Science.gov

Sample records for 3-hydroxy-2-formylpyridine semicarbazone synthesis

  1. An Efficient Procedure for Microscale Synthesis of Semicarbazones

    ERIC Educational Resources Information Center

    Pandita, Sangeeta; Goyal, Samta; Passey, Sarita

    2004-01-01

    A successful microscale fusion of semicarbazones, or transformation of carbonyl compounds into semicarbazones is performed through an effective grinding system. The donning of protective attire is advised to avoid the hazardous effects of semicarbazide hydrochloride during the fusion process.

  2. Design, Synthesis and Antiproliferative Activity of Novel Benzothiazole Derivatives Conjugated with Semicarbazone Scaffold.

    PubMed

    Bao, Guanglong; Du, Baoquan; Ma, Yuxiu; Zhao, Meng; Gong, Ping; Zhai, Xin

    2016-01-01

    Two series of novel benzothiazole derivatives conjugated with semicarbazone scaffold were designed and synthesized through a structure-based molecular hybridization strategy. All the target compounds were evaluated for their cytotoxicity in vitro against three cancer cell lines (HT-29, MKN-45 and H460) by standard MTT assay. The pharmacological results indicated that seven compounds (17h-n) exhibited comparable or even better antiproliferative activity in comparison with reference drugs Sorafenib and PAC-1. Particularly, compound 17i displayed remarkable cytotoxicity against tested three cancer cell lines with IC50 values of 0.84, 0.06 and 0.52 µM, which were 4.3-, 36.6-, 4.2-folds more potent than Sorafenib and 1.2-, 13.7-, 6.9-times more active than PAC-1, respectively. PMID:26740207

  3. Design, synthesis and in vitro trypanocidal and leishmanicidal activities of novel semicarbazone derivatives.

    PubMed

    Alves, Marina A; de Queiroz, Aline C; Alexandre-Moreira, Magna Suzana; Varela, Javier; Cerecetto, Hugo; González, Mercedes; Doriguetto, Antonio C; Landre, Iara M; Barreiro, Eliezer J; Lima, Lídia M

    2015-07-15

    Trypanosomatids are protozoan parasites that cause various diseases in human, such as leishmaniasis, Chagas disease and sleeping sickness. The highly syntenic genomes of the trypanosomatid species lead the assumption that they can encode similar proteins, indicating the possibility to design new antitrypanosomatid drugs with dual trypanosomicidal and leishmanicidal activities. In this work a series of compounds (6a-h and 7a-h), containing a semicarbazone scaffold as a peptide mimetic framework, was designed and synthesized. From this series compound 7g (LASSBio-1483) highlighted, showing dual in vitro trypanosomicidal and leishmanicidal activities, with potency similar to the standard drugs nifurtimox and pentamidine. This data, taken together with its good in silico druglikeness profile and its great chemical and plasma stability, make LASSBio-1483 (7g) a new antitrypanosomatid lead-candidate. PMID:26069927

  4. Design, synthesis and anticonvulsant activity of some new 5,7-dibromoisatin semicarbazone derivatives

    PubMed Central

    Kumar, Dheeraj; Sharma, Vijay Kumar; Kumar, Rajeev; Singh, Tejendra; Singh, Hariram; Singh, Amar Deep; Roy, R.K.

    2013-01-01

    A series of 5,7-dibromoisatin semicarbazones have been synthesized in good yield, involving aryl urea and aryl semicarbazide formation. The structures of the synthesized compounds were confirmed on the basis of their spectral data. All the compounds were evaluated for anticonvulsant and CNS depressant activities. Anticonvulsant activity was determined after intraperitoneal (i.p.) administration to mice by maximal electroshock (MES) induced seizure method and minimal motor impairment was determined by rotarod test. A computational study was carried out for prediction of pharmacokinetic properties and making them potentially promising agents for the treatment of epilepsy. Compounds (Z)-1-(5,7-dibromo-2-oxoindolin-3-ylidene)-4-(4-chlorophenyl)semicarbazide (DH-05), (Z)-1-(5,7-dibromo-2-oxoindolin-3-ylidene)-4-(3-chloro-4-fluorophenyl)semicarbazide (DH-11) and (Z)-1-(5,7-dibromo-1-methyl-2-oxoindolin-3-ylidene)-4-(3-chloro-4-fluorophenyl)semicarbazide (DH-12) exhibited prominent anticonvulsant effect in the series with little or no neurotoxicity and little CNS depressant effect as compared to standard drug. PMID:26609284

  5. Copper(II) complexes derived from di-2-pyridyl ketone- N4-phenyl-3-semicarbazone: Synthesis and spectral studies

    NASA Astrophysics Data System (ADS)

    Reena, T. A.; Kurup, M. R. Prathapachandra

    2010-08-01

    Five copper(II) complexes [CuLCl] 2·CuCl 2·4H 2O ( 1), [CuLOAc] ( 2), [CuLNO 3] 2 ( 3), [CuLN 3] ( 4) and [CuLNCS]·3/2H 2O ( 5) of di-2-pyridyl ketone- N4-phenyl-3-semicarbazone (HL) were synthesized and characterized by elemental analyses and electronic, infrared and EPR spectral techniques. In all these complexes the semicarbazone undergoes deprotonation and coordinates through enolate oxygen, azomethine and pyridyl nitrogen atoms. All the complexes are EPR active due to the presence of an unpaired electron. EPR spectra of all the complexes in DMF at 77 K suggest axial symmetry and the presence of half field signals for the complexes 1 and 3 indicates dimeric structures.

  6. Synthesis, characterization and chemical properties of 1-((E)-2-pyridinylmethylidene)semicarbazone manganese(II) and iron(II) complexes

    NASA Astrophysics Data System (ADS)

    Garbelini, Ellery Regina; Martin, Maria da Graça M. B.; Back, Davi Fernando; Evans, David John; Müller-Santos, Marcelo; Ribeiro, Ronny Rocha; Lang, Ernesto Schulz; Nunes, Fábio Souza

    2012-01-01

    Manganese(II) perchlorate and iron(II) chloride react with 2-formylpyridine semicarbazone (HCSpy) in boiling ethanol to produce [Mn II(HSCpy) 2](ClO 4) 2·C 2H 5OH and [Fe IICl(HSCpy)]Cl. The distorted octahedral manganese complex crystallizes in the triclinic system with space group P(-1). The ligand HSCpy is tridentate and is coordinated through two nitrogen and one oxygen atoms. Comparison of the bond distances with analogous transition metal complexes that have the same geometry revealed longer bonds for the manganese derivative, an outcome that correlates well with the radius of the metal ions. The iron(II) ion is tetracoordinated to one semicarbazone and one chloride. Mass spectrometry, conductivity measurements, Mössbauer, UV-VIS, FTIR and elemental analysis were all in accordance with the proposed composition and the plausible geometry of [FeCl(HSCpy)]Cl. Mass spectrometry unequivocally detected the presence of the [FeCl(HSCpy)] + ion with a m/ z of 254.97 and intensity of 2 × 10 5.

