothetical disaster at the Enrico Fermi II nuclear reactor located south of Detroit.

  18. Performance analysis of a medical record exchanges model.

    PubMed

    Huang, Ean-Wen; Liou, Der-Ming

    2007-03-01

    Electronic medical record exchange among hospitals can provide more information for physician diagnosis and reduce costs from duplicate examinations. In this paper, we proposed and implemented a medical record exchange model. According to our study, exchange interface servers (EISs) are designed for hospitals to manage the information communication through the intra and interhospital networks linked with a medical records database. An index service center can be given responsibility for managing the EIS and publishing the addresses and public keys. The prototype system has been implemented to generate, parse, and transfer the health level seven query messages. Moreover, the system can encrypt and decrypt a message using the public-key encryption algorithm. The queuing theory is applied to evaluate the performance of our proposed model. We estimated the service time for each queue of the CPU, database, and network, and measured the response time and possible bottlenecks of the model. The capacity of the model is estimated to process the medical records of about 4000 patients/h in the 1-MB network backbone environments, which comprises about the 4% of the total outpatients in Taiwan.

  19. Trust and risk: a model for medical education.

    PubMed

    Damodaran, Arvin; Shulruf, Boaz; Jones, Philip

    2017-09-01

    Health care delivery, and therefore medical education, is an inherently risky business. Although control mechanisms, such as external audit and accreditation, are designed to manage risk in clinical settings, another approach is 'trust'. The use of entrustable professional activities (EPAs) represents a deliberate way in which this is operationalised as a workplace-based assessment. Once engaged with the concept, clinical teachers and medical educators may have further questions about trust. This narrative overview of the trust literature explores how risk, trust and control intersect with current thinking in medical education, and makes suggestions for potential directions of enquiry. Beyond EPAs, the importance of trust in health care and medical education is reviewed, followed by a brief history of trust research in the wider literature. Interpersonal and organisational levels of trust and a model of trust from the management literature are used to provide the framework with which to decipher trust decisions in health care and medical education, in which risk and vulnerability are inherent. In workplace learning and assessment, the language of 'trust' may offer a more authentic and practical vocabulary than that of 'competency' because clinical and professional risks are explicitly considered. There are many other trust relationships in health care and medical education. At the most basic level, it is helpful to clearly delineate who is the trustor, the trustee, and for what task. Each relationship has interpersonal and organisational elements. Understanding and considered utilisation of trust and control mechanisms in health care and medical education may lead to systems that maturely manage risk while actively encouraging trust and empowerment. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  20. Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.

    PubMed

    Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur

    2017-03-01

    Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (P<.001). The largest dimensional changes were detected in the anterior abutments of both of the definitive casts. The changes mostly occurred in the mesiodistal dimension (P<.001). Within the limitations of this in vitro study, the accuracy of presectioned and postsectioned definitive casts is susceptible

  1. Use of Animal Models to Develop Antiaddiction Medications

    PubMed Central

    Gardner, Eliot L.

    2008-01-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric “high” produced by acute administration of addictive drugs; the dysphoric “crash” produced by acute withdrawal, drug-seeking, and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines. PMID:18803910

  2. Use of animal models to develop antiaddiction medications.

    PubMed

    Gardner, Eliot L

    2008-10-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric "high" produced by acute administration of addictive drugs; the dysphoric "crash" produced by acute withdrawal; drug-seeking and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines.

  3. Integrated Medical Model Project - Overview and Summary of Historical Application

    NASA Technical Reports Server (NTRS)

    Myers, J.; Boley, L.; Butler, D.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; Shah, R.; Garcia, Y.; Sirmons, B.; Walton, M.

    2015-01-01

    Introduction: The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project. Methods: Figure 1 [see document] illustrates the IMM modeling system and scenario process. As illustrated, the IMM computational architecture is based on Probabilistic Risk Assessment techniques. Nineteen assumptions and limitations define the IMM application domain. Scenario definitions include crew medical attributes and mission specific details. The IMM forecasts probabilities of loss of crew life (LOCL), evacuation (EVAC), quality time lost during the mission, number of medical resources utilized and the number and type of medical events by combining scenario information with in-flight, analog, and terrestrial medical information stored in the iMED. In addition, the metrics provide the integrated information necessary to estimate optimized in-flight medical kit contents under constraints of mass and volume or acceptable level of mission risk. Results and Conclusions

  4. Biomechanical Properties of 3-Dimensional Printed Volar Locking Distal Radius Plate: Comparison With Conventional Volar Locking Plate.

    PubMed

    Kim, Sung-Jae; Jo, Young-Hoon; Choi, Wan-Sun; Lee, Chang-Hun; Lee, Bong-Gun; Kim, Joo-Hak; Lee, Kwang-Hyun

    2017-09-01

    This study evaluated the biomechanical properties of a new volar locking plate made by 3-dimensional printing using titanium alloy powder and 2 conventional volar locking plates under static and dynamic loading conditions that were designed to replicate those seen during fracture healing and early postoperative rehabilitation. For all plate designs, 12 fourth-generation synthetic composite radii were fitted with volar locking plates according to the manufacturers' technique after segmental osteotomy. Each specimen was first preloaded 10 N and then was loaded to 100 N, 200 N, and 300 N in phases at a rate of 2 N/s. Each construct was then dynamically loaded for 2,000 cycles of fatigue loading in each phase for a total 10,000 cycles. Finally, the constructs were loaded to a failure at a rate of 5 mm/min. All 3 plates showed increasing stiffness at higher loads. The 3-dimensional printed volar locking plate showed significantly higher stiffness at all dynamic loading tests compared with the 2 conventional volar locking plates. The 3-dimensional printed volar locking plate had the highest yield strength, which was significantly higher than those of 2 conventional volar locking plates. A 3-dimensional printed volar locking plate has similar stiffness to conventional plates in an experimental model of a severely comminuted distal radius fracture in which the anterior and posterior metaphyseal cortex are involved. These results support the potential clinical utility of 3-dimensional printed volar locking plates in which design can be modified according the fracture configuration and the anatomy of the radius. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability

    PubMed Central

    Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad

    2015-01-01

    Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768

  6. Medical data mining by fuzzy modeling with selected features.

    PubMed

    Ghazavi, Sean N; Liao, Thunshun W

    2008-07-01

    Medical data is often very high dimensional. Depending upon the use, some data dimensions might be more relevant than others. In processing medical data, choosing the optimal subset of features is such important, not only to reduce the processing cost but also to improve the usefulness of the model built from the selected data. This paper presents a data mining study of medical data with fuzzy modeling methods that use feature subsets selected by some indices/methods. Specifically, three fuzzy modeling methods including the fuzzy k-nearest neighbor algorithm, a fuzzy clustering-based modeling, and the adaptive network-based fuzzy inference system are employed. For feature selection, a total of 11 indices/methods are used. Medical data mined include the Wisconsin breast cancer dataset and the Pima Indians diabetes dataset. The classification accuracy and computational time are reported. To show how good the best performer is, the globally optimal was also found by carrying out an exhaustive testing of all possible combinations of feature subsets with three features. For the Wisconsin breast cancer dataset, the best accuracy of 97.17% was obtained, which is only 0.25% lower than that was obtained by exhaustive testing. For the Pima Indians diabetes dataset, the best accuracy of 77.65% was obtained, which is only 0.13% lower than that obtained by exhaustive testing. This paper has shown that feature selection is important to mining medical data for reducing processing time and for increasing classification accuracy. However, not all combinations of feature selection and modeling methods are equally effective and the best combination is often data-dependent, as supported by the breast cancer and diabetes data analyzed in this paper.

  7. The Integrated Medical Model: Outcomes from Independent Review

    NASA Technical Reports Server (NTRS)

    Myers, J.; Garcia, Y.; Griffin, D.; Arellano, J.; Boley, L.; Goodenow, D. A.; Kerstman, E.; Reyes, D.; Saile, L.; Walton, M.; hide

    2017-01-01

    In 2016, the Integrated Medical Model (IMM) v4.0 underwent an extensive external review in preparation for transition to an operational status. In order to insure impartiality of the review process, the Exploration Medical Capabilities Element of NASA's Human Research Program convened the review through the Systems Review Office at NASA Goddard Space Flight Center (GSFC). The review board convened by GSFC consisted of persons from both NASA and academia with expertise in the fields of statistics, epidemiology, modeling, software development, aerospace medicine, and project management (see Figure 1). The board reviewed software and code standards, as well as evidence pedigree associated with both the input and outcomes information. The board also assesses the models verification, validation, sensitivity to parameters and ability to answer operational questions. This talk will discuss the processes for designing the review, how the review progressed and the findings from the board, as well as summarize the IMM project responses to those findings. Overall, the board found that the IMM is scientifically sound, represents a necessary, comprehensive approach to identifying medical and environmental risks facing astronauts in long duration missions and is an excellent tool for communication between engineers and physicians. The board also found IMM and its customer(s) should convene an additional review of the IMM data sources and to develop a sustainable approach to augment, peer review, and maintain the information utilized in the IMM. The board found this is critically important because medical knowledge continues to evolve. Delivery of IMM v4.0 to the Crew Health and Safety (CHS) Program will occur in the 2017. Once delivered for operational decision support, IMM v4.0 will provide CHS with additional quantitative capability in to assess astronaut medical risks and required medical capabilities to help drive down overall mission risks.

  8. Real-time 3-dimensional echocardiography for prosthetic valve endocarditis: initial experience.

    PubMed

    Kort, Smadar

    2006-02-01

    Real-time 3-dimensional echocardiography is a relatively new technology with rapidly growing potential applications. Prosthetic valve endocarditis is still a challenging diagnosis despite improvements in image qualities obtained by both transthoracic and transesophageal echocardiograms. The purpose of this article is to present 4 cases of suggested prosthetic valve endocarditis, in which real-time 3-dimensional echocardiography was performed, and to discuss the potential use of real-time 3-dimensional echocardiography for this application.

  9. Validation of a modified Medical Resource Model for mass gatherings.

    PubMed

    Smith, Wayne P; Tuffin, Heather; Stratton, Samuel J; Wallis, Lee A

    2013-02-01

    A modified Medical Resource Model to predict the medical resources required at mass gatherings based on the risk profile of events has been developed. This study was undertaken to validate this tool using data from events held in both a developed and a developing country. A retrospective study was conducted utilizing prospectively gathered data from individual events at Old Trafford Stadium in Manchester, United Kingdom, and Ellis Park Stadium, Johannesburg, South Africa. Both stadia are similar in design and spectator capacity. Data for Professional Football as well as Rugby League and Rugby Union (respectively) matches were used for the study. The medical resources predicted for the events were determined by entering the risk profile of each of the events into the Medical Resource Model. A recently developed South African tool was used to predetermine medical staffing for mass gatherings. For the study, the medical resources actually required to deal with the patient load for events within the control sample from the two stadia were compared with the number of needed resources predicted by the Medical Resource Model when that tool was applied retrospectively to the study events. The comparison was used to determine if the newly developed tool was either over- or under-predicting the resource requirements. In the case of Ellis Park, the model under-predicted the basic life support (BLS) requirement for 1.5% of the events in the data set. Mean over-prediction was 209.1 minutes for BLS availability. Old Trafford displayed no events for which the Medical Resource Model would have under-predicted. The mean over-prediction of BLS availability for Old Trafford was 671.6 minutes. The intermediate life support (ILS) requirement for Ellis Park was under-predicted for seven of the total 66 events (10.6% of the events), all of which had one factor in common, that being relatively low spectator attendance numbers. Modelling for ILS at Old Trafford did not under-predict for

  10. A Cellular Automata Model of Infection Control on Medical Implants.

    PubMed

    Prieto-Langarica, Alicia; Kojouharov, Hristo; Chen-Charpentier, Benito; Tang, Liping

    2011-06-01

    S. epidermidis infections on medically implanted devices are a common problem in modern medicine due to the abundance of the bacteria. Once inside the body, S. epidermidis gather in communities called biofilms and can become extremely hard to eradicate, causing the patient serious complications. We simulate the complex S. epidermidis-Neutrophils interactions in order to determine the optimum conditions for the immune system to be able to contain the infection and avoid implant rejection. Our cellular automata model can also be used as a tool for determining the optimal amount of antibiotics for combating biofilm formation on medical implants.

  11. Ranking Medical Subject Headings using a factor graph model.

    PubMed

    Wei, Wei; Demner-Fushman, Dina; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2015-01-01

    Automatically assigning MeSH (Medical Subject Headings) to articles is an active research topic. Recent work demonstrated the feasibility of improving the existing automated Medical Text Indexer (MTI) system, developed at the National Library of Medicine (NLM). Encouraged by this work, we propose a novel data-driven approach that uses semantic distances in the MeSH ontology for automated MeSH assignment. Specifically, we developed a graphical model to propagate belief through a citation network to provide robust MeSH main heading (MH) recommendation. Our preliminary results indicate that this approach can reach high Mean Average Precision (MAP) in some scenarios.

  12. Expanded medical home model works for children in foster care.

    PubMed

    Jaudes, Kienberger Paula; Champagne, Vince; Harden, Allen; Masterson, James; Bilaver, Lucy A

    2012-01-01

    The Illinois Child Welfare Department implemented a statewide health care system to ensure that children in foster care obtain quality health care by providing each child with a medical home. This study demonstrates that the Medical Home model works for children in foster care providing better health outcomes in higher immunization rates.These children used the health care system more effectively and cost-effective as reflected in the higher utilization rates of primary care and well-child visits and lower utilization of emergency room care for children with chronic conditions.

  13. Leasing vs. owning a medical office: an analytical model.

    PubMed

    Tolbert, Samuel H; Wood, Carol P

    2007-01-01

    Physicians often face a major financial dilemma: To lease or own their medical office. This article takes a set of typical assumptions for a real estate market and analyzes the capital costs, cash flow, and investment implications of the option of leasing a medical office versus owning a similar property. The paper analyzes the financial aspects of each option and the impact on net physician income and potential return-on-investment. A model for analysis is presented that can be used by practitioners who advise physicians in such decision-making.

  14. [A practicable model of a secure electronic medical record system].

    PubMed

    Zhu, Yuan-zhong; Zhong, Le-Haiz

    2006-09-01

    In this article, a new application model has been given for digital signing technology used in the Electronic Medical Record system, which uses digital signature to implement authentication mechanism and doctor signing, and uses a notarial digital signature server to implement the third party's digital signature for notarial mechanism. It can prevent the others from modifying the doctor's record and prevent the doctor himself from modifying the record as well. Case history database preserves signed data to ensure the authenticity and validity, in law, of the Electronic Medical Record.

  15. Curriculum inventory: Modeling, sharing and comparing medical education programs.

    PubMed

    Ellaway, Rachel H; Albright, Susan; Smothers, Valerie; Cameron, Terri; Willett, Timothy

    2014-03-01

    Abstract descriptions of how curricula are structured and run. The American National Standards Institute (ANSI) MedBiquitous Curriculum Inventory Standard provides a technical syntax through which a wide range of different curricula can be expressed and subsequently compared and analyzed. This standard has the potential to shift curriculum mapping and reporting from a somewhat disjointed and institution-specific undertaking to something that is shared among multiple medical schools and across whole medical education systems. Given the current explosion of different models of curricula (time-free, competency-based, socially accountable, distributed, accelerated, etc.), the ability to consider this diversity using a common model has particular value in medical education management and scholarship. This article describes the development and structure of the Curriculum Inventory Standard as a way of standardizing the modeling of different curricula for audit, evaluation and research purposes. It also considers the strengths and limitations of the current standard and the implications for a medical education world in which this level of commonality, precision, and accountability for curricular practice is the norm rather than the exception.

  16. Towards a genuinely medical model for psychiatric nosology

    PubMed Central

    2012-01-01

    Psychiatric nosology is widely criticized, but solutions are proving elusive. Planned revisions of diagnostic criteria will not resolve heterogeneity, comorbidity, fuzzy boundaries between normal and pathological, and lack of specific biomarkers. Concern about these difficulties reflects a narrow model that assumes most mental disorders should be defined by their etiologies. A more genuinely medical model uses understanding of normal function to categorize pathologies. For instance, understanding the function of a cough guides the search for problems causing it, and decisions about when it is expressed abnormally. Understanding the functions of emotions is a foundation missing from decisions about emotional disorders. The broader medical model used by the rest of medicine also recognizes syndromes defined by failures of functional systems or failures of feedback control. Such medical syndromes are similar to many mental diagnoses in their multiple causes, blurry boundaries, and nonspecific biomarkers. Dissatisfaction with psychiatric nosology may best be alleviated, not by new diagnostic criteria and categories, but by more realistic acknowledgment of the untidy landscape of mental and other medical disorders. PMID:22244350

  17. Assessment of Medical Risks and Optimization of their Management using Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Fitts, Mary A.; Madurai, Siram; Butler, Doug; Kerstman, Eric; Risin, Diana

    2008-01-01

    The Integrated Medical Model (IMM) Project is a software-based technique that will identify and quantify the medical needs and health risks of exploration crew members during space flight and evaluate the effectiveness of potential mitigation strategies. The IMM Project employs an evidence-based approach that will quantify probability and consequences of defined in-flight medical risks, mitigation strategies, and tactics to optimize crew member health. Using stochastic techniques, the IMM will ultimately inform decision makers at both programmatic and institutional levels and will enable objective assessment of crew health and optimization of mission success using data from relevant cohort populations and from the astronaut population. The objectives of the project include: 1) identification and documentation of conditions that may occur during exploration missions (Baseline Medical Conditions List [BMCL), 2) assessment of the likelihood of conditions in the BMCL occurring during exploration missions (incidence rate), 3) determination of the risk associated with these conditions and quantify in terms of end states (Loss of Crew, Loss of Mission, Evacuation), 4) optimization of in-flight hardware mass, volume, power, bandwidth and cost for a given level of risk or uncertainty, and .. validation of the methodologies used.

