Families of Quintic Calabi Yau 3 Folds with Discrete Symmetries
NASA Astrophysics Data System (ADS)
Doran, Charles; Greene, Brian; Judes, Simon
2008-06-01
At special loci in their moduli spaces, Calabi Yau manifolds are endowed with discrete symmetries. Over the years, such spaces have been intensely studied and have found a variety of important applications. As string compactifications they are phenomenologically favored, and considerably simplify many important calculations. Mathematically, they provided the framework for the first construction of mirror manifolds, and the resulting rational curve counts. Thus, it is of significant interest to investigate such manifolds further. In this paper, we consider several unexplored loci within familiar families of Calabi Yau hypersurfaces that have large but unexpected discrete symmetry groups. By deriving, correcting, and generalizing a technique similar to that of Candelas, de la Ossa and Rodriguez Villegas, we find a calculationally tractable means of finding the Picard Fuchs equations satisfied by the periods of all 3 forms in these families. To provide a modest point of comparison, we then briefly investigate the relation between the size of the symmetry group along these loci and the number of nonzero Yukawa couplings. We include an introductory exposition of the mathematics involved, intended to be accessible to physicists, in order to make the discussion self contained.
Zhang, Yunyan; Sanchez, Ana M; Wu, Jiang; Aagesen, Martin; Holm, Jeppe V; Beanland, Richard; Ward, Thomas; Liu, Huiyun
2015-05-13
A quasi-3-fold composition symmetry has for the first time been observed in self-catalyzed III-V-V core-shell nanowires. In GaAsP nanowires, phosphorus-rich sheets on radial {110} planes originating at the corners of the hexagonal core were observed. In a cross section, they appear as six radial P-rich bands that originate at the six outer corners of the hexagonal core, with three of them higher in P content along ⟨112⟩A direction and others along ⟨112⟩B, forming a quasi-3-fold composition symmetry. We propose that these P-rich bands are caused by a curvature-induced high surface chemical potential at the small corner facets, which drives As adatoms away more efficiently than P adatoms. Moreover, their polarity related P content difference can be explained by the different adatom bonding energies at these polar corner facets. These results provide important information on the further development of shell growth in the self-catalyzed core-shell NW structure and, hence, device structure for multicomponent material systems.
Polynomial shape of an inclined ellipsoid with rotational symmetry about its major axis.
Castañeda-Escobar, Lizbeth A; Malacara-Hernández, Daniel
2006-08-01
We present the approximate polynomial expression for an ellipsoid with rotational symmetry about its major axis, which is on the y-z plane and at angle theta with respect to the z axis. These expressions have many possible useful applications in optics as shown. The main optical properties of these types of inclined ellipsoidal surface will be reviewed.
Co-Spin With Symmetry Axis Stabilization, and De-Spin for Asteroid Capture
NASA Technical Reports Server (NTRS)
Shen, Haijun; Roithmayr, Carlos M.
2014-01-01
Consideration is given to attitude control associated with capturing a free-flying asteroid using an axisymmetric spacecraft. Asymptotically stable controllers are designed to align the spacecraft axis of symmetry with a line of descent that is fixed in the asteroid, and to eliminate all relative angular velocity before capture takes place. An analytical expression is presented for the torque required to maintain alignment of the axes of symmetry of the spacecraft and an axisymmetric asteroid. After the asteroid is securely captured, the angular velocity of the rigid composite body relative to an inertial frame is arrested; we present a controller that is asymptotically stable and stays within specified thrust limits.
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Lee, H.; Seol, J.; Aydemir, A. Y.
2015-08-01
Theory for neoclassical toroidal plasma viscosity in the low collisionality regime is extended to the vicinity of the magnetic axis in tokamaks with broken symmetry. The toroidal viscosity is induced by particles drifting off the perturbed magnetic surface under the influence of the symmetry breaking magnetic field. In the region away from the magnetic axis, the drift orbit dynamics is governed by the bounce averaged drift kinetic equation in the low collisionality regimes. In the vicinity of the magnetic axis, it is the drift kinetic equation, averaged over the trapped particle orbits, i.e., potato orbits, that governs the drift dynamics. The orbit averaged drift kinetic equation is derived when collision frequency is low enough for trapped particles to complete their potato trajectories. The resultant equation is solved in the 1 /ν regime to obtain transport fluxes and, thus, toroidal plasma viscosity through flux-force relation. Here, ν is the collision frequency. The viscosity does not vanish on the magnetic axis, and has the same scalings as that in the region away from magnetic axis, except that the fraction of bananas is replaced by the fraction of potatoes. It also has a weak radial dependence. Modeling of plasma flow velocity V for the case where the magnetic surfaces are broken is also discussed.
Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Benolken, Martha S.
1992-01-01
Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulo-ocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.
Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Benolken, Martha S.
1991-01-01
Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.
NASA Astrophysics Data System (ADS)
Konosevich, B. I.
2014-07-01
The error of the Wentzel-Kramers-Brillouin solution of the equations describing the angular motion of the axis of symmetry of rotation of a rigid body (projectile) is estimated. It is established that order of this estimate does not depend on whether the low-frequency oscillations of the axis of symmetry are damped or not
An Investigation Into 6-Fold Symmetry in Martensitic Steels
NASA Astrophysics Data System (ADS)
Kinney, Christopher; Pytlewski, Ken; Qi, Liang; Khachaturyan, Armen G.; Morris, J. W.
2016-11-01
Austenite grains that have undergone a martensitic transformation are typically composed of 24 variants that can be categorized by their Bain axis of transformation. There are 3 <001> axes for Bain transformations, therefore the (001) pole figure of a prior austenite grain displays 3-fold symmetry. However, we observed superficially similar prior austenite grains containing 6-fold symmetry in the (001) pole figure. This paper introduces evidence of this 6-fold symmetry and explores the crystallographic origins.
Martin, James E; Solis, Kyle J
2016-01-28
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry-breaking rational fields-consists of three mutually orthogonal fields, two alternating and one dc, and the second type-rational triads-consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. These orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less
Breaking the Azimuthal Symmetry-Jumping Off-aAis or Staying Away from the Axis?
2002-06-24
Staying Away from the Axis? Eli Sarid , 1 Catalin Teodorescu 2 , Phil Marcus 3 and Joel Fajans Physics Department, University of California, Berkeley...has a shift D firom the axis ( D might be zero). The background has radius of rb (which might be as large as the wall radius, but can also be smaller...results of both the experiments and the simulations, but they are not crucial to the emerging physical picture. With these assumptions, only D and rb remain
Moody, J. D. Robey, H. F.; Celliers, P. M.; Munro, D. H.; Barker, D. A.; Baker, K. L.; Döppner, T.; Hash, N. L.; Berzak Hopkins, L.; LaFortune, K.; Landen, O. L.; LePape, S.; MacGowan, B. J.; Ralph, J. E.; Ross, J. S.; Widmayer, C.; Nikroo, A.; Giraldez, E.; Boehly, T.
2014-09-15
An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4 mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements.
Ge, Xiaoyan; Lyman-Gingerich, Jamie; Holguin, Christiana; Dimitrova, Eva; Abrams, Elliot W.; Gupta, Tripti; Marlow, Florence L.; Yabe, Taijiro; Adler, Anna; Mullins, Mary C.; Pelegri, Francisco
2014-01-01
Maternal homozygosity for three independent mutant hecate alleles results in embryos with reduced expression of dorsal organizer genes and defects in the formation of dorsoanterior structures. A positional cloning approach identified all hecate mutations as stop codons affecting the same gene, revealing that hecate encodes the Glutamate receptor interacting protein 2a (Grip2a), a protein containing multiple PDZ domains known to interact with membrane-associated factors including components of the Wnt signaling pathway. We find that grip2a mRNA is localized to the vegetal pole of the oocyte and early embryo, and that during egg activation this mRNA shifts to an off-center vegetal position corresponding to the previously proposed teleost cortical rotation. hecate mutants show defects in the alignment and bundling of microtubules at the vegetal cortex, which result in defects in the asymmetric movement of wnt8a mRNA as well as anchoring of the kinesin-associated cargo adaptor Syntabulin. We also find that, although short-range shifts in vegetal signals are affected in hecate mutant embryos, these mutants exhibit normal long-range, animally directed translocation of cortically injected dorsal beads that occurs in lateral regions of the yolk cortex. Furthermore, we show that such animally-directed movement along the lateral cortex is not restricted to a single arc corresponding to the prospective dorsal region, but occur in multiple meridional arcs even in opposite regions of the embryo. Together, our results reveal a role for Grip2a function in the reorganization and bundling of microtubules at the vegetal cortex to mediate a symmetry-breaking short-range shift corresponding to the teleost cortical rotation. The slight asymmetry achieved by this directed process is subsequently amplified by a general cortical animally-directed transport mechanism that is neither dependent on hecate function nor restricted to the prospective dorsal axis. PMID:24967891
Bricault, Christine A.; Perry, Keith L.
2013-06-05
In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majority of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.
Symmetry in context: salience of mirror symmetry in natural patterns.
Cohen, Elias H; Zaidi, Qasim
2013-05-31
Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits.
Symmetry in context: Salience of mirror symmetry in natural patterns
Cohen, Elias H.; Zaidi, Qasim
2013-01-01
Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits. PMID:23729773
Symmetry impedes symmetry discrimination.
Tjan, Bosco S; Liu, Zili
2005-12-16
Objects in the world, natural and artificial alike, are often bilaterally symmetric. The visual system is likely to take advantage of this regularity to encode shapes for efficient object recognition. The nature of encoding a symmetric shape, and of encoding any departure from it, is therefore an important matter in visual perception. We addressed this issue of shape encoding empirically, noting that a particular encoding scheme necessarily leads to a specific profile of sensitivity in perceptual discriminations. We studied symmetry discrimination using human faces and random dots. Each face stimulus was a frontal view of a three-dimensional (3-D) face model. The 3-D face model was a linearly weighted average (a morph) between the model of an original face and that of the corresponding mirror face. Using this morphing technique to vary the degree of asymmetry, we found that, for faces and analogously generated random-dot patterns alike, symmetry discrimination was worst when the stimuli were nearly symmetric, in apparent opposition to almost all studies in the literature. We analyzed the previous work and reconciled the old and new results using a generic model with a simple nonlinearity. By defining asymmetry as the minimal difference between the left and right halves of an object, we found that the visual system was disproportionately more sensitive to larger departures from symmetry than to smaller ones. We further demonstrated that our empirical and modeling results were consistent with Weber-Fechner's and Stevens's laws.
Stability of two-fold screw axis structures for cellulose
Technology Transfer Automated Retrieval System (TEKTRAN)
Diffraction crystallography indicates that most forms of crystalline cellulose have two-fold screw axis symmetry. Even if exact symmetry is absent, the degree of pseudo symmetry is very high. On the other hand, this symmetry leads to short contacts between H4 and H1' across the glycosidic linkage....
NASA Astrophysics Data System (ADS)
Nucci, M. C.
2016-09-01
We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.
Moubayidin, Laila; Østergaard, Lars
2015-09-01
985 I. 985 II. 986 III. 987 IV. 988 V. 989 989 References 989 SUMMARY: The development of multicellular organisms depends on correct establishment of symmetry both at the whole-body scale and within individual tissues and organs. Setting up planes of symmetry must rely on communication between cells that are located at a distance from each other within the organism, presumably via mobile morphogenic signals. Although symmetry in nature has fascinated scientists for centuries, it is only now that molecular data to unravel mechanisms of symmetry establishment are beginning to emerge. As an example we describe the genetic and hormonal interactions leading to an unusual bilateral-to-radial symmetry transition of an organ in order to promote reproduction.
Solution structure of ApaG from Xanthomonas axonopodis pv. citri reveals a fibronectin-3 fold.
Cicero, Daniel O; Contessa, Gian M; Pertinhez, Thelma A; Gallo, Mariana; Katsuyama, Angela M; Paci, Maurizio; Farah, Chuck S; Spisni, Alberto
2007-05-01
ApaG proteins are found in a wide variety of bacterial genomes but their function is as yet unknown. Some eukaryotic proteins involved in protein-protein interactions, such as the human polymerase delta-interacting protein (PDIP38) and the F Box A (FBA) proteins, contain ApaG homology domains. We have used NMR to determine the solution structure of ApaG protein from the plant pathogen Xanthomonas axonopodis pv. citri (ApaG(Xac)) with the aim to shed some light on its molecular function. ApaG(Xac) is characterized by seven antiparallel beta strands forming two beta sheets, one containing three strands (ABE) and the other four strands (GFCC'). Relaxation measurements indicate that the protein has a quite rigid structure. In spite of the presence of a putative GXGXXG pyrophosphate binding motif ApaG(Xac) does not bind ATP or GTP, in vitro. On the other hand, ApaG(Xac) adopts a fibronectin type III (Fn3) fold, which is consistent with the hypothesis that it is involved in mediating protein-protein interactions. The fact that the proteins of ApaG family do not display significant sequence similarity with the Fn3 domains found in other eukaryotic or bacterial proteins suggests that Fn3 domain may have arisen earlier in evolution than previously estimated.
ERIC Educational Resources Information Center
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
Symmetry, winding number, and topological charge of vortex solitons in discrete-symmetry media
Garcia-March, Miguel-Angel; Zacares, Mario; Sahu, Sarira; Ceballos-Herrera, Daniel E.
2009-05-15
We determine the functional behavior near the discrete rotational symmetry axis of discrete vortices of the nonlinear Schroedinger equation. We show that these solutions present a central phase singularity whose charge is restricted by symmetry arguments. Consequently, we demonstrate that the existence of high-charged discrete vortices is related to the presence of other off-axis phase singularities, whose positions and charges are also restricted by symmetry arguments. To illustrate our theoretical results, we offer two numerical examples of high-charged discrete vortices in photonic crystal fibers showing hexagonal discrete rotational invariance.
Electrical-Discharge Machining With Additional Axis
NASA Technical Reports Server (NTRS)
Malinzak, Roger M.; Booth, Gary N.
1991-01-01
Proposed electrical-discharge-machining (EDM) apparatus uses moveable vertical wire as electrode. Wire positionable horizontally along one axis as it slides vertically past workpiece. Workpiece indexed in rotation about horizontal axis. Because of symmetry of parts, process used to make two such parts at a time by defining boundary between them. Advantages: cost of material reduced, imparts less residual stress to workpiece, and less time spent machining each part when parts produced in such symmetrical pairs.
None
2016-07-12
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not ârenormalizableâ. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged âvectorâ particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of
2011-02-24
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of
Klemm, R. A.; Arnold, G.; Bille, A.; Rieck, C. T.; Scharnberg, K.
1999-09-20
Li et al. found that the critical current density J{sub c}{sup J} across atomically clean c-axis twist junctions of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} is the same as that of the constituent single crystal, J{sub c}{sup S}, independent of the twist angle {phi}{sub 0}, even at and below T{sub c}. They investigated theoretically if a d{sub x{sup 2}{minus}y{sup 2}} wave order parameter might twist by mixing in d{sub xy}-wave components, but found that such mixing cannot possibly explain the data near to T{sub c}. Combined with group theoretical arguments, they then conclude that the order parameter contains at least a substantial s-wave component, but does not contain any purported d{sub x{sup 2}{minus}y{sup 2}}-wave component, except possibly below a second, unobserved phase transition. By studying tunneling models, they further conclude that the intrinsic c-axis Josephson tunneling in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} is likely to be mostly incoherent.
3D surface configuration modulates 2D symmetry detection.
Chen, Chien-Chung; Sio, Lok-Teng
2015-02-01
We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection.
The symmetry properties of planetary magnetic fields
Raedler, K.H. ); Ness, N.F. )
1990-03-01
This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.
Continuous symmetry measures for complex symmetry group.
Dryzun, Chaim
2014-04-05
Symmetry is a fundamental property of nature, used extensively in physics, chemistry, and biology. The Continuous symmetry measures (CSM) is a method for estimating the deviation of a given system from having a certain perfect symmetry, which enables us to formulate quantitative relation between symmetry and other physical properties. Analytical procedures for calculating the CSM of all simple cyclic point groups are available for several years. Here, we present a methodology for calculating the CSM of any complex point group, including the dihedral, tetrahedral, octahedral, and icosahedral symmetry groups. We present the method and analyze its performances and errors. We also introduce an analytical method for calculating the CSM of the linear symmetry groups. As an example, we apply these methods for examining the symmetry of water, the symmetry maps of AB4 complexes, and the symmetry of several Lennard-Jones clusters.
Brenneman, B.
1983-11-15
A fluid turbine, the rotation axis of which is transverse to the direction of fluid flow, has at least two blade assemblies mounted for rotation about the rotation axis. Each blade assembly includes a streamlined elongated blade having a span parallel to the rotation axis. Each blade is pivotable about a pivot axis parallel to and spaced from the rotation axis. The pivot axis is located circumferentially ahead of the blade center of pressure with respect to the direction of turbine rotation. Each blade assembly is so constructed that its center of mass is located either at its pivot axis or circumferentially at its pivot axis and radially outboard of its pivot axis.
The near-symmetry of proteins.
Bonjack-Shterengartz, Maayan; Avnir, David
2015-04-01
The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook.
Spin-stabilized magnetic levitation without vertical axis of rotation
Romero, Louis; Christenson, Todd; Aaronson, Gene
2009-06-09
The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.
Relativistic Pseudospin Symmetry
Ginocchio, Joseph N.
2011-05-06
We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.
Internal symmetry in protein structures: prevalence, functional relevance and evolution.
Balaji, Santhanam
2015-06-01
Symmetry has been found at various levels of biological organization in the protein structural universe. Numerous evolutionary studies have proposed connections between internal symmetry within protein tertiary structures, quaternary associations and protein functions. Recent computational methods, such as SymD and CE-Symm, facilitate a large-scale detection of internal symmetry in protein structures. Based on the results from these methods, about 20% of SCOP folds, superfamilies and families are estimated to have structures with internal symmetry (Figure 1d). All-β and membrane proteins fold classes contain a relatively high number of unique instances of internal symmetry. In addition to the axis of symmetry, anecdotal evidence suggests that, the region of connection or contact between symmetric units could coincide with functionally relevant sites within a fold. General principles that underlie protein internal symmetry and their connections to protein structural integrity and functions remain to be elucidated.
A feature-based model of symmetry detection.
Scognamillo, Renata; Rhodes, Gillian; Morrone, Concetta; Burr, David
2003-01-01
Symmetry detection is important for many biological visual systems, including those of mammals, insects and birds. We constructed a symmetry-detection algorithm with two stages: location of the visually salient features of the image, then evaluating the symmetry of these features over a long range, by means of a simple Gaussian filter. The algorithm detects the axis of maximum symmetry for human faces (or any arbitrary image) and calculates the magnitude of the asymmetry. We have evaluated the algorithm on the dataset of Rhodes et al. (1998 Psychonom. Bull. Rev. 5, 659-669) and found that the algorithm is able to discriminate small variations of symmetry created by computer-manipulating the symmetry levels in individual faces, and that the values measured by the algorithm correlate well with human psycho-physical symmetry ratings. PMID:12965001
The role of color and attention-to-color in mirror-symmetry perception.
Gheorghiu, Elena; Kingdom, Frederick A A; Remkes, Aaron; Li, Hyung-Chul O; Rainville, Stéphane
2016-07-11
The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) 'segregated' - symmetric blobs were of one color, random blobs of the other color(s); (2) 'random-segregated' - as above but with the symmetric color randomly selected on each trial; (3) 'non-segregated' - symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) 'anti-symmetric' - symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective.
Symmetry Breaking During Drosophila Oogenesis
Roth, Siegfried; Lynch, Jeremy A.
2009-01-01
The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal–ventral symmetry of the egg and embryo. PMID:20066085
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Neutrinos and flavor symmetries
Tanimoto, Morimitsu
2015-07-15
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Chiral symmetry and chiral-symmetry breaking
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Pinsky, Mark; Casanova, David; Alemany, Pere; Alvarez, Santiago; Avnir, David; Dryzun, Chaim; Kizner, Ziv; Sterkin, Alexander
2008-01-30
We introduce a new mathematical tool for quantifying the symmetry contents of molecular structures: the Symmetry Operation Measures. In this approach, we measure the minimal distance between a given structure and the structure which is obtained after applying a selected symmetry operation on it. If the given operation is a true symmetry operation for the structure, this distance is zero; otherwise it gives an indication of how different the transformed structure is from the original one. Specifically, we provide analytical solutions for measures of all the improper rotations, S n p, including mirror symmetry and inversion, as well as for all pure rotations, C n p. These measures provide information complementary to the Continuous Symmetry Measures (CSM) that evaluate the distance between a given structure and the nearest structure which belongs to a selected symmetry point-group.
Homicz, Greg
2002-04-01
Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.
From physical symmetries to emergent gauge symmetries
NASA Astrophysics Data System (ADS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-10-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
Symmetries in Lagrangian Dynamics
ERIC Educational Resources Information Center
Ferrario, Carlo; Passerini, Arianna
2007-01-01
In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…
ERIC Educational Resources Information Center
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
Spontaneous Symmetry-Breaking Vortex Lattice Transitions in Pure Niobium
Laver, M.; Forgan, E.M.; Brown, S.P.; Bowell, C.; Ramos, S.; Lycett, R.J.; Charalambous, D.; Fort, D.; Christen, D.K.; Kohlbrecher, J.; Dewhurst, C.D.; Cubitt, R.
2006-04-28
We report an extensive investigation of magnetic vortex lattice (VL) structures in single crystals of pure niobium with the magnetic field applied parallel to a fourfold symmetry axis, so as to induce frustration between the cubic crystal symmetry and hexagonal VL coordination expected in an isotropic situation. We observe new VL structures and phase transitions; all the VL phases observed (including those with an exactly square unit cell) spontaneously break some crystal symmetry. One phase even has the lowest possible symmetry of a two-dimensional Bravais lattice. This is quite unlike the situation in high-T{sub c} or borocarbide superconductors, where VL structures orient along particular directions of high crystal symmetry. The causes of this behavior are discussed.
Cellulose and the twofold screw axis: Modeling and experimental arguments
Technology Transfer Automated Retrieval System (TEKTRAN)
Crystallography indicates that molecules in crystalline cellulose either have 2-fold screw-axis (21) symmetry or closely approximate it, leading to short distances between H4 and H1' across the glycosidic linkage. Therefore, modeling studies of cellobiose often show elevated energies for 21 structur...
NASA Technical Reports Server (NTRS)
Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)
2016-01-01
A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.
A universal symmetry detection algorithm.
Maurer, Peter M
2015-01-01
Research on symmetry detection focuses on identifying and detecting new types of symmetry. The paper presents an algorithm that is capable of detecting any type of permutation-based symmetry, including many types for which there are no existing algorithms. General symmetry detection is library-based, but symmetries that can be parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected without using libraries. In many cases it is faster than existing techniques. Furthermore, it is simpler than most existing techniques, and can easily be incorporated into existing software. The algorithm can also be used with virtually any type of matrix-based symmetry, including conjugate symmetry.
The role of color and attention-to-color in mirror-symmetry perception
Gheorghiu, Elena; Kingdom, Frederick A. A.; Remkes, Aaron; Li, Hyung-Chul O.; Rainville, Stéphane
2016-01-01
The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) ‘segregated’ – symmetric blobs were of one color, random blobs of the other color(s); (2) ‘random-segregated’ – as above but with the symmetric color randomly selected on each trial; (3) ‘non-segregated’ – symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) ‘anti-symmetric’ – symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective. PMID:27404804
Dynamical symmetries for fermions
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin C.; Wheeler, James T.
2016-04-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
Gauge symmetry from decoupling
NASA Astrophysics Data System (ADS)
Wetterich, C.
2017-02-01
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Sekhar Chivukula
2016-07-12
The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was presentÂ at the classical level. Â Quantum Chromodynamics (QCD),Â the modern theoryÂ of the strong interactions, exemplify each ofÂ these possibilities.Â The interplayÂ of these effects determine theÂ spectrum of particles that we observeÂ and, ultimately, account forÂ 99% of the mass of ordinary matter.Â
NASA Astrophysics Data System (ADS)
Golubitsky, Martin
2012-04-01
Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.
NASA Astrophysics Data System (ADS)
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
NASA Astrophysics Data System (ADS)
Baldo, M.; Burgio, G. F.
2016-11-01
The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.
The symmetry properties of planetary magnetic fields
NASA Technical Reports Server (NTRS)
Raedler, Karl-Heinz; Ness, Norman F.
1990-01-01
This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.
Mechanochemical Symmetry Breaking in Hydra Aggregates
Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna
2015-01-01
Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896
The determination of the direction of the optic axis of uniaxial crystalline materials
NASA Technical Reports Server (NTRS)
Lock, J. A.; Schock, H. J.; Regan, C. A.
1986-01-01
The birefringence of crystalline substances in general, and of sapphire in particular, is described. A test is described whose purpose is to determine the direction of the optic axis of a cylindrically machined single crystal of sapphire. This test was performed on the NASA Lewis sapphire cylinder and it was found that the optic axis made an angle of 18 deg with the axis of symmetry of the cylinder.
Nász, István; Adám, Eva
2005-10-09
neighbouring facets. In the facets, the polypeptide subunits of the polypeptide IX centered group of four hexons have identical counter-clockwise orientation but the orientation of the neighbouring facets is always opposite compared to each other. On the five-fold symmetry axis, any facet can be "turned on" to the adjacent facet or "rotated" to all the others and will take the symmetry and orientation of the facet it got turned on or rotated to. Thus, every facet together with the polypeptides attached to it shows a twenty-fold symmetry and multiplicity. Another type of symmetry and multiplicity in the capsid is that perpendicular to the 6 five-fold rotation axes a geodetic (equatorial) ribbon like motif (superfieces) altogether six made up of 10-10 triangular facets and bent ten-times with an angle of 36 degrees. A triangular facet participates in forming three ribbon-like motifs, which intersect with each other on the given facet but the same three motifs intersect only on the anti-symmetrically located facet.
Looking for symmetry: fixational eye movements are biased by image mirror symmetry.
Meso, Andrew Isaac; Montagnini, Anna; Bell, Jason; Masson, Guillaume S
2016-09-01
Humans are highly sensitive to symmetry. During scene exploration, the area of the retina with dense light receptor coverage acquires most information from relevant locations determined by gaze fixation. We characterized patterns of fixational eye movements made by observers staring at synthetic scenes either freely (i.e., free exploration) or during a symmetry orientation discrimination task (i.e., active exploration). Stimuli could be mirror-symmetric or not. Both free and active exploration generated more saccades parallel to the axis of symmetry than along other orientations. Most saccades were small (<2°), leaving the fovea within a 4° radius of fixation. Analysis of saccade dynamics showed that the observed parallel orientation selectivity emerged within 500 ms of stimulus onset and persisted throughout the trials under both viewing conditions. Symmetry strongly distorted existing anisotropies in gaze direction in a seemingly automatic process. We argue that this bias serves a functional role in which adjusted scene sampling enhances and maintains sustained sensitivity to local spatial correlations arising from symmetry.
Symmetry constraints on generalizations of Bjorken flow
Gubser, Steven S.
2010-10-15
I explain a generalization of Bjorken flow where the medium has finite transverse size and expands both radially and along the beam axis. If one assumes that the equations of viscous hydrodynamics can be used, with p={epsilon}/3 and zero bulk viscosity, then the flow I describe can be developed into an exact solution of the relativistic Navier-Stokes equations. The local four-velocity in the flow is entirely determined by the assumption of symmetry under a subgroup of the conformal group.
Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.
2012-08-01
The angular motion of an axisymmetrical satellite equipped with the active magnetic attitude control system is examined. Attitude control system has to ensure necessary orientation of the axis of symmetry in the inertial space. It implements the following strategy: coarse reorientation of the axis of symmetry with nutation damping or "-Bdot" without initial detumbling; spinning-up about the axis of symmetry to achieve the property of a gyro; fine reorientation of the axis in the inertial space. Dynamics of the satellite is analytically studied using averaging technique on the complete control loop consisting of five algorithms. Solutions of the equations of motion are obtained in terms of quadratures for most cases or even in closed-form. The latter allowed to study the dependence of motion parameters including time-response with respect to the orbit inclination and other parameters for all algorithms.
NASA Astrophysics Data System (ADS)
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.
Prolonged weightlessness, reference frames and visual symmetry detection.
Leone, G; de Schonen, S; Lipshits, M
1998-01-01
We evaluated the influence of prolonged weightlessness on the performance of three cosmonauts to bilateral symmetry detection in the course of a 15-day-long Russian-French mission CASSIOPEE 96 aboard the MIR station. We tested the influence of weightlessness on subjects' performance as a function of the retinal orientation of axis of symmetry. as a function of type of stimuli (closed versus multi-elements shapes) and as a function of visual field presentation (at fixation, left visual field. right visual field). The results indicate firstly a difference between presentation at fixation versus away of fixation. Away of fixation, no effect of microgravity on performance was shown. A hypothesis of hemispheric specialization for symmetry detection was not supported as well. At fixation, an effect of micro-gravity was shown and more interestingly, the effect was quite different as a function of type of shapes used. suggesting that symmetry detection is a multiple-stage process.
Reflection symmetries of Isolated Self-consistent Stellar Systems
NASA Astrophysics Data System (ADS)
An, J.; Evans, N. W.; Sanders, J. L.
2017-01-01
Isolated, steady-state galaxies correspond to equilibrium solutions of the Poisson-Vlasov system. We show that (i) all galaxies with a distribution function (DF) depending on energy alone f(E) must be spherically symmetric and (ii) all axisymmetric galaxies with a DF depending on energy and the angular momentum component parallel to the symmetry axis f(E, Lz) must also be reflection-symmetric about the plane z = 0. The former result is known, whilst the latter result is new. These results are subsumed into the Symmetry Theorem, which specifies how the symmetries of the DF in configuration or velocity space can control the planes of reflection symmetries of the ensuing stellar system.
Nász, I; Adám, Eva
2006-03-01
subunits of polypeptide IX centered GOF hexons have identical counter-clockwise orientation but the orientation of the neighbouring facets is always opposite compared to each other. On the five-fold symmetry axis, any facet can be "turned on" to the adjacent facet or "rotated" to all the others and will take the symmetry and orientation of the facet it got turned on or rotated to. Thus, every facet together with the polypeptides attached to it shows a twenty-fold symmetry and multiplicity. An other type of symmetry and multiplicity in the capsid is that perpendicular to the 6 five-fold rotation axes run a geodetic (equatorial) ribbon like motif (superfieces) altogether six made up of 10 x 10 triangular facets and bent ten-times with an angle of 36 degrees. A triangular facet participates in forming three ribbon-like motifs, which intersect with each other on the given facet, but the same three motifs intersect repeatedly only on the antisymmetrically located facet.
Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.
Adrianov, A V; Malakhov, V V
2001-02-01
Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment.
Campbell, J.S.
1980-04-08
A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.
Weakly broken galileon symmetry
Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
BOOK REVIEW: Symmetry Breaking
NASA Astrophysics Data System (ADS)
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Bilateral symmetry across Aphrodite Terra
NASA Technical Reports Server (NTRS)
Crumpler, L. S.; Head, J. W.; Campbell, D. B.
1987-01-01
There are three main highland areas on Venus: Beta Regio, Ishtar Terra and Aphrodite Terra. The latter is least known and the least mapped, yet existing analyses of Aphrodite Terra based on available Pioneer-Venus orbiter data suggest that it may be the site of extensive rifting. Some of the highest resolution (30 km) PV data (SAR) included most of the western half of Aphrodite Terra. Recent analysis of the SAR data together with Arecibo range-doppler topographic profiling (10 X 100 km horizontal and 10 m vertical resolution) across parts of Aphrodite, further characterized the nature of possible tectonic processes in the equatorial highlands. The existence of distinct topographic and radar morphologic linear discontinuities across the nearly east-west strike of Aphrodite Terra is indicated. Another prominent set of linear features is distinctly parallel to and orthogonal to the ground tracks of the PV spacecraft and are not included because of the possibility that they are artifacts. Study of the northwest trending cross-strike discontinuities (CSD's) and the nature of topographic and morphologic features along their strike suggest the presence of bilateral topographic and morphologic symmetry about the long axis of Aphrodite Terra.
Symmetry constraint for foreground extraction.
Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai
2014-05-01
Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.
Reciprocal symmetry plots as a representation of countercurrent chromatograms.
Friesen, J Brent; Pauli, Guido F
2007-03-15
Traditionally, chromatograms in countercurrent chromatography (CCC) have been plotted with retention volume or time on the x-axis. However, the distribution constant (K) is a more appropriate, reproducible value for the x-axis, because it is a physicochemical property of a particular analyte in a particular solvent system. Therefore, K is independent of both the total column volume and the stationary-phase volume ratio (SF) of the column. Going one step beyond simple K plots, the reciprocal symmetry (ReS) plot, with K and 1/K positioned on either side of a line of symmetry on the x-axis, represents all K values, zero to infinity. Based on experimental evidence, using a mixture of CCC reference standards, the ReS plot demonstrates both the invertible and "symmetric" nature of CCC, a consequence of the exchange of the mobile and stationary phases by reversing the direction of the flow and the symmetry of the liquid-liquid partitioning process between two immiscible phases, respectively. Moreover, the interval of optimal resolution can be centered on the ReS plot to focus on K values of interest, establishing the reciprocal shifted symmetry (ReSS) plots in CCC. Improved representation of peak shape across the whole CCC polarity range is an added advantage of ReSS plots over both K and classical retention volume plots.
Performance improvements of symmetry-breaking reflector structures in nonimaging devices
Winston, Roland
2004-01-13
A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.