  7. Synthesis and characterization of semicarbazone of p-hydroxy-3-methoxy acetophenone (SPH3MA) single crystal

    NASA Astrophysics Data System (ADS)

    Janarthanan, S.; Rajan, Y. C.; Umarani, P. R.; Selvakumar, S.; Pandi, S.

    2011-01-01

    Single crystals of semicarbazone of p-hydroxy-3-methoxy acetophenone (SPH3MA) were grown by a slow evaporation solution growth technique at room temperature. This is the first report in the literature on the crystallization of SPH3MA. The cell parameters of the grown crystals were estimated by single crystal X-ray diffraction analysis. The various planes of reflection were identified from the XRD powder pattern. The presence of functional groups was identified from FTIR and 1H NMR. The results were found to be in accordance with the structure of the crystal. The formation of charge transfer complex was confirmed by UV-vis-NIR spectroscopy. The thermal stability of the grown crystal was studied by thermal analysis.

  8. Synthesis, structure and electrochemistry behavior of a cobalt(III) compound with azide and methyl 2-pyridyl ketone semicarbazone ligands

    NASA Astrophysics Data System (ADS)

    Shaabani, Behrouz; Khandar, Ali Akbar; Mahmoudi, Farzaneh; Balula, Salete S.; Cunha-Silva, Luís

    2013-08-01

    An unprecedented cobalt(III) compound with methyl 2-pyridyl ketone semicarbazone (HL) and the auxiliary azide ligand, [Co(L)2] [Co(L)(N3)3] (1) was synthesized and further characterized crystallographically and spectroscopically. Compound 1 crystallizes in the triclinic system and space group of P-1 and its structure consists of two mononuclear crystallographic units with metal chromophore comprising two cobalt(III) centers revealing distorted octahedral geometries and formed by distinct ligands in the inner coordination spheres. Interestingly, compound 1 represents the first complex formed by two distinct mononuclear units involving this ligand. As consequence of various donor and acceptor groups in both crystallographic units, there are several strong Nsbnd H⋯N and Nsbnd H⋯O hydrogen bonding interactions interconnecting adjacent moieties, ultimately leading to a three-dimensional supramolecular network. Furthermore, the electrochemical behavior of the HL and compound 1 were investigated.

  9. Synthesis, characterization and physiochemical information, along with antimicrobial studies of some metal complexes derived from an ON donor semicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Siji, V. L.; Kumar, M. R. Sudarsana; Suma, S.; Kurup, M. R. Prathapachandra

    2010-06-01

    Eight new transition metal complexes of benzaldehyde- N(4)-phenylsemicarbazone have been synthesized and characterized by elemental analyses, molar conductance, electronic and infrared spectral studies. In all the complexes, the semicarbazone is coordinated as neutral bidentate ligand. 1H NMR spectrum of [Zn(HL) 2(OAc) 2] shows that there is no enolisation of the ligand in the complex. The magnetic susceptibility measurements indicate that Cr(III), Mn(II), Fe(III), Co(II) and Cu(II) complexes are paramagnetic and Ni(II) is diamagnetic. The EPR spectrum of [Mn(HL) 2(OAc) 2] in DMF solution at 77 K shows hyperfine sextet with low intensity forbidden lines lying between each of the two main hyperfine lines. The g values calculated for the [Cu(HL) 2SO 4] complex in frozen DMF, indicate the presence of unpaired electron in the d orbital. The metal ligand bonding parameters evaluated showed strong in-plane σ bonding and in-plane π bonding. The ligand and complexes were screened for their possible antimicrobial activities.

  10. Synthesis, growth of organic nonlinear optical crystal: Semicarbazone of 2-amino-5-chloro-benzophenone (S2A5CB) and its characterisation

    NASA Astrophysics Data System (ADS)

    Sethuraman, K.; Ramesh Babu, R.; Vijayan, N.; Gopalakrishnan, R.; Ramasamy, P.

    2006-05-01

    A new organic crystal of semicarbazone of 2-amino-5-chloro-benzophenone has been grown as a single crystal by slow evaporation solution growth technique for the first time in the literature. The grown crystal has been characterised by proton nuclear magnetic resonance spectral analysis and single crystal and powder X-ray diffraction studies. Functional groups of the crystallised molecules were confirmed by FT-IR and FT-Raman analyses. Mechanical strength of the crystals was studied by microhardness test. Optical transparency of the grown crystals has been studied by UV-Visible spectra. The second harmonic generation property of the compound was analysed.

  11. A new nano-scale manganese (II) coordination polymer constructed from semicarbazone Schiff base and dicyanamide ligands: Synthesis, crystal structure and DFT calculations

    NASA Astrophysics Data System (ADS)

    Farhadi, Saeed; Mahmoudi, Farzaneh; Simpson, Jim

    2016-03-01

    A new nano-structured Mn(II) coordination polymer [Mn(HL)(dca)(Cl)]n(1), [HL= Pyridine-2-carbaldehyde semicarbazone, dca= dicyanamide] has been synthesized by a sonochemical method and has been characterized by scanning electron microscopy, X-ray powder diffraction elemental analysis and IR spectroscopy. Single crystals of compound 1 was synthesized by slow evaporation method and was structurally characterised by single crystal X-ray diffraction. The single crystal structure shows one dimensional zig-zag chains with end-to-end dicyanamide-bridged ligand. A distorted octahedral geometry around the Mn2+centers was achieved by NNO atoms from HL, two nitrogen atoms of dicyanamide and one chlorine atom. Also for more details, the structure of 1, has been optimized by density functional theory (DFT calculations).

  12. Exploration of a Library of 3,4-(Methylenedioxy)aniline-Derived Semicarbazones as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase: Design, Synthesis, and Evaluation.

    PubMed

    Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R

    2016-06-01

    A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics.