  18. Medical simulation: Overview, and application to wound modelling and management

    PubMed Central

    Pai, Dinker R.; Singh, Simerjit

    2012-01-01

    Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a) overall increase in the number of medical students vis-à-vis the availability of patients; b) increasing awareness among patients of their rights and consequent increase in litigations and c) tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body) and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality) simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research. PMID:23162218

  19. Medical Students' Perceptions of Clinical Teachers as Role Model.

    PubMed

    Haider, Sonia Ijaz; Snead, David R J; Bari, Muhammad Furqan

    2016-01-01

    Role models facilitate student learning and assists in the development of professional identity. However, social organization and cultural values influence the choice of role models. Considering that the social organization and cultural values in South East Asia are different from other countries, it is important to know whether this affects the characteristics medical students look for in their role models in these societies. A 32 item questionnaire was developed and self-administered to undergraduate medical students. Participants rated the characteristics on a three point scale (0 = not important, 1 = mildly important, 2 = very important). One way ANOVA and student's t-test were used to compare the groups. A total of 349 (65.23%) distributed questionnaires were returned. The highest ranked themes were teaching and facilitating learning, patient care and continuing professional development followed by communication and professionalism. Safe environment and guiding personal and professional development was indicated least important. Differences were also observed between scores obtained by males and females. Globally there are attributes which are perceived as essential for role models, while others are considered desirable. An understanding of the attributes which are essential and desirable for role models can help medical educators devise strategies which can reinforce those attributes within their institutions.

  20. A model for critiquing based on automated medical records.

    PubMed

    van der Lei, J; Musen, M A

    1991-08-01

    We describe the design of a critiquing system, HyperCritic, that relies on automated medical records for its data input. The purpose of the system is to advise general practitioners who are treating patients who have hypertension. HyperCritic has access to the data stored in a primary-care information system that supports a fully automated medical record. Hyper-Critic relies on data in the automated medical record to critique the management of hypertensive patients, avoiding a consultation-style interaction with the user. The first step in the critiquing process involves the interpretation of the medical record in an attempt to discover the physician's actions and decisions. After detecting the relevant events in the medical record, HyperCritic views the task of critiquing as the assignment of critiquing statements to these patient-specific events. Critiquing statements are defined as recommendations involving one or more suggestions for possible modifications in the actions of the physician. The core of the model underlying HyperCritic is that the process of generating the critiquing statements is viewed as the application of a limited set of abstract critiquing tasks. We distinguish four categories of critiquing tasks: preparation tasks, selection tasks, monitoring tasks, and responding tasks. The execution of these critiquing tasks requires specific medical factual knowledge. This factual knowledge is separated from the critiquing tasks and is stored in a medical fact base. The principal advantage demonstrated by HyperCritic is the adaption of a domain-independent critiquing structure. We show how this domain-independent critiquing structure can be used to facilitate knowledge acquisition and maintenance of the system.

  1. Stress analysis in platform-switching implants: a 3-dimensional finite element study.

    PubMed

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito

    2012-10-01

    The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

  2. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be

  3. Medical students' emotional development in early clinical experience: a model.

    PubMed

    Helmich, Esther; Bolhuis, Sanneke; Laan, Roland; Dornan, Tim; Koopmans, Raymond

    2014-08-01

    Dealing with emotions is a critical feature of professional behaviour. There are no comprehensive theoretical models, however, explaining how medical students learn about emotions. We aimed to explore factors affecting their emotions and how they learn to deal with emotions in themselves and others. During a first-year nursing attachment in hospitals and nursing homes, students wrote daily about their most impressive experiences, explicitly reporting what they felt, thought, and did. In a subsequent interview, they discussed those experiences in greater detail. Following a grounded theory approach, we conducted a constant comparative analysis, collecting and then interpreting data, and allowing the interpretation to inform subsequent data collection. Impressive experiences set up tensions, which gave rise to strong emotions. We identified four 'axes' along which tensions were experienced: 'idealism versus reality', 'critical distance versus adaptation', 'involvement versus detachment' and 'feeling versus displaying'. We found many factors, which influenced how respondents relieved those tensions. Their personal attributes and social relationships both inside and outside the medical community were important ones. Respondents' positions along the different dimensions, as determined by the balance between attributes and tensions, shaped their learning outcomes. Medical students' emotional development occurs through active participation in medical practice and having impressive experiences within relationships with patients and others on wards. Tensions along four dimensions give rise to strong emotions. Gaining insight into the many conditions that influence students' learning about emotions might support educators and supervisors in fostering medical students' emotional and professional development.

  4. Learning curve estimation in medical devices and procedures: hierarchical modeling.

    PubMed

    Govindarajulu, Usha S; Stillo, Marco; Goldfarb, David; Matheny, Michael E; Resnic, Frederic S

    2017-07-30

    In the use of medical device procedures, learning effects have been shown to be a critical component of medical device safety surveillance. To support their estimation of these effects, we evaluated multiple methods for modeling these rates within a complex simulated dataset representing patients treated by physicians clustered within institutions. We employed unique modeling for the learning curves to incorporate the learning hierarchy between institution and physicians and then modeled them within established methods that work with hierarchical data such as generalized estimating equations (GEE) and generalized linear mixed effect models. We found that both methods performed well, but that the GEE may have some advantages over the generalized linear mixed effect models for ease of modeling and a substantially lower rate of model convergence failures. We then focused more on using GEE and performed a separate simulation to vary the shape of the learning curve as well as employed various smoothing methods to the plots. We concluded that while both hierarchical methods can be used with our mathematical modeling of the learning curve, the GEE tended to perform better across multiple simulated scenarios in order to accurately model the learning effect as a function of physician and hospital hierarchical data in the use of a novel medical device. We found that the choice of shape used to produce the 'learning-free' dataset would be dataset specific, while the choice of smoothing method was negligibly different from one another. This was an important application to understand how best to fit this unique learning curve function for hierarchical physician and hospital data. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Wanted: role models--medical students' perceptions of professionalism.

    PubMed

    Byszewski, Anna; Hendelman, Walter; McGuinty, Caroline; Moineau, Geneviève

    2012-11-15

    Transformation of medical students to become medical professionals is a core competency required for physicians in the 21st century. Role modeling was traditionally the key method of transmitting this skill. Medical schools are developing medical curricula which are explicit in ensuring students develop the professional competency and understand the values and attributes of this role. The purpose of this study was to determine student perception of professionalism at the University of Ottawa and gain insights for improvement in promotion of professionalism in undergraduate medical education. Survey on student perception of professionalism in general, the curriculum and learning environment at the University of Ottawa, and the perception of student behaviors, was developed by faculty and students and sent electronically to all University of Ottawa medical students. The survey included both quantitative items including an adapted Pritzker list and qualitative responses to eight open ended questions on professionalism at the Faculty of Medicine, University of Ottawa. All analyses were performed using SAS version 9.1 (SAS Institute Inc. Cary, NC, USA). Chi-square and Fischer's exact test (for cell count less than 5) were used to derive p-values for categorical variables by level of student learning. The response rate was 45.6% (255 of 559 students) for all four years of the curriculum. 63% of the responses were from students in years 1 and 2 (preclerkship). Students identified role modeling as the single most important aspect of professionalism. The strongest curricular recommendations included faculty-led case scenario sessions, enhancing interprofessional interactions and the creation of special awards to staff and students to "celebrate" professionalism. Current evaluation systems were considered least effective. The importance of role modeling and information on how to report lapses and breaches was highlighted in the answers to the open ended questions. Students

  6. Primary health care models: medical students’ knowledge and perceptions.

    PubMed

    Brown, Judith Belle; French, Reta; McCulloch, Amy; Clendinning, Eric

    2012-03-01

    To explore the knowledge and perceptions of fourth-year medical students regarding the new models of primary health care (PHC) and to ascertain whether that knowledge influenced their decisions to pursue careers in family medicine. Qualitative study using semistructured interviews. The Schulich School of Medicine and Dentistry at The University of Western Ontario in London. Participants Fourth-year medical students graduating in 2009 who indicated family medicine as a possible career choice on their Canadian Residency Matching Service applications. Eleven semistructured interviews were conducted between January and April of 2009. Data were analyzed using an iterative and interpretive approach. The analysis strategy of immersion and crystallization assisted in synthesizing the data to provide a comprehensive view of key themes and overarching concepts. Four key themes were identified: the level of students’ knowledge regarding PHC models varied; the knowledge was generally obtained from practical experiences rather than classroom learning; students could identify both advantages and disadvantages of working within the new PHC models; and although students regarded the new PHC models positively, these models did not influence their decisions to pursue careers in family medicine. Knowledge of the new PHC models varies among fourth-year students, indicating a need for improved education strategies in the years before clinical training. Being able to identify advantages and disadvantages of the PHC models was not enough to influence participants’ choice of specialty. Educators and health care policy makers need to determine the best methods to promote and facilitate knowledge transfer about these PHC models.

  7. Quantitative comparison of operative skill using 2- and 3-dimensional monitors during laparoscopic phantom tasks.

    PubMed

    Nishi, Masayasu; Kanaji, Shingo; Otake, Yoshito; Harada, Hitoshi; Yamamoto, Masashi; Oshikiri, Taro; Nakamura, Tetsu; Suzuki, Satoshi; Suzuki, Yuki; Hiasa, Yuta; Sato, Yoshinobu; Kakeji, Yoshihiro

    2017-05-01

    The recent development of stereoscopic images using 3-dimensional monitors is expected to improve techniques for laparoscopic operation. Several studies have reported technical advantages in using 3-dimensional monitors with regard to operative accuracy and working speed, but there are few reports that analyze forceps motions by 3-dimensional optical tracking systems during standardized laparoscopic phantom tasks. We attempted to develop a 3-dimensional motion analysis system for assessing laparoscopic tasks and to clarify the efficacy of using stereoscopic images from a 3-dimensional monitor to track forceps movement during laparoscopy. Twenty surgeons performed 3 tasks (Task 1: a simple operation by the dominant hand, Task 2: a simple operation using both hands, Task 3: a complicated operation using both hands) under 2-dimensional and 3-dimensional systems. We tracked and recorded the motion of forceps tips with an optical marker captured by a 3-dimensional position tracker. We analyzed factors such as forceps path lengths, operation times, and technical errors for each task and compared the results of 2-dimensional and 3-dimensional monitors. Mean operation times and technical errors were improved significantly for all tasks performed under the 3-dimensional system compared with the 2-dimensional system; in addition, mean path lengths for the forceps tips were shorter for all tasks performed under the 3-dimensional system. We found that stereoscopic images using a 3-dimensional monitor improved operative techniques with regard to increased accuracy and shorter path lengths for forceps movement, which resulted in a shorter operation time for basic phantom laparoscopic tasks. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dual processing model of medical decision-making

    PubMed Central

    2012-01-01

    Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical

  9. Method and apparatus for imaging through 3-dimensional tracking of protons

    NASA Technical Reports Server (NTRS)

    Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)

    2001-01-01

    A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.

  10. Modeling of medical care with stochastic Petri Nets.

    PubMed

    Leite, Cicilia R M; Martin, Daniel L; Sizilio, Glaucia R A; Dos Santos, Keylly E A; de Araujo, Bruno G; Valentim, Ricardo A M; Neto, Adriao D D; de Melo, Jorge D; Guerreiro, Ana M G

    2010-01-01

    Due to the need for management, control, and monitoring of information in an effient way. The hospital automation has been the object of a number of studies owing to constantly evolving technologies. However, many hospital processes are still manual in private and public hospitals. Thus, the aim of this study is to model and simulate of medical care provided to patients in the Intensive Care Unit (ICU), using stochastic Petri Nets and their possible use in a number of automation processes.

  11. Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system.

    PubMed

    Nakaguchi, Yuji; Ono, Takeshi; Onitsuka, Ryota; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai

    2016-01-01

    COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dose reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  12. Medical applications of model-based dynamic thermography

    NASA Astrophysics Data System (ADS)

    Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech

    2001-03-01

    The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.

  13. Queensland emergency medical system: a structural and organizational model for the emergency medical system in Australia.

    PubMed

    FitzGerald, Gerry; Tippett, Vivienne; Schuetz, Michael; Clark, Michele; Tighe, Trevor; Gillard, Noel; Higgins, Jim; Elcock, Mark

    2009-12-01

    The emergency medical system (EMS) can be defined as a comprehensive, coordinated and integrated system of care for patients suffering acute illness and injury. The aim of the present paper is to describe the evolution of the Queensland Emergency Medical System (QEMS) and to recommend a strategic national approach to EMS development. Following the formation of the Queensland Ambulance Service in 1991, a state EMS committee was formed. This committee led the development and approval of the cross portfolio QEMS policy framework that has resulted in dynamic policy development, system monitoring and evaluation. This framework is led by the Queensland Emergency Medical Services Advisory Committee. There has been considerable progress in the development of all aspects of the EMS in Queensland. These developments have derived from the improved coordination and leadership that QEMS provides and has resulted in widespread satisfaction by both patients and stakeholders. The strategic approach outlined in the present paper offers a model for EMS arrangements throughout Australia. We propose that the Council of Australian Governments should require each state and Territory to maintain an EMS committee. These state EMS committees should have a broad portfolio of responsibilities. They should provide leadership and direction to the development of the EMS and ensure coordination and quality of outcomes. A national EMS committee with broad representation and broad scope should be established to coordinate the national development of Australia's EMS.

  14. [Design and application of medical knowledge model on SAGE].

    PubMed

    Yang, Yan; Wu, Bin-fei; Ye, Feng; Lv, Xu-dong

    2009-01-01

    As an methodology for promoting the quality and efficiency of health care, clinical decision support systems (CDSSs) have gained much improvement. The knowledge base (KB) plays an important role in DSS. For CDSSs, the construction of KB means modeling the medical knowledge based on a suitable model. This study analyzes the SAGE model, then implements it on knowledge of diagnosis and treatment of Metabolic Syndrome (MS), and improves the SAGE to enhance its expression ability. The model is constructed as the KB in CDSS, and be applied in hospital. The evaluation result of CDSS reveals that the SAGE model should be useful in clinical application. Finally, this study propounds some points yet to be improved in the SAGE.

  15. A complementary model for medical subspecialty training in South Africa.

    PubMed

    Dalmeyer, J Paul F; Struwig, Miemie; Kruger, Thinus F

    2016-04-19

    The shortage of healthcare workers and doctors in the developing world compared with the developed world is problematic, and will continue to be so owing to the ongoing migration of qualified professionals and the inability of the state to remedy the shortfalls. This will seriously hamper the government's National Health Insurance plan and the sustainability of South Africa (SA)'s healthcare sector. Furthermore, it is well known that the duration of medical training in SA is exceptionally long, which discourages trainees. Medical corporates have taken a limited initiative to fund education projects in collaboration with academic institutions. These projects have been unstructured, mostly ad hoc, and poorly co-ordinated. The private corporate medical sector has expressed a desire to become involved on a much larger scale by means of more formalised structures. Given this background, the primary objective of our research was to develop a business model to complement the current academic medical subspecialty training.

  16. Model-based segmentation of medical imagery by matching distributions.

    PubMed

    Freedman, Daniel; Radke, Richard J; Zhang, Tao; Jeong, Yongwon; Lovelock, D Michael; Chen, George T Y

    2005-03-01

    The segmentation of deformable objects from three-dimensional (3-D) images is an important and challenging problem, especially in the context of medical imagery. We present a new segmentation algorithm based on matching probability distributions of photometric variables that incorporates learned shape and appearance models for the objects of interest. The main innovation over similar approaches is that there is no need to compute a pixelwise correspondence between the model and the image. This allows for a fast, principled algorithm. We present promising results on difficult imagery for 3-D computed tomography images of the male pelvis for the purpose of image-guided radiotherapy of the prostate.

  17. Deformable part models for object detection in medical images

    PubMed Central

    2014-01-01

    Background Object detection in 3-D medical images is often necessary for constraining a segmentation or registration task. It may be a task in its own right as well, when instances of a structure, e.g. the lymph nodes, are searched. Problems from occlusion, illumination and projection do not arise, making the problem simpler than object detection in photographies. However, objects of interest are often not well contrasted against the background. Influence from noise and other artifacts is much stronger and shape and appearance may vary substantially within a class. Methods Deformable models capture the characteristic shape of an anatomic object and use constrained deformation for hypothesing object boundaries in image regions of low or non-existing contrast. Learning these constraints requires a large sample data base. We show that training may be replaced by readily available user knowledge defining a prototypical deformable part model. If structures have a strong part-relationship, or if they may be found based on spatially related guiding structures, or if the deformation is rather restricted, the supporting data information suffices for solving the detection task. We use a finite element model to represent anatomic variation by elastic deformation. Complex shape variation may be represented by a hierarchical model with simpler part variation. The hierarchy may be represented explicitly as a hierarchy of sub-shapes, or implicitly by a single integrated model. Data support and model deformation of the complete model can be represented by an energy term, serving as quality-of-fit function for object detection. Results The model was applied to detection and segmentation tasks in various medical applications in 2- and 3-D scenes. It has been shown that model fitting and object detection can be carried out efficiently by a combination of a local and global search strategy using models that are parameterized for the different tasks. Conclusions A part-based elastic

  18. 3-dimensionally integrated photo-detector for neutrino physics and beyond

    NASA Astrophysics Data System (ADS)

    Retiere, Fabrice

    2016-09-01

    Silicon photo-multipliers (SiPMs) are a promising solution for the detection of scintillation light of liquid Xenon and Argon in applications requiring minimum radioactivity content such as neutrinoless double beta decay. The nEXO experiment in particular is planning to use SiPM planes covering 5 m2 for the detection of the light emitted within 5tons of liquid Xenon. The 3-dimensionally digital integrated SiPMs (3DdSiPMs) is an emerging technology that if successful would challenge the analog SiPM technology. Indeed, by combining separate photo-detector and electronics chips within a single package, 3DdSiPM achieve excellent performances for photon counting and time stamping, while dissipating minimum power. Being mostly based on high purity silicon chips, 3DdSiPMs are also expected to achieve excellent radiopurity.The development of 3DdSiPMs for applications in liquid Xenon is expected to progress rapidly by altering the design of the first successful chip assembly developed for medical imaging, focusing on minimizing power dissipation and large area (> cm2) scaling. In this talk we will describe the 3DdSiPM concept a solution for ``light to bit conversion'' within a single package and show how it may revolutionize light detection in noble-gas liquids and beyond.

