Science.gov

Sample records for 3-dimensional underground heat

  1. Heat exhaustion in a deep underground metalliferous mine

    PubMed Central

    Donoghue, A; Sinclair, M.; Bates, G.

    2000-01-01

    OBJECTIVES—To examine the incidence, clinical state, personal risk factors, haematology, and biochemistry of heat exhaustion occurring at a deep underground metalliferous mine. To describe the underground thermal conditions associated with the occurrence of heat exhaustion.
METHODS—A 1 year prospective case series of acute heat exhaustion was undertaken. A history was obtained with a structured questionnaire. Pulse rate, blood pressure, tympanic temperature, and specific gravity of urine were measured before treatment. Venous blood was analysed for haematological and biochemical variables, during the acute presentation and after recovery. Body mass index (BMI) and maximum O2 consumption (V̇O2 max) were measured after recovery. Psychrometric wet bulb temperature, dry bulb temperature, and air velocity were measured at the underground sites where heat exhaustion had occurred. Air cooling power and psychrometric wet bulb globe temperature were derived from these data.
RESULTS—106 Cases were studied. The incidence of heat exhaustion during the year was 43.0 cases / million man-hours. In February it was 147 cases / million man-hours. The incidence rate ratio for mines operating below 1200 m compared with those operating above 1200 m was 3.17. Mean estimated fluid intake was 0.64 l/h (SD 0.29, range 0.08-1.50). The following data were increased in acute presentation compared with recovery (p value, % of acute cases above the normal clinical range): neutrophils (p<0.001, 36%), anion gap (p<0.001, 63%), urea (p<0.001, 21%), creatinine (p<0.001, 30%), glucose (p<0.001, 15%), serum osmolality (p=0.030, 71%), creatine kinase (p=0.002, 45%), aspartate transaminase (p<0.001, 14%), lactate dehydrogenase (p<0.001, 9.5%), and ferritin (p<0.001, 26%). The following data were depressed in acute presentation compared with recovery (p value, % of acute cases below the normal clinical range): eosinophils (p=0.003, 38%) and bicarbonate (p=0.011, 32%). Urea and

  2. 3-dimensional numerical modeling of an industrial radio frequency heating system using finite elements.

    PubMed

    Chan, T V Chow Ting; Tang, J; Younce, F

    2004-01-01

    This paper presents a new, yet simple and effective approach to modeling industrial Radio Frequency heating systems, using the wave equation applied in three dimensions instead of the conventional electrostatics method. The central idea is that the tank oscillatory circuit is excited using an external source. This then excites the applicator circuit which is then used to heat or dry the processed load. Good agreement was obtained between the experimental and numerical data, namely the S11-parameter, phase, and heating patterns for different sized loads and positions.

  3. Effects of Non-Uniform Wall Heating on Thermal and Momentum Fields in a 3-Dimensional Urban Environment

    NASA Astrophysics Data System (ADS)

    Nazarian, N.; Kleissl, J. P.

    2014-12-01

    As urbanization progresses, microclimate modifications are also aggravated and the increasing environmental concerns call for more sophisticated methods of urban microclimate analysis. Comprehensive numerical simulations for a clear summer day in southern California are performed in a compact low-rise urban environment. The effect of realistic unsteady, non-uniform thermal forcing, that is caused by solar insolation and inter-building shadowing on thermal and flow conditions are analyzed based on Algebraic Wall-Modeled Large Eddy Simulation (LES) model. The urban thermal field is influenced by urban density, material properties and local weather conditions, as well as urban canyon flow. Urban canyon conditions are translated into vertical and horizontal bulk Richardson numbers indicating atmospheric instability and solar tilt with respect to the momentum forcing of the canyon vortex, respectively. The effect of roof heating is found to be critical on the vortex formation between buildings when the vertical bulk Richardson number is low. Variations of Convective Heat Transfer Coefficients (CHTCs) along building walls are studied and the street canyon ventilation performance is characterized by the mean of air exchange rate (ACH). It is found that volumetric air exchange from street canyons, as well as the distribution of heat transfer along the wall depends strongly on the three-dimensional orientation of the heated wall in relation to wind direction. For example, air removal increases by surface heating and is larger when the leeward wall is heated. In summary, we demonstrate the importance of considering complex realistic conditions on 3-dimensional thermal and momentum fields in Urban Environments.

  4. Underground

    ERIC Educational Resources Information Center

    Vrchota, Janet

    1974-01-01

    At a time when the future of New York's subway system looked bleak, new underground zoning legislation (the first ever) has been enacted. This new law requires buildings constructed near a subway station to provide transit easement space to allow public access to the subway through the building property. (MA)

  5. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    NASA Astrophysics Data System (ADS)

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  6. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    PubMed Central

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels). PMID:26818091

  7. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  8. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  9. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  10. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  11. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  12. Determining the Heat Exchange Capacity of Underground Coal Mines in Ohio

    NASA Astrophysics Data System (ADS)

    Richardson, J. J.; Lopez, D. A.; Leftwich, T. E.; Wolfe, M. E.; Angle, M. P.; Fugitt, F. L.

    2013-12-01

    heat extractable per change in mine water temperature were calculated. Looking at 147 different mines located less than 1 mile from cities, this study has estimated that an average of 10^10 kJ of heat per mine is extractable. A change in mine water temperature of 1 degree Celsius was used for this calculation. The average maximum and minimum linear groundwater velocities were 0.5 and 0.3 meters/day, respectively. From the groundwater velocities, the average potential flux of heat to the mines was 10^9 kJ/year. These results show that underground coal mines in Ohio can be an important resource for GSHPs.

  13. Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump

    NASA Astrophysics Data System (ADS)

    Shirley, J. W.; James, L. C.; Stevens, S.; Autry, A. N.; Nussbaum, M.; McQueen, S. V.

    1983-06-01

    A hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system was designed and monitored. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a microcomputer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Microcomputer hardware and computer programs were developed to make cost effective decisions between the various modes of operation.

  14. Application experience of gas-thermal aluminum coatings to protect the pipes for underground construction and repair of heat networks

    NASA Astrophysics Data System (ADS)

    Kolpakov, A. S.

    2013-11-01

    Questions of sacrificial protection for pipes of underground heat networks with aluminum against the external corrosion are considered. The description of pilot production of pipes with a plasma aluminum coating and the deposition of a sacrificial gas-plasma aluminum coating on weld joints of pipelines and the zone of their thermal influence during assemblage is presented. Examples of repairing the segments of distribution heat networks by the pipes with the tread protection are presented.

  15. Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump

    SciTech Connect

    Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

    1983-06-22

    Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

  16. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    SciTech Connect

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-07-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)

  17. On the Heat-Water Exchanges at the Surface Rock-Atmosphere in an Underground Cavity

    NASA Astrophysics Data System (ADS)

    hisashi, u; olivier, g

    2001-12-01

    The underground cavities are the object of several studies in view of nuclear waste storage, and to study the stability of abandoned quarry. A complete comprehension of this system needs a good understanding of the interactions between the rock and the atmosphere. Two point must be clarify: the transport of heat and water vapor in the atmosphere and the boundary condition at the interface rock-atmosphere (Gensane, 2001). In this talk we deal with the boundary condition. We use the observations of 3 different experiments at Meriel and Vincennes quarry (France), and Aburatsubo cavity (central Japan). In each experiments temperature, atmospheric pressure in the atmsophere are available and self potential for the quarries and resistivity of ground floor for the cavity (we have also ground temperature profile for the cavity). The electric measurements in rock are use to have information about the water content in rock and its flow. It is shown that the atmospheric pressure induce fluid flow in the rock, the heat transport through the interface is not conductive, and that a complex relation occurs between atmospheric pressure and temperature, in the atmosphere and in the ground. We observe also strange wave trains of self potential and atmsopheric parameters (Morrat, 1995, 1999; Gensane, 2001). These observations conduct us to propose a first model for the boundary condition. The water and heat transport in the atmosphere is convective, so a thin conductive layer exist above the surface, about 2 cm (Morrat et al, 1999, Perrier et al, 2000). We propose, like observations suggest, to consider two diffusive equations for temperature and water saturation in the rock, and two others in the conductive layer. These system of 4 equations are coupled at the interface by non linear processes due to evaporation-condensation of water. We show that we can rewrite this system in 2 equation coupled at the surface. Analytical solutions are given and numerical computation are performed

  18. Analysis of snowpack accumulation and the melting process of wet snow using a heat balance approach that emphasizes the role of underground heat flux

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshisuke; Takimoto, Hiroshi; Ogura, Akira; Yoshida, Masashi

    2015-03-01

    Snowpack accumulation and melting, including the role of the heat flux underground, were investigated by employing the bulk transfer method and setting roughness lengths of ZO = ZT = 0.005 m and ZT = 0.007 m. Heat balance data were recorded for a period of 4 years, from the fall of 2009 to the spring of 2013, at a forest experiment station in the Hokuriku region, which lies along the Japan Sea. The findings of the research are as follows: (1) The observed temporal changes in the snowpack depth were well reproduced by our model using observed and estimated densities. (2) The importance and roles of the heat balance components were clarified. The total heat input during the 4 years was 252.2 MJ/m2 on average; 41.4% was provided by net radiation (Rn), 37.8% by sensible heat flux (H), and 13.2% by underground heat flux (G). The total output was 120.7 MJ/m2, of which 56.2% was accounted for by Rn and 31.1% by latent heat flux (lE). (3) Of the total heat input, 45.2% was released as freezing energy from the surface side and 2.6% was released from the bottom. (4) In the very cold season (December-February), the total input energy was 115.8 MJ/m2 on average; 75.0% was supplied by the surface and the remaining 25.0% from underground. In an anomalous year, 40.8% of the energy was supplied from underground.

  19. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    PubMed

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  20. Cognitive consequences of sleep deprivation, shiftwork, and heat exposure for underground miners.

    PubMed

    Legault, Glenn; Clement, Alexandra; Kenny, Glen P; Hardcastle, Stephen; Keller, Nancy

    2017-01-01

    Sleep deprivation, abnormal sleep patterns arising from working rotating shifts, and exposure to high ambient temperatures contribute to physical and cognitive dysfunction. We examined the effects of these on 19 (41.5 ± 5.1 years) male underground miners. Data were collected for 28 to 30 consecutive days such that the participants experienced their full rotating shift schedule, including days off. Objective measures of sleep quality (actigraphy), attentional capacity (psychomotor vigilance task), core body temperature (visceral pill), executive function (BRIEF-A) and subjective measures of fatigue (Karolinska and Epworth Sleepiness scales) were obtained over the 28-30 day period. Non-parametric analyses (χ(2), Wilcoxen Signed ranks) were used to determine differences between shift types and days off. Z-tests were used to compare sample data to population norms. These revealed that the participants experienced poor quality of sleep relative to age-matched norms irrespective of the shift being worked or if the participant was on a scheduled day off [30-39 year olds: z = -14.62, p < 0.001; 40-49 year olds: z = -4.44, p < 0.001]. Participants when working day shift experienced less sleep prior to beginning work compared to their days off or night shift; however, no differences in total sleep time between when participants worked day or night shifts were observed [χ(2) (2, n = 18) = 13.44, p < 0.01]. When measured subjectively, the only time participants reported excessive sleepiness was after a night shift. Objective measures of attentional capacity showed best performance at the beginning of night shifts in contrast to any other time that the task was completed; however, performance degraded dramatically over the course of the night shift [χ(2) (2, n = 12) = 6.50, p < 0.05]. We show that underground miners reported for work sleep deprived. The cognitive consequences of this poor sleep were most pronounced during night shift when their

  1. Longterm solar heat storage in an underground water cistern retrofitted with thermal insulation

    NASA Astrophysics Data System (ADS)

    Borst, W. L.

    1980-10-01

    The performance of the cistern was tested by measuring storage and surrounding soil temperatures over extended periods of time as heat was added from a solar collector (summer, fall, and winter) or environmental coolness was added (via cold air blown into the cistern) in winter. From these measurements, storage time-constants of the order of 6 months were inferred and verified.

  2. Underground Libraries.

    ERIC Educational Resources Information Center

    Fuhlrott, Rolf

    1986-01-01

    Discussion of underground buildings constructed primarily during last two decades for various reasons (energy conservation, density of environment, preservation of landscape and historic buildings) notes advantages, disadvantages, and psychological and design considerations. Examples of underground libraries, built mainly in United States, are…

  3. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  4. Thermohydrologic Modeling: Coupling Navier-Stokes Models of Gas, Moisture, and Heat Flow in Underground Engineered Systems with Porous-Media Models in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Nitao, J. J.; Buscheck, T. A.; Sun, Y.; Lee, K. H.

    2004-12-01

    Combined free and porous flows occur in a wide range of natural and engineered systems such as coupled transport processes driven by underground-engineered systems. One potential application for modeling these coupled flow processes is related to the emplacement of heat-generating radioactive waste package in tunnels lying above the water table. This example involves the flow of gas and moisture in large open tunnel and gas- and liquid-phase flow in the surrounding fractured, porous rocks. This study aims to develop a method of coupling the Navier-Stokes equations and the Darcy's law to achieve a more rigorous representation of all major flow and transport processes in underground tunnels and surrounding fractured host-rocks. While the thermohydrologic (TH) processes in host-rocks are treated based on porous-medium Darcy-flow approximations, the Navier-Stokes modeling is applied to describe in-tunnel flow behaviors (natural convection, realistic gas/moisture movement, turbulent flow conditions, etc.). The governing equations are numerically solved by a finite-element scheme in the NUFT code. Some numerical simulation results shown in this presentation provide environmental conditions that engineered systems would experience, which, therefore, may be useful for engineered system design analysis and performance assessment. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  5. Underground Mathematics

    ERIC Educational Resources Information Center

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  6. 3-Dimensional Topographic Models for the Classroom

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.

    2003-01-01

    We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.

  7. 3-dimensional imaging at nanometer resolutions

    DOEpatents

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  8. 3-dimensional fabrication of soft energy harvesters

    NASA Astrophysics Data System (ADS)

    McKay, Thomas; Walters, Peter; Rossiter, Jonathan; O'Brien, Benjamin; Anderson, Iain

    2013-04-01

    Dielectric elastomer generators (DEG) provide an opportunity to harvest energy from low frequency and aperiodic sources. Because DEG are soft, deformable, high energy density generators, they can be coupled to complex structures such as the human body to harvest excess mechanical energy. However, DEG are typically constrained by a rigid frame and manufactured in a simple planar structure. This planar arrangement is unlikely to be optimal for harvesting from compliant and/or complex structures. In this paper we present a soft generator which is fabricated into a 3 Dimensional geometry. This capability will enable the 3-dimensional structure of a dielectric elastomer to be customised to the energy source, allowing efficient and/or non-invasive coupling. This paper demonstrates our first 3 dimensional generator which includes a diaphragm with a soft elastomer frame. When the generator was connected to a self-priming circuit and cyclically inflated, energy was accumulated in the system, demonstrated by an increased voltage. Our 3D generator promises a bright future for dielectric elastomers that will be customised for integration with complex and soft structures. In addition to customisable geometries, the 3D printing process may lend itself to fabricating large arrays of small generator units and for fabricating truly soft generators with excellent impedance matching to biological tissue. Thus comfortable, wearable energy harvesters are one step closer to reality.

  9. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  10. Underground Explosions

    DTIC Science & Technology

    2015-09-09

    examples of the new equipment include developing high-speed optical recording systems capable of recording 2-3 millions frames per second, heat , light...created by faster heat and visible light radiation (Sadovskii and Adushkin, 1988). This effect allowed development of a new scaling theory of gas...chemical processes taking place in the atmosphere/ionosphere/magnetosphere system . These observations stimulated fundamental research that continues

  11. An Economic Comparison of Passively Conditioned Underground Houses.

    DTIC Science & Technology

    1981-05-01

    15 Heat Transfer ........ ..................... ... 34 Energy Balance and Human Thermal Comfort . ...... ... 41 Conclusion...114 29. Thermal Comfort --Passive Underground House ... ........... .. 117 30. Stable Soil Temperature Depths...121 31. Thermal Comfort --Deep Earth Underground House .. ......... .. 124 32. Life Cycle Cash Flow Diagram--Base Underground House

  12. Manipulating Heat Flow through 3 Dimensional Nanoscale Phononic Crystal Structure

    DTIC Science & Technology

    2014-06-02

    Nanoscale Phononic Crystal Structure 5a. CONTRACT NUMBER FA23861214047 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Baowen Li 5d...through computer simulation, how the three dimensional (3D) phononic crystal structures can confine phonon and thus reduce thermal conductivity...phononic crystal (PnC) with spherical pores, which can reduce thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. The

  13. Scientific visualization of 3-dimensional optimized stellarator configurations

    SciTech Connect

    Spong, D.A.

    1998-01-01

    The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a variety of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood.

  14. Cardiothoracic Applications of 3-dimensional Printing.

    PubMed

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.

  15. Vitrified underground structures

    DOEpatents

    Murphy, Mark T.; Buelt, James L.; Stottlemyre, James A.; Tixier, Jr., John S.

    1992-01-01

    A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

  16. Incorporating 3-dimensional models in online articles

    PubMed Central

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  17. Thermal crosstalk in 3-dimensional RRAM crossbar array

    NASA Astrophysics Data System (ADS)

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  18. Thermal crosstalk in 3-dimensional RRAM crossbar array

    PubMed Central

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-01-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537

  19. Thermal crosstalk in 3-dimensional RRAM crossbar array.

    PubMed

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-27

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  20. Chaotic Advection in a Bounded 3-Dimensional Potential Flow

    NASA Astrophysics Data System (ADS)

    Metcalfe, Guy; Smith, Lachlan; Lester, Daniel

    2012-11-01

    3-dimensional potential, or Darcy flows, are central to understanding and designing laminar transport in porous media; however, chaotic advection in 3-dimensional, volume-preserving flows is still not well understood. We show results of advecting passive scalars in a transient 3-dimensional potential flow that consists of a steady dipole flow and periodic reorientation. Even for the most symmetric reorientation protocol, neither of the two invarients of the motion are conserved; however, one invarient is closely shadowed by a surface of revolution constructed from particle paths of the steady flow, creating in practice an adiabatic surface. A consequence is that chaotic regions cover 3-dimensional space, though tubular regular regions are still transport barriers. This appears to be a new mechanism generating 3-dimensional chaotic orbits. These results contast with the experimental and theoretical results for chaotic scalar transport in 2-dimensional Darcy flows. Wiggins, J. Fluid Mech. 654 (2010).

  1. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners.

    PubMed

    Kovacs, Laszlo; Yassouridis, Alexander; Zimmermann, Alexander; Brockmann, Gernot; Wöhnl, Antonia; Blaschke, Matthias; Eder, Maximilian; Schwenzer-Zimmerer, Katja; Rosenberg, Robert; Papadopulos, Nikolaos A; Biemer, Edgar

    2006-03-01

    The anatomic conditions of the female breast require imaging the breast region 3-dimensionally in a normal standing position for quality assurance and for surgery planning or surgery simulation. The goal of this work was to optimize the imaging technology for the mammary region with a 3-dimensional (3D) laser scanner, to evaluate the precision and accuracy of the method, and to allow optimum data reproducibility. Avoiding the influence of biotic factors, such as mobility, we tested the most favorable imaging technology on dummy models for scanner-related factors such as the scanner position in comparison with the torso and the number of scanners and single shots. The influence of different factors of the breast region, such as different breast shapes or premarking of anatomic landmarks, was also first investigated on dummies. The findings from the dummy models were then compared with investigations on test persons, and the accuracy of measurements on the virtual models was compared with a coincidence analysis of the manually measured values. The best precision and accuracy of breast region measurements were achieved when landmarks were marked before taking the shots and when shots at 30 degrees left and 30 degrees right, relative to the sagittal line, were taken with 2 connected scanners mounted with a +10-degree upward angle. However, the precision of the measurements on test persons was significantly lower than those measured on dummies. Our findings show that the correct settings for 3D imaging of the breast region with a laser scanner can achieve an acceptable degree of accuracy and reproducibility.

  2. Underground laboratories in Asia

    NASA Astrophysics Data System (ADS)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  3. Lithographically defined 3-dimensional graphene scaffolds

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Xiao, Xiaoyin; Polsky, Ronen

    2015-09-01

    Interferometrically defined 3D photoresist scaffolds are formed through a series of three successive two-beam interference exposures, a post exposure bake and development. Heating the resist scaffold in a reducing atmosphere to > 1000 °C, results in the conversion of the resist structure into a carbon scaffold through pyrolysis, resulting in a 3D sp3- bonded glassy carbon scaffold which maintains the same in-plane morphology as the resist despite significant shrinkage. The carbon scaffolds are readily modified using a variety of deposition methods such as electrochemical, sputtering and CVD/ALD. Remarkably, sputtering metal into scaffolds with ~ 5 unit cells tall results in conformal coating of the scaffold with the metal. When the metal is a transition metal such as nickel, the scaffold can be re-annealed, during which time the carbon diffuses through the nickel, emerging on the exterior of the nickel as sp2-bonded carbon, termed 3D graphene. This paper details the fabrication, characterization and some potential applications for these structures.

  4. A Facility Goes Underground.

    ERIC Educational Resources Information Center

    Grant, Norman

    1980-01-01

    Ohio's Sinclair Community College met the challenge of building a campus in an urban area with limited space by connecting the system with underground tunnels. This underground complex has made a comprehensive physical education, recreation, and intercollegiate program available to students and the community. (CJ)

  5. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  6. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    SciTech Connect

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  7. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  8. Case histories in scientific and pseudo-scientific mass-media communication in energy/heat production from underground (geogas storage, geothermics, hydrocarbons), in the frame of Nimby Sindrome enhancement in Europe: the proposal of a new European Direct

    NASA Astrophysics Data System (ADS)

    Quattrocchi, Fedora; Boschi, Enzo

    2014-05-01

    In the frame of energy/heat production from underground, the paper considers some European case histories and the needs of a complex and motley stakeholders community, made by scientific-industry-institutions, involved in the difficult task to study and accept (or refuse) projects strongly impacting the lived territory & underground, in densely populate countries, as Italy, in terms of appropriate public communication and sound deontological behaviour. Successively, the paper recalls years of "scientific" communication within the mass-media, highlighting the positive and negative messages, in comparison to the true and objective experimental data gathered by the real scientific work, as perceived by citizens of medium scholastic culture, which not delve the geologic disciplines, but receive simply the journalistic front-end, very often as sensationalist scoop. The authors retrace case histories of heuristic-participatory communication with the citizenship about the scientific results on challenges raised by certain technologies. The objective and rational communication is often impeded by local interests and by local journalism, which prefers to create sensationalist news more than scientific truths. This path progressively tangles as a consequence of the complex and with conflicting use of underground to produce energy (heat as gas storage, geothermical, unconventional gas exploitation, mining, etc…). Even the chain of renewables meets by now serious issues, exacerbated also by the need to start mining and drilling for the smart grids materials too (metals, rare Earths, etc..). A new text for a smart and innovative European Directivity is discussed, starting from the Italian regulatory issue. The review efforts for a "paper" on both a newspaper or a blog could be more difficult than the review a scientific paper, as a consequence of the peculiar situations behind the scenes and the conflicts of interests staying in the nest in a newspaper article or in a blog

  9. Science Center Goes Underground

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    A unique underground science center at Bluffton College, designed to save energy and preserve trees, rolling landscape, and other environmental features of the campus, is under construction in Bluffton, Ohio. (Author)

  10. 3-Dimensional wireless sensor network localization: A review

    NASA Astrophysics Data System (ADS)

    Najib, Yasmeen Nadhirah Ahmad; Daud, Hanita; Aziz, Azrina Abd; Razali, Radzuan

    2016-11-01

    The proliferation of wireless sensor network (WSN) has shifted the focus to 3-Dimensional geometry rather than 2-Dimensional geometry. Since exact location of sensors has been the fundamental issue in wireless sensor network, node localization is essential for any wireless sensor network applications. Most algorithms mainly focus on 2-Dimensional geometry, where the application of this algorithm will decrease the accuracy on 3-Dimensional geometry. The low rank attribute in WSN's node estimation makes the application of nuclear norm minimization as a viable solution for dimensionality reduction problems. This research proposes a novel localization algorithm for 3-Dimensional WSN which is nuclear norm minimization. The node localization is formulated via Euclidean Distance Matrix (EDM) and is then optimized using Nuclear-Norm Minimization (NNM).

  11. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  12. Underground physics with DUNE

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Vitaly A.; DUNE Collaboration

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  13. Underground physics with DUNE

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this study, we will focus on the underground physics with DUNE.

  14. Underground physics with DUNE

    DOE PAGES

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this study, we will focus on the underground physics with DUNE.« less

  15. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  16. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  17. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  18. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.

  19. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  20. Underground Tank Management.

    ERIC Educational Resources Information Center

    Bednar, Barbara A.

    1990-01-01

    The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)

  1. Underground neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

  2. Global Pursuits: The Underground Railroad

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2004

    2004-01-01

    This brief article describes Charles T. Webber's oil on canvas painting, "The Underground Railroad, 1893." The subject of this painting is the Underground Railroad, which today has become an American legend. The Underground Railroad was not a systematic means of transportation, but rather a secretive process that allowed fugitive slaves…

  3. 41 CFR 102-80.40 - What are Federal agencies' responsibilities concerning the management of underground storage tanks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground storage tanks, including heating oil and fuel oil tanks, in accordance with GSA, EPA, and... agencies' responsibilities concerning the management of underground storage tanks? 102-80.40 Section 102-80... Environmental Management Underground Storage Tanks § 102-80.40 What are Federal agencies'...

  4. 41 CFR 102-80.40 - What are Federal agencies' responsibilities concerning the management of underground storage tanks?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... underground storage tanks, including heating oil and fuel oil tanks, in accordance with GSA, EPA, and... agencies' responsibilities concerning the management of underground storage tanks? 102-80.40 Section 102-80... Environmental Management Underground Storage Tanks § 102-80.40 What are Federal agencies'...

  5. 41 CFR 102-80.40 - What are Federal agencies' responsibilities concerning the management of underground storage tanks?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... underground storage tanks, including heating oil and fuel oil tanks, in accordance with GSA, EPA, and... agencies' responsibilities concerning the management of underground storage tanks? 102-80.40 Section 102-80... Environmental Management Underground Storage Tanks § 102-80.40 What are Federal agencies'...

  6. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  7. National Underground Mines Inventory

    DTIC Science & Technology

    1983-10-01

    that the contents necessaZiy reflect the views and policies of the Federal Emergency Management Agency. FINAL REPORT RTI/2506/OO-O1F NATIONAL...UNDERGROUND MINES INVENTORY Prepared by: M. Wright R. Chessin K. Reeves S. York, III Prepared for: Federal Emergency Management Agency Washington , D.C. 20472...Emergency Management Agency October 1983 Washington , DC 20472 I. NUMBEROFPAGES 80 14. MONITORING AGENCY NAME A ADORESS(1lierent bum Controflhi Office

  8. 3-dimensional electronic structures of CaC6

    NASA Astrophysics Data System (ADS)

    Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Junsung; Kim, Yeongwook; Kim, Keunsu; Rotenberg, Eli; Kim, Changyoung; Postech Collaboration; Advanced Light Source Collaboration; Yonsei University Team

    2014-03-01

    There is still remaining issues on origin of superconductivity in graphite intercalation compounds, especially CaC6 because of its relatively high transition temperature than other GICs. There are two competing theories on where the superconductivity occurs in this material; intercalant metal or charge doped graphene layer. To elucidate this issue, it is necessary to confirm existence of intercalant driven band. Therefore, we performed 3 dimensional electronic structure studies with ARPES to find out 3d dispersive intercalant band. However, we could not observe it, instead observed 3d dispersive carbon band. This support the aspect of charge doped graphene superconductivity more than intercalant driving aspect.

  9. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  10. Automated feature extraction for 3-dimensional point clouds

    NASA Astrophysics Data System (ADS)

    Magruder, Lori A.; Leigh, Holly W.; Soderlund, Alexander; Clymer, Bradley; Baer, Jessica; Neuenschwander, Amy L.

    2016-05-01

    Light detection and ranging (LIDAR) technology offers the capability to rapidly capture high-resolution, 3-dimensional surface data with centimeter-level accuracy for a large variety of applications. Due to the foliage-penetrating properties of LIDAR systems, these geospatial data sets can detect ground surfaces beneath trees, enabling the production of highfidelity bare earth elevation models. Precise characterization of the ground surface allows for identification of terrain and non-terrain points within the point cloud, and facilitates further discernment between natural and man-made objects based solely on structural aspects and relative neighboring parameterizations. A framework is presented here for automated extraction of natural and man-made features that does not rely on coincident ortho-imagery or point RGB attributes. The TEXAS (Terrain EXtraction And Segmentation) algorithm is used first to generate a bare earth surface from a lidar survey, which is then used to classify points as terrain or non-terrain. Further classifications are assigned at the point level by leveraging local spatial information. Similarly classed points are then clustered together into regions to identify individual features. Descriptions of the spatial attributes of each region are generated, resulting in the identification of individual tree locations, forest extents, building footprints, and 3-dimensional building shapes, among others. Results of the fully-automated feature extraction algorithm are then compared to ground truth to assess completeness and accuracy of the methodology.