ERIC Educational Resources Information Center
Seidel, Judith Day
1998-01-01
Presents activities that demonstrate how technology can help students discover the mathematics in nature. Claims that these experiences can clarify students' vision of the symmetry of beauty that fills the world beyond the computer. Concludes that the use of flexible software tools helps students explore how a shape is affected when they change…
ERIC Educational Resources Information Center
Crumpecker, Cheryl
2003-01-01
Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)
NASA Technical Reports Server (NTRS)
Barns, Chris E. (Inventor); Gunter, William D. (Inventor)
1990-01-01
A reticle permits the alignment of three orthogonal axes (X, Y and Z) that intersect at a common target point. Thin, straight filaments are supported on a frame. The filaments are each contained in a different orthogonal plane (S sub xy, S sub xz, and S sub yz) and each filament intersects two of the three orthogonal axes. The filaments, as viewed along the frame axis, give the appearance of a triangle with a V extending from each triangle vertex. When axial alignment is achieved, the filament portions adjacent to a triangle vertex are seen (along the axis of interest) as a right-angle cross, whereas these filament portions are seen to intersect at an oblique angle when axial misalignment occurs. The reticle is open in the region near the target point leaving ample space for alignment aids such as a pentaprism or a cube mirror.
Properties of a strongly focused Gaussian beam with an off-axis vortex
NASA Astrophysics Data System (ADS)
Zhao, Xinying; Zhang, Jingcheng; Pang, Xiaoyan; Wan, Guobin
2017-04-01
The intensity distribution and the phase properties, especially the Gouy phase and the phase singularities are studied in a strongly focused Gaussian beam with an off-axis vortex. The symmetry relation of the focused field is also derived. It is found that the off-axis vortex induces a rotation of the field pattern, the transverse focal shift, and the asymmetric distribution of the phase singularities. Our results also show that the initial position of the off-axis vortex in the incident beam strongly influences the distance of the transverse focal shift, but does not have an effect on the Gouy phase along the central axis.
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Reflections on Symmetry and Proof
ERIC Educational Resources Information Center
Merrotsy, Peter
2008-01-01
The concept of symmetry is fundamental to mathematics. Arguments and proofs based on symmetry are often aesthetically pleasing because they are subtle and succinct and non-standard. This article uses notions of symmetry to approach the solutions to a broad range of mathematical problems. It responds to Krutetskii's criteria for mathematical…
PSEUDOSPIN SYMMETRY IN NUCLEI, SPIN SYMMETRY IN HADRONS
P. PAGE; T. GOLDMAN; J. GINOCCHIO
2000-08-01
Ginocchio argued that chiral symmetry breaking in QCD is responsible for the relativistic pseudospin symmetry in the Dirac equation, explaining the observed approximate pseudospin symmetry in sizable nuclei. On a much smaller scale, it is known that spin-orbit splittings in hadrons are small. Specifically, new experimental data from CLEO indicate small splittings in D-mesons. For heavy-light mesons we identify a cousin of pseudospin symmetry that suppresses these splittings in the Dirac equation, known as spin symmetry. We suggest an experimental test of the implications of spin symmetry for wave functions in electron-positron annihilation. We investigate how QCD can give rise to two different dynamical symmetries on nuclear and hadronic scales.
1985-08-01
spanner wrench and the teaspoon, the pointed jaws of the wrench, and the main axes of the gourd , the pear, the squash, and the bowl of the teaspoon...regions such as the handle of the spanner wrench and the main axes of the gourd , squash, and teaspoon, and also pointed regions such as the end of the...Local Symmetry representation does not provide in- tuitively acceptable analyses for round regions, such as the lemon and the round ends of the gourd
NASA Technical Reports Server (NTRS)
Lopez, Hiram
1987-01-01
Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.
Chiral symmetry and pentaquarks
Dmitri Diakonov
2004-07-01
Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.
Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU
2011-03-08
A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.
Single Axis Piezoceramic Gimbal
NASA Technical Reports Server (NTRS)
Horner, Garnett C.; Taleghani, Barmac K.
1999-01-01
This paper describes the fabrication, testing, and analysis of a single axis piezoceramic gimbal. The fabrication process consist of pre-stressing a piezoceramic wafer using a high-temperature thermoplastic polyimide and a metal foil. The differential thermal expansion between the ceramic and metal induces a curvature. The pre-stressed, curved piezoceramic is mounted on a support mechanism and a mirror is attached to the piezoceramic. A plot of gimbal angle versus applied voltage to the piezoceramic is presented. A finite element analysis of the piezoceramic gimbal is described. The predicted gimbal angle versus applied voltage is compared to experimental results.
Two types of bilateral symmetry in the Metazoa: chordate and bilaterian.
Jefferies, R P
1991-01-01
The chordate sagittal plane is perpendicular to the sagittal plane primitive for the bilaterally symmetrical metazoans (Bilateria). The earliest metazoans, when symmetrical at all, were probably radial in symmetry. The axis of symmetry was vertical and the mouth, when present, opened either upward or downward. The Bilateria evolved from the primitive metazoan condition by acquiring bilateral symmetry, mesoderm, a brain at the anterior end and protonephridia. Perhaps in the stem lineage of the Bilateria a hydroid-like or medusoid-like ancestor fell over on one side onto a substrate (pleurothetism). If so, the anteroposterior axis of Bilateria would be homologous with the vertical axis of radial symmetry in coelenterates. The bilaterian plane of symmetry arose to include the anteroposterior axis. The Deuterostomia (the Hemichordata, Echinodermata and Chordata) evolved within the Bilateria by producing the mouth as a secondary perforation. Within the deuterostomes the echinoderms and chordates constitute a monophyletic group named Dexiothetica. Hemichordates retain the primitive bilaterian sagittal plane. The Dexiothetica derive from an ancestor like the present-day hemichordate Cephalodiscus which had lain down on the primitive right side (dexiothetism) and acquired a calcite skeleton. The echinoderms evolved from this ancestor by losing the ancestral locomotory tail and gill slit, becoming static, moving the mouth to the centre of the new upper surface and developing radial pentameral symmetry. The chordates evolved from the same ancestor by developing a notochord in the tail, losing the water vascular system, evolving a filter-feeding pharynx and developing a new vertical plane of bilateral symmetry perpendicular to the old bilaterian plane. Evidence derived from certain bizarre Palaeozoic marine fossils (calcichordates) gives a detailed history of the early evolution of echinoderms and chordates and shows how the new bilateral symmetry was gradually acquired in
Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry
NASA Astrophysics Data System (ADS)
Gao, Zihao; Hua, Meng; Zhang, Haijun; Zhang, Xiao
2016-05-01
Three-dimensional (3D) Dirac and Weyl semimetals are novel states of quantum matter. We classify stable 3D Dirac and Weyl semimetals with reflection and rotational symmetry in the presence of time reversal symmetry and spin-orbit coupling, which belong to seventeen different point groups. They have two classes of reflection symmetry, with the mirror plane parallel and perpendicular to rotation axis. In both cases two types of Dirac points, existing through accidental band crossing (ABC) or at a time reversal invariant momentum (TBC), are determined by four different reflection symmetries. We classify those two types of Dirac points with a combination of different reflection and rotational symmetries. We further classify Dirac and Weyl line nodes to show in which types of mirror plane they can exist. Finally we discuss that Weyl line nodes and Dirac points can exist at the same time taking C4 v symmetry as an example.
Symmetry and Condensed Matter Physics
NASA Astrophysics Data System (ADS)
El-Batanouny, M.; Wooten, F.
2008-03-01
Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.
Symmetries in laminated composite plates
NASA Technical Reports Server (NTRS)
Noor, A. K.
1976-01-01
The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.
Invariants of broken discrete symmetries.
Kalozoumis, P A; Morfonios, C; Diakonos, F K; Schmelcher, P
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Invariants of Broken Discrete Symmetries
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Mavrogenis, Andreas F; Casadei, Roberto; Gambarotti, Marco; Ruggieri, Pietro
2012-07-01
Fibromyxoma of bone is a rare benign tumor of fibrous tissue origin. The typical location is the jaws. Sporadic extragnathic cases have been reported, but fibromyxoma of the spine has not been reported. The histological appearance of fibromyxoma is benign and includes abundant extracellular fibrous and myxoid stroma with varying amounts of calcification and ossification. Myxoid changes are usually extensive. Extragnathic fibromyxoma of bone should be distinguished from benign cartilage-forming bone tumors, such as chondromyxoid and myxoid chondrosarcoma and myxoma of bone. It has also been suggested that fibromyxoma is a variant of myxoid fibrous dysplasia, whereas other authors reported extragnathic fibromyxoma resulting from myxoid degeneration of bone tumors, such as chondrosarcoma or fibrosarcoma. The overtreatment of patients with fibromyxoma of bone due to an aggressive imaging appearance should be avoided; the prognosis is excellent compared with the jaw variant and depends on the location and extent of the tumor. This article describes a case of a 21-year-old woman with fibromyxoma of bone originating from the spinous process of the axis. Clinical examination showed a tender mass in the midline of the posterior aspect the neck and slight limitation of neck range of motion; neurologic examination was normal. Diagnosis was obtained with a preoperative biopsy. Marginal excision of the lesion with posterior laminectomy of the axis was performed. The facets were preserved, and no fusion was performed. At last follow-up 2 years after diagnosis and treatment, the patient was asymptomatic with no evidence of local recurrence.
Dual axis operation of a micromachined rate gyroscope
Juneau, T.; Pisano, A.P.; Smith, J.
1997-04-01
Since micromachining technology has raised the prospect of fabricating high performance sensors without the associated high cost and large size, many researchers have investigated micromachined rate gyroscopes. The vast majority of research has focused on single input axis rate gyroscopes, but this paper presents work on a dual input axis micromachined rate gyroscope. The key to successful simultaneous dual axis operation is the quad symmetry of the circular oscillating rotor design. Untuned gyroscopes with mismatched modes yielded random walk as low as 10{degrees}/{radical}hour with cross sensitivity ranging from 6% to 16%. Mode frequency matching via electrostatic tuning allowed performance better than 2{degrees}/{radical}hour, but at the expense of excessive cross sensitivity.
Suppression of Speckles at High Adaptive Correction Using Speckle Symmetry
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.
2006-01-01
Focal-plane speckles set important sensitivity limits on ground- or space-based imagers and coronagraphs that may be used to search for faint companions, perhaps ultimately including exoplanets, around stars. As speckles vary with atmospheric fluctuations or with drifting beamtrain aberrations, they contribute speckle noise proportional to their full amplitude. Schemes to suppress speckles are thus of great interest. At high adaptive correction, speckles organize into species, represented by algebraic terms in the expansion of the phase exponential, that have distinct spatial symmetry, even or odd, under spatial inversion. Filtering speckle patterns by symmetry may eliminate a disproportionate fraction of the speckle noise while blocking (only) half of the image signal from the off-axis companion being sought. The fraction of speckle power and hence of speckle noise in each term will vary with degree of correction, and so also will the net symmetry in the speckle pattern.
Reflection symmetry detection using locally affine invariant edge correspondence.
Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao
2015-04-01
Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.
NASA Astrophysics Data System (ADS)
Lee, Allen; Lee, Ha Youn; Kardar, Mehran
2005-09-01
Locomotion of bacteria by actin polymerization and in vitro motion of spherical beads coated with a protein catalyzing polymerization are examples of active motility. Starting from a simple model of forces locally normal to the surface of a bead, we construct a phenomenological equation for its motion. The singularities at a continuous transition between moving and stationary beads are shown to be related to the symmetries of its shape. Universal features of the phase behavior are calculated analytically and confirmed by simulations. Fluctuations in velocity are shown to be generically non-Maxwellian and correlated to the shape of the bead.
NASA Technical Reports Server (NTRS)
Rosensteel, George
1995-01-01
Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.
Applications of chiral symmetry
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Symmetry and structure of SrTiO3 nanotubes
NASA Astrophysics Data System (ADS)
Evarestov, Robert
2011-06-01
The full study of perovskite type nanotubes with square morphology is given for the first time. The line symmetry group L = ZP (a product of one axial point group P and one infinite cyclic group Z of generalized translations) of single-walled (SW) and double-walled (DW) SrTiO3 nanotubes (NT) is considered. The nanotube is defined by the square lattice translation vector L = l1a + l2b and chiral vector R = n1a + n2b, (l1, l2, n1 and n2 are integers). The nanotube of the chirality (n1,n2) is obtained by folding the (001) slabs of two- layers (with the layer group P4mm) and of three layers (with the layer group P4/mmm) in a way that the chiral vector R becomes circumference of the nanotube. Due to the orthogonality relation (RL) = 0, l1/l2 = -n2/n1 i.e. SW nanotubes with square morphology are commensurate for any rolling vector R(n1,n2). For SW (n,0) NTs the line symmetry groups belong to family 11 (T^Dnh) and are n/mmm or for even and odd n, respectively. For SW (n,n) NTs the line symmetry groups (2n)n/mcm belong to family 13 (T2n1 Dnh). The line symmetry group of a double-wall nanotube is found as intersection L2 = Z2P2 = (L ∩ L') of the symmetry groups L and L' of its single-wall constituents as earlier considered for DW CNTs. The symmetry group of DWNT (n,0)@M(n,0) belongs to the same family 11 (T^Dnh) as its SW constituents. The symmetry group of DWNT (n,n)@M(n,n) depends on the parity of M. For DW NTs with odd M, the line symmetry groups are the same as for their SW constituents and belong to family 13 (T2n1 Dnh). For even M, the rotations about screw axis of order 2n are changed by rotations around pure rotation axis of order n so that DW NT line symmetry groups belong to family 11 (T^Dnh). Commensurate STO DWNTs (n1,0)@(n2,0) and (n1, n1)@(n2, n2) belong to family 11 (T^Dnh) with n equal to the greatest common divisor of n1 and n2.
Diamond Machining of an Off-Axis Biconic Aspherical Mirror
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Preuss, Werner; Sohn, Alex; MacKenty, John
2009-01-01
Two diamond-machining methods have been developed as part of an effort to design and fabricate an off-axis, biconic ellipsoidal, concave aluminum mirror for an infrared spectrometer at the Kitt Peak National Observatory. Beyond this initial application, the methods can be expected to enable satisfaction of requirements for future instrument mirrors having increasingly complex (including asymmetrical), precise shapes that, heretofore, could not readily be fabricated by diamond machining or, in some cases, could not be fabricated at all. In the initial application, the mirror is prescribed, in terms of Cartesian coordinates x and y, by aperture dimensions of 94 by 76 mm, placements of -2 mm off axis in x and 227 mm off axis in y, an x radius of curvature of 377 mm, a y radius of curvature of 407 mm, an x conic constant of 0.078, and a y conic constant of 0.127. The aspect ratio of the mirror blank is about 6. One common, "diamond machining" process uses single-point diamond turning (SPDT). However, it is impossible to generate the required off-axis, biconic ellipsoidal shape by conventional SPDT because (1) rotational symmetry is an essential element of conventional SPDT and (2) the present off-axis biconic mirror shape lacks rotational symmetry. Following conventional practice, it would be necessary to make this mirror from a glass blank by computer-controlled polishing, which costs more than diamond machining and yields a mirror that is more difficult to mount to a metal bench. One of the two present diamond machining methods involves the use of an SPDT machine equipped with a fast tool servo (FTS). The SPDT machine is programmed to follow the rotationally symmetric asphere that best fits the desired off-axis, biconic ellipsoidal surface. The FTS is actuated in synchronism with the rotation of the SPDT machine to generate the difference between the desired surface and the best-fit rotationally symmetric asphere. In order to minimize the required stroke of the FTS
The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules
NASA Technical Reports Server (NTRS)
Peterson, K. J.; Arenas-Mena, C.; Davidson, E. H.
2000-01-01
Even though echinoderms are members of the Bilateria, the location of their anterior/posterior axis has remained enigmatic. Here we propose a novel solution to the problem employing three lines of evidence: the expression of a posterior class Hox gene in the coeloms of the nascent adult body plan within the larva; the anatomy of certain early fossil echinoderms; and finally the relation between endoskeletal plate morphology and the associated coelomic tissues. All three lines of evidence converge on the same answer, namely that the location of the adult mouth is anterior, and the anterior/posterior axis runs from the mouth through the adult coelomic compartments. This axis then orients the animal such that there is but a single plane of symmetry dividing the animal into left and right halves. We tentatively hypothesize that this plane of symmetry is positioned along the dorsal/ventral axis. These axis identifications lead to the conclusion that the five ambulacra are not primary body axes, but instead are outgrowths from the central anterior/posterior axis. These identifications also shed insight into several other evolutionary mysteries of various echinoderm clades such as the independent evolution of bilateral symmetry in irregular echinoids, but do not elucidate the underlying mechanisms of the adult coelomic architecture.
[Symmetries and homologies of Geomerida].
Zarenkov, N A
2005-01-01
The symmetry of Earths life cover (Geomerida) was described generally by L.A. Zenkevich (1948). It coincides with the symmetry of geographic cover. Its symmetry elements are equatorial plane and three meridonal planes corresponded to oceans and continents. The hypsographic curve with point of inflection (symmetry element) on 3 km depth line should be added to these elements. The plankton and benthos communities as well as fauna of taxons are distributed symmetrically according these symmetry elements. Zenkevich model was successfully extrapolated to plankton by K.V. Beklemishev (1967, 1969) and to abyssal benthos by Sokolova M.N. (1986). The plankton communities inhabiting symmetrically located macrocirculations are considered as homologous. The character of circulation determines the trophic structure of plankton and benthos. In the case of high productivity of plankton, benthic grazing animals feed on sedimented particles have bilateral symmetric mouthpart. Otherwise they have to acquire food from water column and use cyclomeric mouthpart. Thus, the symmetry of macrocirculations determines the symmetry distribution of benthic animals with two major symmetries of mouthparts. The peculiarities of organisms' symmetry are discussed in the context of Pierre Curie principle and the ideas of K.V. Beklemishev concerning evolution of morphological axes.
NASA Astrophysics Data System (ADS)
Zvyagina, G. A.; Zhekov, K. R.; Bilych, I. V.; Kolodyazhnaya, M. P.; Zvyagin, A. A.; Bludov, A. N.; Pashchenko, V. A.; Gudim, I. A.
2016-04-01
The elastic and magnetic characteristics of single-crystal Nd0.9Dy0.1Fe3(BO3)4 are studied at low temperatures in zero magnetic field and in external fields H||C3. The temperature dependences of the acoustic mode velocities and the magnetic susceptibility manifest a transition of the magnetic subsystem into a magnetically ordered state and two successive, spontaneous spin-reorientation phase transitions. The possibility of a spontaneous transition into an incommensurate (spiral) magnetic phase in the crystal is discussed. It is shown that an external magnetic field directed along the trigonal axis of the crystal induces a sequence of spin-reorientation phase transitions. An H-T phase diagram (H||C3) is constructed for this compound.
From Molecular Point Group Symmetry to Space Group Symmetry.
ERIC Educational Resources Information Center
Hathaway, Brian
1979-01-01
Describes undergraduate chemistry curricula in which the student is asked to either build a model of one asymmetric unit in the unit cell and to indicate the positions of the symmetry-related units by putting in key atoms, or to identify on a prebuild model the asymetric and symmetry-related units. (BB)
Spontaneous Planar Chiral Symmetry Breaking in Cells
NASA Astrophysics Data System (ADS)
Hadidjojo, Jeremy; Lubensky, David
Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.
Pion scattering poles and chiral symmetry restoration
Fernandez-Fraile, D.; Nicola, A. Gomez; Herruzo, E. T.
2007-10-15
Using unitarized chiral perturbation theory methods, we perform a detailed analysis of the {pi}{pi} scattering poles f{sub 0}(600) and {rho}(770) behavior when medium effects such as temperature or density drive the system towards chiral symmetry restoration. In the analysis of real poles below threshold, we show that it is crucial to extend properly the unitarized amplitudes so that they match the perturbative Adler zeros. Our results do not show threshold enhancement effects at finite temperature in the f{sub 0}(600) channel, which remains as a pole of broad nature. We also implement T=0 finite-density effects related to chiral symmetry restoration, by varying the pole position with the pion decay constant. Although this approach takes into account only a limited class of contributions, we reproduce the expected finite-density restoration behavior, which drives the poles towards the real axis, producing threshold enhancement and {pi}{pi} bound states. We compare our results with several model approaches and discuss the experimental consequences, both in relativistic heavy ion collisions and in {pi}{yields}{pi}{pi} and {gamma}{yields}{pi}{pi} reactions in nuclei.
Dolgov, Igor; McBeath, Michael K; Sugar, Thomas
2009-01-01
The axis-aligned motion (AAM) bias is the tendency of observers to assume that symmetric moving objects maintain axis-trajectory alignment and to bias their judgments of trajectory toward the axis when they are misaligned. We tested whether humans exhibit an AAM bias in a realistic, cue-rich, 3-D setting by examining the impact of axis-trajectory misalignment on estimates of final destinations of thrown American footballs. In experiments 1 and 2 we show that observers are significantly worse in judging destinations of footballs than those of volleyballs and basketballs. This difference in performance is due to the deviation of the football's axis from trajectory in flight, as shown by the correspondence of participants' lateral judgment error and the football's lateral axial deviation from trajectory, which was predicted by passer handedness. Nearly all animals exhibit bilateral symmetry and maintain axis-trajectory alignment during locomotion, and we argue that the AAM bias is complementary mental attunement to the natural regularity of this axis-aligned motion. Furthermore, this bias is also a prototypical example of a perceptual regularity that is a mixed blessing-advantageous in perceptual judgment tasks of axis trajectory-aligned moving entities like most living creatures, and disadvantageous in tasks demanding judgments of axis-trajectory-misaligned moving objects which are typically artifacts.
Symmetry reduction related with nonlocal symmetry for Gardner equation
NASA Astrophysics Data System (ADS)
Ren, Bo
2017-01-01
Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.
Symmetry and surface symmetry energies in finite nuclei
Lee, S. J.; Mekjian, A. Z.
2010-12-15
A study of the properties of the symmetry energy of nuclei is presented based on density-functional theory. Calculations for finite nuclei are given so that the study includes isospin-dependent surface symmetry considerations as well as isospin-independent surface effects. Calculations are done at both zero and nonzero temperature. It is shown that the surface symmetry energy term is the most sensitive to the temperature while the bulk energy term is the least sensitive. It is also shown that the temperature-dependence terms are insensitive to the force used and even more insensitive to the existence of neutron skin. Results for a symmetry energy with both volume and surface terms are compared with a symmetry energy with only volume terms along the line of {beta} stability. Differences of several MeV are shown over a good fraction of the total mass range in A. Also given are calculations for the bulk, surface and Coulomb terms.
NASA Astrophysics Data System (ADS)
Weber, S. V.; Casey, D. T.; Pino, J. E.; Rowley, D. P.; Smalyuk, V. A.; Spears, B. K.; Tipton, R. E.
2013-10-01
NIF CH ablator symmetry capsules are filled with hydrogen or helium gas. SymCaps have more moderate convergence ratios ~ 15 as opposed to ~ 35 for ignition capsules with DT ice layers, and better agreement has been achieved between simulations and experimental data. We will present modeling of capsules with CD layers and tritium fill, for which we are able to match the dependence of DT yield on recession distance of the CD layer from the gas. We can also match the performance of CH capsules with D3 He fill. The simulations include surface roughness, drive asymmetry, a mock-up of modulation introduced by the tent holding the capsule, and an empirical prescription for ablator-gas atomic mix. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Teaching Molecular Symmetry of Dihedral Point Groups by Drawing Useful 2D Projections
ERIC Educational Resources Information Center
Chen, Lan; Sun, Hongwei; Lai, Chengming
2015-01-01
There are two main difficulties in studying molecular symmetry of dihedral point groups. One is locating the C[subscript 2] axes perpendicular to the C[subscript n] axis, while the other is finding the s[subscript]d planes which pass through the C[subscript n] axis and bisect the angles formed by adjacent C[subscript 2] axes. In this paper, a…
Symmetry in Sign Language Poetry
ERIC Educational Resources Information Center
Sutton-Spence, Rachel; Kaneko, Michiko
2007-01-01
This paper considers the range of ways that sign languages use geometric symmetry temporally and spatially to create poetic effect. Poets use this symmetry in sign language art to highlight duality and thematic contrast, and to create symbolic representations of beauty, order and harmony. (Contains 8 tables, 14 figures and 6 notes.)
ERIC Educational Resources Information Center
Hancock, Karen
2007-01-01
In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…
Asymptotic symmetries on Killing horizons
NASA Astrophysics Data System (ADS)
Koga, Jun-Ichirou
2001-12-01
We investigate asymptotic symmetries regularly defined on spherically symmetric Killing horizons in Einstein theory with or without the cosmological constant. These asymptotic symmetries are described by asymptotic Killing vectors, along which the Lie derivatives of perturbed metrics vanish on a Killing horizon. We derive the general form of the asymptotic Killing vectors and find that the group of asymptotic symmetries consists of rigid O(3) rotations of a horizon two-sphere and supertranslations along the null direction on the horizon, which depend arbitrarily on the null coordinate as well as the angular coordinates. By introducing the notion of asymptotic Killing horizons, we also show that local properties of Killing horizons are preserved not only under diffeomorphisms but also under nontrivial transformations generated by the asymptotic symmetry group. Although the asymptotic symmetry group contains the Diff(S1) subgroup, which results from supertranslations dependent only on the null coordinate, it is shown that the Poisson brackets algebra of the conserved charges conjugate to asymptotic Killing vectors does not acquire nontrivial central charges. Finally, by considering extended symmetries, we discuss the fact that unnatural reduction of the symmetry group is necessary in order to obtain the Virasoro algebra with nontrivial central charges, which is not justified when we respect the spherical symmetry of Killing horizons.
Symmetry-protected zero-mode laser with a tunable spatial profile
NASA Astrophysics Data System (ADS)
Ge, Li
2017-02-01
We propose to utilize symmetry-protected zero modes of a photonic lattice to realize a single-mode, fixed-frequency, and spatially tunable laser. These properties are the consequence of the underlying non-Hermitian particle-hole symmetry, with which the energy spectrum satisfies ɛm=-ɛn* . Unlike in the Hermitian case, the symmetric phase of particle-hole symmetry is no longer restricted to ɛ =0 but extends along the imaginary-ɛ axis, which is set by the single-cavity frequency and symmetry-protected against position and coupling disorder of the photonic lattice. By selectively pumping different cavities in the photonic lattice, we control the spontaneous symmetry restoration process, which provides a convenient method to tune the spatial profile of the laser without changing its frequency.
Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers
NASA Astrophysics Data System (ADS)
MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.
2016-11-01
Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.
Coloring 3D symmetry set: perceptual meaning and significance in 3D
NASA Astrophysics Data System (ADS)
Tari, Sibel Z.
1999-07-01
Symmetric axis based representations have been widely employed to enhance visualization and to enable quantitative analysis, classification, and registration of medical images. Although the basic idea of shape representation via local symmetries is very old, recently, various new techniques for extracting local symmetries are proposed. Despite seemingly different tools, the main - if not only - difference among these new methods is how the computation is carried out. Recently, by Tari and Shah, a new method for computing symmetries are proposed, and the comparison of the method to the related works is provided. The method constructs a nested symmetry set of an increasing degree of symmetry and decreasing dimension. This is achieved by examining the local geometry of a new distance function. Because the method doesn't suppress any of the symmetry based representations. In this paper, a computational implementation for assigning perceptual meaning and significance to the points in the symmetry set is provided. The coloring scheme allows recovery of the features of interest such as the shape skeletons from the complicated symmetry representation. The method is applicable to arbitrary data including color and multi-modality imags. On the computational side, for a 256 X 256 binary image, two minutes on a low-end Pentium machine is sufficient to compute both the distance function and the colored nested symmetries at four scales.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard
NASA Astrophysics Data System (ADS)
Bittner, S.; Dietz, B.; Günther, U.; Harney, H. L.; Miski-Oglu, M.; Richter, A.; Schäfer, F.
2012-01-01
We demonstrate the presence of parity-time (PT) symmetry for the non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP. An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.
Functional Symmetry of Endomembranes
2007-01-01
In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral (“early”) and centralized (“late”) structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived “mirror compartments” at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation. PMID:17267686
Symmetry algebras of linear differential equations
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Shirokov, I. V.
1992-07-01
The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group.
On the Cauchy Problem for Axi-Symmetric Vortex Rings
NASA Astrophysics Data System (ADS)
Feng, Hao; Šverák, Vladimír
2015-01-01
We consider the classical Cauchy problem for the three dimensional Navier-Stokes equation with the initial vorticity ω 0 concentrated on a circle, or more generally, a linear combination of such data for circles with common axis of symmetry. We show that natural approximations of the problem obtained by smoothing the initial data satisfy good uniform estimates which enable us to conclude that the original problem with the singular initial distribution of vorticity has a solution. We impose no restriction on the size of the initial data.
ERIC Educational Resources Information Center
Ortmann, Margaret R.; Schutte, Anne R.
2010-01-01
Early in development, there is a transition in spatial working memory (SWM). When remembering a location in a homogeneous space (e.g., in a sandbox), young children are biased toward the midline symmetry axis of the space. Over development, a transition occurs that leads to older children being biased away from midline. The dynamic field theory…
Electroweak Symmetry Breaking: With Dynamics
Chivukula, R. Sekhar
2005-03-22
In this note I provide a brief description of models of dynamical electroweak symmetry breaking, including walking technicolor, top-color assisted technicolor, the top-quark seesaw model, and little higgs theories.
Classification of spacetimes with symmetry
NASA Astrophysics Data System (ADS)
Hicks, Jesse W.
Spacetimes with symmetry play a critical role in Einstein's Theory of General Relativity. Missing from the literature is a correct, usable, and computer accessible classification of such spacetimes. This dissertation fills this gap; specifically, we. i) give a new and different approach to the classification of spacetimes with symmetry using modern methods and tools such as the Schmidt method and computer algebra systems, resulting in ninety-two spacetimes; ii) create digital databases of the classification for easy access and use for researchers; iii) create software to classify any spacetime metric with symmetry against the new database; iv) compare results of our classification with those of Petrov and find that Petrov missed six cases and incorrectly normalized a significant number of metrics; v) classify spacetimes with symmetry in the book Exact Solutions to Einstein's Field Equations Second Edition by Stephani, Kramer, Macallum, Hoenselaers, and Herlt and in Komrakov's paper Einstein-Maxwell equation on four-dimensional homogeneous spaces using the new software.
Symmetries from the solution manifold
NASA Astrophysics Data System (ADS)
Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco
2015-07-01
We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.
Partial Dynamical Symmetry in Molecules
NASA Astrophysics Data System (ADS)
Ping, Jia-Lun; Chen, Jin-Quan
1997-03-01
It is shown that any Hamiltonian involving only one- and two-bond interactions for a molecule withnbonds and having a point groupPas its symmetry group may have theSn⊃Ppartial dynamical symmetry, i.e., the Hamiltonian can be solved analytically for a part of the states, called the unique states. For example, theXY6molecule has theS6⊃Ohpartial dynamical symmetry. The model of Iachello and Oss forncoupled anharmonic oscillators is revisited in terms of the partial dynamical symmetry. The energies are obtained analytically for the nine unique levels of theXY6molecule and the structures of the eigenstates are disclosed for the first time, while for non-unique states they are obtained by diagonalizing the Hamiltonian in theS6⊃Ohsymmetry adapted basis with greatly reduced dimension.
Broken Symmetries and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.
Hileman, Lena C
2014-08-05
A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.
Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances
Hileman, Lena C.
2014-01-01
A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution. PMID:24958922
Possible violations of spacetime symmetries
NASA Astrophysics Data System (ADS)
Urrutia, Luis
2016-10-01
The identification of symmetries has played a fundamental role in our understanding of physical phenomena. Nevertheless, in most cases such symmetries constitute only a zeroth-order approximation and they need to be broken so that the predictions of the theory are consistent with experimental observation. In particular, the almost sacred CPT and Lorentz symmetries, which are certainly part of the fundamental ideas of modern physics, need to be probed experimentally. Recently, such efforts have been intensified because different theoretical approaches aiming to understand the microstructure of space-time suggest the possibility that such symmetries could present minute violations. Up to now, and with increasing experimental sensitivities, no signs of violation have been found. Nevertheless, we observe that even the persistence of such negative results will have a profound impact. On one hand, they will provide those symmetries with a firm experimental basis. On the other, they will set stringent experimental bounds to be compared with the possible emergence of such violations in quantum gravity models based upon a discrete structure of space. We present a very general perspective of the research on Lorentz symmetry breaking, together with a review of a few specific topics.
Symmetry in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.
1993-01-01
Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is
Three axis attitude control system
NASA Technical Reports Server (NTRS)
Studer, Philip A. (Inventor)
1988-01-01
A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.
Quantum graphs: PT -symmetry and reflection symmetry of the spectrum
NASA Astrophysics Data System (ADS)
Kurasov, P.; Majidzadeh Garjani, B.
2017-02-01
Not necessarily self-adjoint quantum graphs—differential operators on metric graphs—are considered. Assume in addition that the underlying metric graph possesses an automorphism (symmetry) P . If the differential operator is P T -symmetric, then its spectrum has reflection symmetry with respect to the real line. Our goal is to understand whether the opposite statement holds, namely, whether the reflection symmetry of the spectrum of a quantum graph implies that the underlying metric graph possesses a non-trivial automorphism and the differential operator is P T -symmetric. We give partial answer to this question by considering equilateral star-graphs. The corresponding Laplace operator with Robin vertex conditions possesses reflection-symmetric spectrum if and only if the operator is P T -symmetric with P being an automorphism of the metric graph.