  19. Unification of color postprocessing techniques for 3-dimensional computational mechanics

    NASA Technical Reports Server (NTRS)

    Bailey, Bruce Charles

    1985-01-01

    To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.

  20. Dental caries: an updated medical model of risk assessment.

    PubMed

    Kutsch, V Kim

    2014-04-01

    Dental caries is a transmissible, complex biofilm disease that creates prolonged periods of low pH in the mouth, resulting in a net mineral loss from the teeth. Historically, the disease model for dental caries consisted of mutans streptococci and Lactobacillus species, and the dental profession focused on restoring the lesions/damage from the disease by using a surgical model. The current recommendation is to implement a risk-assessment-based medical model called CAMBRA (caries management by risk assessment) to diagnose and treat dental caries. Unfortunately, many of the suggestions of CAMBRA have been overly complicated and confusing for clinicians. The risk of caries, however, is usually related to just a few common factors, and these factors result in common patterns of disease. This article examines the biofilm model of dental caries, identifies the common disease patterns, and discusses their targeted therapeutic strategies to make CAMBRA more easily adaptable for the privately practicing professional.

  1. Medicalization in psychiatry: the medical model, descriptive diagnosis, and lost knowledge.

    PubMed

    Sedler, Mark J

    2016-06-01

    Medicalization was the theme of the 29th European Conference on Philosophy of Medicine and Health Care that included a panel session on the DSM and mental health. Philosophical critiques of the medical model in psychiatry suffer from endemic assumptions that fail to acknowledge the real world challenges of psychiatric nosology. The descriptive model of classification of the DSM 3-5 serves a valid purpose in the absence of known etiologies for the majority of psychiatric conditions. However, a consequence of the "atheoretical" approach of the DSM is rampant epistemological confusion, a shortcoming that can be ameliorated by importing perspectives from the work of Jaspers and McHugh. Finally, contemporary psychiatry's over-reliance on neuroscience and pharmacotherapy has led to a reductionist agenda that is antagonistic to the inherently pluralistic nature of psychiatry.  As a result,  the field has suffered a loss of knowledge that may be difficult to recover.

  2. A method for modeling noise in medical images.

    PubMed

    Gravel, Pierre; Beaudoin, Gilles; De Guise, Jacques A

    2004-10-01

    We have developed a method to study the statistical properties of the noise found in various medical images. The method is specifically designed for types of noise with uncorrelated fluctuations. Such signal fluctuations generally originate in the physical processes of imaging rather than in the tissue textures. Various types of noise (e.g., photon, electronics, and quantization) often contribute to degrade medical images; the overall noise is generally assumed to be additive with a zero-mean, constant-variance Gaussian distribution. However, statistical analysis suggests that the noise variance could be better modeled by a nonlinear function of the image intensity depending on external parameters related to the image acquisition protocol. We present a method to extract the relationship between an image intensity and the noise variance and to evaluate the corresponding parameters. The method was applied successfully to magnetic resonance images with different acquisition sequences and to several types of X-ray images.

  3. Doctor role modelling in medical education: BEME Guide No. 27.

    PubMed

    Passi, Vimmi; Johnson, Samantha; Peile, Ed; Wright, Scott; Hafferty, Fred; Johnson, Neil

    2013-09-01

    The aim of this review is to summarise the evidence currently available on role modelling by doctors in medical education. A systematic search of electronic databases was conducted (PubMed, Psyc- Info, Embase, Education Research Complete, Web of Knowledge, ERIC and British Education Index) from January 1990 to February 2012. Data extraction was completed by two independent reviewers and included a quality assessment of each paper. A thematic analysis was conducted on all the included papers. Thirty-nine studies fulfilled the inclusion criteria for the review. Six main themes emerged from the content of high and medium quality papers: 1) the attributes of positive doctor role models; 2) the personality profiles of positive role models; 3) the influence of positive role models on students' career choice; 4) the process of positive role modelling; 5) the influence of negative role modelling; 6) the influence of culture, diversity and gender in the choice of role model. This systematic review highlights role modelling as an important process for the professional development of learners. Excellence in role modelling involves demonstration of high standards of clinical competence, excellence in clinical teaching skills and humanistic personal qualities. Positive role models not only help to shape the professional development of our future physicians, they also influence their career choices. This review has highlighted two main challenges in doctor role modelling: the first challenge lies in our lack of understanding of the complex phenomenon of role modelling. Second, the literature draws attention to negative role modelling and this negative influence requires deeper exploration to identify ways to mitigate adverse effects. This BEME review offers a preliminary guide to future discovery and progress in the area of doctor role modelling.

  4. Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.

  5. A 3-dimensional theory of free electron lasers

    SciTech Connect

    Webb, S.D.; Wang, G.; Litvinenko, V.N.

    2010-08-23

    In this paper, we present an analytical three-dimensional theory of free electron lasers. Under several assumptions, we arrive at an integral equation similar to earlier work carried out by Ching, Kim and Xie, but using a formulation better suited for the initial value problem of Coherent Electron Cooling. We use this model in later papers to obtain analytical results for gain guiding, as well as to develop a complete model of Coherent Electron Cooling.

  6. Accuracy and Early Clinical Outcome of 3-Dimensional Planned and Guided Single-Cut Osteotomies of Malunited Forearm Bones.

    PubMed

    Roner, Simon; Vlachopoulos, Lazaros; Nagy, Ladislav; Schweizer, Andreas; Fürnstahl, Philipp

    2017-09-06

    To investigate the reduction accuracy of 3-dimensional planned single-cut osteotomies (SCOTs) of the forearm that were performed using patient-specific guides. A retrospective analysis of SCOTs performed between 2012 and 2014 was performed. Ten patients (age, 15-59 years) with 6 malunions of the ulna and 6 malunions of the radius were identified. The reduction accuracy was assessed by comparing the 3-dimensional preoperative plan of each osteotomy with the superimposed bone model extracted from postoperative computed tomography data. The difference was assessed by 3-dimensional angle and in all 6 degrees of freedom (3 translations, 3 rotations) with respect to an anatomical coordinate system. Wrist range of motion and grip strength was assessed after a mean of 16.7 months and compared with the preoperative measurements. On average, the 12 SCOTs demonstrated excellent accuracy of the reduction with respect to rotation (ie, pronation/supination, 4.9°; flexion/extension, 1.7°; ulnar/radial angulation, 2.0°) and translation (ie, proximal/distal, 0.8 mm; radial/ulnar, 0.8 mm; dorsal/palmar, 0.8 mm). A mean residual 3-dimensional angle of 5.8° (SD, 3.6°) was measured after surgery. All 6 patients operated on for reasons of a reduced range of motion demonstrated improved symptoms and increased movement (from 20° to 80°). In the patients with unstable/painful distal radioulnar joint, 3 were totally free of complaints and 1 patient showed residual pain during sports. A SCOT combined with patient-specific guides is an accurate and reliable technique to restore normal anatomy in multiplanar deformities of the forearm. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    PubMed

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  8. The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process.

    PubMed

    Stockmarr, Anders

    2002-11-01

    Populations of particles dispersed in the 2-dimensional plane from a single point-source may be grouped as focus expansion patterns, with an exponentially decreasing density, and more diffuse patterns with thicker tails. Exponentially decreasing distributions are often modelled as the result of 2-dimensional diffusion processes acting to disperse the particles, while thick-tailed distributions tend to be modelled by purely descriptive distributions. Models based on the Cauchy distribution have been suggested, but these have not been related to diffusion modelling. However, the distribution of particles dispersed from a point source by a 3-dimensional Brownian motion that incorporates a constant drift, under the condition that the particle starts at a given height and is stopped when it reaches the xy plane (zero height) may be shown to result in both slim-tailed exponentially decreasing densities, and thick-tailed polynomially decreasing densities with infinite mean travel distance from the source, depending on parameter values. The drift in the third coordinate represents gravitation, while the drift in the first and second represents a (constant) wind. Conditions for the density having exponentially decreasing tails is derived in terms of gravitation and wind, with a special emphasis on applications to light-weighted particles such as fungal spores.

  9. Medications

    MedlinePlus

    ... from becoming larger and causing more serious problems. Antiplatelets are medications that stop blood particles called platelets ... an angioplasty procedure. Aspirin is one type of antiplatelet medicine. (See "Aspirin: Take With Caution" ) Beta blockers ...

  10. Medical image segmentation using object atlas versus object cloud models

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Falcão, Alexandre X.; Udupa, Jayaram K.

    2015-03-01

    Medical image segmentation is crucial for quantitative organ analysis and surgical planning. Since interactive segmentation is not practical in a production-mode clinical setting, automatic methods based on 3D object appearance models have been proposed. Among them, approaches based on object atlas are the most actively investigated. A key drawback of these approaches is that they require a time-costly image registration process to build and deploy the atlas. Object cloud models (OCM) have been introduced to avoid registration, considerably speeding up the whole process, but they have not been compared to object atlas models (OAM). The present paper fills this gap by presenting a comparative analysis of the two approaches in the task of individually segmenting nine anatomical structures of the human body. Our results indicate that OCM achieve a statistically significant better accuracy for seven anatomical structures, in terms of Dice Similarity Coefficient and Average Symmetric Surface Distance.

  11. SimITK: model driven engineering for medical imaging

    NASA Astrophysics Data System (ADS)

    Trezise, Melissa; Gobbi, David; Cordy, James; Abolmaesumi, Purang; Mousavi, Parvin

    2014-03-01

    The Insight Segmentation and Registration Toolkit (ITK) is a highly utilized open source medical imaging library providing chiefly the functionality to register, segment, and filter medical images. Although extremely powerful, ITK has a steep learning curve for users with little or no background in programming. It was for this reason that SimITK was developed. SimITK wraps ITK into the model driven engineering environment Simulink, a part of the Matlab development suite. The first released version of SimITK was a proof of concept, and demonstrated that ITK could be wrapped successfully in Simulink. In this paper a new version of SimITK is presented where ITK classes are wrapped using a fully automated process. In addition, SimITK is transitioned to successfully support ITK version 4, in order to remain current with the ITK project. SimITK includes thirty-seven image filters, twelve optimizers, and nineteen transform classes from ITK version 4 which are successfully wrapped and tested, and can be quickly and easily combined to perform medical imaging tasks. These classes were chosen to represent a broad range of usability, and to allow for greater flexibility when creating registration pipelines. SimITK has the potential to reduce the learning curve for ITK and allow the user to focus on developing workflows and algorithms. A release of SimITK along with tutorials and videos is available at www.simitkvtk.com.

  12. Can We Trust Computational Modeling for Medical Applications?

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Operations in extreme environments such as spaceflight pose human health risks that are currently not well understood and potentially unanticipated. In addition, there are limited clinical and research data to inform development and implementation of therapeutics for these unique health risks. In this light, NASA's Human Research Program (HRP) is leveraging biomedical computational models and simulations (M&S) to help inform, predict, assess and mitigate spaceflight health and performance risks, and enhance countermeasure development. To ensure that these M&S can be applied with confidence to the space environment, it is imperative to incorporate a rigorous verification, validation and credibility assessment (VV&C) processes to ensure that the computational tools are sufficiently reliable to answer questions within their intended use domain. In this presentation, we will discuss how NASA's Integrated Medical Model (IMM) and Digital Astronaut Project (DAP) have successfully adapted NASA's Standard for Models and Simulations, NASA-STD-7009 (7009) to achieve this goal. These VV&C methods are also being leveraged by organization such as the Food and Drug Administration (FDA), National Institute of Health (NIH) and the American Society of Mechanical Engineers (ASME) to establish new M&S VV&C standards and guidelines for healthcare applications. Similarly, we hope to provide some insight to the greater aerospace medicine community on how to develop and implement M&S with sufficient confidence to augment medical research and operations.

  13. 3-Dimensional Immersive Visualization For Regional Water Planning

    NASA Astrophysics Data System (ADS)

    Block, J.; Razdan, A.; Shangraw, R.; Arrowsmith, R.

    2005-12-01

    As the population in the southwestern US grows, water planning requires increasingly creative solutions to manage valuable water resources at the local and regional level. The East Valley Water Forum (EVWF) is a regional cooperative of water providers east of Phoenix, Arizona, designing their water management plan for the next 25 years. Water resources in this region come from the Colorado River, the Salt River Project, groundwater, and other local and regional sources which provide resources that are subject to climatic variability. In order to best understand the physical and political relationships between water resources and their management, the Arizona Department of Water Resources (ADWR) analyzes hydrologic data in the region using USGS's MODFLOW software, which computes the status of groundwater resources in the region. However, in order to improve policy decision making using MODFLOW outputs, a comprehensive scientific understanding of the inputs, outputs and their uncertainties is needed. These uncertainties include intrinsic hydrologic uncertainty as well uncertainties in external controls such as drought and urban growth. The Decision Theater (DT) is a new facility at Arizona State University (ASU) that specializes in high resolution 3D immersive visualization of scientific data and models. The facility includes a room with a seven-paneled screen surrounding the viewers by 260 degrees for an immersive experience. It is an innovative tool for visualization of datasets from disparate sources for synthesis of complex spatial problems, and its staff is collaborating with the EVWF and the Bureau of Reclamation to better visualize their modeled water supply and demand scenarios under various drought conditions. The space provides a neutral setting for a workflow of data and model integration in which groups can iteratively assess, interact with, and gain intuition about the relevant data and models. This data integration results in visualizations that

  14. Additive Manufacturing of Medical Models--Applications in Rhinology.

    PubMed

    Raos, Pero; Klapan, Ivica; Galeta, Tomislav

    2015-09-01

    In the paper we are introducing guidelines and suggestions for use of 3D image processing SW in head pathology diagnostic and procedures for obtaining physical medical model by additive manufacturing/rapid prototyping techniques, bearing in mind the improvement of surgery performance, its maximum security and faster postoperative recovery of patients. This approach has been verified in two case reports. In the treatment we used intelligent classifier-schemes for abnormal patterns using computer-based system for 3D-virtual and endoscopic assistance in rhinology, with appropriate visualization of anatomy and pathology within the nose, paranasal sinuses, and scull base area.

  15. Clinical applications of 3-dimensional printing in radiation therapy.

    PubMed

    Zhao, Yizhou; Moran, Kathryn; Yewondwossen, Mammo; Allan, James; Clarke, Scott; Rajaraman, Murali; Wilke, Derek; Joseph, Paul; Robar, James L

    2017-01-01

    clinical setting to create highly conformal bolus for photon and MERT, as well as applicators for surface brachytherapy. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. Medical Inpatient Journey Modeling and Clustering: A Bayesian Hidden Markov Model Based Approach

    PubMed Central

    Huang, Zhengxing; Dong, Wei; Wang, Fei; Duan, Huilong

    2015-01-01

    Modeling and clustering medical inpatient journeys is useful to healthcare organizations for a number of reasons including inpatient journey reorganization in a more convenient way for understanding and browsing, etc. In this study, we present a probabilistic model-based approach to model and cluster medical inpatient journeys. Specifically, we exploit a Bayesian Hidden Markov Model based approach to transform medical inpatient journeys into a probabilistic space, which can be seen as a richer representation of inpatient journeys to be clustered. Then, using hierarchical clustering on the matrix of similarities, inpatient journeys can be clustered into different categories w.r.t their clinical and temporal characteristics. We evaluated the proposed approach on a real clinical data set pertaining to the unstable angina treatment process. The experimental results reveal that our method can identify and model latent treatment topics underlying in personalized inpatient journeys, and yield impressive clustering quality. PMID:26958200

  17. Sensitivity Analysis of the Integrated Medical Model for ISS Programs

    NASA Technical Reports Server (NTRS)

    Goodenow, D. A.; Myers, J. G.; Arellano, J.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Young, M.

    2016-01-01

    Sensitivity analysis estimates the relative contribution of the uncertainty in input values to the uncertainty of model outputs. Partial Rank Correlation Coefficient (PRCC) and Standardized Rank Regression Coefficient (SRRC) are methods of conducting sensitivity analysis on nonlinear simulation models like the Integrated Medical Model (IMM). The PRCC method estimates the sensitivity using partial correlation of the ranks of the generated input values to each generated output value. The partial part is so named because adjustments are made for the linear effects of all the other input values in the calculation of correlation between a particular input and each output. In SRRC, standardized regression-based coefficients measure the sensitivity of each input, adjusted for all the other inputs, on each output. Because the relative ranking of each of the inputs and outputs is used, as opposed to the values themselves, both methods accommodate the nonlinear relationship of the underlying model. As part of the IMM v4.0 validation study, simulations are available that predict 33 person-missions on ISS and 111 person-missions on STS. These simulated data predictions feed the sensitivity analysis procedures. The inputs to the sensitivity procedures include the number occurrences of each of the one hundred IMM medical conditions generated over the simulations and the associated IMM outputs: total quality time lost (QTL), number of evacuations (EVAC), and number of loss of crew lives (LOCL). The IMM team will report the results of using PRCC and SRRC on IMM v4.0 predictions of the ISS and STS missions created as part of the external validation study. Tornado plots will assist in the visualization of the condition-related input sensitivities to each of the main outcomes. The outcomes of this sensitivity analysis will drive review focus by identifying conditions where changes in uncertainty could drive changes in overall model output uncertainty. These efforts are an integral

  18. Magnetic flux ropes in 3-dimensional MHD simulations

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1990-01-01

    The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.

  19. Magnetic flux ropes in 3-dimensional MHD simulations

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1990-01-01

    The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.

  20. Imaging amylopectin's order in starch using 3-dimensional polarization SHG

    NASA Astrophysics Data System (ADS)

    Psilodimitrakopoulos, Sotiris; Amat-Roldan, Ivan; Artigas, David; Loza-Alvarez, Pablo

    2011-07-01

    In minimally destructive SHG biomedical imaging (high resolution optical slicing) is greatly desirable to extract the maximum of information from the light matter interaction. Here we develop a 3-D biophysical model and a methodology, which extracts molecular information below the experimental resolution limit. Firstly, it provides the pitch angle (SHG effective orientation) of the SHG source helix of the sample. This information is used to characterize and categorize the SHG sources among them. And secondly, it provides the degree of organization of the SHG source molecules. This can be used as a quantitative imaging biomarker able to characterize the degree of organization (homeostasis) of the sample. Here we applied the model in dried and hydrated wheat starch granules. Our results show that the SHG source molecule in starch is amylopectin. We also conclude that under hydration, the amylopectin molecules are further organized but they do not change structure. This organization is reflected to the width of the pitch angles pixels' histograms' distributions. The shorter the width is, the more organized the amylopectin molecules in starch are.