  11. Design Procedures for Underground Heat Sink Systems.

    DTIC Science & Technology

    1979-04-01

    E’[ 0 •~~~~ ~~~~~~~~ t A_ ~~~~ 1 . 1 140 60 80 100 120 140 ISO I l o t Sink Tsmpsro$ure. F Figure A— 3 . Condenser temperature differential and...Introduction 2—1 2—02 General Considerations 2—1 .1 Lined Chambers 2—1 .2 Multiple Sinks 2—1 • . 3 Volumetri c Changes , Water Reservoir Sinks . . 2—2 • 14...Volumetric Changes , Ice Reservoir Sinks . . • 2—2 .5 Water Seepage 2—2 .6 Water Flow Patterns for Reservoirs 2— 3 .7 Water Quality 2- 3 .8 Sink Failures 2

  12. Underground petroleum tanks

    SciTech Connect

    Not Available

    1990-07-01

    This book presents the results of a survey of 46 state underground storage tank program officials. The survey covers: Whether petroleum tank insurance (mandated by the EPA) is available in each state and whether category 3 and 4 owners can obtain it; state programs that help owners meet the financial responsibility and/or technical requirements of such insurance; and lending institutions' attitudes towards providing loans to storage tank owners. A survey of the number and terms of insurance policies offered to tank owners is also presented.

  13. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, Steven Derek

    2014-03-01

    The Kimballton Underground Research Facility (KURF) is an operating deep underground research facility with six active projects, and greater than 50 trained researchers. KURF is 30 minutes from the Virginia Tech (VT) campus in an operating limestone mine with drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' × 20 +' the current lab is 35' × 22' × 100'), and 1700' of overburden (1450m.w.e.). The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ~0.004 muons per square meter, per second, per steradian. The current users are funded by NSF, DOE, and NNSA. Current user group: 1) mini-LENS (VT, Louisiana State University, BNL); 2) Double Beta Decay to Excited States (Duke University); 3) HPGe Low-Background Screening (University of North Carolina (UNC), VT); 4) MALBEK (UNC); 5&6) Watchman - 5) Radionuclide Detector and 6) MARS detector (LLNL, SNL, UC-Davis, UC-Berkeley, UH, Hawaii Pacific, UC-Irvine, VT).

  14. Multinational underground nuclear parks

    SciTech Connect

    Myers, C.W.; Giraud, K.M.

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  15. Underground corrosion control

    SciTech Connect

    Not Available

    1993-01-01

    Corrosion of underground metallic structures continues to be a crucial concern within society and the engineering community. Costs associated with corrosion losses are staggering. Indirect costs associated with environmental damage as well as loss of public confidence has in many cases out-stripped direct costs for facility repair and replacement. NACE Group Committee T-10, responsible for the study and advancement of technology necessary for engineering solutions for underground corrosion problems, is divided into five key unit committees as follows: cathodic protection; interference problems; electric power and communications; protective coating systems; and internal corrosion of pipelines. The papers presented in this publication reflect the most recent developments in field practice in all five areas. Cathodic protection criteria, protection of pipelines, tanks and pilings, test methods, transit systems investigations, power and communication cables, and compliance with regulations are addressed. Interference testing, refinery problems, methods of safely mitigating the effects of induced AC on pipelines, and experience with alternate engineering materials such as prestressed concrete cylinder pipe and ductile iron pipe are included. All 37 papers have been processed separately for inclusion on the data base.

  16. North American deep underground laboratories: Soudan Underground Laboratory, SNOLab, and the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2015-08-01

    Over the past several decades, fundamental physics experiments have required access to deep underground laboratories to satisfy the increasingly strict requirements for ultra-low background environments and shielding from cosmic rays. In this presentation, I summarize the existing and anticipated physics programs and laboratory facilities of North America's deep facilities: The Soudan Underground Laboratory in Minnesota, SNOLab in Ontario, Canada, and the Sanford Underground Research Facility in Lead, South Dakota.

  17. A Case for Underground Schools.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    The underground school offers several advantages. Preliminary studies in Oklahoma have shown that these schools perform exceptionally well as learning environments. The lack of noise and distractions helps teachers keep the attention of their students. Underground structures can protect people against a broad range of natural and man-made…

  18. A Course on Underground Processing.

    ERIC Educational Resources Information Center

    Miller, Clarence A.

    1981-01-01

    Discusses a one-semester course on recovering fossil fuels and minerals from underground formations. Includes course outline and information of its major divisions: (1) Geological Background; (2) Flow, Transport, and Interfacial Phenomena in Porous Media; and (3) Description of Underground Processes. (SK)

  19. Production of lignite from underground deposits

    SciTech Connect

    Fenstermaker, R.W.

    1982-05-11

    Lignite is removed from a seam or stratum containing the same in an underground formation by forming within the seam or stratum with aid of a production fluid, which can contain a dispersant or surfactant, a suspension of the lignite in said fluid whereupon the fluid is removed to the surface and the lignite recovered therefrom. The fluid thus recovered is re-used. The production fluid can be heated and/or pulsated and is injected and passed through the formation under conditions to promote the formation of the desired lignite suspension.

  20. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  1. Radio Active Waste Management: Underground Repository Method

    SciTech Connect

    Rudrapati Sandesh Kumar; Payal Shirvastava

    2002-07-01

    Finding a solution for nuclear waste is a key issue, not only for the protection of the environment but also for the future of the nuclear industry. Ten years from now, when the first decisions for the replacement of existing nuclear power plants will have to be made, The general public will require to know the solution for nuclear waste before accepting new nuclear plants. In other words, an acceptable solution for the management of nuclear waste is a prerequisite for a renewal of nuclear power. Most existing wastes are being stored in safe conditions waiting for permanent solution, with some exceptions in the former Eastern Bloc. Temporary surface or shallow storage is a well known technique widely used all over the world. A significant research effort has been made by the author of this paper in the direction of underground repository. The underground repository appears to be a good solution. Trying to transform dangerous long lived radionuclides into less harmful short lived or stable elements is a logical idea. It is indeed possible to incinerate or transmute heavy atoms of long lived elements in fast breeder reactors or even in pressurised or boiling water reactors. There are also new types of reactors which could be used, namely accelerator driven systems. High level and long lived wastes (spent fuel and vitrified waste) contain a mixture of high activity (heat producing) short lived nuclides and low activity long lived alpha emitting nuclides. To avoid any alteration due to temperature of the engineered or geological barrier surrounding the waste underground, it is necessary to store the packages on the surface for several decades (50 years or more) to allow a sufficient temperature decrease before disposing of them underground. In all cases, surface (or shallow) storage is needed as a temporary solution. This paper gives a detailed and comprehensive view of the Deep Geological Repository, providing a pragmatic picture of the means to make this method, a

  2. The first 3-dimensional assemblies of organotin-functionalized polyanions.

    PubMed

    Piedra-Garza, Luis Fernando; Reinoso, Santiago; Dickman, Michael H; Sanguineti, Michael M; Kortz, Ulrich

    2009-08-21

    Reaction of the (CH(3))(2)Sn(2+) electrophile toward trilacunary [A-alpha-XW(9)O(34)](n-) Keggin polytungstates (X = P(V), As(V), Si(IV)) with guanidinium as templating-cation resulted in the isostructural compounds Na[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-PW(9)O(34))] x 9 H(2)O (1), Na[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-AsW(9)O(34))] x 8 H(2)O (2) and Na(2)[C(NH(2))(3)](2)[{(CH(3))(2)Sn(H(2)O)}(3)(A-alpha-SiW(9)O(34))] x 10 H(2)O (3). Compounds 1-3 constitute the first 3-dimensional assemblies of organotin-functionalized polyanions, as well as the first example of a dimethyltin-containing tungstosilicate in the case of 3, and they show a similar chiral architecture based on tetrahedrally-arranged {(CH(3))(2)Sn}(3)(A-alpha-XW(9)O(34)) monomeric building-blocks connected via intermolecular Sn-O=W bridges regardless of the size and/or charge of the heteroatom.

  3. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology.

    PubMed

    Cohen, Adir; Laviv, Amir; Berman, Phillip; Nashef, Rizan; Abu-Tair, Jawad

    2009-11-01

    Mandibular reconstruction can be challenging for the surgeon wishing to restore its unique geometry. Reconstruction can be achieved with titanium bone plates followed by autogenous bone grafting. Incorporation of the bone graft into the mandible provides continuity and strength required for proper esthetics and function and permitting dental implant rehabilitation at a later stage. Precious time in the operating room is invested in plate contouring to reconstruct the mandible. Rapid prototyping technologies can construct physical models from computer-aided design via 3-dimensional (3D) printers. A prefabricated 3D model is achieved, which assists in accurate contouring of plates and/or planning of bone graft harvest geometry before surgery. The 2 most commonly used rapid prototyping technologies are stereolithography and 3D printing (3DP). Three-dimensional printing is advantageous to stereolithography for better accuracy, quicker printing time, and lower cost. We present 3 clinical cases based on 3DP modeling technology. Models were fabricated before the resection of mandibular ameloblastoma and were used to prepare bridging plates before the first stage of reconstruction. In 1 case, another model was fabricated and used as a template for iliac crest bone graft in the second stage of reconstruction. The 3DP technology provided a precise, fast, and cheap mandibular reconstruction, which aids in shortened operation time (and therefore decreased exposure time to general anesthesia, decreased blood loss, and shorter wound exposure time) and easier surgical procedure.

  4. In vitro measurement of muscle volume with 3-dimensional ultrasound.

    PubMed

    Delcker, A; Walker, F; Caress, J; Hunt, C; Tegeler, C

    1999-05-01

    The aim was to test the accuracy of muscle volume measurements with a new 3-dimensional (3-D) ultrasound system, which allows a freehand scanning of the transducer with an improved quality of the ultrasound images and therefore the outlines of the muscles. Five resected cadaveric hand muscles were insonated and the muscle volumes calculated by 3-D reconstructions of the acquired 2-D ultrasound sections. Intra-reader, inter-reader and follow-up variability were calculated, as well as the volume of the muscle tissue measured by water displacement. In the results, 3-D ultrasound and water displacement measurements showed an average deviation of 10.1%; Data of 3-D ultrasound measurements were: intra-reader variability 2.8%; inter-reader variability 2.4% and follow-up variability 2.3%. 3-D measurements of muscle volume are valid and reliable. Serial sonographic measurements of muscle may be able to quantitate changes in muscle volume that occur in disease and recovery.

  5. Invasive 3-Dimensional Organotypic Neoplasia from Multiple Normal Human Epithelia

    PubMed Central

    Ridky, Todd W.; Chow, Jennifer M.; Wong, David J.; Khavari, Paul A.

    2013-01-01

    Refined cancer models are required to assess the burgeoning number of potential targets for cancer therapeutics within a rapid and clinically relevant context. Here we utilize tumor-associated genetic pathways to transform primary human epithelial cells from epidermis, oropharynx, esophagus, and cervix into genetically defined tumors within a human 3-dimensional (3-D) tissue environment incorporating cell-populated stroma and intact basement membrane. These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through basement membrane, a complex process critically required for biologic malignancy in 90% of human cancers. Invasion was rapid, and potentiated by stromal cells. Oncogenic signals in 3-D tissue, but not 2-D culture, resembled gene expression profiles from spontaneous human cancers. Screening well-characterized signaling pathway inhibitors in 3-D organotypic neoplasia helped distil a clinically faithful cancer gene signature. Multi-tissue 3-D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterize cancer progression. PMID:21102459

  6. 3-Dimensional shear wave elastography of breast lesions

    PubMed Central

    Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning

    2016-01-01

    Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820

  7. The 3-dimensional construction of the Rae craton, central Canada

    NASA Astrophysics Data System (ADS)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  8. A new preclinical 3-dimensional agarose colony formation assay.

    PubMed

    Kajiwara, Yoshinori; Panchabhai, Sonali; Levin, Victor A

    2008-08-01

    The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines. Colonies were grown in a two-tiered agarose that had 0.7% agarose on the bottom and 0.3% agarose on top. We then studied the effects of DFMO, carboplatin, and SAHA over a 3-log dose range and over multiple days of drug exposure. Using GelCount we approximated the area under the curve (AUC) of colony volumes as the sum of colony volumes (microm2xOD) in each plate to calculate IC50 values. Adenocarcinoma colonies were recognized by GelCount scanning at 3-4 days, while it took 6-7 days to detect glioma colonies. The growth rate of MiaPaCa and SW480 cells was rapid, with 100 colonies counted in 5-6 days; glioma cells grew more slowly, with 100 colonies counted in 9-10 days. Reliable log dose versus AUC curves were observed for all drugs studied. In conclusion, the GelCount method that we describe is more quantitative than traditional colony assays and allows precise study of drug effects with respect to both dose and time of exposure using fewer culture plates.

  9. Deterministic modeling of the impact of underground structures on urban groundwater temperature.

    PubMed

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Eisenlohr, Laurent

    2016-12-01

    Underground structures have a major influence on groundwater temperature and have a major contribution on the anthropogenic heat fluxes into urban aquifers. Groundwater temperature is crucial for resource management as it can provide operational sustainability indicators for groundwater quality and geothermal energy. Here, a three dimensional heat transport modeling approach was conducted to quantify the thermally affected zone (TAZ, i.e. increase in temperature of more than +0.5°C) caused by two common underground structures: (1) an impervious structure and (2) a draining structure. These design techniques consist in (1) ballasting the underground structure in order to resist hydrostatic pressure, or (2) draining the groundwater under the structure in order to remove the hydrostatic pressure. The volume of the TAZ caused by these underground structures was shown to range from 14 to 20 times the volume of the underground structure. Additionally, the cumulative impact of underground structures was assessed under average thermal conditions at the scale of the greater Lyon area (France). The heat island effect caused by underground structures was highlighted in the business center of the city. Increase in temperature of more than +4.5°C were locally put in evidence. The annual heat flow from underground structures to the urban aquifer was computed deterministically and represents 4.5GW·h. Considering these impacts, the TAZ of deep underground structures should be taken into account in the geothermal potential mapping. Finally, the amount of heat energy provided should be used as an indicator of heating potential in these areas.

  10. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2011-10-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20' x 100'; the current lab is 35'x100'x22'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜ 0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program, and exciting plans for the future.

  11. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek; Vogelaar, R. Bruce

    2012-03-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20+'; the current lab is 35' x 22' x 100'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program and exciting potential for the future.

  12. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  13. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  14. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of §...

  15. Underground Coal Gasification Program

    SciTech Connect

    Thorsness, C. B.; Britten, J. A.

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  16. Graviton 1-loop partition function for 3-dimensional massive gravity

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias R.; Grumiller, Daniel; Vassilevich, Dmitri

    2010-11-01

    Thegraviton1-loop partition function in Euclidean topologically massivegravity (TMG) is calculated using heat kernel techniques. The partition function does not factorize holomorphically, and at the chiral point it has the structure expected from a logarithmic conformal field theory. This gives strong evidence for the proposal that the dual conformal field theory to TMG at the chiral point is indeed logarithmic. We also generalize our results to new massive gravity.

  17. Numerical model of electromagnetic scattering off a subterranean 3-dimensional dielectric

    SciTech Connect

    Dease, C.G.; Didwall, E.M.

    1983-08-01

    As part of the effort to develop On-Site Inspection (OSI) techniques for verification of compliance to a Comprehensive Test Ban Treaty (CTBT), a computer code was developed to predict the interaction of an electromagnetic (EM) wave with an underground cavity. Results from the code were used to evaluate the use of surface electromagnetic exploration techniques for detection of underground cavities or rubble-filled regions characteristic of underground nuclear explosions.

  18. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  19. Underground at Black Diamond Mines

    SciTech Connect

    Higgins, C.T.

    1989-10-01

    Although California is noted for its mining history and annually leads the nation in total monetary value of minerals produced, there a few opportunities for the public to tour underground mines. One reason is that nearly all mining in the state today is done above ground in open pits. Another reason is that active underground mines are not commonly favorable to public tours. There is one place, Black Diamond Mines Regional Preserve, where the public can safely tour a formerly active underground mine. Black Diamond Mines Regional Preserve is a 3,600-acre parkland about 5 miles southwest of Antioch in Contra Costa County. The Preserve was established in the early 1970s and is administered by the East Bay Regional Park District. Black Diamond Mines Preserve is noteworthy for its mining history as well as its natural history, both of which are briefly described here.

  20. Locating nuclear power plants underground.

    PubMed

    Scott, F M

    1975-01-01

    This paper reviews some of the questions that have been asked by experts and others as to why nuclear power plants are not located or placed underground. While the safeguards and present designs make such installations unnecessary, there are some definite advantages that warrant the additional cost involved. First of all, such an arrangement does satisfy the psychological concern of a number of people and, in so doing, might gain the acceptance of the public so that such plants could be constructed in urban areas of load centers. The results of these studies are presented and some of the requirements necessary for underground installations described, including rock conditions, depth of facilities, and economics.

  1. Logistics background study: underground mining

    SciTech Connect

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  2. Leaking Underground Storage Tank (LUST) Trust Fund

    EPA Pesticide Factsheets

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  3. Control of Grasp and Manipulation by Soft Fingers with 3-Dimensional Deformation

    NASA Astrophysics Data System (ADS)

    Nakashima, Akira; Shibata, Takeshi; Hayakawa, Yoshikazu

    In this paper, we consider control of grasp and manipulation of an object in a 3-dimensional space by a 3-fingered hand robot with soft finger tips. We firstly propose a 3-dimensional deformation model of a hemispherical soft finger tip and verify its relevance by experimental data. Second, we consider the contact kinematics and derive the dynamical equations of the fingers and the object where the 3-dimensional deformation is considered. For the system, we thirdly propose a method to regulate the object and the internal force with the information of the hand, the object and the deformation. A simulation result is presented to show the effectiveness of the control method.

  4. Earthquake damage to underground facilities

    SciTech Connect

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters.

  5. Underground technology benefits surface operations

    SciTech Connect

    Swaim, M.

    2008-09-15

    Sensitive ground fault relays (GFRs) on high voltage underground electrical equipment have been in used for a number of years to improve mine safety. Advanced GFRs do more than just interrupt fault current flow. They can also reveal linkages as they develop so ground faults are detected before they become critical. 3 figs.

  6. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  7. Slavery and the Underground Railroad.

    ERIC Educational Resources Information Center

    Anderson, Nancy Comfort

    2000-01-01

    Presents a bibliography of sources to help children understand slavery and the Underground Railroad and recommends a combination of fiction and nonfiction for a better understanding. Includes picture books, biographies of people who played prominent roles during the time of slavery, nonfiction books for older readers, and videotape. (LRW)

  8. Soviet underground coal gasification on the rocks

    SciTech Connect

    Not Available

    1980-10-13

    According to the University of California Lawrence Livermore Laboratory, the U.S.S.R. has abandoned large-scale development plans for coal-gasification projects, due to the low heating value of the gas produced at test burns at Angren, and to the cost, estimated at 132% of the standard Lurgi value, in contrast to the cost of approx. 65% of the standard Lurgi value in U.S. experimental burns. The U.S.S.R. coal-gasification effort has been in development since 1950, with a peak production of approx. 2 billion cu m/yr in 1966. The poor test burn results might have been caused by: drilling the boreholes too close to each other, which would increase drilling costs; the loss of a large amount of heat through a porous overburden; the lack of good underground diagnostics before and during a burn; and a lack of a good laboratory support program. The gas heating value was too low to warrant transportation far from the burn site, but most suitable burn sites are in remote areas. In the U.S.S.R., natural gas and open-pit lignite mining appear to be cheaper sources of energy.

  9. A Systems Biology Approach to Heat Stress, Heat Injury and Heat Stroke

    DTIC Science & Technology

    2015-01-01

    A systems biology approach to heat stress, heat injury and heat stroke Jonathan D. Stallings and Danielle L. Ippolito US Army Center for...paramount importance to the military. Here, we review our recent systems biology approaches to heat stress in order to develop a 3-dimensional (3D...Transcriptomics, Proteomics, Systems biology, Protein aggregation, Metabolomics, Energetics, Computational modeling 1. HEAT ILLNESS IN THE U.S. ARMED FORCES

  10. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.

    PubMed

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz

    2016-12-01

    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.

  11. Modeling carbon monoxide spread in underground mine fires

    PubMed Central

    Yuan, Liming; Zhou, Lihong; Smith, Alex C.

    2016-01-01

    Carbon monoxide (CO) poisoning is a leading cause of mine fire fatalities in underground mines. To reduce the hazard of CO poisoning in underground mines, it is important to accurately predict the spread of CO in underground mine entries when a fire occurs. This paper presents a study on modeling CO spread in underground mine fires using both the Fire Dynamics Simulator (FDS) and the MFIRE programs. The FDS model simulating part of the mine ventilation network was calibrated using CO concentration data from full-scale mine fire tests. The model was then used to investigate the effect of airflow leakage on CO concentration reduction in the mine entries. The inflow of fresh air at the leakage location was found to cause significant CO reduction. MFIRE simulation was conducted to predict the CO spread in the entire mine ventilation network using both a constant heat release rate and a dynamic fire source created from FDS. The results from both FDS and MFIRE simulations are compared and the implications of the improved MFIRE capability are discussed. PMID:27069400

  12. High temperature underground thermal energy storage system for solar energy

    NASA Astrophysics Data System (ADS)

    Collins, R. E.

    1980-08-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  13. High temperature underground thermal energy storage system for solar energy

    NASA Technical Reports Server (NTRS)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  14. Underground hibernation in a primate.

    PubMed

    Blanco, Marina B; Dausmann, Kathrin H; Ranaivoarisoa, Jean F; Yoder, Anne D

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation.

  15. Underground hibernation in a primate

    PubMed Central

    Blanco, Marina B.; Dausmann, Kathrin H.; Ranaivoarisoa, Jean F.; Yoder, Anne D.

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation. PMID:23636180

  16. The world deep underground laboratories

    NASA Astrophysics Data System (ADS)

    Bettini, A.

    2012-09-01

    This paper is an introduction to a series of coordinated articles of an EPJ Plus Focus Point on underground physics laboratories, written by the directors of the larger ones and by the coordinators of the principal new projects. The paper is largely based on the text of my lecture Perspectives of underground physics, given at the Enrico Fermi Varenna International School, Course CLXXXII (2011), Neutrino physics and astrophysics, reproduced here by permission of the Italian Physical Society. Underground laboratories provide the low radioactive background environment necessary to explore the highest energy scales that cannot be reached with accelerators, by searching for extremely rare phenomena. Experiments range from the direct search of the dark-matter particles that constitute the largest fraction of matter in the Universe, to the exploration of the properties of the neutrinos, the most elusive of the known particles and which might be particle and antiparticle at the same time, to the investigation on why our universe contains only matter and almost no antimatter, and much more.

  17. Underground storage of carbon dioxide

    SciTech Connect

    Tanaka, Shoichi

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  18. Above- and underground storage tanks

    SciTech Connect

    Canning, K.; Kilbourne, A.

    1997-09-01

    Storage tanks are the primary means of storing liquid, fluid and gas products. Federal and state environmental regulations, as well as local building and fire codes, take into account leaks and spills, tank emissions, underground tank seepage and safety issues, and they define standards for tank manufacturers and owners. For specific regulatory information pertaining to your application, contact the local authorities having jurisdiction. Storage tanks listed within this product guide have been classified as underground or aboveground, with subcategories including modular, process and temporary tanks. Tank construction materials include aluminum, carbon steel, concrete, fiberglass-reinforced plastic (FRP) and stainless steel. A variety of accessories, including automatic tank gauging systems, level monitors, leak detectors, overfill protection and tank inspection systems, also are listed. Aboveground storage tanks (ASTs) have less than 10 percent of their tank volume and piping below ground. Available in both vertical and horizontal configurations, they can be either erected in the field or fabricated in a factory. Underground storage tanks (USTs) are primarily used to contain regulated substances; USTs have at least 10% of their tank volume and piping buried belowground. Common UST construction materials include carbon steel, coated steel, cathodically protected steel and FRP. USTs are required to have corrosion protection, spill and overfill prevention and control and release detection in place by December 1998.

  19. Radionuclides in an underground environment

    SciTech Connect

    Thompson, J.L.

    1996-08-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ``experiments`` conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes.

  20. The stress and underground environment

    NASA Astrophysics Data System (ADS)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  1. Preoperative 3-dimensional Magnetic Resonance Imaging of Uterine Myoma and Endometrium Before Myomectomy.

    PubMed

    Kim, Young Jae; Kim, Kwang Gi; Lee, Sa Ra; Lee, Seung Hyun; Kang, Byung Chul

    2017-02-01

    Uterine myomas are the most common gynecologic benign tumor affecting women of childbearing age, and myomectomy is the main surgical option to preserve the uterus and fertility. During myomectomy for women with multiple myomas, it is advisable to identify and remove as many as possible to decrease the risk of future myomectomies. With deficient preoperative imaging, gynecologists are challenged to identify the location and size of myomas and the endometrium, which, in turn, can lead to uterine rupture during future pregnancies. Current conventional 2-dimensional imaging has limitations in identifying precise locations of multiple myomas and the endometrium. In our experience, we preferred to use 3-dimensional imaging to delineate the myomas, endometrium, or blood vessels, which we were able to successfully reconstruct by using the following imaging method. To achieve 3-dimensional imaging, we matched T2 turbo spin echo images to detect uterine myomas and endometria with T1 high-resolution isotropic volume excitation-post images used to detect blood vessels by using an algorithm based on the 3-dimensional region growing method. Then, we produced images of the uterine myomas, endometria, and blood vessels using a 3-dimensional surface rendering method and successfully reconstructed selective 3-dimensional imaging for uterine myomas, endometria, and adjacent blood vessels. A Web-based survey was sent to 66 gynecologists concerning imaging techniques used before myomectomy. Twenty-eight of 36 responding gynecologists answered that the 3-dimensional image produced in the current study is preferred to conventional 2-dimensional magnetic resonance imaging in identifying precise locations of uterine myomas and endometria. The proposed 3-dimensional magnetic resonance imaging method successfully reconstructed uterine myomas, endometria, and adjacent vessels. We propose that this will be a helpful adjunct to uterine myomectomy as a preoperative imaging technique in future

  2. Embedding Materials and Economy for a Deep Underground Reactor

    SciTech Connect

    Hiroshi Takahashi

    2002-07-01

    I proposed embedding the high-conversion LWR, studied in the NERI program, about 500-1000 meters deep underground. At such depths, the earth's gravity force passively removes heat using the natural circulation of the reactor coolant; then, even a nuclear-power plant with very tight-lattice fuel assembly can be operated safely. Safety is ensured by embedding the reactor vessel and other components, such as coolant ducts, in casing containers and filling the space between the container and the vessel with embedding material. I describe suitable embedding materials that can be easily removed to allow access to the reactor and coolant components. Finally, I discuss the key economic aspects of building a reactor deep underground. (author)

  3. A Psychosocial Approach to Understanding Underground Spaces

    PubMed Central

    Lee, Eun H.; Christopoulos, George I.; Kwok, Kian W.; Roberts, Adam C.; Soh, Chee-Kiong

    2017-01-01

    With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  4. Might underground waste repositories blow up?

    SciTech Connect

    Hippel, F. von

    1996-03-01

    Some writers have presented possible scenarios in which a subcritical underground deposit of plutonium or other fissile material might be changed into a critical configuration. The underground criticalities that occurred in Gabon some 1.7 billion years ago in deposits of natural uranium is cited. Other scientists assert that it is virtually impossible that such a configuration could develop in an underground repository. The author presents the pros and cons of these views. 5 refs.

  5. Shotcrete for underground support VI

    SciTech Connect

    Not Available

    1993-01-01

    This proceedings consists of papers presented at the Shotcrete for Underground Support VI Conference held in Niagara-on-the-Lake, Ontario, Canada, May 2-6, 1993. It covers three broad themes concerning shotcrete - engineering, research, and applications. Specifically, the proceedings presents papers on: (1) materials engineering; (2) shotcrete research; (3) engineering design; and (4) tunneling, soil nailing, and mining applications. The book concludes by presenting an international compilation of guidelines and recommendations on shotcrete. Papers have been processed separately for inclusion on the data base.

  6. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter

  7. Underground storage tank management plan

    SciTech Connect

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  8. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    ERIC Educational Resources Information Center

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  9. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  10. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... affect the safety of employees underground. (f) Communications. (1) When natural unassisted voice... working alone underground in a hazardous location, who is both out of the range of natural unassisted... lamp in his or her work area for emergency use, unless natural light or an emergency lighting...

  11. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and... toxic gases from a fire originating in an underground shop where maintenance work is routinely done...

  12. State Certification of Underground Storage Tanks.

    DTIC Science & Technology

    1998-04-15

    This audit was part of the overall audit of "DoD Management of Underground Storage Tanks ," (Project No. 6CK-5051). The overall audit was jointly...Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks were compliant

  13. Resource Recovery of Flooded Underground Mine Workings

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  14. Resource Recovery from Flooded Underground Mines

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  15. Transport Model of Underground Sediment in Soils

    PubMed Central

    Guangqian, Wang

    2013-01-01

    Studies about sediment erosion were mainly concentrated on the river channel sediment, the terrestrial sediment, and the underground sediment. The transport process of underground sediment is studied in the paper. The concept of the flush potential sediment is founded. The transport equation with stable saturated seepage is set up, and the relations between the flush potential sediment and water sediment are discussed. Flushing of underground sediment begins with small particles, and large particles will be taken away later. The pore ratio of the soil increases gradually. The flow ultimately becomes direct water seepage, and the sediment concentration at the same position in the water decreases over time. The concentration of maximal flushing potential sediment decreases along the path. The underground sediment flushing model reflects the flushing mechanism of underground sediment. PMID:24288479

  16. Dynamic Underground Stripping Post-Treatment Characterization Plan

    SciTech Connect

    Vangelas, K.M.