Structure and Properties of High Symmetry Composites
1990-07-27
utilizing a 4-directional reinforcement. Reducing the close-to-cubic symmetry concept into practice in our laboratory by a three-dimensional braiding...modelled by utilizing the different elastic strain energy expressions produced by different combinations of symmetry elements. Symmetry in Materials The...rings is insignmicant. Utilizing the above assumptions, numerous textile structures possess holosymmetric cubic symmetry. This symmetry state is found in
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Structural Symmetry in Membrane Proteins.
Forrest, Lucy R
2015-01-01
Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.
Symmetry Guide to Ferroaxial Transitions
NASA Astrophysics Data System (ADS)
Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.
2016-04-01
The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .
Wang, Hong-Xing; Wang, Yu-Ping
2016-01-01
Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198
Helical axis stellarator equilibrium model
Koniges, A.E.; Johnson, J.L.
1985-02-01
An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.
Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.
1997-01-21
A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.
Pseudodielectric Functions of Uniaxial Materials in Certain Symmetry Directions
Jellison Jr, Gerald Earle; Baba, Justin S
2006-01-01
The pseudodielectric function is often used to represent ellipsometric data and corresponds to the actual dielectric functions of materials when there is no surface overlayer and the material is isotropic. If a uniaxial material is oriented such that the optic axis is in the plane of incidence or is perpendicular to the plane of incidence, then the cross-polarization terms are zero and appropriate pseudodielectric functions can be determined from the ellipsometry data. We calculate the pseudodielectric functions for uniaxial crystals in three primary symmetry directions: (1) the optic axis is perpendicular to the plane of incidence, (2) the optic axis is in the plane of the sample surface and parallel to the plane of incidence, and (3) the optic axis is in the plane of the sample surface and perpendicular to the plane of incidence. These results are expanded in terms of the difference in the ordinary and extraordinary dielectric functions and compared with the approximation ofAspnes [J. Opt. Soc. Am.70, 1275 (1980)]. Comparisons are made with experimental results on oriented crystals of rutile (TiO2), and a simple procedure is presented to determine the complex dielectric function from standard ellipsometry techniques.
NASA Astrophysics Data System (ADS)
Lin, Hou-Yuan; Zhao, Chang-Yin; Zhang, Ming-Jiang
2016-03-01
The non-principal-axis rotational motion of uniaxial space debris can be decomposed into periodic motions associated with two frequencies: the polhode frequency of the space debris rotating around the symmetry axis, and the tumbling frequency of the symmetry axis rotating around the angular momentum. To determine from optical measurements the rotational motion of upper rocket stages in circular orbits subjected to gravity-gradient torque, the evolutions of these two frequencies need to be analyzed. Taking into account only the long-term changes in the long-period variables, the differential equations of the non-principal axis rotational motion of the uniaxial space debris are averaged and reduced, from which the evolutions of the polhode and tumbling frequencies are then obtained analytically. The theoretical results are verified by numerical simulations of the diffuse reflection model. The frequencies in the variation of the reflected light intensity in the simulation are analyzed using the frequency map analysis (FMA) method. Errors of these results are found to be less than 1%. Based on the theoretical expressions, the rotational state of the uniaxial space debris can be estimated in the simulation without any prior information except the orbital parameters. A series of state variables are estimated, including the ratio of the moments of inertia about the transverse axis and the symmetry axis, the instantaneous rotation velocity, the orientation of the angular momentum, and the precession cone of the symmetry axis.
Resonantly amplified vibronic symmetry breaking
NASA Astrophysics Data System (ADS)
Poliakoff, E. D.; Rathbone, G. J.; Bozek, J. D.; Lucchese, R. R.
2002-05-01
In photoelectron spectroscopy, it is normally assumed that excitation of a single quantum of a non-totally symmetric vibrational mode is forbidden owing to symmetry constraints. Using vibrationally resolved photoelectron spectroscopy over a broad spectral range, we have shown that a previously overlooked mechanism can lead to these nominally forbidden transitions. Specifically, the photoelectron can mediate the oscillator strength for such a transition via resonantly amplified vibronic symmetry breaking, and this effect results from intrachannel rather than interchannel coupling. In our first experiments, we focused on bending excitation accompanying CO2 photoionization. Photoelectron spectroscopy on the CO_2^+(C^2Σ_g^+) state showed that the excitation of the (010) vibrational mode is mediated by a shape resonant continuum electron. The degree of vibrational excitation can be substantial, and extensions to other types of symmetry breaking are currently being investigated.
Symmetries of coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.
1993-01-01
It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).
Iterates of maps with symmetry
NASA Technical Reports Server (NTRS)
Chossat, Pascal; Golubitsky, Martin
1988-01-01
Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.
Kastner, Ruth E.
2011-11-29
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Quantum Symmetries and Exceptional Collections
NASA Astrophysics Data System (ADS)
Karp, Robert L.
2011-01-01
We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the {{mathbb Z}_5} symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.
Symmetry analysis of cellular automata
NASA Astrophysics Data System (ADS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Chiral symmetry in quarkyonic matter
Kojo, T.
2012-05-15
The 1/N{sub c} expansion classifies nuclear matter, deconfined quark matter, and Quarkyonic matter in low temperature region. We investigate the realization of chiral symmetry in Quarkyonic matter by taking into account condensations of chiral particle-hole pairs. It is argued that chiral symmetry and parity are locally violated by the formation of chiral spirals, <{psi}-bar exp (2i{mu}{sub q} z{gamma}{sup 0} {gamma}{sup z}){psi}> . An extension to multiple chiral spirals is also briefly discussed.
Bell Inequalities and Group Symmetry
NASA Astrophysics Data System (ADS)
Bolonek-Lasoń, Katarzyna
2017-03-01
Recently the method based on irreducible representations of finite groups has been proposed as a tool for investigating the more sophisticated versions of Bell inequalities (V. Ugǔr Gűney, M. Hillery, Phys. Rev. A90, 062121 ([2014]) and Phys. Rev. A91, 052110 ([2015])). In the present paper an example based on the symmetry group S 4 is considered. The Bell inequality violation due to the symmetry properties of regular tetrahedron is described. A nonlocal game based on the inequalities derived is described and it is shown that the violation of Bell inequality implies that the quantum strategies outperform their classical counterparts.
Nonsupersymmetric Dualities from Mirror Symmetry
NASA Astrophysics Data System (ADS)
Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia
2017-01-01
We study supersymmetry breaking perturbations of the simplest dual pair of (2 +1 )-dimensional N =2 supersymmetric field theories—the free chiral multiplet and N =2 super QED with a single flavor. We find dual descriptions of a phase diagram containing four distinct massive phases. The equivalence of the intervening critical theories gives rise to several nonsupersymmetric avatars of mirror symmetry: we find dualities relating scalar QED to a free fermion and Wilson-Fisher theories to both scalar and fermionic QED. Thus, mirror symmetry can be viewed as the multicritical parent duality from which these nonsupersymmetric dualities directly descend.
Chiral symmetry on the lattice
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Anatomical study of the gastrointestinal tract in free-living axis deer (Axis axis).
Pérez, W; Erdogan, S; Ungerfeld, R
2015-02-01
The macroscopic anatomy of the stomach and intestines of adult axis deer (Axis axis), a cervid species considered intermediate/mixed feeder, was observed and recorded. Nine adult wild axis deers of both sexes were used and studied by simple dissection. The ruminal papillae were distributed unevenly in the overall area of the inner surface of rumen and primarily were more large and abundant within the atrium. The ruminal pillars had no papillae. There was an additional ruminal pillar located between the right longitudinal and right coronary ventral pillars connected to the caudal pillar. No dorsal coronary pillars were found, and the ventral coronary pillars are connected. The reticulum was the third compartment in size, and the maximum height of the reticular crests was 1.0 mm. The Cellulae reticuli were not divided and rarely contained secondary crests. There were no Papillae unguiculiformes. The omasum was the smallest gastric compartment. The abomasum had about twelve spiral plicae, and a small pyloric torus was present. The intraruminal papillation was similar to those species that are characterized by a higher proportion of grass in their natural diet. The finding of the small reticular crests is typical for browser ruminants and was coincident with data reported for other deer. The comparative ratio of the small intestine to the large intestine was 1.69, in terms of length measurements in axis deer and appears below of the 'browser range'. We concluded that the gastrointestinal system of axis deer reflected similar morphological characteristics of the both types of ruminants: browser and grazer, and we consider it as an intermediate feeder.
Three axis velocity probe system
Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.
1992-01-01
A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.
Node-surface and node-line fermions from nonsymmorphic lattice symmetries
NASA Astrophysics Data System (ADS)
Liang, Qi-Feng; Zhou, Jian; Yu, Rui; Wang, Zhi; Weng, Hongming
2016-02-01
We propose a kind of topological quantum state of semimetals in the quasi-one-dimensional (1D) crystal family BaMX 3 (M =V , Nb, or Ta; X =S or Se) by using symmetry analysis and first-principles calculation. We find that in BaVS3 the valence and conduction bands are degenerate in the kz=π /c plane (c is the lattice constant along the z ̂ axis) of the Brillouin zone (BZ). These nodal points form a node surface, and they are protected by a nonsymmorphic crystal symmetry consisting of a twofold rotation about the z ̂ axis and a half-translation along the same z ̂ axis. The band degeneracy in the node surface is lifted in BaTaS3 by including strong spin-orbit coupling (SOC) of Ta. The node surface is reduced into 1D node lines along the high-symmetry paths kx=0 and kx=±√{3 }ky on the kz=π /c plane. These node lines are robust against SOC and guaranteed by the symmetries of the P 63/m m c space group. These node-line states are entirely different from previous proposals which are based on the accidental band touchings. We also propose a useful material design for realizing topological node-surface and node-line semimetals.
Wood, Charles E; Walker, Claire-Dominique
2015-12-15
Stress is an integral part of life. Activation of the hypothalamus-pituitary-adrenal (HPA) axis in the adult can be viewed as mostly adaptive to restore homeostasis in the short term. When stress occurs during development, and specifically during periods of vulnerability in maturing systems, it can significantly reprogram function, leading to pathologies in the adult. Thus, it is critical to understand how the HPA axis is regulated during developmental periods and what are the factors contributing to shape its activity and reactivity to environmental stressors. The HPA axis is not a passive system. It can actively participate in critical physiological regulation, inducing parturition in the sheep for instance or being a center stage actor in the preparation of the fetus to aerobic life (lung maturation). It is also a major player in orchestrating mental function, metabolic, and cardiovascular function often reprogrammed by stressors even prior to conception through epigenetic modifications of gametes. In this review, we review the ontogeny of the HPA axis with an emphasis on two species that have been widely studied-sheep and rodents-because they each share many similar regulatory mechanism applicable to our understanding of the human HPA axis. The studies discussed in this review should ultimately inform us about windows of susceptibility in the developing brain and the crucial importance of early preconception, prenatal, and postnatal interventions designed to improve parental competence and offspring outcome. Only through informed studies will our public health system be able to curb the expansion of many stress-related or stress-induced pathologies and forge a better future for upcoming generations.
Spin symmetry in the antinucleon spectrum.
Zhou, Shan-Gui; Meng, Jie; Ring, P
2003-12-31
We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra.
Charge symmetry at the partonic level
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Turning Students into Symmetry Detectives
ERIC Educational Resources Information Center
Wilders, Richard; VanOyen, Lawrence
2011-01-01
Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…
Platonic Symmetry and Geometric Thinking
ERIC Educational Resources Information Center
Zsombor-Murray, Paul
2007-01-01
Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…
Concomitant Ordering and Symmetry Lowering
ERIC Educational Resources Information Center
Boo, William O. J.; Mattern, Daniell L.
2008-01-01
Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…
Symmetry-protected topological entanglement
NASA Astrophysics Data System (ADS)
Marvian, Iman
2017-01-01
We propose an order parameter for the symmetry-protected topological (SPT) phases which are protected by Abelian on-site symmetries. This order parameter, called the SPT entanglement, is defined as the entanglement between A and B , two distant regions of the system, given that the total charge (associated with the symmetry) in a third region C is measured and known, where C is a connected region surrounded by A , B , and the boundaries of the system. In the case of one-dimensional systems we prove that in the limit where A and B are large and far from each other compared to the correlation length, the SPT entanglement remains constant throughout a SPT phase, and furthermore, it is zero for the trivial phase while it is nonzero for all the nontrivial phases. Moreover, we show that the SPT entanglement is invariant under the low-depth quantum circuits which respect the symmetry, and hence it remains constant throughout a SPT phase in the higher dimensions as well. Also, we show that there is an intriguing connection between SPT entanglement and the Fourier transform of the string order parameters, which are the traditional tool for detecting SPT phases. This leads to an algorithm for extracting the relevant information about the SPT phase of the system from the string order parameters. Finally, we discuss implications of our results in the context of measurement-based quantum computation.
Circular codes, symmetries and transformations.
Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz
2015-06-01
Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes.
Baryon and chiral symmetry breaking
Gorsky, A.; Krikun, A.
2014-07-23
We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.
From symmetries to number theory
Tempesta, P.
2009-05-15
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
ERIC Educational Resources Information Center
Brown, Laurie M.
This document is a monograph intended for advanced undergraduate students, or beginning graduate students, who have some knowledge of modern physics as well as classical physics, including the elementary quantum mechanical treatment of the hydrogen atom and angular momentum. The first chapter introduces symmetry and relates it to the mathematical…
Resonantly amplified vibronic symmetry breaking
NASA Astrophysics Data System (ADS)
Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.
2001-05-01
The energy dependence of the vibrational branching ratio for exciting one quantum of bending is determined for CO2 4σg-1 photoionization. This nominally forbidden transition becomes allowed for a photoionization transition as a result of instantaneous symmetry breaking due to zero point motion, and is strongly enhanced by a continuum shape resonance.
Hidden local symmetry and beyond
NASA Astrophysics Data System (ADS)
Yamawaki, Koichi
Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L ×SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, “SM ρ meson”, in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call “dark SM skyrmion (DSMS)”.
Monster symmetry and extremal CFTs
NASA Astrophysics Data System (ADS)
Gaiotto, Davide
2012-11-01
We test some recent conjectures about extremal selfdual CFTs, which are the candidate holographic duals of pure gravity in AdS 3. We prove that no c = 48 extremal selfdual CFT or SCFT may possess Monster symmetry. Furthermore, we disprove a recent argument against the existence of extremal selfdual CFTs of large central charge.
Superdeformations and fermion dynamical symmetries
Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.
Stress and the Reproductive Axis
Toufexis, Donna; Rivarola, Maria Angelica; Lara, Hernan; Viau, Victor
2014-01-01
There exists a reciprocal relationship between the hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) axes wherein the activation of one affects the function of the other and vice versa. For instance, both testosterone and oestrogen modulate the response of the HPA axis, while activation of the stress axis, especially activation that is repeating or chronic, has an inhibitory effect upon oestrogen and testosterone secretion. Alterations in maternal care can produce significant effects on both HPG and HPA physiology and behaviour in the offspring at adulthood. For example, changes in reproductive behaviour induced by altered maternal care may alter the expression of sex hormone receptors like ERα that govern sexual behaviour, and may be particularly important in determining the sexual strategies utilized by females. Stress in adulthood continues to mediate HPG activity in females through activation of a sympathetic neural pathway originating in the hypothalamus and releasing norepinephrine (NE) into the ovary, which produces a non-cyclic anovulatory ovary that develops cysts. In the opposite direction, sex differences and sex steroid hormones regulate the HPA axis. For example, although serotonin (5-HT) has a stimulatory effect on the HPA axis in humans and rodents that is mediated by the 5-HT1A receptor, only male rodents respond to 5-HT1A antagonism to show increased corticosterone responses to stress. Furthermore, oestrogen appears to decrease 5-HT1A receptor function at presynaptic sites, yet increase 5-HT1A receptor expression at postsynaptic sites. These mechanisms could explain heightened stress HPA axis responses in females compared to males. Studies on female rhesus macaques show that chronic stress in socially subordinate female monkeys produces a distinct behavioral phenotype that is largely unaffected by oestrogen, a hypo-responsive HPA axis that is hypersensitive to the modulating effects of oestrogen, and changes in 5-HT
Underwood, Jonathan G; Procino, I; Christiansen, L; Maurer, J; Stapelfeldt, H
2015-07-01
We present a method for inverting charged particle velocity map images which incorporates a non-uniform detection function. This method is applied to the specific case of extracting molecular axis alignment from Coulomb explosion imaging probes in which the probe itself has a dependence on molecular orientation which often removes cylindrical symmetry from the experiment and prevents the use of standard inversion techniques for the recovery of the molecular axis distribution. By incorporating the known detection function, it is possible to remove the angular bias of the Coulomb explosion probe process and invert the image to allow quantitative measurement of the degree of molecular axis alignment.
Symmetry in the problem of wave modes of thin viscous liquid layer flow
NASA Astrophysics Data System (ADS)
Arkhipov, Dmitriy; Vozhakov, Ivan; Markovich, Dmitriy; Tsvelodub, Oleg
2016-09-01
The equations in conservative form for nonlinear waves modeling on a liquid film flowing down a vertical plane have been investigated. It has been found that in the computational domain extended along the transverse axis the equations with boundary conditions are invariant under parity transformation. It is numerically shown that for moderate Reynolds numbers the steady-state travelling solutions of the equations have the detected symmetry. It is demonstrated that using this symmetry for the numerical solution of the problem by Galerkin methods significantly increases the efficiency of calculations.
Symmetry breaking and singularity structure in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.
2012-08-01
We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.
Angle interferometer cross axis errors
Bryan, J.B.; Carter, D.L.; Thompson, S.L.
1994-01-01
Angle interferometers are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them by remachining the reference surfaces.
Angle interferometer cross axis errors
NASA Astrophysics Data System (ADS)
Bryan, J. B.; Carter, D. L.; Thompson, S. L.
1994-01-01
Angle interferometers are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them.
The aging reproductive neuroendocrine axis.
Brann, Darrell W; Mahesh, Virendra B
2005-04-01
It is well known that the reproductive system is one of the first biological systems to show age-related decline. While depletion of ovarian follicles clearly relates to the end of reproductive function in females, evidence is accumulating that a hypothalamic defect is critical in the transition from cyclicity to acyclicity. This minireview attempts to present a concise review on aging of the female reproductive neuroendocrine axis and provide thought-provoking analysis and insights into potential future directions for this field. Evidence will be reviewed, which shows that a defect in pulsatile and surge gonadotropin hormone-releasing hormone (GnRH) secretion exists in normal cycling middle-aged female rats, which is thought to explain the significantly attenuated pulsatile and surge luteinizing hormone (LH) secretion at middle-age. Evidence is also presented, which supports the age-related defect in GnRH secretion as being due to a reduced activation of GnRH neurons. Along these lines, stimulation of GnRH secretion by the major excitatory transmitter glutamate is shown to be significantly attenuated in middle-aged proestrous rats. Corresponding age-related defects in other major excitatory regulatory factors, such as catecholamines, neuropeptide Y, and astrocytes, have also been demonstrated. Age-related changes in hypothalamic concentrations of neurotransmitter receptors, steroid receptors, and circulating steroid hormone levels are also reviewed, and discussion is presented on the complex interrelationships of the hypothalamus-pituitary-ovarian (HPO) axis during aging, with attention to how a defect in one level of the axis can induce defects in other levels, and thereby potentiate the dysfunction of the entire HPO axis.
Universal Formulation For Symmetries In Computed Flows
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1995-01-01
Universal formulation for high-order symmetries in boundary conditions on flows devised. Eliminates need for special procedures to incorporate symmetries and corresponding boundary conditions into computer codes solving Navier-Stokes and Euler equations of flow.
An Elementary Course in Mathematical Symmetry.
ERIC Educational Resources Information Center
Rose, Bruce I.; Stafford, Robert D.
1981-01-01
A college course designed to teach students about the mathematics of symmetry using pieces of wallpaper and cloth designs is presented. Mathematical structures and the symmetry of graphic designs provide the starting point for instruction. (MP)
Exact symmetries of electron states and optical selection rules in wurtzite-based nanostructures
NASA Astrophysics Data System (ADS)
Kitaev, Yu. E.; Tronc, P.
2001-11-01
The crystal structure of wurtzite-based (hexagonal) quantum wells (QW's), such as (GaN)m/AlN ones for example, is found to be described by the layer group P3m1 (DG69) and does not depend on the number of atomic monolayers constituting the QW whereas the symmetry of wurtzite-based superlattices (SL's), such as (GaN)m(AlN)n ones for example, has been previously shown to be described by the space groups C13v or C46v depending on m+n is even or odd. The P3m1 (DG69) group is a factor group of the C13v group, the latter being the product of the P3m1 group and the subgroup containing the translations along the z axis. Basing on these symmetries, we have determined the exact symmetries of Bloch states at the Γ and other symmetry points of the Brillouin zones of QW's and SL's and derived optical selection rules for carriers and excitons. The latters present large Rydberg values. We have shown that the built-in electric field, directed along the z axis due to the symmetry, breaks the translational invariance of the SL's along this direction reducing their symmetry to that of a single QW. We have established that when one (several) phonon(s) is (are) involved in a radiative process, it is always possible to connect any initial state to any final one. The energy of the emitted photon depends on the nature of the phonon(s) if several channels are allowed for the transition. The symmetry of electron states in very thin QW's and short-period SL's is shown to be determined by their exact symmetry rather than that implied in envelope function approximation (EFA). Within the domain of validity of the EFA, i.e., for not too thin layers, a detailed analysis of the Bloch-state symmetry is performed on imposing the invariance of the structure under the change of z to -z (the σz symmetry operation). The correspondence is established between the symmetry of a Bloch state and the parity with respect to σz of its associated envelope function. It is shown that EFA artificially induces a
Symmetry perception in humans and macaques.
Beck, Diane M; Pinsk, Mark A; Kastner, Sabine
2005-09-01
The human ability to detect symmetry has been a topic of interest to psychologists and philosophers since the 19th century, yet surprisingly little is known about the neural basis of symmetry perception. In a recent fMRI study, Sasaki and colleagues begin to remedy this situation. By identifying the neural structures that respond to symmetry in both humans and macaques, the authors lay the groundwork for understanding the neural mechanisms underlying symmetry perception.
Flavored Peccei-Quinn symmetry
NASA Astrophysics Data System (ADS)
Ahn, Y. H.
2015-03-01
In an attempt to uncover any underlying physics in the standard model (SM), we suggest a μ - τ power law in the lepton sector, such that relatively large 13 mixing angle with bilarge ones can be derived. On the basis of this, we propose a neat and economical model for both the fermion mass hierarchy problem of the SM and a solution to the strong charge parity (C P ) problem, in a way that no domain wall problem occurs, based on A4×U (1 )X symmetry in a supersymmetric framework. Here we refer to the global U (1 )X symmetry that can explain the above problems as "flavored Peccei-Quinn symmetry." In the model, a direct coupling of the SM gauge singlet flavon fields responsible for spontaneous symmetry breaking to ordinary quarks and leptons, both of which are charged under U (1 )X, comes to pass through Yukawa interactions, and all vacuum expectation values breaking the symmetries are connected to each other. So the scale of Peccei-Quinn symmetry breaking is shown to be roughly located around the 1 012 GeV section through its connection to the fermion masses. The model predictions are shown to lie on the testable regions in the very near future through on-going experiments for neutrino oscillation, neutrinoless double beta decay, and the axion. We examine the model predictions, arisen from the μ - τ power law, on leptonic C P violation, neutrinoless double beta decay, and atmospheric mixing angle, and show that the fermion mass and mixing hierarchies are in good agreement with the present data. Interestingly, we show the model predictions on the axion mass ma≃2.53 ×1 0-5 eV and the axion coupling to photon ga γ γ≃1.33 ×1 0-15 GeV-1 . And subsequently the square of the ratio between them is shown to be one or two orders of magnitude lower than that of the conventional axion model.
Generalized partial dynamical symmetry in nuclei.
Leviatan, A; Isacker, P Van
2002-11-25
We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.
Noether symmetries and duality transformations in cosmology
NASA Astrophysics Data System (ADS)
Paliathanasis, Andronikos; Capozziello, Salvatore
2016-09-01
We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.
Superalgebra and fermion-boson symmetry
Miyazawa, Hironari
2010-01-01
Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617
Symmetry Breaking for Black-Scholes Equations
NASA Astrophysics Data System (ADS)
Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng
2007-06-01
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
CP symmetry in optical systems
NASA Astrophysics Data System (ADS)
Dana, Brenda; Bahabad, Alon; Malomed, Boris A.
2015-04-01
We introduce a model of a dual-core optical waveguide with opposite signs of the group-velocity dispersion in the two cores, and a phase-velocity mismatch between them. The coupler is embedded into an active host medium, which provides for the linear coupling of a gain-loss type between the two cores. The same system can be derived, without phenomenological assumptions, by considering the three-wave propagation in a medium with the quadratic nonlinearity, provided that the depletion of the second-harmonic pump is negligible. This linear system offers an optical realization of the charge-parity symmetry, while the addition of the intracore cubic nonlinearity breaks the symmetry. By means of direct simulations and analytical approximations, it is demonstrated that the linear system generates expanding Gaussian states, while the nonlinear one gives rise to broad oscillating solitons, as well as a general family of stable stationary gap solitons.
Facial symmetry in robust anthropometrics.
Kalina, Jan
2012-05-01
Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.
Symmetry breaking around a wormhole
NASA Astrophysics Data System (ADS)
Choudhury, A. L.
1996-11-01
We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.
Broken symmetries in multilayered perceptrons
NASA Astrophysics Data System (ADS)
Barkai, E.; Hansel, D.; Sompolinsky, H.
1992-03-01
The statistical mechanics of two-layered perceptrons with N input units, K hidden units, and a single output unit that makes a decision based on a majority rule (Committee Machine) are studied. Two architectures are considered. In the nonoverlapping case the hidden units do not share common inputs. In the fully connected case each hidden unit is connected to the entire input layer. In both cases the network realizes a random dichotomy of P inputs. The statistical properties of the space of solutions as a function of P is studied, using the replica method, and by numerical simulations, in the regime where N>>K. In the nonoverlapping architecture with continuously varying weights the capacity, defined as the maximal number of P per weight, (αc) is calculated under a replica-symmetric (RS) ansatz. At large K, αc diverges as K1/2 in contradiction with the rigorous upper bound, αc
Symmetry of cardiac function assessment
Bai, Xu-Fang; Ma, Amy X
2016-01-01
Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768
Symmetries in Lagrangian Field Theory
NASA Astrophysics Data System (ADS)
Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia
2015-06-01
By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.
Fermion mass without symmetry breaking
NASA Astrophysics Data System (ADS)
Catterall, Simon
2016-01-01
We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan [1]. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. Massless and massive phases appear to be separated by a continuous phase transition.
Explaining quantum spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Liu, Chuang; Emch, Gérard G.
Two accounts of quantum symmetry breaking (SSB) in the algebraic approach are compared: the representational and the decompositional account. The latter account is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account: the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
Dark matter and global symmetries
NASA Astrophysics Data System (ADS)
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-09-01
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
Arba Mosquera, Samuel; Verma, Shwetabh
2016-01-01
We analyze the role of bilateral symmetry in enhancing binocular visual ability in human eyes, and further explore how efficiently bilateral symmetry is preserved in different ocular surgical procedures. The inclusion criterion for this review was strict relevance to the clinical questions under research. Enantiomorphism has been reported in lower order aberrations, higher order aberrations and cone directionality. When contrast differs in the two eyes, binocular acuity is better than monocular acuity of the eye that receives higher contrast. Anisometropia has an uncommon occurrence in large populations. Anisometropia seen in infancy and childhood is transitory and of little consequence for the visual acuity. Binocular summation of contrast signals declines with age, independent of inter-ocular differences. The symmetric associations between the right and left eye could be explained by the symmetry in pupil offset and visual axis which is always nasal in both eyes. Binocular summation mitigates poor visual performance under low luminance conditions and strong inter-ocular disparity detrimentally affects binocular summation. Considerable symmetry of response exists in fellow eyes of patients undergoing myopic PRK and LASIK, however the method to determine whether or not symmetry is maintained consist of comparing individual terms in a variety of ad hoc ways both before and after the refractive surgery, ignoring the fact that retinal image quality for any individual is based on the sum of all terms. The analysis of bilateral symmetry should be related to the patients' binocular vision status. The role of aberrations in monocular and binocular vision needs further investigation.
Probing IrTe2 crystal symmetry by polarized Raman scattering
NASA Astrophysics Data System (ADS)
Lazarević, N.; Bozin, E. S.; Šćepanović, M.; Opačić, M.; Lei, Hechang; Petrovic, C.; Popović, Z. V.
2014-06-01
Polarized Raman scattering measurements on IrTe2 single crystals carried out over the 15-640 K temperature range, and across the structural phase transition, reveal different insights regarding the crystal symmetry. In the high temperature regime three Raman active modes are observed at all of the studied temperatures above the structural phase transition, rather than two as predicted by the factor group analysis for the assumed P3¯m1 symmetry. This indicates that the actual symmetry of the high temperature phase is lower than previously thought. The observation of an additional Eg mode at high temperature can be explained by doubling of the original trigonal unit cell along the c axis and within the P3¯c1 symmetry. In the low temperature regime (below 245 K) the other Raman modes appear as a consequence of the symmetry lowering phase transition and the corresponding increase of the primitive cell. All of the modes observed below the phase transition temperature can be assigned within the monoclinic crystal symmetry. The temperature dependence of the Raman active phonons in both phases is mainly driven by anharmonicity effects. The results call for reconsideration of the crystallographic phases of IrTe2.
Io's Volcanoes: Possible Influence on Spin Axis
NASA Astrophysics Data System (ADS)
Stoddard, P. R.; Jurdy, D. M.
2002-03-01
Massive outpourings of lava in short intervals could cause an instability in Io's rotation and a reorientation of its spin axis. The volcanos and mountains exhibit a complementary distribution, with the maximum principal inertia axis for volcanos close to the position of the rotation axis.
The Radical Axis: A Motion Study
ERIC Educational Resources Information Center
McGivney, Ray; McKim, Jim
2006-01-01
Interesting problems sometimes have surprising sources. In this paper we take an innocent looking problem from a calculus book and rediscover the radical axis of classical geometry. For intersecting circles the radical axis is the line through the two points of intersection. For nonintersecting, nonconcentric circles, the radical axis still…
Triple axis and spins spectrometers
Trevino, S.F.
1993-01-01
In the paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, the work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.
Generalization of Friedberg-Lee symmetry
NASA Astrophysics Data System (ADS)
Huang, Chao-Shang; Li, Tianjun; Liao, Wei; Zhu, Shou-Hua
2008-07-01
We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the Friedberg-Lee symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via the seesaw mechanism. If the right-handed neutrinos transform nontrivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale seesaw mechanism. Second, we present two models with the SO(3)×U(1) global flavor symmetry in the lepton sector. After the flavor symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via the seesaw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix after the SO(3)×U(1) flavor symmetry breaking.
Enhanced Facial Symmetry Assessment in Orthodontists.
Jackson, Tate H; Clark, Kait; Mitroff, Stephen R
2013-01-01
Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff-orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness.
Symmetry constraints on many-body localization
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Vasseur, Romain
2016-12-01
We derive general constraints on the existence of many-body localized (MBL) phases in the presence of global symmetries, and show that MBL is not possible with symmetry groups that protect multiplets (e.g., all non-Abelian symmetry groups). Based on simple representation theoretic considerations, we derive general Mermin-Wagner-type principles governing the possible alternative fates of nonequilibrium dynamics in isolated, strongly disordered quantum systems. Our results rule out the existence of MBL symmetry-protected topological phases with non-Abelian symmetry groups, as well as time-reversal symmetry-protected electronic topological insulators, and in fact all fermion topological insulators and superconductors in the 10-fold way classification. Moreover, extending our arguments to systems with intrinsic topological order, we rule out MBL phases with non-Abelian anyons as well as certain classes of symmetry-enriched topological orders.
Symmetries in nuclei: New methods and applications
NASA Astrophysics Data System (ADS)
Caprio, Mark A.
2011-04-01
When a symmetry is a ``good'' symmetry of the nuclear system, as in the dynamical symmetries of the shell model and interacting boson model, this symmetry can directly give the spectroscopic properties of the nucleus, without the need for involved calculations. However, even if a symmetry is strongly broken, it nonetheless provides a calculational tool, classifying the basis states used in a full computational treatment of the many-body problem and greatly simplifying the underlying computational machinery. The symmetry then serves as the foundation for a physically meaningful truncation scheme for the calculation. This talk will provide an introduction to new applications of symmetry approaches to the nuclear problem, including the required mathematical developments. Supported by the US DOE under grant DE-FG02-95ER-40934 and by the Research Corporation for Science Advancement under a Cottrell Scholar Award.
Enhanced Facial Symmetry Assessment in Orthodontists
Jackson, Tate H.; Clark, Kait; Mitroff, Stephen R.