  13. Exploration of a Library of 3,4-(Methylenedioxy)aniline-Derived Semicarbazones as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase: Design, Synthesis, and Evaluation.

    PubMed

    Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R

    2016-06-01

    A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics. PMID:27135466

  14. Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone.

    PubMed

    Arockia doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Saleem, H

    2015-09-01

    The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. PMID:25879989

  15. Design, synthesis and biological evaluation of novel 4-phenoxy-6,7-disubstituted quinolines possessing (thio)semicarbazones as c-Met kinase inhibitors.

    PubMed

    Zhai, Xin; Bao, Guanglong; Wang, Limei; Cheng, Mingke; Zhao, Meng; Zhao, Sijia; Zhou, Hongyang; Gong, Ping

    2016-03-15

    In continuing our efforts to identify small molecules able to inhibit c-Met kinase, three series of novel 6,7-disubstituted-4-phenoxyquinoline derivatives (23a-w, 26a-d and 30a-d) bearing (thio)semicarbazone scaffold were designed, synthesized and evaluated for their cytotoxicity. The biological data revealed that most compounds exhibited moderate-to-excellent activity against HT-29, MKN-45, A549 cancer cell lines and relative poor potency toward MDA-MB-231 cell as well as hardly any cytotoxicity in normal PBL cell. Eleven compounds were further examined for their inhibitory activity against c-Met kinase and three compounds (23h, 23n and 26a) demonstrated good inhibitory activity. This work resulted in the discovery of a potent c-Met inhibitor 23n, bearing 2-hydroxy-3-allylphenyl group at R(2) moiety, as a valuable lead molecule, which possessed remarkable cytotoxicity and high selectivity against A549 and HT-29 cell lines with IC50 values of 11 nM and 27 nM. Besides, it displayed excellent c-Met kinase inhibition on a single-digital nanomolar level (IC50=1.54 nM). Meanwhile, the results from preliminarily in vivo study reflected that compound 23n showed promising overall PK profiles, consistent with the efficacy in both MKN-45 and HT-29 tumor xenograft mice model. These results clearly indicated that compound 23n is a potent and highly selective c-Met inhibitor and its favorable in vitro and in vivo profiles warrant further investigation. PMID:26897090

  16. Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Savithiri, S.; Rajarajan, G.; Thanikachalam, V.; Saleem, H.

    2015-09-01

    The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E(2)) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  17. Synthesis, and molecular sensing behavior of fac-[Re(CO)3(κ2-N,N-dpksc)Cl], dpksc = di-2-pyridyl ketone semicarbazone

    NASA Astrophysics Data System (ADS)

    Bakir, Mohammed; Brown, Ordel

    2013-01-01

    When [Re(CO)5Cl] was allowed to react with di-2-pyridyl ketone semicarbazone hydrochloride (dpksc.HCl) in refluxing toluene, fac-[Re(CO)3(κ2-N,N-dpksc)Cl] was isolated. The identity of fac-[Re(CO)3(κ2-N,N-dpksc)Cl] was elucidated from the results of its elemental analysis and confirmed using a number of spectroscopic measurements. Spectroscopic measurements done on non-aqueous solvents divulged sensitivity of fac-[Re(CO)3(κ2-N,N-dpksc)Cl] to changes in its surroundings. 1H NMR studies revealed significant solvent dependence as manifested by the chemical shift variations; the exchange of the amine protons with solvent deuterium in CDCl3 and d6-acetone; the temperature dependence of the chemical shifts of the amine and amide protons and insignificant temperature dependence of the aromatic proton. The electronic absorption spectra of fac-[Re(CO)3(κ2-N,N-dpksc)Cl] measured on non-aqueous solvents disclosed two high energy intra-ligand charge transfer (ILCT) transitions. Optical measurements performed on protophilic solutions of fac-[Re(CO)3(κ2-N,N-dpksc)Cl] in the presence of bases and acids showed the appearance and disappearance of a low energy ILCT electronic transitions and established reversible inter-conversion between fac-[Re(CO)3(κ2-N,N-dpksc)Cl] and its conjugate base, fac-[Re(CO)3(κ2-N,N-dpksc-H)Cl]-. Thermo-optical measurements done on protophilic solutions of fac-[Re(CO)3(κ2-N,N-dpksc)Cl] disclosed the absence of thermal acid-base inter-conversion between fac-[Re(CO)3(κ2-N,N-dpksc)Cl] and fac-[Re(CO)3(κ2-N,N-dpksc-H)Cl]- and established reversible electronic transfer between the high energy electronic transitions of fac-[Re(CO)3(κ2-N,N-dpksc)Cl]. Optosensing measurements done on protophilic solutions of fac-[Re(CO)3(κ2-N,N-dpksc)Cl] showed acids and bases in concentrations as low as 1.00 × 10-10 M can be detected and determined using protophilic solutions of of fac-[Re(CO)3(κ2-N,N-dpksc)Cl]. Electrochemical measurements on dmf solutions of fac

  18. Ligational behavior of thiosemicarbazone, semicarbazone and thiocarbohydrazone ligands towards VO(IV), Ce(III), Th(IV) and UO 2(VI) ions: Synthesis, structural characterization and biological studies

    NASA Astrophysics Data System (ADS)

    Shebl, M.; Seleem, H. S.; El-Shetary, B. A.

    2010-01-01

    Mono- and binuclear VO(IV), Ce(III), Th(IV) and UO 2(VI) complexes of thiosemicarbazone, semicarbazone and thiocarbohydrazone ligands derived from 4,6-diacetylresorcinol were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, UV-vis, ESR, 1H NMR and mass spectra as well as conductivity and magnetic susceptibility measurements and thermal analyses. The thiosemicarbazone (H 4L 1) and the semicarbazone (H 4L 2) ligands behave as dibasic pentadentate ligands in case of VO(IV) and UO 2(VI) complexes, tribasic pentadentate in case of Ce(III) complexes and monobasic pentadentate in case of Th(IV) complexes. However, the thiocarbohydrazone ligand (H 3L 3) acts as a monobasic tridentate ligand in all complexes except the VO(IV) complex in which it acts as a dibasic tridentate ligand. The antibacterial and antifungal activities were also tested against Rhizobium bacteria and Fusarium-Oxysporium fungus. The metal complexes of H 4L 1 ligand showed a higher antibacterial effect than the free ligand while the other ligands (H 4L 2 and H 3L 3) showed a higher effect than their metal complexes. The antifungal effect of all metal complexes is lower than the free ligands.