    2001-04-17

    The A/M-Area of the Savannah River Site is a known area of solvent release to the subsurface. The Solvent Storage Tank Area is an area of documented dense non-aqueous phase liquids (DNAPL) in the subsurface. June 30, 2000 a remediation using the Dynamic Underground Stripping (DUS) treatment technology commenced. This technology injects steam into the subsurface through a series of injection wells located within the treatment zone. The steam is pulled through the subsurface to an extraction well where it is removed. The heating of the subsurface causes the DNAPL present to be volatilized and removed through the extraction well.

  17. Underground coal mining section data

    NASA Technical Reports Server (NTRS)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  18. Toxic hazards of underground excavation

    SciTech Connect

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  19. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  20. A review of the factors influencing the physicochemical characteristics of underground coal gasification

    SciTech Connect

    Yang, L.H.

    2008-07-01

    In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

  1. In Perspective: Three Underground Schools

    ERIC Educational Resources Information Center

    Progressive Architecture, 1975

    1975-01-01

    Three partially subterranean schools in Santa Ana, California, are expected to have lower heating and cooling costs. Using the roof for recreation avoided the expense of additional inner-city acreage. (Author/MLF)

  2. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  3. Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes

    NASA Technical Reports Server (NTRS)

    Schubert, S.

    1985-01-01

    The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.

  4. DETECTORS AND EXPERIMENTAL METHODS: Decay vertex reconstruction and 3-dimensional lifetime determination at BESIII

    NASA Astrophysics Data System (ADS)

    Xu, Min; He, Kang-Lin; Zhang, Zi-Ping; Wang, Yi-Fang; Bian, Jian-Ming; Cao, Guo-Fu; Cao, Xue-Xiang; Chen, Shen-Jian; Deng, Zi-Yan; Fu, Cheng-Dong; Gao, Yuan-Ning; Han, Lei; Han, Shao-Qing; He, Miao; Hu, Ji-Feng; Hu, Xiao-Wei; Huang, Bin; Huang, Xing-Tao; Jia, Lu-Kui; Ji, Xiao-Bin; Li, Hai-Bo; Li, Wei-Dong; Liang, Yu-Tie; Liu, Chun-Xiu; Liu, Huai-Min; Liu, Ying; Liu, Yong; Luo, Tao; Lü, Qi-Wen; Ma, Qiu-Mei; Ma, Xiang; Mao, Ya-Jun; Mao, Ze-Pu; Mo, Xiao-Hu; Ning, Fei-Peng; Ping, Rong-Gang; Qiu, Jin-Fa; Song, Wen-Bo; Sun, Sheng-Sen; Sun, Xiao-Dong; Sun, Yong-Zhao; Tian, Hao-Lai; Wang, Ji-Ke; Wang, Liang-Liang; Wen, Shuo-Pin; Wu, Ling-Hui; Wu, Zhi; Xie, Yu-Guang; Yan, Jie; Yan, Liang; Yao, Jian; Yuan, Chang-Zheng; Yuan, Ye; Zhang, Chang-Chun; Zhang, Jian-Yong; Zhang, Lei; Zhang, Xue-Yao; Zhang, Yao; Zheng, Yang-Heng; Zhu, Yong-Sheng; Zou, Jia-Heng

    2009-06-01

    This paper focuses mainly on the vertex reconstruction of resonance particles with a relatively long lifetime such as K0S, Λ, as well as on lifetime measurements using a 3-dimensional fit. The kinematic constraints between the production and decay vertices and the decay vertex fitting algorithm based on the least squares method are both presented. Reconstruction efficiencies including experimental resolutions are discussed. The results and systematic errors are calculated based on a Monte Carlo simulation.

  5. Assessing the acoustical climate of underground stations.

    PubMed

    Nowicka, Elzbieta

    2007-01-01

    Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented.

  6. Fast Apriori-based Graph Mining Algorithm and application to 3-dimensional Structure Analysis

    NASA Astrophysics Data System (ADS)

    Nishimura, Yoshio; Washio, Takashi; Yoshida, Tetsuya; Motoda, Hiroshi; Inokuchi, Akihiro; Okada, Takashi

    Apriori-based Graph Mining (AGM) algorithm efficiently extracts all the subgraph patterns which frequently appear in graph structured data. The algorithm can deal with general graph structured data with multiple labels of vartices and edges, and is capable of analyzing the topological structure of graphs. In this paper, we propose a new method to analyze graph structured data for a 3-dimensional coordinate by AGM. In this method the distance between each vertex of a graph is calculated and added to the edge label so that AGM can handle 3-dimensional graph structured data. One problem in our approach is that the number of edge labels increases, which results in the increase of computational time to extract subgraph patterns. To alleviate this problem, we also propose a faster algorithm of AGM by adding an extra constraint to reduce the number of generated candidates for seeking frequent subgraphs. Chemical compounds with dopamine antagonist in MDDR database were analyzed by AGM to characterize their 3-dimensional chemical structure and correlation with physiological activity.

  7. Reconstructing a 3-dimensional image of the results of antinuclear antibody testing by indirect immunofluorescence.

    PubMed

    Murai, Ryosei; Yamada, Koji; Tanaka, Maki; Kuribayashi, Kageaki; Kobayashi, Daisuke; Tsuji, Naoki; Watanabe, Naoki

    2013-01-31

    Indirect immunofluorescence anti-nuclear antibody testing (IIF-ANAT) is an essential screening tool in the diagnosis of various autoimmune disorders. ANA titer quantification and interpretation of immunofluorescence patterns are determined subjectively, which is problematic. First, we determined the examination conditions under which IIF-ANAT fluorescence intensities are quantified. Next, IIF-ANAT was performed using homogeneous, discrete speckled, and mixed serum samples. Images were obtained using Bio Zero BZ-8000, and 3-dimensional images were reconstructed using the BZ analyzer software. In the 2-dimensional analysis, homogeneous ANAs hid the discrete speckled pattern, resulting in a diagnosis of homogeneous immunofluorescence. However, 3-dimensional analysis of the same sample showed discrete speckled-type ANA in the homogeneous background. This study strengthened the current IIF-ANAT method by providing a new approach to quantify the fluorescence intensity and enhance the resolution of IIF-ANAT fluorescence patterns. Reconstructed 3-dimensional imaging of IIF-ANAT can be a powerful tool for routine laboratory examination.

  8. Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy

    SciTech Connect

    Watzlaf, G.R.; Ackman, T.E.

    2007-04-01

    Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)

  9. Thermal cleanups using dynamic underground stripping and hydrous pyrolysis oxidation

    SciTech Connect

    Aines, R D; Knauss, K; Leif, R; Newmark, R L

    1999-05-01

    In the early 1990s, in collaboration with the School of Engineering at the University of California, Berkeley, Lawrence Livermore National Laboratory developed dynamic underground stripping (DUS), a method for treating subsurface contaminants with heat that is much faster and more effective than traditional treatment methods. more recently, Livermore scientists developed hydrous pyrolysis/oxidation (HPO), which introduces both heat and oxygen to the subsurface to convert contaminants in the ground to such benign products as carbon dioxide, chloride ion, and water. This process has effectively destroyed all contaminants it encountered in laboratory tests. With dynamic underground stripping, the contaminants are vaporized and vacuumed out of the ground, leaving them still to be destroyed elsewhere. Hydrous pyrolysis/oxidation technology takes the cleanup process one step further by eliminating the treatment, handling, and disposal requirements and destroying the contamination in the ground. When used in combination, HPO is especially useful in the final polishing of a site containing significant free-product contaminant, once the majority of the contaminant has been removed.

  10. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  11. The Black Underground: Fugitives from Slavery

    ERIC Educational Resources Information Center

    Quarles, Benjamin

    1969-01-01

    A brief account of the activities prior to the American Civil War of those who assisted black slaves in their flight from the South to the Northern States and Canada by an underground railroad movement. (RJ)

  12. Establishing sustainable strategies in urban underground engineering.

    PubMed

    Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A

    2004-07-01

    Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.

  13. The First Great Migration: The Underground Railroad.

    ERIC Educational Resources Information Center

    Goodstein, Carol

    1990-01-01

    Describes the Underground Railroad, a loosely organized system used by runaway Southern slaves to reach freedom in the North. Discusses the role of "conductors," who acted as guides and offered shelter along the route. (FMW)

  14. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  15. System for remote control of underground device

    DOEpatents

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  16. Human Factors Considerations of Undergrounds in Insurgencies

    DTIC Science & Technology

    1966-09-01

    number of these local villagers re- portedly aided the Viet Cong in infiltrating the base area and obtaining enough information to make a life- size model ...instigate, and support subversive under- grounds, have been included. The report is designed to provide the military user with a text to complement...underground organizations is compart- mentalization, designed to protect the organization’s security. The cellular structure follows the underground "fail

  17. Underground infrastructure damage for a Chicago scenario

    SciTech Connect

    Dey, Thomas N; Bos, Rabdall J

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  18. Detection of underground structures and tunnels

    SciTech Connect

    Mack, J.M.; Moses, R.W.; Kelly, R.E.; Flynn, E.R.; Kraus, R.H.; Cogbill, A.H.; Stolarczyk, L.G.

    1996-09-01

    This is the final report of a one year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. There is a continuing need in the United States defense and drug interdiction for effective over, convert, and standoff means of detecting underground tunnels, structures, and objects. This project sought to begin an assessment of electromagnetic and gravitational gradient detection approaches to the detection of underground structures and tunnels.

  19. CAVSIM. Underground Coal Gasification Program

    SciTech Connect

    Britten, J.A., Thorsness, C.B. )

    1989-03-03

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  20. Thermal image study of detecting near-underground structures by means of infrared radiometer

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshizo; Fan, Zuofen; Liu, Chanliang; Inagaki, Terumi

    1995-03-01

    An infrared radiometer is used to detect several flaws of industrial structural elements, as one remote sensing device. The thermal image method (TIM) was carried out to analyze location and dimension of the internal flaws of mechanical components, like piping, vessel, slab and pile. Internal flaws were detected by visualizing abnormal behavior of radiation temperature distribution of the tested surface by solar and artificial heat injection. The induced nonuniform temperature shows the existence of the internal flaws imaged on the CRT display of the infrared radiometer. As one application subject, the TIM method was extensively applied to near-underground buried materials of ancient remains; such as corner stone, stone settlement, shell mound, and tomb. The paper represents basic experimental and analytical results of preliminary and demonstration model tests of the buried materials in the soil and rock by solar, direct, and indirect combustion heaters. After continuous irradiation heating, we measured and recorded transient radiation temperature distribution of the tested ground surface which inserts the model near-underground tests plates of stylene, concrete, stone and gravel, changing width and depth of the test plates. Nonuniform and discontinuous temperature distribution of the tested surface above the inserted plates shows the existence of near- underground buried materials. Furthermore, transient temperature and heat flow behavior was numerically analyzed by solving a transient two-dimensional heat-balance equation. Calculation results were quite useful to analyze the experimental heat flow behavior around the buried object.

  1. Multimodality imaging of intrauterine devices with an emphasis on the emerging role of 3-dimensional ultrasound.

    PubMed

    Reiner, Jeffrey S; Brindle, Kathleen A; Khati, Nadia Juliet

    2012-12-01

    The intrauterine contraceptive device (IUD) is one of the most widely used reversible contraception methods throughout the world. With advancing technology, it has rapidly gained acceptance through its increased effectiveness and practicality compared with more invasive means such as laparoscopic tubal ligation. This pictorial essay will present the IUDs most commonly used today. It will illustrate both normal and abnormal positions of IUDs across all cross-sectional imaging modalities including 2-dimensional ultrasound, computed tomography, and magnetic resonance imaging, with a focus on the emerging role of 3-dimensional ultrasound as the modality of choice.

  2. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  3. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    PubMed

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc.

  4. Introducing a well-ordered volume porosity in 3-dimensional gold microcantilevers

    NASA Astrophysics Data System (ADS)

    Ayela, Cédric; Lalo, Hélène; Kuhn, Alexander

    2013-02-01

    The purpose of the present work is the introduction of a combined bottom-up and top-down approach to generate 3-dimensional gold microcantilevers, where the porosity in the volume of the free-standing microstructure is well-controlled. By combining the elaboration of a colloidal crystal, followed by electrodeposition, with a sacrificial layer process, free-standing macroporous gold cantilevers are fabricated collectively. In order to validate the proposed concept, a simple application to humidity sensing is evaluated using the devices as mass sensors. A large sensitivity of -529 ppm/%RH and low discrepancy are obtained experimentally, confirming the promising application potential of this original architecture.

  5. Brief communications: visualization of coronary arteries in rats by 3-dimensional real-time contrast echocardiography.

    PubMed

    Ishikura, Fuminobu; Hirayama, Hideo; Iwata, Akiko; Toshida, Tsutomu; Masuda, Kasumi; Otani, Kentaro; Asanuma, Toshihiko; Beppu, Shintaro

    2008-05-01

    Angiogenesis is under intense investigation to advance the treatment of various ischemic diseases. Small animals, such as mice and rats, are often used for this purpose. However, evaluating the structure of coronary arteries in small animals in situ is not easy. We succeeded in visualizing the coronary artery in rats on 3-dimensional real-time contrast echocardiography using a high-frequency transducer. These methods will be applied for more convenient assessment in a new study, examining issues such as angiogenesis using rats in situ.

  6. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall...

  7. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance...

  8. Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty.

    PubMed

    Sembrano, Jonathan N; Yson, Sharon C; Polly, David W; Ledonio, Charles Gerald T; Nuckley, David J; Santos, Edward R G

    2015-01-01

    Balloon kyphoplasty is a common treatment for osteoporotic and pathologic compression fractures. Advantages include minimal tissue disruption, quick recovery, pain relief, and in some cases prevention of progressive sagittal deformity. The benefit of image-based navigation in kyphoplasty has not been established. The goal of this study was to determine whether there is a difference between fluoroscopy-guided balloon kyphoplasty and 3-dimensional image-based navigation in terms of needle malposition rate, cement leakage rate, and radiation exposure time. The authors compared navigated and nonnavigated needle placement in 30 balloon kyphoplasty procedures (47 levels). Intraoperative 3-dimensional image-based navigation was used for needle placement in 21 cases (36 levels); conventional 2-dimensional fluoroscopy was used in the other 9 cases (11 levels). The 2 groups were compared for rates of needle malposition and cement leakage as well as radiation exposure time. Three of 11 (27%) nonnavigated cases were complicated by a malpositioned needle, and 2 of these had to be repositioned. The navigated group had a significantly lower malposition rate (1 of 36; 3%; P=.04). The overall rate of cement leakage was also similar in both groups (P=.29). Radiation exposure time was similar in both groups (navigated, 98 s/level; nonnavigated, 125 s/level; P=.10). Navigated kyphoplasty procedures did not differ significantly from nonnavigated procedures except in terms of needle malposition rate, where navigation may have decreased the need for needle repositioning.

  9. Grain boundary segregation in boron added interstitial free steels studied by 3-dimensional atom probe

    SciTech Connect

    Seto, K.; Larson, D.J.; Warren, P.J.; Smith, G.D.W.

    1999-04-09

    The development of deep-drawable sheet steels is of particular significance for the automotive industry. Titanium and/or niobium added extra-low carbon interstitial free (IF) steels are key materials. The virtually complete removal of carbon and nitrogen should lead to superior forming properties. However, the lack of solute carbon at grain boundaries significantly decreases the bonding force at the interfaces, which often causes intergranular brittle fracture when deeply drawn steel sheets are subjected to impact deformation at low temperature. This phenomenon is called secondary working embrittlement (SWE), and is a major problem when solute atoms such as phosphorus, manganese or silicon are added to increase the tensile strength of the steels. Small amounts of boron, which does not affect the formability of the steels significantly, are usually added as a remedial measure in such cases. The 3-dimensional atom probe (3DAP) combined with field ion microscopy (FIM) has the ability to produce 3-dimensional images from regions approximately 20nm*20nm*100nm in size, and identify each atomic species and the relative location of each atom with nearly lattice resolution. In this study, a combination of these methods was applied to produce FIM tips of IF steel containing grain boundaries. The authors report here the first observations of the segregation of boron in IF steels using 3DAP.

  10. A 3-dimensional model for teaching local flaps using porcine skin.

    PubMed

    Hassan, Zahid; Hogg, Fiona; Graham, Ken

    2014-10-01

    The European Working Time Directive and streamlined training has led to reduced training time. Surgery, as an experience-dependent craft specialty is affected more than other medical specialties. Trainees want to maximize all training opportunities in the clinical setting, and having predeveloped basic skills acquired on a simulated model can facilitate this.Here we describe the use of a novel model to design and raise local flaps in the face and scalp regions. The model consists of mannequin heads draped with porcine skin which is skewered with pins at strategic points to give a 3-dimensional model which closely resembles a cadaveric head.The advantages of this model are that it is life size and incorporates all the relevant anatomical features, which can be drawn on if required.This model was used on a recent course, Intermediate Skills in Plastic Surgery: Flaps Around the Face, at the Royal College of Surgeons England. The trainees found that practicing on the porcine skin gave them an opportunity to master the basics of flap design and implementation.In summary, this innovative 3-dimensional training model has received high levels of satisfaction and is currently as close as we can get to cadaveric dissection without the constraints and cost of using human tissue.

  11. Simple parameter estimation for complex models — Testing evolutionary techniques on 3-dimensional biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Mattern, Jann Paul; Edwards, Christopher A.

    2017-01-01

    Parameter estimation is an important part of numerical modeling and often required when a coupled physical-biogeochemical ocean model is first deployed. However, 3-dimensional ocean model simulations are computationally expensive and models typically contain upwards of 10 parameters suitable for estimation. Hence, manual parameter tuning can be lengthy and cumbersome. Here, we present four easy to implement and flexible parameter estimation techniques and apply them to two 3-dimensional biogeochemical models of different complexities. Based on a Monte Carlo experiment, we first develop a cost function measuring the model-observation misfit based on multiple data types. The parameter estimation techniques are then applied and yield a substantial cost reduction over ∼ 100 simulations. Based on the outcome of multiple replicate experiments, they perform on average better than random, uninformed parameter search but performance declines when more than 40 parameters are estimated together. Our results emphasize the complex cost function structure for biogeochemical parameters and highlight dependencies between different parameters as well as different cost function formulations.

  12. Automated 3-Dimensional Brain Atlas Fitting to Microelectrode Recordings from Deep Brain Stimulation Surgeries

    PubMed Central

    Luján, J. Luis; Noecker, Angela M.; Butson, Christopher R.; Cooper, Scott E.; Walter, Benjamin L.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-01-01

    Objective Deep brain stimulation (DBS) surgeries commonly rely on brain atlases and microelectrode recordings (MER) to help identify the target location for electrode implantation. We present an automated method for optimally fitting a 3-dimensional brain atlas to intraoperative MER and predicting a target DBS electrode location in stereotactic coordinates for the patient. Methods We retrospectively fit a 3-dimensional brain atlas to MER points from 10 DBS surgeries targeting the subthalamic nucleus (STN). We used a constrained optimization algorithm to maximize the MER points correctly fitted (i.e., contained) within the appropriate atlas nuclei. We compared our optimization approach to conventional anterior commissure-posterior commissure (AC/PC) scaling, and to manual fits performed by four experts. A theoretical DBS electrode target location in the dorsal STN was customized to each patient as part of the fitting process and compared to the location of the clinically defined therapeutic stimulation contact. Results The human expert and computer optimization fits achieved significantly better fits than the AC/PC scaling (80, 81, and 41% of correctly fitted MER, respectively). However, the optimization fits were performed in less time than the expert fits and converged to a single solution for each patient, eliminating interexpert variance. Conclusions and Significance DBS therapeutic outcomes are directly related to electrode implantation accuracy. Our automated fitting techniques may aid in the surgical decision-making process by optimally integrating brain atlas and intraoperative neurophysiological data to provide a visual guide for target identification. PMID:19556832

  13. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XμCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XμCT-equipment. The developed calibration procedure of the X-ray-μCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XμCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.

  14. Particle trajectory computation on a 3-dimensional engine inlet. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, J. J.

    1986-01-01

    A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated.

  15. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang

    2015-11-01

    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).

  16. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct.

    PubMed

    Rouwkema, Jeroen; de Boer, Jan; Van Blitterswijk, Clemens A

    2006-09-01

    To engineer tissues with clinically relevant dimensions, one must overcome the challenge of rapidly creating functional blood vessels to supply cells with oxygen and nutrients and to remove waste products. We tested the hypothesis that endothelial cells, cocultured with osteoprogenitor cells, can organize into a prevascular network in vitro. When cultured in a spheroid coculture model with human mesenchymal stem cells, human umbilical vein endothelial cells (HUVECs) form a 3-dimensional prevascular network within 10 days of in vitro culture. The formation of the prevascular network was promoted by seeding 2% or fewer HUVECs. Moreover, the addition of endothelial cells resulted in a 4-fold upregulation of the osteogenic marker alkaline phosphatase. The addition of mouse embryonic fibroblasts did not result in stabilization of the prevascular network. Upon implantation, the prevascular network developed further and structures including lumen could be seen regularly. However, anastomosis with the host vasculature was limited. We conclude that endothelial cells are able to form a 3-dimensional (3D) prevascular network in vitro in a bone tissue engineering setting. This finding is a strong indication that in vitro prevascularization is a promising strategy to improve implant vascularization in bone tissue engineering.

  17. Procedure for detecting underground utilities with specific shape

    NASA Astrophysics Data System (ADS)

    Ristic, Aleksandar; Vrtunski, Milan; Govedarica, Miro; Bugarinovic, Zeljko

    2016-04-01

    Nowadays GPR technology is acknowledged as a reliable, fast, non-destructive remote sensing technology whose area of applications is wider every day. One of its most common applications is underground utility detection. Not only it is possible to detect the utility in the field, but using certain algorithms utilities which haven't been detected in the field can be detected in radargrams. There is a number of procedures for automated detection of utility in the radargrams. Further, there are procedures that can estimate certain parameters such as propagation velocity, diameter or even characteristics of the material. However, the majority of these procedures is designed to detect cylindrical shape utilities, which, in a radargram, are represented with hyperbolic reflection. According to geometry of hyperbola, utility parameters can be estimated. In this paper we present a procedure that is designed to estimate characteristics of non-cylindrical utilities. It is worth mentioning that these utilities are not so rare. Some underground tanks and sewage collectors are among them. Heat line is consisted of two insulated pipes of the same diameter, often placed in a concrete channel and covered with plates made from reinforced concrete. Therefore, it can be considered as non-cylindrical utility and such structure has characteristic signature in a radargram. The main idea of the proposed procedure is to detect this signature, and then, based on standardized parameters for the heat lines, to estimate the diameter of the pipes. The proposed procedure is based on artificial neural network. As a training set we made a number of radargrams collected on different locations which contain heat lines of various dimensions. Pipe diameters were in a range from 65 to 250 mm. 400MHz antenna was used since the depth hasn't exceeded 2m. After the network is trained it is validated using radargrams that haven't been used in the training set. Further tests were done with radargrams that

  18. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOEpatents

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  19. Monitoring of Underground Coal Gasification

    SciTech Connect

    Yang, X.; Wagoner, J.; Ramirez, A.

    2012-08-31

    For efficient and responsible UCG operations, a UCG process must be monitored in the following three categories: 1) process parameters such as injection and product gas flow rates, temperature, pressure and syngas content and heating value; 2) geomechanical parameters, e.g., cavity and coal seam pressures, cavity development, subsidence and ground deformation; and 3) environmental parameters, e.g., groundwater chemistry and air quality. This report focuses on UCG monitoring with geophysical techniques that can contribute to monitoring of subsurface temperature, cavity development, burn front, subsidence and deformation.

  20. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  1. Analysis of Steam Heat System at Fort Myer, VA: Retrofit Options

    DTIC Science & Technology

    2006-12-01

    to an underground distributed hot water heating system. 3. Convert to a Decentralized System: Replace the central system with distributed heating...cost of this equipment is $3,954,000. The current natural gas underground piping would need to be increased in size to handle the addition gas use. The...Steam at 90 psig is distributed underground to the buildings served. There is also an under- ground return piping system used to return condensate

  2. Underground pipe inspection device and method

    DOEpatents

    Germata, Daniel Thomas

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  3. Method for making generally cylindrical underground openings

    DOEpatents

    Routh, J.W.

    1983-05-26

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  4. Underground physics in Japan - Present and future

    NASA Astrophysics Data System (ADS)

    Kitamura, T.

    1986-04-01

    Japanese underground-physics projects and Japanese participation in international programs are reviewed. Consideration is given to the large-solid-angle 30-100-m-deep underground-detector/surface-EAS-array installation at Ohya-cho; the Kamioka-mine Cerenkov detector; the DUMAND project near Hawaii; development of Super-Mutrons A and B at Ohya-cho; the results obtained in the JACEE project regarding quark-gluon-plasma muon pairs, muon bundles, and muon point sources; and a pair calorimeter and a proton-decay experiment for Gran Sasso Laboratory in Italy. Diagrams, graphs, and drawings are provided.

  5. Background Models for Muons and Neutrons Underground

    SciTech Connect

    Formaggio, Joseph A.

    2005-09-08

    Cosmogenic-induced activity is an issue of great concern for many sensitive experiments sited underground. A variety of different arch-type experiments - such as those geared toward the detection of dark matter, neutrinoless double beta decay and solar neutrinos - have reached levels of cleanliness and sensitivity that warrant careful consideration of secondary activity induced by cosmic rays. This paper reviews some of the main issues associated with the modeling of cosmogenic activity underground. Comparison with data, when such data is available, is also presented.

  6. Suicide on the London Underground System.

    PubMed

    Farmer, R; O'Donnell, I; Tranah, T

    1991-09-01

    Over the past 50 years there has been an increase in the numbers of people jumping/falling in front of trains on the London Underground system. Case-fatality rates have fallen from 70% in the 1950s to 55% today. The proportion certified as suicide has fallen while the proportions certified as accidents or open verdicts have risen. There is unusual clustering of events at some stations which are adjacent to psychiatric units. The hypothesis that ease of access to London Underground stations may sometimes be a determinant of suicide is investigated.

  7. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion

    PubMed Central

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.

    2017-01-01

    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Methods Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant

  8. 3-Dimensional Analysis of Dynamic Behavior of Bearing of Nielsen Bridge

    NASA Astrophysics Data System (ADS)

    Tanimura, Shinji; Heya, Hiroyuki; Umeda, Tsutomu; Mimura, Koji; Yoshikawa, Osamu

    In 1995, the great Hanshin-Awaji earthquake caused a large amount of destruction and structural failures. One example, whose mechanism is not fully clear, is the fracture of a bridge bearing of a Nielsen type bridge that does not occur under the ordinary static or dynamic loading conditions. The fracture probably resulted from very high stress due to an unexpected dynamic mechanism. In this paper, the 3-dimensional dynamic behavior of a Nielsen type bridge was analyzed by assuming a collision between the upper and the lower parts of the bearing, which might have occurred in the great Hanshin-Awaji earthquake. The numerical results show that an impact due to a relative velocity of 5˜6m/s between the upper and the lower parts of the bearing generates a stress sufficient to cause a fracture in the upper bearing. The observed features of the actual fracture surface was also simulated fairly closely.

  9. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze

    NASA Astrophysics Data System (ADS)

    Park, Hyeongsik; Shin, Myunghun; Kim, Hyeongseok; Kim, Sunbo; Le, Anh Huy Tuan; Kang, Junyoung; Kim, Yongjun; Pham, Duy Phong; Jung, Junhee; Yi, Junsin

    2017-04-01

    A comparative study of 3-dimensional textured glass morphologies with variable haze value and chemical texturing of the glass substrates was conducted to enhance light trapping in silicon (Si) thin film solar cells (TFSCs). The light trapping characteristics of periodic honeycomb structures show enhanced transmittance and haze ratio in numerical and experimental approaches. The periodic honeycomb structure of notched textures is better than a random or periodic carved structure. It has high transmittance of ∼95%, and haze ratio of ∼52.8%, and the haze property of the angular distribution function of transmittance shows wide scattering angles in the long wavelength region because of the wide spacing and aspect ratio of the texture. The numerical and experimental approaches of the 3-D texture structures in this work will be useful in developing high-performance Si TFSCs with light trapping.

  10. Experimental determination of thermal profiles during laser spike annealing with quantitative comparison to 3-dimensional simulations

    SciTech Connect

    Iyengar, Krishna; Jung, Byungki; Willemann, Michael; Thompson, Michael O.; Clancy, Paulette

    2012-05-21

    Thin film platinum resistors were used to directly measure temperature profiles during laser spike annealing (LSA) with high spatial and temporal resolution. Observed resistance changes were calibrated to absolute temperatures using the melting points of the substrate silicon and thin gold films. Both the time-dependent temperature experienced by the sample during passage of the focussed laser beam and profiles across the spatially dependent laser intensity were obtained with sub-millisecond time resolution and 50 {mu}m spatial resolution. Full 3-dimensional simulations incorporating both optical and thermal variations of material parameters were compared with these results. Accounting properly for the specific material parameters, good agreement between experiments and simulations was achieved. Future temperature measurements in complex environments will permit critical evaluation of LSA simulations methodologies.

  11. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  12. Surface compositional heterogeneity of (4) Vesta from Dawn FC using a 3 dimensional spectral approach

    NASA Astrophysics Data System (ADS)

    Thangjam, G.; Nathues, A.; Mengel, K.; Hoffmann, M.; Schäfer, M.; Mann, P.; Cloutis, E. A.; Behrens, H.; Platz, T.; Schäfer, T.; Sierks, H.; Christensen, U.; Russell, C. T.