2013-01-01
Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff—orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness. PMID:24319342
Symmetry, Statistics and Structure in MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
Stephens, Mary Ann C.; Wand, Gary
2012-01-01
Stress has long been suggested to be an important correlate of uncontrolled drinking and relapse. An important hormonal response system to stress—the hypothalamic–pituitary–adrenal (HPA) axis—may be involved in this process, particularly stress hormones known as glucocorticoids and primarily cortisol. The actions of this hormone system normally are tightly regulated to ensure that the body can respond quickly to stressful events and return to a normal state just as rapidly. The main determinants of HPA axis activity are genetic background, early-life environment, and current life stress. Alterations in HPA axis regulation are associated with problematic alcohol use and dependence; however, the nature of this dysregulation appears to vary with respect to stage of alcohol dependence. Much of this research has focused specifically on the role of cortisol in the risk for, development of, and relapse to chronic alcohol use. These studies found that cortisol can interact with the brain’s reward system, which may contribute to alcohol’s reinforcing effects. Cortisol also can influence a person’s cognitive processes, promoting habit-based learning, which may contribute to habit formation and risk of relapse. Finally, cortisol levels during abstinence may be useful clinical indicators of relapse vulnerability in alcohol-dependent people. PMID:23584113
Villa, Christopher R; Ward, Wendy E; Comelli, Elena M
2017-05-24
The gut microbiota (GM) is an important regulator of body homeostasis, including intestinal and extra-intestinal effects. This review focuses on the GM-bone axis, which we define as the effect of the gut-associated microbial community or the molecules they synthesize, on bone health. While research in this field is limited, findings from preclinical studies support that gut microbes positively impact bone mineral density and strength parameters. Moreover, administration of beneficial bacteria (probiotics) in preclinical models has demonstrated higher bone mineralization and greater bone strength. The preferential bacterial genus that has shown these beneficial effects in bone is Lactobacillus and thus lactobacilli are among the best candidates for future clinical intervention trials. However, their effectiveness is dependent on stage of development, as early life constitutes an important time for impacting bone health, perhaps via modulation of the GM. In addition, sex-specific difference also impacts the efficacy of the probiotics. Although auspicious, many questions regarding the GM-bone axis require consideration of potential mechanisms; sex-specific efficacy; effective dose of probiotics; and timing and duration of treatment.
Aberration fields of off-axis two-mirror astronomical telescopes induced by lateral misalignments.
Ju, Guohao; Yan, Changxiang; Gu, Zhiyuan; Ma, Hongcai
2016-10-17
This paper presents a systematic and in-depth discussion for the aberration fields of off-axis two-mirror astronomical telescopes with an offset pupil that is induced by lateral misalignment. Based on the framework of nodal aberration theory and a system level pupil coordinate transformation, the aberration function for misaligned off-axis telescopes is derived. Some general descriptions for the misalignment-induced aberrations are presented. The specific astigmatic and coma aberration field characteristics in off-axis two-mirror telescopes are then discussed. The precision of the presented aberration expressions is demonstrated. The discrepancies between the ray tracing data and aberration expressions are explicated. Then the inherent relationships between the astigmatism and coma aberration fields are revealed and explicated. Based on this knowledge, some quantitative discussions are further presented for determining the misalignments used to compensate for the effects of primary mirror astigmatic figure errors as well as separating these two effects when coupled. Other effects of lateral misalignments are also presented, especially the field-constant focal shift, which is only sensitive to the lateral misalignments in the symmetry plane of the nominal off-axis system. A quantitative discussion is also presented which explains the reason why trefoil aberration in off-axis telescopes is more sensitive to lateral misalignments. Most of the results presented in this paper can be extended to the other off-axis astronomical telescopes with more freedoms.
Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B
2013-02-01
Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.
Symmetry breaking and wake instabilities
NASA Astrophysics Data System (ADS)
Sengupta, Raja
A numerical technique has been developed in the context of spatio-temporal stability analysis. The convective/absolute nature of instability determines the time-asymptotic response of a linearly unstable flow, either in the form an oscillator or in the form of a noise amplifier. This depends on the location of pinch point singularities of the dispersion relations obtained via linear stability analyses. A new and efficient approach to locate such singularities is presented. Local analyticity of the dispersion relations was exploited via the Cauchy-Riemann equations in a quasi-Newton's root- finding procedure employing numerical Jacobians. Initial guesses provided by temporal stability analyses have been shown to converge to the pinch points even in the presence of multiple saddle points for various Falkner- Skan wedge profiles. This effort was motivated by the phenomenon of spontaneous symmetry breaking in flow over a cone. At large enough incidence, a pair of vortices develop on the leeward side of the cone which eventually become asymmetric as the angle of attack is increased further. A conical, thin-layer Navier-Stokes solver was employed to investigate the effect of flowfield saddles in this process. The approximate factorization scheme incorporated in the solver was shown analytically to be symmetric to eliminate possible sources of asymmetry. Local grid resolution studies were performed to demonstrate the importance of correctly computing the leeside saddle point and the secondary separation and reattchment points. Topological studies of the flow field as it loses symmetry agreed well with previous qualitative experimental observations. However, the original goal of this study, to settle an ongoing controversy regarding the nature of the instability responsible for symmetry breaking, could not be realized due to computational inadequacy. It is conjectured that the process is governed by an absolute instability similar to that observed in a flow over a circular
Duality symmetries and G+++ theories
NASA Astrophysics Data System (ADS)
Riccioni, Fabio; Steele, Duncan; West, Peter
2008-02-01
We show that the nonlinear realizations of all the very extended algebras G+++, except the B and C series which we do not consider, contain fields corresponding to all possible duality symmetries of the on-shell degrees of freedom of these theories. This result also holds for G+++2 and we argue that the nonlinear realization of this algebra accounts precisely for the form fields present in the corresponding supersymmetric theory. We also find a simple necessary condition for the roots to belong to a G+++ algebra.
History of electroweak symmetry breaking
NASA Astrophysics Data System (ADS)
Kibble, T. W. B.
2015-07-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.
Towards a synthetic view of axis specification mechanisms in vertebrates: insights from the dogfish.
Coolen, Marion; Menuet, Arnaud; Mazan, Sylvie
2009-01-01
The genetic mechanisms, which control axis specification, apparently extensively diverge across vertebrates. In amphibians and teleosts, they are tightly linked to the establishment of an early dorso-ventral polarity. This polarity has no equivalent in amniotes, which unlike the former, retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extra-embryonic tissues for the establishment of their early rostro-caudal pattern. In order to better understand the links between these seemingly highly divergent mechanisms, we have used an evo-devo approach, aimed at reconstructing the gnathostome ancestral state and focussed on a chondrichthyan, the dogfish Scyliorhinus canicula. A detailed molecular characterization of the dogfish embryo at blastula and gastrula stages highlights striking similarities with all vertebrate model organisms including amniotes. It suggests the presence in the dogfish of territories homologous to the hypoblast and extra-embryonic ectoderm of the latter, which may therefore reflect the primitive condition of jawed vertebrates. In the ancestral state, these territories are specified at opposite sides of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians and teleosts, and aligned with the later forming embryonic axis, from head to tail. Amniotes have diverged from this pattern through a posterior expansion of extra-embryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages. These data delineate the broad outlines of the gnathostome ancestral pattern of axis specification and highlight an unexpected unity of mechanisms across jawed vertebrates. They illustrate the complementarity of comparative and genetic approaches for a comprehensive view of developmental mechanisms themselves.
Meirovitch, E.
1986-10-23
The molecular motion of acetone-d/sub 6/ acting as guest in deoxycholic acid and apocholic acid host lattices in the solid state is interpreted in light of a broader concept assessing that very often the motion of the guest proceeds through discrete jumps rather than diffusively and its symmetry is congenial with the site symmetry of the host lattice. In particular, the acetone molecules are engaged in threefold jumps about a unique axis, compatible with the 32 site symmetry of the host lattice. The entire dynamic range of this process is investigated in terms of spectral consequences brought about by variations in jump rates, in the relative population of the three symmetry related sites, and in instrumental parameters such as the time interval between the two 90/sup 0/ pulses in the quadrupole echo sequence and the length of the 90/sup 0/ pulses.
Contact symmetries and Hamiltonian thermodynamics
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-10-15
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.
Symmetry properties in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.
1992-01-01
This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.
Symmetry energy of dilute warm nuclear matter.
Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H
2010-05-21
The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.
Classification of topological phases with reflection symmetry
NASA Astrophysics Data System (ADS)
Yoshida, Tsuneya; Morimoto, Takahiro; Furusaki, Akira
2015-03-01
In Z2 topological band insulators, the time-reversal symmetry protects their topological structure. In these years such a notion is extended to correlated systems including bosonic systems, and these nontrivial phases are referred to as symmetry protected topological (SPT) phases. Parallel to this progress, a topological crystalline insulator, protected by spatial symmetry, is found for SnTe. Thus, SPT phases protected by this type of symmetry are naturally expected, and classifications of such phases are desired. In this article, we address this issue by focusing on a reflection symmetry. Our analysis based on the Chern-Simons approach proposes periodic tables for bosonic and fermionic SPT phases in two dimensions. Besides that, we show an SPT phase with the reflection symmetry is stabilized in a spin model of honeycomb lattice.
Dynamics-dependent symmetries in Newtonian mechanics
NASA Astrophysics Data System (ADS)
Holland, Peter
2014-01-01
We exhibit two symmetries of one-dimensional Newtonian mechanics whereby a solution is built from the history of another solution via a generally nonlinear and complex potential-dependent transformation of the time. One symmetry intertwines the square roots of the kinetic and potential energies and connects solutions of the same dynamical problem (the potential is an invariant function). The other symmetry connects solutions of different dynamical problems (the potential is a scalar function). The existence of corresponding conserved quantities is examined using Noether's theorem and it is shown that the invariant-potential symmetry is correlated with energy conservation. In the Hamilton-Jacobi picture the invariant-potential transformation provides an example of a ‘field-dependent’ symmetry in point mechanics. It is shown that this transformation is not a symmetry of the Schrödinger equation.
Dynamical symmetries of the Kepler problem
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Silva Araújo, Eduardo
2013-09-01
This paper comes from a first-year undergraduate research project on hidden symmetries of the dynamics for classical Hamiltonian systems. For pedagogical reasons the main subject chosen was Kepler’s problem of motion under a central potential, since it is a completely solved system. It is well known that for this problem the group of dynamical symmetries is strictly larger than the isometry group O(3), the extra symmetries corresponding to hidden symmetries of the dynamics. By taking the point of view of examining the group action of the dynamical symmetries on the allowed trajectories, it is possible to teach the basic elements of many important physics subjects in the same project, including the Hamiltonian formalism, hidden symmetries, integrable systems, group theory and the use of manifolds.
Where to Go: Breaking the Symmetry in Cell Motility
2016-01-01
Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. PMID:27196433
Lie symmetry analysis of the Heisenberg equation
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2017-04-01
The Lie symmetry analysis is performed on the Heisenberg equation from the statistical physics. Its Lie point symmetries and optimal system of one-dimensional subalgebras are determined. The similarity reductions and invariant solutions are obtained. Using the multipliers, some conservation laws are obtained. We prove that this equation is nonlinearly self-adjoint. The conservation laws associated with symmetries of this equation are constructed by means of Ibragimov's method.
Symmetry-protected single-photon subradiance
NASA Astrophysics Data System (ADS)
Cai, Han; Wang, Da-Wei; Svidzinsky, Anatoly A.; Zhu, Shi-Yao; Scully, Marlan O.
2016-05-01
We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shifts cannot be neglected. We find that antisymmetric states are subradiant states for distributions with reflection symmetry. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.
Functional ferroic heterostructures with tunable integral symmetry.
Becher, C; Trassin, M; Lilienblum, M; Nelson, C T; Suresha, S J; Yi, D; Yu, P; Ramesh, R; Fiebig, M; Meier, D
2014-07-02
The relation between symmetry and functionality was pinpointed by Pierre Curie who stated that it is the symmetry breaking that creates physical properties. This fundamental principle is nowadays used for engineering heterostructures whose integral symmetry leads to exotic phenomena such as one-way transparency. For switching devices, however, such symmetry-related functionalities cannot be used because the symmetry in conventional heterostructures is immutable once the material has been synthesized. Here we demonstrate a concept for post-growth symmetry control in PbZr0.2Ti0.8O3 and BiFeO3-based heterostructures. A conducting oxide is sandwiched between two ferroelectric layers, and inversion symmetry is reversibly switched on or off by layer-selective electric-field poling. The generalization of our approach to other materials and symmetries is discussed. We thus establish ferroic trilayer structures as device components with reversibly tunable symmetry and demonstrate their use as light emitters that can be activated and deactivated by applying moderate electric voltages.
Discrete gauge symmetry in continuum theories
Krauss, L.M.; Wilczek, F.
1989-03-13
We point out that local symmetries can masquerade as discrete global symmetries to an observer equipped with only low-energy probes. The existence of the underlying local gauge invariance can, however, result in observable Aharonov-Bohm-type effects. Black holes can therefore carry discrete gauge charges: a form of nonclassical ''hair.'' Neither black-hole evaporation, wormholes, nor anything else can violate discrete gauge symmetries. In supersymmetric unified theories such discrete symmetries can forbid proton-decay amplitudes that might otherwise be catastrophic.
Fake conformal symmetry in unimodular gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-08-01
We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.
Nonlinear (super)symmetries and amplitudes
NASA Astrophysics Data System (ADS)
Kallosh, Renata
2017-03-01
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E 7(7) scalar sector symmetries as well as the fermionic goldstino symmetries.
First-Principles Calculation of Femtosecond Symmetry-Breaking Atomic Forces in Photoexcited Bismuth
NASA Astrophysics Data System (ADS)
Murray, Éamonn D.; Fahy, Stephen
2015-02-01
We present a first-principles method for the calculation of the polarization-dependent atomic forces resulting from optical excitation in a solid. We calculate the induced force driving the Eg phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c axis is absorbed, the photoexcited charge density breaks the threefold rotational symmetry, leading to an atomic force component perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting atomic force components parallel and perpendicular to the axis. The magnitude of the calculated force is in excellent agreement with that derived from recent measurements of the amplitude of Eg atomic motion and the decay time of several femtoseconds for the driving force.
Axis perpendicularity measuring method using vision
NASA Astrophysics Data System (ADS)
Lee, Chang-Woo; Song, Jun-Yeob; Ha, Tae-Ho
2008-11-01
Perpendicularity measurement is very important in machine assembly and calibration. Axis perpendicularity error often contributes much more to the total error than the linear positioning and straightness errors. This paper presents two new non-contact methods for measuring axis perpendicularity using vision system. In general a perpendicular master and a dial gauge are used to measure the axis perpendicularity. We can obtain the axis perpendicularity by measuring differences from the master. Therefore, its accuracy depends on the accuracy of perpendicular master. The accuracy of the perpendicular master is therefore extremely important and it is impossible that the accuracy of a perpendicularity measurement is superior to the accuracy of the perpendicular master. This paper proposes two new methods that can measure axis perpendicularity without using a perpendicular master. Absolute axis perpendicularity measurement can be achieved by vision system. The feasibility of our developed measurement methods are confirmed by several experimental results.
Antenna Axis Offset Estimation from VLBI
NASA Technical Reports Server (NTRS)
Kurdubov, Sergey; Skurikhina, Elena
2010-01-01
The antenna axis offsets were estimated from global solutions and single sessions. We have built a set of global solutions from R1 and R4 sessions and from the sets of sessions between SVETLOE repairs. We compared our estimates with local survey data for the stations of the QUASAR network. Svetloe station axis offset values have changed after repairs. For non-global networks, the axis offset value of a single station can significantly affect the EOP estimations.
PREFACE: Symmetries in Science XV
NASA Astrophysics Data System (ADS)
Schuch, Dieter; Ramek, Michael
2012-08-01
Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There
Principles of the prolactin/vasoinhibin axis
Bertsch, Thomas; Bollheimer, Cornelius; Rios-Barrera, Daniel; Pearce, Christy F.; Hüfner, Michael; Martínez de la Escalera, Gonzalo; Clapp, Carmen
2015-01-01
The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed. PMID:26310939
Discomfort criteria for single-axis vibrations
NASA Technical Reports Server (NTRS)
Dempsey, T. K.; Leatherwood, J. D.; Clevenson, S. A.
1979-01-01
Experimental investigations were conducted to determine the fundamental relationships governing human subjective discomfort response to single-axis vibrations. The axes investigated were vertical, lateral, longitudinal, roll, and pitch, and the vibrations used were both sinusoidal and random in nature. Results of these investigations provided the basis for: (1) development of a scale of passenger discomfort that is common to all axes of vibration; and (2) generation of discomfort criteria for each axis of each axis and for both types of vibration. Furthermore, empirical equations describing discomfort responses within each axis of vibration are included.
Helical axis stellarator with noninterlocking planar coils
Reiman, Allan; Boozer, Allen H.
1987-01-01
A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.
Symmetry constraints during the development of anisotropic spinodal patterns
Sánchez-Muñoz, Luis; del Campo, Adolfo; Fernández, José F.
2016-01-01
Spinodal decomposition is a phase-separation phenomenon occurring at non-equilibrium conditions. In isotropic materials, it is expected to improve the physical properties, in which modulated structures arise from a single system of spinodal waves. However, in anisotropic materials this process is controversial and not very well understood. Here, we report anisotropic spinodal decomposition patterns in single crystals of K-rich feldspar with macroscopic monoclinic 2/m symmetry. The periodicity of the spinodal waves at ~450 nm produces a blue iridescence, typical of the gemstone moonstone. Stripe patterns in the (010) plane, labyrinthine patterns in the (100) plane, and coexistence of the two patterns in the (110) plane are first resolved by scanning Rayleigh scattering microscopy. Two orthogonal systems of spinodal waves with the same periodicity are derived from the features and orientations of the patterns on the crystal surfaces. The orthogonality of the waves is related to the perpendicularity of the binary axis and the mirror plane. Thus, the spinodal patterns must be controlled by symmetry constraints during phase separation at early stages. Unusual and new properties could be developed in other anisotropic materials by thermal treatment inducing two orthogonal systems of periodic spinodal waves. PMID:26860067
Five-fold symmetry in crystalline quasicrystal lattices
Caspar, Donald L. D.; Fontano, Eric
1996-01-01
To demonstrate that crystallographic methods can be applied to index and interpret diffraction patterns from well-ordered quasicrystals that display non-crystallographic 5-fold symmetry, we have characterized the properties of a series of periodic two-dimensional lattices built from pentagons, called Fibonacci pentilings, which resemble aperiodic Penrose tilings. The computed diffraction patterns from periodic pentilings with moderate size unit cells show decagonal symmetry and are virtually indistinguishable from that of the infinite aperiodic pentiling. We identify the vertices and centers of the pentagons forming the pentiling with the positions of transition metal atoms projected on the plane perpendicular to the decagonal axis of quasicrystals whose structure is related to crystalline η phase alloys. The characteristic length scale of the pentiling lattices, evident from the Patterson (autocorrelation) function, is ∼τ2 times the pentagon edge length, where τ is the golden ratio. Within this distance there are a finite number of local atomic motifs whose structure can be crystallographically refined against the experimentally measured diffraction data. PMID:8962038
Symmetry Breaking in a Model for Nodal Cilia
NASA Astrophysics Data System (ADS)
Brokaw, Charles J.
2005-03-01
Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.
SYMMETRY OF THE IBEX RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM (ENA) FLUX
Funsten, H. O.; Cai, D. M.; Higdon, D. M.; Larsen, B. A. E-mail: dmc@lanl.gov E-mail: balarsen@lanl.gov; and others
2015-01-20
The circular ribbon of enhanced energetic neutral atom (ENA) emission observed by the Interstellar Boundary Explorer (IBEX) mission remains a critical signature for understanding the interaction between the heliosphere and the interstellar medium. We study the symmetry of the ribbon flux and find strong, spectrally dependent reflection symmetry throughout the energy range 0.7-4.3 keV. The distribution of ENA flux around the ribbon is predominantly unimodal at 0.7 and 1.1 keV, distinctly bimodal at 2.7 and 4.3 keV, and a mixture of both at 1.7 keV. The bimodal flux distribution consists of partially opposing bilateral flux lobes, located at highest and lowest heliographic latitude extents of the ribbon. The vector between the ribbon center and heliospheric nose (which defines the so-called BV plane) appears to play an organizing role in the spectral dependence of the symmetry axis locations as well as asymmetric contributions to the ribbon flux. The symmetry planes at 2.7 and 4.3 keV, derived by projecting the symmetry axes to a great circle in the sky, are equivalent to tilting the heliographic equatorial plane to the ribbon center, suggesting a global heliospheric ordering. The presence and energy dependence of symmetric unilateral and bilateral flux distributions suggest strong spectral filtration from processes encountered by an ion along its journey from the source plasma to its eventual detection at IBEX.
Laws of conservation as related to brain growth, aging, and evolution: symmetry of the minicolumn.
Casanova, Manuel F; El-Baz, Ayman; Switala, Andrew
2011-01-01
Development, aging, and evolution offer different time scales regarding possible anatomical transformations of the brain. This article expands on the perspective that the cerebral cortex exhibits a modular architecture with invariant properties in regards to these time scales. These properties arise from morphometric relations of the ontogenetic minicolumn as expressed in Noether's first theorem, i.e., that for each continuous symmetry there is a conserved quantity. Whenever minicolumnar symmetry is disturbed by either developmental or aging processes the principle of least action limits the scope of morphometric alterations. Alternatively, local and global divergences from these laws apply to acquired processes when the system is no longer isolated from its environment. The underlying precepts to these physical laws can be expressed in terms of mathematical equations that are conservative of quantity. Invariant properties of the brain include the rotational symmetry of minicolumns, a scaling proportion or "even expansion" between pyramidal cells and core minicolumnar size, and the translation of neuronal elements from the main axis of the minicolumn. It is our belief that a significant portion of the architectural complexity of the cerebral cortex, its response to injury, and its evolutionary transformation, can all be captured by a small set of basic physical laws dictated by the symmetry of minicolumns. The putative preservations of parameters related to the symmetry of the minicolumn suggest that the development and final organization of the cortex follows a deterministic process.
Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals
NASA Astrophysics Data System (ADS)
Yang, Bohm-Jung; Bojesen, Troels Arnfred; Morimoto, Takahiro; Furusaki, Akira
2017-02-01
Topological semimetals have energy bands near the Fermi energy sticking together at isolated points/lines/planes in the momentum space, which are often accompanied by stable surface states and intriguing bulk topological responses. Although it has been known that certain crystalline symmetries play an important role in protecting band degeneracy, a general recipe for stabilizing the degeneracy, especially in the presence of spin-orbit coupling, is still lacking. Here we show that a class of novel topological semimetals with point/line nodes can emerge in the presence of an off-centered rotation/mirror symmetry whose symmetry line/plane is displaced from the center of other symmorphic symmetries in nonsymmorphic crystals. Due to the partial translation perpendicular to the rotation axis/mirror plane, an off-centered rotation/mirror symmetry always forces two energy bands to stick together and form a doublet pair in the relevant invariant line/plane in momentum space. Such a doublet pair provides a basic building block for emerging topological semimetals with point/line nodes in systems with strong spin-orbit coupling.
Inflation, symmetry, and B-modes
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.
2015-05-01
We examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by envoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with a cosmological constant and a massless scalar carries conformal symmetry. They claim this conformal symmetry is hidden when the action is written in the Einstein frame, and so has not been fully appreciated in the literature. They further claim that such a theory carries another hidden symmetry; a global SO (1 , 1) symmetry. By deforming around the global SO (1 , 1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend to give rise to B-modes with small amplitude. Here we explain that standard Einstein gravity does not in fact possess conformal symmetry. Instead these authors are merely introducing a redundancy into the description, not an actual conformal symmetry. Furthermore, we explain that the only real (global) symmetry in these models is not at all hidden, but is completely manifest when expressed in the Einstein frame; it is in fact the shift symmetry of a scalar field. When analyzed systematically as an effective field theory, deformations do not generally produce asymptotically flat potentials and small B-modes as suggested in these recent papers. Instead, deforming around the shift symmetry systematically, tends to produce models of inflation with B-modes of appreciable amplitude. Such simple models typically
Wormhole dynamics in spherical symmetry
Hayward, Sean A.
2009-06-15
A dynamical theory of traversable wormholes is detailed in spherical symmetry. Generically a wormhole consists of a tunnel of trapped surfaces between two mouths, defined as temporal outer trapping horizons with opposite senses, in mutual causal contact. In static cases, the mouths coincide as the throat of a Morris-Thorne wormhole, with surface gravity providing an invariant measure of the radial curvature or ''flaring-out''. The null energy condition must be violated at a wormhole mouth. Zeroth, first, and second laws are derived for the mouths, as for black holes. Dynamic processes involving wormholes are reviewed, including enlargement or reduction, and interconversion with black holes. A new area of wormhole thermodynamics is suggested.
Electroweak symmetry breaking via QCD.
Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred
2014-08-29
We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350 GeV≲mS≲3 TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem.
Mirror symmetry for Enriques surfaces
NASA Astrophysics Data System (ADS)
Lakuriqi, Enkeleida
In this thesis, we investigate three separate but related projects. In the first one, we describe the geometric backgrounds of Type II string theory which are given by Enriques surfaces and their mirrors. We also study the effect of various string dualities on such backgrounds, in particular phase change in Gauged Linear Sigma Models and mirror symmetry. In the second project, we investigate special Kahler geometry in order to find canonical coordinates on the moduli of generalised Calabi-Yau spaces and the associated (2, 2) superconformal field theories. In the third project, we develop a general technique for computing the massless spectrum of (0, 2) quantum field theory compactified on a proper stack or an orbifold. We produce general formulas for the contribution of the twisted sectors and compute specific examples of compactifications on gerbes on projective spaces and Calabi-Yau threefolds.
Permutation symmetry for theta functions
Carlson, B.C.
2011-01-21
This paper does for combinations of theta functions most of what Carlson (2004) [1] did for Jacobian elliptic functions. In each case the starting point is the symmetric elliptic integral R{sub F} of the first kind. Its three arguments (formerly squared Jacobian elliptic functions but now squared combinations of theta functions) differ by constants. Symbols designating the constants can often be used to replace 12 equations by three with permutation symmetry (formerly in the letters c, d, n for the Jacobian case but now in the subscripts 2, 3, 4 for theta functions). Such equations include derivatives and differential equations, bisection and duplication relations, addition formulas (apparently new for theta functions), and an example of pseudoaddition formulas.
Rare Isotopes and Fundamental Symmetries
NASA Astrophysics Data System (ADS)
Brown, B. Alex; Engel, Jonathan; Haxton, Wick; Ramsey-Musolf, Michael; Romalis, Michael; Savard, Guy
2009-01-01
Experiments searching for new interactions in nuclear beta decay / Klaus P. Jungmann -- The beta-neutrino correlation in sodium-21 and other nuclei / P. A. Vetter ... [et al.] -- Nuclear structure and fundamental symmetries/ B. Alex Brown -- Schiff moments and nuclear structure / J. Engel -- Superallowed nuclear beta decay: recent results and their impact on V[symbol] / J. C. Hardy and I. S. Towner -- New calculation of the isospin-symmetry breaking correlation to superallowed Fermi beta decay / I. S. Towner and J. C. Hardy -- Precise measurement of the [symbol]H to [symbol]He mass difference / D. E. Pinegar ... [et al.] -- Limits on scalar currents from the 0+ to 0+ decay of [symbol]Ar and isospin breaking in [symbol]Cl and [symbol]Cl / A. Garcia -- Nuclear constraints on the weak nucleon-nucleon interaction / W. C. Haxton -- Atomic PNC theory: current status and future prospects / M. S. Safronova -- Parity-violating nucleon-nucleon interactions: what can we learn from nuclear anapole moments? / B. Desplanques -- Proposed experiment for the measurement of the anapole moment in francium / A. Perez Galvan ... [et al.] -- The Radon-EDM experiment / Tim Chupp for the Radon-EDM collaboration -- The lead radius Eexperiment (PREX) and parity violating measurements of neutron densities / C. J. Horowitz -- Nuclear structure aspects of Schiff moment and search for collective enhancements / Naftali Auerbach and Vladimir Zelevinsky -- The interpretation of atomic electric dipole moments: Schiff theorem and its corrections / C. -P. Liu -- T-violation and the search for a permanent electric dipole moment of the mercury atom / M. D. Swallows ... [et al.] -- The new concept for FRIB and its potential for fundamental interactions studies / Guy Savard -- Collinear laser spectroscopy and polarized exotic nuclei at NSCL / K. Minamisono -- Environmental dependence of masses and coupling constants / M. Pospelov.
Neutrino properties and fundamental symmetries
Bowles, T.J.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.
Flavor symmetries and fermion masses
Rasin, Andrija
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V_{ub}/V_{cb} = √m_{u}/m_{c} and V_{td}/V_{ts} = √m_{d}/m_{s}, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanβ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.
Uzturk, Belkis Gizem; Jin, Shan-xue; Rubin, Beverly; Bartolome, Christopher; Feig, Larry A.
2015-01-01
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the induction and prolongation of a variety of psychiatric disorders. As such, much effort has been made to understand the molecular mechanisms involved in its control. However, the vast majority of the studies on the HPA axis have used adult animals, and among these the majority has used males. Here we show that in knockout mice lacking the guanine nucleotide exchange factor, RasGRF1, habituation to 30 minutes a day of restraint stress is markedly accelerated, such that these mice do not display elevated corticosterone levels or enhanced locomotion after 7 days of stress exposure, like WT mice do. Strikingly, this phenotype is present in early-adolescent female RasGRF1 knockout mice, but not in their early-adolescent male, mid-adolescent female, adult female or adult male counterparts. Moreover, not only is there a clear response to restraint stress in early-adolescent female RasGRF1 knockout mice, their response after 1, 3, and 5 exposures is magnified ~3-fold compared to WT mice. These findings imply that distinct mechanisms exist to regulate the HPA axis in early-adolescent females that involves RasGRF1. A full understanding of how RasGRF1 controls the HPA axis response to stress may be required to design effective strategies to combat stress-associated psychiatric disorders initiated in young females. PMID:26246084
Cubic Icosahedra? A Problem in Assigning Symmetry
ERIC Educational Resources Information Center
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
Symmetry in critical random Boolean network dynamics.
Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E
2014-04-01
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.
Symmetry is less than meets the eye.
Apthorp, Deborah; Bell, Jason
2015-03-30
Symmetry is a ubiquitous feature in the visual environment and can be detected by a variety of species, ranging from insects through to humans [1,2]. Here we show it can also bias estimates of basic scene properties. Mirror (reflective) symmetry can be detected in as little as 50 ms, in both natural and artificial visual scenes, and even when embedded within cluttered backgrounds [1]. In terms of its biological relevance, symmetry is a key determinant in mate selection; the degree of symmetry in a face is positively associated with perceived healthiness and attractiveness ratings [3]. In short, symmetry processing mechanisms are an important part of the neural machinery of vision. We reveal that the importance of symmetry extends beyond the processing of shape and objects. Mirror symmetry biases our perception of scene content, with symmetrical patterns appearing to have fewer components than their asymmetric counterparts. This demonstrates an interaction between two fundamental dimensions of visual analysis: symmetry [1] and number [4]. We propose that this numerical underestimation results from a processing bias away from the redundant information within mirror symmetrical displays, extending existing theories regarding redundancy in visual analysis [5,6].
Symmetry in Critical Random Boolean Networks Dynamics
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Hossein, Shabnam
2014-03-01
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used to both greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. Classes of functions occur at the same frequency. These classes are orbits of the controlling symmetry group. We find the nature of the symmetry that controls the dynamics of critical random Boolean networks by determining the frequency of output functions utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using symmetry to characterize complex network dynamics, and introduce a novel approach to the analysis of heterogeneous complex systems. This work was supported by the NSF through grants DMR-0908286 and DMR-1206839, and by the AFSOR and DARPA through grant FA9550-12-1-0405.
Symmetry in critical random Boolean network dynamics
NASA Astrophysics Data System (ADS)
Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.
2014-04-01
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.
Order in the Universe: The Symmetry Principle.
ERIC Educational Resources Information Center
Foundation for Integrative Education, Inc., New York, NY.
The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…
Partial dynamical symmetry in a fermion system
Escher; Leviatan
2000-02-28
The relevance of the partial dynamical symmetry concept for an interacting fermion system is demonstrated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications are discussed for the deformed light nucleus 20Ne.
Teaching symmetry in the introductory physics curriculum
Hill, C. T.; Lederman, L. M.
2000-01-01
Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.
Broken chiral symmetry on a null plane
Beane, Silas R.
2013-10-15
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.
Continuous point symmetries in group field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2017-03-01
We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them.
Topological symmetry breaking by quantum wormholes
Mignemi, S.; Moss, I. )
1993-10-15
In multiply connected spacetimes which contain quantum wormholes it may be possible to break gauge symmetries without the usual Higgs fields. In a simple model, symmetry breaking is favored by the quantum effects of Dirac Fermions and leads to vector boson masses related to the wormhole separation.
The role of symmetry in nuclear physics
NASA Astrophysics Data System (ADS)
Iachello, Francesco
2015-02-01
The role of discrete symmetries in nuclear physics is briefly reviewed within the context of the algebraic cluster model (ACM). The symmetries D3 (triangle) for 3α and Td (tetrahedron) for 4α are discussed and evidence shown for their occurrence in 12C (D3) and 16O (Td).
Symmetries in flat space-times
Duncan, D.C.
1989-01-01
In the following flat spacetimes with a high degree of symmetry are studied. The first part completes the classification of all homogeneous flat spacetimes begun by Wolf. The second part explores classification of flat spacetimes with symmetry groups having codimension one orbits. In this case attention is restricted to spacetimes which model a centrally symmetric gravitational field.
A nilpotent symmetry of quantum gauge theories
NASA Astrophysics Data System (ADS)
Lahiri, Amitabha
2001-09-01
For the Becchi-Rouet-Stora-Tyutin invariant extended action for any gauge theory, there exists another off-shell nilpotent symmetry. For linear gauges, it can be elevated to a symmetry of the quantum theory and used in the construction of the quantum effective action. Generalizations for nonlinear gauges and actions with higher-order ghost terms are also possible.
NOTE: Circular symmetry in topologically massive gravity
NASA Astrophysics Data System (ADS)
Deser, S.; Franklin, J.
2010-05-01
We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null.
Electroweak symmetry breaking: Top quard condensates
Bardeen, W.A.