  1. Regulation and 3 dimensional culture of tertiary follicle growth.

    PubMed

    Cheon, Yong-Pil

    2012-09-01

    It has been revealed that multiple cohorts of tertiary follicles develop during some animal estrous cycle and the human menstrual cycle. To reach developmental competence, oocytes need the support of somatic cells. During embryogenesis, the primordial germ cells appear, travel to the gonadal rudiments, and form follicles. The female germ cells develop within the somatic cells of the ovary, granulosa cells, and theca cells. How the oocyte and follicle cells support each other has been seriously studied. The latest technologies in genes and proteins and genetic engineering have allowed us to collect a great deal of information about folliculogenesis. For example, a few web pages (http://www.ncbi.nlm.nih.gov; http://mrg.genetics.washington.edu) provide access to databases of genomes, sequences of transcriptomes, and various tools for analyzing and discovering genes important in ovarian development. Formation of the antrum (tertiary follicle) is the final phase of folliculogenesis and the transition from intraovarian to extraovian regulation. This final step coordinates with the hypothalamic-pituitary-ovarian axis. On the other hand, currently, follicle physiology is under intense investigation, as little is known about how to overcome women's ovarian problems or how to develop competent oocytes from in vitro follicle culture or transplantation. In this review, some of the known roles of hormones and some of the genes involved in tertiary follicle growth and the general characteristics of tertiary follicles are summarized. In addition, in vitro culture of tertiary follicles is also discussed as a study model and an assisted reproductive technology model.

  2. 3-Dimensional simulations of storm dynamics on Saturn

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sanchez-Lavega, A.

    2000-10-01

    The formation and evolution of convective clouds in the atmosphere of Saturn is investigated using an anelastic three-dimensional time-dependent model with parameterized microphysics. The model is designed to study the development of moist convection on any of the four giant planets and has been previously used to investigate the formation of water convective storms in the jovian atmosphere. The role of water and ammonia in moist convection is investigated with varying deep concentrations. Results imply that most of the convective activity observed at Saturn may occur at the ammonia cloud deck while the formation of water moist convection may happen only when very strong constraints on the lower troposphere are met. Ammonia storms can ascend to the 300 mb level with vertical velocities around 30 ms-1. The seasonal effect on the thermal profile at the upper troposphere may have important effects on the development of ammonia storms. In the cases where water storms can develop they span many scale heights with peak vertical velocities around 160 ms-1 and cloud particles can be transported up to the 150 mb level. These predicted characteristics are similar to the Great White Spots observed in Saturn which, therefore, could be originated at the water cloud base level. This work has been supported by Gobierno Vasco PI 1997-34. R. Hueso acknowledges a PhD fellowship from Gobierno Vasco.

  3. Interfacial magnetic anisotropy from a 3-dimensional Rashba substrate.

    PubMed

    Li, Junwen; Haney, Paul M

    2016-07-18

    We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. We use a tight-binding model to describe the bilayer, and the 3-d Rashba material characterized by the spin-orbit strength α and the direction of broken bulk inversion symmetry n̂. We find an in-plane uniaxial anisotropy in the ẑ × n̂ direction, where ẑ is the interface normal. For realistic values of α, the uniaxial anisotropy is of a similar order of magnitude as the bulk magnetocrystalline anisotropy. Evaluating the uniaxial anisotropy for a simplified model in 1-d shows that for small band filling, the in-plane easy axis anisotropy scales as α(4) and results from a twisted exchange interaction between the spins in the 3-d Rashba material and the ferromagnet. For a ferroelectric 3-d Rashba material, n̂ can be controlled with an electric field, and we propose that the interfacial magnetic anisotropy could provide a mechanism for electrical control of the magnetic orientation.

  4. FDA Benchmark Medical Device Flow Models for CFD Validation.

    PubMed

    Malinauskas, Richard A; Hariharan, Prasanna; Day, Steven W; Herbertson, Luke H; Buesen, Martin; Steinseifer, Ulrich; Aycock, Kenneth I; Good, Bryan C; Deutsch, Steven; Manning, Keefe B; Craven, Brent A

    Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.

  5. [Implementation of a telementoring model of medical education in psoriasis].

    PubMed

    Mazzuoccolo, Luis D; Marciano, Sebastián; Echeverría, Cristina M

    2016-01-01

    The ECHO® (Extension for Community Healthcare Outcomes) project is a model of distance medical education. Its mission is to expand knowledge and evaluate the results of this action, both in the training of human resources in healthcare and in the accomplishment of the best medical practices in the community target. It is developed through case presentation videoconferencing, between experts in chronic and complex diseases and physicians, with the aim of reducing the healthcare asymmetries between large urban centers and peripherals areas. We have implemented this telementoring for dermatologists and residents who treat patients with psoriasis. After 10 sessions, a survey was conducted to evaluate the educational attainment of the participants. A significant improvement was found in their abilities to determine the severity of psoriasis, screening for arthritis, assessment of the patient before beginning systemic treatment and appropriate follow-up under different systemic therapies. ECHO replication model helped improve the skills of the participants in the management of this disease, and reduced professional isolation.

  6. Modelling and enforcing privacy for medical data disclosure across Europe.

    PubMed

    Boussi Rahmouni, Hanene; Solomonides, Tony; Casassa Mont, Marco; Shiu, Simon

    2009-01-01

    The harmonization of data protection legislation in Europe has been theoretically achieved by means of the EU directive on data protection. In practice the harmonization is not absolute and conflicts and inconsistencies continue to exist in the way Member States are implementing the directive. The integration of different European medical systems by means of grid technologies will continue to be challenging if technology does not intervene to enhance interoperability between national regulatory frameworks on data protection. In this paper we present an approach to automate privacy requirements for the sharing of patient data across Europe on a healthgrid domain and ensure its enforcement internally and within external domains where the data might travel. This approach is based on the semantic modelling of privacy obligations that are of legal, ethical or cultural nature. These requirements are for the sharing of personal data between different European Member States. Our model reflects both similarities and conflicts, if any, between the different Member States. This allows us to reason on the safeguards a data controller should ask from an organization belonging to another Member State before disclosing medical data to them. The system will also generate the relevant set of policies to be enforced at the process level of the grid to ensure privacy compliance before allowing access to the data.

  7. Evaluation of Medical Education virtual Program: P3 model

    PubMed Central

    REZAEE, RITA; SHOKRPOUR, NASRIN; BOROUMAND, MARYAM

    2016-01-01

    Introduction: In e-learning, people get involved in a process and create the content (product) and make it available for virtual learners. The present study was carried out in order to evaluate the first virtual master program in medical education at Shiraz University of Medical Sciences according to P3 Model. Methods: This is an evaluation research study with post single group design used to determine how effective this program was. All students 60 who participated more than one year in this virtual program and 21 experts including teachers and directors participated in this evaluation project. Based on the P3 e-learning model, an evaluation tool with 5-point Likert rating scale was designed and applied to collect the descriptive data. Results: Students reported storyboard and course design as the most desirable element of learning environment (2.30±0.76), but they declared technical support as the less desirable part (1.17±1.23). Conclusion: Presence of such framework in this regard and using it within the format of appropriate tools for evaluation of e-learning in universities and higher education institutes, which present e-learning curricula in the country, may contribute to implementation of the present and future e-learning curricula efficiently and guarantee its implementation in an appropriate way. PMID:27795971

  8. Selection of the logical model of the intellectual algorithm for dynamic processing of medical data (obtained through portable medical devices)

    NASA Astrophysics Data System (ADS)

    Starovoytova, V. A.; Taranik, M. A.

    2017-01-01

    Portable devices are one of the important emerging areas of modern medicine. This article presents the rationale for the selection of the logical model of the intellectual algorithm for dynamic processing of medical data obtained through portable medical devices. The description of the main criteria for the selection and application of the method of Saaty is provided. And the conclusion about the feasibility of using fuzzy logic as a logical model for the investigated subject area is made.

  9. Evaluation of Medical Countermeasures Against Ebolaviruses in Nonhuman Primate Models.

    PubMed

    Mire, Chad E; Geisbert, Thomas W

    2017-01-01

    Several ebolavirus species, with varying lethality rates, have caused sporadic outbreaks in Africa resulting in human disease. Ebolaviruses also have the potential for use as biological weapons. Currently, there are no licensed vaccines or therapeutics to respond to outbreaks or deliberate misuse of ebolaviruses. Vaccine or therapeutic efficacy testing of medical countermeasures against ebolaviruses requires an animal model of disease; in vitro testing in cell culture cannot reproduce the complicated balance between host-pathogen interactions required for the ultimate licensure of a countermeasure. Depending on the target of the countermeasure, demonstration of efficacy in the nonhuman primate ebolavirus disease models will most likely be required before licensure. Here, we describe the selection and use of nonhuman primates for vaccine and therapeutic studies against ebolaviruses.

  10. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    DTIC Science & Technology

    2016-01-01

    Woven Composites by Mark Pankow, Ashiq Quabili, Stephen Whittie, and Chian Yen Approved for public release; distribution...2016 US Army Research Laboratory Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites by Mark...Properties of Various 3-Dimensional Woven Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mark Pankow

  11. Input shaped control of 3-dimensional maneuvers of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, T.; Vadali, S. R.

    1992-01-01

    This paper deals with the control of three dimensional rotational maneuvers of flexible spacecraft. A spacecraft with a spherical hub and six symmetric appendages is considered here as a model. The appendages are long and flexible leading to low frequency vibration under any control action. To provide a comprehensive treatment of input shaped controllers, both open loop and closed loop controllers are considered. The minimum-time bang-bang and the near-minimum-time controller, used in conjunction with the shaped input technique are studied. In addition, a combination of a Liapunov controller with the shaped input control technique is proposed to take advantage of the simple feedback control strategy and augment it with a technique that can eliminate the vibratory motion of the flexible appendages more efficiently.

  12. Developing a semantic web model for medical differential diagnosis recommendation.

    PubMed

    Mohammed, Osama; Benlamri, Rachid

    2014-10-01

    In this paper we describe a novel model for differential diagnosis designed to make recommendations by utilizing semantic web technologies. The model is a response to a number of requirements, ranging from incorporating essential clinical diagnostic semantics to the integration of data mining for the process of identifying candidate diseases that best explain a set of clinical features. We introduce two major components, which we find essential to the construction of an integral differential diagnosis recommendation model: the evidence-based recommender component and the proximity-based recommender component. Both approaches are driven by disease diagnosis ontologies designed specifically to enable the process of generating diagnostic recommendations. These ontologies are the disease symptom ontology and the patient ontology. The evidence-based diagnosis process develops dynamic rules based on standardized clinical pathways. The proximity-based component employs data mining to provide clinicians with diagnosis predictions, as well as generates new diagnosis rules from provided training datasets. This article describes the integration between these two components along with the developed diagnosis ontologies to form a novel medical differential diagnosis recommendation model. This article also provides test cases from the implementation of the overall model, which shows quite promising diagnostic recommendation results.

  13. Sensitivity analysis of geometric errors in additive manufacturing medical models.

    PubMed

    Pinto, Jose Miguel; Arrieta, Cristobal; Andia, Marcelo E; Uribe, Sergio; Ramos-Grez, Jorge; Vargas, Alex; Irarrazaval, Pablo; Tejos, Cristian

    2015-03-01

    Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Influence of the implant diameter with different sizes of hexagon: analysis by 3-dimensional finite element method.

    PubMed

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; de Moraes, Sandra Lúcia Dantas; Falcón-Antenucci, Rosse Mary; de Carvalho, Paulo Sérgio Perri; Noritomi, Pedro Yoshito

    2013-08-01

    The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.

  15. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  16. MAPAG: a computer program to construct 2- and 3-dimensional antigenic maps.

    PubMed

    Aguilar, R C; Retegui, L A; Roguin, L P

    1994-01-01

    The contact area between an antibody (Ab) and the antigen (Ag) is called antigenic determinant or epitope. The first step in the characterization of an Ag by using monoclonal antibodies (MAb) is to map the relative distribution of the corresponding epitopes on the Ag surface. The computer program MAPAG has been devised to automatically construct antigenic maps. MAPAG is fed with a binary matrix of experimental data indicating the ability of paired MAb to bind or not simultaneously to the Ag. The program is interactive menu-driven and allows the user an easy data handling. MAPAG utilizes iterative processes to construct and to adjust the final map, which is graphically shown as a 2- or a 3-dimensional model. Additionally, the antigenic map obtained can be optionally modified by the user or readjusted by the program. The suitability of MAPAG was illustrated by running experimental data from literature and comparing antigenic maps constructed by the program with those elaborated by the investigators without the assistance of a computer. Furthermore, since some MAb could present negative allosteric effects leading to misinterpretation of data, MAPAG has been provided with an approximate reasoning module to solve such anomalous situations. Results indicated that the program can be successfully employed as a simple, fast and reliable antigenic model-builder.

  17. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  18. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    PubMed Central

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf , Muhammad N.

    2016-01-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity. PMID:28008983

  19. Comparison of experience curves between two 3-dimensional intraoral scanners.

    PubMed

    Kim, Jisun; Park, Ji-Man; Kim, Minji; Heo, Seong-Joo; Shin, Im Hee; Kim, Miae

    2016-08-01

    Conventional impression-making methods are being replaced by intraoral digital scanning. How long dental professionals take to master the new technologies is unknown. The purpose of this human subject study was to compare the experience curves of 2 intraoral scanners among dental hygienists and determine whether repeated scanning experience could change the scan time (ST). A total of 29 dental hygienists with more than 3 years of working experience were recruited (group 1: 3-5 years; group 2: >6 years of clinical experience) to learn the iTero and Trios systems. All learners scanned the oral cavities of 4 human participants (participants A, B, C, and D) 10 times (T1-T10) throughout the learning sessions and the experimental dentoform model twice at the beginning and end of the 10 sessions. ST was measured, and changes in ST were compared between the 2 devices. The average ST for 10 sessions was greater with iTero than with Trios, but the decrease in the measured ST was greater for iTero than for Trios. Baseline and postexperience STs with iTero showed statistically significant differences, with a decrease in time related to the clinical experience levels of the dental hygienists (group 1: T2 and T4, P<.01; group 2: T2 and T5, P<.01). The experience curve with iTero was not influenced by the human participant's intraoral characteristics, and greater ST was shown for participants B and C than for participants A and D with Trios. Although the learning rate of iTero was rapid, the average ST for iTero was longer than Trios, and clinical experience levels influenced the operator's ability to manipulate the device. In contrast, the learning rate of Trios was slow, and measured ST was shorter than iTero, and was not influenced by clinical experience. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament

    PubMed Central

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-01-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics. PMID:28105122

  1. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament.

    PubMed

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-12-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics.

  2. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    SciTech Connect

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  3. Utility of novel 3-dimensional stereoscopic vision system for endoscopic sinonasal and skull-base surgery.

    PubMed

    Manes, R Peter; Barnett, Sam; Batra, Pete S

    2011-01-01

    The objective of this pilot study was to evaluate the utility of novel 3-dimensional (3D) endoscopy during endoscopic sinonasal and skull base surgery. Eight surgeries were performed in 7 patients between August 2009 and March 2010 at a tertiary care academic medical center. A high-definition 2-dimensional (2D) endoscopy system was employed in all cases. The Visionsense stereoscopic system (Orangeburg, NY) was incorporated during key portions of the procedures. Two independent surgeons assessed utility of the technology for the following 2 variables: (1) ability to facilitate orientation and depth perception; and (2) impact on completeness of surgery and potential complications. The mean age was 50.4 years and the male:female ratio was 6:1. Indications included anterior skull base (ASB) tumor resection (5), directed skull base biopsies (2), and ethmoid dissection adjacent to dehiscent skull base/optic nerve in allergic fungal rhinosinusitis (1). Endoscopic orientation and depth perception was aided using the 3D endoscope in all cases. Additional interventions were performed in 3 cases (37.5%), including tumor resection (1) and removal of remnant ethmoid partitions (2). Limitations posed included inability to visualize a type III frontal cell (1) and loss of orientation during ASB reconstruction due to overmagnification (1). No complications were observed in this patient series. This preliminary study demonstrated the effectiveness of binocular 3D endoscopy during sinonasal and skull-base surgery. The technology facilitated depth perception and completeness of surgery without increase in complications. Additional experience is warranted to define its role in the endoscopic surgical paradigm. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  4. The effect of stereoscopic anaglyphic 3-dimensional video didactics on learning neuroanatomy.

    PubMed

    Goodarzi, Amir; EdM, Sara Monti; Lee, Darrin; Girgis, Fady

    2017-07-29

    The teaching of neuroanatomy in medical education has historically been based on didactic instruction, cadaveric dissections, and intra-operative experience for students. Multiple novel 3-Dimensional (3D) modalities have recently emerged. Among these, stereoscopic anaglyphic video is easily accessible and affordable, however, its effects have not yet formally been investigated. This study aimed to investigate if 3D stereoscopic anaglyphic video instruction in neuroanatomy could improve learning for content-naive students, as compared to 2D video instruction. A single-site controlled prospective case control study was conducted at the School of Education. Content knowledge was assessed at baseline, followed by the presentation of an instructional neuroanatomy video. Participants viewed the video in either 2D or 3D format, then completed a written test of skull base neuroanatomy. Pre-test and post-test performances were analyzed with independent t-tests and ANCOVA. 249 subjects completed the study. At baseline, the 2D (n=124, F=97) and 3D groups (n=125, F=96) were similar, although the 3D group was older by 1.7 years (p=.0355) and the curricula of participating classes differed (p<.0001). Average scores for the 3D group were higher for both pretest (2D, M=19.9%, SD=12.5% vs. 3D, M=23.9%, SD=14.9%, p=.0234) and posttest (2D, M=68.5%, SD=18.6% vs. 3D, M=77.3%, SD=18.8%, p=.003), but the magnitude of improvement across groups did not reach statistical significance (2D, M=48.7%, SD=21.3%, vs. 3D, M=53.5%, SD=22.7%, p=.0855). Incorporation of 3D video instruction into curricula without careful integration is insufficient to promote learning over 2D video. Published by Elsevier Inc.