    2015-10-01

    The historic journey of the Dawn spacecraft in 2011- 2012 was a turning point in understanding asteroid (4) Vesta. The surface composition and lithology were analysed and mapped in earlier studies using Dawn imageries [1], [2]. We introduce here a 3 dimensional spectral approach to analyze and map the surface composition using Dawn Framing Camera (FC) color data. Various laboratory spectra of available HEDs and their mixtures, including new spectra measured in this work, were used. Band parameters were reviewed and modified wherever necessary to make the best use of the data. We particularly focused on carbonaceous-chondrite-bearing and olivine-bearing lithologies. An attempt has been made to distinguish glass/impact-melt lithologies.

  13. A 3-Dimensional Cockpit Display with Traffic and Terrain Information for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.

    2004-01-01

    The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.

  14. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model.

    PubMed

    Chen, C-Y Oliver; Smith, Avi; Liu, Yuntao; Du, Peng; Blumberg, Jeffrey B; Garlick, Jonathan

    2017-01-25

    Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.

  15. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability

    PubMed Central

    Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad

    2015-01-01

    Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768

  16. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes.

    PubMed

    Degner-Leisso, Stephanie C; Feeney, Ann J

    2010-12-01

    V(D)J recombination is a crucial component of the adaptive immune response, allowing for the production of a diverse antigen receptor repertoire (Ig and TCR). This review will focus on how epigenetic regulation and 3-dimensional (3D) interactions may control V(D)J recombination at Ig loci. The interplay between transcription factors and post-translational modifications at the Igh, Igκ, and Igλ loci will be highlighted. Furthermore, we propose that the spatial organization and epigenetic boundaries of each Ig loci before and during V(D)J recombination may be influenced in part by the CTCF/cohesin complex. Taken together, the many epigenetic and 3D layers of control ensure that Ig loci are only rearranged at appropriate stages of B cell development.

  17. Can Abdominal Hypopressive Technique Change Levator Hiatus Area?: A 3-Dimensional Ultrasound Study.

    PubMed

    Resende, Ana Paula Magalhães; Torelli, Luiza; Zanetti, Miriam Raquel Diniz; Petricelli, Carla Dellabarba; Jármy-Di Bella, Zsuzsanna IIona Katalin; Nakamura, Mary Uchiyama; Araujo Júnior, E; Moron, Antonio Fernandes; Girão, Manoel João Batista Castello; Sartori, Marair Gracio Ferreira

    2016-06-01

    This study aimed to evaluate the levator hiatus area (LHA) at rest and during the performance of maximal pelvic floor muscle (PFM) contractions, during the abdominal hypopressive technique (AHT), and during the combination of PFM contractions (PFMCs) and the AHT. The study included 17 healthy nulliparous women who had no history of pelvic floor disorders. The LHA was evaluated with the patients in the lithotomy position. After a physiotherapist instructed the patients on the proper performance of the PFM and AHT exercises, 1 gynecologist performed the 3-dimensional translabial ultrasound examinations. The LHA was measured with the patients at rest. The PFMC alone, the AHT alone or the AHT in combination with a PFMC with 30 seconds of rest between the evaluations were performed. Each measurement was performed 2 times, and the mean value was used for statistical analysis. The Wilcoxon test was used to test the differences between the 2 maneuvers. Similar values were observed when comparing the LHA of the PFM at rest (12.2 ± 2.4) cm and during the AHT (11.7 ± 2.6) cm (P = 0.227). The AHT+ PFMC (10.2 ± 1.9) cm demonstrated lower values compared with AHT alone (11.7 ± 2.6) cm (P = 0.002). When comparing the PFMC (10.4 ± 2.1) cm with the AHT + PFMC (10.2 ± 1.9) cm, no significant difference (P = 0.551) was observed. During PFMC, the constriction was 1.8 cm; during the AHT, the constriction was 0.5 cm; and during the AHT + PFMC, it was 2 cm. The LHA assessed by 3-dimensional ultrasound did not significantly change with AHT. These results support the theory that AHT does not strengthen PFM.

  18. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  19. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    PubMed Central

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  20. Selection of massive bone allografts using shape-matching 3-dimensional registration

    PubMed Central

    Docquier, Pierre-Louis; Cartiaux, Olivier; Cornu, Olivier; Delloye, Christian; Banse, Xavier

    2010-01-01

    Background and purpose Massive bone allografts are used when surgery causes large segmental defects. Shape-matching is the primary criterion for selection of an allograft. The current selection method, based on 2-dimensional template comparison, is inefficient for 3-dimensional complex bones. We have analyzed a 3-dimensional (3-D) registration method to match the anatomy of the allograft with that of the recipient. Methods 3-D CT-based registration was performed to match the shapes of both bones. We used the registration to align the allograft volume onto the recipient's bone. Hemipelvic allograft selection was tested in 10 virtual recipients with a panel of 10 potential allografts, including one from the recipient himself (trap graft). 4 observers were asked to visually inspect the superposition of allograft over the recipient, to classify the allografts into 4 categories according to the matching of anatomic zones, and to select the 3 best matching allografts. The results obtained using the registration method were compared with those from a previous study on the template method. Results Using the registration method, the observers systematically detected the trap graft. Selections of the 3 best matching allografts performed using registration and template methods were different. Selection of the 3 best matching allografts was improved by the registration method. Finally, reproducibility of the selection was improved when using the registration method. Interpretation 3-D CT registration provides more useful information than the template method but the final decision lies with the surgeon, who should select the optimal allograft according to his or her own preferences and the needs of the recipient. PMID:20175643

  1. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures

    PubMed Central

    Barde, Dhananjay H; Mudhol, Anupama; Ali, Fareedi Mukram; Madan, R S; Kar, Sanjay; Ustaad, Farheen

    2014-01-01

    Background: Mandibular fractures are treated surgically by either rigid or semi-rigid fixation, two techniques that reflect almost opposite concept of craniomaxillofacial osteosynthesis. The shortcomings of these fixations led to the development of 3 dimensional (3D) miniplates. This study was designed with the aim of evaluating the efficiency of 3D miniplate over Champys miniplate in anterior mandibular fractures. Materials & Methods: This study was done in 40 patients with anterior mandibular fractures. Group I consisting of 20 patients in whom 3D plates were used for fixation while in Group II consisting of other 20 patients, 4 holes straight plates were used. The efficacy of 3D miniplate over Champy’s miniplate was evaluated in terms of operating time, average pain, post operative infection, occlusion, wound dehiscence, post operative mobility and neurological deficit. Results: The mean operation time for Group II was more compared to Group I (statistically significant).There was significantly greater pain on day of surgery and at 2nd week for Group II patients but there was no significant difference between the two groups at 4th week. The post operative infection, occlusal disturbance, wound dehiscence, post operative mobility at facture site, neurological deficit was statistically insignificant (chi square test). Conclusion: The results of this study suggest that fixation of anterior mandibular fractures with 3D plates provides three dimensional stability and carries low morbidity and infection rates. The only probable limitation of these 3D plates may be excessive implant material, but they seem to be easy alternative to champys miniplate. How to cite the article: Barde DH, Mudhol A, Ali FM, Madan RS, Kar S, Ustaad F. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures. J Int Oral Health 2014;6(1):20-6. PMID:24653598

  2. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    EPA Pesticide Factsheets

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  3. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  4. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  5. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  6. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  7. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  8. 7. PHOTOCOPY, PLUMBING AND MECHANICAL PLAN AND DETAILS FOR UNDERGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PHOTOCOPY, PLUMBING AND MECHANICAL PLAN AND DETAILS FOR UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL

  9. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-01-01

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  10. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-03-31

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  11. MEASUREMENT OF METHANE EMISSIONS FROM UNDERGROUND DISTRIBUTION MAINS AND SERVICES

    EPA Science Inventory

    The paper reports results of measurements of methane emissions from underground distribution mains and services. In the program, leakage from underground distribution systems is estimated by combining leak measurements with historical leak record data and the length of undergroun...

  12. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2016-07-12

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  13. 8. PHOTOCOPY, ARCHITECTURAL FLOOR PLAN AND DETAIL DRAWING OF UNDERGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PHOTOCOPY, ARCHITECTURAL FLOOR PLAN AND DETAIL DRAWING OF UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL

  14. 9. PHOTOCOPY, ARCHITECTURAL SECTIONS AND DETAIL DRAWING OF UNDERGROUND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. PHOTOCOPY, ARCHITECTURAL SECTIONS AND DETAIL DRAWING OF UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL

  15. Leakage Potential of Underground Storage Tanks

    DTIC Science & Technology

    1991-06-01

    Hazardous and Solid Waste Amendments , Title 17. Underground Storage Tanks, Sabitle I...Regulations The Hazardous and Solid Waste Amendments (HSWA) 10 of 1984 require all UST owners to comply with all applicable Federal, State, interstate and...Recovery Act, 1976. Public Law 98-616, Hazardous and Solid Waste Amendments , 1984. Public Law 98-616, Hazardous and Solid Waste

  16. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  17. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  18. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-02-16

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  19. Animals Underground. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Ruffault, Charlotte

    This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume explores the natural history of animals that live underground. Animals included are porcupine, insects, earthworm, mole, badger, rabbit, prairie dog, and beach animals. (YP)

  20. A Walk on the Underground Railroad.

    ERIC Educational Resources Information Center

    Cohen, Anthony

    2001-01-01

    Describes one historian's search for information on the Underground Railroad, retracing on foot one of the routes formerly traveled by fugitives, seeking historical societies and libraries in each town, and interviewing descendants of slaves. He also had himself boxed up and smuggled onto a train to simulate the situation of one fugitive. A…

  1. Preventing suicide on the London Underground.

    PubMed

    Clarke, R V; Poyner, B

    1994-02-01

    A field study was carried out to investigate the possibility of preventing suicide on the London Underground. Four groups of potentially valuable measures were identified with the objectives of: (i) reducing public access to the tracks; (ii) improving surveillance by station staff; (iii) facilitating emergency stops; and (iv) reducing injury. These strategies are discussed.

  2. Freedom Train: Building an Underground Railroad.

    ERIC Educational Resources Information Center

    Hickman, Wayne

    1999-01-01

    Describes an activity called the "Freedom Train": a simulation for eighth grade students that enables them to gain an understanding of the importance and dangers of the Underground Railroad. Explains that the project encourages students to work cooperatively while also reinforcing their research and map skills. Provides follow-up…

  3. Harriet Tubman and the Underground Railroad.

    ERIC Educational Resources Information Center

    Crawford, Mary; Ruthsdotter, Mary

    Suitable for elementary level students, this study unit helps increase students' comprehension of the risks involved in a black person's flight from slavery and of Harriet Tubman's success in leading more than 300 slaves to freedom via the Underground Railroad. Five activity suggestions are followed by a reading on the life of Harriet Tubman.…

  4. Reference electrodes for underground storage tanks

    SciTech Connect

    Ansuini, F.J.; Dimond, J.R.

    1995-12-31

    This paper discusses several factors affecting the reference potential established by copper/copper sulfate and silver/silver chloride reference electrodes. Guidelines for using permanent references in underground storage tank applications are presented and some causes of misleading readings with portable references are discussed.

  5. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Underground cable. 32.2422 Section 32.2422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to...

  6. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  8. 30 CFR 57.4161 - Use of fire underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of fire underground. 57.4161 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4161 Use of fire underground. Fires shall...

  9. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underground transportation of explosives. 1926.903 Section... Explosives § 1926.903 Underground transportation of explosives. (a) All explosives or blasting agents in... explosives or blasting agents taken to an underground loading area shall not exceed the amount estimated...

  10. Polysubstance Use Patterns in Underground Rave Attenders: A Cluster Analysis

    ERIC Educational Resources Information Center

    Fernandez-Calderon, Fermin; Lozano, Oscar M.; Vidal, Claudio; Ortega, Josefa Gutierrez; Vergara, Esperanza; Gonzalez-Saiz, Francisco; Bilbao, Izaskun; Caluente, Marta; Cano, Tomas; Cid, Francisco; Dominguez, Celia; Izquierdo, Emcarni; Perez, Maria I.

    2011-01-01

    Drug use in mainstream rave parties has been widely documented in a large number of studies. However, not much is known about drug use in underground raves. The purpose of this study is to find out the polysubstance use patterns at underground raves. Two hundred and fifty-two young people between the ages of 18 and 30 who went to underground raves…

  11. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  12. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  13. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  14. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  15. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  16. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  17. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  18. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  19. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  20. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  1. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  2. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  3. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  4. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  5. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  6. 30 CFR 57.4260 - Underground self-propelled equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Prevention and Control Firefighting Equipment § 57.4260 Underground self-propelled equipment. (a) Whenever self-propelled equipment is used underground, a fire extinguisher shall be on the equipment. This... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground self-propelled equipment....

  7. 30 CFR 57.4260 - Underground self-propelled equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Prevention and Control Firefighting Equipment § 57.4260 Underground self-propelled equipment. (a) Whenever self-propelled equipment is used underground, a fire extinguisher shall be on the equipment. This... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground self-propelled equipment....

  8. How to Start a High School Underground Newspaper. Fifth Edition.

    ERIC Educational Resources Information Center

    Greenberg, Cory

    Stressing the diversity which characterizes the high school underground press movement, the pamphlet presents case histories of several papers, an overview of the first ten years of the high school underground press, and technical information necessary for starting a paper. The first wave of high school underground newspapers appeared in major…

  9. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  10. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  11. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  12. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  13. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground belt conveyors. 57.4263 Section...

  14. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall be... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground belt conveyors. 57.4263 Section...

  15. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Safety and Health Administration 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal... training for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of... in underground coal mines. On January 13, 2009, the United Mine Workers of America (UMWA)...

  16. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal Register / Vol. 78 , No. 153... 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and... alternatives in underground coal mines. The U.S. Court of Appeals for the District of Columbia Circuit...

  17. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  18. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  19. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  20. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  1. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  2. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground belt conveyors. 57.4263 Section 57... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall...

  3. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground belt conveyors. 57.4263 Section 57... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall...

  4. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground belt conveyors. 57.4263 Section 57... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall...

  5. Solar heated office complex--Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report contains thorough docuumentation of project meeting 85 percent of building heat requirements. System uses roof mounted recirculating water solar panels and underground hot water energy storage. Aluminum film reflectors increase total solar flux captured by panels.

  6. Stress analysis in platform-switching implants: a 3-dimensional finite element study.

    PubMed

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito

    2012-10-01

    The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

  7. 3-dimensionally integrated photo-detector for neutrino physics and beyond

    NASA Astrophysics Data System (ADS)

    Retiere, Fabrice

    2016-09-01

    Silicon photo-multipliers (SiPMs) are a promising solution for the detection of scintillation light of liquid Xenon and Argon in applications requiring minimum radioactivity content such as neutrinoless double beta decay. The nEXO experiment in particular is planning to use SiPM planes covering 5 m2 for the detection of the light emitted within 5tons of liquid Xenon. The 3-dimensionally digital integrated SiPMs (3DdSiPMs) is an emerging technology that if successful would challenge the analog SiPM technology. Indeed, by combining separate photo-detector and electronics chips within a single package, 3DdSiPM achieve excellent performances for photon counting and time stamping, while dissipating minimum power. Being mostly based on high purity silicon chips, 3DdSiPMs are also expected to achieve excellent radiopurity.The development of 3DdSiPMs for applications in liquid Xenon is expected to progress rapidly by altering the design of the first successful chip assembly developed for medical imaging, focusing on minimizing power dissipation and large area (> cm2) scaling. In this talk we will describe the 3DdSiPM concept a solution for ``light to bit conversion'' within a single package and show how it may revolutionize light detection in noble-gas liquids and beyond.

  8. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    PubMed

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  9. The Effect of Asymmetric flow on the 3-Dimensional Symmetric Bogus Vortex

    NASA Astrophysics Data System (ADS)

    LEE, J.; Cheong, H.; Hwang, J.

    2013-12-01

    The effect of asymmetric flow on the 3-dimensional symmetric bogus vortex called as Structure Adjustable Balanced Vortex (SABV) is investigated for 9 tropical cyclones (TCs) observed in Northwest Pacific. NCEP global reanalysis data were used as initial condition, and the high order spectral filter (HSF) were employed to separate asymmetric flow from disturbance flow as following: The first step is that the global field is decomposed into environment and disturbance field. And secondly, the disturbance field is transformed into cylindrical coordinates, and the Fourier transform is applied to the transformed data along the azimuth. Lastly, the inverse Fourier transform is carried out except for wavenumber (WN) 0 component, and it is added to SABV. To investigate the effect of asymmetric flow on the SABV, the Weather Research and Forecasting (WRF) V3.2.1 was employed, which was set to have a single domain with 12 km resolution and YSU, WSM 6 and Kain-Fritsch schemes are used. With these methods, it was found that the track error at 48 h and 72 h was improved by about 13% and 16%, respectively, implying the asymmetric flow should be added to SABV for better performance.

  10. Vaginal High Pressure Zone Assessed by Dynamic 3-Dimensional Ultrasound Images of the Pelvic Floor

    PubMed Central

    JUNG, Sung-Ae; PRETORIUS, Dolores H.; PADDA, Bikram S.; WEINSTEIN, Milena M.; NAGER, Charles W.; den BOER, Derkina J.; MITTAL, Ravinder K.

    2009-01-01

    Objective To study the shape and characteristics of the vaginal high pressure zone (HPZ) by imaging a compliant fluid-filled bag placed in the vaginal HPZ with the 3-dimensional ultrasound (3D US) system. Study Design Nine nulliparous asymptomatic women underwent 3D US imaging and vaginal pressure measurements. A compliant bag was placed in the vagina and filled with various volumes of water. 3D US volumes of the pelvic floor were obtained at each bag volume while the subjects were at rest and during pelvic floor contraction. Results At low volumes, the bag was collapsed for a longitudinal extent of approximately 3.3 ± 0.2 cm (length of vaginal HPZ). With increasing bag volume, there was opening of the vaginal HPZ in the lateral dimension before the anterior-posterior (AP) dimension. Pelvic floor contraction produced a decrease in the AP dimension but not the lateral dimension of the bag in the region of the vaginal HPZ. Conclusion We propose that the shape and characteristics of the vaginal HPZ are consistent with the hypothesis that the puborectalis muscle is responsible for the genesis of the vaginal HPZ. PMID:17618755

  11. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  12. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    PubMed Central

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf , Muhammad N.

    2016-01-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity. PMID:28008983

  13. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model

    PubMed Central

    Tezera, Liku B; Bielecka, Magdalena K; Chancellor, Andrew; Reichmann, Michaela T; Shammari, Basim Al; Brace, Patience; Batty, Alex; Tocheva, Annie; Jogai, Sanjay; Marshall, Ben G; Tebruegge, Marc; Jayasinghe, Suwan N; Mansour, Salah; Elkington, Paul T

    2017-01-01

    Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches. DOI: http://dx.doi.org/10.7554/eLife.21283.001 PMID:28063256

  14. Inter-surface interactions in a 3-dimensional topological insulator : Bi2Se3 thin film

    NASA Astrophysics Data System (ADS)

    Jin, Hosub; Song, Jung-Hwan; Freeman, Arthur

    2010-03-01

    Recently much attention has focused on 3-dimensional strong topological insulators as a new quantum state of matter, such as Bi2Se3 and Bi2Te3. One of their intriguing features is a topologically protected surface state whose quasiparticle dispersion shows a Dirac cone. Due to lack of backscattering and robustness against disorder and interaction, surface states have the potential to be perfect conducting channels which carry not only charge but also spin currents. Here, we present a theoretical study of electronic structures and surfaces of thin film Bi2Se3 using the highly precise FLAPW methodfootnotetext Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B, 24, 864 (1981). Our calculated results focus on the interaction between surface states on opposing sides of the slab. The gap opening from the inter-surface interaction can be easily explained by simple symmetry arguments considering both time-reversal and spatial inversion. For a 6 quintuple layer slab (˜6 nm), a 1.06 meV gap at the γ point survives due to the inter-surface interactions, and we discuss how to preserve the massless excitations despite this inter-surface interaction.

  15. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines.

    PubMed

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC.

  16. Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode

    NASA Astrophysics Data System (ADS)

    Li, Xuanhua; Choy, Wallace C. H.; Ren, Xingang; Xin, Jianzhuo; Lin, Peng; Leung, Dennis C. W.

    2013-04-01

    Plasmonic back reflectors have recently become a promising strategy for realizing efficient organic solar cell (OSCs). Since plasmonic effects are strongly sensitive to light polarization, it is highly desirable to simultaneously achieve polarization-independent response and enhanced power conversion efficiency (PCE) by designing the nanostructured geometry of plasmonic reflector electrode. Here, through a strategic analysis of 2-dimensional grating (2D) and 3-dimensional patterns (3D), with similar periodicity as a plasmonic back reflector, we find that the OSCs with 3D pattern achieve the best PCE enhancement by 24.6%, while the OSCs with 2D pattern can offer 17.5% PCE enhancement compared to the optimized control OSCs. Importantly, compared with the 2D pattern, the 3D pattern shows a polarization independent plasmonic response, which will greatly extend its uses in photovoltaic applications. This work shows the significances of carefully selecting and designing geometry of plasmonic nanostructures in achieving high-efficient, polarization-independent plasmonic OSCs.

  17. Embedding and publishing interactive, 3-dimensional, scientific figures in Portable Document Format (PDF) files.

    PubMed

    Barnes, David G; Vidiassov, Michail; Ruthensteiner, Bernhard; Fluke, Christopher J; Quayle, Michelle R; McHenry, Colin R

    2013-01-01

    With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2).

  18. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report.

    PubMed

    Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott

    2016-03-01

    Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor.

  19. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    PubMed Central

    Galati, Domenico F.; Abuin, David S.; Tauber, Gabriel A.; Pham, Andrew T.; Pearson, Chad G.

    2016-01-01

    ABSTRACT Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722

  20. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  1. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  2. MAPAG: a computer program to construct 2- and 3-dimensional antigenic maps.

    PubMed

    Aguilar, R C; Retegui, L A; Roguin, L P

    1994-01-01

    The contact area between an antibody (Ab) and the antigen (Ag) is called antigenic determinant or epitope. The first step in the characterization of an Ag by using monoclonal antibodies (MAb) is to map the relative distribution of the corresponding epitopes on the Ag surface. The computer program MAPAG has been devised to automatically construct antigenic maps. MAPAG is fed with a binary matrix of experimental data indicating the ability of paired MAb to bind or not simultaneously to the Ag. The program is interactive menu-driven and allows the user an easy data handling. MAPAG utilizes iterative processes to construct and to adjust the final map, which is graphically shown as a 2- or a 3-dimensional model. Additionally, the antigenic map obtained can be optionally modified by the user or readjusted by the program. The suitability of MAPAG was illustrated by running experimental data from literature and comparing antigenic maps constructed by the program with those elaborated by the investigators without the assistance of a computer. Furthermore, since some MAb could present negative allosteric effects leading to misinterpretation of data, MAPAG has been provided with an approximate reasoning module to solve such anomalous situations. Results indicated that the program can be successfully employed as a simple, fast and reliable antigenic model-builder.

  3. Fusion of radar data to extract 3-dimensional objects LDRD final report

    SciTech Connect

    Fellerhoff, R.; Hensley, B.; Carande, R.; Burkhart, G.; Ledner, R.

    1997-03-01

    Interferometric Synthetic Aperture Radar (IFSAR) is a very promising technology for remote mapping of 3-Dimensional objects. In particular, 3-D maps of urban areas are extremely important to a wide variety of users, both civilian and military. However, 3-D maps produced by traditional optical stereo (stereogrammetry) techniques can be quite expensive to obtain, and accurate urban maps can only be obtained with a large amount of human-intensive interpretation work. IFSAR has evolved over the last decade as a mapping technology that promises to eliminate much of the human-intensive work in producing elevation maps. However, IFSAR systems have only been robustly demonstrated in non-urban areas, and have not traditionally been able to produce data with enough detail to be of general use in urban areas. Sandia Laboratories Twin Otter IFSAR was the first mapping radar system with the proper parameter set to provide sufficiently detailed information in a large number of urban areas. The goal of this LDRD was to fuse previously unused information derived from IFSAR data in urban areas that can be used to extract accurate digital elevation models (DEMs) over wide areas without intensive human interaction.

  4. Cerebral Degeneration in Amyotrophic Lateral Sclerosis Revealed by 3-Dimensional Texture Analysis

    PubMed Central

    Maani, Rouzbeh; Yang, Yee-Hong; Emery, Derek; Kalra, Sanjay

    2016-01-01

    Introduction: Routine MR images do not consistently reveal pathological changes in the brain in ALS. Texture analysis, a method to quantitate voxel intensities and their patterns and interrelationships, can detect changes in images not apparent to the naked eye. Our objective was to evaluate cerebral degeneration in ALS using 3-dimensional texture analysis of MR images of the brain. Methods: In a case-control design, voxel-based texture analysis was performed on T1-weighted MR images of 20 healthy subjects and 19 patients with ALS. Four texture features, namely, autocorrelation, sum of squares variance, sum average, and sum variance were computed. Texture features were compared between the groups by statistical parametric mapping and correlated with clinical measures of disability and upper motor neuron dysfunction. Results: Texture features were different in ALS in motor regions including the precentral gyrus and corticospinal tracts. To a lesser extent, changes were also found in the thalamus, cingulate gyrus, and temporal lobe. Texture features in the precentral gyrus correlated with disease duration, and in the corticospinal tract they correlated with finger tapping speed. Conclusions: Changes in MR image textures are present in motor and non-motor regions in ALS and correlate with clinical features. Whole brain texture analysis has potential in providing biomarkers of cerebral degeneration in ALS. PMID:27064416

  5. The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process.

    PubMed

    Stockmarr, Anders

    2002-11-01

    Populations of particles dispersed in the 2-dimensional plane from a single point-source may be grouped as focus expansion patterns, with an exponentially decreasing density, and more diffuse patterns with thicker tails. Exponentially decreasing distributions are often modelled as the result of 2-dimensional diffusion processes acting to disperse the particles, while thick-tailed distributions tend to be modelled by purely descriptive distributions. Models based on the Cauchy distribution have been suggested, but these have not been related to diffusion modelling. However, the distribution of particles dispersed from a point source by a 3-dimensional Brownian motion that incorporates a constant drift, under the condition that the particle starts at a given height and is stopped when it reaches the xy plane (zero height) may be shown to result in both slim-tailed exponentially decreasing densities, and thick-tailed polynomially decreasing densities with infinite mean travel distance from the source, depending on parameter values. The drift in the third coordinate represents gravitation, while the drift in the first and second represents a (constant) wind. Conditions for the density having exponentially decreasing tails is derived in terms of gravitation and wind, with a special emphasis on applications to light-weighted particles such as fungal spores.

  6. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures.

  7. Embedding and Publishing Interactive, 3-Dimensional, Scientific Figures in Portable Document Format (PDF) Files

    PubMed Central

    Barnes, David G.; Vidiassov, Michail; Ruthensteiner, Bernhard; Fluke, Christopher J.; Quayle, Michelle R.; McHenry, Colin R.

    2013-01-01

    With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2). PMID:24086243

  8. 3-Dimensional analysis for class III malocclusion patients with facial asymmetry

    PubMed Central

    Ki, Eun-Jung; Cheon, Hae-Myung; Choi, Eun-Joo; Kwon, Kyung-Hwan

    2013-01-01

    Objectives The aim of this study is to investigate the correlation between 2-dimensional (2D) cephalometric measurement and 3-dimensional (3D) cone beam computed tomography (CBCT) measurement, and to evaluate the availability of 3D analysis for asymmetry patients. Materials and Methods A total of Twenty-seven patients were evaluated for facial asymmetry by photograph and cephalometric radiograph, and CBCT. The 14 measurements values were evaluated and those for 2D and 3D were compared. The patients were classified into two groups. Patients in group 1 were evaluated for symmetry in the middle 1/3 of the face and asymmetry in the lower 1/3 of the face, and those in group 2 for asymmetry of both the middle and lower 1/3 of the face. Results In group 1, significant differences were observed in nine values out of 14 values. Values included three from anteroposterior cephalometric radiograph measurement values (cant and both body height) and six from lateral cephalometric radiographs (both ramus length, both lateral ramal inclination, and both gonial angles). In group 2, comparison between 2D and 3D showed significant difference in 10 factors. Values included four from anteroposterior cephalometric radiograph measurement values (both maxillary height, both body height) and six from lateral cephalometric radiographs (both ramus length, both lateral ramal inclination, and both gonial angles). Conclusion Information from 2D analysis was inaccurate in several measurements. Therefore, in asymmetry patients, 3D analysis is useful in diagnosis of asymmetry. PMID:24471038

  9. Casting of 3-dimensional footwear prints in snow with foam blocks.

    PubMed

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear.

  10. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  11. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  12. 3-dimensional (orthogonal) structural complexity of time-series data using low-order moment analysis

    NASA Astrophysics Data System (ADS)

    Law, Victor J.; O'Neill, Feidhlim T.; Dowling, Denis P.

    2012-09-01

    The recording of atmospheric pressure plasmas (APP) electro-acoustic emission data has been developed as a plasma metrology tool in the last couple of years. The industrial applications include automotive and aerospace industry for surface activation of polymers prior to bonding [1, 2, and 3]. It has been shown that as the APP jets proceeds over a treatment surface, at a various fixed heights, two contrasting acoustic signatures are produced which correspond to two very different plasma-surface entropy states (blow arc ˜ 1700 ± 100 K; and; afterglow ˜ 300-400 K) [4]. The metrology challenge is now to capture deterministic data points within data clusters. For this to be achieved new real-time data cluster measurement techniques needs to be developed [5]. The cluster information must be extracted within the allotted process time period if real-time process control is to be achieved. This abstract describes a theoretical structural complexity analysis (in terms crossing points) of 2 and 3-dimentional line-graphs that contain time-series data. In addition LabVIEW implementation of the 3-dimensional data analysis is performed. It is also shown the cluster analysis technique can be transfer to other (non-acoustic) datasets.