  19. Growth of semicarbazone of benzophenone single crystals

    NASA Astrophysics Data System (ADS)

    Vijayan, N.; Ramesh Babu, R.; Gopalakrishnan, R.; Dhanuskodi, S.; Ramasamy, P.

    2002-03-01

    Semicarbazone of benzophenone single crystals have been grown by slow evaporation solution growth technique. The grown crystals have been characterized using XRD, melting point, FT-IR and UV-Vis spectra analyses. The X-ray diffraction analysis reveals that the crystal belongs to the triclinic crystal system and space group P1. From FT-IR studies it is found that the compound possesses both free and hydrogen bonded N-H stretching modes. The hydrogen bonded N-H stretching mode is found to be the major driving force for packing of molecules in the crystals. The transparency of the grown crystals has been confirmed using UV-Vis spectra.

  20. In vivo anticancer activity of vanillin semicarbazone

    PubMed Central

    Ali, Shaikh M Mohsin; Azad, M Abul Kalam; Jesmin, Mele; Ahsan, Shamim; Rahman, M Mijanur; Khanam, Jahan Ara; Islam, M Nazrul; Shahriar, Sha M Shahan

    2012-01-01

    Objective To evaluate the anticancer activity of vanillin semicarbazone (VSC) against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice. Methods The compound VSC at three doses (5, 7.5 and 10 mg/kg i.p.) was administered into the intraperitoneal cavity of the EAC inoculated mice to observe its efficiency by studying the cell growth inhibition, reduction of tumour weight, enhancement of survival time as well as the changes in depleted hematological parameters. All such parameters were also studied with a known standard drug bleomycin at the dose of 0.3 mg/kg (i.p.). Results Among the doses studied, 10 mg/kg (i.p.) was found to be quite comparable in potency to that of bleomycin at the dose of 0.3 mg/kg (i.p.). The host toxic effects of VSC was found to be negligible. Conclusions It can be concluded that VSC can therefore be considered as potent anticancer agent. PMID:23569946

  1. Growth and characterisation of benzaldehyde semicarbazone (BSC) single crystals

    NASA Astrophysics Data System (ADS)

    Ramesh Babu, R.; Vijayan, N.; Gopalakrishnan, R.; Ramasamy, P.

    2002-05-01

    Single crystals of potential organic nonlinear optical materials of Benzaldehyde Semicarbazone (BSC) were grown by slow evaporation technique. The grown crystals were identified by X-ray diffraction method. The functional groups were identified from FT-IR spectrum. UV-visible and thermal gravimetric analyses were made.

  2. P-Dimethylaminobenzaldehyde semicarbazone: The bonding abilities of imine nitrogen atom

    NASA Astrophysics Data System (ADS)

    Trzesowska, Agata

    2009-01-01

    The crystal and molecular structures of p-dimethylaminobenzaldehyde semicarbazone and p-dimethylaminobenzaldehyde semicarbazone hydrochloride have been determined. On the basis of quantum-mechanical calculations the availability of the imine nitrogen atom for bonding with molecular species was analysed and also the complete assignment of the experimental IR spectrum was performed. The p-dimethylaminobenzaldehyde semicarbazone was characterised by thermogravimetric analysis in conjunction with evolved gases in the air atmosphere.

  3. Spectral studies of semicarbazones derived from 3- and 4-formylpyridine and 3- and 4-acetylpyridine: crystal and molecular structure of 3-formylpyridine semicarbazone

    NASA Astrophysics Data System (ADS)

    Beraldo, Heloisa; Nacif, Wanderlene F.; West, Douglas X.

    2001-08-01

    Semicarbazones derived from 3- and 4-formylpyridine (H3FoPyS, H4FoPyS) and 3- and 4-acetylpyridine (H3AcPyS, H4AcPyS) were prepared and studied spectroscopically. Complete NMR assignments for these semicarbazones were made using DEPT135, as well as HMQC and HMBC heteronuclear correlation techniques. The crystal and molecular structures of H3FoPyS were determined.

  4. Crystal structure of 4-formyl­pyridine semicarbazone hemihydrate

    PubMed Central

    Inoue, Mayara Hissami; Back, Davi F.; Burrow, Robert A.; Nunes, Fábio Souza

    2015-01-01

    The mol­ecule of the title compound C7H8N4O·0.5H2O, alternatively called (E)-1-(pyridin-4-yl­methyl­ene)semi­carb­azide hemihydrate, is in the E conformation and is almost planar; the r.m.s. deviation of the positions of the atoms of the pyridine ring from the best-fit plane is 0.0039 Å. The C, N and O atoms of the rest of the mol­ecule sits close on this plane with a largest deviation of 0.115 (4) Å for the O atom of the semicarbazone moiety. There is an intra­molecular N—H⋯N hydrogen bond. In the crystal, mol­ecules are linked into an infinite three-dimensional network by classical N—H⋯Os (s = semicarbazone) and Ow—H⋯N (w = water) hydrogen bonds. PMID:25995925

  5. Efficacy of Organophosphorus Derivatives Containing Chalcones/Chalcone Semicarbazones Against Fungal Pathogens of Sugarcane

    PubMed Central

    Pandey, O. P.; Rao, G. P.; Singh, Priyanka

    2002-01-01

    Ten newly synthesized organophosphorus derivatives containing substituted chalcones and substituted chalcone semicarbazones were tested for their antifungal efficacy against Colletotrichum falcatum, Fusarium oxysporum, Curvularia pallescens (all sugarcane pathogens). The O,O-diethylphosphate derivatives containing 2-chlorochalcone and 2-chlorochalcone semicarbazone exhibited 70-85% mycelial inhibition against all the test fungi at 1000 ppm. The screening results were correlated with structural features of the tested compounds. PMID:18476009

  6. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication

    PubMed Central

    Schnell, Leonie; Mittler, Ann-Katrin; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA) has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT). Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria. PMID:27428999

  7. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells Articlefrom Intoxication.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA) has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT). Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria. PMID:27428999

  8. EPR, mass, IR, electronic, and magnetic studies on copper(II) complexes of semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-01-01

    Copper(II) complexes having the general composition Cu(L) 2X 2 [where L = isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC), and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-] have been synthesized. All the Cu(II) complexes reported here have been characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI mass, 1H NMR, IR, EPR, and electronic spectral studies. All the complexes were found to have magnetic moments corresponding to one unpaired electrons. The possible geometries of the complexes were assigned on the basis of EPR, electronic, and infrared spectral studies.