  5. A trial model for medical subspecialty training in South Africa

    PubMed Central

    DALMEYER, P; STRUWIG, M; KRUGER, T

    2016-01-01

    Abstract This article outlines the trial model in reproductive medicine that was created as a first step in the development of a business model for medical subspecialty training to complement the current academic subspecialty training in South Africa. A two-tiered training model was developed over time. The hurdles that had to be overcome were the development of a curriculum and academic capacity, acquisition of appropriate funding, acceptance and accreditation of the decentralised training facility, and lastly, registration of the fellowship with the Health Professions Council of South Africa. The end result of the trial programme was a two-year full-time training with supportive funding, or a four-year programme, where the subspecialists would spend three weeks of the month in their home practice environment, attached to an accredited unit, and the last week in an academic institution. Due to the trial program’s success for the South African context and the potential of such model for the developing world, it was evident that the trial programme had to be tested to determine whether and how it can be implemented on a wider basis. PMID:27822351

  6. Cadaver-based Necrotizing Fasciitis Model for Medical Training

    PubMed Central

    Mohty, Kurt M; Cravens, Matthew G; Adamas-Rappaport, William J; Amini-Shervin, Bahareh; Irving, Steven C; Stea, Nicholas; Adhikari, Srikar

    2017-01-01

    Necrotizing fasciitis is a devastating infectious disease process that is characterized by extensive soft tissue necrosis along deep fascial planes, systemic toxicity, and high mortality. Ultrasound imaging is a rapid and non-invasive tool that can be used to help make the diagnosis of necrotizing fasciitis by identifying several distinctive sonographic findings. The purpose of this study is to describe the construction of a realistic diagnostic training model for necrotizing fasciitis using fresh frozen cadavers and common, affordable materials. Presently, fresh non-embalmed cadavers have been used at medical institutions for various educational sessions including cadaver-based ultrasound training sessions. Details for the preparation and construction of a necrotizing fasciitis cadaver model are presented here. This paper shows that the images obtained from the cadaver model closely imitate the ultrasound appearance of fluid and gas seen in actual clinical cases of necrotizing fasciitis. Therefore, it can be concluded that this cadaver-based model produces high-quality sonographic images that simulate those found in true cases of necrotizing fasciitis and is ideal for demonstrating the sonographic findings of necrotizing fasciitis. PMID:28507840

  7. Landmark constellation models for medical image content identification and localization.

    PubMed

    Hansis, Eberhard; Lorenz, Cristian

    2016-07-01

    Many medical imaging tasks require the detection and localization of anatomical landmarks, for example for the initialization of model-based segmentation or to detect anatomical regions present in an image. A large number of landmark and object localization methods have been described in the literature. The detection of single landmarks may be insufficient to achieve robust localization across a variety of imaging settings and subjects. Furthermore, methods like the generalized Hough transform yield the most likely location of an object, but not an indication whether or not the landmark was actually present in the image. For these reasons, we developed a simple and computationally efficient method combining localization results from multiple landmarks to achieve robust localization and to compute a localization confidence measure. For each anatomical region, we train a constellation model indicating the mean relative locations and location variability of a set of landmarks. This model is registered to the landmarks detected in a test image via point-based registration, using closed-form solutions. Three different outlier suppression schemes are compared, two using iterative re-weighting based on the residual landmark registration errors and the third being a variant of RANSAC. The mean weighted residual registration error serves as a confidence measure to distinguish true from false localization results. The method is optimized and evaluated on synthetic data, evaluating both the localization accuracy and the ability to classify good from bad registration results based on the residual registration error. Two application examples are presented: the identification of the imaged anatomical region in trauma CT scans and the initialization of model-based segmentation for C-arm CT scans with different target regions. The identification of the target region with the presented method was in 96 % of the cases correct. The presented method is a simple solution for combining

  8. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography.

    PubMed

    Glaser, Diana A; Doan, Josh; Newton, Peter O

    2012-07-15

    Experimental study for systematic evaluation of 3-dimensional (3D) reconstructions from low-dose digital stereoradiography. To assess the accuracy of EOS (EOS Imaging, Paris, France) 3-dimensional (3D) reconstructions compared with 3D computed tomography (CT) and the effect spine positioning within the EOS unit has on reconstruction accuracy. Scoliosis is a 3D deformity, but 3D morphological analyses are still rare. A new low-dose radiation digital stereoradiography system (EOS) was previously evaluated for intra/interobserver variability, but data are limited for 3D reconstruction accuracy. Three synthetic scoliotic phantoms (T1-pelvis) were scanned in upright position at 0°, ±5°, and ±10° of axial rotation within EOS and in supine position using CT. Three-dimensional EOS reconstructions were superimposed on corresponding 3D computed tomographic reconstructions. Shape, position, and orientation accuracy were assessed for each vertebra and the entire spine. Additional routine planer clinical deformity measurements were compared: Cobb angle, kyphosis, lordosis, and pelvic incidence. Mean EOS vertebral body shape accuracy was 1.1 ± 0.2 mm (maximum 4.7 mm), with 95% confidence interval of 1.7 mm. Different anatomical vertebral regions were modeled well with root-mean-square (RMS) values from 1.2 to 1.6 mm. Position and orientation accuracy of each vertebra were high: RMS offset was 1.2 mm (maximum 3.7 mm) and RMS axial rotation was 1.9° (maximum 5.8°). There was no significant difference in each of the analyzed parameters (P > 0.05) associated with varying the rotational position of the phantoms in EOS machine. Planer measurements accuracy was less than 1° mean difference for pelvic incidence, Cobb angle (mean 1.6°/maximum 3.9°), and sagittal kyphosis (mean less than 1°, maximum 4.9°). The EOS image acquisition and reconstruction software provides accurate 3D spinal representations of scoliotic spinal deformities. The results of this study provide spinal

  9. Revising Medical Consent Forms: An Empirical Model and Test. CDC Technical Report No. 2.

    ERIC Educational Resources Information Center

    Kaufer, David S.; And Others

    1983-01-01

    Noting that medical consent forms traditionally have been so full of medical and legal jargon that they have been impossible for even the educated layperson to understand, this paper presents a model for revising medical consent forms to make them more comprehensible. After describing the model, the paper explains each step involved in using it,…

  10. A Conceptual Model of Medical Student Well-Being: Promoting Resilience and Preventing Burnout

    ERIC Educational Resources Information Center

    Dunn, Laura B.; Iglewicz, Alana; Moutier, Christine

    2008-01-01

    Objective: This article proposes and illustrates a conceptual model of medical student well-being. Method: The authors reviewed the literature on medical student stress, coping, and well-being and developed a model of medical student coping termed the "coping reservoir." Results: The reservoir can be replenished or drained by various aspects of…

  11. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  12. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  13. Jefferson Medical College Student Model Utilization Review Committee.

    PubMed

    Zeleznik, C; Gonnella, J S

    1979-11-01

    A Student Model Utilization Review Committee Project is in progress at Jefferson Medical College. Students participate in the program for 90 minutes during the six weeks of their clerkship in family medicine at the university hospital. Information collected from participants and controls before and after the program indicates that the experimental group has greater knowledge and more positive attitudes about utilization review and cost control in the health care field than do the controls. Students express positive feelings about the program. More importantly, one year later, as seniors, those in the experimental group demonstrated clinical behavior which was more consistent with the objectives of the program than other students. These results have led the Department of Family Medicine to incorporate the utilization review program into its formal curriculum beginning in the 1979-1980 academic year.

  14. Simulation and optimization models for emergency medical systems planning.

    PubMed

    Bettinelli, Andrea; Cordone, Roberto; Ficarelli, Federico; Righini, Giovanni

    2014-01-01

    The authors address strategic planning problems for emergency medical systems (EMS). In particular, the three following critical decisions are considered: i) how many ambulances to deploy in a given territory at any given point in time, to meet the forecasted demand, yielding an appropriate response time; ii) when ambulances should be used for serving nonurgent requests and when they should better be kept idle for possible incoming urgent requests; iii) how to define an optimal mix of contracts for renting ambulances from private associations to meet the forecasted demand at minimum cost. In particular, analytical models for decision support, based on queuing theory, discrete-event simulation, and integer linear programming were presented. Computational experiments have been done on real data from the city of Milan, Italy.

  15. Genetically engineered livestock: ethical use for food and medical models.

    PubMed

    Garas, Lydia C; Murray, James D; Maga, Elizabeth A

    2015-01-01

    Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.

  16. Preoperative 3-dimensional Magnetic Resonance Imaging of Uterine Myoma and Endometrium Before Myomectomy.

    PubMed

    Kim, Young Jae; Kim, Kwang Gi; Lee, Sa Ra; Lee, Seung Hyun; Kang, Byung Chul

    2017-02-01

    Uterine myomas are the most common gynecologic benign tumor affecting women of childbearing age, and myomectomy is the main surgical option to preserve the uterus and fertility. During myomectomy for women with multiple myomas, it is advisable to identify and remove as many as possible to decrease the risk of future myomectomies. With deficient preoperative imaging, gynecologists are challenged to identify the location and size of myomas and the endometrium, which, in turn, can lead to uterine rupture during future pregnancies. Current conventional 2-dimensional imaging has limitations in identifying precise locations of multiple myomas and the endometrium. In our experience, we preferred to use 3-dimensional imaging to delineate the myomas, endometrium, or blood vessels, which we were able to successfully reconstruct by using the following imaging method. To achieve 3-dimensional imaging, we matched T2 turbo spin echo images to detect uterine myomas and endometria with T1 high-resolution isotropic volume excitation-post images used to detect blood vessels by using an algorithm based on the 3-dimensional region growing method. Then, we produced images of the uterine myomas, endometria, and blood vessels using a 3-dimensional surface rendering method and successfully reconstructed selective 3-dimensional imaging for uterine myomas, endometria, and adjacent blood vessels. A Web-based survey was sent to 66 gynecologists concerning imaging techniques used before myomectomy. Twenty-eight of 36 responding gynecologists answered that the 3-dimensional image produced in the current study is preferred to conventional 2-dimensional magnetic resonance imaging in identifying precise locations of uterine myomas and endometria. The proposed 3-dimensional magnetic resonance imaging method successfully reconstructed uterine myomas, endometria, and adjacent vessels. We propose that this will be a helpful adjunct to uterine myomectomy as a preoperative imaging technique in future

  17. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  18. The Effect of Intensity on 3-Dimensional Kinematics and Coordination in Front-Crawl Swimming.

    PubMed

    de Jesus, Kelly; Sanders, Ross; de Jesus, Karla; Ribeiro, João; Figueiredo, Pedro; Vilas-Boas, João P; Fernandes, Ricardo J

    2016-09-01

    Coaches are often challenged to optimize swimmers' technique at different training and competition intensities, but 3-dimensional (3D) analysis has not been conducted for a wide range of training zones. To analyze front-crawl 3D kinematics and interlimb coordination from low to severe swimming intensities. Ten male swimmers performed a 200-m front crawl at 7 incrementally increasing paces until exhaustion (0.05-m/s increments and 30-s intervals), with images from 2 cycles in each step (at the 25- and 175-m laps) being recorded by 2 surface and 4 underwater video cameras. Metabolic anaerobic threshold (AnT) was also assessed using the lactate-concentration-velocity curve-modeling method. Stroke frequency increased, stroke length decreased, hand and foot speed increased, and the index of interlimb coordination increased (within a catch-up mode) from low to severe intensities (P ≤ .05) and within the 200-m steps performed above the AnT (at or closer to the 4th step; P ≤ .05). Concurrently, intracyclic velocity variations and propelling efficiency remained similar between and within swimming intensities (P > .05). Swimming intensity has a significant impact on swimmers' segmental kinematics and interlimb coordination, with modifications being more evident after the point when AnT is reached. As competitive swimming events are conducted at high intensities (in which anaerobic metabolism becomes more prevalent), coaches should implement specific training series that lead swimmers to adapt their technique to the task constraints that exist in nonhomeostatic race conditions.

  19. Fusion of radar data to extract 3-dimensional objects LDRD final report

    SciTech Connect

    Fellerhoff, R.; Hensley, B.; Carande, R.; Burkhart, G.; Ledner, R.

    1997-03-01

    Interferometric Synthetic Aperture Radar (IFSAR) is a very promising technology for remote mapping of 3-Dimensional objects. In particular, 3-D maps of urban areas are extremely important to a wide variety of users, both civilian and military. However, 3-D maps produced by traditional optical stereo (stereogrammetry) techniques can be quite expensive to obtain, and accurate urban maps can only be obtained with a large amount of human-intensive interpretation work. IFSAR has evolved over the last decade as a mapping technology that promises to eliminate much of the human-intensive work in producing elevation maps. However, IFSAR systems have only been robustly demonstrated in non-urban areas, and have not traditionally been able to produce data with enough detail to be of general use in urban areas. Sandia Laboratories Twin Otter IFSAR was the first mapping radar system with the proper parameter set to provide sufficiently detailed information in a large number of urban areas. The goal of this LDRD was to fuse previously unused information derived from IFSAR data in urban areas that can be used to extract accurate digital elevation models (DEMs) over wide areas without intensive human interaction.

  20. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures.

  1. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

    PubMed Central

    Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben

    2015-01-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839

  2. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction.

    PubMed

    Zopf, David A; Mitsak, Anna G; Flanagan, Colleen L; Wheeler, Matthew; Green, Glenn E; Hollister, Scott J

    2015-01-01

    To determine the potential of an integrated, image-based computer-aided design (CAD) and 3-dimensional (3D) printing approach to engineer scaffolds for head and neck cartilaginous reconstruction for auricular and nasal reconstruction. Proof of concept revealing novel methods for bioscaffold production with in vitro and in vivo animal data. Multidisciplinary effort encompassing 2 academic institutions. Digital Imaging and Communications in Medicine (DICOM) computed tomography scans were segmented and utilized in image-based CAD to create porous, anatomic structures. Bioresorbable polycaprolactone scaffolds with spherical and random porous architecture were produced using a laser-based 3D printing process. Subcutaneous in vivo implantation of auricular and nasal scaffolds was performed in a porcine model. Auricular scaffolds were seeded with chondrogenic growth factors in a hyaluronic acid/collagen hydrogel and cultured in vitro over 2 months' duration. Auricular and nasal constructs with several types of microporous architecture were rapidly manufactured with high fidelity to human patient anatomy. Subcutaneous in vivo implantation of auricular and nasal scaffolds resulted in an excellent appearance and complete soft tissue ingrowth. Histological analysis of in vitro scaffolds demonstrated native-appearing cartilaginous growth that respected the boundaries of the scaffold. Integrated, image-based CAD and 3D printing processes generated patient-specific nasal and auricular scaffolds that supported cartilage regeneration. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  3. Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment.

    PubMed

    Langridge, Benjamin; Momin, Sheikh; Coumbe, Ben; Woin, Evelina; Griffin, Michelle; Butler, Peter

    2017-07-17

    The use of 3-dimensional (3D) printing in medicine has rapidly expanded in recent years as the technology has developed. The potential uses of 3D printing are manifold. This article provides a systematic review of the uses of 3D printing within surgical training and assessment. A structured literature search of the major literature databases was performed in adherence to PRISMA guidelines. Articles that met predefined inclusion and exclusion criteria were appraised with respect to the key objectives of the review and sources of bias were analysed. Overall, 49 studies were identified for inclusion in the qualitative analysis. Heterogeneity in study design and outcome measures used prohibited meaningful meta-analysis. 3D printing has been used in surgical training across a broad range of specialities but most commonly in neurosurgery and otorhinolaryngology. Both objective and subjective outcome measures have been studied, demonstrating the usage of 3D printed models in training and education. 3D printing has also been used in anatomical education and preoperative planning, demonstrating improved outcomes when compared to traditional educational methods and improved patient outcomes, respectively. 3D printing technology has a broad range of potential applications within surgical education and training. Although the field is still in its relative infancy, several studies have already demonstrated its usage both instead of and in addition to traditional educational methods. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. Animal Models for Medical Countermeasures to Radiation Exposure

    PubMed Central

    Williams, Jacqueline P.; Brown, Stephen L.; Georges, George E.; Hauer-Jensen, Martin; Hill, Richard P.; Huser, Amy K.; Kirsch, David G.; MacVittie, Thomas J.; Mason, Kathy A.; Medhora, Meetha M.; Moulder, John E.; Okunieff, Paul; Otterson, Mary F.; Robbins, Michael E.; Smathers, James B.; McBride, William H.

    2011-01-01

    Since September 11, 2001, there has been the recognition of a plausible threat from acts of terrorism, including radiological or nuclear attacks. A network of Centers for Medical Countermeasures against Radiation (CMCRs) has been established across the U.S.; one of the missions of this network is to identify and develop mitigating agents that can be used to treat the civilian population after a radiological event. The development of such agents requires comparison of data from many sources and accumulation of information consistent with the “Animal Rule” from the Food and Drug Administration (FDA). Given the necessity for a consensus on appropriate animal model use across the network to allow for comparative studies to be performed across institutions, and to identify pivotal studies and facilitate FDA approval, in early 2008, investigators from each of the CMCRs organized and met for an Animal Models Workshop. Working groups deliberated and discussed the wide range of animal models available for assessing agent efficacy in a number of relevant tissues and organs, including the immune and hematopoietic systems, gastrointestinal tract, lung, kidney and skin. Discussions covered the most appropriate species and strains available as well as other factors that may affect differential findings between groups and institutions. This report provides the workshop findings. PMID:20334528

  5. Fuzzy Naive Bayesian model for medical diagnostic decision support.

    PubMed

    Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W

    2009-01-01

    This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.