  13. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications.

  14. Scene-of-crime analysis by a 3-dimensional optical digitizer: a useful perspective for forensic science.

    PubMed

    Sansoni, Giovanna; Cattaneo, Cristina; Trebeschi, Marco; Gibelli, Daniele; Poppa, Pasquale; Porta, Davide; Maldarella, Monica; Picozzi, Massimo

    2011-09-01

    Analysis and detailed registration of the crime scene are of the utmost importance during investigations. However, this phase of activity is often affected by the risk of loss of evidence due to the limits of traditional scene of crime registration methods (ie, photos and videos). This technical note shows the utility of the application of a 3-dimensional optical digitizer on different crime scenes. This study aims in fact at verifying the importance and feasibility of contactless 3-dimensional reconstruction and modeling by optical digitization to achieve an optimal registration of the crime scene.

  15. Reliability assessment of underground shaft closure

    SciTech Connect

    Fossum, A.F.

    1994-12-31

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties.

  16. Automatic three-dimensional underground mine mapping

    SciTech Connect

    Huber, D.F.; Vandapel, N.

    2006-01-15

    For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.

  17. Leak detection for underground storage tanks

    SciTech Connect

    Durgin, P.B. ); Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases.

  18. The Sanford underground research facility at Homestake

    SciTech Connect

    Heise, J.

    2014-06-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  19. Acoustic Impedance Measurement for Underground Surfaces.

    NASA Astrophysics Data System (ADS)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  20. Laboratory Investigation of Containment of Underground Explosions.

    DTIC Science & Technology

    1983-12-01

    the mechanics of containing gases in cavities formed by underground nuclear explosions. One experimental technique uses constant flow rate...30 2.3 Containment Experiment Apparatus...........................31 2.4 Constant Flow -Rate Hydrofracture System ................... 32 2.5 Overall...charge size (3/8 gram PETN), overburden pressure [1000 psi (6.895 MPa). viscosity of the hydrofracture fluid (I centipoise), and rate of fluid 0 flow

  1. Sixth underground coal-conversion symposium

    SciTech Connect

    Not Available

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  2. Cathodic protection installation for underground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    The 1998 deadline is fast approaching for upgrading Underground Storage Tanks (USTs) with cathodic protection. With so many tanks requiring upgrades over the next few years, tank owners and operators will likely find a shrinking pool of quality cathodic protection installation contractors to perform the necessary upgrading. The proper installation of cathodic protection components is critical to long term effective operation of the cathodic protection system.

  3. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  4. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  5. The Sanford Underground Research Facility at Homestake

    NASA Astrophysics Data System (ADS)

    Heise, J.

    2015-08-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  6. The Sanford Underground Research Facility at Homestake

    NASA Astrophysics Data System (ADS)

    Heise, J.

    2015-05-01

    The former Homestakegold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinolessdouble-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low- background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long- baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  7. Modelling of Train Noise in Underground Stations

    NASA Astrophysics Data System (ADS)

    Kang, J.

    1996-08-01

    TNS, a computer model for predicting the temporal and spatial distribution of train noise in underground stations, is developed. The train is regarded as a series of sections, and the train noise distribution in a station is calculated by inputting the sound attenuation from a train section source in the underground system (i.e., the station and tunnel). This input can be obtained by physical scale modelling. The prediction by TNS in an underground station in London shows good agreement with site measurements. A series of computations in the station demonstrates that: (1) the overall level of the train noise in the area near the end walls is slightly less than the other areas; (2) some conventional architectural acoustic treatments in the station are effective when a train is still in the tunnel but not as helpful when the train is already in the station; and (3) train noise has a significant effect on the speech intelligibility of public address systems as measured by the Speech Transmission Index (STI).

  8. Intelligent Scheduling for Underground Mobile Mining Equipment.

    PubMed

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is hard for miners to rapidly find solutions to reschedule and to adapt the changes. This investigation first introduces the motivation, the technical background, and then the objective of the study. A decision support instrument (i.e. schedule optimizer for mobile mining equipment) is proposed and described to address this issue. The method and related algorithms which are used in this instrument are presented and discussed. The proposed method was tested by using a real case of Kittilä mine located in Finland. The result suggests that the proposed method can considerably improve the working efficiency and reduce the working time of the underground mine.

  9. Underground communications and tracking technology advances

    SciTech Connect

    Fiscor, S.

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  10. The Sanford Underground Research Facility at Homestake

    SciTech Connect

    Heise, J.

    2015-08-17

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  11. Intelligent Scheduling for Underground Mobile Mining Equipment

    PubMed Central

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is hard for miners to rapidly find solutions to reschedule and to adapt the changes. This investigation first introduces the motivation, the technical background, and then the objective of the study. A decision support instrument (i.e. schedule optimizer for mobile mining equipment) is proposed and described to address this issue. The method and related algorithms which are used in this instrument are presented and discussed. The proposed method was tested by using a real case of Kittilä mine located in Finland. The result suggests that the proposed method can considerably improve the working efficiency and reduce the working time of the underground mine. PMID:26098934

  12. RESEARCH INTO EVALUATIONS OF UNDERGROUND SPACE ACCORDING TO QOL - CENTERING ON THE NAGOYA UNDERGROUND METRO -

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Naomi; Wake, Tenji; Mita, Takeshi; Wake, Hiromi

    The present research investigates issues concerning space underground and concerns itself with psychological evaluations of comfort in underground railway premises from the perspective of the users of such premises. The actual psychological evaluation was done on the premises of nine Nagoya City underground stations. Four factors were extracted from the results obtained. The first factor is transmission information, the second factor is the comfort of the environment, the third is sense of insecurity, and the fourth, convenience. A covariance structure analysis was carried out to see if there was any relationship between these factors and the research participants' age and frequency of underground usage. It was found from this that the first element is related to the frequency with which the participants in the research use the underground trains. When the frequency of use is high, transmission of information is high. A relationship was also found between aging and factors one and four. The older the person the worse information transmission is and the more dependent they are on convenience, such as, for example, in terms of elevators and escalators.

  13. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, James G.; Daily, William D.

    1994-01-01

    A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  14. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, J.G.; Daily, W.D.

    1994-07-05

    A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  15. Results from the third LLL underground coal gasification experiment at Hoe Creek

    SciTech Connect

    Hill, R.W.; Thorsness, C.B.; Cena, R.J.; Aiman, W.R.; Stephens, D.R.

    1980-05-20

    A major objective of the US Energy Program is the development of processes to produce clean fuels from coal. Underground coal gasification is one of the most promising of these processes. If successful, underground coal gasification (UCG) would quadruple the proven reserves of the US coal. Cost for products produced from UCG are projected to be 65 to 75% of those from conventional coal conversion. Finally, UCG appears to possess environmental advantages since no mining is involved and there are less solid wastes produced. In this paper we describe results from the Hoe Creek No. 3 underground coal gasification test. The experiment employed a drilled channel between process wells spaced 130' apart. The drilled channel was enlarged by reverse combustion prior to forward gasification. The first week of forward gasification was carried out using air injection, during which 250 tons of coal were consumed yielding an average dry product gas heating value of 114 Btu/scf. Following this phase, steam and oxygen were injected (generally a 50-50 mixture) for 47 days, during which 3945 tons of coal were consumed at an average rate of 84 tons of coal per day and an average dry gas heating value of 217 Btu/scf. The average gas composition during the steam-oxygen phase was 37% H/sub 2/, 5% CH/sub 4/, 11% CO, and 44% CO/sub 2/. Gas recovery was approximately 82% during the test, and the average thermochemical efficiency was near 65%.

  16. Numerical study of the directed polymer in a 1 + 3 dimensional random medium

    NASA Astrophysics Data System (ADS)

    Monthus, C.; Garel, T.

    2006-09-01

    The directed polymer in a 1+3 dimensional random medium is known to present a disorder-induced phase transition. For a polymer of length L, the high temperature phase is characterized by a diffusive behavior for the end-point displacement R2 ˜L and by free-energy fluctuations of order ΔF(L) ˜O(1). The low-temperature phase is characterized by an anomalous wandering exponent R2/L ˜Lω and by free-energy fluctuations of order ΔF(L) ˜Lω where ω˜0.18. In this paper, we first study the scaling behavior of various properties to localize the critical temperature Tc. Our results concerning R2/L and ΔF(L) point towards 0.76 < Tc ≤T2=0.79, so our conclusion is that Tc is equal or very close to the upper bound T2 derived by Derrida and coworkers (T2 corresponds to the temperature above which the ratio bar{Z_L^2}/(bar{Z_L})^2 remains finite as L ↦ ∞). We then present histograms for the free-energy, energy and entropy over disorder samples. For T ≫Tc, the free-energy distribution is found to be Gaussian. For T ≪Tc, the free-energy distribution coincides with the ground state energy distribution, in agreement with the zero-temperature fixed point picture. Moreover the entropy fluctuations are of order ΔS ˜L1/2 and follow a Gaussian distribution, in agreement with the droplet predictions, where the free-energy term ΔF ˜Lω is a near cancellation of energy and entropy contributions of order L1/2.

  17. Development of a 3-dimensional dosimetry system for Leksell Gamma Knife Perfexion

    NASA Astrophysics Data System (ADS)

    Yoon, KyoungJun; Kwak, JungWon; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-07-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife Perfexion (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S:Tb phosphor sheets for dosimetric measurements. Also, to compensate for the lack of backscatter, we located a 1-cm-thick poly methyl methacrylate (PMMA) plate downstream of the active layer. The PMMA plate was transparent to scintillation light to reach the CCD with 1200 × 1200 pixels and a 5.2 µm pitch. With this system, 300 images with a 0.2-mm slice gap were acquired under each of three collimator setups, i.e. 4-mm, 8-mm, and 16-mm, respectively. The 2D projected images taken by the CCD camera were compared with the dose distributions measured by the EBT3 films under the same conditions. All 2D distributions were normalized to the maximum values derived by fitting peaks for each collimator setup. The differences in the full widths at half maximum (FWHM) of 2D profiles between CCD images and film doses were measured to be less than 0.3-mm. The scanning task for all peak regions took less than three minutes with the new instrument. So it can be utilized as a QA tool for the Gamma knife radiosurgery system instead of film dosimetry, the use of which requires much more time and many more resources.

  18. Immediate 3-dimensional ridge augmentation after extraction of periodontally hopeless tooth using chinblock graft

    PubMed Central

    Desai, Ankit; Thomas, Raison; A. Baron, Tarunkumar; Shah, Rucha; Mehta, Dhoom-Singh

    2015-01-01

    Background The aim of the present study was to evaluate clinically and radiographically, the efficacy of immediate ridge augmentation to reconstruct the vertical and horizontal dimensions at extraction sites of periodontally hopeless tooth using an autogenous chin block graft. Material and Methods A total of 11 patients (7 male & 4 female) with localized advanced bone loss around single rooted teeth having hopeless prognosis and indicated for extraction were selected for the study. The teeth were atraumatically extracted and deficient sites were augmented using autogenous chin block graft. Parameters like clinically soft tissue height - width and also radiographic ridge height -width were measured before and 6 months after augmentation. Obtained results were tabulated and analysed statistically. Results After 6 months of immediate ridge augmentation, the mean gain in radiographic vertical height and horizontal width was 7.64 + 1.47 mm (P = 0.005) and 5.28 + 0.46 mm (P = 0.007) respectively which was found to be statistically significant (P < 0.05). Mean change of width gain of 0.40mm and height loss of 0.40mm of soft tissue parameters, from the baseline till completion of the study at 6 months was observed. Conclusions The present study showed predictable immediate ridge augmentation with autogenous chin block graft at periodontally compromised extraction site. It can provide adequate hard and soft tissue foundation for perfect 3-Dimensional prosthetic positioning of implant in severely deficient ridges. Key words:Immediate ridge augmentation, periondontally hopeless tooth, autogenous chin graft, dental implant. PMID:26644832

  19. Technique for comprehensive head and neck irradiation using 3-dimensional conformal proton therapy

    SciTech Connect

    McDonald, Mark W.; Walter, Alexander S.; Hoene, Ted A.

    2015-01-01

    Owing to the technical and logistical complexities of matching photon and proton treatment modalities, we developed and implemented a technique of comprehensive head and neck radiation using 3-dimensional (3D) conformal proton therapy. A monoisocentric technique was used with a 30-cm snout. Cervical lymphatics were treated with 3 fields: a posterior-anterior field with a midline block and a right and a left posterior oblique field. The matchline of the 3 cervical nodal fields with the primary tumor site fields was staggered by 0.5 cm. Comparative intensity-modulated photon plans were later developed for 12 previously treated patients to provide equivalent target coverage, while matching or improving on the proton plans' sparing of organs at risk (OARs). Dosimetry to OARs was evaluated and compared by treatment modality. Comprehensive head and neck irradiation using proton therapy yielded treatment plans with significant dose avoidance of the oral cavity and midline neck structures. When compared with the generated intensity-modulated radiation therapy (IMRT) plans, the proton treatment plans yielded statistically significant reductions in the mean and integral radiation dose to the oral cavity, larynx, esophagus, and the maximally spared parotid gland. There was no significant difference in mean dose to the lesser-spared parotid gland by treatment modality or in mean or integral dose to the spared submandibular glands. A technique for cervical nodal irradiation using 3D conformal proton therapy with uniform scanning was developed and clinically implemented. Use of proton therapy for cervical nodal irradiation resulted in large volume of dose avoidance to the oral cavity and low dose exposure to midline structures of the larynx and the esophagus, with lower mean and integral dose to assessed OARs when compared with competing IMRT plans.

  20. Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.

    PubMed

    Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin

    2013-12-01

    Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency.

  1. Surgical Classification of the Mandibular Deformity in Craniofacial Microsomia Using 3-Dimensional Computed Tomography

    PubMed Central

    Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.

    2016-01-01

    Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097

  2. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Shimazu, T.; Yuda, T.; Miyamoto, K.; Yamashita, M.; Ueda, J.

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.

  3. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    SciTech Connect

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  4. Predicting diffusive transport of cationic liposomes in 3-dimensional tumor spheroids.

    PubMed

    Wientjes, Michael G; Yeung, Bertrand Z; Lu, Ze; Wientjes, M Guillaume; Au, Jessie L S

    2014-10-28

    Nanotechnology is widely used in cancer research. Models that predict nanoparticle transport and delivery in tumors (including subcellular compartments) would be useful tools. This study tested the hypothesis that diffusive transport of cationic liposomes in 3-dimensional (3D) systems can be predicted based on liposome-cell biointerface parameters (binding, uptake, retention) and liposome diffusivity. Liposomes comprising different amounts of cationic and fusogenic lipids (10-30mol% DOTAP or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1-20mol% DOPE or 1,2-dioleoyl-3-trimethylammonium-propane, +25 to +44mV zeta potential) were studied. We (a) measured liposome-cell biointerface parameters in monolayer cultures, and (b) calculated effective diffusivity based on liposome size and spheroid composition. The resulting parameters were used to simulate the liposome concentration-depth profiles in 3D spheroids. The simulated results agreed with the experimental results for liposomes comprising 10-30mol% DOTAP and ≤10mol% DOPE, but not for liposomes with higher DOPE content. For the latter, model modifications to account for time-dependent extracellular concentration decrease and liposome size increase did not improve the predictions. The difference among low- and high-DOPE liposomes suggests concentration-dependent DOPE properties in 3D systems that were not captured in monolayers. Taken together, our earlier and present studies indicate the diffusive transport of neutral, anionic and cationic nanoparticles (polystyrene beads and liposomes, 20-135nm diameter, -49 to +44mV) in 3D spheroids, with the exception of liposomes comprising >10mol% DOPE, can be predicted based on the nanoparticle-cell biointerface and nanoparticle diffusivity. Applying the model to low-DOPE liposomes showed that changes in surface charge affected the liposome localization in intratumoral subcompartments within spheroids.

  5. Usefulness of 3-dimensional stereotactic surface projection FDG PET images for the diagnosis of dementia

    PubMed Central

    Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun

    2016-01-01

    Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593

  6. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    SciTech Connect

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  7. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.

    PubMed

    Moroni, L; Hendriks, J A A; Schotel, R; de Wijn, J R; van Blitterswijk, C A

    2007-02-01

    This report describes a novel system to create rapid prototyped 3-dimensional (3D) fibrous scaffolds with a shell-core fiber architecture in which the core polymer supplies the mechanical properties and the shell polymer acts as a coating providing the desired physicochemical surface properties. Poly[(ethylene oxide) terephthalate-co-poly(butylene) terephthalate] (PEOT/PBT) 3D fiber deposited (3DF) scaffolds were fabricated and examined for articular cartilage tissue regeneration. The shell polymer contained a higher molecular weight of the initial poly(ethylene glycol) (PEG) segments used in the copolymerization and a higher weight percentage of the PEOT domains compared with the core polymer. The 3DF scaffolds entirely produced with the shell or with the core polymers were also considered. After 3 weeks of culture, scaffolds were homogeneously filled with cartilage tissue, as assessed by scanning electron microscopy. Although comparable amounts of entrapped chondrocytes and of extracellular matrix formation were found for all analyzed scaffolds, chondrocytes maintained their rounded shape and aggregated during the culture period on shell-core 3DF scaffolds, suggesting a proper cell differentiation into articular cartilage. This finding was also observed in the 3DF scaffolds fabricated with the shell composition only. In contrast, cells spread and attached on scaffolds made simply with the core polymer, implying a lower degree of differentiation into articular cartilaginous tissue. Furthermore, the shell-core scaffolds displayed an improved dynamic stiffness as a result of a "prestress" action of the shell polymer on the core one. In addition, the dynamic stiffness of the constructs increased compared with the stiffness of the bare scaffolds before culture. These findings suggest that shell-core 3DF PEOT/PBT scaffolds with desired mechanical and surface properties are a promising solution for improved cartilage tissue engineering.

  8. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament

    PubMed Central

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-01-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics. PMID:28105122

  9. Future directions in 3-dimensional imaging and neurosurgery: stereoscopy and autostereoscopy.

    PubMed

    Christopher, Lauren A; William, Albert; Cohen-Gadol, Aaron A

    2013-01-01

    Recent advances in 3-dimensional (3-D) stereoscopic imaging have enabled 3-D display technologies in the operating room. We find 2 beneficial applications for the inclusion of 3-D imaging in clinical practice. The first is the real-time 3-D display in the surgical theater, which is useful for the neurosurgeon and observers. In surgery, a 3-D display can include a cutting-edge mixed-mode graphic overlay for image-guided surgery. The second application is to improve the training of residents and observers in neurosurgical techniques. This article documents the requirements of both applications for a 3-D system in the operating room and for clinical neurosurgical training, followed by a discussion of the strengths and weaknesses of the current and emerging 3-D display technologies. An important comparison between a new autostereoscopic display without glasses and current stereo display with glasses improves our understanding of the best applications for 3-D in neurosurgery. Today's multiview autostereoscopic display has 3 major benefits: It does not require glasses for viewing; it allows multiple views; and it improves the workflow for image-guided surgery registration and overlay tasks because of its depth-rendering format and tools. Two current limitations of the autostereoscopic display are that resolution is reduced and depth can be perceived as too shallow in some cases. Higher-resolution displays will be available soon, and the algorithms for depth inference from stereo can be improved. The stereoscopic and autostereoscopic systems from microscope cameras to displays were compared by the use of recorded and live content from surgery. To the best of our knowledge, this is the first report of application of autostereoscopy in neurosurgery.

  10. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament.

    PubMed

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-12-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics.

  11. New Stereoacuity Test Using a 3-Dimensional Display System in Children

    PubMed Central

    Kim, Jonghyun; Hong, Keehoon; Lee, Byoungho; Hwang, Jeong-Min

    2015-01-01

    The previously developed 3-dimensional (3D) display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years) with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle) with a wide range of crossed horizontal disparities (3000 to 20 arcsec) were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA) and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional) or behind (proposed) the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed) were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus. PMID:25693034

  12. New stereoacuity test using a 3-dimensional display system in children.

    PubMed

    Han, Sang Beom; Yang, Hee Kyung; Kim, Jonghyun; Hong, Keehoon; Lee, Byoungho; Hwang, Jeong-Min

    2015-01-01

    The previously developed 3-dimensional (3D) display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years) with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle) with a wide range of crossed horizontal disparities (3000 to 20 arcsec) were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA) and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional) or behind (proposed) the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed) were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus.

  13. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles.

    PubMed

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin

    2013-07-01

    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  14. Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components.

    PubMed

    Wilson, Nicole A; Sheehan, Frances T

    2009-08-25

    The purpose of this study was to provide the first in vivo 3-dimensional (3D) measures of knee extensor moment arms, measured during dynamic volitional activity. The hypothesis was that the vastus lateralis (VL) and vastus medialis (VM) have significant off-axis moment arms compared to the central quadriceps components. After obtaining informed consent, three 3D dynamic cine phase contrast (PC) MRI sets (x,y,z velocity and anatomic images) were acquired from 22 subjects during active knee flexion and extension. Using a sagittal-oblique and two coronal-oblique imaging planes, the origins and insertions of each quadriceps muscle were identified and tracked through each time frame by integrating the cine-PC velocity data. The moment arm (MA) and relative moment (RM, defined as the cross product of the tendon line-of-action and a line connecting the line-of-action with the patellar center of mass) were calculated for each quadriceps component. The tendencies of the VM and VL to produce patellar tilt were evenly balanced. Interestingly, the magnitude of RM-P(Spin) for the VM and VL is approximately four times greater than the magnitude of RM-P(Tilt) for the same muscles suggesting that patellar spin may play a more important role in patellofemoral kinematics than previously thought. Thus, a force imbalance that leads to excessive lateral tilt, such as VM weakness in patellofemoral pain syndrome, would produce excessive negative spin (positive spin: superior patellar pole rotates laterally) and to a much greater degree. This would explain the increased negative spin found in recent studies of patellar maltracking. Assessing the contribution of each quadriceps component in three dimensions provides a more complete understanding of muscle functionality.

  15. Influence of White-Coat Hypertension on Left Ventricular Deformation 2- and 3-Dimensional Speckle Tracking Study.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare; Ivanovic, Branislava; Ilic, Irena; Celic, Vera; Kocijancic, Vesna

    2016-03-01

    We sought to compare left ventricular deformation in subjects with white-coat hypertension to normotensive and sustained hypertensive patients. This cross-sectional study included 139 untreated subjects who underwent 24-hour ambulatory blood pressure monitoring and completed 2- and 3-dimensional examination. Two-dimensional left ventricular multilayer strain analysis was also performed. White-coat hypertension was diagnosed if clinical blood pressure was elevated and 24-hour blood pressure was normal. Our results showed that left ventricular longitudinal and circumferential strains gradually decreased from normotensive controls across subjects with white-coat hypertension to sustained hypertensive group. Two- and 3-dimensional left ventricular radial strain, as well as 3-dimensional area strain, was not different between groups. Two-dimensional left ventricular longitudinal and circumferential strains of subendocardial and mid-myocardial layers gradually decreased from normotensive control to sustained hypertensive group. Longitudinal and circumferential strains of subepicardial layer did not differ between the observed groups. We concluded that white-coat hypertension significantly affects left ventricular deformation assessed by 2-dimensional traditional strain, multilayer strain, and 3-dimensional strain.

  16. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    SciTech Connect

    Lee, Y.J.; Dalpiaz, E.L.

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  17. Geophysical aspects of underground fluid dynamics and mineral transformation process

    NASA Astrophysics Data System (ADS)

    Khramchenkov, Maxim; Khramchenkov, Eduard

    2014-05-01

    The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid

  18. Acromiohumeral Distance and 3-Dimensional Scapular Position Change After Overhead Muscle Fatigue

    PubMed Central

    Maenhout, Annelies; Dhooge, Famke; Van Herzeele, Maarten; Palmans, Tanneke; Cools, Ann

    2015-01-01

    Context: Muscle fatigue due to repetitive and prolonged overhead sports activity is considered an important factor contributing to impingement-related rotator cuff pathologic conditions in overhead athletes. The evidence on scapular and glenohumeral kinematic changes after fatigue is contradicting and prohibits conclusions about how shoulder muscle fatigue affects acromiohumeral distance. Objective: To investigate the effect of a fatigue protocol resembling overhead sports activity on acromiohumeral distance and 3-dimensional scapular position in overhead athletes. Design: Cross-sectional study. Setting: Institutional laboratory. Patients or Other Participants: A total of 29 healthy recreational overhead athletes (14 men, 15 women; age = 22.23 ± 2.82 years, height = 178.3 ± 7.8 cm, mass = 71.6 ± 9.5 kg). Intervention(s) The athletes were tested before and after a shoulder muscle-fatiguing protocol. Main Outcome Measure(s) Acromiohumeral distance was measured using ultrasound, and scapular position was determined with an electromagnetic motion-tracking system. Both measurements were performed at 3 elevation positions (0°, 45°, and 60° of abduction). We used a 3-factor mixed model for data analysis. Results: After fatigue, the acromiohumeral distance increased when the upper extremity was actively positioned at 45° (Δ = 0.78 ± 0.24 mm, P = .002) or 60° (Δ = 0.58 ± 0.23 mm, P = .02) of abduction. Scapular position changed after fatigue to a more externally rotated position at 45° (Δ = 4.97° ± 1.13°, P < .001) and 60° (Δ = 4.61° ± 1.90°, P = .001) of abduction, a more upwardly rotated position at 45° (Δ = 6.10° ± 1.30°, P < .001) and 60° (Δ = 7.20° ± 1.65°, P < .001) of abduction, and a more posteriorly tilted position at 0°, 45°, and 60° of abduction (Δ = 1.98° ± 0.41°, P < .001). Conclusions: After a fatiguing protocol, we found changes in acromiohumeral distance and scapular position that corresponded with an impingement

  19. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    SciTech Connect

    Ju, Sang Gyu; Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho; Shin, Dongho; Lee, Se Byeong

    2014-02-01

    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  20. 3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers

    NASA Astrophysics Data System (ADS)

    Wu, X.; Yang, T.

    2013-12-01

    In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney

  1. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated

  2. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  3. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality.

    PubMed

    Rousian, M; Groenenberg, I A L; Hop, W C; Koning, A H J; van der Spek, P J; Exalto, N; Steegers, E A P

    2013-08-01

    The aim of our study was to evaluate the first trimester cerebellar growth and development using 2 different measuring techniques: 3-dimensional (3D) and virtual reality (VR) ultrasound visualization. The cerebellum measurements were related to gestational age (GA) and crown-rump length (CRL). Finally, the reproducibility of both the methods was tested. In a prospective cohort study, we collected 630 first trimester, serially obtained, 3D ultrasound scans of 112 uncomplicated pregnancies between 7 + 0 and 12 + 6 weeks of GA. Only scans with high-quality images of the fossa posterior were selected for the analysis. Measurements were performed offline in the coronal plane using 3D (4D view) and VR (V-Scope) software. The VR enables the observer to use all available dimensions in a data set by visualizing the volume as a "hologram." Total cerebellar diameter, left, and right hemispheric diameter, and thickness were measured using both the techniques. All measurements were performed 3 times and means were used in repeated measurements analysis. After exclusion criteria were applied 177 (28%) 3D data sets were available for further analysis. The median GA was 10 + 0 weeks and the median CRL was 31.4 mm (range: 5.2-79.0 mm). The cerebellar parameters could be measured from 7 gestational weeks onward. The total cerebellar diameter increased from 2.2 mm at 7 weeks of GA to 13.9 mm at 12 weeks of GA using VR and from 2.2 to 13.8 mm using 3D ultrasound. The reproducibility, established in a subset of 35 data sets, resulted in intraclass correlation coefficient values ≥0.98. It can be concluded that cerebellar measurements performed by the 2 methods proved to be reproducible and comparable with each other. However, VR-using all three dimensions-provides a superior method for the visualization of the cerebellum. The constructed reference values can be used to study normal and abnormal cerebellar growth and development.

  4. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity

  5. Maintenance, Leak Detection in Large Underground Storage Tanks

    DTIC Science & Technology

    2009-05-01

    Responsive! FISC Puget Sound Manchester Fuel Department Maintenance, Leak Detection in Large Underground Storage Tanks Report Documentation Page Form...COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Maintenance, Leak Detection in Large Underground Storage Tanks 5a. CONTRACT NUMBER 5b...Manchester 13 Regulatory Drivers 40 CFR 280/281 Derives Basic Regulation of Underground Storage Tanks These tanks are Field Constructed – therefore

  6. Environmental Protection: MTBE Contamination From Underground Storage Tanks

    DTIC Science & Technology

    2007-11-02

    Underground Storage Tanks Statement of John Stephenson Director, Natural Resources and Environment GAO-02-753T Report Documentation Page Report Date...00MAY2002 Report Type N/A Dates Covered (from... to) - Title and Subtitle ENVIRONMENTAL PROTECTION: MTBE Contamination From Underground Storage Tanks Contract...Protection: Improved Inspections and Enforcement Would Better Ensure the Safety of Underground Storage Tanks (GAO-01-464, May 4, 2001). Page 2

  7. 100-N Area underground storage tank closures

    SciTech Connect

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  8. Underground storage tank corrective action technologies

    NASA Astrophysics Data System (ADS)

    Cochran, R.

    1987-01-01

    The document contains information on corrective action technologies for releases from underground storage tanks (UST). It probes general background information on UST construction techniques, leak detection methods, and failure mechanisms. It also addresses transport pathways of released substances, techniques for evaluating the extent of a release, factors influencing risk to human health and the environment, techniques for selecting initial corrective-action response technologies, and detailed technical profiles of corrective action technologies. Emphasis is on corrective actions associated with releases from gasoline and petroleum USTs.