  9. Spectroscopic evaluation of manganese(II) complexes derived from semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-09-01

    Manganese(II) complexes having the general composition Mn(L) 2X 2 [where L = isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-] have been synthesized. All the complexes were characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI-mass, 1H NMR, IR, EPR and electronic spectral studies. All the complexes show magnetic moments corresponding to five unpaired electrons. The possible geometries of the complexes were assigned on the basis of EPR, electronic and infrared spectral studies.

  10. Growth and characterization of organic NLO crystals of semicarbazone of acetophenone

    NASA Astrophysics Data System (ADS)

    Vijayan, N.; Ramesh Babu, R.; Gopalakrishnan, R.; Dhanuskodi, S.; Ramasamy, P.

    2001-12-01

    Semicarbazone of acetophenone is one of the potential organic NLO materials for photonic and optoelectronic applications. This crystal has been grown by slow evaporation technique. X-ray, FT-IR, melting point and UV-Visible methods are used to characterize the grown crystals.

  11. Magnetic properties of Fe, Co, Ni complexes of 3-semicarbazone isatine and 3-oxime isatine complexes

    NASA Astrophysics Data System (ADS)

    Zentkova, M.; Kovac, J.; Zentko, A.; Hudak, A.; Kosturiak, A.

    1994-03-01

    Magnetic measurements of the Fe, Co, Ni complexes of 3-semicarbazone isatine and 3-oxime isatine complexes have been made. All the compounds investigated were ferromagnetic with the T(sub c) in the region 11,1 - 62,9 K. The respective Curie temperatures were found to be determined by the type of transition metal and organic ligand.

  12. Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-12-01

    Nickel(II) complexes, having the general composition Ni(L) 2X 2, have been synthesized [where L: isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-]. All the Ni(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and mass spectral studies. All the complexes were found to have magnetic moments corresponding to two unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic and infrared spectral studies. Newly synthesized ligand and its nickel(II) complexes have been screened against different bacterial and fungal growth.

  13. Growth and characterization of a new organic nonlinear optical crystal: semicarbazone of p-dimethylamino benzaldehyde

    NASA Astrophysics Data System (ADS)

    Manivannan, S.; Dhanuskodi, S.

    2003-10-01

    Semicarbazone of p-dimethylamino benzaldehyde (SCPDB) is a new organic material with interesting quadratic nonlinear optical properties, in particular second harmonic generation (SHG). SCPDB was synthesized and single crystals were grown by low temperature solution method. Unit cell parameters were evaluated by single crystal X-ray diffraction technique. The formation of the material was confirmed qualitatively by FT-IR and FT-Raman spectral analyses and its optical transmittance studied. SHG efficiency is found to be comparable to urea.

  14. 4-(Diphenyl­amino)­benzaldehyde 4-phenyl­thio­semicarbazone

    PubMed Central

    Mendoza-Meroño, Rafael; Menéndez-Taboada, Laura; García-Granda, Santiago

    2012-01-01

    The title mol­ecule, C26H22N4S, is composed of three main parts, viz. a triphenyl­amine group is connected to a phenyl ring by a thio­semicarbazone moiety. The C= N double bond has an E conformation. The crystal packing is dominated by strong hydrogen bonds through the thio­semicarbazone moiety, with pairs of N—H⋯S hydrogen bonds linking the mol­ecules to form inversion dimers with an R 2 2(8) ring motif. An intra­molecular N—H⋯N hydrogen bond is also present, generating an S(5) ring motif. Although the structure contains four phenyl rings, π–π stacking inter­actions are not formed between them, probably due to the conformation adopted by the triphenyl­amine group. However, a weak π–π stacking inter­action is observed between the phenyl ring and the delocalized thio­semicarbazone moiety. PMID:22904859

  15. Four transition metal complexes with a semicarbazone ligand bearing pyrazine unit

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Ma, Xiu-qin; Lv, Yan-yun; Jia, Lei; Xu, Jun; Wang, Yuan; Ge, Zhi-jun

    2016-04-01

    Four new complexes based on L (where L = 3-ethyl-2-acetylpyrazine semicarbazone), namely [CoL2]Cl2·0.5H2O (1), [CoL2](NO3)2 (2), [CdL(H2O)2(NO3)](NO3)·H2O (3) and [CuL(CH3OH)Cl2]·[CuLCl2] (4) have been synthesized and characterized by X-ray diffraction analyses. The results show that the semicarbazone acts as a tridentate neutral ligand in all complexes. Each of complex 1 and 2 reveals a distorted octahedral geometry around the metal ion provided by two units of the ligand, while the ratio of the ligand and metal is 1:1 in complexes 3 and 4. The effect of complexes 1-4 on cell proliferation, apoptosis of human pancreatic cancer (Patu8988), human gastric cancer (SGC7901) and human hepatic cancer (SMMC7721) cell lines have been detected by MTT assay, Annexin V/PI double staining flow cytometry and TUNEL assay. The results show that complexes 1-4 can inhibit cell proliferation of Patu8988, SGC7901 and SMMC7721 cells, significantly higher than the effect of the ligand. However, the complex 4 reveals higher apoptosis rate, and displays up-regulated expression level of caspase 3, detected by western blotting, which also indicates the complex 4 can induce caspase-dependent cell apoptosis in SMMC7721.

  16. Metal complexes of 2-benzoylpyridine semicarbazone: Spectral, electrochemical and structural studies

    NASA Astrophysics Data System (ADS)

    Pérez-Rebolledo, Anayive; Piro, Oscar E.; Castellano, Eduardo E.; Teixeira, Letícia R.; Batista, Alzir A.; Beraldo, Heloisa

    2006-08-01

    2-Benzoylpyridine semicarbazone (H2BzPS) and its complexes [Cu(H2BzPS)Cl 2] ( 1) and [Zn(H2BzPS)Cl 2] ( 2) have been synthesized and their spectral properties have been studied. The electrochemical behaviour of [Cu(H2BzPS)Cl 2] ( 1) has been investigated. [Cu(H2BzPS)Cl 2] ( 1) crystallizes in the triclinic P-1 space group, a=9.278(1), b=12.848(1), c=13.923(1) Å, α=84.54(1), β=71.91(1), γ=85.14(1)°, with two complexes per asymmetric unit ( Z=4) and a disordered methanol solvent molecule (occupancy=1/4). [Zn(H2BzPS)Cl 2] ( 2) crystallizes in the orthorhombic P2 12 12 1 space group with a=11.983(1), b=14.067(1), c=18.706(1) Å, and two independent molecules per asymmetric unit ( Z=8). In both cases, the neutral semicarbazone acts as a tridentate ligand which coordinates the metal through the pyridine and imine nitrogen atoms and the carbonyl oxygen. Two chloride ions occupy the fourth and fifth coordination positions.