  6. A new mouse model of ADHD for medication development

    PubMed Central

    Majdak, Petra; Ossyra, John R.; Ossyra, Jessica M.; Cobert, Adam J.; Hofmann, Gabrielle C.; Tse, Stephen; Panozzo, Brent; Grogan, Elizabeth L.; Sorokina, Anastassia; Rhodes, Justin S.

    2016-01-01

    ADHD is a major societal problem with increasing incidence and a stagnant track record for treatment advances. A lack of appropriate animal models has partly contributed to the incremental advance of this field. Hence, our goal was to generate a novel mouse model that could be useful for ADHD medication development. We reasoned that hyperactivity is a core feature of ADHD that could easily be bred into a population, but to what extent other hallmark features of ADHD would appear as correlated responses was unknown. Hence, starting from a heterogeneous population, we applied within-family selection over 16 generations to produce a High-Active line, while simultaneously maintaining an unselected line to serve as the Control. We discovered that the High-Active line demonstrated motor impulsivity in two different versions of the Go/No-go test, which was ameliorated with a low dose of amphetamine, and further displayed hypoactivation of the prefrontal cortex and dysregulated cerebellar vermal activation as indexed by c-Fos immunohistochemical staining. We conclude that the High-Active line represents a valid model for the Hyperactive-Impulsive subtype of ADHD and therefore may be used in future studies to advance our understanding of the etiology of ADHD and screen novel compounds for its treatment. PMID:27996970

  7. Bayesian Analysis for Risk Assessment of Selected Medical Events in Support of the Integrated Medical Model Effort

    NASA Technical Reports Server (NTRS)

    Gilkey, Kelly M.; Myers, Jerry G.; McRae, Michael P.; Griffin, Elise A.; Kallrui, Aditya S.

    2012-01-01

    The Exploration Medical Capability project is creating a catalog of risk assessments using the Integrated Medical Model (IMM). The IMM is a software-based system intended to assist mission planners in preparing for spaceflight missions by helping them to make informed decisions about medical preparations and supplies needed for combating and treating various medical events using Probabilistic Risk Assessment. The objective is to use statistical analyses to inform the IMM decision tool with estimated probabilities of medical events occurring during an exploration mission. Because data regarding astronaut health are limited, Bayesian statistical analysis is used. Bayesian inference combines prior knowledge, such as data from the general U.S. population, the U.S. Submarine Force, or the analog astronaut population located at the NASA Johnson Space Center, with observed data for the medical condition of interest. The posterior results reflect the best evidence for specific medical events occurring in flight. Bayes theorem provides a formal mechanism for combining available observed data with data from similar studies to support the quantification process. The IMM team performed Bayesian updates on the following medical events: angina, appendicitis, atrial fibrillation, atrial flutter, dental abscess, dental caries, dental periodontal disease, gallstone disease, herpes zoster, renal stones, seizure, and stroke.

  8. Students Teaching Students: A Model for Medical Education

    ERIC Educational Resources Information Center

    Flax, Jim; Garrard, Judith

    1974-01-01

    At the University of Minnesota Medical School a course, Introduction to Clinical Medicine, introduces communication skills; develops interview skills consistent with students' personality, their role as medical students, and the patients' needs; assists students in becoming comfortable as medical students in the hospital setting; and teaches them…

  9. Expanding the Biomedical Model: Case Studies of Five Medical Schools.

    ERIC Educational Resources Information Center

    Tresolini, Carol P.; And Others

    This study examined five representative medical schools for approaches to teaching integrated approaches to health care. Traditionally medical schools have taught from a biomedical, technological approach. The study used a qualitative, multiple case study design to explore which medical schools were attempting integrated health care education. On…

  10. Impact of dental and zygomatic implants on stress distribution in maxillary defects: a 3-dimensional finite element analysis study.

    PubMed

    Korkmaz, Fatih Mehmet; Korkmaz, Yavuz Tolga; Yaluğ, Suat; Korkmaz, Turan

    2012-10-01

    The aim of this study was to evaluate the stress distribution in the bone around dental and zygomatic implants for 4 different implant-supported obturator prostheses designs in a unilaterally maxillary defect using a 3-dimensional finite element stress analysis. A 3-dimensional finite element model of the human unilateral maxillary defect was constructed. Four different implant-supported obturator prostheses were modeled; model 1 with 2 zygomatic implants and 1 dental implant, model 2 with 2 zygomatic implants and 2 dental implants, model 3 with 2 zygomatic implants and 3 dental implants, and model 4 with 1 zygomatic implant and 3 dental implants. Bar attachments were used as superstructure. A 150-N vertical load was applied in 3 different ways, and von Mises stresses in the cortical bone around implants were evaluated. When the models (model 1-3) were compared in terms of number of implants, all of the models showed similar highest stress values under the first loading condition, and these values were less than under model 4 conditions. The highest stress values of models 1-4 under the first loading condition were 8.56, 8.59, 8.32, and 11.55 Mpa, respectively. The same trend was also observed under the other loading conditions. It may be concluded that the use of a zygomatic implant on the nondefective side decreased the highest stress values, and increasing the number of dental implants between the most distal and most mesial implants on the nondefective side did not decrease the highest stress values.

  11. Inter-Rater and Intra-Rater Repeatability and Reliability of EOS 3-Dimensional Imaging Analysis Software.

    PubMed

    Demzik, Alysen L; Alvi, Hasham M; Delagrammaticas, Dimitri E; Martell, John M; Beal, Matthew D; Manning, David W

    2016-05-01

    Quantifying ideal component position for the acetabulum and stem during total hip arthroplasty (THA) has been described by many methods. A new imaging method using low-dose digital stereoradiography, the EOS imaging system, is a biplanar low-dose X-ray system that allows for 3-dimensional modeling of lower limbs and semiautomated measurement of pelvic parameters and implant alignment. Twenty-five patients who underwent primary THA by a single surgeon between October 2014 and December 2014 were retrospectively selected. Only patients with unilateral THA without associated spine pathologies were included, totaling 16 right hips and 9 left hips. There were 8 men and 17 women in the cohort, with a mean age of 67 years (range, 53-82). Three individuals performed measurements of pelvic parameters and implant alignment on 3 separate occasions. An interclass correlation of >0.75 was accepted as evidence of excellent agreement and a confirmation of measurement reliability. Before reviewing patient radiographs, 4 pelvic phantom models were analyzed using the EOS 3-dimensional software to verify accuracy. All anatomic and implant measurements performed by the 3 independent reviewers showed interobserver and intraobserver agreement with interclass correlation >0.75. Three-dimensional modeling of hip implants with the EOS imaging system is a reasonable option for the evaluation of component position after THA. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Predicting diffusive transport of cationic liposomes in 3-dimensional tumor spheroids.

    PubMed

    Wientjes, Michael G; Yeung, Bertrand Z; Lu, Ze; Wientjes, M Guillaume; Au, Jessie L S

    2014-10-28

    Nanotechnology is widely used in cancer research. Models that predict nanoparticle transport and delivery in tumors (including subcellular compartments) would be useful tools. This study tested the hypothesis that diffusive transport of cationic liposomes in 3-dimensional (3D) systems can be predicted based on liposome-cell biointerface parameters (binding, uptake, retention) and liposome diffusivity. Liposomes comprising different amounts of cationic and fusogenic lipids (10-30mol% DOTAP or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1-20mol% DOPE or 1,2-dioleoyl-3-trimethylammonium-propane, +25 to +44mV zeta potential) were studied. We (a) measured liposome-cell biointerface parameters in monolayer cultures, and (b) calculated effective diffusivity based on liposome size and spheroid composition. The resulting parameters were used to simulate the liposome concentration-depth profiles in 3D spheroids. The simulated results agreed with the experimental results for liposomes comprising 10-30mol% DOTAP and ≤10mol% DOPE, but not for liposomes with higher DOPE content. For the latter, model modifications to account for time-dependent extracellular concentration decrease and liposome size increase did not improve the predictions. The difference among low- and high-DOPE liposomes suggests concentration-dependent DOPE properties in 3D systems that were not captured in monolayers. Taken together, our earlier and present studies indicate the diffusive transport of neutral, anionic and cationic nanoparticles (polystyrene beads and liposomes, 20-135nm diameter, -49 to +44mV) in 3D spheroids, with the exception of liposomes comprising >10mol% DOPE, can be predicted based on the nanoparticle-cell biointerface and nanoparticle diffusivity. Applying the model to low-DOPE liposomes showed that changes in surface charge affected the liposome localization in intratumoral subcompartments within spheroids.

  13. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    PubMed

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  14. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    PubMed Central

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  15. [On hi-tech cardiologic care model in medical support of train operation safety].

    PubMed

    Pfaf, V F; Gorokhova, S G; Kotenko, V A

    2015-01-01

    The article covers hi-tech cardiologic care model in system of medical support of train operation safety, with definition of structure blocks in this model. Discussion covers peculiarities of the model functioning in comparison with the governmental system of hi-tech medical care, including its closed cycle principle characteristics, wide patients selection among railway workers, continuous and close cooperation between various medical speicalities, with active involvement of occupational fitness specialists (medical examination committees of various levels, including Central Medical Examination Committee), major extent of interventional rentgenosurgical technologies applied in diseases without significant functional failure.

  16. Evaluation of Medical Cystine Stone Prevention in an Animal Model

    NASA Astrophysics Data System (ADS)

    Sagi, Sreedhar; Wendt-Nordahl, Gunnar; Alken, Peter; Knoll, Thomas

    2007-04-01

    Medical treatment for cystinuria aims to decrease the concentration of cystine in the urine, increase its solubility and therefore prevent stone formation. Ascorbic acid and captopril have been recommended as alternatives to thiol drugs, though conflicting data undermining their efficacy has been widely reported, too. The aim of this study was to verify the effects of ascorbic acid and captopril on cystine stone formation in the cystinuria mouse model. A total of 28 male homozygous pebbles mice were used for characterizing the mice on normal diet, ascorbic acid and captopril supplemented diets. The baseline physiological parameters of the mice were determined initially. The normal diet was then replaced with the supplemented diet (ascorbic acid/captopril) for the next 48 weeks and various biochemical parameters in urine and plasma were analyzed. All homozygous mice developed urinary cystine stones during the first year of life. No reduction in the urinary cystine concentration was seen with either of the supplemented diets. The stone mass varied widely in the study and a beneficial effect of ascorbic acid in some of the animals was possible though an overall statistical significance was not seen. Conclusions: The cystinuria mouse model provides an ideal tool for evaluation of stone preventive measures in a standardized environment. This study confirms that ascorbic acid and captopril are not effective in cystinuria.

  17. Faculty development in medical education research: a cooperative model.

    PubMed

    Coates, Wendy C; Love, Jeffrey N; Santen, Sally A; Hobgood, Cherri D; Mavis, Brian E; Maggio, Lauren A; Farrell, Susan E

    2010-05-01

    As the definition of scholarship is clarified, each specialty should develop a cadre of medical education researchers who can design, test, and optimize educational interventions. In 2004, the Association for American Medical Colleges' Group on Educational Affairs developed the Medical Education Research Certificate (MERC) program to provide a curriculum to help medical educators acquire or enhance skills in medical education research, to promote effective collaboration with seasoned researchers, and to create better consumers of medical education scholarship. MERC courses are offered to individuals during educational meetings. Educational leaders in emergency medicine (EM) identified a disparity between the "scholarship of teaching" and medical education research skills, and they collaborated with the MERC steering committee to develop a mentored faculty development program in medical education research. A planning committee comprising experienced medical education researchers who are also board-certified, full-time EM faculty members designed a novel approach to the MERC curriculum: a mentored team approach to learning, grounded in collaborative medical education research projects. The planning committee identified areas of research interest among participants and formed working groups to collaborate on research projects during standard MERC workshops. Rather than focusing on individual questions during the course, each mentored group identified a single study hypothesis. After completing the first three workshops, group members worked under their mentors' guidance on their multiinstitutional research projects. The expected benefits of this approach to MERC include establishing a research community network, creating projects whose enrollments offer a multiinstitutional dimension, and developing a cadre of trained education researchers in EM.

  18. Application of 3-Dimensional Printing Technology to Kirschner Wire Fixation of Adolescent Condyle Fracture.

    PubMed

    Dong, Zhiwei; Li, Qihong; Bai, Shizhu; Zhang, Li

    2015-10-01

    Condyle fractures are common in children and are increasingly treated with open reduction. Three-dimensional printing has developed into an important method of assisting surgical treatment. This report describes the case of a 14-year-old patient treated for a right condyle fracture at the authors' hospital. Preoperatively, the authors designed a surgical guide using 3-dimensional printing and virtual surgery. The 3-dimensional surgical guide allowed accurate alignment of the fracture using Kirschner wire without additional dissection and tissue injury. Kirschner wire fixation augmented by 3-dimensional printing technology produced a good outcome in this adolescent condyle fracture. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Model medication management process in Australian nursing homes using business process modeling.

    PubMed

    Qian, Siyu; Yu, Ping

    2013-01-01

    One of the reasons for end user avoidance or rejection to use health information systems is poor alignment of the system with healthcare workflow, likely causing by system designers' lack of thorough understanding about healthcare process. Therefore, understanding the healthcare workflow is the essential first step for the design of optimal technologies that will enable care staff to complete the intended tasks faster and better. The often use of multiple or "high risk" medicines by older people in nursing homes has the potential to increase medication error rate. To facilitate the design of information systems with most potential to improve patient safety, this study aims to understand medication management process in nursing homes using business process modeling method. The paper presents study design and preliminary findings from interviewing two registered nurses, who were team leaders in two nursing homes. Although there were subtle differences in medication management between the two homes, major medication management activities were similar. Further field observation will be conducted. Based on the data collected from observations, an as-is process model for medication management will be developed.

  20. Stress distribution in the temporomandibular joint after mandibular protraction: a 3-dimensional finite element method study. Part 1.

    PubMed

    Gupta, Anurag; Kohli, Virender S; Hazarey, Pushpa V; Kharbanda, Om P; Gunjal, Amit

    2009-06-01

    This study was designed to evaluate patterns of stress generation in the temporomandibular joint after mandibular protraction, by using a 3-dimensional finite element method. The results of the initial investigation are reported here in Part 1. The effects of varying the construction bite are reported in Part 2. A 3-dimensional computer-aided design model was developed from the magnetic resonance images of a growing boy (age, 12 years), by using I-DEAS NX (version 11.0, Siemens PLM Software, Plano, Tex). The model simulated mandibular protraction, with 5 mm of sagittal advancement and 4 mm of vertical opening. Stress distributions on the condylar neck, the glenoid fossa, and the articular disc in the anteroposterior and mediolateral directions were assessed. Tensile stresses were located on the posterosuperior aspects and compressive stresses on the anterior and anterosuperior aspects of the condylar head. Tensile stresses were found in the posterior region of the glenoid fossa near the attachment of the posterior connective tissues. These results suggest that, on mandibular protraction, the mandibular condyle experiences tensile stresses in the posterosuperior aspect that might help explain condylar growth in this direction. Similarly, on the glenoid fossa, tensile stresses are created in the region of posterior connective tissues; this might be correlated with the increased cellular activity in this region. Further study with variable vertical heights of the construction bites is needed.

  1. Studies of Cosmic Ray Modulation and Energetic Particle Propagation in Time-Dependent 3-Dimensional Heliospheric Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    The primary goal of this project was to perform theoretical calculations of propagation of cosmic rays and energetic particles in 3-dimensional heliospheric magnetic fields. We used Markov stochastic process simulation to achieve to this goal. We developed computation software that can be used to study particle propagation in, as two examples of heliospheric magnetic fields that have to be treated in 3 dimensions, a heliospheric magnetic field suggested by Fisk (1996) and a global heliosphere including the region beyond the termination shock. The results from our model calculations were compared with particle measurements from Ulysses, Earth-based spacecraft such as IMP-8, WIND and ACE, Voyagers and Pioneers in outer heliosphere for tests of the magnetic field models. We particularly looked for features of particle variations that can allow us to significantly distinguish the Fisk magnetic field from the conventional Parker spiral field. The computer code will eventually lead to a new generation of integrated software for solving complicated problems of particle acceleration, propagation and modulation in realistic 3-dimensional heliosphere of realistic magnetic fields and the solar wind with a single computation approach.

  2. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter

  3. Magnetic topologies of coronal mass ejection events: Effects of 3-dimensional reconnection

    SciTech Connect

    Gosling, J.T.

    1995-09-01

    New magnetic loops formed in the corona following coronal mass ejection, CME, liftoffs provide strong evidence that magnetic reconnection commonly occurs within the magnetic ``legs`` of the departing CMEs. Such reconnection is inherently 3-dimensional and naturally produces CMEs having magnetic flux rope topologies. Sustained reconnection behind CMEs can produce a mixture of open and disconnected field lines threading the CMES. In contrast to the results of 2-dimensional reconnection. the disconnected field lines are attached to the outer heliosphere at both ends. A variety of solar and solar wind observations are consistent with the concept of sustained 3-dimensional reconnection within the magnetic legs of CMEs close to the Sun.

  4. Air Force Medical Modeling and Simulation: Bringing Virtual Reality to Reality

    DTIC Science & Technology

    2011-01-26

    Modeling and Simulation 26 January 2011 Colonel Deborah N. Burgess, MD, FACP 1 Military Health System Conference Medical Modernization Division...Medical Modeling and Simulation: Bringing Virtual Reality to Reality 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Coordinating Group-1 Modeling & Simulation subgroup • USAF SG designated SPO vs MEFPAK for medical simulation E&T *Current Jan 2011 2011 MHS

  5. A Latent Growth Model Suggests that Empathy of Medical Students Does Not Decline over Time

    ERIC Educational Resources Information Center

    Costa, Patrício; Magalhães, Eunice; Costa, Manuel João

    2013-01-01

    Empathy is a relevant attribute in the context of patient care. However, a decline in empathy throughout medical education has been reported in North-American medical schools, particularly, in the transition to clinical training. The present study aims to longitudinally model empathy during medical school at three time points: at the entrance,…

  6. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  7. A Latent Growth Model Suggests that Empathy of Medical Students Does Not Decline over Time

    ERIC Educational Resources Information Center

    Costa, Patrício; Magalhães, Eunice; Costa, Manuel João

    2013-01-01

    Empathy is a relevant attribute in the context of patient care. However, a decline in empathy throughout medical education has been reported in North-American medical schools, particularly, in the transition to clinical training. The present study aims to longitudinally model empathy during medical school at three time points: at the entrance,…

  8. Social Work Education on Mental Health: Postmodern Discourse and the Medical Model

    ERIC Educational Resources Information Center

    Casstevens, W. J.