  9. Hazard index for underground toxic material

    NASA Astrophysics Data System (ADS)

    Smith, C. F.; Cohen, J. J.; McKone, T. E.

    1980-06-01

    Work in the area of hazard indices was reviewed. A geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground is presented. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking water levels; a persistence factor to chracterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  10. Method of locating underground mines fires

    DOEpatents

    Laage, Linneas; Pomroy, William

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  11. Modane underground laboratory: Status and project

    NASA Astrophysics Data System (ADS)

    Piquemal, F.

    2012-09-01

    The Modane Underground Laboratory is located 4800 meter water equivalent below the Fréjus mountain in the middle of the Fréjus road tunnel between France and Italy. This laboratory is a multi-disciplinary platform for experiments requiring low radioactive environment in particle, astroparticle and nuclear physics but also for environmental sciences, biology, applications and industrial test benches. There exits a project for a new laboratory, 5 times bigger than the present one. It should be digged in 2013 during the excavation of the safety tunnel of the Fréjus road tunnel.

  12. Evaluation of underground dc transmission systems

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Progress in a program for evaluating underground dc transmission systems is reported. A basic load flow model was developed for a large ac power system. This model will be adjusted to produce representations for 4000, 8000, and 12,000 MW energy park. Load flow conditions for dc lines are being calculated. The stability of ac and dc are being examined. Short circuit duties are being calculated. Load flow computer runs are being made to demonstrate the suitability of developed ac and dc options.

  13. The homestake surface-underground scintillations: Description

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1985-01-01

    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described.

  14. Going Deep: Putting the Underground Dimension to Use

    SciTech Connect

    Laughton, Chris

    2007-05-02

    Underground construction can offer durable and environmentally-sound solutions to many of societies more pressing needs. The talk will identify some common uses for underground space and discuss current construction techniques used to mine in soils and rock. Examples of successful underground construction projects will demonstrate the advantages that the underground site can offer. In addition, insight will be provided into the nature of the risks run when working with a construction material (the ground) that cannot be made to order, nor precisely defined by the investigative processes currently at our disposal.

  15. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    SciTech Connect

    Mallon, B.J.; Blake, R.G.

    1994-05-01

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  16. Moorhead district heating, phase 2

    NASA Astrophysics Data System (ADS)

    Sundberg, R. E.

    1981-01-01

    The feasibility of developing a demonstration cogeneration hot water district heating system was studied. The district heating system would use coal and cogenerated heat from the Moorhead power plant to heat the water that would be distributed through underground pipes to customers or their space and domestic water heating needs, serving a substantial portion of the commercial and institutional loads as well as single and multiple family residences near the distribution lines. The technical feasibility effort considered the distribution network, retrofit of the power plant, and conversion of heating systems in customers' buildings to use hot water from the system. The system would be developed over six years. The economic analysis consisted of a market assessment and development of business plans for construction and operation of the system. Rate design methodology, institutional issues, development risk, and the proposal for implementation are discussed.

  17. Application of seismic tomography in underground mining

    SciTech Connect

    Scott, D.F.; Williams, T.J.; Friedel, M.J.

    1996-12-01

    Seismic tomography, as used in mining, is based on the principle that highly stressed rock will demonstrate relatively higher P-wave velocities than rock under less stress. A decrease or increase in stress over time can be verified by comparing successive tomograms. Personnel at the Spokane Research Center have been investigating the use of seismic tomography to identify stress in remnant ore pillars in deep (greater than 1220 in) underground mines. In this process, three-dimensional seismic surveys are conducted in a pillar between mine levels. A sledgehammer is used to generate P-waves, which are recorded by geophones connected to a stacking signal seismograph capable of collecting and storing the P-wave data. Travel times are input into a spreadsheet, and apparent velocities are then generated and merged into imaging software. Mine workings are superimposed over apparent P-wave velocity contours to generate a final tomographic image. Results of a seismic tomographic survey at the Sunshine Mine, Kellogg, ED, indicate that low-velocity areas (low stress) are associated with mine workings and high-velocity areas (higher stress) are associated with areas where no mining has taken place. A high stress gradient was identified in an area where ground failed. From this tomographic survey, as well, as four earlier surveys at other deep underground mines, a method was developed to identify relative stress in remnant ore pillars. This information is useful in making decisions about miner safety when mining such ore pillars.

  18. Underground nuclear explosions at Astrakhan, USSR

    SciTech Connect

    Borg, I.Y.

    1982-08-13

    The three underground nuclear explosions recorded in 1980 and 1981 by Hagfors Observatory in Sweden are in the vicinity of Astrakhan on the Caspian Sea. They are believed to be associated with the development of a gas condensate field discovered in 1973. The gas producing horizons are in limestones at 4000 m depth. They are overlain by bedded, Kungarian salts. Salt domes are recognized in the area. Plans to develop the field are contained in the 11th Five Year Plan (1981-82). The USSR has solicited bids from western contractors to build gas separation and gas processing plant with an annual capacity of 6 billion m/sup 3/. Ultimate expansion plans call for three plants with the total capacity of 18 billion m/sup 3/. By analogy with similar peaceful nuclear explosions described in 1975 by the Soviets at another gas condensate field, the underground cavities are probably designed for storage of unstable, sour condensate after initial separation from the gaseous phases in the field. Assuming that the medium surrounding the explosions is salt, the volume of each cavity is on the order of 50,000 m/sup 3/.

  19. The Jiangmen underground neutrino observatory experiment

    NASA Astrophysics Data System (ADS)

    Brugière, Timothée

    2017-02-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose neutrino-oscillation experiment designed to determine the neutrino mass hierarchy as a primary physics goal, by detecting reactor antineutrinos from two power plants at 53-km distance. The detector is placed at 1800-m.w.e. deep underground and consists of a 20 kiloton liquid scintillator contained in a 34.5 m-diameter acrylic ball, instrumented by more than 17,000 20-in. PMTs ensuring a 77% photocatode coverage. To reach an unprecedented 3% energy resolution (at 1 MeV), the PMTs need a quantum efficiency of more than 30% and the attenuation length of the liquid has to be better than 20 m (at 430 nm). This precision on the energy is a key point to determine at the 3-4 σ significance level the neutrinos mass hierarchy with six years of running. The measurement of the antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1%. The experiment will also be able to observe neutrinos from terrestrial and extra-terrestrial sources. The international collaboration of JUNO was established in 2014, the civil construction started in 2015 and the R&D of the detectors is ongoing. JUNO is planning to start data taking in 2020.

  20. Underground storage tank cathodic protection design

    SciTech Connect

    Garrity, K.C.

    1995-12-31

    The US Environmental Protection Agency has enacted rules regulating the use, installation and operation of underground storage tanks. Effective December 22, 1988, the rule applies to underground storage tanks and piping containing regulated substances. These rules supersede the Interim Prohibition issued in May, 1985. Owners must comply with the rules by December, 1998. These regulations mandate that the installation prevent releases (leaks) due to corrosion or structural failure for the operational life of the tank. Further, the tank and piping must be cathodically protected against corrosion, constructed of noncorrosive material, steel clad with a noncorrosive material or designed in a manner to prevent the release or threatened release of any stored substance. The regulations also mandate that material used in construction or lining of the tank be compatible with the substance to be stored. This paper discusses the basic corrosion mechanisms which affect direct buried steel tankage and piping systems as well as basic principles for applying cathodic protection as a means of corrosion control intended to satisfy EPA Regulations.

  1. Deformation behaviour of a large underground cavern

    NASA Astrophysics Data System (ADS)

    Mizukoshi, Tatsuo; Mimaki, Youichi

    1985-10-01

    The Imaichi underground power station, with a cross sectional area of 1420 m2, which is now under construction by Tokyo Electric Power Co., Inc., is one of the largest underground caverns in the world. Due to the considerable depth of the over-burden of 400 m, the horseshoe-shaped section was adopted for the first time in Japan to minimize excesive stress concentration on the surrounding bedrock and keep loosened zones to a minimum. The bedrock consists of sandstone, slate, siliceous sandstone and breccia. The rock is generally hard and compact, with few fractured zones which may have an adverse influence on the excavation of the cavern. The supporting system of the cavern consists of prestressed rock anchors, rock bolts and shotcrete. Approximately 800 instruments, mainly multiple stage extensometers, were used to monitor behaviour of the surrounding rock during excavation of the cavern. With the exception of some cracks which occurred in a portion of the shotcrete when about half the height of the cavern had been excavated, excavation work was completed without any major trouble. In spite of the symmetrical shape of the cavern, the deformation behaviour of the surrounding rock during excavation was remarkedly asymmetric. The reason for this was concluded to be the peculiar deformation behaviour exhibited by Breccia during stress relief, as shown by in-situ rock tests, etc., and analysis of deformation data after completion of the excavation work.

  2. Inter-disciplinary Interactions in Underground Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Bettini, A.

    2010-12-01

    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new

  3. Use of 3-dimensional computed tomography to detect a barium-masked fish bone causing esophageal perforation.

    PubMed

    Tsukiyama, Atsushi; Tagami, Takashi; Kim, Shiei; Yokota, Hiroyuki

    2014-01-01

    Computed tomography (CT) is useful for evaluating esophageal foreign bodies and detecting perforation. However, when evaluation is difficult owing to the previous use of barium as a contrast medium, 3-dimensional CT may facilitate accurate diagnosis. A 49-year-old man was transferred to our hospital with the diagnosis of esophageal perforation. Because barium had been used as a contrast medium for an esophagram performed at a previous hospital, horizontal CT and esophageal endoscopy could not be able to identify the foreign body or characterize the lesion. However, 3-dimensional CT clearly revealed an L-shaped foreign body and its anatomical relationships in the mediastinum. Accordingly, we removed the foreign body using an upper gastrointestinal endoscope. The foreign body was the premaxillary bone of a sea bream. The patient was discharged without complications.

  4. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume.

    PubMed

    Brand, Jefferson C

    2016-01-01

    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use.

  5. Preliminary 3-Dimensional Geologic Map of the Santa Rosa Plain, Northern California

    NASA Astrophysics Data System (ADS)

    McCabe, C. A.; McPhee, D. K.; Valin, Z. C.; McLaughlin, R. J.; Jachens, R. C.; Langenheim, V. E.; Wentworth, C. M.

    2004-12-01

    We have constructed a preliminary 3-dimensional geologic map of the Santa Rosa Plain as a tool to address earthquake hazard and groundwater issues. The map allows integration of diverse datasets to produce a stratigraphic and structural architecture for the region. This framework can then be used to predict pathways of ground water flow and potential areas of enhanced or focused seismic shaking beneath the Santa Rosa Plain. The 3D map also allows us to identify relations which will require further refinement to develop a coherent 3D image of the crust. The 3D map, built using EarthVision 3D geologic mapping software, consists of three bounding components: fault surfaces, stratigraphic surfaces, and a basement upper surface. Fault surfaces are derived from geologic mapping, subsurface projection of fault dips from the surface geology and earthquake hypocenters. Stratigraphic surfaces are derived from the mapped geology, a digital elevation model and stratigraphic information from wells. A basement surface, predominantly composed of Mesozoic rocks of the Franciscan Complex, the mafic Coast Range Ophiolite and strata of the Great Valley Sequence, is derived from inversion of regional gravity measurements and constrained by well data. The preliminary 3D map of the Santa Rosa Plain area highlights two large basins (>2 km deep): the Windsor and Cotati basins. These basins are divided by a structural high associated with the W-NW-trending, NE-dipping Trenton thrust fault. The Cotati basin is further subdivided by a deeper basement ridge subparallel to the Trenton fault, which separates the basin beneath Cotati from the basin of Petaluma Valley to the southeast. Neither of the basement ridges breaks the surface, yet faults associated with the ridges could displace or truncate aquifers, provide channelways for groundwater flow between aquifers, or create zones of impermeability that disrupt the vertical and lateral continuity of groundwater flow. The complex configuration

  6. Diagnosis of mitral valve cleft using real-time 3-dimensional echocardiography

    PubMed Central

    Zhou, Aiyun; Chen, Li; Zhang, Cheng; Zhang, Yan; Xu, Pan

    2017-01-01

    Background Mitral valve cleft (MVC) is the most common cause of congenital mitral insufficiency, and MVC may occur alone or in association with other congenital heart lesions. Direct suture and valvuloplasty are the major and effective treatments for mitral regurgitation (MR) caused by MVC. Therefore, it is important to determine the location and magnitude of the pathological damage due to MVC when selecting a surgical procedure for treatment. This study explored the application value of transthoracic real-time 3-dimensional (3D) echocardiography (RT-3DE) in the diagnosis of MVC. Methods From October 2012 to June 2016, 19 consecutive patients with MVC diagnosed by 2-dimensional (2D) echocardiography in our hospital were selected for this study. Full-volume RT-3DE was performed on all patients. The 3D-imaging data were cropped and rotated in 3 views (horizontal, sagittal, and coronal) with 6 directions to observe the position and shape of the MVC and the spatial position between the cleft and its surrounding structures. The maximum longitudinal diameter and the maximum width of the cleft were measured. The origin of the mitral regurgitant jet and the severity of MR were evaluated, and these RT-3DE data were compared with the intraoperative findings. Results Of the 19 patients studied, 4 patients had isolated cleft mitral valve, and cleft mitral valves combined with other congenital heart lesions were detected in 15 patients. The clefts of 6 patients were located in the A2 segment, the clefts of 4 patients were located in the A1 segment, the clefts of 4 patients were located in the A3 segment, the clefts of 4 patients were located in the A2–A3 segment, and the cleft of 1 patient was located in the P2 segment. Regarding the shape of the cleft, 13 patients had V-shaped clefts, and the others had C- or S-shaped clefts. The severity of the MR at presentation was mild in 2 patients, moderate in 9 and severe in 8. Two of the patients with mild MR did not undergo surgery

  7. A Simple 3-Dimensional Printed Aid for a Corrective Palmar Opening Wedge Osteotomy of the Distal Radius.

    PubMed

    Honigmann, Philipp; Thieringer, Florian; Steiger, Regula; Haefeli, Mathias; Schumacher, Ralf; Henning, Julia

    2016-03-01

    The reconstruction of malunited distal radius fractures is often challenging. Virtual planning techniques and guides for drilling and resection have been used for several years to achieve anatomic reconstruction. These guides have the advantage of leading to better operative results and faster surgery. Here, we describe a technique using a simple implant independent 3-dimensional printed drill guide and template to simplify the surgical reconstruction of a malunited distal radius fracture.

  8. Prenatal visualization of the pituitary gland using 2- and 3-dimensional sonography: comparison to prenatal magnetic resonance imaging.

    PubMed

    Katorza, Eldad; Bault, Jean-Philippe; Gilboa, Yinon; Yinon, Yoav; Hoffmann, Chen; Achiron, Reuven

    2012-10-01

    The pituitary gland is crucially important in the function of the endocrine axis. So far, antenatal depiction of the pituitary gland was possible only using magnetic resonance imaging. We describe antenatal visualization of the pituitary gland using 2- and 3-dimensional sonography. The appearance of the gland on sonography seems to be superior compares to prenatal magnetic resonance imaging. In cases with midline anomalies of the brain, face, or cranium, depiction of the pituitary gland is feasible and recommended.

  9. Effect of mandibular advancement on the natural position of the head: a preliminary study of 3-dimensional cephalometric analysis.

    PubMed

    Lin, Xiaozhen; Liu, Yanpu; Edwards, Sean P

    2013-10-01

    Our aim was to investigate the potential effect of advancement by bilateral sagittal split osteotomy (BSSO) on the natural position of the head by using 3-dimensional cephalomentric analysis. Seven consecutive patients who had had only BSSO advancement, and had had preoperative and 6-week postoperative cone beam computed tomography (CT) scans, were recruited to this retrospective study. Two variables, SNB and SNC2, were used to indicate the craniomandibular alignment and craniocervical inclination, respectively, in the midsagittal plane. Using 3-dimensional cephalometric analysis software, the SNB and the SNC2 were recorded in volume and measured in the midsagittal plane at 3 independent time-points. The reliability was measured and a paired t test used to assess the significance of differences between the means of SNB and SNC2 before and after operation. The 3-dimensional cephalometric measurement showed good reliability. The SNB was increased as planned in all the mandibles that were advanced, the cervical vertebrae were brought forward after BSSO, and the SNC2 was significantly increased in 6 of the 7 patients. Three-dimensional cephalometric analysis may provide an alternative way of assessing cephalometrics. After BSSO advancement, the natural position of the head changed by increasing the craniocervical inclination in an anteroposterior direction.

  10. Thermal transport in 2- and 3-dimensional periodic “holey” nanostructures

    SciTech Connect

    Ma, J.; Sadhu, J. S.; Ganta, D.; Tian, H.; Sinha, S.

    2014-12-15

    Understanding thermal transport in two- and three-dimensional periodic “holey” nanostructures is important for realizing applications of these structures in thermoelectrics, photonics and batteries. In terms of continuum heat diffusion physics, the effective medium theory provides the framework for obtaining the effective thermal conductivity of such structures. However, recently measured nanostructures possess thermal conductivities well below these continuum predictions. In some cases, their thermal conductivities are even lower than predictions that account for sub-continuum phonon transport. We analyze current understanding of thermal transport in such structures, discussing the various theories, the measurements and the insights gained from comparing the two.

  11. In Situ Corrosion and Heat Loss Assessment of Two Nonstandard Underground Heat Distribution System Piping Designs

    DTIC Science & Technology

    2011-06-01

    of this specific design consists of a carrier pipe, carrier pipe insulation ( mineral wool ), an annular air space, steel casing, a layer of exterior...excavation site agree with Perma-Pipe “Multi-Therm 500” nominal specs for 10” carrier with 2” mineral wool insulation. 3. Conduit Temperature: Supply...the ASHRAE calculation method or by manufacturer performance claims. MEC is reasonably certain that the mineral wool insulation used by the

  12. Investigation of Tri-Service Heat Distribution Systems (Modernization of Existing Underground Heat Distribution Systems).

    DTIC Science & Technology

    1984-06-01

    carrier pipe is usually insulated with preformed calcium silicate or mineral wool insulation. The preformed insula- tion is secured with stainless steel...glass or mineral wool insula- tion. Each tile is installed in this manner. Repair is difficult, but can be done by local workers with readily available...corrosion S Site I and return lines in of condensate line ( mineral wool insulation). 2. Ft. Campbell, 12 Tile system B No insulation was installed on

  13. Urban Underground Pipelines Mapping Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Jaw, S. W.; M, Hashim

    2014-02-01

    Underground spaces are now being given attention to exploit for transportation, utilities, and public usage. The underground has become a spider's web of utility networks. Mapping of underground utility pipelines has become a challenging and difficult task. As such, mapping of underground utility pipelines is a "hit-and-miss" affair, and results in many catastrophic damages, particularly in urban areas. Therefore, this study was conducted to extract locational information of the urban underground utility pipeline using trenchless measuring tool, namely ground penetrating radar (GPR). The focus of this study was to conduct underground utility pipeline mapping for retrieval of geometry properties of the pipelines, using GPR. In doing this, a series of tests were first conducted at the preferred test site and real-life experiment, followed by modeling of field-based model using Finite-Difference Time-Domain (FDTD). Results provide the locational information of underground utility pipelines associated with its mapping accuracy. Eventually, this locational information of the underground utility pipelines is beneficial to civil infrastructure management and maintenance which in the long term is time-saving and critically important for the development of metropolitan areas.

  14. Longevity of the Brazilian underground tree Jacaranda decurrens Cham.

    PubMed

    Alves, Ruy J V; Da Silva, Nílber G; Fernandes Júnior, Aluísio J; Guimarães, Alessandra R

    2013-01-01

    Underground trees are a rare clonal growth form. In this survey we describe the branching pattern and estimate the age of the underground tree Jacaranda decurrens Cham. (Bignoniaceae), an endangered species from the Brazilian Cerrado, with a crown diameter of 22 meters. The mean age calculated for the individual was 3,801 years, making it one of the oldest known living Neotropical plants.

  15. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all...

  16. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all...

  17. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all...

  18. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all...

  19. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all...

  20. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more ground conductors having a total cross sectional area of not less than one-half the power conductor,...

  1. Power plant of high safety for underground nuclear power station

    SciTech Connect

    Dolgov, V.N.

    1993-12-31

    An ecologically pure, reliable, and economic nuclear power station is based on the use of nuclear power plants with the liquid-metal coolant. This plant with the inherent safety is protected from external influences due to the underground accommodations in geologically stable formations such as granites, cambrian clays, and salt deposits. The design features of this underground plant are described.

  2. Diurnal variations from muon data at Takeyama underground station

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Imai, K.; Imai, T.; Kudo, S.; Wada, M.

    1985-01-01

    An underground station, Takeyama, is introduced, and some results of the solar diurnal and semi-diurnal variations for the period between 1967 and 1984 are presented. There are clear tendencies of double and single solar cycle variations in the daily variations which are in good accord with those detected by other underground and neutron monitor observations.

  3. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  4. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mining. 3930.12 Section 3930.12 Public Lands: Interior Regulations Relating to Public Lands (Continued... for underground mining. (a) Underground mining operations must be conducted in a manner to prevent the...) The operator/lessee must adopt mining methods that ensure the proper recovery of recoverable oil...

  5. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mining. 3930.12 Section 3930.12 Public Lands: Interior Regulations Relating to Public Lands (Continued... for underground mining. (a) Underground mining operations must be conducted in a manner to prevent the...) The operator/lessee must adopt mining methods that ensure the proper recovery of recoverable oil...

  6. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mining. 3930.12 Section 3930.12 Public Lands: Interior Regulations Relating to Public Lands (Continued... for underground mining. (a) Underground mining operations must be conducted in a manner to prevent the...) The operator/lessee must adopt mining methods that ensure the proper recovery of recoverable oil...

  7. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mining. 3930.12 Section 3930.12 Public Lands: Interior Regulations Relating to Public Lands (Continued... for underground mining. (a) Underground mining operations must be conducted in a manner to prevent the...) The operator/lessee must adopt mining methods that ensure the proper recovery of recoverable oil...

  8. Indiana Underground Railroad Folklore: Western Route and Daviess County.

    ERIC Educational Resources Information Center

    Shelton, Lois G.

    Materials for teaching a unit about the Underground Railroad (the system set up to assist fleeing, runaway slaves heading north) in Indiana are presented. Specifically, the Western Route that passed through Daviess County in Indiana is examined. The materials provide background on the Underground Railroad and the Western Route, plans for teaching…

  9. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... Alternatives for Underground Coal Mines. The RFI comment period was originally scheduled to close on October...

  10. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013....

  11. Controlling the Distribution of Cold Water in Air Cooling Systems of Underground Mines

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Obracaj, Dariusz; Swolkień, Justyna; Piergies, Kazimierz

    2016-12-01

    In Polish underground mines in which excavations are subjected to high heat load, central and group cooling systems based on indirect cooling units are implemented. Chilled water, referred to as cold water and produced in chillers, is distributed through a pipeline network to air coolers located in mining and development districts. The coolers are often moved to other locations and the pipeline network undergoes constant modification. In such a system, parameters of cold water in different branches of the pipeline network need to be controlled. The article presents the principles for controlling the cooling capacity of air coolers installed in an underground mine. Also, the authors propose automatic control of water flow rate in underground pipeline network and in particular coolers, depending on the temporary cooling load in the system. The principles of such a system, controlling cold water distribution, and the functions of its individual components are described. Finally, an example of an automatic control of water flow rate in a central cooling system currently implemented in a mine is presented.

  12. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.

    PubMed

    Vaithilingam, Jayasheelan; Simonelli, Marco; Saleh, Ehab; Senin, Nicola; Wildman, Ricky D; Hague, Richard J M; Leach, Richard K; Tuck, Christopher J

    2017-02-22

    Despite the advancement of additive manufacturing (AM)/3-dimensional (3D) printing, single-step fabrication of multifunctional parts using AM is limited. With the view of enabling multifunctional AM (MFAM), in this study, sintering of metal nanoparticles was performed to obtain conductivity for continuous line inkjet printing of electronics. This was achieved using a bespoke three-dimensional (3D) inkjet-printing machine, JETx, capable of printing a range of materials and utilizing different post processing procedures to print multilayered 3D structures in a single manufacturing step. Multiple layers of silver were printed from an ink containing silver nanoparticles (AgNPs) and infrared sintered using a swathe-by-swathe (SS) and layer-by-layer sintering (LS) regime. The differences in the heat profile for the SS and LS was observed to influence the coalescence of the AgNPs. Void percentage of both SS and LS samples was higher toward the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS tracks (13.6 ± 1 μΩ cm) was lower than the SS tracks (22.5 ± 1 μΩ cm). This study recommends the use of LS method to sinter the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM.

  13. Heat flow meter for the diagnostics of pipelines

    NASA Astrophysics Data System (ADS)

    Nussupbekov, Bekbolat R.; Karabekova, Dana Zh.; Khassenov, Ayanbergen K.; Zhirnova, Oxana; Zyska, Tomasz

    2016-09-01

    Thermal methods of nondestructive testing are widely used for the analysis of the thermal insulation of underground pipelines. In heat methadone nondestructive testing, the thermal energy is distributed in the test object. Temperature field of the object's surface is a source of information on the characteristics of heat transfer. This article describes the modifications we have developed some of the heat flux sensors. A common element of these devices is the battery thermoelectric sensor special design, acting as a thermoelectric converter heat flow.

  14. Quantum cryptography over underground optical fibers

    SciTech Connect

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Peterson, C.G.; Simmons, C.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure, real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``

  15. System for fracturing an underground geologic formation

    DOEpatents

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.; Bronisz, Lawrence E.

    2017-03-14

    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacent to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.

  16. Hazard index for underground toxic material

    SciTech Connect

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  17. MODELING UNDERGROUND STRUCTURE VULNERABILITY IN JOINTED ROCK

    SciTech Connect

    R. SWIFT; D. STEEDMAN

    2001-02-01

    The vulnerability of underground structures and openings in deep jointed rock to ground shock attack is of chief concern to military planning and security. Damage and/or loss of stability to a structure in jointed rock, often manifested as brittle failure and accompanied with block movement, can depend significantly on jointed properties, such as spacing, orientation, strength, and block character. We apply a hybrid Discrete Element Method combined with the Smooth Particle Hydrodynamics approach to simulate the MIGHTY NORTH event, a definitive high-explosive test performed on an aluminum lined cylindrical opening in jointed Salem limestone. Representing limestone with discrete elements having elastic-equivalence and explicit brittle tensile behavior and the liner as an elastic-plastic continuum provides good agreement with the experiment and damage obtained with finite-element simulations. Extending the approach to parameter variations shows damage is substantially altered by differences in joint geometry and liner properties.

  18. Stabilization of Underground Solvent Storage Tanks

    SciTech Connect

    Smail, T.R.

    2003-08-15

    The Old Solvent Tanks (OST), located at the Savannah River Site (SRS) are comprised of 22 underground storage tanks that were used to store spent radioactive solvent and aqueous wastes generated from the plutonium-uranium extraction (PUREX) process. The OSTs were installed at various dates between 1955 and 1968 and used to store the spent solvents until 1974. The spent solvents stored in the OSTs were transferred out from 1976 through 1981 leaving only residual liquids and sludges that could not be pumped out.Final remediation goals include an overlying infiltration control system. If the tanks were to structurally fail, they would collapse causing potential for onsite worker exposure and release of tank contents to the environment. Therefore, as an interim action, methods for stabilizing the tanks were evaluated. This paper will discuss the systems designed to perform and monitor the grouting operation, the grouting process, and the radiological controls and wastes associated with grouting the Old Solvent Tanks.

  19. Radiological criteria for underground nuclear tests

    SciTech Connect

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry.

  20. SNOLAB: An International Facility for Underground Science

    NASA Astrophysics Data System (ADS)

    Hime, Andrew

    2006-07-01

    SNOLAB, an international facility for underground science, is presently under construction at a depth of 6000 meters of water equivalent (m.w.e.) at Inco's Creighton mine near Sudbury, Ontario, Canada. Building on the success of the Sudbury Neutrino Observatory, the creation of SNOLAB will provide the deep-site infrastructure required of next generation particle-astrophysics experiments in pursuit of low-energy solar neutrinos, neutrinoless double beta decay, and cosmological dark matter. Following an enthusiastic response from the scientific community to a call for Letters of Interest (LOI's) in staging experiments at SNOLAB, an initial set of recommendations have been developed to guide the scientific program at this new facility.

  1. Physical underground storage tank internal inspection

    SciTech Connect

    Hattaway, L.

    1995-12-31

    Internal inspection of Underground Storage Tanks (USTs) is a vital part of compliance, called for under the Environmental Protection Agency (EPA) regulations (40 CFR, Part 280). Understanding the fundamentals of this technique is important for achieving compliance, economically. Internal physical inspections of buried tanks have been a valued service long before EPA regulations. Placing an experienced, well trained inspector inside of a tank can provide information, data and assessment that is unavailable by any other method. The capability of cleaning metal surfaces and truly inspecting corrosion damage is most important. Inspections include visual evaluations, plus a wide range of tools, instruments and techniques that provide in-depth analysis of real conditions. Assessment is based on specific facts that are completely understandable to the non-technical, as well as engineers and scientists. This paper is an overview of the Physical UST Internal Inspection needed to assess existing steel USTs.