1990-12-01
The fundamental mechanisms for the dynamical breaking of the electroweak gauge symmetries remain a mystery. This paper examines the possible role of heavy fermions, particularly the top quark, in generating the observed electroweak symmetry breaking, the masses of the W and Z bosons and the masses of all observed quarks and leptons. 27 refs., 10 figs., 4 tabs.
Off-Axis Neutrino Scattering in Gamma-Ray Burst Central Engines
NASA Astrophysics Data System (ADS)
Miller, Warner A.; George, Nathan D.; Kheyfets, Arkady; McGhee, John M.
2003-02-01
The search for an understanding of an energy source great enough to explain the gamma-ray burst (GRB) phenomenon has attracted much attention from the astrophysical community since its discovery. In this paper we extend the work of Asano and Fukuyama, and Salmonson and Wilson and analyze the off-axis contributions to the energy-momentum deposition rate (MDR) from the ν-ν collisions above a rotating black hole/thin accretion disk system. Our calculations are performed by imaging the accretion disk at a specified observer using the full geodesic equations and calculating the cumulative MDR from the scattering of all pairs of neutrinos and antineutrinos arriving at the observer. Our results shed light on the beaming efficiency of GRB models of this kind. Although we confirm Asano and Fukuyama's conjecture as to the constancy of the beaming for small angles away from the axis, we find that the dominant contribution to the MDR comes from near the surface of the disk with a tilt of approximately π/4 in the direction of the disk's rotation. We find that the MDR at large radii is directed outward in a conic section centered around the symmetry axis and is larger by a factor of 10-20 than the on-axis values. By including this off-axis disk source, we find a linear dependence of the MDR on the black hole angular momentum.
RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis.
Leclère, Lucas; Rentzsch, Fabian
2014-12-11
Patterning of the metazoan dorsoventral axis is mediated by a complex interplay of BMP signaling regulators. Repulsive guidance molecule (RGM) is a conserved BMP coreceptor that has not been implicated in axis specification. We show that NvRGM is a key positive regulator of BMP signaling during secondary axis establishment in the cnidarian Nematostella vectensis. NvRGM regulates first the generation and later the shape of a BMP-dependent Smad1/5/8 gradient with peak activity on the side opposite the NvBMP/NvRGM/NvChordin expression domain. Full knockdown of Smad1/5/8 signaling blocks the formation of endodermal structures, the mesenteries, and the establishment of bilateral symmetry, while altering the gradient through partial NvRGM or NvBMP knockdown shifts the boundaries of asymmetric gene expression and the positioning of the mesenteries along the secondary axis. These findings provide insight into the diversification of axis specification mechanisms and identify a previously unrecognized role for RGM in BMP-mediated axial patterning.
Teaching Point-Group Symmetry with Three-Dimensional Models
ERIC Educational Resources Information Center
Flint, Edward B.
2011-01-01
Three tools for teaching symmetry in the context of an upper-level undergraduate or introductory graduate course on the chemical applications of group theory are presented. The first is a collection of objects that have the symmetries of all the low-symmetry and high-symmetry point groups and the point groups with rotational symmetries from 2-fold…
Ermakov's Superintegrable Toy and Nonlocal Symmetries
NASA Astrophysics Data System (ADS)
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Natural Electroweak Breaking from a Mirror Symmetry
Chacko, Z.; Goh, Hock-Seng; Harnik, Roni
2006-06-16
We present ''twin Higgs models,'' simple realizations of the Higgs boson as a pseudo Goldstone boson that protect the weak scale from radiative corrections up to scales of order 5-10 TeV. In the ultraviolet these theories have a discrete symmetry which interchanges each standard model particle with a corresponding particle which transforms under a twin or a mirror standard model gauge group. In addition, the Higgs sector respects an approximate global symmetry. When this global symmetry is broken, the discrete symmetry tightly constrains the form of corrections to the pseudo Goldstone Higgs potential, allowing natural electroweak symmetry breaking. Precision electroweak constraints are satisfied by construction. These models demonstrate that, contrary to the conventional wisdom, stabilizing the weak scale does not require new light particles charged under the standard model gauge groups.
Bilateral symmetry breaking in nonlinear circular cylinders.
Yuan, Lijun; Lu, Ya Yan
2014-12-01
Symmetry breaking is a common phenomenon in nonlinear systems, it refers to the existence of solutions that do not preserve the original symmetries of the underlying system. In nonlinear optics, symmetry breaking has been previously investigated in a number of systems, usually based on simplified model equations or temporal coupled mode theories. In this paper, we analyze the scattering of an incident plane wave by one or two circular cylinders with a Kerr nonlinearity, and show the existence of solutions that break a lateral reflection symmetry. Although symmetry breaking is a known phenomenon in nonlinear optics, it is the first time that this phenomenon was rigorously studied in simple systems with one or two circular cylinders.
Symmetries in geology and geophysics
Turcotte, Donald L.; Newman, William I.
1996-01-01
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters. PMID:11607719
On Gauging Symmetry of Modular Categories
NASA Astrophysics Data System (ADS)
Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan
2016-12-01
Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4}-obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.
Symmetries, weak symmetries, and related solutions of the Grad-Shafranov equation
Cicogna, G.; Pegoraro, F.; Ceccherini, F.
2010-10-15
We discuss a new family of solutions of the Grad-Shafranov (GS) equation that describes D-shaped toroidal plasma equilibria with sharp gradients at the plasma edge. These solutions have been derived by exploiting the continuous Lie symmetry properties of the GS equation and in particular a special type of 'weak' symmetries. In addition, we review the continuous Lie symmetry properties of the GS equation and present a short but exhaustive survey of the possible choices for the arbitrary flux functions that yield GS equations admitting some continuous Lie symmetry. Particular solutions related to these symmetries are also discussed.
NASA Astrophysics Data System (ADS)
Cheng, Meng; Zaletel, Michael; Barkeshli, Maissam; Vishwanath, Ashvin; Bonderson, Parsa
2016-10-01
The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a "spinon" excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of "anyonic spin-orbit coupling," which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.
He, J; Schmid, M F; Zhou, Z H; Rixon, F; Chiu, W
2001-06-15
A characteristic of virus assembly is the use of symmetry to construct a complex capsid from a limited number of different proteins. Many spherical viruses display not only icosahedral symmetry, but also local symmetries, which further increase the redundancy of their structural proteins. We have developed a computational procedure for evaluating the quality of these local symmetries that allows us to probe the extent of local structural variations among subunits. This type of analysis can also provide orientation parameters for carrying out non-icosahedral averaging of quasi-equivalent subunits during three-dimensional structural determination. We have used this procedure to analyze the three types of hexon (P, E and C) in the 8.5 A resolution map of the herpes simplex virus type 1 (HSV-1) B capsid, determined by electron cryomicroscopy. The comparison of the three hexons showed that they have good overall 6-fold symmetry and are almost identical throughout most of their lengths. The largest difference among the three lies near the inner surface in a region of about 34 A in thickness. In this region, the P hexon displays slightly lower 6-fold symmetry than the C and E hexons. More detailed analysis showed that parts of two of the P hexon subunits are displaced counterclockwise with respect to their expected 6-fold positions. The most highly displaced subunit interacts with a subunit from an adjacent P hexon (P'). Using the local 6-fold symmetry axis of the P hexon as a rotation axis, we examined the geometrical relationships among the local symmetry axes of the surrounding capsomeres. Deviations from exact symmetry are also found among these local symmetry axes. The relevance of these findings to the process of capsid assembly is considered.
Identification of kinematic errors of five-axis machine tool trunnion axis from finished test piece
NASA Astrophysics Data System (ADS)
Zhang, Ya; Fu, Jianzhong; Chen, Zichen
2014-09-01
Compared with the traditional non-cutting measurement, machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users. However, measurement and calculation of the machining tests in the literature are quite difficult and time-consuming. A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed. Firstly, a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics. Then, the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool. By adopting the error-sensitive vectors in the matrix calculation, the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors. According to our previous work, the kinematic errors of C-axis can be treated as the known quantities, and the kinematic errors of A-axis can be obtained from the equations. This method was tested in Mikron UCP600 vertical machining center. The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis. Experimental results demonstrated that the proposed method can reduce the complexity, cost, and the time consumed substantially, and has a wider applicability. This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.
Natural quasicrystal with decagonal symmetry
Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S.; Andronicos, Christopher L.; Distler, Vadim V.; Eddy, Michael P.; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J.; Steinhardt, William M.; Yudovskaya, Marina; Steinhardt, Paul J.
2015-01-01
We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula. PMID:25765857
PREFACE: Symmetries in Science XIV
NASA Astrophysics Data System (ADS)
Schuch, Dieter; Ramek, Michael
2010-04-01
Symmetries Logo This volume of the proceedings "Symmetries in Science XIV" is dedicated to the memory of our colleagues and dear friends Marcos Moshinsky and Yuriĭ Smirnov who regularly participated in these Symposia and were a great inspiration to many. We shall miss them. Dieter Schuch and Michael Ramek The international symposium "Symmetries in Science XIV" held at Collegium Mehrerau in Bregenz, Austria from July 19-24, 2009, attended by 32 scientists from 11 countries, was an experiment, performed by theoreticians. Aim of this experiment was to find out if the desire to revive or even continue this conference series was stronger than the very restricted pecuniary boundary conditions. It obviously was! After its establishment by Bruno Gruber in 1979, the biennial series settled in the very stimulating atmosphere of the monastery Mehrerau, which provided the ideal environment for a limited number of invited participants to exchange ideas, without parallel sessions, and pursue deeper discussions (at the latest in the evening at "Gasthof Lamm"). When the conference series terminated in 2003, former participants were quite disappointed. Meeting again at several (larger) conferences in subsequent years, there were repeated expressions of "the lack of a Bregenz-type meeting in our field nowadays" and the question of a possible "revitalization", even without external funding. After some hesitation, but also driven by our own desire to reinstate the series, we consulted Bruno who not only approved wholeheartedly but also offered his full support. It all finally led to the symposium in July 2009. The atmosphere was really like in the "good old days" and the interesting and thought-provoking presentations culminated in the publication of these Proceedings. We are grateful to Carl Bender for establishing contact with IOP making it possible for us to publish these Proceedings in the Journal of Physics Conference Series. A majority of the participants contributed to these
PREFACE: Symmetries in Science XVI
NASA Astrophysics Data System (ADS)
2014-10-01
This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster
Symmetry and range limits in importance indices.
Seifan, Tal; Seifan, Merav
2015-10-01
Recently, Mingo has analyzed the properties of I imp, an importance index, and demonstrated that its range is not symmetrical. While agreeing with this comment, we believe that more light needs to be shed on the issue of symmetry in relation to such indices. Importance indices are calculated using three values: performance of the organism in the absence and in the presence of neighbors and maximum performance of the organism in ideal conditions. Because of this structure, importance indices can hardly ever achieve symmetry along the whole range of potential performances. We discuss the limitation of the symmetry range for different symmetry types and for both additive and multiplicative indices. We conclude that importance indices, as other interactions indices, are practical tools for interpreting ecological outcomes, especially while comparing between studies. Nevertheless, the current structure of importance indices prevents symmetry along their whole range. While the lack of "perfect" symmetry may call for the development of more sophisticated importance metrics, the current indices are still helpful for the understanding of biological systems and should not be discarded before better alternatives are well established. To prevent potential confusion, we suggest that ecologists present the relevant index symmetry range in addition to their results, thus minimizing the probability of misinterpretation.
Symmetries in fluctuations far from equilibrium.
Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L
2011-05-10
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.
Symmetries in fluctuations far from equilibrium
Hurtado, Pablo I.; Pérez-Espigares, Carlos; del Pozo, Jesús J.; Garrido, Pedro L.
2011-01-01
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865
Relativity symmetries and Lie algebra contractions
Cho, Dai-Ning; Kong, Otto C.W.
2014-12-15
We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m,n) symmetry as an isometry on an m+n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m,n) preserving a symmetry of the same type at dimension m+n−1, e.g. a G(m,n−1), together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2,4), which is the particular case for our interest on the physics side as the proposed relativity symmetry for “quantum spacetime”. The contractions from G(1,3) may be relevant to real physics.
Sufficient symmetry conditions for Topological Quantum Order.
Nussinov, Zohar; Ortiz, Gerardo
2009-10-06
We prove sufficient conditions for Topological Quantum Order at zero and finite temperatures. The crux of the proof hinges on the existence of low-dimensional Gauge-Like Symmetries, thus providing a unifying framework based on a symmetry principle. These symmetries may be actual invariances of the system, or may emerge in the low-energy sector. Prominent examples of Topological Quantum Order display Gauge-Like Symmetries. New systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. We analyze the physical consequences of Gauge-Like Symmetries (including topological terms and charges) and show the insufficiency of the energy spectrum, topological entanglement entropy, maximal string correlators, and fractionalization in establishing Topological Quantum Order. General symmetry considerations illustrate that not withstanding spectral gaps, thermal fluctuations may impose restrictions on suggested quantum computing schemes. Our results allow us to go beyond standard topological field theories and engineer systems with Topological Quantum Order.
How hormone receptor-DNA binding affects nucleosomal DNA: the role of symmetry.
Bishop, T C; Kosztin, D; Schulten, K
1997-01-01
Molecular dynamics simulations have been employed to determine the optimal conformation of an estrogen receptor DNA binding domain dimer bound to a consensus response element, ds(AGGTCACAGTGACCT), and to a nonconsensus response element, ds(AGAACACAGTGACCT). The structures simulated were derived from a crystallographic structure and solvated by a sphere (45-A radius) of explicit water and counterions. Long-range electrostatic interactions were accounted for during 100-ps simulations by means of a fast multipole expansion algorithm combined with a multiple time-step scheme in the molecular dynamics package NAMD. The simulations demonstrate that the dimer induces a bent and underwound (10.7 bp/turn) conformation in the DNA. The bending reflects the dyad symmetry of the receptor dimer and can be described as an S-shaped curve in the helical axis of DNA when projected onto a plane. A similar bent and underwound conformation is observed for nucleosomal DNA near the nucleosome's dyad axis that reflects the symmetry of the histone octamer. We propose that when a receptor dimer binds to a nucleosome, the most favorable dimer-DNA and histone-DNA interactions are achieved if the respective symmetry axes are aligned. Such positioning of a receptor dimer over the dyad of nucleosome B in the mouse mammary tumor virus promoter is in agreement with experiment. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 9 FIGURE 11 PMID:9129808
Design of Off-Axis PIAACMC Mirrors
NASA Technical Reports Server (NTRS)
Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Kern, Brian; Bendek, Eduardo
2015-01-01
The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA (Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets) telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.
Discrete symmetries and de Sitter spacetime
Cotăescu, Ion I. Pascu, Gabriel
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Exploring Symmetry to Assist Alzheimer's Disease Diagnosis
NASA Astrophysics Data System (ADS)
Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.
Duality and symmetry lost in solid mechanics
NASA Astrophysics Data System (ADS)
Bui, Huy Duong
2008-01-01
Some conservation laws in Solids and Fracture Mechanics present a lack of symmetry between kinematic and dynamic variables. It is shown that Duality is the right tool to re-establish the symmetry between equations and variables and to provide conservation laws of the pure divergence type which provide true path independent integrals. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically. To cite this article: H.D. Bui, C. R. Mecanique 336 (2008).
Homogeneous sphere packings with triclinic symmetry.
Fischer, W; Koch, E
2002-11-01
All homogeneous sphere packings with triclinic symmetry have been derived by studying the characteristic Wyckoff positions P -1 1a and P -1 2i of the two triclinic lattice complexes. These sphere packings belong to 30 different types. Only one type exists that has exclusively triclinic sphere packings and no higher-symmetry ones. The inherent symmetry of part of the sphere packings is triclinic for 18 types. Sphere packings of all but six of the 30 types may be realized as stackings of parallel planar nets.
Symmetry energy III: Isovector skins
NASA Astrophysics Data System (ADS)
Danielewicz, Paweł; Singh, Pardeep; Lee, Jenny
2017-02-01
Isoscalar density is a sum of neutron and proton densities and isovector is a normalized difference. Here, we report the experimental evidence for the displacement of the isovector and isoscalar surfaces in nuclei, by ∼ 0.9 fm from each other. We analyze data on quasielastic (QE) charge exchange (p,n) reactions, concurrently with proton and neutron elastic scattering data for the same target nuclei, following the concepts of the isoscalar and isovector potentials combined into Lane optical potential. The elastic data largely probe the geometry of the isoscalar potential and the (p,n) data largely probe a relation between the geometries of the isovector and isoscalar potentials. The targets include 48Ca, 90Zr, 120Sn and 208Pb and projectile incident energy values span the range of (10-50) MeV. In our fit to elastic and QE charge-exchange data, we allow the values of isoscalar and isovector radii, diffusivities and overall potential normalizations to float away from those in the popular Koning and Delaroche parametrization. We find that the best-fit isovector radii are consistently larger than isoscalar and the best-fit isovector surfaces are steeper. Upon identifying the displacement of the potential surfaces with the displacement of the surfaces for the densities in the Skyrme-Hartree-Fock calculations, and by supplementing the results with those from analyzing excitation energies to isobaric analog states in the past, we arrive at the slope and value of the symmetry energy at normal density of 70 < L < 101 MeV and 33.5 < aaV < 36.4 MeV, respectively.
Nász, I; Adám, Eva
2006-06-01
drawn horizontally in the middle along the 6 geodetic ribbon like motifs a regular decagonal intersection forms and the capsid can be cut into two equal parts, in which the polypeptides show a 72 degree rotation from each other, but with a proper rotation the polypeptides get into a congruent position, which means 300 or 600 specific facet combinations. The capsid similar to the icosahedron has also 15 virtual mirror planes which divide the capsid into two, identically arranged halves, forming six right angle triangles on each facet, altogether 120 smaller rectangular so-called Mobius-triangles on the surface. In the three-fold symmetry axis of the facets, these triangles in two separate groups of three can be rotated symmetrically with 120 degrees according to the orientation of the polypeptide subunits in a way that the hexon and other polypeptides too nearly cover each other. Consequently, the adenovirus capsid is a symmetrically arranged body in which several various symmetry types and symmetry systems can be found and their structural symmetry elements exist simultaneously and covering each other. The icosahedral symmetry types and systems are valid and functional simultaneously and in parallel with great multiplicity, but the existence of more than 1500 structural elements in several depth levels, their order of location and distribution make the symmetry of the capsid richer and more complex.
Symmetry and the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Wollock, Edward J.
2012-01-01
A brief historical introduction to the development of observational astronomy and cosmology will be presented. The close relationship between the properties of light, symmetry, and our understanding the contents of our universe will be explored.
Personal recollections on chiral symmetry breaking
NASA Astrophysics Data System (ADS)
Kobayashi, Makoto
2016-07-01
The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.
FJRW-Rings and Mirror Symmetry
NASA Astrophysics Data System (ADS)
Krawitz, Marc; Priddis, Nathan; Acosta, Pedro; Bergin, Natalie; Rathnakumara, Himal
2010-05-01
The Landau-Ginzburg Mirror Symmetry Conjecture states that for an invertible quasi-homogeneous singularity W and its maximal group G of diagonal symmetries, there is a dual singularity W T such that the orbifold A-model of W/ G is isomorphic to the B-model of W T . The Landau-Ginzburg A-model is the Frobenius algebra {fancyscript{H}_{W,G}} constructed by Fan, Jarvis, and Ruan, and the B-model is the orbifold Milnor ring of W T . We verify the Landau-Ginzburg Mirror Symmetry Conjecture for Arnol’d’s list of unimodal and bimodal quasi-homogeneous singularities with G the maximal diagonal symmetry group, and include a discussion of eight axioms which facilitate the computation of FJRW-rings.
Spontaneous chiral symmetry breaking in metamaterials.
Liu, Mingkai; Powell, David A; Shadrivov, Ilya V; Lapine, Mikhail; Kivshar, Yuri S
2014-07-18
Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.
Space and time from translation symmetry
Schwarz, A.
2010-01-15
We show that the notions of space and time in algebraic quantum field theory arise from translation symmetry if we assume asymptotic commutativity. We argue that this construction can be applied to string theory.
Noether symmetries and the Swinging Atwood Machine
NASA Astrophysics Data System (ADS)
Moreira, I. C.; Almeida, M. A.
1991-07-01
In this work we apply the Noether theorem with generalised symmetries for discussing the integrability of the Swinging Atwood Machine (SAM) model. We analyse also the limitations of this procedure and compare it with the Yoshida method.
Soliton surfaces in the generalized symmetry approach
NASA Astrophysics Data System (ADS)
Grundland, A. M.
2016-09-01
We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas-Gel'fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas-Gel'fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the C P N-1 sigma-model equation.
Benito, L; Ciria, M; de la Fuente, C; Arnaudas, J I; Ward, R C C; Wells, M R
2005-06-10
We report on the change of the easy axis direction in holmium, from the a to the b axis, under the application of a magnetic field in the basal plane. This spin reorientation is observed by measuring the magnetic torque in Ho(n)/Lu(15) superlattices (n and 15 are the number of atomic planes in the Ho and Lu blocks). We also observe that, at the field H0 and temperature at which the reorientation occurs, both axes are easy directions. Based on the fact that the field H0 depends on n in the same way as the field-induced magnetoelastic distortion does, we propose that this spin reorientation originates from the strong field-induced magnetoelastic deformation within the basal plane. The modulation of the alpha strains with sixfold symmetry originates a 12-fold term in the magnetic anisotropy energy.
Vertical axis wind turbine. Final report
Hollrock, R.H.
1983-06-01
The work reported consisted of the fabrication and whirl testing of a vertical axis wind turbine. Problems are reported in blade fabrication and balancing. It is planned to provide speed control with a water agitator. (LEW)
Vertical Axis Wind Turbine Foundation parameter study
Lodde, P.F.
1980-07-01
The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.
Using the Anatomical Axis as an Alternative to the Mechanical Axis to Assess Knee Alignment.
Tipton, Shane C; Sutherland, John; Schwarzkopf, Ran
2015-12-01
The treatment of knee osteoarthritis and the preparation for total knee arthroplasty require repetitive imaging to guide preoperative planning and operative technique. Full-length standing anteroposterior images are the gold standard in assessing the alignment of the limb via the measurement of the mechanical axis of the knee. The anatomical axis can be obtained from a more limited image of the knee, and as such is less expensive and exposes the patient to less ionizing radiation. The objective of this cross-sectional prospective study was to examine the extent to which the anatomical axis measured on a fixed-flexed posteroanterior (Rosenberg view) radiograph correlates with the mechanical axis. The data of 209 total knee arthroplasty radiographs were analyzed to compare the preoperative correlation between the mechanical and anatomical axis. The anatomical axis correlated with the mechanical axis when it was measured from both the standing full-length anteroposterior radiograph and from a fixed-flexed posteroanterior radiograph. Using an angle of offset found from linear regression, these correlations become closer. Body mass index and Kellgren-Lawrence grade were not found to have a significant effect. It is the conclusion of this study that the anatomical axis, as measured from a limited knee radiography, may serve as a plausible estimate of the mechanical axis when done with a neutral angle of offset, and that offset angle depends on gender and the imaging technique used to determine the anatomical axis.
Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach
Cicogna, G.; Pegoraro, F.
2015-02-15
We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.
Spontaneously broken spacetime symmetries and Goldstone's theorem.
Low, Ian; Manohar, Aneesh V
2002-03-11
Goldstone's theorem states that there is a massless mode for each broken symmetry generator. It has been known for a long time that the naive generalization of this counting fails to give the correct number of massless modes for spontaneously broken spacetime symmetries. We explain how to get the right count of massless modes in the general case, and discuss examples involving spontaneously broken Poincaré and conformal invariance.
Noether symmetries in the phase space
NASA Astrophysics Data System (ADS)
Díaz, Bogar; Galindo-Linares, Elizabeth; Ramírez-Romero, Cupatitzio; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Torres del Castillo, Gerardo F.; Velázquez, Mercedes
2014-09-01
The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.
Leptogenesis with Friedberg-Lee Symmetry
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Geng, C. Q.
We consider the µ - τ symmetric Friedberg-Lee (FL) symmetry for the neutrino sector and show that a specific FL translation leads to the tribimaximal mixing pattern of the Maki-Nakagawa-Sakata (MNS) matrix. We also apply the symmetry to the type-I seesaw framework and address the baryon asymmetry of the universe through the leptogenesis mechanism. We try to establish a relation between the net baryon asymmetry and CP phases included in the MNS matrix.
Symmetry breaking of quasihelical stellarator equilibria
Weening, R.H. )
1993-04-01
A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.
Density dependence of nuclear symmetry energy
NASA Astrophysics Data System (ADS)
Behera, B.; Routray, T. R.; Tripathy, S. K.
2016-10-01
High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.
Off-axis illumination of lithography tool
NASA Astrophysics Data System (ADS)
Xing, Han; Lin, Li; Bin, Ma
2013-12-01
Lithography tool is a necessary part for LSI and VLSI. The illumination system design is an important part in the lithography optical system design. Off-axis illumination technology is an effective way to reducing resolution of lithography. The paper introduction the basic components of lithography tool, the principle of off-axis illumination reducing the resolution of lithography and focus on the two implementations of OAI technology, finally point out advantages and disadvantage of the two implementations.
Giant-cell granuloma of the axis.
González-Martínez, Emilio; Santamarta, David; Lomas-García, Jesús; Ibáñez-Plágaro, F Javier; Fernández-Fernández, J Javier; Ariño, Teresa Ribas; García-Cosamalón, José
2012-02-01
Giant-cell granuloma is a benign and nonneoplastic lesion with an expansive and locally destructive behavior. It typically involves the mandible and the maxilla. Only 1 case arising from the odontoid process of the axis has been reported previously. The authors report on a 64-year-old man with a giant-cell granuloma of the axis. They review this uncommon entity, emphasizing the complexity of differentiating between this lesion and other giant-cell tumors.
Sex differences in the HPA axis.
Goel, Nirupa; Workman, Joanna L; Lee, Tiffany T; Innala, Leyla; Viau, Victor
2014-07-01
The hypothalamic-pituitary-adrenal (HPA) axis is a major component of the systems that respond to stress, by coordinating the neuroendocrine and autonomic responses. Tightly controlled regulation of HPA responses is critical for maintaining mental and physical health, as hyper- and hypo-activity have been linked to disease states. A long history of research has revealed sex differences in numerous components of the HPA stress system and its responses, which may partially form the basis for sex disparities in disease development. Despite this, many studies use male subjects exclusively, while fewer reports involve females or provide direct sex comparisons. The purpose of this article is to present sex comparisons in the functional and molecular aspects of the HPA axis, through various phases of activity, including basal, acute stress, and chronic stress conditions. The HPA axis in females initiates more rapidly and produces a greater output of stress hormones. This review focuses on the interactions between the gonadal hormone system and the HPA axis as the key mediators of these sex differences, whereby androgens increase and estrogens decrease HPA activity in adulthood. In addition to the effects of gonadal hormones on the adult response, morphological impacts of hormone exposure during development are also involved in mediating sex differences. Additional systems impinging on the HPA axis that contribute to sex differences include the monoamine neurotransmitters norepinephrine and serotonin. Diverse signals originating from the brain and periphery are integrated to determine the level of HPA axis activity, and these signals are, in many cases, sex-specific.
Fluency Expresses Implicit Knowledge of Tonal Symmetry
Ling, Xiaoli; Li, Fengying; Qiao, Fuqiang; Guo, Xiuyan; Dienes, Zoltan
2016-01-01
The purposes of the present study were twofold. First, we sought to establish whether tonal symmetry produces processing fluency. Second, we sought to explore whether symmetry and chunk strength express themselves differently in fluency, as an indication of different mechanisms being involved for sub- and supra-finite state processing. Across two experiments, participants were asked to listen to and memorize artificial poetry showing a mirror symmetry (an inversion, i.e., a type of cross serial dependency); after this training phase, people completed a four-choice RT task in which they were presented with new artificial poetry. Participants were required to identify the stimulus displayed. We found that symmetry sped up responding to the second half of strings, indicating a fluency effect. Furthermore, there was a dissociation between fluency effects arising from symmetry vs. chunk strength, with stronger fluency effects for symmetry rather than chunks in the second half of strings. Taken together, we conjecture a divide between finite state and supra-finite state mechanisms in learning grammatical sequences. PMID:26869960
Symmetry calculation for molecules and transition states.
Vandewiele, Nick M; Van de Vijver, Ruben; Van Geem, Kevin M; Reyniers, Marie-Françoise; Marin, Guy B
2015-01-30
The symmetry of molecules and transition states of elementary reactions is an essential property with important implications for computational chemistry. The automated identification of symmetry by computers is a very useful tool for many applications, but often relies on the availability of three-dimensional coordinates of the atoms in the molecule and hence becomes less useful when these coordinates are a priori unavailable. This article presents a new algorithm that identifies symmetry of molecules and transition states based on an augmented graph representation of the corresponding structures, in which both topology and the presence of stereocenters are accounted for. The automorphism group order of the graph associated with the molecule or transition state is used as a starting point. A novel concept of label-stereoisomers, that is, stereoisomers that arise after labeling homomorph substituents in the original molecule so that they become distinguishable, is introduced and used to obtain the symmetry number. The algorithm is characterized by its generic nature and avoids the use of heuristic rules that would limit the applicability. The calculated symmetry numbers are in agreement with expected values for a large and diverse set of structures, ranging from asymmetric, small molecules such as fluorochlorobromomethane to highly symmetric structures found in drug discovery assays. The new algorithm opens up new possibilities for the fast screening of the degree of symmetry of large sets of molecules.
A new paradigm for animal symmetry.
Holló, Gábor
2015-12-06
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution.
Fluency Expresses Implicit Knowledge of Tonal Symmetry.
Ling, Xiaoli; Li, Fengying; Qiao, Fuqiang; Guo, Xiuyan; Dienes, Zoltan
2016-01-01
The purposes of the present study were twofold. First, we sought to establish whether tonal symmetry produces processing fluency. Second, we sought to explore whether symmetry and chunk strength express themselves differently in fluency, as an indication of different mechanisms being involved for sub- and supra-finite state processing. Across two experiments, participants were asked to listen to and memorize artificial poetry showing a mirror symmetry (an inversion, i.e., a type of cross serial dependency); after this training phase, people completed a four-choice RT task in which they were presented with new artificial poetry. Participants were required to identify the stimulus displayed. We found that symmetry sped up responding to the second half of strings, indicating a fluency effect. Furthermore, there was a dissociation between fluency effects arising from symmetry vs. chunk strength, with stronger fluency effects for symmetry rather than chunks in the second half of strings. Taken together, we conjecture a divide between finite state and supra-finite state mechanisms in learning grammatical sequences.
Exploring symmetry in near-vacuum hohlraums
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L.; Le Pape, S.; Divol, L.; Meezan, N.; MacKinnon, A.; Ho, D. D.; Jones, O.; Khan, S.; Ma, T.; Milovich, J.; Pak, A.; Ross, J. S.; Thomas, C.; Turnbull, D.; Amendt, P.; Wilks, S.; Zylstra, A.; Rinderknecht, H.; Sio, H.; Petrasso, R.
2015-11-01
Recent experiments with near-vacuum hohlraums, which utilize a minimal but non-zero helium fill, have demonstrated performance improvements relative to conventional gas-filled (0.96 - 1.6 mg/cc helium) hohlraums: minimal backscatter, reduced capsule drive degradation, and minimal suprathermal electron generation. Because this is a low laser-plasma interaction platform, implosion symmetry is controlled via pulse-shaping adjustments to laser power balance. Extending this platform to high-yield designs with high-density carbon capsules requires achieving adequate symmetry control throughout the pulse. In simulations, laser propagation is degraded suddenly by hohlraum wall expansion interacting with ablated capsule material. Nominal radiation-hydrodynamics simulations have not yet proven predictive on symmetry of the final hotspot, and experiments show more prolate symmetry than preshot calculations. Recent efforts have focused on understanding the discrepancy between simulated and measured symmetry and on alternate designs for symmetry control through varying cone fraction, trade-offs between laser power and energy, and modifications to case-to-capsule ratio. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Symmetry energy in cold dense matter
NASA Astrophysics Data System (ADS)
Jeong, Kie Sang; Lee, Su Houng
2016-01-01
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.
A new paradigm for animal symmetry
Holló, Gábor
2015-01-01
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution. PMID:26640644
Phonon symmetries in hexagonal boron nitride probed by incoherent light emission
NASA Astrophysics Data System (ADS)
Vuong, T. Q. P.; Cassabois, G.; Valvin, P.; Jacques, V.; Van Der Lee, A.; Zobelli, A.; Watanabe, K.; Taniguchi, T.; Gil, B.
2017-03-01
Layered compounds are stacks of weakly bound two-dimensional atomic crystals, with a prototypal hexagonal structure in graphene, transition metal dichalcogenides and boron nitride. This crystalline anisotropy results in vibrational modes with specific symmetries depending on the in-plane or out-of-plane atomic displacements. We show that polarization-resolved photoluminescence measurements in hexagonal boron nitride reflect the phonon symmetries in this layered semiconductor. Experiments performed with a detection on the sample edge, perpendicular to the c-axis, reveal the strong polarization-dependence of the emission lines corresponding to the recombination assisted by the three acoustic phonon modes. We elucidate the dipole orientation of the fundamental indirect exciton. We demonstrate evidence of the so-far missing phonon replica due to the optical out-of-plane phonon mode.
Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes.