    2010-01-01

    This article provides a pedagogical approach to presenting alternatives along with the traditional medical model in the context of mental health treatment and service provision. Given the current influence of the medical model in community mental health, this article outlines a rationale for challenging the model and considering alternative models…

  9. Social Work Education on Mental Health: Postmodern Discourse and the Medical Model

    ERIC Educational Resources Information Center

    Casstevens, W. J.

    2010-01-01

    This article provides a pedagogical approach to presenting alternatives along with the traditional medical model in the context of mental health treatment and service provision. Given the current influence of the medical model in community mental health, this article outlines a rationale for challenging the model and considering alternative models…

  10. Accuracy of medical models made by consumer-grade fused deposition modelling printers

    PubMed Central

    Petropolis, Christian; Kozan, Daniel; Sigurdson, Leif

    2015-01-01

    BACKGROUND: Additive manufacturing using fused deposition modelling (FDM) has become widely available with the development of consumer-grade three-dimensional printers. To be useful in maxillofacial surgery, models created by these printers must accurately reproduce the craniofacial skeleton. OBJECTIVE: To determine the accuracy of consumer-grade FDM printers in the production of medical models compared with industrial selective laser sintering (SLS) printers. METHODS: Computed tomography images of a dry skull were manipulated using OsiriX (OsiriX, Switzerland) and ZBrush (Pixologic, USA) software. Models were fabricated using a consumer-grade FDM printer at 100 μm, 250 μm and 500 μm layer heights and an industrial SLS printer. Seven linear measurements were made on the models and compared with the corresponding dry skull measurements using an electronic caliper. RESULTS: A dimensional error of 0.30% was observed for the SLS models and 0.44%, 0.52% and 1.1% for the 100 μm, 250 μm and 500 μm FDM models, respectively. CONCLUSION: Consumer-grade FDM printers can produce medical models with sufficient dimensional accuracy for use in maxillofacial surgery. With this technology, surgeons can independently produce low-cost maxillofacial models in an office setting. PMID:26090349

  11. Accuracy of medical models made by consumer-grade fused deposition modelling printers.

    PubMed

    Petropolis, Christian; Kozan, Daniel; Sigurdson, Leif

    2015-01-01

    Additive manufacturing using fused deposition modelling (FDM) has become widely available with the development of consumer-grade three-dimensional printers. To be useful in maxillofacial surgery, models created by these printers must accurately reproduce the craniofacial skeleton. To determine the accuracy of consumer-grade FDM printers in the production of medical models compared with industrial selective laser sintering (SLS) printers. Computed tomography images of a dry skull were manipulated using OsiriX (OsiriX, Switzerland) and ZBrush (Pixologic, USA) software. Models were fabricated using a consumer-grade FDM printer at 100 μm, 250 μm and 500 μm layer heights and an industrial SLS printer. Seven linear measurements were made on the models and compared with the corresponding dry skull measurements using an electronic caliper. A dimensional error of 0.30% was observed for the SLS models and 0.44%, 0.52% and 1.1% for the 100 μm, 250 μm and 500 μm FDM models, respectively. Consumer-grade FDM printers can produce medical models with sufficient dimensional accuracy for use in maxillofacial surgery. With this technology, surgeons can independently produce low-cost maxillofacial models in an office setting.

  12. Common 3-dimensional coordinate system for assessment of directional changes.

    PubMed

    Ruellas, Antonio Carlos de Oliveira; Tonello, Cristiano; Gomes, Liliane Rosas; Yatabe, Marilia Sayako; Macron, Lucie; Lopinto, Julia; Goncalves, Joao Roberto; Garib Carreira, Daniela Gamba; Alonso, Nivaldo; Souki, Bernardo Quiroga; Coqueiro, Raildo da Silva; Cevidanes, Lucia Helena Soares

    2016-05-01

    The aims of this study were to evaluate how head orientation interferes with the amounts of directional change in 3-dimensional (3D) space and to propose a method to obtain a common coordinate system using 3D surface models. Three-dimensional volumetric label maps were built for pretreatment (T1) and posttreatment (T2) from cone-beam computed tomography images of 30 growing subjects. Seven landmarks were labeled in all T1 and T2 volumetric label maps. Registrations of T1 and T2 images relative to the cranial base were performed, and 3D surface models were generated. All T1 surface models were moved by orienting the Frankfort horizontal, midsagittal, and transporionic planes to match the axial, sagittal, and coronal planes, respectively, at a common coordinate system in the Slicer software (open-source, version 4.3.1; http://www.slicer.org). The matrix generated for each T1 model was applied to each corresponding registered T2 surface model, obtaining a common head orientation. The 3D differences between the T1 and registered T2 models, and the amounts of directional change in each plane of the 3D space, were quantified for before and after head orientation. Two assessments were performed: (1) at 1 time point (mandibular width and length), and (2) for longitudinal changes (maxillary and mandibular differences). The differences between measurements before and after head orientation were quantified. Statistical analysis was performed by evaluating the means and standard deviations with paired t tests (mandibular width and length) and Wilcoxon tests (longitudinal changes). For 16 subjects, 2 observers working independently performed the head orientations twice with a 1-week interval between them. Intraclass correlation coefficients and the Bland-Altman method tested intraobserver and interobserver agreements of the x, y, and z coordinates for 7 landmarks. The 3D differences were not affected by the head orientation. The amounts of directional change in each plane of 3

  13. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education.

    PubMed

    Torres, K; Staśkiewicz, G; Śnieżyński, M; Drop, A; Maciejewski, R

    2011-02-01

    Rapid prototyping has become an innovative method of fast and cost-effective production of three-dimensional models for manufacturing. Wide access to advanced medical imaging methods allows application of this technique for medical training purposes. This paper presents the feasibility of rapid prototyping technologies: stereolithography, selective laser sintering, fused deposition modelling, and three-dimensional printing for medical education. Rapid prototyping techniques are a promising method for improvement of anatomical education in medical students but also a valuable source of training tools for medical specialists.

  14. Professionalism Deficits among Medical Students: Models of Identification and Intervention

    ERIC Educational Resources Information Center

    Bennett, Aurora J.; Roman, Brenda; Arnold, Lesley M.; Kay, Jerald; Goldenhar, Linda M.

    2005-01-01

    Objective: This study compares the instruments and interventions utilized to identify and remediate unprofessional behaviors in medical students across U.S. psychiatry clerkships. Methods: A 20-item questionnaire was distributed to 120 psychiatry clerkship directors and directors of medical student education, in the U.S., inquiring into the…

  15. Live streaming video for medical education: a laboratory model.

    PubMed

    Gandsas, Alejandro; McIntire, Katherine; Palli, Guillermo; Park, Adrian

    2002-10-01

    At the University of Kentucky (UK), we applied streaming video technology to develop a webcast model that will allow institutions to broadcast live and prerecorded surgeries, conferences, and courses in real time over networks (the Internet or an intranet). We successfully broadcast a prerecorded laparoscopic paraesophageal hernia repair to domestic and international clients by using desktop computers equipped with off-the-shelf, streaming-enabled software and standard hardware and operating systems. A web-based user interface made accessing the educational material as simple as a mouse click and allowed clients to participate in the broadcast event via an embedded e-mail/chat module. Three client computers (two connected to the Internet and a third connected to the UK intranet) requested and displayed the surgical film by means of seven common network connection configurations. Significantly, no difference in image resolution was detected with the use of a connection speed faster than 128 kilobytes per second (kbps). At this connection speed, an average bandwidth of 32.7 kbps was used, and although a 15-second delay was experienced from the time of data request to data display, the surgical film streamed continuously from beginning to end at a mean rate of 14.4 frames per second (fps). The clients easily identified all anatomic structures in full color motion, clearly followed all steps of the surgical procedure, and successfully asked questions and made comments by using the e-mail/chat module while viewing the surgery. With minimal financial investment, we have created an interactive virtual classroom with the potential to attract a global audience. Our webcast model represents a simple and practical method for institutions to supplement undergraduate and graduate surgical education and offer continuing medical education credits in a way that is convenient for clients (surgeons, students, residents, others). In the future, physicians may access streaming webcast

  16. Physical Constraint Finite Element Model for Medical Image Registration

    PubMed Central

    Zhang, Jingya; Wang, Jiajun; Wang, Xiuying; Gao, Xin; Feng, Dagan

    2015-01-01

    Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1) the conventional linear elastic finite element model (FEM); 2) the dynamic elastic FEM; 3) the robust block matching (RBM) method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference), NC (Normalized Correlation) and NMI (Normalized Mutual Information), and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student’s t-test demonstrated that our model statistically outperformed the other methods in comparison (p

  17. Physical Constraint Finite Element Model for Medical Image Registration.

    PubMed

    Zhang, Jingya; Wang, Jiajun; Wang, Xiuying; Gao, Xin; Feng, Dagan

    2015-01-01

    Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1) the conventional linear elastic finite element model (FEM); 2) the dynamic elastic FEM; 3) the robust block matching (RBM) method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference), NC (Normalized Correlation) and NMI (Normalized Mutual Information), and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student's t-test demonstrated that our model statistically outperformed the other methods in comparison (p

  18. A 3-dimensional mathematic cylinder phantom for the evaluation of the fundamental performance of SPECT.

    PubMed

    Onishi, Hideo; Motomura, Nobutoku; Takahashi, Masaaki; Yanagisawa, Masamichi; Ogawa, Koichi

    2010-03-01

    Degradation of SPECT images results from various physical factors. The primary aim of this study was the development of a digital phantom for use in the characterization of factors that contribute to image degradation in clinical SPECT studies. A 3-dimensional mathematic cylinder (3D-MAC) phantom was devised and developed. The phantom (200 mm in diameter and 200 mm long) comprised 3 imbedded stacks of five 30-mm-long cylinders (diameters, 4, 10, 20, 40, and 60 mm). In simulations, the 3 stacks and the background were assigned radioisotope concentrations and attenuation coefficients. SPECT projection datasets that included Compton scattering effects, photoelectric effects, and gamma-camera models were generated using the electron gamma-shower Monte Carlo simulation program. Collimator parameters, detector resolution, total photons acquired, number of projections acquired, and radius of rotation were varied in simulations. The projection data were formatted in Digital Imaging and Communications in Medicine (DICOM) and imported to and reconstructed using commercial reconstruction software on clinical SPECT workstations. Using the 3D-MAC phantom, we validated that contrast depended on size of region of interest (ROI) and was overestimated when the ROI was small. The low-energy general-purpose collimator caused a greater partial-volume effect than did the low-energy high-resolution collimator, and contrast in the cold region was higher using the filtered backprojection algorithm than using the ordered-subset expectation maximization algorithm in the SPECT images. We used imported DICOM projection data and reconstructed these data using vendor software; in addition, we validated reconstructed images. The devised and developed 3D-MAC SPECT phantom is useful for the characterization of various physical factors, contrasts, partial-volume effects, reconstruction algorithms, and such, that contribute to image degradation in clinical SPECT studies.

  19. Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.

    PubMed

    Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin

    2013-12-01

    Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency.

  20. A new platform for serological analysis based on porous 3-dimensional polyethylene sinter bodies.

    PubMed

    Alasel, Mohammed; Keusgen, Michael

    2017-10-25

    A new sensitive and selective platform, three-dimensional immunosensor, has been developed for a rapid serological diagnosis; detection of a Borrelia infection was considered as a model assay. The immunosensor is based on a 3-dimensional (3D) porous solid surface (sinter body) with dimensions of 2×2.5mm where a recombinant variable lipoprotein surface-exposed protein (VlsE; Borrelia-antigen) is immobilized by different techniques. The sinter body served as a robust and inexpensive carrier, which facilitated a successful hydrophobic adsorption as well as covalent immobilization of the antigen with sufficient amounts of on the surface. Because of sinter body's porosity, the detection could be performed in an immune affinity flow system based on a little disposable plastic column. The flow of reagents through the column is advantageous in terms of reducing the non-specific interaction and shortening the test time. Furthermore, three labels were tested for a colorimetric detection: i) a horseradish peroxidase (HRP) labeled secondary antibody, ii) nanoparticles based on Sudan IV, and iii) gold nanoparticles modified with protein A. HRP secondary labeled antibody provides the most sensitive test, 1000 fold dilution of serum sample can be clearly detected in only 20min. Gold nanoparticles modified with protein A were used as a direct label or as a catalyst for reduction of silver ions. Direct detection with gold nanoparticles provides short time of analysis (5min) while detection of metallic silver required longer time (12min) but with improved sensitivity. Nanoparticles based on Sudan IV showed high background and were less favorable. The assay is distinctive because of the rapid analysis time with all used labels, longest 20min. Compared to classical serological methods for Borrelia diagnosis, the developed method offers a simple, rapid and reliable tool of analysis with minimal cost and can be easily transferred to other infectious diseases. Copyright © 2017 Elsevier

  1. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles.

    PubMed

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin

    2013-07-01

    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  2. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    ERIC Educational Resources Information Center

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  3. Investigation of Measurement Condition for 3-Dimensional Spectroscopy by Scanning Transmission X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Ohigashi, T.; Inagaki, Y.; Ito, A.; Shinohara, K.; Kosugi, N.

    2017-06-01

    A sample cell for performing computed tomography (CT) was developed. The 3-dimensional (3D) structure of polystyrene spheres was observed and the fluctuation of reconstructed linear absorption coefficients (LAC) was 9.3%. To improve the quality of data in 3D spectro-microscopy, required measurement condition is discussed.

  4. 3-dimensional root phenotyping with a novel imaging and software platform

    USDA-ARS?s Scientific Manuscript database

    A novel imaging and software platform was developed for the high-throughput phenotyping of 3-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and ...

  5. LADCP Observations of the 3-Dimensional Velocity Field Associated with Internal Waves and Boundary-Layer Flows

    NASA Astrophysics Data System (ADS)

    Thurnherr, A.; St Laurent, L.; Jacobs, S. S.; Kanzow, T.; Naveira Garabato, A. C.; Ledwell, J. R.

    2012-12-01

    While low-frequency processes in the ocean are primarily associated with (quasi-)horizontal, i.e. 2-dimensional, flows energetic high-frequency finescale processes, such as internal waves, hydraulic and other boundary-layer currents, are much more 3-dimensional. Due to recent advances in LADCP processing, it is now possible to derive full-depth snapshots of the 3-dimensional velocity field from standard CTD/LADCP casts. Applying the new method to data obtained in energetic regions of the ocean reveals velocity fields associated with vertical speeds ranging from a few cm/s to more than 20cm/s. Outside boundary layers, the vertical velocities are dominated by high-frequency (near-N) internal waves associated with small horizontal scales and the shapes of the corresponding vertical-velocity spectra in the finescale band are consistent with the Garrett-Munk model. In individual data sets the vertical-velocity spectral levels are correlated with coincident dissipation measurements derived from velocity microstructure, suggesting that a new finescale parameterization method for oceanic turbulence and diapycnal mixing based on LADCP-derived vertical velocities is possible. Near boundaries, there is evidence for large vertical velocities associated not just with waves, but also with seawater upwelling from beneath a fast-melting Antarctic ice shelf, with hydraulic overflow processes of the Mid-Atlantic Ridge, and even with very large "overturns" over the flank of a ridge in Luzon strait.;

  6. Longitudinal Dynamics of 3-Dimensional Components of Selfhood After Severe Traumatic Brain Injury: A qEEG Case Study.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A

    2017-09-01

    In this report, we describe the case of a patient who sustained extremely severe traumatic brain damage with diffuse axonal injury in a traffic accident and whose recovery was monitored during 6 years. Specifically, we were interested in the recovery dynamics of 3-dimensional components of selfhood (a 3-dimensional construct model for the complex experiential selfhood has been recently proposed based on the empirical findings on the functional-topographical specialization of 3 operational modules of brain functional network responsible for the self-consciousness processing) derived from the electroencephalographic (EEG) signal. The analysis revealed progressive (though not monotonous) restoration of EEG functional connectivity of 3 modules of brain functional network responsible for the self-consciousness processing, which was also paralleled by the clinically significant functional recovery. We propose that restoration of normal integrity of the operational modules of the self-referential brain network may underlie the positive dynamics of 3 aspects of selfhood and provide a neurobiological mechanism for their recovery. The results are discussed in the context of recent experimental studies that support this inference. Studies of ongoing recovery after severe brain injury utilizing knowledge about each separate aspect of complex selfhood will likely help to develop more efficient and targeted rehabilitation programs for patients with brain trauma.

  7. Continuing education for medical students: a library model.

    PubMed

    Swanberg, Stephanie M; Engwall, Keith; Mi, Misa

    2015-10-01

    The research assessed a three-year continuing medical education-style program for medical students in a Midwestern academic medical library. A mixed methods approach of a survey and two focus groups comparing attendees versus non-attendees assessed the program. Eleven students participated in the focus groups. Attendance was driven by topic interest and lunch. Barriers included lack of interest, scheduling, location, and convenience. Although attendance was a challenge, students valued opportunities to learn new skills. This study show cases a reproducible method to engage students outside the curriculum.