  17. Structure and spectral properties of dinuclear zinc complex containing semicarbazonate ligands

    NASA Astrophysics Data System (ADS)

    Jing-Lin, Wang; Jiao, Feng; Mei-Ping, Xu; Bin-Sheng, Yang

    2011-04-01

    The dinuclear Zn 2+ complex [Zn(HSSC)OAc] 2·2DMF (H 2SSC = salicylaldehyde semicarbazone; HOAc = acetic acid; DMF = N,N-dimethylfomamide) was prepared and structurally characterized by single crystal X-ray. The basic structural unit of the complex is a dinuclear complex [Zn(HSSC)OAc] 2 in which the semicarbazone ligand adopts the phenol-imine form. The deprotonated phenol group forms a one-atom bridge between the two zinc centers, and both of the zinc centers are five-coordinated. The local coordination environment of Zn 2+ can be approximately considered as square pyramidal. UV spectral studies show that the H 2SSC provides strong binding of Zn 2+ in a 1:1 ratio in solution. The conditional binding constant of the complex is lg KZn-L = 12.89 ± 0.76 in 0.05 M Tris-HCl buffer at pH 7.4. The H 2SSC exhibits an enhanced fluorescence effect by the addition of Zn 2+, and affords an excellent selectivity for Zn 2+ under physiological conditions.

  18. Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data

    PubMed Central

    Arfan, Atef; Rukiah, Mwaffak

    2015-01-01

    Crotonaldehyde semicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-yl­idene]hydrazinecarboxamide}, C5H9N3O, (I), and crotonaldehyde thio­semi­carba­zone {systematic name: (E)-2-[(E)-but-2-en-1-yldene]hydra­zinecarbo­­thio­amide}, C5H9N3S, (II), show the same E conformation around the imine C=N bond. Compounds (I) and (II) were obtained by the condensation of crotonaldehyde with semicarbazide hydro­chloride and thio­semicarbazide, respectively. Each mol­ecule has an intra­molecular N—H⋯N hydrogen bond, which generates an S(5) ring. In (I), the crotonaldehyde fragment is twisted by 2.59 (5)° from the semicarbazide mean plane, while in (II) the corresponding angle (with the thio­semicarbazide mean plane) is 9.12 (5)°. The crystal packing is different in the two compounds: in (I) inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane, while weak inter­molecular N—H⋯S hydrogen bonds in (II) link the mol­ecules into chains propagating in [110]. PMID:25878810

  19. Experimental and theoretical assessment of the mechanism involved in the reaction of steroidal ketone semicarbazone with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Sharma, Kamlesh; Mishra, Shivani B.; Mishra, Ajay K.

    2011-09-01

    3β-Acetoxy-5α-cholestan-6-one semicarbazone 1 on reaction with hydrogen peroxide affords selectively 3β-acetoxy-5α-cholestan-6-spiro-1',2',4'-triazolidine-3'-one 2. The structural assignment of the product was confirmed by spectral data and elemental analysis. A free radical mechanism of the present reaction was described successfully by calculating theoretical models of 1, A, B and 2, using DFT with B3LYP/6-31G* basis set. It was found that the reaction undergoes through the formation of two radical intermediates and the only one isomer of the product in which -NH-CO- group is cis with respect C5α-H, was selectively obtained. Frontier molecular orbital, spin electronic density, electrostatic potential and atomic charges were discussed.

  20. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  1. Crystal growth and characterization of a novel organic nonlinear optical material: semicarbazone of p-dimethylamino benzaldehyde

    NASA Astrophysics Data System (ADS)

    Dhanuskodi, Sivasubramanian; Manivannan, Sellaperumal

    2003-06-01

    The semicarbazone of p-dimethylamino benzaldehyde (SCPDB) is a potential organic nonlinear optical material. SCPDB has been synthesized and the solubility studies were carried out in the temperature range 30-60°C. Following the slow evaporation technique, single crystals of SCPDB have been grown and the unit cell parameters have been evaluated by single crystal x-ray diffraction technique. The UV-Vis-NIR transmittance spectrum was recorded in the range 200-1100nm. Fourier transform IR and Fourier transform Raman spectra were recorded in the range 400-4000 cm-1 and the characteristic vibrational frequencies of the functional groups present in the system have been assigned. Second Harmonic Generation efficiency measurements were carried out using Nd:YAG laser.

  2. The Investigation of Electronic Properties and Microscopic Second-Order Nonlinear Optical Behavior of 1-SALICYLIDENE-3-THIO-SEMICARBAZONE

    NASA Astrophysics Data System (ADS)

    Karakas, Asli; Unver, Huseyin; Elmali, Ayhan

    To investigate the microscopic second-order nonlinear optical (NLO) behavior of the 1-salicylidene-3-thio-semicarbazone Schiff base compound, the electric dipole moments (μ), linear static polarizabilities (α) and first static hyperpolarizabilites (β) have been calculated using finite field second-order Møller-Plesset perturbation (FF MP2) theory. The ab-initio results on (hyper)polarizabilities show that the investigated molecule might have microscopic NLO properties with non-zero values. To understand the NLO behavior in the context of molecular orbital structure, we have also examined the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and the HOMO-LUMO gap in the same theoretical framework as the (hyper)polarizability calculations. In addition to the NLO properties, the electronic transition spectra have been computed using a semi-empirical method (ZINDO). ZINDO calculation results show that the electronic transition wavelengths have been estimated to be shorter than 400 nm.

  3. Oxidovanadium(IV) and dioxidovanadium(V) complexes of tridentate salicylaldehyde semicarbazones: searching for prospective antitrypanosomal agents.