Chang, Seunghyuk; Prata, Aluizio
2005-11-01
A geometrical theory of aberrations for the vicinity of the focus of arbitrary off-axis sections of conic mirrors is derived. It is shown that an off-axis conic mirror introduces linear astigmatism in the image. However, in classical two-mirror telescopes this aberration can be eliminated by tilting the secondary parent mirror axis. It is also shown that the practical geometrical-optics performance of a classical off-axis two-mirror telescope with no linear astigmatism is equivalent to the performance of an on-axis system, proving that both systems have identical third-order coma. To demonstrate the applicability of the theory developed in a practical system, a fast (i.e., f/2), compact, obstruction-free classical off-axis Cassegrain telescope is designed.
Actuator assembly including a single axis of rotation locking member
Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.
2009-12-08
An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.
Ueno, Yuji; Yamakage, Ai; Tanaka, Yukio; Sato, Masatoshi
2013-08-23
Crystal point group symmetry is shown to protect Majorana fermions (MFs) in spinfull superconductors (SCs). We elucidate the condition necessary to obtain MFs protected by the point group symmetry. We argue that superconductivity in Sr2RuO4 hosts a topological phase transition to a topological crystalline SC, which accompanies a d-vector rotation under a magnetic field along the c axis. Taking all three bands and spin-orbit interactions into account, symmetry-protected MFs in the topological crystalline SC are identified. Detection of such MFs provides evidence of the d-vector rotation in Sr2RuO4 expected from Knight shift measurements but not yet verified.
Perception of Mirror Symmetry in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Falter, Christine M.; Bailey, Anthony J.
2012-01-01
Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…
Nász, István; Adám, Eva
2006-01-08
horizontally in the middle along the 6 geodetic ribbon like motifs a regular decagonal intersection forms and the capsid can be cut into two equal parts, in which the polypeptides show a 72 degree rotation from each other, but with a proper rotation the polypeptides get into a congruent position, which means 300 or 600 specific facet combinations. The capsid similar to the icosahedron has also 15 virtual mirror planes which divide the capsid into two, identically arranged halves, forming six right angle triangles on each facet, altogether 120 smaller rectangular so-called Mobius-triangles on the surface. In the three-fold symmetry axis of the facets, these triangles in two separate groups of three can be rotated symmetrically with 120 degrees according to the orientation of the polypeptide subunits in a way that the hexon and other polypeptides too nearly cover each other. Consequently, the adenovirus capsid is a symmetrically arranged body in which several various symmetry types and symmetry systems can be found and their structural symmetry elements exist simultaneously and covering each other. The icosahedral symmetry types and systems are valid and functional simultaneously and in parallel with great multiplicity, but the existence of more than 1500 elements in several depth levels, their order of location and distribution make the symmetry of the capsid richer and more complex.
Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects
NASA Astrophysics Data System (ADS)
Perna, P.; Ajejas, F.; Maccariello, D.; Fernandez Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Bollero, A.; Miranda, R.; Camarero, J.
2015-12-01
We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomena.
Structure and stability of superfluid 4He systems with cylindrical symmetry
NASA Astrophysics Data System (ADS)
Szybisz, Leszek; Gatica, Silvina M.
2001-12-01
The structure and stability of superfluid 4He systems with cylindrical symmetry are studied. Ground-state energies and density profiles are computed by using density-functional approaches. A model to understand the energetics of cylindrical systems is developed by following the main ideas of the Droplet Model utilized to describe spherical clusters. The necessary condition for stability is formulated by imposing a positive longitudinal isothermal compressibility along the principal axis of the cylinder. It is shown that free cylinders of 4He at T=0 K are unstable. As an example of the evolution towards stable systems, results for liquid 4He confined by cylindrical nanopores in Cs are reported.
Relativistic symmetries in nuclear single-particle spectra
NASA Astrophysics Data System (ADS)
Guo, Jian-You; Liang, Hao Zhao; Meng, Jie; Zhou, Shan-Gui
Symmetry is a fundamental concept in quantum physics. The quasi-degeneracy between single-particle orbitals (n, l, j = l + 1/2) and (n -1, l + 2, j = l + 3/2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry. Since the pseudospin symmetry was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry for anti-nucleons, and many new concepts have been introduced. In this Chapter, we will illustrate the schematic picture of spin and pseudospin symmetries, derive the basic formalism, highlight the recent progress from several different aspects, and discuss selected open issues in this topic.
Hale, L C; Wulff, T A
2004-06-28
The Aerotech model S-180-69-A, a brushless DC motor of slotless design, was selected as the B-axis drive for the Precision Optical Grinder and Lathe (POGAL). It is common knowledge that a slotless motor will have effectively no magnetic cogging and much less torque ripple than a traditional slot-type motor. It is logical to believe that the radial and axial forces generated between the rotor and stator would also be smaller for a slotless design. This is important when a frameless motor is directly coupled to the axis, as these forces directly influence the axis and affect its error motion. It is the purpose of this test to determine the radial and axial forces generated by the Aerotech motor and to estimate their effect on the error motion of the axis using a mathematical model of the hydrostatic bearing being designed for POGAL. The test results combined with a mathematical model of the POGAL B axis indicate that the directly coupled Aerotech motor will be quite acceptable. In the radial direction, the residual motor force, after subtracting out the one-cycle force, could cause sub nanometer level error motion at the tool point. The axial direction is not in a sensitive direction for turning.
ERIC Educational Resources Information Center
Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.
2016-01-01
A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…
Group Parametrized Tunneling and Local Symmetry Conditions
NASA Astrophysics Data System (ADS)
Harter, William; Mitchell, Justin
2010-06-01
Recently, Hougen showed an ad hoc symmetry-based parameterization scheme for analyzing tunneling dynamics and high resolution spectra of fluxional molecular structure similar to S-parameter analysis of superfine structure in SF_6 or NH_3 maser inversion dynamics by Feynman et.al. The problem is that ad hoc parametrization, like path integration in general, can lead to logjams of parameters or ``paths'' with no way to pick out the relevant ones. We show a way to identify and use relevant parameters for a tunneling Hamiltonian H having global G-symmetry-defined bases by first expressing H as a linear combination bar γ ^i {bar g}_i of operators in dual symmetry group bar G. The coefficients bar γ ^i are parameters that define a complete set of allowed paths for any H with G-symmetry and are related thru spectral decomposition of G to eigensolutions of H. Quantum G vs.bar G duality generalizes lab -vs. -body and state -vs. -particle. The number of relevant bar γ ^i-parameters is reduced if a system tends to stick in states of a local symmetry subgroup LsubsetG so the H spectrum forms level clusters labeled by induced representations d(ℓ)(L)\\uparrowG. A cluster-(ℓ) has one E(epsilon)-level labeled by G species (epsilon) for each L species (ℓ) in Depsilon(G)downarrowL by Frobenius reciprocity. Then we apply local symmetry conditions to each irrep Depsilon(bar γ ^i {bar g}_i) that has already been reduced with respect to local symmetry L. This amounts to setting each off-diagonal component Dj,kepsilon(H) to zero. Local symmetry conditions may tell which bar γ ^i-parameters are redundant or zero and directly determine d(ℓ)\\uparrowG tunneling matrix eigenvalues that give E(epsilon)-levels as well as eigenvectors. Otherwise one may need to choose a particular localizing subgroup chain LsubsetL_1subsetL_2...G and further reduce the number of path parameters to facilitate spectral fitting. J.T. Hougen, 2009 MSS RJ01, {J Mol Spect 123, 197 (1987) W.G. Harter and
Aeroelastically coupled blades for vertical axis wind turbines
Paquette, Joshua; Barone, Matthew F.
2016-02-23
Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.
The symmetries of the Carroll superparticle
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Gomis, Joaquim; Parra, Lorena
2016-05-01
Motivated by recent applications of Carroll symmetries we investigate, using the method of nonlinear realizations, the geometry of flat and curved (AdS) Carroll space and the symmetries of a particle moving in such a space both in the bosonic as well as in the supersymmetric case. In the bosonic case we find that the Carroll particle possesses an infinite-dimensional symmetry which only in the flat case includes dilatations. The duality between the Bargmann and Carroll algebra, relevant for the flat case, does not extend to the curved case. In the supersymmetric case we study the dynamics of the { N }=1 AdS Carroll superparticle. Only in the flat limit we find that the action is invariant under an infinite-dimensional symmetry that includes a supersymmetric extension of the Lifshitz Carroll algebra with dynamical exponent z = 0. We also discuss in the flat case the extension to { N }=2 supersymmetry and show that the flat { N }=2 superparticle is equivalent to the (non-moving) { N }=1 superparticle and that therefore it is not BPS unlike its Galilei counterpart. This is due to the fact that in this case kappa-symmetry eliminates the linearized supersymmetry. In an appendix we discuss the { N }=2 curved case in three-dimensions only and show that there are two { N }=2 theories that are physically different.
Symmetry in social exchange and health
NASA Astrophysics Data System (ADS)
Siegrist, Johannes
2005-10-01
Symmetry is a relevant concept in sociological theories of exchange. It is rooted in the evolutionary old norm of social reciprocity and is particularly important in social contracts. Symmetry breaking through violation of the norm of reciprocity generates strain in micro-social systems and, above all, in victims of non-symmetric exchange. In this contribution, adverse healthconsequences of symmetry breaking in contractual social exchange are analysed, with a main focus on the employment contract. Scientific evidence is derived from prospective epidemiological studies testing the model of effort-reward imbalance at work. Overall, a twofold elevated risk of incident disease is observed in employed men and women who are exposed to non-symmetric exchange. Health risks include coronary heart disease, depression and alcohol dependence, among others. Preliminary results suggest similar effects on health produced by symmetry breaking in other types of social relationships (e.g. partnership, parental roles). These findings underline the importance of symmetry in contractual social exchange for health and well-being.
Axisymmetric photonic structures with PT-symmetry
NASA Astrophysics Data System (ADS)
Ahmed, Waqas W.; Herrero, Ramon; Botey, Muriel; Staliunas, Kestutis
2016-09-01
PT-symmetric structures in photonic crystals, combining refractive index and gain-loss modulations is becoming a research field with increasing interest due to the light directionality induced by these particular potentials. Here, we consider PT-symmetric potentials with axial symmetry to direct light to the crystal central point obtaining a localization effect. The axial and PT-symmetric potential intrinsically generates an exceptional central point in the photonic crystal by the merge of both symmetries. This particular point in the crystal lattice causes field amplitude gradients with exponential slopes around the crystal center. The field localization strongly depends on the phase of the central point and on the complex amplitude of the PT-potential. The presented work analyzes in a first stage 1D linear PT-axisymmetric crystals and the role of the central point phase that determines the defect character, i.e. refractive index defect, gain-loss defect or a combination of both. The interplay of the directional light effect induced by the PT-symmetry and the light localization around the central point through the axial symmetry enhances localization and allows higher field concentration for certain phases. The linearity of the studied crystals introduces an exponential growth of the field that mainly depends on the complex amplitude of the potential. The work is completed by the analysis of 2D PT-axisymmetric potentials showing different spatial slopes and growth rates caused by symmetry reasons.
Graph fibrations and symmetries of network dynamics
NASA Astrophysics Data System (ADS)
Nijholt, Eddie; Rink, Bob; Sanders, Jan
2016-11-01
Dynamical systems with a network structure can display remarkable phenomena such as synchronisation and anomalous synchrony breaking. A methodology for classifying patterns of synchrony in networks was developed by Golubitsky and Stewart. They showed that the robustly synchronous dynamics of a network is determined by its quotient networks. This result was recently reformulated by DeVille and Lerman, who pointed out that the reduction from a network to a quotient is an example of a graph fibration. The current paper exploits this observation and demonstrates the importance of self-fibrations of network graphs. Self-fibrations give rise to symmetries in the dynamics of a network. We show that every network admits a lift with a semigroup or semigroupoid of self-fibrations. The resulting symmetries impact the global dynamics of the network and can therefore be used to explain and predict generic scenarios for synchrony breaking. Also, when the network has a trivial symmetry groupoid, then every robust synchrony in the lift is determined by symmetry. We finish this paper with a discussion of networks with interior symmetries and nonhomogeneous networks.
Seiberg duality versus hidden local symmetry
NASA Astrophysics Data System (ADS)
Abel, Steven; Barnard, James
2012-05-01
It is widely believed that the emergent magnetic gauge symmetry of SQCD is analogous to a hidden local symmetry (HLS). We explore this idea in detail, deriving the entire (spontaneously broken) magnetic theory by applying the HLS formalism to spontaneously broken SU( N) SQCD. We deduce the Kähler potential in the HLS description, and show that gauge and flavour symmetry are smoothly restored along certain scaling directions in moduli space. We propose that it is these symmetry restoring directions, associated with the R-symmetry of the theory, that allow full Seiberg duality. Reconsidering the origin of the magnetic gauge bosons as the ρ-mesons of the electric theory, colour-flavour locking allows a simple determination of the parameter a. Its value continuously interpolates between a = 2 on the baryonic branch of moduli space — corresponding to "vector meson dominance" — and a = 1 on the mesonic branch. Both limiting values are consistent with previous results in the literature. The HLS formalism is further applied to SO and Sp groups, where the usual Seiberg duals are recovered, as well as adjoint SQCD. Finally we discuss some possible future applications, including (naturally) the unitarisation of composite W scattering, blended Higgs/technicolour models, real world QCD and non-supersymmetric dualities.
Modular off-axis solar concentrator
Plesniak, Adam P; Hall, John C
2015-01-27
A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.
Enclosed, off-axis solar concentrator
Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A
2013-11-26
A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.
Stability of vertical and horizontal axis Levitrons
NASA Astrophysics Data System (ADS)
Michaelis, M. M.; Taylor, D. B.
2015-11-01
The stability of the new horizontal axis Levitron3 is compared with that of the vertical axis device. The rotation frequency ranges are similar because they are determined by the same precessional micro-trap, for which some theory is given. But the macro-trap of the horizontal axis system gives it far greater mechanical stability. Field-line studies allow this to be more easily visualized. The greater stability allows for educational experiments which could only be contemplated with the old Levitron: driven precession and nutation and motion along the field lines. These experiments illustrate some very fundamental space dynamics and several other topics. The enhanced stability may also lead to electro-mechanical applications.
Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun
NASA Technical Reports Server (NTRS)
Antonucci, E.
1974-01-01
A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.
A users guide to HPA axis research.
Spencer, Robert L; Deak, Terrence
2016-11-18
Glucocorticoid hormones (cortisol and corticosterone - CORT) are the effector hormones of the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system. CORT is a systemic intercellular signal whose level predictably varies with time of day and dynamically increases with environmental and psychological stressors. This hormonal signal is utilized by virtually every cell and physiological system of the body to optimize performance according to circadian, environmental and physiological demands. Disturbances in normal HPA axis activity profiles are associated with a wide variety of physiological and mental health disorders. Despite numerous studies to date that have identified molecular, cellular and systems-level glucocorticoid actions, new glucocorticoid actions and clinical status associations continue to be revealed at a brisk pace in the scientific literature. However, the breadth of investigators working in this area poses distinct challenges in ensuring common practices across investigators, and a full appreciation for the complexity of a system that is often reduced to a single dependent measure. This Users Guide is intended to provide a fundamental overview of conceptual, technical and practical knowledge that will assist individuals who engage in and evaluate HPA axis research. We begin with examination of the anatomical and hormonal components of the HPA axis and their physiological range of operation. We then examine strategies and best practices for systematic manipulation and accurate measurement of HPA axis activity. We feature use of experimental methods that will assist with better understanding of CORT's physiological actions, especially as those actions impact subsequent brain function. This research approach is instrumental for determining the mechanisms by which alterations of HPA axis function may contribute to pathophysiology.
A torus bifurcation theorem with symmetry
NASA Technical Reports Server (NTRS)
Vangils, S. A.; Golubitsky, M.
1989-01-01
Hopf bifurcation in the presence of symmetry, in situations where the normal form equations decouple into phase/amplitude equations is described. A theorem showing that in general such degeneracies are expected to lead to secondary torus bifurcations is proved. By applying this theorem to the case of degenerate Hopf bifurcation with triangular symmetry it is proved that in codimension two there exist regions of parameter space where two branches of asymptotically stable two-tori coexist but where no stable periodic solutions are present. Although a theory was not derived for degenerate Hopf bifurcations in the presence of symmetry, examples are presented that would have to be accounted for by any such general theory.
Preserving Symmetry in Preconditioned Krylov Subspace Methods
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Chow, E.; Saad, Y.; Yeung, M. C.
1996-01-01
We consider the problem of solving a linear system Ax = b when A is nearly symmetric and when the system is preconditioned by a symmetric positive definite matrix M. In the symmetric case, one can recover symmetry by using M-inner products in the conjugate gradient (CG) algorithm. This idea can also be used in the nonsymmetric case, and near symmetry can be preserved similarly. Like CG, the new algorithms are mathematically equivalent to split preconditioning, but do not require M to be factored. Better robustness in a specific sense can also be observed. When combined with truncated versions of iterative methods, tests show that this is more effective than the common practice of forfeiting near-symmetry altogether.
The geometry of spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Abud, M.; Sartori, G.
1983-10-01
The problem of classifying the theoretically allowed patterns of spontaneous symmetry breading, in theories where the ground state is determined as a minimum of a G-invariant potential ( G a compact group of transformations), is analyzed. A detailed, complete, and rigorous justification of a recently proposed approach to the determination of the minima of G-invariant potentials (M. Abud and G. Sartori, Phys. Lett. B104 (1981), 147) is presented. The results are obtained through an analysis of the geometry of the finite-dimensional representations of G, which leads to a complete characterization of the structure of orbit space and its partition in subsets (strata) formed by orbits with the same symmetry under G-transformations (orbit type), and to a new theorem stating that the gradients of complex analytic G-invariant functions annihilate on one-dimensional strata. Polynomial potentials in particular are studied. Conditions for instability of the residual symmetry (second-order phase transitions) are determined.
Symmetry-breaking oscillations in membrane optomechanics
NASA Astrophysics Data System (ADS)
Wurl, C.; Alvermann, A.; Fehske, H.
2016-12-01
We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by following the route to chaos for the membrane dynamics.
Geometric symmetries in superfluid vortex dynamics
Kozik, Evgeny; Svistunov, Boris
2010-10-01
Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z), describing the instant shape of the line. Along with a natural set of Noether's constants of motion, which - apart from their rather specific expressions in terms of w(z) - are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.
Cylindrical polarization symmetry for nondestructive nanocharacterization
NASA Astrophysics Data System (ADS)
Zhan, Qiwen
2003-07-01
Recently there is an increasing interest in laser beams with radial symmetry in polarization. Due to the cylindrical symmetry in polarization, these beams have unique focusing properties, which may find wide applications in a variety of nanometer scale applications, including high-resolution metrology, high-density data storage, and multi-functional optical microtool. In this paper, simple method of generating cylindrically polarized beams is presented and their potential applications to nondestructive nano-characterization are discussed. A high resolution surface plasmon microscope and a surface plasmon enhanced apertureless near-field scanning optical microscope are proposed. An automatic scanning microellipsometer that uses the cylindrical symmetry to enhance the signal-to-noise-ratio in high-spatial-resolution ellipsometric measurement will also be presented.
Arbitrary lattice symmetries via block copolymer nanomeshes
Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.
2015-01-01
Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566
Discrete Abelian gauge symmetries and axions
NASA Astrophysics Data System (ADS)
Honecker, Gabriele; Staessens, Wieland
2015-07-01
We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.
Approximate flavor symmetries in the lepton sector
Rasin, A. ); Silva, J.P. )
1994-01-01
Approximate flavor symmetries in the quark sector have been used as a handle on physics beyond the standard model. Because of the great interest in neutrino masses and mixings and the wealth of existing and proposed neutrino experiments it is important to extend this analysis to the leptonic sector. We show that in the seesaw mechanism the neutrino masses and mixing angles do not depend on the details of the right-handed neutrino flavor symmetry breaking, and are related by a simple formula. We propose several [ital Ansa]$[ital uml]---[ital tze] which relate different flavor symmetry-breaking parameters and find that the MSW solution to the solar neutrino problem is always easily fit. Further, the [nu][sub [mu]-][nu][sub [tau
Approximate gauge symmetry of composite vector bosons
NASA Astrophysics Data System (ADS)
Suzuki, Mahiko
2010-08-01
It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in a more intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.
Breaking the Symmetry in Molecular Nanorings
2016-01-01
Because of their unique electronic properties, cyclic molecular structures ranging from benzene to natural light-harvesting complexes have received much attention. Rigid π-conjugated templated porphyrin nanorings serve as excellent model systems here because they possess well-defined structures that can readily be controlled and because they support highly delocalized excitations. In this study, we have deliberately modified a series of six-porphyrin nanorings to examine the impact of lowering the rotational symmetry on their photophysical properties. We reveal that as symmetry distortions increase in severity along the series of structures, spectral changes and an enhancement of radiative emission strength occur, which derive from a transfer of oscillator strength into the lowest (k = 0) state. We find that concomitantly, the degeneracy of the dipole-allowed first excited (k = ±1) state is lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings. PMID:26735906
Spontaneous Symmetry Breaking in Interdependent Networked Game
NASA Astrophysics Data System (ADS)
Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen
2014-02-01
Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method.
Workshop on electroweak symmetry breaking: proceedings
Hinchliffe, I.
1984-10-01
A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.
Mutual information and spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Hamma, A.; Giampaolo, S. M.; Illuminati, F.
2016-01-01
We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g., at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly nontrivial. We prove this result in general, by considering the quantum mutual information based on the two-Rényi entanglement entropy and using a locality result stemming from quasiadiabatic continuation. Moreover, in the paradigmatic case of the exactly solvable one-dimensional quantum X Y model, we further verify the general result by considering also the quantum mutual information based on the von Neumann entanglement entropy.
Supersymmetric defect models and mirror symmetry
Hook, Anson; Kachru, Shamit; Torroba, Gonzalo
2013-11-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Open dorsal vertebroplasty of the axis.
Guerre, Pascal; Kröber, Markus
2011-05-01
Vertebroplasty of the axis is always a challenging procedure. We report the case of a young, HIV-positive patient suffering from an osteolytic metastasis of the axis. An open dorsal vertebroplasty was performed. A leakage of the cement formed a new cortical bone of the massa lateralis of C2, and stabilized the C1-C2 articulation by an arthrodesis-like effect. Durable pain relief and stabilization were obtained. The location of the cement, although atypical, had all desired effects of a conventional vertebroplasty. The intra-articular injection of cement into the facets for stabilization and pain relief could be considered in the future.
Isodynamic axisymmetric equilibrium near the magnetic axis
Arsenin, V. V.
2013-08-15
Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo’s configuration)
Isodynamic axisymmetric equilibrium near the magnetic axis
NASA Astrophysics Data System (ADS)
Arsenin, V. V.
2013-08-01
Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo's configuration).
Nonlinear realization and hidden local symmetries
NASA Astrophysics Data System (ADS)
Bando, Masako; Kugo, Taichiro; Yamawaki, Koichi
1988-07-01
The idea of dynamical gauge bosons of hidden local symmetries in nonlinear sigma models is reviewed. Starting with a fresh look at the Goldstone theorem and low energy theorems, we present a modern review of the general theory of nonlinear realization both in nonsupersymmetric and supersymmetric cases. We then show that any nonlinear sigma model based on the manifold G/ H is gauge equivalent to a “linear” model possessing a Gglobal × Hlocal symmetry, Hlocal being a hidden local symmetry. The corresponding supersymmetric formulation is also presented. The above gauge equivalence can be extended to a model having a larger symmetry Gglobal × Glocal. Also reviewed are dynamical calculatio ns showing that in some two-, three- and four-dimensional models, the gauge bosons of the hidden local symmetries acquire the kinetic terms via quantum effects, thus becoming “dynamical”. We suggest that such a dynamical gauge boson may be a rather common phenomenon realized in Nature. As a realistic example, we examine the QCD case where we identify the vector mesons (ϱ,ω,ф,K ∗) with the dynamical gauge bosons of the hidden U(3) v local symmetry in the U(3) L × U(3) R/U(3) V nonlinear sigma model. The totality of the vector meson phenomenology seems to support our basic idea. The axial-vector mesons are also incorporated into our framework. Also given is a brief sketch of some applications of this formalism to unified models beyond the standard model, such as technicolor, composite W/Z boson and supergravity models.
Broken symmetry in ideal magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1993-01-01
A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.
Routh symmetry in the Chaplygin's rolling ball
NASA Astrophysics Data System (ADS)
Kim, Byungsoo
2011-12-01
The Routh integral in the symmetric Chaplygin's rolling ball has been regarded as a mysterious conservation law due to its interesting form of sqrt {I_1 I_3 + m< {I_s ,s} rangle } Ω _3 . In this paper, a new form of the Routh integral is proposed as a Noether's pairing form of a conservation law. An explicit symmetry vector for the Routh integral is proved to associate the conserved quantity with the invariance of the Lagrangian function under the rollingly constrained nonholonomic variation. Then, the form of the Routh symmetry vector is discussed for its origin as the linear combination of the configurational vectors.
Weak Lie symmetry and extended Lie algebra
Goenner, Hubert
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
The Scalar Mesons and Z(3) Symmetry
Toernqvist, Nils A.
2007-02-27
It is pointed out that the det{sigma} + det{sigma}{dagger} term, which resolves the UA(1) problem in effective theories, gives rise to three classical minima along the UA(1) circle when Nf = 3. The three minima are related to the center Z(3) of SU(3). This Z(3) symmetry can be retained if the SU(3)L x SU(3)R symmetry breaking is assumed to be trilinear in the fields. The three vacua suggests a connection to the strong CP problem and confinement.
Neutron matter, symmetry energy and neutron stars
NASA Astrophysics Data System (ADS)
Gandolfi, S.; Steiner, A. W.
2016-01-01
Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.
Neutron matter, symmetry energy and neutron stars
Stefano, Gandolfi; Steiner, Andrew W
2016-01-01
Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.
Partial restoration of chiral symmetry inside hadrons
Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji
2016-01-22
We investigate the spatial distribution of the chiral condensate around static color sources for both quark-antiquark and three-quark systems. In the QCD vacuum a tube-like structure of chromo fields appears between color sources, which leads to a linearly confining potential. We show that the magnitude of the condensate is reduced inside the flux-tube, which suggests that chiral symmetry is partially restored inside the hadrons. By using a static baryon source in a periodic box as a model of the nuclear matter, we estimate the restoration of chiral symmetry with finite baryon number density.
Hopf bifurcation in the presence of symmetry
NASA Technical Reports Server (NTRS)
Golubitsky, M.; Stewart, I.
1985-01-01
Group theory is applied to obtain generalized differential equations from the Hopf bifurcation theory on branching to periodic solutions. The conditions under which the symmetry group will admit imaginary eigenvalues are delimited. The action of the symmetry group on the circle group are explored and the Liapunov-Schmidt reduction is used to prove the Hopf theorem in the symmetric case. The emphasis is on simplifying calculations of the stability of bifurcating branches. The resulting general theory is demonstrated in terms of O(2) acting on a plane, O(n) in n-space, and O(3) and an irreducible model for spherical harmonics.
Wormholes and Peccei-Quinn symmetries
Choi, K.; Holman, R. )
1990-01-08
We show how wormholes and Peccei-Quinn symmetries are in fact complementary in solving the strong {ital CP} problem. On the one hand, Peccei-Quinn symmetries are shown to provide us with a wormhole parameter that couples only to the QCD anomaly. This then allows us to implement the wormhole solution to the strong {ital CP} problem constructed previously by the present authors as well as by Preskill, Trivedi, and Wise. On the other hand, wormholes are shown to drive the axion mass to zero or to the wormhole scale, thus avoiding the axion-energy-density crisis in either case.
Coupled oscillators with parity-time symmetry
NASA Astrophysics Data System (ADS)
Tsoy, Eduard N.
2017-02-01
Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed.
Conformal and projective symmetries in Newtonian cosmology
NASA Astrophysics Data System (ADS)
Duval, C.; Gibbons, G. W.; Horváthy, P. A.
2017-02-01
Definitions of non-relativistic conformal transformations are considered both in the Newton-Cartan and in the Kaluza-Klein-type Eisenhart/Bargmann geometrical frameworks. The symmetry groups that come into play are exemplified by the cosmological, and also the Newton-Hooke solutions of Newton's gravitational field equations. It is shown, in particular, that the maximal symmetry group of the standard cosmological model is isomorphic to the 13-dimensional conformal-Newton-Cartan group whose conformal-Bargmann extension is explicitly worked out. Attention is drawn to the appearance of independent space and time dilations, in contrast with the Schrödinger group or the Conformal Galilei Algebra.
Symmetry energy II: Isobaric analog states
NASA Astrophysics Data System (ADS)
Danielewicz, Pawel; Lee, Jenny
2014-02-01
Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, representing a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from aa˜10 MeV at mass A˜10 to aa˜22 MeV at A˜240. Variation with mass can be understood in terms of dependence of nuclear symmetry energy on density and the rise in importance of low densities within nuclear surface in smaller systems. At A≳30, the dependence of coefficients on mass can be well described in terms of a macroscopic volume-surface competition formula with aaV≃33.2 MeV and aaS≃10.7 MeV. Our further investigation shows, though, that the fitted surface symmetry coefficient likely significantly underestimates that for the limit of half-infinite matter. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In our further analysis, we retain only those parametrizations which yield systems that are adequately stable both in the long- and short-wavelength limits. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (±2.4 MeV) constraints on the symmetry-energy values S(ρ) at 0.04≲ρ≲0.13 fm. Towards normal density the constraints significantly widen, but the normal value of energy aaV and the slope parameter L are found to be strongly correlated. To narrow the constraints, we reach for the
Non-standard symmetries and quantum anomalies
Visinescu, Anca; Visinescu, Mihai
2008-08-31
Quantum anomalies are investigated on curved spacetimes. The intimate relation between Killing-Yano tensors and non-standard symmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. The axial anomaly in a background gravitational field is directly related with the index of the Dirac operator. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures. The general results are applied to the 4-dimensional Euclidean Taub-NUT space.
Black Hole Thermodynamics and Lorentz Symmetry
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Wall, Aron C.
2010-08-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.
A symmetry principle for topological quantum order
Nussinov, Zohar Ortiz, Gerardo
2009-05-15
We present a unifying framework to study physical systems which exhibit topological quantum order (TQO). The major guiding principle behind our approach is that of symmetries and entanglement. These symmetries may be actual symmetries of the Hamiltonian characterizing the system, or emergent symmetries. To this end, we introduce the concept of low-dimensional Gauge-like symmetries (GLSs), and the physical conservation laws (including topological terms, fractionalization, and the absence of quasi-particle excitations) which emerge from them. We prove then sufficient conditions for TQO at both zero and finite temperatures. The physical engine for TQO are topological defects associated with the restoration of GLSs. These defects propagate freely through the system and enforce TQO. Our results are strongest for gapped systems with continuous GLSs. At zero temperature, selection rules associated with the GLSs enable us to systematically construct general states with TQO; these selection rules do not rely on the existence of a finite gap between the ground states to all other excited states. Indices associated with these symmetries correspond to different topological sectors. All currently known examples of TQO display GLSs. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin-exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. The symmetry based framework discussed herein allows us to go beyond standard topological field theories and systematically engineer new physical models with finite temperature TQO (both Abelian and non-Abelian). Furthermore, we analyze the insufficiency of entanglement entropy (we introduce SU(N) Klein models on small world networks to make the argument even sharper), spectral structures, maximal string correlators, and fractionalization in establishing TQO. We show that Kitaev's Toric code model and Wen
Quregisters, Symmetry Groups and Clifford Algebras
NASA Astrophysics Data System (ADS)
Cervantes, D.; Morales-Luna, G.
2016-03-01
Natural one-to-one and two-to-one homomorphisms from SO(3) into SU(2) are built conventionally, and the collection of qubits, is identified with a subgroup of SU(2). This construction is suitable to be extended to corresponding tensor powers. The notions of qubits, quregisters and qugates are translated into the language of symmetry groups. The corresponding elements to entangled states in the tensor product of Hilbert spaces reflect entanglement properties as well, and in this way a notion of entanglement is realised in the tensor product of symmetry groups.
Dual technicolor with hidden local symmetry
Belitsky, A. V.
2010-08-15
We consider a dual description of the technicolor-like gauge theory within the D4/D8-brane configuration with varying confinement and electroweak symmetry breaking scales. Constructing an effective truncated model valid below a certain cutoff, we identify the particle spectrum with Kaluza-Klein modes of the model in a manner consistent with the hidden local symmetry. Integrating out heavy states, we find that the low-energy action receives nontrivial corrections stemming from the mixing between standard model and heavy gauge bosons, which results in reduction of oblique parameters.
A two-dimensional matrix correction for off-axis portal dose prediction errors
Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.
2013-05-15
Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in
Partial restoration of chiral symmetry in a confining string
Kharzeev, Dmitri E.; Loshaj, F.
2014-08-01
Here, we attempt to describe the interplay of confinement and chiral symmetry breaking in QCD by using the string model. We argue that in the quasi-Abelian picture of confinement based on the condensation of magnetic monopoles and the dual Meissner effect, the world sheet dynamics of the confining string can be effectively described by the 1+1 dimensional massless electrodynamics, which is exactly soluble. The transverse plane distribution of the chromoelectric field stretched between the quark and antiquark sources can then be attributed to the fluctuations in the position of the string. The dependence of the chiral condensate in the string on the (chromo-)electric field can be evaluated analytically, and is determined by the chiral anomaly and the θ-vacuum structure. Moreover, our picture allows us to predict the distribution of the chiral condensate in the plane transverse to the axis connecting the quark and antiquark. This prediction is compared to the lattice QCD results; a good agreement is found.
Mirror-symmetry breakings in human sperm rheotaxis
NASA Astrophysics Data System (ADS)
Stoop, Norbert; Bukatin, Anton; Kukhtevich, Igor; Dunkel, Jörn; Kantsler, Vasily
2015-11-01
Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream-swimming of mammalian sperm cells along solid surfaces, suggesting a robust mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself w.r.t ambient flows is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments. We present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror-symmetry in the midpiece section, likely arising from a buckling instability.