  2. Underground coal miners' foot and boot problems.

    PubMed

    Wood, G; Marr, S; Berry, G; Nubé, V; Cole, J

    1999-11-01

    The New South Wales (NSW) Joint Coal Board Health and Safety Trust funded an investigation into foot problems reported by 400 randomly selected underground coal miners from 15 mines in NSW. Miners were interviewed and their responses were entered directly into laptop computers. Digital cameras were also used to take pictures of skin conditions and miners' posture. Observations of the skin results indicate that miners find gumboots to be hot, sweaty and uncomfortable. Skin breakdown and tinea, is frequent and disabling and responsible for absences from the workforce that are costly for both miner and employer. A more comfortable and better designed boot is needed, fabricated in waterproof leather together with socks that 'wick' the moisture away from the foot. Socks worn were of varying components and washed at irregular intervals, indicating a need for regular changes of socks and improved hygiene.

  3. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  4. Investigations on 3-dimensional temperature distribution in a FLATCON-type CPV module

    NASA Astrophysics Data System (ADS)

    Wiesenfarth, Maike; Gamisch, Sebastian; Kraus, Harald; Bett, Andreas W.

    2013-09-01

    The thermal flow in a FLATCON®-type CPV module is investigated theoretically and experimentally. For the simulation a model in the computational fluid dynamics (CFD) software SolidWorks Flow Simulation was established. In order to verify the simulation results the calculated and measured temperatures were compared assuming the same operating conditions (wind speed and direction, direct normal irradiance (DNI) and ambient temperature). Therefore, an experimental module was manufactured and equipped with temperature sensors at defined positions. In addition, the temperature distribution on the back plate of the module was displayed by infrared images. The simulated absolute temperature and the distribution compare well with an average deviation of only 3.3 K to the sensor measurements. Finally, the validated model was used to investigate the influence of the back plate material on the temperature distribution by replacing the glass material by aluminum. The simulation showed that it is important to consider heat dissipation by radiation when designing a CPV module.

  5. Surface effects of underground nuclear explosions

    SciTech Connect

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  6. Polymer containment barriers for underground storage tanks

    SciTech Connect

    Heiser, J.; Colombo, P.

    1994-12-31

    Contaminated soils, buried waste and leaking underground storage tanks pose a threat to the environment through contaminant transport. One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. Brookhaven National Laboratory has been involved in several tasks to develop, demonstrate and implement advanced polymer materials for use in subsurface barriers throughout the DOE complex. Binders investigated as barrier composites include polyester styrenes, vinylester styrenes, high molecular weight acrylics, sulfur polymer cement, polyacrylic acids, bitumen and a furfuryl alcohol based furan polymer. Aggregates include: recycled glass, stone, sand, and natural soils (from Hanford). A series of performance tests were used to determine the performance characteristics of polymer composites. This paper details a substrate of this characterization pertaining to subsurface barriers for containing underground storage tanks with emphasis on the DOE`s Hanford site. Testing includes measuring permeability to water, wet-dry cycling, chemical resistivity to ground water, acid, base, and nitrate brine, resistance to irradiation, and measuring compressive strengths. Polymer grouts having a wide range of viscosities have been demonstrated to have desirable qualities for a subterranean barrier. The goal of soil mortar permeabilities of 1 x 10{sup -10} m/s and {open_quotes}clean{close_quotes} aggregate composites of 1 x 10{sup -11} m/s was met. Performance values indicate polymers exist that can meet the requirements for containment barriers for USTs throughout the DOE complex. Proper choice of binder and aggregate followed by the appropriate site specific compatibility testing will result in a durable, high strength, low permeability barrier.

  7. A GIS-based 3D online information system for underground energy storage in northern Germany

    NASA Astrophysics Data System (ADS)

    Nolde, Michael; Malte, Schwanebeck; Ehsan, Biniyaz; Rainer, Duttmann

    2015-04-01

    We would like to present the concept and current state of development of a GIS-based 3D online information system for underground energy storage. Its aim is to support the local authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The presented information system uses data of geological features such as rock layers, salt domes and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, powerline arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the process of pre-selecting sites suitable for energy storage. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. While the process of pre-selection itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, so that it can easily be utilized in any web browser. The results are visualized online as interactive 3d graphics. The information system is implemented in the Python programming language in combination with current Web standards, and is build using only free and open source software. It is being developed at Kiel University as part of the ANGUS+ project (lead by Prof. Sebastian Bauer) for the federal state of

  8. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    PubMed

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks.

  9. The mathematical model of radon-222 accumulation in underground mines

    NASA Astrophysics Data System (ADS)

    Klimshin, A.

    2012-04-01

    Necessity to control underground mine air radon level arises during building and operating mines as well as auto and railway tunnels including those for metros. Calculation of underground mine air radon level can be fulfilled for estimation of potential radon danger of area for underground structure building. In this work the new mathematical model of radon accumulation in underground mines has been suggested. It takes into consideration underground mine dimensions, air exchange factor and soils ability to emanate radon. The following assumptions have been taken for model development. It is assumed that underground mine is a cylinder of length L and of base area S. Due to ventilation atmosphere air of volume activity Catm, is coming in through one cylinder base and is going out of volume activity Cind from underground mine. Diffusion radon flux is coming in through side surfaces of underground mine. The sources of this flux are radium-226 atoms distributed evenly in rock. For simplification of the task it considered possible to disregard radon emanation by loosened rock and underground waters. As a result of solution of the radon diffusion equation the following expression for calculation of radon volume activity in underground space air has been got: 2·r0 ·λv ·Catm-·l·K0(r0/l)-+D-·K1(r0/l)·C0- Cind = 2·(λ+ λv)·r0 ·l·K0 (r0/l)+ D ·K1(r0/l) . The following designations are used in this expression: Kν(r) - the second genus modified Bessel's function, C0 - equilibrium radon volume activity in soil air, l - diffusion radon length in soil, D - radon diffusion factor, r0 - radius of underground tunnel, λv - factor of air exchange. Expression found may be used for calculation of the minimum factor of necessary air exchange for ensuring safe radon levels in underground spaces. With this worked out model expected levels of radon volume activity were calculated for air in the second metro line underground spaces in the city of Yekaterinburg, Russia.

  10. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  11. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode

    PubMed Central

    Kang, Seongsu; Kim, Kwon-Ho; Kim, Yeu-Chun

    2015-01-01

    Electroporation is one of the most widely used transfection methods because of its high efficiency and convenience among the various transfection methods. Previous micro-electroporation systems have some drawbacks such as limitations in height and design, time-consuming and an expensive fabrication process due to technical constraints. This study fabricates a three dimensional microelectrode using the 3D printing technique. The interdigitated microstructure consisting of poly lactic acid was injected by a 3D printer and coated with silver and aluminum with a series of dip-coatings. With the same strength of electric field (V cm−1), a higher efficiency for molecular delivery and a higher cellular viability are achieved with the microelectrode than with a standard cuvette. In addition, this study investigates chemicophysical changes such as Joule heating and dissolved metal during electroporation and showed the micro-electroporation system had less chemicophysical changes. It was concluded that the proposed micro-electroporation system will contribute to genetic engineering as a promising delivery tool, and this combination of 3D printing and electroporation has many potential applications for diverse designs or systems. PMID:26522846

  12. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode

    NASA Astrophysics Data System (ADS)

    Kang, Seongsu; Kim, Kwon-Ho; Kim, Yeu-Chun

    2015-11-01

    Electroporation is one of the most widely used transfection methods because of its high efficiency and convenience among the various transfection methods. Previous micro-electroporation systems have some drawbacks such as limitations in height and design, time-consuming and an expensive fabrication process due to technical constraints. This study fabricates a three dimensional microelectrode using the 3D printing technique. The interdigitated microstructure consisting of poly lactic acid was injected by a 3D printer and coated with silver and aluminum with a series of dip-coatings. With the same strength of electric field (V cm-1), a higher efficiency for molecular delivery and a higher cellular viability are achieved with the microelectrode than with a standard cuvette. In addition, this study investigates chemicophysical changes such as Joule heating and dissolved metal during electroporation and showed the micro-electroporation system had less chemicophysical changes. It was concluded that the proposed micro-electroporation system will contribute to genetic engineering as a promising delivery tool, and this combination of 3D printing and electroporation has many potential applications for diverse designs or systems.

  13. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode.

    PubMed

    Kang, Seongsu; Kim, Kwon-Ho; Kim, Yeu-Chun

    2015-11-02

    Electroporation is one of the most widely used transfection methods because of its high efficiency and convenience among the various transfection methods. Previous micro-electroporation systems have some drawbacks such as limitations in height and design, time-consuming and an expensive fabrication process due to technical constraints. This study fabricates a three dimensional microelectrode using the 3D printing technique. The interdigitated microstructure consisting of poly lactic acid was injected by a 3D printer and coated with silver and aluminum with a series of dip-coatings. With the same strength of electric field (V cm(-1)), a higher efficiency for molecular delivery and a higher cellular viability are achieved with the microelectrode than with a standard cuvette. In addition, this study investigates chemicophysical changes such as Joule heating and dissolved metal during electroporation and showed the micro-electroporation system had less chemicophysical changes. It was concluded that the proposed micro-electroporation system will contribute to genetic engineering as a promising delivery tool, and this combination of 3D printing and electroporation has many potential applications for diverse designs or systems.

  14. Normal growth and development of the lips: a 3-dimensional study from 6 years to adulthood using a geometric model

    PubMed Central

    FERRARIO, VIRGILIO F.; SFORZA, CHIARELLA; SCHMITZ, JOHANNES H.; CIUSA, VERONICA; COLOMBO, ANNA

    2000-01-01

    A 3-dimensional computerised system with landmark representation of the soft-tissue facial surface allows noninvasive and fast quantitative study of facial growth. The aims of the present investigation were (1) to provide reference data for selected dimensions of lips (linear distances and ratios, vermilion area, volume); (2) to quantify the relevant growth changes; and (3) to evaluate sex differences in growth patterns. The 3-dimensional coordinates of 6 soft-tissue landmarks on the lips were obtained by an optoelectronic instrument in a mixed longitudinal and cross-sectional study (2023 examinations in 1348 healthy subjects between 6 y of age and young adulthood). From the landmarks, several linear distances (mouth width, total vermilion height, total lip height, upper lip height), the vermilion height-to-mouth width ratio, some areas (vermilion of the upper lip, vermilion of the lower lip, total vermilion) and volumes (upper lip volume, lower lip volume, total lip volume) were calculated and averaged for age and sex. Male values were compared with female values by means of Student's t test. Within each age group all lip dimensions (distances, areas, volumes) were significantly larger in boys than in girls (P < 0.05), with some exceptions in the first age groups and coinciding with the earlier female growth spurt, whereas the vermilion height-to-mouth width ratio did not show a corresponding sexual dimorphism. Linear distances in girls had almost reached adult dimensions in the 13–14 y age group, while in boys a large increase was still to occur. The attainment of adult dimensions was faster in the upper than in the lower lip, especially in girls. The method used in the present investigation allowed the noninvasive evaluation of a large sample of nonpatient subjects, leading to the definition of 3-dimensional normative data. Data collected in the present study could represent a data base for the quantitative description of human lip morphology from childhood to

  15. 49 CFR 192.325 - Underground clearance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS... prevent the heat from impairing the serviceability of the pipe. (d) Each pipe-type or bottle-type...

  16. Finite Element Analysis of an Underground Structure.

    DTIC Science & Technology

    1988-01-01

    Determine the scaling relationships. The i-term . for scaling explosive quantities is given by (Nielsen, 1983): G (W)1~ 1Q () 1/3 where, Q = heat of detonation /unit...1/ Q- UI- ) 0 g Q (6) 1/3)1- 1/3 60 Q (6) 1/3)6- (G (W) The initial density of the explosive 6, and the heat of detonation /unit mass of explosive Q

  17. Muon simulation codes MUSIC and MUSUN for underground physics

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. A.

    2009-03-01

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  18. Underground nuclear energy complexes - technical and economic advantages

    SciTech Connect

    Myers, Carl W; Kunze, Jay F; Giraud, Kellen M; Mahar, James M

    2010-01-01

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  19. Mass balances for underground coal gasification in steeply dipping beds

    SciTech Connect

    Lindeman, R.; Ahner, P.; Davis, B.E.

    1980-01-01

    Two different mass balances were used during the recent underground coal gasification tests conducted in steeply dipping coal beds at Rawlins, Wyoming. The combination of both mass balances proved extremely useful in interpreting the test results. One mass balance which assumed char could be formed underground required the solution of 3 simultaneous equations. The assumption of no char decouples the 3 equations in the other mass balance. Both mass balance results are compared to the test data to provide an interpretation of the underground process.

  20. Seismic wave interaction with underground cavities

    NASA Astrophysics Data System (ADS)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  1. Studies of Cosmic Ray Modulation and Energetic Particle Propagation in Time-Dependent 3-Dimensional Heliospheric Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    The primary goal of this project was to perform theoretical calculations of propagation of cosmic rays and energetic particles in 3-dimensional heliospheric magnetic fields. We used Markov stochastic process simulation to achieve to this goal. We developed computation software that can be used to study particle propagation in, as two examples of heliospheric magnetic fields that have to be treated in 3 dimensions, a heliospheric magnetic field suggested by Fisk (1996) and a global heliosphere including the region beyond the termination shock. The results from our model calculations were compared with particle measurements from Ulysses, Earth-based spacecraft such as IMP-8, WIND and ACE, Voyagers and Pioneers in outer heliosphere for tests of the magnetic field models. We particularly looked for features of particle variations that can allow us to significantly distinguish the Fisk magnetic field from the conventional Parker spiral field. The computer code will eventually lead to a new generation of integrated software for solving complicated problems of particle acceleration, propagation and modulation in realistic 3-dimensional heliosphere of realistic magnetic fields and the solar wind with a single computation approach.

  2. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    PubMed

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls.

  3. LADCP Observations of the 3-Dimensional Velocity Field Associated with Internal Waves and Boundary-Layer Flows

    NASA Astrophysics Data System (ADS)

    Thurnherr, A.; St Laurent, L.; Jacobs, S. S.; Kanzow, T.; Naveira Garabato, A. C.; Ledwell, J. R.

    2012-12-01

    While low-frequency processes in the ocean are primarily associated with (quasi-)horizontal, i.e. 2-dimensional, flows energetic high-frequency finescale processes, such as internal waves, hydraulic and other boundary-layer currents, are much more 3-dimensional. Due to recent advances in LADCP processing, it is now possible to derive full-depth snapshots of the 3-dimensional velocity field from standard CTD/LADCP casts. Applying the new method to data obtained in energetic regions of the ocean reveals velocity fields associated with vertical speeds ranging from a few cm/s to more than 20cm/s. Outside boundary layers, the vertical velocities are dominated by high-frequency (near-N) internal waves associated with small horizontal scales and the shapes of the corresponding vertical-velocity spectra in the finescale band are consistent with the Garrett-Munk model. In individual data sets the vertical-velocity spectral levels are correlated with coincident dissipation measurements derived from velocity microstructure, suggesting that a new finescale parameterization method for oceanic turbulence and diapycnal mixing based on LADCP-derived vertical velocities is possible. Near boundaries, there is evidence for large vertical velocities associated not just with waves, but also with seawater upwelling from beneath a fast-melting Antarctic ice shelf, with hydraulic overflow processes of the Mid-Atlantic Ridge, and even with very large "overturns" over the flank of a ridge in Luzon strait.;

  4. Sidereal variations deep underground in Tasmania

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Fenton, A. G.; Fenton, K. B.

    1985-01-01

    Data from the deep underground vertically directed muon telescopes at Poatina, Tasmania, have been used since 1972 for a number of investigations, including the daily intensity variations, atmospheric influences, and checking for possible effects due to the interplanetary magnetic field. These telescopes have a total sensitive area of only 3 square meters, with the result that the counting rate is low (about 1680 events per hour) and the statistical errors on the results are rather large. Consequently, it was decided several years ago to construct larger detectors for this station. The first of these telescopes has been in operation for two complete years, and the results from it are presented. Results from the new, more stable equipment at Poatina appear to confirm the existence of a first harmonic in the daily variations in sidereal time reported earlier, and are consistent with small or non-existent first harmonics in solar and anti-sidereal time. All the second harmonics appear to be small, if not zero at these energies.

  5. Underground energy-storage program overview

    SciTech Connect

    Kannberg, L.D.

    1982-07-01

    The objective of this program is to reduce technical and economic risks obstructing commercial development of underground energy storage concepts promising more effective and efficient utilization of energy resources. Primary concepts are Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). STES objectives include characterization and mitigation of STES concept technical deficiencies and uncertainties and evaluation of economic features. CAES objectives include development of stability criteria for CAES reservoirs and analysis and development of promising second-generation CAES systems. Characterization of the performance of TES systems at injection temperatures of less than 85/sup 0/C is nearly complete. Studies of injection and storage at temperatures up to 150/sup 0/C have been initiated and will be continued through FY 1983. Studies of nonaquifer STES systems including cavern and ice storage systems have been conducted and will continue in FY 1983. Stability criteria and guidelines documents have been published for salt and hard rock CAES reservoirs. All design and construction on the Pittsfield Aquifer Field Test will be completed by the end of FY 1982 and bubble development and air cycling will be conducted in the first six months of FY 1983. A preliminary screening of materials for use in thermal storage units of adiabatic and hybrid CAES systems has been completed. Two materials, Denstone (a registered product of the Norton Company) and Dresser basalt, survived screening tests and are recommended for additional long term testing.

  6. Atmospheric neutrinos observed in underground detectors

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  7. Delayed signatures of underground nuclear explosions

    DOE PAGES

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; ...

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be anmore » indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.« less

  8. Delayed signatures of underground nuclear explosions

    SciTech Connect

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  9. Geologic mapping can boost productivity, safety underground

    SciTech Connect

    Ledvina, C.T.

    1986-04-01

    Geologic mapping in hardrock mines is old hat, but in the coal industry it's a relatively new management tool, Only during the past eight to 10 years have some of the larger coal operators been convinced that mapping of macro- and micro-structures in their mines may help to make the mines more productive, more profitable and more safe. In most underground coal mines, roof conditions-indeed, mining conditions in general-are dependent upon geologic factors. Of special significance are the roof falls, almost always a function of roof geology. Unfortunately, many important geologic factors that may provide clues to areas prone to roof falls are frequently too small or too local to be detected by drilling programs and go undected until mining reveals them. By applying basic techniques of geologic mapping, using simple tools and little time, many important relationships between geologic factors and actual roof and mining conditions can be more easily understood. And by understanding these relationships, mining and roof control plans can be adjusted to accommodate or avoid poor conditions, often in advance of mining. Mapping thus benefits not only operating mines but supplements exploration or pre-mining investigation.

  10. Savannah River National Laboratory Underground Counting Facility

    NASA Astrophysics Data System (ADS)

    Brown, Tim

    2006-10-01

    The SRNL UCF is capable of detecting extremely small amounts of radioactivity in samples, providing applications in forensics, environmental analyses, and nonproliferation. Past customers of the UCF have included NASA, (Long Duration Exposure Facility) the IAEA, (Iraq), and nonproliferation concerns. The SRNL UCF was designed to conduct ultra-low level gamma-ray analyses for radioisotopes at trace levels. Detection sensitivity is enhanced by background reduction, high detector efficiency, and long counting times. Backgrounds from cosmic-rays, construction materials, and radon are reduced by counting underground, active and passive shielding, (pre-WWII steel) and situation behind a Class 10,000 clean facility. High-detection efficiency is provided by a well detector for small samples and three large HPGe detectors. Sample concentration methods such as ashing or chemical separation are also used. Count times are measured in days. Recently, two SCUREF programs were completed with the University of South Carolina to further enhance UCF detection sensitivity. The first developed an ultra-low background HPGe detector and the second developed an anti-cosmic shield that further reduces the detector background. In this session, we will provide an overview status of the recent improvements made in the UCF and future directions for increasing sensitivity.

  11. Underground communications and tracking systems update

    SciTech Connect

    Fiscor, S.

    2008-01-15

    Today, when it comes to having systems to communicate with track and locate underground coal miners, mining companies have many equipment choices, as a direct response to the USA's 2006 MINER Act and the West Virginia Legislative Rule 56-4-8. Coal Age spoke to several companies about their leaky feeder and purely wireless systems which are either approved by the US MSHA or have been submitted for approval. The article gives details of: a UHF leaky feeder system developed by Pillar Innovations, designed to exit a mine at multiple points and then tie the leads back together on the surface; the Venture/Helicomm MineTrader system for tracking, monitoring and emergency messaging for mines; Rajant Corp.'s BreadCrumb wireless system using battery-powered wireless access nodes that enable voice and data communications across a self-healing network; the SubterraCom Wireless Solution's communications systems; a wireless mesh peer-to-peer communications system and an ultra widebade (UWB)-base real-time location tracking system from L-3 Communications; and VHF and UHF leaky feeder amplifiers from Tunnel Radio. MSHA approved communications and tracking systems are tabulated. 11 photos., 1 tab.

  12. Blast damage control during underground mining

    SciTech Connect

    Singh, S.P.

    1994-12-31

    Tracer blasting is commonly used in Canadian underground mines for overbreak control. It involves tracing a column of ANFO with a low strength detonating cord. In order to investigate the effectiveness of tracer blasting in perimeter control and to understand its mechanism, a field experimentation was conducted which involved drifting, benching and pipe tests. Initially, a comparison between tracer blasting and other explosive products was made on the basis of half cast factor and percentage overbreak. It was found that tracer blasting produced relatively much lower damage. The following observations were made during tracer blasting experiments: (a) reduction in ground vibrations; (b) partial deflagration and desensitization of ANFO; (c) reduction in the total available explosive energy; (d) continuous side initiation of ANFO column; (e) lateral VOD of ANFO was much less than the steady state VOD; (f) energy partitioning was more in favor of gas energy. It was observed that tracer blasting has the potential of being very cost effective and safer technique for overbreak control. A mechanism of tracer blasting has also been proposed in this paper.

  13. The underground electromagnetic pulse: Four representative models

    SciTech Connect

    Wouters, L.F.

    1989-06-01

    I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.

  14. Coach design for the Helsinki underground.

    PubMed

    Saari, J T

    1974-09-01

    After more than 20 years of planning, an underground system will be opened in Helsinki in 1978. In 1972, a short line was constructed, with six coaches for experiments. This article describes an analysis of these coaches from the point of view of ergonomics. A travelling experiment was organised, designed to simulate the final travelling situation. After the experiment the subjects filled out a questionnaire. During the trip the behaviour of the subjects and their moving in and out was observed by two TV recorders and two film cameras. The passengers evaluated the fitness of the train in the following order of importance: 1. speed 2. cost 3. comfort. The results showed that the demands placed on the lay-out of the trains were not fulfilled in regard to speed. Although the general impression was positive, the number of handles and support pillars, too narrow passages and a lack of space for goods were features most often criticised. On the basis of these results, several alternative lay-outs have been developed, also proposals concerning dimensions of the doors, design and location of the handles, design of the seats, etc.

  15. Delayed signatures of underground nuclear explosions

    PubMed Central

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-01-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288

  16. Feeding underground: kinematics of feeding in caecilians.

    PubMed

    Herrel, Anthony; Measey, G John

    2012-11-01

    Caecilians are limbless amphibians that have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Observations on feeding behavior are rare and restricted to above-ground feeding in laboratory conditions. Here we report data on feeding in tunnels using both external video and X-ray recordings of caecilians feeding on invertebrate prey. Our data show feeding kinematics similar to those previously reported, including the pronounced neck bending observed during above-ground feeding. Our data illustrate, however, that caecilians may be much faster than previously suspected, with lunge speeds of up to 7 cm sec(-1). Although gape cycles are often slow (0.67 ± 0.29 sec), rapid jaw closure is observed during prey capture, with cycle times and jaw movement velocities similar to those observed in other terrestrial tetrapods. Finally, our data suggest that gape angles may be large (64.8 ± 18°) and that gape profiles are variable, often lacking distinct slow and fast opening and closing phases. These data illustrate the importance of recording naturalistic feeding behavior and shed light on how these animals are capable of capturing and processing prey in constrained underground environments. Additional data on species with divergent cranial morphologies would be needed to better understand the co-evolution between feeding, burrowing, and cranial design in caecilians.

  17. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  18. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    SciTech Connect

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  19. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems

    USGS Publications Warehouse

    Fournier, R.O.

    1979-01-01

    Thermal water ascending in a hot-spring system may cool by conduction of heat to the surrounding rock, by boiling, by mixing with cooler water, or by a combination of these processes. Complete or partial chemical reequilibration may occur as a result of this cooling. In spite of these complexities, in many places chemical compositions of hot-spring waters may be used to estimate underground conditions. A plot of enthalpy versus chloride is particularly useful for determining underground temperatures, salinities, and boiling and mixing relations. The utility of this approach is illustrated using hot-spring composition data from Cerro Prieto, Mexico, Orakeikorako, New Zealand, and Yellowstone National Park, Wyoming. ?? 1979.

  20. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  1. Public Record About Underground Storage Tanks - 2005 Energy Policy Act

    EPA Pesticide Factsheets

    These grant guidelines implement the public record provision in Section 9002(d) of the Solid Waste Disposal Act, enacted by the Underground Storage Tank Compliance Act, part of the Energy Policy Act of 2005.

  2. 11. INTERIOR DETAIL, BASEMENT, SHOWING CONDUITS LEADING UNDERGROUND TO SWITCHES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR DETAIL, BASEMENT, SHOWING CONDUITS LEADING UNDERGROUND TO SWITCHES AND SIGNALS - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD

  3. Shallow Melting and Underground Drainage in Utopia Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Costard, F.; Sejourne, A.; Kargel, J.; Soare, R.

    2012-03-01

    Based on the identification of sinuous and elongated pits in Utopia Planitia, we suggest that shallow melting and underground drainage are possible. We test that hypothesis using a thermal model that comprises a thick insulating dusty layer.

  4. 112. Photocopied July 1978. (MTU, #01062) UNDERGROUND VIEW OF MEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. Photocopied July 1978. (MTU, #01062) UNDERGROUND VIEW OF MEN RIDING QMC MAN-ENGINE WITH MINING CAPTAIN (IN WHITE) STANDING ON THE RIGHT. C. 1890. - Quincy Mining Company, Hancock, Houghton County, MI

  5. 123. Photocopied July 1978. (QMC) UNDERGROUND VIEW SHOWING MINERS CUTTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. Photocopied July 1978. (QMC) UNDERGROUND VIEW SHOWING MINERS CUTTING MASS COPPER BY HAND. NOTE CANDLES USED FOR ILLUMINATION. MINING CAPTAIN IN WHITE. C. 1890. - Quincy Mining Company, Hancock, Houghton County, MI

  6. Physical security of cut-and-cover underground facilities

    SciTech Connect

    Morse, W.D.

    1998-08-01

    To aid designers, generic physical security objectives and design concepts for cut-and-cover underground facilities are presented. Specific aspects addressing overburdens, entryways, security doors, facility services, emergency egress, security response force, and human elements are discussed.

  7. Interior, underground corridor going to building 500 from the corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, underground corridor going to building 500 from the corridor connecting buildings 511 and 515. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO

  8. 67. FIRST AND SECOND AQUEDUCTS GOING UNDERGROUND PARALLEL TO DIRT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. FIRST AND SECOND AQUEDUCTS GOING UNDERGROUND PARALLEL TO DIRT ROADS, MOJAVE DESERT LOOKING NORTH - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  9. Underground barrier construction apparatus with soil-retaining shield

    DOEpatents

    Gardner, B.M.; Smith, A.M.; Hanson, R.W.; Hodges, R.T.

    1998-08-04

    An apparatus is described for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment. 17 figs.

  10. Underground barrier construction apparatus with soil-retaining shield

    DOEpatents

    Gardner, Bradley M.; Smith, Ann Marie; Hanson, Richard W.; Hodges, Richard T.

    1998-01-01

    An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

  11. 3. VIEW OF OFFICE, LOOKING NORTH, DOWN OPENING TO UNDERGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF OFFICE, LOOKING NORTH, DOWN OPENING TO UNDERGROUND CHAMBERS - Marvine Colliery, Heavy Rail Scales Office, West side Boulevard Avenue, between East Parker Street & Route 380, Scranton, Lackawanna County, PA

  12. Ground ice formed after underground thermo-erosion of the permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Kanevskiy, M.; Yuri, S.

    2007-12-01

    Cryostratigraphic studies realized in the CRREL permafrost tunnel (¡Ö 64 57 N, 147 37 W) located near Fairbanks, Alaska revealed the presence of multi-directional reticulate ice veins and massive ice bodies in the permafrost. We propose that this reticulate-chaotic cryostructure and the massive ice bodies were formed by inward closed-system freezing of pools of water and saturated sediments trapped in underground tunnels cut in the permafrost by thermo-erosion. The massive ice and the multi-directional reticulate ice veins were likely formed after the cessation of the underground flow, either by tunnel blockage or collapse, or cessation of runoff infiltration in the permafrost. The observed tunnels were slightly inclined and could often be traced for several meters. The properties of the sediments filling these tunnels differed from the enclosing original syngenetic Pleistocene permafrost. The latter was made of ice-rich loess with abundant rootlets and was characterized by a well developed micro-lenticular cryostructure whereas the tunnels were filled with massive ice and/or organic- poor, stratified silts, sands and gravels sediments. The water content of the original syngenetic loess was about twice the water content of the sediments in the underground tunnels. The contact between the original syngenetic loess and the sediments in the tunnels was manifestly discordant and outlined by erosion lag. Release of latent heat from the poll of water and water of the saturated sediments created thaw unconformities at the tunnel boundary. Similar types of massive ice and reticulate-chaotic cryostructures were observed in Holocene to Pleistocene permafrost exposures along the Beaufort Sea Coast, on the Seward Peninsula, on the North Slope and in the Alaskan interior. The massive ice bodies and reticulate-chaotic cryostructures were always associated with, or incorporated within, ice wedges that showed signs of thermo-erosion. This indicates that the process of

  13. 30 CFR 817.14 - Casing and sealing of underground openings: Temporary.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Casing and sealing of underground openings...-UNDERGROUND MINING ACTIVITIES § 817.14 Casing and sealing of underground openings: Temporary. (a) Each mine... application for use to return underground development waste, coal processing waste or water to...