  8. Continuing education for medical students: a library model

    PubMed Central

    Swanberg, Stephanie M.; Engwall, Keith; Mi, Misa

    2015-01-01

    Purpose The research assessed a three-year continuing medical education–style program for medical students in a Midwestern academic medical library. Methods A mixed methods approach of a survey and two focus groups comparing attendees versus non-attendees assessed the program. Results Eleven students participated in the focus groups. Attendance was driven by topic interest and lunch. Barriers included lack of interest, scheduling, location, and convenience. Conclusions Although attendance was a challenge, students valued opportunities to learn new skills. This study showcases a reproducible method to engage students outside the curriculum. PMID:26512222

  9. Development of a structural model explaining medication compliance of persons with schizophrenia.

    PubMed

    Seo, Mi A; Min, Sung Kil

    2005-06-30

    The purpose of this study was to develop and test a structural model explaining medication compliance of schizophrenia. From a review of the literature, a hypothetical model was developed based on the conceptual framework of the Health Belief Model with medication knowledge, symptom severity and social support as the exogenous variables, and perceived benefits, perceived barriers, substance use and medication compliance as the endogenous variables. Data was collected at various mental health facilities, including psychiatric outpatient clinics of general hospitals and community mental health centers, between March and May, 2001. A structured questionnaire was used by one- on- one interviews to collect data on 208 schizophrenic patients. Well established measurement instruments, with confirmed reliability, were used to assess each method variable. As a result of covariance structural analysis, the hypothetical model was found not to fit the empirical data well, so a parsimonious model was adopted after modifying the model. The final model was able to explain the 33 % medication compliance. Medication knowledge, social support and perceived benefits had significant effects on medication compliance. The findings of this study address the importance of medication education and social support to promote medication compliance. It is also suggested that various education programs and support groups are needed to enhance medication compliance.

  10. Assessment of regional wall motion abnormalities with real-time 3-dimensional echocardiography.

    PubMed

    Collins, M; Hsieh, A; Ohazama, C J; Ota, T; Stetten, G; Donovan, C L; Kisslo, J; Ryan, T

    1999-01-01

    Accurate characterization of regional wall motion abnormalities requires a thorough evaluation of the entire left ventricle (LV). Although 2-dimensional echocardiography is frequently used for this purpose, the inability of tomographic techniques to record the complete endocardial surface is a limitation. Three-dimensional echocardiography, with real-time volumetric imaging, has the potential to overcome this limitation by capturing the entire volume of the LV and displaying it in a cineloop mode. The purpose of this study was to assess the feasibility of using real-time 3-dimensional (RT3D) echocardiography to detect regional wall motion abnormalities in patients with abnormal LV function and to develop a scheme for the systematic evaluation of wall motion by using the 3-dimensional data set. Twenty-six patients with high-quality 2-dimensional echo images and at least 1 regional wall motion abnormality were examined with RT3D echocardiography. For 2-dimensional echocardiography, wall motion was analyzed with a 16-segment model and graded on a 4-point scale from normal (1) to dyskinetic (4), from which a wall motion score index was calculated. Individual segments were then grouped into regions (anterior, inferoposterior, lateral, and apical) and the number of regional wall motion abnormalities was determined. The RT3D echocardiogram was recorded as a volumetric, pyramid-shaped data set that contained the entire LV. Digital images, consisting of a single cardiac cycle cineloop, were analyzed off-line with a computerized display of the apical projection. Two intersecting orthogonal apical projections were simultaneously displayed in cineloop mode, each independently tilted to optimize orientation and endocardial definition. The 2 planes were then slowly rotated about the major axis to visualize the entire LV endocardium. Wall motion was then graded in 6 equally spaced views, separated by 30 degrees, yielding 36 segments per patient. A higher percentage of segments

  11. Topological entropy and renormalization group flow in 3-dimensional spherical spaces

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Beneventano, C. G.; Cavero-Peláez, I.; D'Ascanio, D.; Santangelo, E. M.

    2015-01-01

    We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3, with constant curvature 6 /a 2. For masses lower than , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S {top/ UV } > S {top/ IR }. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.

  12. Constructing an urban population model for medical insurance scheme using microsimulation techniques.

    PubMed

    Xiong, Linping; Zhang, Lulu; Tang, Weidong; Ma, Yuqin

    2012-01-01

    China launched a pilot project of medical insurance reform in 79 cities in 2007 to cover urban nonworking residents. An urban population model was created in this paper for China's medical insurance scheme using microsimulation model techniques. The model made it clear for the policy makers the population distributions of different groups of people, the potential urban residents entering the medical insurance scheme. The income trends of units of individuals and families were also obtained. These factors are essential in making the challenging policy decisions when considering to balance the long-term financial sustainability of the medical insurance scheme.

  13. Program evaluation of an Integrated Basic Science Medical Curriculum in Shiraz Medical School, Using CIPP Evaluation Model.

    PubMed

    Rooholamini, Azadeh; Amini, Mitra; Bazrafkan, Leila; Dehghani, Mohammad Reza; Esmaeilzadeh, Zohreh; Nabeiei, Parisa; Rezaee, Rita; Kojuri, Javad

    2017-07-01

    In recent years curriculum reform and integration was done in many medical schools. The integrated curriculum is a popular concept all over the world. In Shiraz medical school, the reform was initiated by stablishing the horizontal basic science integration model and Early Clinical Exposure (ECE) for undergraduate medical education. The purpose of this study was to provide the required data for the program evaluation of this curriculum for undergraduate medical students, using CIPP program evaluation model. This study is an analytic descriptive and triangulation mixed method study which was carried out in Shiraz Medical School in 2012, based on the views of professors of basic sciences courses and first and second year medical students. The study evaluated the quality of the relationship between basic sciences and clinical courses and the method of presenting such courses based on the Context, Input, Process and Product (CIPP) model. The tools for collecting data, both quantitatively and qualitatively, were some questionnaires, content analysis of portfolios, semi- structured interview and brain storming sessions. For quantitative data analysis, SPSS software, version 14, was used. In the context evaluation by modified DREEM questionnaire, 77.75%of the students believed that this educational system encourages them to actively participate in classes. Course schedule and atmosphere of class were reported suitable by 87.81% and 83.86% of students. In input domain that was measured by a researcher made questionnaire, the facilities for education were acceptable except for shortage of cadavers. In process evaluation, the quality of integrated modules presentation and Early Clinical Exposure (ECE) was good from the students' viewpoint. In product evaluation, students' brain storming, students' portfolio and semi-structured interview with faculties were done, showing some positive aspects of integration and some areas that need improvement. The main advantage of assessing

  14. Disaster metrics: quantification of acute medical disasters in trauma-related multiple casualty events through modeling of the Acute Medical Severity Index.

    PubMed

    Bayram, Jamil D; Zuabi, Shawki

    2012-04-01

    The interaction between the acute medical consequences of a Multiple Casualty Event (MCE) and the total medical capacity of the community affected determines if the event amounts to an acute medical disaster. There is a need for a comprehensive quantitative model in MCE that would account for both prehospital and hospital-based acute medical systems, leading to the quantification of acute medical disasters. Such a proposed model needs to be flexible enough in its application to accommodate a priori estimation as part of the decision-making process and a posteriori evaluation for total quality management purposes. The concept proposed by de Boer et al in 1989, along with the disaster metrics quantitative models proposed by Bayram et al on hospital surge capacity and prehospital medical response, were used as theoretical frameworks for a new comprehensive model, taking into account both prehospital and hospital systems, in order to quantify acute medical disasters. A quantitative model called the Acute Medical Severity Index (AMSI) was developed. AMSI is the proportion of the Acute Medical Burden (AMB) resulting from the event, compared to the Total Medical Capacity (TMC) of the community affected; AMSI = AMB/TMC. In this model, AMB is defined as the sum of critical (T1) and moderate (T2) casualties caused by the event, while TMC is a function of the Total Hospital Capacity (THC) and the medical rescue factor (R) accounting for the hospital-based and prehospital medical systems, respectively. Qualitatively, the authors define acute medical disaster as "a state after any type of Multiple Casualty Event where the Acute Medical Burden (AMB) exceeds the Total Medical Capacity (TMC) of the community affected." Quantitatively, an acute medical disaster has an AMSI value of more than one (AMB / TMC > 1). An acute medical incident has an AMSI value of less than one, without the need for medical surge. An acute medical emergency has an AMSI value of less than one with

  15. The approach of Bayesian model indicates media awareness of medical errors

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Arulchelvan, S.

    2016-06-01

    This research study brings out the factors behind the increase in medical malpractices in the Indian subcontinent in the present day environment and impacts of television media awareness towards it. Increased media reporting of medical malpractices and errors lead to hospitals taking corrective action and improve the quality of medical services that they provide. The model of Cultivation Theory can be used to measure the influence of media in creating awareness of medical errors. The patient's perceptions of various errors rendered by the medical industry from different parts of India were taken up for this study. Bayesian method was used for data analysis and it gives absolute values to indicate satisfaction of the recommended values. To find out the impact of maintaining medical records of a family online by the family doctor in reducing medical malpractices which creates the importance of service quality in medical industry through the ICT.

  16. A New Hemodynamic Ex Vivo Model for Medical Devices Assessment.

    PubMed

    Maurel, Blandine; Sarraf, Christophe; Bakir, Farid; Chai, Feng; Maton, Mickael; Sobocinski, Jonathan; Hertault, Adrien; Blanchemain, Nicolas; Haulon, Stephan; Lermusiaux, Patrick

    2015-11-01

    In-stent restenosis (ISR) remains a major public health concern associated with an increased morbidity, mortality, and health-related costs. Drug-eluting stents (DES) have reduced ISR, but generate healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Assessments of new DES are based on animal models or in vitro release systems, which have several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, replicating ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The main pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure, and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. A first feasibility experience was performed over a 24-day period. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium changed every 3 days, and with a circulating systolic and diastolic flux during the entire experimentation. There was no infection and no leak. At the end of the experimentation, a morphometric analysis was performed confirming the viability of the arteries. We designed and patented an original hemodynamic ex vivo model to further study new DES, as well as a wide range of vascular diseases and medical devices. This bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new

  17. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    SciTech Connect

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  18. 3-Dimensional numerical simulations of the dynamics of the Venusian mesosphere and thermosphere

    NASA Astrophysics Data System (ADS)

    Tingle, S.; Mueller-Wodarg, I. C.

    2009-12-01

    We present the first results from a new 3-dimensional numerical simulation of the steady state dynamics of the Venusian mesosphere and thermosphere (60-300 km). We have adapted the dynamical core of the Titan thermosphere global circulation model (GCM) [1] to a steady state background atmosphere. Our background atmosphere is derived from a hydrostatic combination of the VTS3 [2] and Venus International Reference Atmosphere (VIRA) [3] empirical models, which are otherwise discontinuous at their 100 km interface. We use 4th order polynomials to link the VTS3 and VIRA thermal profiles and employ hydrostatic balance to derive a consistent density profile. We also present comparisons of our background atmosphere to data from the ESA Venus Express Mission. The thermal structure of the Venusian mesosphere is relatively well documented; however, direct measurements of wind speeds are limited. Venus’ slow rotation results in a negligible Coriolis force. This suggests that the zonal circulation should arise from cyclostrophic balance; where the equatorward component of the centrifugal force balances poleward meridional pressure gradients [4]. The sparseness of direct and in-situ measurements has resulted in the application of cyclostrophic balance to measured thermal profiles to derive wind speeds [5] [6] [7] [8]. However, cyclostrophic balance is only strictly valid at mid latitudes (˜ ± 30-75°) and its applicability to the Venusian mesosphere has not been conclusively demonstrated. Our simulations, by solving the full Navier-Stokes momentum equation, will enable us assess the validity of cyclostrophic balance as a description of mesospheric dynamics. This work is part of an ongoing project to develop the first GCM to encompass the atmosphere from the cloud tops into the thermosphere. When complete, this model will enable self-consistent calculations of the dynamics, energy and composition of the atmosphere. It will thus provide a framework to address many of the

  19. Ecological Psychology: Replacing the Medical Model Paradigm for School-Based Psychological and Psychoeducational Services

    ERIC Educational Resources Information Center

    Gutkin, Terry B.

    2012-01-01

    Traditional medical model service delivery systems have facilitated the creation of nationwide mental health and education pandemics for children and youth. The characteristics and shortcomings of medical model approaches leading to these problems are explicated, including the focus of services on individuals rather than populations, relying…

  20. It's All in Your Head: Feminist and Medical Models of Menopause (Strange Bedfellows).

    ERIC Educational Resources Information Center

    Posner, Judith

    1979-01-01

    This article describes the medical model of menopause as it exists in contemporary gynecological textbooks and some popular books written by gynecologists for the general public. The feminist position on menopause is then compared and contrasted with the medical model. (Author/EB)

  1. Ecological Psychology: Replacing the Medical Model Paradigm for School-Based Psychological and Psychoeducational Services

    ERIC Educational Resources Information Center

    Gutkin, Terry B.

    2012-01-01

    Traditional medical model service delivery systems have facilitated the creation of nationwide mental health and education pandemics for children and youth. The characteristics and shortcomings of medical model approaches leading to these problems are explicated, including the focus of services on individuals rather than populations, relying…

  2. It's All in Your Head: Feminist and Medical Models of Menopause (Strange Bedfellows).

    ERIC Educational Resources Information Center

    Posner, Judith

    1979-01-01

    This article describes the medical model of menopause as it exists in contemporary gynecological textbooks and some popular books written by gynecologists for the general public. The feminist position on menopause is then compared and contrasted with the medical model. (Author/EB)

  3. The theory of planned behaviour in medical education: a model for integrating professionalism training.

    PubMed

    Archer, Ray; Elder, William; Hustedde, Carol; Milam, Andrea; Joyce, Jennifer

    2008-08-01

    Teaching and evaluating professionalism remain important issues in medical education. However, two factors hinder attempts to integrate curricular elements addressing professionalism into medical school training: there is no common definition of medical professionalism used across medical education, and there is no commonly accepted theoretical model upon which to integrate professionalism into the curriculum. This paper proposes a definition of professionalism, examines this definition in the context of some of the previous definitions of professionalism and connects this definition to the attitudinal roots of professionalism. The problems described above bring uncertainty about the best content and methods with which to teach professionalism in medical education. Although various aspects of professionalism have been incorporated into medical school curricula, content, teaching and evaluation remain controversial. We suggest that intervening variables, which may augment or interfere with medical students' implementation of professionalism knowledge, skills and, therefore, attitudes, may go unaddressed. We offer a model based on the theory of planned behaviour (TPB), which describes the relationships of attitudes, social norms and perceived behavioural control with behaviour. It has been used to predict a wide range of behaviours, including doctor professional behaviours. Therefore, we propose an educational model that expands the TPB as an organisational framework that can integrate professionalism training into medical education. We conclude with a discussion about the implications of using this model to transform medical school curricula to develop positive professionalism attitudes, alter the professionalism social norms of the medical school and increase students' perceived control over their behaviours.

  4. Modeling the acceptance of clinical information systems among hospital medical staff: an extended TAM model.

    PubMed

    Melas, Christos D; Zampetakis, Leonidas A; Dimopoulou, Anastasia; Moustakis, Vassilis

    2011-08-01

    Recent empirical research has utilized the Technology Acceptance Model (TAM) to advance the understanding of doctors' and nurses' technology acceptance in the workplace. However, the majority of the reported studies are either qualitative in nature or use small convenience samples of medical staff. Additionally, in very few studies moderators are either used or assessed despite their importance in TAM based research. The present study focuses on the application of TAM in order to explain the intention to use clinical information systems, in a random sample of 604 medical staff (534 physicians) working in 14 hospitals in Greece. We introduce physicians' specialty as a moderator in TAM and test medical staff's information and communication technology (ICT) knowledge and ICT feature demands, as external variables. The results show that TAM predicts a substantial proportion of the intention to use clinical information systems. Findings make a contribution to the literature by replicating, explaining and advancing the TAM, whereas theory is benefited by the addition of external variables and medical specialty as a moderator. Recommendations for further research are discussed.

  5. 3-dimensional versus conventional laparoscopy for benign hysterectomy: protocol for a randomized clinical trial.

    PubMed

    Hoffmann, Elise; Bennich, Gitte; Larsen, Christian Rifbjerg; Lindschou, Jannie; Jakobsen, Janus Christian; Lassen, Pernille Danneskiold

    2017-09-07

    Hysterectomy is one of the most common surgical procedures for women of reproductive age. Laparoscopy was introduced in the 1990es and is today one of the recommended routes of surgery. A recent observational study showed that operative time for hysterectomy was significantly lower for 3-dimensional compared to conventional laparoscopy. Complication rates were similar for the two groups. No other observational studies or randomized clinical trials have compared 3-dimensional to conventional laparoscopy in patients undergoing total hysterectomy for benign disease. The objective of the study is to determine if 3D laparoscopy gives better quality of life, less postoperative pain, less per- and postoperative complications, shorter operative time, or a shorter stay in hospital and a faster return to work or normal life, compared to conventional laparoscopy for benign hysterectomy. The design is a randomised multicentre clinical trial. Participants will be 400 women referred for laparoscopic hysterectomy for benign indications. Patients will be randomized to 3-dimensional or conventional laparoscopic hysterectomy. Operative procedures will follow the same principles and the same standard whether the surgeon's vision is 3-dimensional or conventional laparoscopy. Primary outcomes will be the impact of surgery on quality of life, assessed by the SF 36 questionnaire, and postoperative pain, assessed by a Visual Analogue scale for pain measurement. With a standard deviation of 12 points on SF 36 questionnaire, a risk of type I error of 3.3% and a risk of type II error of 10% a sample size of 190 patients in each arm of the trial is needed. Secondarily, we will investigate operative time, time to return to work, length of hospital stay, and - and postoperative complications. This trial will be the first randomized clinical trial investigating the potential clinical benefits and harms of 3-dimensional compared to conventional laparoscopy. The results may provide more evidence

  6. Efficacy of 3-Dimensional Endorectal Ultrasound for Staging Early Extraperitoneal Rectal Neoplasms.

    PubMed

    Pinto, Rodrigo Ambar; Corrêa Neto, Isaac José Felippe; Nahas, Sérgio Carlos; Rizkalah Nahas, Caio Sérgio; Sparapan Marques, Carlos Frederico; Ribeiro Junior, Ulysses; Kawaguti, Fábio Shiguehissa; Cecconello, Ivan

    2017-05-01

    Adequate oncologic staging of rectal neoplasia is important for treatment and prognostic evaluation of the disease. Diagnostic methods such as endorectal ultrasound can assess rectal wall invasion and lymph node involvement. The purpose of this study was to correlate findings of 3-dimensional