Mirror-symmetry breakings in human sperm rheotaxis
NASA Astrophysics Data System (ADS)
Stoop, Norbert; Bukatin, Anton; Kukhtevich, Igor; Dunkel, Joern; Kantsler, Vasily
Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream-swimming of mammalian sperm cells along solid surfaces, suggesting a robust mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself w.r.t. ambient flows is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments. We present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror-symmetry in the midpiece section, likely arising from a buckling instability.
Research of misalignment between dithered ring laser gyro angle rate input axis and dither axis
NASA Astrophysics Data System (ADS)
Li, Geng; Wu, Wenqi; FAN, Zhenfang; LU, Guangfeng; Hu, Shaomin; Luo, Hui; Long, Xingwu
2014-12-01
The strap-down inertial navigation system (SINS), especially the SINS composed by dithered ring laser gyroscope (DRLG) is a kind of equipment, which providing high reliability and performance for moving vehicles. However, the mechanical dither which is used to eliminate the "Lock-In" effect can cause vibration disturbance to the INS and lead to dithering coupling problem in the inertial measurement unit (IMU) gyroscope triad, so its further application is limited. Among DRLG errors between the true gyro rotation rate and the measured rotation rate, the frequently considered one is the input axis misalignment between input reference axis which is perpendicular to the mounting surface and gyro angular rate input axis. But the misalignment angle between DRLG dither axis and gyro angular rate input axis is often ignored by researchers, which is amplified by dither coupling problem and that would lead to negative effects especially in high accuracy SINS. In order to study the problem more clearly, the concept of misalignment between DRLG dither axis and gyro angle rate input axis is researched. Considering the error of misalignment is of the order of 10-3 rad. or even smaller, the best way to measure it is using DRLG itself by means of an angle exciter as an auxiliary. In this paper, the concept of dither axis misalignment is explained explicitly firstly, based on this, the frequency of angle exciter is induced as reference parameter, when DRLG is mounted on the angle exciter in a certain angle, the projections of angle exciter rotation rate and mechanical oscillation rate on the gyro input axis are both sensed by DRLG. If the dither axis has misalignment error with the gyro input axis, there will be four major frequencies detected: the frequency of angle exciter, the dither mechanical frequency, sum and difference frequencies of the former two frequencies. Then the amplitude spectrum of DRLG output signal obtained by the using LabVIEW program. if there are only angle
Horizontal Axis Levitron--A Physics Demonstration
ERIC Educational Resources Information Center
Michaelis, Max M.
2014-01-01
After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…
Tennis Rackets and the Parallel Axis Theorem
ERIC Educational Resources Information Center
Christie, Derek
2014-01-01
This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.
Tchaicheeyan, Oren; Freed, Jack H; Meirovitch, Eva
2016-03-24
Restricted motions in proteins (e.g., N-H bond dynamics) are studied effectively with NMR. By analogy with restricted motions in liquid crystals (LC), the local ordering has in the past been primarily represented by potentials comprising the L = 2, |K| = 0, 2 spherical harmonics. However, probes dissolved in LCs experience nonpolar ordering, often referred to as alignment, while protein-anchored probes experience polar ordering, often referred to as orientation. In this study we investigate the role of local (site) symmetry in the context of the polarity of the local ordering. We find that potentials comprising the L = 1, |K| = 0, 1 spherical harmonics represent adequately polar ordering. It is useful to characterize potential symmetry in terms of the irreducible representations of D2h point group, which is already implicit in the definition of the rotational diffusion tensor. Thus, the relevant rhombic L = 1 potentials have B1u and B3u symmetry whereas the relevant rhombic L = 2 potentials have Ag symmetry. A comprehensive scheme where local potentials and corresponding probability density functions (PDFs) are represented in Cartesian and spherical coordinates clarifies how they are affected by polar and nonpolar ordering. The Cartesian coordinates are chosen so that the principal axis of polar axial PDF is pointing along the z-axis, whereas the principal axis of the nonpolar axial PDF is pointing along ±z. Two-term axial potentials with 1 ≤ L ≤ 3 exhibit substantial diversity; they are expected to be useful in NMR-relaxation-data-fitting. It is shown how potential coefficients are reflected in the experimental order parameters. The comprehensive scheme representing local potentials and PDFs is exemplified for the L = 2 case using experimental data from (15)N-labeled plexin-B1 and thioredoxin, (2)H-, and (13)C-labeled benzenehexa-n-alkanoates, and nitroxide-labeled T4 lysozyme. Future prospects for improved ordering analysis based on combined atomistic and
Identical Wells, Symmetry Breaking, and the Near-Unitary Limit
NASA Astrophysics Data System (ADS)
Harshman, N. L.
2017-03-01
Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.
Dynamics symmetries of Hamiltonian system on time scales
Peng, Keke Luo, Yiping
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Dynamics symmetries of Hamiltonian system on time scales
NASA Astrophysics Data System (ADS)
Peng, Keke; Luo, Yiping
2014-04-01
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Symmetry groups associated with tilings on a flat torus.
Loyola, Mark L; De Las Peñas, Ma Louise Antonette N; Estrada, Grace M; Santoso, Eko Budi
2015-01-01
This work investigates symmetry and color symmetry properties of Kepler, Heesch and Laves tilings embedded on a flat torus and their geometric realizations as tilings on a round torus in Euclidean 3-space. The symmetry group of the tiling on the round torus is determined by analyzing relevant symmetries of the planar tiling that are transformed to axial symmetries of the three-dimensional tiling. The focus on studying tilings on a round torus is motivated by applications in the geometric modeling of nanotori and the determination of their symmetry groups.
The numerical measure of symmetry for 3D stick creatures.
Jaśkowski, Wojciech; Komosinski, Maciej
2008-01-01
This work introduces a numerical, continuous measure of symmetry for 3D stick creatures and solid 3D objects. Background information about the property of symmetry is provided, and motivations for developing a symmetry measure are described. Three approaches are mentioned, and two of them are presented in detail using formal mathematical language. The best approach is used to sort a set of creatures according to their symmetry. Experiments with a mixed set of 84 individuals originating from both human design and evolution are performed to examine symmetry within these two sources, and to determine if human designers and evolutionary processes prefer symmetry or asymmetry.
Tri-bimaximal mixing from twisted Friedberg-Lee symmetry
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Takahashi, Ryo
2009-10-01
We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the μ- τ symmetry, and call this the twisted FL symmetry. Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing. In the first scheme, we suggest the semi-uniform translation of the FL symmetry. The second one is based on the S 3 permutation family symmetry. The breaking terms, which are twisted FL symmetric, are introduced. Some viable models in each scheme are also presented.
Qudit quantum computation on matrix product states with global symmetry
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; Stephen, David T.; Raussendorf, Robert
2017-03-01
Resource states that contain nontrivial symmetry-protected topological order are identified for universal single-qudit measurement-based quantum computation. Our resource states fall into two classes: one as the qudit generalizations of the one-dimensional qubit cluster state, and the other as the higher-symmetry generalizations of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state, namely, with unitary, orthogonal, or symplectic symmetry. The symmetry in cluster states protects information propagation (identity gate), while the higher symmetry in AKLT-type states enables nontrivial gate computation. This work demonstrates a close connection between measurement-based quantum computation and symmetry-protected topological order.
Equilibria with incompressible flows from symmetry analysis
Kuiroukidis, Ap E-mail: gthroum@cc.uoi.gr; Throumoulopoulos, G. N. E-mail: gthroum@cc.uoi.gr
2015-08-15
We identify and study new nonlinear axisymmetric equilibria with incompressible flow of arbitrary direction satisfying a generalized Grad Shafranov equation by extending the symmetry analysis presented by Cicogna and Pegoraro [Phys. Plasmas 22, 022520 (2015)]. In particular, we construct a typical tokamak D-shaped equilibrium with peaked toroidal current density, monotonically varying safety factor, and sheared electric field.
The Symmetry Group of the Permutahedron
ERIC Educational Resources Information Center
Crisman, Karl-Dieter
2011-01-01
Although it can be visualized fairly easily and its symmetry group is easy to calculate, the permutahedron is a somewhat neglected combinatorial object. We propose it as a useful case study in abstract algebra. It supplies concrete examples of group actions, the difference between right and left actions, and how geometry and algebra can work…
Automatic procedure for generating symmetry adapted wavefunctions.
Johansson, Marcus; Veryazov, Valera
2017-01-01
Automatic detection of point groups as well as symmetrisation of molecular geometry and wavefunctions are useful tools in computational quantum chemistry. Algorithms for developing these tools as well as an implementation are presented. The symmetry detection algorithm is a clustering algorithm for symmetry invariant properties, combined with logical deduction of possible symmetry elements using the geometry of sets of symmetrically equivalent atoms. An algorithm for determining the symmetry adapted linear combinations (SALCs) of atomic orbitals is also presented. The SALCs are constructed with the use of projection operators for the irreducible representations, as well as subgroups for determining splitting fields for a canonical basis. The character tables for the point groups are auto generated, and the algorithm is described. Symmetrisation of molecules use a projection into the totally symmetric space, whereas for wavefunctions projection as well and partner function determination and averaging is used. The software has been released as a stand-alone, open source library under the MIT license and integrated into both computational and molecular modelling software.Graphical abstract.
Carbon Nanotubes: From Symmetry to Applications
NASA Astrophysics Data System (ADS)
Damnjanović, M.
In this chapter, we show how the concept of symmetry gives theoretical explanation of the properties, which made carbon nanotubes (NTs) one of the most interesting materials of nanotechnology. First, in Sect. 3.1, we consider basic facts on single-wall carbon nanotubes (SWCNTs), including their configuration and symmetry. Then, we discuss double-wall nanotubes.Next, Sect. 3.2 is devoted to elementary symmetry-based physical properties. More precisely, we explain the energy spectrum of electrons and phonons, showing that as the consequence of the symmetry, energies must be arranged in the so-called bands. Elementary properties of these band structures may be a priory discussed, yielding easily famous conducting law, showing strong dependence of conductivity on the type of nanotube. Conserved quantum numbers enable us to extract selection rules for various physical processes. This way, radial breathing mode appears to be very important for the characterization of the samples by Raman spectroscopy. Also, optical properties are derived.Finally, in Sect. 3.3, mutual interaction between the walls of double-wall nanotubes is discussed. It is explained why this interaction is very weak, which is used to propose nanomachines with almost superslippery parts.
Geometry and symmetries in lattice spinor gravity
Wetterich, C.
2012-09-15
Lattice spinor gravity is a proposal for regularized quantum gravity based on fermionic degrees of freedom. In our lattice model the local Lorentz symmetry is generalized to complex transformation parameters. The difference between space and time is not put in a priori, and the euclidean and the Minkowski quantum field theory are unified in one functional integral. The metric and its signature arise as a result of the dynamics, corresponding to a given ground state or cosmological solution. Geometrical objects as the vierbein, spin connection or the metric are expectation values of collective fields built from an even number of fermions. The quantum effective action for the metric is invariant under general coordinate transformations in the continuum limit. The action of our model is found to be also invariant under gauge transformations. We observe a 'geometrical entanglement' of gauge- and Lorentz-transformations due to geometrical objects transforming non-trivially under both types of symmetry transformations. - Highlights: Black-Right-Pointing-Pointer We formulate the geometrical aspects of a proposal for a lattice regularized model of quantum gravity. Black-Right-Pointing-Pointer The vierbein shows an entanglement between Lorentz symmetry and gauge symmetry. Black-Right-Pointing-Pointer Euclidean and Minkowski signatures of the collective metric and the vierbein are described within the same functional integral.
Correlators with sℓ2 Yangian symmetry
NASA Astrophysics Data System (ADS)
Fuksa, J.; Kirschner, R.
2017-01-01
Correlators based on sℓ2 Yangian symmetry and its quantum deformation are studied. Symmetric integral operators can be defined with such correlators as kernels. Yang-Baxter operators can be represented in this way. Particular Yangian symmetric correlators are related to the kernels of QCD parton evolution. The solution of the eigenvalue problem of Yangian symmetric operators is described.
Large Hierarchies from Approximate R Symmetries
Kappl, Rolf; Ratz, Michael; Schmidt-Hoberg, Kai; Nilles, Hans Peter; Ramos-Sanchez, Saul; Vaudrevange, Patrick K. S.
2009-03-27
We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales.
Folded Fashions: Symmetry in Clothing Design.
ERIC Educational Resources Information Center
Evered, Lisa J.
1992-01-01
Fashion design is a field perceived as both a female and male domain that utilizes mathematics. Presents creative activities to teach the concept of symmetry as applied in fashion designs in the style of the famous French designer Madeleine Vionnet. (MDH)
Enhanced gauge symmetries on elliptic K3
NASA Astrophysics Data System (ADS)
Bonora, L.; Reina, C.; Zampa, A.
1999-04-01
We show that the geometry of K3 surfaces with singularities of type A-D-E contains enough information to reconstruct a copy of the Lie algebra associated to the given Dynkin diagram. We apply this construction to explain the enhancement of symmetry in F and IIA theories compactified on singular K3's.
Disordered cold atoms in different symmetry classes
NASA Astrophysics Data System (ADS)
Pinheiro, Fernanda; Larson, Jonas
2015-08-01
We consider an experimentally realizable model of noninteracting but randomly coupled atoms in a two-dimensional optical lattice. By choosing appropriate real or complex-valued random fields and species-dependent energy offsets, this system can be used to analyze effects of disorder in four different symmetry classes: the chiral BDI and AIII and the nonchiral A and AI. These chiral classes are known to support a metallic phase at zero energy, which here, due to the inevitable finite size of the system, should also persist in a neighborhood of nonzero energies. As we discuss, this is of particular interest for experiments involving quenches. Away from the center of the spectrum, we find that excitations appear as domain walls in the cases with time-reversal symmetry or as vortices in the cases where time-reversal symmetry is absent. Therefore, a quench in a system with uniform density would lead to the formation of either vortices or domain walls depending on the symmetry class. For the nonchiral models in classes A and AI, a population imbalance between the two atomic species naturally occurs. In these cases, one of the two species is seen to favor a more uniform density. We also study the onset of localization as the disorder strength is increased for the different classes, and by deriving an effective model for the nonchiral cases we show how their eigenstates remain extended for larger values of the coupling with the disorder when compared to the nonchiral ones.
Bilarge neutrino mixing and Abelian flavor symmetry
NASA Astrophysics Data System (ADS)
Ding, Gui-Jun; Morisi, S.; Valle, J. W. F.
2013-03-01
We explore two bilarge neutrino mixing Anzätze within the context of Abelian flavor symmetry theories: (BL1) sinθ12˜λ, sinθ13˜λ, sinθ23˜λ, and (BL2) sinθ12˜λ, sinθ13˜λ, sinθ23˜1-λ. The first pattern is proposed by two of us and is favored if the atmospheric mixing angle θ23 lies in the first octant, while the second one is preferred for the second octant of θ23. In order to reproduce the second texture, we find that the flavor symmetry should be U(1)×Zm, while for the first pattern the flavor symmetry should be extended to U(1)×Zm×Zn with m and n of different parity. Explicit models for both mixing patterns are constructed based on the flavor symmetries U(1)×Z3×Z4 and U(1)×Z2. The models are extended to the quark sector within the framework of SU(5) grand unified theory in order to give a successful description of quark and lepton masses and mixing simultaneously. Phenomenological implications are discussed.
Test of Lorentz symmetry with trapped ions
NASA Astrophysics Data System (ADS)
Pruttivarasin, Thaned
2016-05-01
The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).
Neutrino mass and mixing with discrete symmetry.
King, Stephen F; Luhn, Christoph
2013-05-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A₄, S₄ and Δ(96).
Multipartite invariant states. II. Orthogonal symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
Einstein-Yang-Mills theory: Asymptotic symmetries
NASA Astrophysics Data System (ADS)
Barnich, Glenn; Lambert, Pierre-Henry
2013-11-01
Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four-dimensional asymptotically flat case.
Theory overview of testing fundamental symmetries
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.
2014-04-01
I review first some theoretical motivations for violation of Lorentz and/or CPT Invariance. Although the latter symmetries may be violated in a quantum gravity setting, nevertheless there are situations in which these violations are due to a given classical background geometry that may characterised early epochs of our Universe, and in fact be responsible for the observed dominance of matter over antimatter in the Universe. In this way I estimate some of the coefficients of the Standard Model Extension (SME), which is a framework for a field theoretic study of such a breakdown of fundamental symmetries. Then I describe briefly some tests of these symmetries, giving emphasis in low-energy antiproton physics and electric dipole moment measurements, of interest to this conference. I also mention the rôle of entangled states of neutral mesons in providing independent measurements of T(ime reversal) and CP Violation, thus providing independent tests of CPT symmetry, as well as novel ("smoking-gun" type) tests of decoherence-induced CPT violation, which may characterise some models of quantum gravity.
Movement Symmetries and the Mammalian Vestibular System
NASA Astrophysics Data System (ADS)
McCollum, Gin; Boyle, Richard
2000-03-01
Unity of movement requires vertebrates to have an ability to symmetrize along the midline. For example, human erect stance involves symmetry with respect to gravity. The mammalian vestibular system provides a mechanism for maintaining symmetries, which is also open to influence and adaptation by the rest of the organism. The vestibular system includes the inner ear endorgans and central nuclei, along with projections to oculomotor, cerebellar, thalamic, and spinal motor centers. The vestibular endorgans - the semicircular canals and the otoliths - use sensory hairs to register inertia. The vestibular endorgans are right-left symmetric and the semicircular canals form an approximately orthogonal coordinate system for angular motion. Primary afferent axons project from the endorgans to the vestibular nuclei (and a few other places). The vestibular nuclei integrate vestibular, visual, and somatosensory signals, along with a proposed copy of the voluntary motor command and signals from other central structures. The relationship between the canals and the otoliths gives rise to symmetries among neurons, in the organization among the several vestibular nuclei, and in the projections from the vestibular nuclei. These symmetries organize the space of body movements so that functional relationships are maintained in spite of the many free variables of body movement. They also provide a foundation for adaptive reinterpretation of the relationship between canal and otolith signals, for example in freefall.
Gender Symmetry, Sexism, and Intimate Partner Violence
ERIC Educational Resources Information Center
Allen, Christopher T.; Swan, Suzanne C.; Raghavan, Chitra
2009-01-01
This study of a predominantly Hispanic sample of 92 male and 140 female college students examines both gender symmetry in intimate partner violence (IPV) and inconsistent relationships found in previous studies between sexist attitudes and IPV. Results indicate that although comparable numbers of men and women perpetrate and are victimized in…
BRST symmetry in the general gauge theories
NASA Astrophysics Data System (ADS)
Hyuk-Jae, Lee; Jae, Hyung, Yee
1994-01-01
By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.
Golden Probe of Electroweak Symmetry Breaking
NASA Astrophysics Data System (ADS)
Chen, Yi; Lykken, Joe; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto
2016-12-01
The ratio of the Higgs couplings to W W and Z Z pairs, λW Z, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level or one-loop interference effects, to both the magnitude and, in particular, overall sign of λW Z. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that h →4 ℓ (4 ℓ≡2 e 2 μ , 4 e , 4 μ ) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in h →4 ℓ to the magnitude of λW Z. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumptions about the top quark Yukawa couplings which also enter at one loop. This makes h →4 ℓ a unique and independent probe of electroweak symmetry breaking and custodial symmetry.
The Aurora-A-Twist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma.
Wang, Jing; Nikhil, Kumar; Viccaro, Keith; Chang, Lei; Jacobsen, Max; Sandusky, George; Shah, Kavita
2017-03-15
We uncovered a crucial role for the Aurora kinase A (AURKA)-Twist1 axis in promoting epithelial-to-mesenchymal transition (EMT) and chemoresistance in pancreatic cancer. Twist1 is the first EMT-specific target of AURKA that was identified using an innovative screen. AURKA phosphorylates Twist1 at three sites, which results in its multifaceted regulation - AURKA inhibits its ubiquitylation, increases its transcriptional activity and favors its homodimerization. Twist1 reciprocates and prevents AURKA degradation, thereby triggering a feedback loop. Ablation of either AURKA or Twist1 completely inhibits EMT, highlighting both proteins as central players in EMT progression. Phosphorylation-dead Twist1 serves as a dominant-negative and fully reverses the EMT phenotype induced by Twist1, underscoring the crucial role of AURKA-mediated phosphorylation in mediating Twist1-induced malignancy. Likewise, Twist1-overexpressing BxPC3 cells formed large tumors in vivo, whereas expression of phosphorylation-dead Twist1 fully abrogated this effect. Furthermore, immunohistochemical analysis of pancreatic cancer specimens revealed a 3-fold higher level of Twist1 compared to that seen in healthy normal tissues. This is the first study that links Twist1 in a feedback loop with its activating kinase, which indicates that concurrent inhibition of AURKA and Twist1 will be synergistic in inhibiting pancreatic tumorigenesis and metastasis.
Off-Axis Drag of Dendrite Fragments at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Weidman, P. D.
1994-01-01
The aim of the present investigation is to characterize the motion of dendrite fragments falling under the influence of gravity in a uniform liquid medium at low Reynolds number. In an earlier study, Zakhem, Weidman and de Groh (1992) reported on the settling speed of model equiaxed dendrite grains released along their axis of symmetry. In this follow-up study uniaxial model dendrite grains were released off-axis to observe and document their motion at different orientations. It was hypothesized that the dendrite models might rotate when released off-axis in which case an attempt would be made to document the ensuing unsteady motion. This latter event turned out to be in fact true: at the small but finite Reynolds numbers that existed, each uniaxial dendrite slowly rotated towards its equilibrium orientation while failing under the influence of gravity. In addition to completing the original goal, we have made use of a beads-on-a shell Stokes flow code to numerically determine the drag coefficient for capsules, i.e.. uniaxial dendrites without arms. The drag on horizontally and vertically falling capsules are reported and compared with measurements.
D'Arco, Philippe; Mustapha, Sami; Ferrabone, Matteo; Noël, Yves; De La Pierre, Marco; Dovesi, Roberto
2013-09-04
A symmetry-adapted algorithm producing uniformly at random the set of symmetry independent configurations (SICs) in disordered crystalline systems or solid solutions is presented here. Starting from Pólya's formula, the role of the conjugacy classes of the symmetry group in uniform random sampling is shown. SICs can be obtained for all the possible compositions or for a chosen one, and symmetry constraints can be applied. The approach yields the multiplicity of the SICs and allows us to operate configurational statistics in the reduced space of the SICs. The present low-memory demanding implementation is briefly sketched. The probability of finding a given SIC or a subset of SICs is discussed as a function of the number of draws and their precise estimate is given. The method is illustrated by application to a binary series of carbonates and to the binary spinel solid solution Mg(Al,Fe)2O4.
Giannitti, Federico; Margineda, Carlos A; Cid, María S; Diab, Santiago S; Weber, Natalia; Rodríguez, Alejandro; Campero, Carlos M; Odriozola, Ernesto R
2012-11-01
The current study describes a naturally occurring cluster of cases of Wedelia glauca intoxication. Seven of 14 axis deer (Axis axis) and 1 of 8 llamas (Lama glama) in a zoo of Buenos Aires province, Argentina, died suddenly after ingestion of a new batch of alfalfa (Medicago sativa) hay bales contaminated with the hepatotoxic plant W. glauca. Necropsies of 1 deer and 1 llama were performed. Pathological findings in both animals included severe diffuse acute centrilobular hepatocellular necrosis and hemorrhage, and clear yellowish translucent gelatinous edema on the wall of the gall bladder and the serosa of the choledochoduodenal junction. Fragments of W. glauca plants were identified in the hay based on the botanical characteristics of the leaves. Samples of gastric contents were examined by microhistological analysis, which identified epidermal fragments of W. glauca based on the presence of characteristic uniseriate glandular hairs (trichomes), confirming recent ingestion of W. glauca in both cases. The fragments were quantified and represented 5% of all examined vegetal fragments in the deer and 10% in the llama.
Moeck, Peter; York, Bryant W.; Browning, Nigel D.
2014-09-11
Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are derived for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m3m). These kinds of “edge-on” projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). This fact facilitates the visual confirmation of our predictions by recently published Zcontrast scanning TEM investigations [H. Yang et al., Phil. Mag. 93 (2013) 1219] and many other TEM studies.
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor
Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric
2010-02-02
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatch between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.
Effect of the reflectional symmetry on the coherent hole transport across DNA hairpins
NASA Astrophysics Data System (ADS)
Zarea, Mehdi; Berlin, Yuri; Ratner, Mark A.
2017-03-01
The coherent hole transfer in three types of DNA hairpins containing strands with adenine (A) and guanine (G) nucleobases has been studied. The investigated hairpins involve An+1GGAn, AnGAGAn, or (AG)2nA strands that connect the hole donor and hole acceptor located on opposite ends of hairpins. The positive charge transfer from the photo-excited donor to the acceptor is shown to be slower for An+1GGAn in comparison with AnGAGAn and (AG)2nA sequences. We have revealed that this is due to the reflectional symmetry of the last two sequences with respect to the axis passing through the middle base. As has been demonstrated, the symmetry of the sequence structure manifests itself in the reflectional symmetry of the energy eigenstates. In addition, it has been shown that (AG)2nA is the only symmetric sequence with a zero energy state in the middle of the LUMO tight-binding energy band. Based on our theoretical findings, we predict that the hairpin with this sequence should have the fastest coherent hole transfer rate among the class of base sequences studied.
Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal-axis (HPA-axis)
Lee, Richard; Sawa, Akira
2015-01-01
In this review, we provide a brief summary of several key studies that broaden our understanding of stress and its epigenetic control of the hypothalamic-pituitary-adrenal axis (HPA)-axis function and behavior. Clinical and animal studies suggest a link among exposure to stress, dysregulation of the HPA-axis, and susceptibility to neuropsychiatric illnesses. Recent studies have supported the notion that exposure to glucocorticoids and stress in various forms, duration, and intensity during different periods of development leads to long-lasting maladaptive HPA-axis response in the brain. They demonstrate that this maladaptive response is comprised of persistent epigenetic changes in the function of HPA-axis-associated genes that govern homeostatic levels of glucocorticoids. Stressors and/or disruption of glucocorticoid dynamics also target genes such as brain-derived neurotrophic factor (BDNF) and tyrosine hydroxylase (TH) that are important for neuronal function and behavior. While a definitive role for epigenetic mechanisms remains unclear, these emerging studies implicate glucocorticoid signaling and its ability to alter the epigenetic landscape as one of the key mechanisms that alter the function of the HPA-axis and its associated cascades. We also suggest some of the requisite studies and techniques that are important, such as additional candidate gene approaches, genome-wide epigenomic screens, and innovative functional and behavioral studies in order to further explore and define the relationship between epigenetics and HPA-axis biology. Additional studies examining stress-induced epigenetic changes of HPA-axis genes, aided by innovative techniques and methodologies are needed to advance our understanding of this relationship and lead to better preventive, diagnostic, and corrective measures. PMID:25427939
Infinite dimensional symmetries of self-dual Yang-Mills
NASA Astrophysics Data System (ADS)
Mansfield, Paul; Wardlow, Adam
2009-08-01
We construct symmetries of the Chalmers-Siegel action describing self-dual Yang-Mills theory using a canonical transformation to a free theory. The symmetries form an infinite dimensional Lie algebra in the group algebra of isometries.
Symmetry-induced anyon breeding in fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Lu, Yuan-Ming; Fidkowski, Lukasz
2014-03-01
An exotic feature of the fractional quantum Hall effect is the emergence of anyons, which are quasiparticle excitations with fractional statistics. In the presence of a symmetry, such as U (1) charge conservation, it is well known that anyons can carry fractional symmetry quantum numbers. In this paper we reveal a different class of symmetry realizations, i.e., anyons can "breed" in multiples under symmetry operation. We focus on the global Ising (Z2) symmetry and show examples of these unconventional symmetry realizations in Laughlin-type fractional quantum Hall states. One remarkable consequence of such an Ising symmetry is the emergence of anyons on the Ising symmetry domain walls. We also provide a mathematical framework which generalizes this phenomenon to any Abelian topological orders.
Unity of quark and lepton interactions with symplectic gauge symmetry
Rajpoot, S.
1982-07-01
Properties of symplectic groups are reviewed and the gauge structure of Sp(2n) derived. The electroweak unification of leptons within Sp(8) gauge symmetry and grand unification of quarks and leptons within Sp(10) gauge symmetry are discussed.
The construction of symmetry in children and adults.
Zingrone, William A
2014-01-01
The development of the concept of symmetry is important to an overall understanding of cognitive development in children and to spatial cognition in particular. Age differences in the construction of the 3 types of symmetry (bilateral, translational, and radial) were investigated in children and adults engaged in block construction. Children 2-4.5 years old produced bilateral symmetry in low frequencies independent of their precise vertical alignment of blocks. Children 4-12 years old and adults produced all 3 types of symmetry. The hypothesis predicting the sequence and frequency of the 3 types of symmetry based on an analysis of spatial complexity was partially supported. Bilateral symmetry was produced at significantly higher frequencies than the other 2 types across all age groups. Children 5-12 years old produced adult levels of bilateral symmetry while children 9-12 years old reached adult levels of construction of translational and radial symmetry.
Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry
Ginocchio, Joseph N
2010-09-21
Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.
Goodness of regularity in dot patterns: global symmetry, local symmetry, and their interactions.
Nucci, Massimo; Wagemans, Johan
2007-01-01
Goodness is a classic Gestalt notion defined as salience or perceptual strength of a given pattern. All operational models of goodness have assigned a central role to mirror symmetry but not much attention has been paid to the distinction between global and local mirror symmetry, and their possible interactions. We designed eight different types of dot patterns (all consisting of 80 dots), combining different numbers (0, 1, and 2) and relative orientations (parallel or orthogonal to each other) of local and global axes of symmetry (affecting 50% or 100% of the dots, respectively) at different absolute orientations (vertical and horizontal). Each of 640 trials consisted of a short presentation of a new dot pattern, which subjects had to classify as regular or random. We hypothesised that the overall goodness of patterns is not the simple sum of the amount of regularity present in them but depends on the cooperation and competition between symmetries. The results confirmed our hypothesis, showing that performance in this regularity-detection task did not increase in a linear way when some symmetries were added to other symmetries.
Neutrino Mixing:. from the Broken μ-τ Symmetry to the Broken Friedberg-Lee Symmetry
NASA Astrophysics Data System (ADS)
Xing, Zhi-Zhong
I argue that the observed flavor structures of leptons and quarks might imply the existence of certain flavor symmetries. The latter should be a good starting point to build realistic models towards deeper understanding of the fermion mass spectra and flavor mixing patterns. The μ-τ permutation symmetry serves for such an example to interpret the almost maximal atmospheric neutrino mixing angle (θ23 ~ 45°) and the strongly suppressed CHOOZ neutrino mixing angle (θ13 < 10°). In this talk I like to highlight a new kind of flavor symmetry, the Friedberg-Lee symmetry, for the effective Majorana neutrino mass operator. Luo and I have shown that this symmetry can be broken in an oblique way, such that the lightest neutrino remains massless but an experimentally-favored neutrino mixing pattern is achievable. We get a novel prediction for θ13 in the CP-conserving case: sinθ13 = tanθ12|(1 - tanθ23)/(1 + tanθ23)|. Our scenario can simply be generalized to accommodate CP violation and be combined with the seesaw mechanism. Finally I stress the importance of probing possible effects of μ-τ symmetry breaking either in terrestrial neutrino oscillation experiments or with ultrahigh-energy cosmic neutrino telescopes.
Aircraft body-axis rotation measurement system
NASA Technical Reports Server (NTRS)
Cowdin, K. T. (Inventor)
1983-01-01
A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.
Multi-Axis Accelerometer Calibration System
NASA Technical Reports Server (NTRS)
Finley, Tom; Parker, Peter
2010-01-01
A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.
High payload six-axis load sensor
Jansen, John F.; Lind, Randall F.
2003-01-01
A repairable high-payload six-axis load sensor includes a table, a base, and at least three shear-pin load transducers removably mounted between the table and the base. Removable mounting permits easy replacement of damaged shear pins. Preferably, the shear-pin load transducers are responsive to shear forces imparted along the two axes perpendicular to an axis of minimum sensitivity characteristic of the transducer. Responsive to an applied shear force, each shear-pin load transducer can produce an electrical signal proportional to the reaction force. The load sensor can further include a structure for receiving the proportional electrical signals and computing the applied load corresponding to the proportional electrical signals. The computed load can be expressed in terms of a three-dimensional XYZ Cartesian coordinate system.
Two-axis joint assembly and method
NASA Technical Reports Server (NTRS)
Le, Thang D. (Inventor); Lewis, James L. (Inventor); Carroll, Monty B. (Inventor)
2010-01-01
In an embodiment, a two-axis joint that utilizes planar reactions to handle moments applied to the side of the joint thereby allowing the device to remain low profile and compact with minimal intrusion to the mounting surface of the two-axis joint. To handle larger moments, the diameter of the planar member can be increased without increasing the overall height of the joint assembly thereby retaining the low profile thereof. Upper and lower antifriction bearings may be positioned within a housing engage the planar member to reduce rotational friction. The upper and lower bearings and a hub which supports the planar member transfer forces produced by moments applied to the side of the joint so as to spread the forces over the area of the housing.
Partial dynamical symmetry at critical points of quantum phase transitions.