    PubMed

    Fernández, Mariana; Becco, Lorena; Correia, Isabel; Benítez, Julio; Piro, Oscar E; Echeverria, Gustavo A; Medeiros, Andrea; Comini, Marcelo; Lavaggi, María Laura; González, Mercedes; Cerecetto, Hugo; Moreno, Virtudes; Pessoa, Joao Costa; Garat, Beatriz; Gambino, Dinorah

    2013-10-01

    As a contribution to the identification of the relevant species for biological activity and the understanding of structure-activity relationships of [V(IV)O(L-2H)(NN)] antitrypanosomal complexes (NN is a bidentate polypyridyl DNA intercalator; L is a tridentate salicylaldehyde semicarbazone derivative), new [V(V)O2(L-2H)] complexes and [V(IV)O(L-2H)(NN)] complexes including bipy or dppz (dipyrido[3,2-a: 2',3'-c]phenazine) co-ligands are prepared and characterized in the solid state and in solution. Their activity is evaluated on Trypanosoma cruzi. The lipophilicity, as structural descriptor related to bioactivity, of the whole [V(IV)O(L-2H)(NN)] series is determined. Furthermore, the antiproliferative effect of those new compounds showing activity against T. cruzi is evaluated on the genetically related parasite T. brucei with the aim to develop broad spectrum agents. The new [V(IV)O(L-2H)(dppz)] complexes are about ten to fifteen times more toxic to T. cruzi than the bipy analogues and show quite good in vitro activity on T. brucei brucei. They are shown to interact with DNA, suggesting that this biomolecule may be the parasite target. The stability of the V(IV)O-complexes in solution is accessed by several techniques. Globally the data suggest that the relevant species for biological activity are the [V(IV)O(L-2H)(NN)] compounds, their order of activity being dependent on the NN nature, but not much on the substitution on the salicylaldehyde semicarbazone moiety. A parabolic relationship between biological response and lipophilicity (determined as RM=log [(1/Rf)-1] by a TLC method) is obtained. From this correlation an optimum RM value, close to 1.44, was found, which may be used as design guide for future development of antitrypanosomal compounds.

  4. Preparation, crystallography and spectroscopic properties of the polymeric {(1-( E)-2-pyridinylmethylidene)semicarbazone)(aqua)copper(II)} sulphate dihydrate complex: Evidence of dynamic Jahn-Teller effect

    NASA Astrophysics Data System (ADS)

    Garbelini, Ellery R.; Ribeiro, Ronny Rocha; Hörner, Manfredo; Locatelli, Aline; Nunes, Fábio S.

    2011-05-01

    Pyridine-2-carbaldehyde semicarbazone ligand (HL) reacts with copper(II) sulphate in water solution to yield the coordination polymer [{Cu II(HL)(H 2O)(SO 4)} n] (1). The crystals are triclinic with space group P(-1) and the metal ion is occupying a distorted octahedral geometry. EPR results show that a dynamic Jahn-Teller (J-T) effect is operative in water solutions and also support the stability of the polymeric chains as they continue to show a characteristic half-field Δ mS = ±2 transitions. UV-visible spectrum analysis allowed access to the J-T stabilization energy of 5995 cm -1 in water. Thermogravimetric/differential thermal analysis curves showed a step-by-step decomposition of complex 1 with loss of water, release of SO 3 and oxidation of the semicarbazone ligand in the 30-422 °C range.

  5. Crystal structure and spectroscopic study on photochromism of 1,3-diphenyl-4-(4‧-fluoro)benzal-5-pyrazolone N(4)-phenyl semicarba-zone

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Liu, Guangfei; Liu, Lang; Jia, Dianzeng; Guo, Zaiping; Lang, Jianping

    2005-10-01

    A novel compound 1,3-diphenyl-4-(4'-fluoro)benzal-5-pyrazolone N(4)-phenyl semicarbazone (DP4FBP-PSC) has been synthesized. X-ray single crystal structure analysis shows that the compound has interlaced structure linked by intermolecular hydrogen bonds. The results of fluorescence emission spectroscopy, UV-Vis reflection spectroscopy and the reaction rate constant indicate that DP4FBP-PSC is photochromic material. Its photochromic mechanism was investigated by structure analysis.

  6. A practical approach to semicarbazone and hydrazone derivatives via imino-isocyanates.

    PubMed

    Garland, Keira; Gan, Wei; Depatie-Sicard, Charlotte; Beauchemin, André M

    2013-08-16

    Complex hydrazone derivatives can be accessed readily from hydrazones upon heating in the presence of nucleophiles. This reactivity likely involves imino-isocyanate intermediates, and a variety of leaving groups can be used at temperatures ranging from 20 to 150 °C. Alcohols, thiols, primary, and secondary amines can be used as nucleophiles, thus providing a simple alternative to the synthesis of hydrazones via condensation on the parent carbonyl precursor and allowing late-stage derivatization.

  7. Spectral characterization of a newly synthesized fluorescent semicarbazone derivative and its usage as a selective fiber optic sensor for copper(II).

    PubMed

    Oter, Ozlem; Ertekin, Kadriye; Kirilmis, Cumhur; Koca, Murat

    2007-02-19

    In this work photoluminescent properties of highly Cu(2+) selective organic fluoroionophore, semicarbazone derivative; bis(naphtho[2,1-b]furan-2-yl)methanone semicarbazone (BNF) was investigated in different solvents (dichloromethane, tetrahydrofuran, toluene and ethanol) and in polymer matrices of polyvinylchloride (PVC) and ethyl cellulose (EC) by absorption and emission spectrometry. The BNF derivative displayed enhanced fluorescence emission quantum yield, Q(f)=6.1 x 10(-2) and molar extinction coefficient, epsilon=29,000+/-65 cm(-1)M(-1) in immobilized PVC matrix, compared to 2.6 x 10(-3) and 24,573+/-115 in ethanol solution. The offered sensor exhibited remarkable fluorescence intensity quenching upon exposure to Cu(2+) ions at pH 4.0 in the concentration range of 1.0 x 10(-9) to 3.0 x 10(-4)M [Cu(2+)] while the effects of the responding ions (Ca(2+), Hg(+), Pb(2+), Al(3+), Cr(3+), Mn(2+), Mg(2+), Sn(2+), Cd(2+), Co(2+) and Ni(2+)) were less pronounced.