  14. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  15. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  16. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  17. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  18. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  19. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  20. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect

    Kannberg, L.D.

    1983-06-01

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  1. Experiences and prospects of nuclear astrophysics in underground laboratories

    SciTech Connect

    Junker, M.

    2014-05-09

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  2. Groundwater Management During Intermediate-to-Deep Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Lavis, Shaun; Stanley, Edward; Mostade, Marc; Turner, Matthew

    2010-05-01

    Underground coal gasification (UCG) is a safe, economic way to extract energy from coal with significant environmental benefits compared with other coal-based energy production methods. However, in the wrong hands, UCG can adversely impact groundwater systems in two ways: 1) by contamination with inorganic and organic compounds; and 2) groundwater depletion. The hydrogeological conditions of UCG are highly site-specific and so the risks to groundwater have to be evaluated on a case-by-case basis. Site selection plays a fundamental role in managing these risks and it is possible to identify the general characteristics that will minimise risks of environmental impacts. However, large volumes of water, much of which will come from groundwater, are consumed during UCG projects, leading to possible significant groundwater depletion at such settings. Insufficient water supplies will impact the quality of the syngas produced by UCG because coal conversion efficiencies will decrease. Furthermore, depletion of groundwater levels may extend beyond the UCG site boundary, with consequent implications for regulatory regimes and any off-site groundwater users. Additional artificial water supplies may therefore be required, although the manner in which the water is delivered to the UCG system will also likely have an impact on syngas quality. Large volumes of water delivered via the injection well will likely impact gasification efficiency because 1) large amounts of heat will be used to vaporise the water leading to suppression of the reactor temperature and inhibition of (endothermic) gasification reactions; and 2) the "steam jacket" originally present around the UCG reactor will be absent, which will lead to further heat loss from the system. Additional water may therefore have to be supplied via the surrounding strata and/or coal seam, thus mimicking the natural conditions prior to groundwater depletion. Much of the hydrogeological modelling to date has focussed on a single

  3. Digital Underground (Shh. It's really Applied Geophysics!)

    NASA Astrophysics Data System (ADS)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  4. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy.

    PubMed

    Dewaraja, Yuni K; Frey, Eric C; Sgouros, George; Brill, A Bertrand; Roberson, Peter; Zanzonico, Pat B; Ljungberg, Michael

    2012-08-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification-based guidance for radionuclide dosimetry.

  5. Fine designing 3-dimensional ZnO nanowalls with TiO2 nanoparticles for DSSC application

    NASA Astrophysics Data System (ADS)

    Polkoo, Sajad Saghaye; Saievar-Iranizad, Esmaiel; Bayatloo, Elham

    2015-06-01

    In this research, we report a low-cost low-temperature hydrothermal technique for covering 3-dimensional (3-D) electrodeposited ZnO nanowall with thin layer of aggregated TiO2 nanoparticles on FTO substrate for dye-sensitized solar cell application, in a way that morphology and crystal structure of ZnO nanowalls were preserved. Comparing photovoltaic characteristics of devices with and without TiO2-coating layer, it was revealed that the 3-D ZnO/TiO2-nanostructured photoanode resulted in a 35 % cell performance improved mostly because of enhancement of short-circuit current density ( J sc) and open-circuit voltage ( V oc). The XRD pattern showed that 3-D ZnO nanowalls and TiO2 compose of wurtzite and anatase phases, respectively.

  6. Comparison of Ground-Based 3-Dimensional Lightning Mapping Observation with Satellite-Based LIS Observations in Oklahoma

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Hamlin, Timothy; Boccippio, Dennis J.; Goodman, Steven J.; Christian, Hugh J.

    1999-01-01

    3-dimensional lightning mapping observations were obtained in central Oklahoma during June 1998, using New Mexico Tech's Lightning Mapping Array (LMA). The results have been compared with observations of the discharges from space obtained by NASA's Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. Excellent spatial and temporal correlations were obtained between the two sets of observations. All discharges seen by LIS were mapped by the LMA. Most of the detected optical events were associated with lightning channels that extended into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended to be detected by LIS at the time of late-stage return strokes. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud discharges and appeared to be produced by energetic K-changes that typically occur at these times.

  7. The Keilson and Storer 3-dimensional (KS-3D) line shape model: applications to optical diagnostic in combustion media

    SciTech Connect

    Joubert, Pierre

    2008-10-22

    High-resolution infrared and Raman spectroscopies require refine spectral line shape model to account for all observed features. For instance, for gaseous mixtures of light molecules with heavy perturbers, drastic changes arise particularly in the collision regime, resulting from the inhomogeneous effects due to the radiator speed-dependence of the collisional line broadening and line shifting parameters. Following our previous work concerning the collision regime, we have developed a new line shape modelization called the Keilson and Storer 3-dimensional line shape model to lower densities, when the Doppler contribution, and the collisional confinement narrowing can be no longer neglected. The consequences for optical diagnostics, particularly for H{sub 2}-N{sub 2} mixtures with high pressure and high temperature are presented. The effects of collisional relaxation on the spectral line shapes are discussed.

  8. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain.

    PubMed

    Güntürkün, Onur; Verhoye, Marleen; De Groof, Geert; Van der Linden, Annemie

    2013-01-01

    Pigeons are classic animal models for learning, memory, and cognition. The majority of the current understanding about avian neurobiology outside of the domain of the song system has been established using pigeons. Since MRI represents an increasingly relevant tool for comparative neuroscience, a 3-dimensional MRI-based atlas of the pigeon brain becomes essential. Using multiple imaging protocols, we delineated diverse ascending sensory and descending motor systems as well as the hippocampal formation. This pigeon brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. In addition, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. This pigeon brain atlas is freely available for the scientific community.

  9. New insights into the coronary artery bifurcation hypothesis-generating concepts utilizing 3-dimensional optical frequency domain imaging.

    PubMed

    Farooq, Vasim; Serruys, Patrick W; Heo, Jung Ho; Gogas, Bill D; Okamura, Takayuki; Gomez-Lara, Josep; Brugaletta, Salvatore; Garcìa-Garcìa, Hector M; van Geuns, Robert Jan

    2011-08-01

    Coronary artery bifurcations are a common challenging lesion subset accounting for approximately 10% to 20% of all percutaneous coronary interventions. The provisional T-stenting approach is generally recommended as the first-line management of most lesions. Carina shift is suggested to be the predominant mechanism of side-branch pinching during provisional T-stenting and has been indirectly inferred from bench work and other intravascular imaging modalities. Offline 3-dimensional (3D) reconstructions of patients studied in the first-in-man trial of the high-frequency (160 frames/s) Terumo optical frequency domain imaging system were undertaken using volume-rendering software. Through a series of 3D reconstructions, several novel hypothesis-generating concepts are presented.

  10. Use of foaming mud cement to terminate underground coal fires and to control subsidence of burn cavities. Final report

    SciTech Connect

    Lucero, R.F.

    1988-09-29

    Foaming Mud Cement (FMC) is a class of materials related to cellular cement studied and developed for the purpose of addressing Abandoned Mine Land problems. During the 2-year program, significant advances were made using a specific methodology that properly employed will enable the successful termination of many surface and underground coal mine fires. Fundamental but key developments attained were: the ability to effectively isolate burning coal from the available air by effectively penetrating burning coal rubble with heat-resistive FMC and encapsulating and isolation of a wide range of coal particle sizes, resulting in permanent coal-fire termination by air exclusion. The materials developed were specifically designed to terminate underground coal fires and preventing further subsidence.

  11. Influence of the implant diameter with different sizes of hexagon: analysis by 3-dimensional finite element method.

    PubMed

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; de Moraes, Sandra Lúcia Dantas; Falcón-Antenucci, Rosse Mary; de Carvalho, Paulo Sérgio Perri; Noritomi, Pedro Yoshito

    2013-08-01

    The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.

  12. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  13. Airway Wall Area Derived from 3-Dimensional Computed Tomography Analysis Differs among Lung Lobes in Male Smokers

    PubMed Central

    Tho, Nguyen Van; Trang, Le Thi Huyen; Murakami, Yoshitaka; Ogawa, Emiko; Ryujin, Yasushi; Kanda, Rie; Nakagawa, Hiroaki; Goto, Kenichi; Fukunaga, Kentaro; Higami, Yuichi; Seto, Ruriko; Nagao, Taishi; Oguma, Tetsuya; Yamaguchi, Masafumi; Lan, Le Thi Tuyet; Nakano, Yasutaka

    2014-01-01

    Background It is time-consuming to obtain the square root of airway wall area of the hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10), a comparable index of airway dimensions in chronic obstructive pulmonary disease (COPD), from all airways of the whole lungs using 3-dimensional computed tomography (CT) analysis. We hypothesized that √Aaw at Pi10 differs among the five lung lobes and √Aaw at Pi10 derived from one certain lung lobe has a high level of agreement with that derived from the whole lungs in smokers. Methods Pulmonary function tests and chest volumetric CTs were performed in 157 male smokers (102 COPD, 55 non-COPD). All visible bronchial segments from the 3rd to 5th generations were segmented and measured using commercially available 3-dimensional CT analysis software. √Aaw at Pi10 of each lung lobe was estimated from all measurable bronchial segments of that lobe. Results Using a mixed-effects model, √Aaw at Pi10 differed significantly among the five lung lobes (R2 = 0.78, P<0.0001). The Bland-Altman plots show that √Aaw at Pi10 derived from the right or left upper lobe had a high level of agreement with that derived from the whole lungs, while √Aaw at Pi10 derived from the right or left lower lobe did not. Conclusion In male smokers, CT-derived airway wall area differs among the five lung lobes, and airway wall area derived from the right or left upper lobe is representative of the whole lungs. PMID:24865661

  14. Open Thermodynamic System Concept for Fluviokarst Underground Temperature and Discharge Flow Assessments

    NASA Astrophysics Data System (ADS)

    Machetel, P.; Yuen, D. A.

    2012-12-01

    In this work, we propose to use Open Thermodynamic System (OTS) frameworks to assess temperatures and discharges of underground flows in fluviokarstic systems. The theoretical formulation is built on the first and second laws of thermodynamics. However, such assumptions would require steady states in the Control Volume to cancel the heat exchanges between underground water and embedding rocks. This situation is obviously never perfectly reached in Nature where flow discharges and temperatures vary with rainfalls, recessions and seasonal or diurnal fluctuations. First, we will shortly show that the results of a pumping test campaign on the Cent-Font (Hérault, France) fluviokarst during summer 2005 are consistent with this theoretical approach. Second, we will present the theoretical formalism of the OTS framework that leads to equation systems involving the temperatures and/or the discharges of the underground and surface flows.Third, this approach will be applied to the white (2003) conceptual model of fluviokarst, and we will present the numerical model built to assess the applicability of these assumptions. The first order of the field hydrologic properties observed at the Cent-Fonts resurgence are well described by the calculations based on this OTS framework. If this agreement is necessary, it is not sufficient to validate the method. In order to test its applicability, the mixing process has been modelized as a cooling reaction in a Continuous Stirred Tank Reactor (CSTR) for which matrix and intrusive flows are introduced continuously while effluent water is recovered at the output. The enthalpy of the various flows is conserved except for the part that exchanges heat with the embedding rocks. However the numerical model shows that in the water saturated part of the CS, the matrix flow swepts heat by convective-advective processes while temporal heat fluctuations from intrusive flows cross the CV walls. The numerical model shows that the convective flow from

  15. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  16. Heat Islands

    EPA Pesticide Factsheets

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  17. Statistical Analysis of Resistivity Anomalies Caused by Underground Caves

    NASA Astrophysics Data System (ADS)

    Frid, V.; Averbach, A.; Frid, M.; Dudkinski, D.; Liskevich, G.

    2017-03-01

    Geophysical prospecting of underground caves being performed on a construction site is often still a challenging procedure. Estimation of a likelihood level of an anomaly found is frequently a mandatory requirement of a project principal due to necessity of risk/safety assessment. However, the methodology of such estimation is not hitherto developed. Aiming to put forward such a methodology the present study (being performed as a part of an underground caves mapping prior to the land development on the site area) consisted of application of electrical resistivity tomography (ERT) together with statistical analysis utilized for the likelihood assessment of underground anomalies located. The methodology was first verified via a synthetic modeling technique and applied to the in situ collected ERT data and then crossed referenced with intrusive investigations (excavation and drilling) for the data verification. The drilling/excavation results showed that the proper discovering of underground caves can be done if anomaly probability level is not lower than 90 %. Such a probability value was shown to be consistent with the modeling results. More than 30 underground cavities were discovered on the site utilizing the methodology.

  18. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-05-22

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  19. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  20. Methodology for assessment of contamination of the unsaturated zone by leaking underground storage tanks

    SciTech Connect

    DiGiano, F.A.; Miller, C.T.; Roche, A.C.; Wallingford, E.D.

    1988-01-01

    Three methods of measuring contamination of the partially saturated zone by leaking underground fuel tanks were investigated. Two of the methods relied upon obtaining a soil core from the field. These differed in the method of extraction: (1) by nitrogen purge of the entire core, followed by adsorption-solvent extraction and gas chromatographic (GC) analysis, and (2) by sonication of a small sub-sample from the core, followed by solvent extraction and GC analysis. The third method focused on saturation zone. This required use of a driveable ground probe (DGP) and activated carbon trap, followed by solvent extraction and GC analysis. The soil core procedures required construction of a sampling tube that proved successful in the system upon return to the laboratory. Recoveries approaching 100% were achieved in the nitrogen purge procedure by: heating the soil core to 100 C; trapping water exiting the soil core prior to the adsorption step; and using activated carbon instead of Tenax as the adsorbent. Vapor phase measurements provided a convenient way to map the extent of contamination from a leaking underground gasoline storage tank at the Camp Lejeune site. Concentrations of target compounds ranged from 10,000 micrograms/L (ug/L) to < 10 ug/L of vapor phase. The highest concentrations were found above the non-aqueous-phase liquid (NAPL). However, the method was able to show that contamination exists well beyond the NAPL, although the concentrations drop off precipitously. 36 refs., 29 figs., 11 tabs.

  1. Characterization of a potential underground coal gasification site in the state of Washington

    SciTech Connect

    Bartel, L. C.; Dobecki, T. L.; Stone, R.

    1980-01-01

    Sandia Laboratories, Lawrence Livermore Laboratory, and the Laramie Energy Technology Center participated in a Department of Energy funded program to select and characterize a potential underground coal gasification test site in the State of Washington. A site in the Centralia-Chehalis coal district, satisfying certain criteria, was selected for characterization. The characterization procedures included surface and borehole techniques and hydrology tests. Geologic structure and coal seam structure and continuity were determined using surface geophysical prospecting (seismic and electromagnetic surveys) and borehole geophysical (logging and cross-borehole, in-seam seismic) techniques. A complete suite of geophysical logs was taken in eight exploratory boreholes to determine lithology and properties of the coal and surrounding strata. Coal cores taken from four different exploratory boreholes were analyzed to determine coal quality. Results of the characterization show that the coal seam of interest is approximately 47 ft thick at a depth of 570 to 600 ft at the site. The seam is characterized by high ash content, relatively low overall heating value, and a low permeability. The site appears suitable for conducting an underground coal gasification test.

  2. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  3. Evacuation of aged persons from inundated underground space.

    PubMed

    Ishigaki, T; Asai, Y; Nakahata, Y; Shimada, H; Baba, Y; Toda, K

    2010-01-01

    Underground is an important space that supports function of cities, such as subways, shopping malls and basement parking. However in consequence a new type of disaster, the "urban flood" menaces these spaces. In the last decade, urban floods struck Tokyo, Nagoya and Fukuoka. When underground inundation occurs, people must evacuate to the ground as soon as possible. But, when such an inundation situation happens, aged persons may not be able to evacuate quickly to ground level. In this paper, the method of safety assessment for aged persons is discussed on the experimental results and flood simulation data in an underground space. As a criterion of the safety evacuation, the specific force per unit width is used in this study. From the result of experiments, it is difficult to implement safety evacuation when the specific force per unit width is over 0.100 m(2) for the aged male.

  4. The epidemiology of suicide on the London Underground.

    PubMed

    O'Donnell, I; Farmer, R D

    1994-02-01

    A database containing details of every incident of suicidal behaviour on the London Underground railway system between 1940 and 1990 was assembled from the records of London Underground Ltd and the British Transport Police. The total number of cases was 3240. The mean annual number of suicidal acts on the London Underground system increased from 36.1 (1940-1949) to 94.1 (1980-1989). There were significantly fewer incidents on Sundays than on the other days of the week and the daily rate was highest in the spring. 64% of incidents involved males and the peak age group for both sexes was 25-34 yr. Suicide verdicts were returned for a greater proportion of women than men. Overall case fatality was 55%. However, case fatality rates differed between stations, environmental factors appearing to influence survival. Possible strategies to prevent railway suicides and reduce the lethality of this method are discussed.

  5. A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany

    NASA Astrophysics Data System (ADS)

    Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.

    2014-12-01

    We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is

  6. Sinkhole development induced by underground quarrying, and the related hazard

    NASA Astrophysics Data System (ADS)

    Parise, M.; Delle Rose, M.

    2009-04-01

    Sinkholes are extremely widespread in Apulia, a very flat and carbonate region, that acted as the foreland during the phases of building up of the Southern Apenninic Chain in Miocene time. This is due to the presence of soluble rocks throughout the region, that highly predispose the area to this very subtle natural hazard. In addition to the natural setting, which favours their development, sinkholes may also be induced by anthropogenic activities. In the latter sense, underground quarrying represents one of the most dangerous activities in karst areas. Apulia has a long history of quarrying. Since the roman time, the local rocks, from the Cretaceous micritic limestones to the Quaternary calcarenites, have been intensely quarried and used as building and ornamental materials. In several settings of the region, the rocks with the best petrographic characteristics are located at depths ranging from a few to some tens of meters. This caused the opening of many underground quarries, and the development of a complex network of subterranean galleries. Underground quarrying had a great impulse at the turn between the XIX and the XX century, when a large number of quarries was opened. Later on, after the Second World War, most of the quarries were progressively abandoned, even because of the first signs of instability, both underground and at the ground surface. With time, the memory of the presence and development of the underground quarries was progressively lost, with severe repercussions on the safety of the land above the excavated areas. Lack of knowledge of the subterranean pattern of galleries, combined with the expansion of the built-up areas at the surface, resulted in increasing significantly the vulnerability of exposed elements at risk. Events such as the 29 March, 2007, at Gallipoli only by chance did not result in any casualties, when a 15-mt wide and 5-mt deep sinkhole opened in a few hours at a road crossing, above the site of an old underground quarry

  7. Approach to evaluating leak detection methods in underground storage tanks

    NASA Astrophysics Data System (ADS)

    Starr, J.; Broscious, J.; Niaki, S.

    1986-10-01

    The detection and evaluation of leaks in underground storage tanks require a detailed knowledge of conditions both within the tank and in the nearby surroundings. The test apparatus, as constructed, enables data regarding these environmental conditions to be readily obtained and incorporated in a carefully structured test program that minimizes the amount of costly full-scale testing that would otherwise be required to evaluate volumetric leak detection methods for underground storage tanks. In addition, sufficient flexibility has been designed into the apparatus to enable additional evaluations of non-volumetric test methods to be conducted, and different types of tanks and products to be tested in a cost-effective manner.

  8. Dielectric testing of polysil for inexpensive underground distribution and transmission

    SciTech Connect

    Lindsey, K.E.; Schroeder, J.E.; Zlotin, Y.A.

    1981-03-01

    The monomer and aggregate content of POLYSIL was optimized, as well as processing techniques, to optimize the physical and electrical properties for use in underground applications. POLYSIL castings with embedded electrodes, ranging in size from 8 pounds to 13,000 pounds, have been produced. The largest polyester/styrene based POLYSIL casting weighed 13,000 pounds and the largest methyl methacrylate casting weighed 8 pounds. Statistical analysis has been performed on over 200 test specimens. Design curves for POLYSIL, as an underground insulating material, are presented.

  9. Sudden stratospheric warmings seen in MINOS deep underground muon data

    SciTech Connect

    Osprey, S.; Barnett, J.; Smith, J.; Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Baller, B.; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

    2009-01-01

    The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

  10. Sea water contamination in underground waters of salento (Southern Italy).

    PubMed

    Buccolieri, G; Cardellicchio, N; Dell'Atti, A; Genga, A; Strisciullo, G

    2001-01-01

    In the present work, a study of a physico-chemical characterisation of underground waters, utilised for agriculture and human use in the Lecce district (Southern Italy) has been reported. The aim of the work has been to define the quality of underground waters in the different areas and to value salt contamination due to seawater intrusion. Statistical techniques, such as Principal Component Analysis (PCA) and Cluster Analysis (CA), have been utilised to examine the correlations among the different parameters and to define contamination areas. The results have shown a high salt contamination in artesian wells of the Ionian Sea coast.

  11. Image-driven cardiac left ventricle segmentation for the evaluation of multiview fused real-time 3-dimensional echocardiography images.

    PubMed

    Rajpoot, Kashif; Noble, J Alison; Grau, Vicente; Szmigielski, Cezary; Becher, Harald

    2009-01-01

    Real-time 3-dimensional echocardiography (RT3DE) permits the acquisition and visualization of the beating heart in 3D. Despite a number of efforts to automate the left ventricle (LV) delineation from RT3DE images, this remains a challenging problem due to the poor nature of the acquired images usually containing missing anatomical information and high speckle noise. Recently, there have been efforts to improve image quality and anatomical definition by acquiring multiple single-view RT3DE images with small probe movements and fusing them together after alignment. In this work, we evaluate the quality of the multiview fused images using an image-driven semiautomatic LV segmentation method. The segmentation method is based on an edge-driven level set framework, where the edges are extracted using a local-phase inspired feature detector for low-contrast echocardiography boundaries. This totally image-driven segmentation method is applied for the evaluation of end-diastolic (ED) and end-systolic (ES) single-view and multiview fused images. Experiments were conducted on 17 cases and the results show that multiview fused images have better image segmentation quality, but large failures were observed on ED (88.2%) and ES (58.8%) single-view images.

  12. Evaluation of Temperature and Stress Distribution on 2 Different Post Systems Using 3-Dimensional Finite Element Analysis

    PubMed Central

    Değer, Yalçın; Adigüzel, Özkan; Özer, Senem Yiğit; Kaya, Sadullah; Polat, Zelal Seyfioğlu; Bozyel, Bejna

    2015-01-01

    Background The mouth is exposed to thermal irritation from hot and cold food and drinks. Thermal changes in the oral cavity produce expansions and contractions in tooth structures and restorative materials. The aim of this study was to investigate the effect of temperature and stress distribution on 2 different post systems using the 3-dimensional (3D) finite element method. Material/Methods The 3D finite element model shows a labio-lingual cross-sectional view of the endodontically treated upper right central incisor and supporting periodontal ligament with bone structures. Stainless steel and glass fiber post systems with different physical and thermal properties were modelled in the tooth restored with composite core and ceramic crown. We placed 100 N static vertical occlusal loading onto the center of the incisal surface of the tooth. Thermal loads of 0°C and 65°C were applied on the model for 5 s. Temperature and thermal stresses were determined on the labio-lingual section of the model at 6 different points. Results The distribution of stress, including thermal stress values, was calculated using 3D finite element analysis. The stainless steel post system produced more temperature and thermal stresses on the restorative materials, tooth structures, and posts than did the glass fiber reinforced composite posts. Conclusions Thermal changes generated stresses in the restorative materials, tooth, and supporting structures. PMID:26615495

  13. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    PubMed Central

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  14. The First Observation of 3-Dimensional Motion and Twist in Sperm Flagella of the Stag Beetle Prosopocoilus inclinates

    NASA Astrophysics Data System (ADS)

    Irie, Masaru; Kubo-Irie, Miyoko; Mohri, Hideo

    We discovered the 3-dimensional twist motion of sperm flagella of the stag beetle Prosopocoilus inclinates. The morphological features are discussed with experimental data obtained through various ‘imaging techniques’ including those developed in thermo-nuclear fusion research. The helical deformation length observed in the optical micrograph agreed statistically with those of transmission electron micrographs (TEM) on both ultra-thin section and negatively stained samples. This indicated that the helical twist mechanism of flagellar axoneme could be safely discussed from TEM. In order to elucidate this, we applied the newly developed Constrained Electron Beam Tomography (CEBT) technique adapted from our unique fusion plasma diagnosis. This requires basic assumptions of “the optimum deformation” and “the coherent length” as mathematical constraints. The results are the key parameters of the flagellum deformation, e.g. the helical pitch (HP) of both axoneme and mitochondrial derivatives as well as the phase slip (PS) between them. They allow the quantitative discussion on this motion.

  15. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles.

    PubMed

    Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne

    2013-04-01

    Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.

  16. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    SciTech Connect

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  17. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    DOE PAGES

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less

  18. Culture of murine aortic explants in 3-dimensional extracellular matrix: a novel, miniaturized assay of angiogenesis in vitro.

    PubMed

    Reed, May J; Karres, Nathan; Eyman, Daniel; Vernon, Robert B

    2007-05-01

    Assays of angiogenesis in vitro are critical to the study of vascular morphogenesis and to the evaluation of therapeutic compounds that promote or inhibit vascular growth. Culture of explanted aortic segments from rats or mice in a 3-dimensional extracellular matrix (ECM) is one of the most effective ways to generate capillary-like endothelial sprouts in vitro. We have modified the classic aortic explant model by placing the aortic segments from mice within small (5.6 mm diameter, 30 microl volume) lenticular hydrogels of type I collagen supported at the edge by nylon mesh rings. This method of culture, referred to as the "miniature ring-supported gel" (MRSG) assay, optimizes handling, cytological staining, and conventional imaging of the specimen and permits use of minimal volumes of reagents in a 96-well tissue culture format. We have used the MRSG assay to quantify the impaired angiogenic response of aged mice relative to young mice and to show that aged mice have significantly decreased sprout formation, but have similar levels of invasion of vascular smooth muscle cells into the supportive ECM. The MRSG assay, which combines low volume, physically robust gels in conjunction with mouse aortic segments, may prove to be a highly useful tool in studies of the process and control of vascular growth.

  19. A Novel 3 Dimensional Stromal-based Model for In Vitro Chemotherapy Sensitivity Testing of Leukemia Cells

    PubMed Central

    Aljitawi, Omar S.; Li, Dandan; Xiao, Yinghua; Zhang, Da; Ramachandran, Karthik; Stehno-Bittel, Lisa; Van Veldhuizen, Peter; Lin, Tara L.; Kambhampati, Suman; Garimella, Rama

    2014-01-01

    The disparate responses of leukemia cells to chemotherapy in vivo, compared to in vitro, is partly related to the interactions of leukemic cells and the 3 dimensional (3D) bone marrow stromal microenvironment. We investigated the effects of chemotherapy agents on leukemic cell lines co-cultured with human bone marrow mesenchymal stem cell (hu-BM-MSC) in 3D. Comparison was made to leukemic cells treated in suspension, or grown on a hu-BM-MSC monolayer (2D conditions). We demonstrated that leukemic cells cultured in 3D were more resistant to drug-induced apoptosis compared to cells cultured in 2D or in suspension. We also demonstrated significant differences in leukemic cell response to chemotherapy using different leukemic cell lines cultured in 3D. We suggest that the differential responses to chemotherapy in 3D may be related to the expression of N-cadherin in the co-culture system. This unique model provides an opportunity to study leukemic cell responses to chemotherapy in 3D. PMID:23566162

  20. Do All Patients of Breast Carcinoma Need 3-Dimensional CT-Based Planning? A Dosimetric Study Comparing Different Breast Sizes

    SciTech Connect

    Munshi, Anusheel Pai, Rajeshri H.; Phurailatpam, Reena; Budrukkar, Ashwini; Jalali, Rakesh; Sarin, Rajiv; Deshpande, D.D.; Shrivastava, Shyam K.; Dinshaw, Ketayun A.

    2009-07-01

    Evaluation of dose distribution in a single plane (i.e., 2-dimensional [2D] planning) is simple and less resource-intensive than CT-based 3-dimensional radiotherapy (3DCRT) planning or intensity modulated radiotherapy (IMRT). The aim of the study was to determine if 2D planning could be an appropriate treatment in a subgroup of breast cancer patients based on their breast size. Twenty consecutive patients who underwent breast conservation were planned for radiotherapy. The patients were grouped in 3 different categories based on their respective chest wall separation (CWS) and the thickness of breast, as 'small,' 'medium,' and 'large.' Two more contours were taken at locations 5 cm superior and 5 cm inferior to the isocenter plane. Maximum dose recorded at specified points was compared in superior/inferior slices as compared to the central slice. The mean difference for small breast size was 1.93 (standard deviation [SD] = 1.08). For medium breas size, the mean difference was 2.98 (SD = 2.40). For the large breasts, the mean difference was 4.28 (SD = 2.69). Based on our dosimetric study, breast planning only on the single isocentric contour is an appropriate technique for patients with small breasts. However, for large- and medium-size breasts, CT-based planning and 3D planning have a definite role. These results can be especially useful for rationalizing treatment in busy oncology centers.