Leviatan, A
2007-06-15
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
Black hole entropy from conformal symmetry on the horizon
NASA Astrophysics Data System (ADS)
Carlip, Steven
2017-01-01
The idea that black hole entropy might be governed by a conformal symmetry is an old one, but until now most efforts have focused on either asymptotic symmetries or symmetries on a ``stretched horizon. For two-dimensional dilaton gravity, I show the existence of a well-behaved conformal symmetry that is on the horizon, with a central charge that correctly determines the black hole entropy. Supported by Department of Energy grant DE-FG02-91ER40674.
Dysplastic dens of the axis: case report.
Payer, M; Bijlenga, P; Delavelle, J
2003-09-01
In a patient injured in a bicycle accident, radiological evaluation of the cervical spine revealed an oblique orientation of a dysplastic dens of the axis, which, to our knowledge, has not been reported in the literature. There were no other bony or soft tissue anomalies and no associated instability. This case should draw attention to congenital anomalies of the cranio-cervical junction in trauma patients.
Dynamics of the Lunar Spin Axis
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2006-01-01
The evolution of the lunar spin axis is studied. Prior work has assumed that the inclination of the lunar orbit is constant and that the node regresses uniformly. This work takes into account the nonconstant inclination and nonuniform regression of the node as determined from averaged models of the motion of the lunar orbit. The resulting dynamics is considerably more rich, exhibiting additional resonances, period doubling and tripling, and chaos.
Multivariable root loci on the real axis
NASA Technical Reports Server (NTRS)
Yagle, A. E.; Levy, B. C.
1982-01-01
Some methods for determining the number of branches of multivariable root loci which are located on the real axis at a given point are obtained by using frequency domain methods. An equation for the number of branches is given for the general case, and simpler results for the special cases when the transfer function G(s) has size 2 x 2, and when G(s) is symmetric, are also presented.
Three-Axis Superconducting Gravity Gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung
1987-01-01
Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.
Symmetry of semi-reduced lattices.
Stróż, Kazimierz
2015-05-01
The main result of this work is extension of the famous characterization of Bravais lattices according to their metrical, algebraic and geometric properties onto a wide class of primitive lattices (including Buerger-reduced, nearly Buerger-reduced and a substantial part of Delaunay-reduced) related to low-restricted semi-reduced descriptions (s.r.d.'s). While the `geometric' operations in Bravais lattices map the basis vectors into themselves, the `arithmetic' operators in s.r.d. transform the basis vectors into cell vectors (basis vectors, face or space diagonals) and are represented by matrices from the set {\\bb V} of all 960 matrices with the determinant ±1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the moduli of off-diagonal elements in both the metric tensors M and M(-1) are smaller than corresponding diagonal elements sharing the same column or row. Such lattices are split into 379 s.r.d. types relative to the arithmetic holohedries. Metrical criteria for each type do not need to be explicitly given but may be modelled as linear derivatives {\\bb M}(p,q,r), where {\\bb M} denotes the set of 39 highest-symmetry metric tensors, and p,q,r describe changes of appropriate interplanar distances. A sole filtering of {\\bb V} according to an experimental s.r.d. metric and subsequent geometric interpretation of the filtered matrices lead to mathematically stable and rich information on the Bravais-lattice symmetry and deviations from the exact symmetry. The emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from analysis of a lattice metric to analysis of symmetry matrices [Himes & Mighell (1987). Acta Cryst. A43, 375-384], (ii) from the isometric approach and invariant subspaces to the orthogonality concept {some ideas in Le Page [J. Appl. Cryst. (1982), 15, 255-259]} and splitting indices [Stróż (2011). Acta Cryst. A67, 421-429] and (iii) from fixed cell transformations to transformations
Search for Tetrahedral Symmetry in 70Ge
NASA Astrophysics Data System (ADS)
Le, Khanh; Haring-Kaye, R. A.; Elder, R. M.; Jones, K. D.; Morrow, S. I.; Tabor, S. L.; Tripathi, V.; Bender, P. C.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Doring, J.
2014-09-01
The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition of 20 new transitions and the rearrangement of five others based on the measured coincidence relations and relative intensities. Lifetimes of 24 states were measured using the Doppler-shift attenuation method, from which transition quadrupole moments were inferred. These results will be compared with those obtained from cranked Woods-Saxon calculations. The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition
Determining the Stellar Spin Axis Orientation
NASA Astrophysics Data System (ADS)
Lesage, Anna-Lea; Wiedemann, Gunter
2015-01-01
We present an observing method that permits the determination of the absolute stellar spin axis position angle based on spectro-astrometric observations for slowly-rotating late-type stars. This method is complementary to current interferometric observations that determine the orientation of stellar spin axis for early-type fast-rotating stars. Spectro-astrometry enables us to study phenomena below the diffraction limit, at the milli-arcsecond scale. It relies on the wavelength dependent variations of the centroid position of a structured source in a long-slit spectrum. A rotating star has a slight tilt in its spectral lines, which induces a displacement of the photocentre's position. By monitoring the amplitude of the displacement for varying slit orientations, we can infer the absolute position angle of the stellar spin axis. Finally, we present first observational results on Aldebaran obtained with the Thüringer Landesternwarte high resolution spectrograph. We were able to retrieve Aldebaran's position angle with less than 10° errors.
Three-axis superconducting gravity gradiometer
Paik, H.J.
1989-06-27
This patent describes a gradiometer having a sensitive axis for detecting a gravity gradient along the sensitive axis, comprising: a pair of accelerometers having respective sensitive axes; each accelerometer including a proof mass having a pair of hollowed out annular portions; each proof mass having at least one sensing coil arranged adjacent a bottom-side surface of the respective proof mass in one of the hollowed out portions and a levitation coil arranged adjacent a second bottom-side surface of the respective proof mass in the other hollowed out portion, at least one sensing coil and the levitation coil thus being located on the same side of the respective proof mass in relation to the direction of an external force exerted on the gradiometer thereby to compensate for temperature induced changes in magnetic field penetration into the respective proof mass; at least one first superconducting circuit in which the sensing coils of the accelerometers are interconnected and in which a first persistent current flows, the first circuit having an output indicative of a gravity gradient along the sensitive axis of the gradiometer.
Appearance of Symmetry, Beauty, and Health in Human Faces
ERIC Educational Resources Information Center
Zaidel, D.W.; Aarde, S.M.; Baig, K.
2005-01-01
Symmetry is an important concept in biology, being related to mate selection strategies, health, and survival of species. In human faces, the relevance of left-right symmetry to attractiveness and health is not well understood. We compared the appearance of facial attractiveness, health, and symmetry in three separate experiments. Participants…
Human Odometry Verifies the Symmetry Perspective on Bipedal Gaits
ERIC Educational Resources Information Center
Turvey, M. T.; Harrison, Steven J.; Frank, Till D.; Carello, Claudia
2012-01-01
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias "cells") required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human…
Fostering Mathematical Inquiry with Explorations of Facial Symmetry
ERIC Educational Resources Information Center
Edwards, Michael Todd
2004-01-01
Two technology-oriented activities are used successfully with entry-level geometry students during their study of symmetry. Reflection symmetry gives students opportunities to deepen their understanding of fundamental mathematical concepts like slope and symmetry, in a flexible and self-paced way.
Young Children Reasoning about Symmetry in a Dynamic Geometry Environment
ERIC Educational Resources Information Center
Ng, Oi-Lam; Sinclair, Nathalie
2015-01-01
In this paper, we investigate children's learning of reflectional symmetry in a dynamic geometry environment. Through a classroom-based intervention involving two 1-h lessons, we analyse the changes in the children's thinking about reflectional symmetry: first, they developed dynamic and embodied ways of thinking about symmetry after working with…
Symmetry Concerns as a Symptom of Body Dysmorphic Disorder.
Hart, Ashley S; Phillips, Katharine A
2013-07-01
Symmetry obsessions are a common symptom of obsessive-compulsive disorder (OCD) and have several demographic and clinical correlates. Appearance-related symmetry concerns appear common in body dysmorphic disorder (BDD); however, no published studies have examined this topic. This study examined the clinical features, prevalence, and correlates of symmetry concerns involving physical appearance in two BDD samples (N=160 and N=115). More than 25% of participants in each sample reported symmetry concerns for a body part with which they were preoccupied (total of 18 body parts in sample 1 and 18 in sample 2). In sample 1, BDD participants with appearance-related symmetry concerns were older than those without appearance-related symmetry concerns. In sample 2, those with appearance-related symmetry concerns reported poorer mental health-related quality of life, were more likely to have experienced lifetime suicidal ideation, had better BDD-related insight, and were less likely to have a lifetime eating disorder. In both samples, participants with appearance-related symmetry concerns were more likely to have lifetime OCD but not OCD-related symmetry obsessions. Thus, symmetry is a common appearance concern in BDD that is associated with comorbid OCD but not with OCD symmetry concerns specifically, suggesting that symmetry concerns may have a different mechanism/pathophysiology in BDD versus OCD.
Matrix Representation of Symmetry Operators in Elementary Crystallography
ERIC Educational Resources Information Center
Cody, R. D.
1972-01-01
Presents the derivation of rotation and reflection matrix representation of symmetry operators as used in the initial discussion of crystal symmetry in elementary mineralogy at Iowa State University. Includes references and an appended list of matrix representations of the important crystallographic symmetry operators, excluding the trigonal and…
Near-horizon conformal symmetry and black hole entropy.
Carlip, S
2002-06-17
Near an event horizon, the action of general relativity acquires a new asymptotic conformal symmetry. For two-dimensional dilaton gravity, this symmetry results in a chiral Virasoro algebra, and Cardy's formula for the density of states reproduces the Bekenstein-Hawking entropy. This lends support to the notion that black hole entropy is controlled universally by conformal symmetry near the horizon.
Spontaneous Breaking of Lie Groups to Discrete Symmetries
NASA Astrophysics Data System (ADS)
Rachlin, Bradley; Kephart, Thomas
2017-01-01
Many models of beyond Standard Model physics connect flavor symmetry with a discrete group. Having this symmetry arise spontaneously from a gauge theory maintains compatibility with quantum gravity and prevents anomalies. We detail ways to set up Higgs potentials to break gauge groups to discrete symmetries of interest. The scalar mass spectra are examined. Research Assistantship funded by Department of Energy (DOE).
Optimal Spatial Harvesting Strategy and Symmetry-Breaking
Kurata, Kazuhiro Shi Junping
2008-08-15
A reaction-diffusion model with logistic growth and constant effort harvesting is considered. By minimizing an intrinsic biological energy function, we obtain an optimal spatial harvesting strategy which will benefit the population the most. The symmetry properties of the optimal strategy are also discussed, and related symmetry preserving and symmetry breaking phenomena are shown with several typical examples of habitats.
BRST symmetry in the Schrödinger picture
NASA Astrophysics Data System (ADS)
Lee, Hyuk-Jae; Yee, Jae Hyung
1993-05-01
We show that the effective Lagrangian including the gauge-fixing and ghost terms of the non-Abelian gauge theories can be derived in the functional Schrödinger picture by using the residual symmetry of the gauge-fixed Lagrangian. This residual gauge symmetry is shown to be equivalent to the well-known Becchi-Rouet-Stora-Tyutin symmetry.
Neuroanatomy and physiology of the avian hypothalamic/pituitary axis: clinical aspects.
Ritchie, Midge
2014-01-01
This article describes the anatomy of the avian hypothalamic/pituitary axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the somatotrophic axis, and neurohypophysis.
Topological aspects of systems with broken time-reversal symmetry
NASA Astrophysics Data System (ADS)
Raghu, Srinivas
This thesis deals with two topics involving topological "vortex-like" defects arising due to the breaking of time-reversal symmetry. A recurring theme shall be the interplay between the bulk properties and the physics at the boundaries of such systems. In the first part of the thesis, we construct direct analogs of quantum Hall effect edge modes in photonic systems with broken time-reversal symmetry. We will show how "photonic crystals" built out of time-reversal breaking Faraday effect media can exhibit "chiral" edge modes in which light propagates unidirectionally along boundaries across which the Faraday axis reverses. The crucial feature underlying this idea is that the photon bands of interest have non-zero Chern numbers (topological integers, which in the case at hand, represent the winding number of the Berry gauge connection of the bands). Using both numerical diagonalization and simple analytical models, we show how to construct photon bands with non-zero Chern invariants, and we use them to realize the precise classical counterpart of the electronic edge modes of the quantum Hall effect. To study these modes numerically, we have designed and implemented novel real-space treatments of the source-free Maxwell normal mode problem on a discrete network. In the second part of the thesis, we focus on extreme type II superconductors in externally applied magnetic fields. Motivated by experiments of Ong and collaborators on the Nernst effect in the cuprate superconductors, we consider a model of a superconductor which permits fluctuations only in the phase of the order parameter. In the presence of the magnetic field, a net vorticity is induced in the system, and we consider the various static and thermoelectric signatures of these superconducting vortices. Using numerical simulations, analytical calculations, and arguments from duality, we study thermoelectric transport and boundary diamagnetic currents. We conclude that such simple models of superconductors
State of Modeling Symmetry in Hohlraums
Jones, O. S.
2015-07-22
Modeling radiation drive asymmetry is challenging problem whose agreement with data depends on the hohlraum gas fill density. Modeling to date uses the HYDRA code with crossbeam energy transfer (CBET) calculated separately, and backscattered light removed from the input laser. For high fill hohlraums (~>1 mg/cc), matching symmetry requires ad hoc adjustments to CBET during picket and peak of drive. For near-vacuum hohlraums, there is little CBET or backscatter, and drive is more waist-high than predicted. For intermediate fill densities (~0.6 mg/cc) there appears to be a region of small CBET and backscatter where symmetry is reasonably well modeled. A new technique where backscatter and CBET are done “inline” appears it could bring high fill simulations closer to data.
Symmetry and topology of noncentrosymmetric superconductors
Samokhin, K.V.
2015-08-15
We present a detailed analysis of the pairing symmetry and the order parameter topology in superconductors without centre of inversion. Strong spin–orbit coupling of electrons with the crystal lattice leads to a large splitting of the Bloch bands, which makes it necessary to use a multiband description of superconductivity. We identify stable superconducting states and derive the Bogoliubov–de Gennes Hamiltonian, which determines the spectrum of fermionic quasiparticles. To develop a topological classification of the superconducting states we introduce two different types of topological invariants, the Chern numbers and the Maurer–Cartan invariants, and apply them to three-dimensional noncentrosymmetric superconductors, both with and without time reversal symmetry breaking.
Charge symmetry breaking two-pion exchange
Niskanen, J.A. )
1992-06-01
Two-pion exchange (TPE) contribution to the charge symmetry breaking class IV neutron-proton interaction is examined in a potential and coupled channels approach. Based on nonrelativistic {pi}{ital NN} and {pi}{ital N}{Delta} vertices, a TPE interaction is treated in two ways, as a potential or as a part calculable by the coupled channels method plus a residual potential interaction. A practical parametrization of the TPE potentials is given, which can also be used in the case of class III charge symmetry breaking (CSB) forces as well as for charge symmetric interactions. The results show that below 300 MeV the TPE contribution to CSB in elastic {ital np} scattering is insignificant, whereas at higher energies it should not be neglected.
Topological Symmetry Breaking in Viscous Coarsening
NASA Astrophysics Data System (ADS)
Bouttes, David; Gouillart, Emmanuelle; Vandembroucq, Damien
2016-09-01
The crucial role of hydrodynamic pinch-off instabilities is evidenced in the coarsening stage of viscous liquids. The phase separation of a barium borosilicate glass melt is studied by in situ synchrotron tomography at high temperature. The high viscosity contrast between the less viscous phase and the more viscous phase induces a topological symmetry breaking: capillary breakups occur preferentially in the less viscous phase. As a result, contrasting morphologies are obtained in the two phases. This symmetry breaking is illustrated on three different glass compositions, corresponding to different volume fractions of the two phases. In particular, a fragmentation phenomenon, reminiscent of the end-pinching mechanism proposed by Stone and co-workers is evidenced in the less viscous phase.
Bacterial population autowave patterns: spontaneous symmetry bursting
NASA Astrophysics Data System (ADS)
Medvinsky, A. B.; Tsyganov, M. A.; Karpov, V. A.; Kresteva, I. B.; Shakhbazian, V. Yu.; Ivanitsky, G. R.
1994-12-01
Bacteria are known to form autowave patterns (population waves) like those formed by propagating nerve impulses, phase transitions, concentration waves in the Belousov-Zhabotinsky reaction, etc. The formation of bacterial waves is due to the ability of bacteria to drift (through chemotaxis) into the regions with higher attractant concentration. As a result, in contrast to other types of autowaves, bacterial population waves have not only a diffusion component of a bacterial flow but a chemotaxis flow as well. We present the experimental results of the study of spontaneous symmetry loss of bacterial autowave patterns. We show that this phenomenon can be simulated with a simple cellular automata model, and symmetry bursting depends on the parameters characterizing chemotactic sensitivity and motility of the cells forming the population wave. In the experiments in vivo we show that the distortion of a bacterial wave shape can be initiated by bacterial density fluctuations in the parent population that the bacterial waves flake off from.
Superheavy dark matter with discrete gauge symmetries
NASA Astrophysics Data System (ADS)
Hamaguchi, K.; Nomura, Yasunori; Yanagida, T.
1998-11-01
We show that there are discrete gauge symmetries which naturally protect heavy X particles from decaying into ordinary light particles in the supersymmetric standard model. This makes the proposal that superheavy X particles constitute part of the dark matter in the present universe very attractive. It is more interesting that there is a class of discrete gauge symmetries which naturally accommodates a long-lived unstable X particle. We find that in some discrete Z10 models, for example, a superheavy X particle has a lifetime of τX~=1011-1026 yr for a mass of MX~=1013-1014 GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) coupled to the X. We briefly discuss a possible explanation for the recently observed ultrahigh-energy cosmic ray events by the decay of this unstable X particle.
Charge Symmetry Breaking in Light Hypernuclei
NASA Astrophysics Data System (ADS)
Achenbach, Patrick
2017-01-01
Recently precise Λ-hyperon ground-state binding energies in light hypernuclei have been determined with novel techniques, in particular with a new generation of magnetic spectrometers. The precision spectroscopy results of Λ hypernuclei isomultiplets contributed considerably to the study of charge symmetry breaking in the strong interaction. At the Mainz Microtron MAMI the high-resolution spectroscopy of decay-pions in strangeness electro-production was used to extract the ground state binding energy in ^4_ΛH. This value was compared to the value of the isospin mirror hypernucleus ^4_ΛHe to confirm a sizable breaking of the charge symmetry. A synopsis for the values in the A = 7, 8, 9, and 10 hypernuclei suggests small or vanishing effects in other isomultiplets. The full understanding of the large and spin-dependent effect in the A = 4 mirror pair remains one of the open issues of hypernuclear physics.
The symmetry of single-molecule conduction.
Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S
2006-11-14
We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.
Confinement and flavor symmetry breaking via monopolecondensation
Murayama, Hitoshi
2000-09-19
We discuss dynamics of N=2 supersymmetric SU(n_c) gaugetheories with n_f quark hypermultiplets. Upon N=1 perturbation ofintroducing a finite mass for the adjoint chiral multiplet, we show thatthe flavor U(n_f) symmetry is dynamically broken to U(r) times U(n_f-r),where r\\leq [n_f/2]is an integer. This flavor symmetry breaking occursdue to the condensates of magnetic degrees of freedom which acquireflavor quantum numbers due to the quark zero modes. We briefly comment onthe USp(2n_c) gauge theories. This talk is based on works with GiuseppeCarlino and Ken Konishi, hep-th/0001036 and hep-th/0005076.
Generalized gravitational entropy without replica symmetry
NASA Astrophysics Data System (ADS)
Camps, Joan; Kelly, William R.
2015-03-01
We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.
Symmetries and the philosophy of language
NASA Astrophysics Data System (ADS)
Dewar, Neil
2015-11-01
In this paper, I consider the role of exact symmetries in theories of physics, working throughout with the example of gravitation set in Newtonian spacetime. First, I spend some time setting up a means of thinking about symmetries in this context; second, I consider arguments from the seeming undetectability of absolute velocities to an anti-realism about velocities; and finally, I claim that the structure of the theory licences (and perhaps requires) us to interpret models which differ only with regards to the absolute velocities of objects as depicting the same physical state of affairs. In defending this last claim, I consider how ideas and resources from the philosophy of language may usefully be brought to bear on this topic.
Lorentz Transformation from Symmetry of Reference Principle
Petre, M.; Dima, M.; Dima, A.; Petre, C.; Precup, I.
2010-01-21
The Lorentz Transformation is traditionally derived requiring the Principle of Relativity and light-speed universality. While the latter can be relaxed, the Principle of Relativity is seen as core to the transformation. The present letter relaxes both statements to the weaker, Symmetry of Reference Principle. Thus the resulting Lorentz transformation and its consequences (time dilatation, length contraction) are, in turn, effects of how we manage space and time.
Global Bifurcation of Periodic Solutions with Symmetry,
1987-07-01
new aspect we study the global interaction and interdependence of these local singularities, designing a homotopy invariant. As a result, we obtain an...theorem 9.1. But local bifurcations, local singularities have been studied for quite a while now, even in equivariant settings. Our analysis adds a...Sattinger [Satl,2], and Vanderbauwhede [Vanl,51 treat local bifurcations extensively. For a detailed study of local symmetry-breaking in elliptic
Ehlers symmetry at the next derivative order
NASA Astrophysics Data System (ADS)
Colonnello, Claudia; Kleinschmidt, Axel
2007-08-01
We analyse four-dimensional gravity in the presence of general curvature squared corrections and show that Ehlers' SL(2, Bbb R) symmetry, which appears in the reduction of standard gravity to three dimensions, is preserved by the correction terms. The mechanism allowing this is a correction of the SL(2, Bbb R) transformation laws which resolves problems with the different scaling behaviour of various terms occurring in the reduction.
Electroweak Symmetry Breaking in Historical Perspective
Quigg, Chris
2015-10-01
The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of my review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. Furthermore, I survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.
Chiral Symmetry restoration from the hadronic regime
NASA Astrophysics Data System (ADS)
Gómez Nicola, Angel; Cortés, Santiago; Morales, John; Ruiz de Elvira, Jacobo; Andrés, Ricardo Torres
2017-03-01
We discuss recent advances on QCD chiral symmetry restoration at finite temperature, within the theoretical framework of Effective Theories. U(3) Ward Identities are derived between pseudoscalar susceptibilities and quark condensates, allowing to explain the behaviour of lattice meson screening masses. Unitarized interactions and the generated f0(500) thermal state are showed to play an essential role in the description of the transition through the scalar susceptibility.
Localized waves with spherical harmonic symmetries
NASA Astrophysics Data System (ADS)
Mills, M. S.; Siviloglou, G. A.; Efremidis, N.; Graf, T.; Wright, E. M.; Moloney, J. V.; Christodoulides, D. N.
2012-12-01
We introduce a class of propagation invariant spatiotemporal optical wave packets with spherical harmonic symmetries in their field configurations. The evolution of these light orbitals is considered theoretically in anomalously dispersive media, and their spinning dynamics are analyzed in terms of their corresponding energy flows. Similarly, localized waves generated via spherical superposition from Archimedean and Platonic solids in k⃗-ω space are investigated in this work.
Gauged twistor spinors and symmetry operators
NASA Astrophysics Data System (ADS)
Ertem, Ümit
2017-03-01
We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satisfy the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.
Symmetry analysis for anisotropic field theories
Parra, Lorena; Vergara, J. David
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Symmetry reduction for central force problems
NASA Astrophysics Data System (ADS)
McLachlan, Robert I.; Modin, Klas; Verdier, Olivier
2016-09-01
We given an elementary illustration of symmetry reduction for central force problems, drawing phase portraits of the reduced dynamics as the intersection of Casimir and energy level sets in three dimensions. These systems form a classic example of symplectic reduction which can usefully be compared to the more commonly seen case of the free rigid body. Dedicated to the memory of Jerry Marsden, 1942-2010.
Symmetries and the Painlev&{acutee} Property
NASA Astrophysics Data System (ADS)
Strampp, W.
1986-10-01
A test for the integrability of a nonlinear partial differential equation is the Painlev&{acutee} analysis introduced by Weiss, Tabor and Carnevale. It turned out that Lax-pairs and Bäcklund transformations arise from the Painlev&{acutee} test. More recently, Gibbon et al. revealed interrelations between the Painlev&{acutee} property and Hirota's bilinear method. In this paper it is shown that symmetries and recursion operators can be obtained from the Painlev&{acutee} expansion.q
High {Tc} superconductivity: Symmetries and reflections
Zhang, S.C.
1999-12-30
This is a talk given at the Symposium Symmetries and Reflections, dedicated to Prof. C.N. Yang's retirement. In this talk, the author reflects on his personal interaction with Prof. Yang since his graduate career at SUNY Stony Brook, and his profound impact on his understanding of theoretical physics. He also reviews the SO(5) theory of high T{sub c} superconductivity and shows how his collaboration with Prof. Yang in 1990 lead to the foundation of this idea.
Gauge Theories and Spontaneous Symmetry Breaking.
1980-11-01
breaking spontaneous symmetric breaking , Higgs mechanism bifurcation problem RATr0ACT’fwwdhn om pea71 Ul nonmevi dumad #~lyb block Im.,) his report is a...field theories. It was felt that the symmetry breaking used by the physicists LiI (a procedure known as the Higgs mechanism) is not precisely a...feeling, after some discussions, that the symmctry breaking used by the phyalciuts (a procedure known as the Higgs mechanism) is not precisely a
Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.
2003-01-01
The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head
Flavor Symmetry and Topology Change in Nuclear Symmetry Energy for Compact Stars
NASA Astrophysics Data System (ADS)
Lee, Hyun Kyu; Rho, Mannque
2013-03-01
The nuclear symmetry energy figures crucially in the structure of asymmetric nuclei and, more importantly, in the equation of state (EoS) of compact stars. At present it is almost totally unknown, both experimentally and theoretically, in the density regime appropriate for the interior of neutron stars. Basing on a strong-coupled structure of dense baryonic matter encoded in the skyrmion crystal approach with a topology change and resorting to the notion of generalized hidden local symmetry in hadronic interactions, we address a variety of hitherto unexplored issues of nuclear interactions associated with the symmetry energy, i.e., kaon condensation and hyperons, possible topology change in dense matter, nuclear tensor forces, conformal symmetry, chiral symmetry, etc., in the EoS of dense compact-star matter. One of the surprising results coming from HLS structure that is distinct from what is given by standard phenomenological approaches is that at high density, baryonic matter is driven by renormalization group flow to the "dilaton-limit fixed point" constrained by "mended symmetries". We further propose how to formulate kaon condensation and hyperons in compact-star matter in a framework anchored on a single effective Lagrangian by treating hyperons as the Callan-Klebanov kaon-skyrmion bound states simulated on crystal lattice. This formulation suggests that hyperons can figure in the stellar matter — if at all — when or after kaons condense, in contrast to the standard phenomenological approaches where the hyperons appear as the first strangeness degree of freedom in matter, thereby suppressing or delaying kaon condensation. In our simplified description of the stellar structure in terms of symmetry energies, which is compatible with that of the 1.97 solar mass star, kaon condensation plays a role of "doorway state" to strange quark matter.
Quark matter symmetry energy and quark stars
Chu, Peng-Cheng; Chen, Lie-Wen
2014-01-10
We extend the confined-density-dependent-mass (CDDM) model to include isospin dependence of the equivalent quark mass. Within the confined-isospin-density-dependent-mass (CIDDM) model, we study the quark matter symmetry energy, the stability of strange quark matter, and the properties of quark stars. We find that including isospin dependence of the equivalent quark mass can significantly influence the quark matter symmetry energy as well as the properties of strange quark matter and quark stars. While the recently discovered large mass pulsars PSR J1614–2230 and PSR J0348+0432 with masses around 2 M {sub ☉} cannot be quark stars within the CDDM model, they can be well described by quark stars in the CIDDM model. In particular, our results indicate that the two-flavor u-d quark matter symmetry energy should be at least about twice that of a free quark gas or normal quark matter within the conventional Nambu-Jona-Lasinio model in order to describe PSR J1614–2230 and PSR J0348+0432 as quark stars.
Symmetry and Evolution in Quantum Gravity
NASA Astrophysics Data System (ADS)
Gryb, Sean; Thébaault, Karim
2014-03-01
We propose an operator constraint equation for the wavefunction of the Universe that admits genuine evolution. While the corresponding classical theory is equivalent to the canonical decomposition of General Relativity, the quantum theory contains an evolution equation distinct from standard Wheeler-DeWitt cosmology. Furthermore, the local symmetry principle—and corresponding observables—of the theory have a direct interpretation in terms of a conventional gauge theory, where the gauge symmetry group is that of spatial conformal diffeomorphisms (that preserve the spatial volume of the Universe). The global evolution is in terms of an arbitrary parameter that serves only as an unobservable label for successive states of the Universe. Our proposal follows unambiguously from a suggestion of York whereby the independently specifiable initial data in the action principle of General Relativity is given by a conformal geometry and the spatial average of the York time on the spacelike hypersurfaces that bound the variation. Remarkably, such a variational principle uniquely selects the form of the constraints of the theory so that we can establish a precise notion of both symmetry and evolution in quantum gravity.
Charge symmetry breaking in A = 4 hypernuclei
NASA Astrophysics Data System (ADS)
Achenbach, P.
2016-11-01
Charge symmetry breaking in the A = 4 hypernuclear system is reviewed. The data on binding energies of the mirror nuclei and hypernuclei are examined. At the Mainz Microtron MAMI the high-resolution spectroscopy of decay-pions in strangeness electro-production is used to extract the Λ hyperon ground state binding energy in 4ΛH. This binding energy is used together with the 4ΛHe ground state binding energy from nuclear emulsion experiments and with energy levels of the 1+ excited state for both hypernuclei from γ-ray spectroscopy to address the charge symmetry breaking in the strong interaction. The binding energy difference of the ground states in the mirror pair is reduced from its long accepted value ΔB4Λ(0+g.s.) ≈ 0.35MeV to ≈ 0.24MeV. The energy difference of the excited states becomes ΔB4Λ(1+exc) ≈ -0.08MeV, for the first time with opposite sign. These values were not reproduced by theoretical calculations with the exception of very recent approaches, although with a large systematic dependence. The full understanding of the charge symmetry breaking in the A = 4 hypernuclei still remains one of the open issues of hypernuclear physics.
Variational contact symmetries of constrained Lagrangians
NASA Astrophysics Data System (ADS)
Terzis, Petros A.; Dimakis, N.; Christodoulakis, T.; Paliathanasis, Andronikos; Tsamparlis, Michael
2016-03-01
The investigation of contact symmetries of re-parametrization invariant Lagrangians of finite degrees of freedom and quadratic in the velocities is presented. The main concern of the paper is those symmetry generators which depend linearly in the velocities. A natural extension of the symmetry generator along the lapse function N(t) , with the appropriate extension of the dependence in N ˙ (t) of the gauge function, is assumed; this action yields new results. The central finding is that the integrals of motion are either linear or quadratic in velocities and are generated, respectively by the conformal Killing vector fields and the conformal Killing tensors of the configuration space metric deduced from the kinetic part of the Lagrangian (with appropriate conformal factors). The freedom of re-parametrization allows one to appropriately scale N(t) , so that the potential becomes constant; in this case the integrals of motion can be constructed from the Killing fields and Killing tensors of the scaled metric. A rather interesting result is the non-necessity of the gauge function in Noether's theorem due to the presence of the Hamiltonian constraint.
Unification mechanism for gauge and spacetime symmetries
NASA Astrophysics Data System (ADS)
László, András
2017-03-01
A group theoretical mechanism for unification of local gauge and spacetime symmetries is introduced. No-go theorems prohibiting such unification are circumvented by slightly relaxing the usual requirement on the gauge group: only the so called Levi factor of the gauge group needs to be compact semisimple, not the entire gauge group. This allows a non-conventional supersymmetry-like extension of the gauge group, glueing together the gauge and spacetime symmetries, but not needing any new exotic gauge particles. It is shown that this new relaxed requirement on the gauge group is nothing but the minimal condition for energy positivity. The mechanism is demonstrated to be mathematically possible and physically plausible on a \\text{U}(1) based gauge theory setting. The unified group, being an extension of the group of spacetime symmetries, is shown to be different than that of the conventional supersymmetry group, thus overcoming the McGlinn and Coleman–Mandula no-go theorems in a non-supersymmetric way.
Radiatively broken symmetries of nonhierarchical neutrinos
NASA Astrophysics Data System (ADS)
Dighe, Amol; Goswami, Srubabati; Roy, Probir
2007-11-01
Symmetry-based ideas, such as the quark-lepton complementarity principle and the tribimaximal mixing scheme, have been proposed to explain the observed mixing pattern of neutrinos. We argue that such symmetry relations need to be imposed at a high scale Λ˜1012GeV characterizing the large masses of right-handed neutrinos required to implement the seesaw mechanism. For nonhierarchical neutrinos, renormalization group evolution down to a laboratory energy scale λ˜103GeV tends to radiatively break these symmetries at a significant level and spoil the mixing pattern predicted by them. However, for Majorana neutrinos, suitable constraints on the extra phases α2,3 enable the retention of those high scale mixing patterns at laboratory energies. We examine this issue within the minimal supersymmetric standard model and demonstrate the fact posited above for two versions of quark-lepton complementarity and two versions of tribimaximal mixing. The appropriate constraints are worked out for all these four cases. Specifically, a preference for α2≈π (i.e., m1≈-m2) emerges in each case. We also show how a future accurate measurement of θ13 may enable some discrimination among these four cases in spite of renormalization group evolution.
Spontaneous Symmetry Breaking in Interdependent Networked Game
Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen
2014-01-01
Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method. PMID:24526076