  8. Chalcones, semicarbazones and pyrazolines as inhibitors of cathepsins B, H and L.

    PubMed

    Raghav, Neera; Kaur, Ravinder

    2015-09-01

    Cathepsin B [EC 3.4.22.1], cathepsin H [EC 3.4.22.16] and cathepsin L [EC 3.4.22.15] are the most versatile lysosomal cysteine proteases and are responsible for intracellular protein degradation. These are involved in a number of pathological conditions including tissue degenerative processes. In the present work, we report the synthesis and systematic evaluation of differently substituted chalcones, chalconesemicarbazones, and diarylpyrazolines on cathepsins B, H and L activity. It was found that after a preliminary screening as cysteine protease inhibitors, chalconesemicarbazones were better inhibitors to these cysteine proteases than diarylpyrazolines followed by chalcones. All the synthesized compounds were identified as the best inhibitors to cathepsin L followed by cathepsin B and then cathepsin H. The results are compared with docking studies and it was found that all the compounds resulted in decrease in energy while interacting with the active site of the enzyme. PMID:26193682

  9. Spectral studies on Co(II), Ni(II) and Cu(II) complexes with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-04-01

    Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Ni(L) 2(NO 3) 2, which is 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except nitrato complexes of Ni(II) which is of tetrahedral geometry, whereas tetragonal geometry for Cu(II) complexes.

  10. Expanding the family of heteroleptic oxidovanadium(IV) compounds with salicylaldehyde semicarbazones and polypyridyl ligands showing anti-Trypanosoma cruzi activity.

    PubMed

    Scalese, Gonzalo; Benítez, Julio; Rostán, Santiago; Correia, Isabel; Bradford, Lara; Vieites, Marisol; Minini, Lucía; Merlino, Alicia; Coitiño, E Laura; Birriel, Estefania; Varela, Javier; Cerecetto, Hugo; González, Mercedes; Pessoa, João Costa; Gambino, Dinorah

    2015-06-01

    Searching for prospective vanadium-based drugs for the treatment of Chagas disease, a new series of heteroleptic [V(IV)O(L-2H)(NN)] compounds was developed by including the lipophilic 3,4,7,8-tetramethyl-1,10-phenanthroline (tmp) NN ligand and seven tridentate salicylaldehyde semicarbazone derivatives (L1-L7). The compounds were characterized in the solid state and in solution. EPR spectroscopy suggests that the NN ligand is bidentate bound through both nitrogen donor atoms in an axial-equatorial mode. The EPR and (51)V-NMR spectra of aerated solutions at room temperature indicate that the compounds are stable to hydrolysis and that no significant oxidation of V(IV) to V(V) takes place at least in 24h. The complexes are more active in vitro against Trypanosoma cruzi, the parasite responsible for Chagas disease, than the reference drug Nifurtimox and most of them are more active than previously reported [V(IV)O(L-2H)(NN)] complexes of other NN co-ligands. Selectivity towards the parasite was analyzed using J-774 murine macrophages as mammalian cell model. Due to both, high activity and high selectivity, L2, L4, L5 and L7 complexes could be considered new hits for further drug development. Lipophilicity probably plays a relevant role in the bioactivity of the new compounds. The [V(IV)O(L-2H)(NN)] compounds were designed aiming DNA as potential molecular target. Therefore, the novel L1-L7 tmp complexes were screened by computational modeling, comparing their DNA-binding features with those of previously reported [V(IV)O(L-2H)(NN)] compounds with different NN co-ligands. Whereas all the complexes interact well with DNA, with binding modes and strength tuned in different extents by the NN and semicarbazone co-ligands, molecular docking suggests that the observed anti-T. cruzi activity cannot be explained upon DNA intercalation as the sole mechanism of action. PMID:25824466

  11. Metal complexes of a pentadentate N2O3bis(semicarbazone) Schiff-base. A case study of structure-spectroscopy correlation

    NASA Astrophysics Data System (ADS)

    Inoue, Mayara Hissami; Ribeiro, Ronny Rocha; Sabino, José Ricardo; Nunes, Fábio Souza

    2016-07-01

    Schiff condensation of 2,6-diformyl 4-methylphenol with semicarbazide hydrochloride in 1:2 molar ratio produces the bis(semicarbazone) ligand, herein called H3L. A comprehensive spectroscopic analysis of the compound was performed by 1H and 13C NMR, FTIR and electronic spectroscopies. Assignments to the UV-vis spectrum of H3L were supported by semi-empirical quantum mechanics ZINDO/S calculations. The ligand H3L forms monoclinic crystals in the space group P21/c and its structure is stabilized by classic hydrogen bonds with propanone molecules. It promptly reacts with first row metal ions to produce the following coordination compounds: [Co2(L)(μ-NO3)]·DMF, [Ni2(H2L)(μ-CH3COO)(CH3COO)2]·2H2O, [Cu2(L)(μ-NO3)(H2O)2]·H2O, [Cu2(L)(μ-CH3COO)(H2O)2]·H2O and [Cu2(H2L)(μ-Cl)Cl2]·3H2O, that have different compositions, depending on the degree of deprotonation of the ligand upon coordination. Electronic and EPR spectroscopies as well as effective magnetic moment measurements of the complexes were used in an attempt to better understand their mode of coordination, the microsymmetry around the metal ions and magnetic properties.

  12. Metal complexes of a pentadentate N2O3bis(semicarbazone) Schiff-base. A case study of structure-spectroscopy correlation.

    PubMed

    Inoue, Mayara Hissami; Ribeiro, Ronny Rocha; Sabino, José Ricardo; Nunes, Fábio Souza

    2016-07-01

    Schiff condensation of 2,6-diformyl 4-methylphenol with semicarbazide hydrochloride in 1:2 molar ratio produces the bis(semicarbazone) ligand, herein called H3L. A comprehensive spectroscopic analysis of the compound was performed by (1)H and (13)C NMR, FTIR and electronic spectroscopies. Assignments to the UV-vis spectrum of H3L were supported by semi-empirical quantum mechanics ZINDO/S calculations. The ligand H3L forms monoclinic crystals in the space group P21/c and its structure is stabilized by classic hydrogen bonds with propanone molecules. It promptly reacts with first row metal ions to produce the following coordination compounds: [Co2(L)(μ-NO3)]·DMF, [Ni2(H2L)(μ-CH3COO)(CH3COO)2]·2H2O, [Cu2(L)(μ-NO3)(H2O)2]·H2O, [Cu2(L)(μ-CH3COO)(H2O)2]·H2O and [Cu2(H2L)(μ-Cl)Cl2]·3H2O, that have different compositions, depending on the degree of deprotonation of the ligand upon coordination. Electronic and EPR spectroscopies as well as effective magnetic moment measurements of the complexes were used in an attempt to better understand their mode of coordination, the microsymmetry around the metal ions and magnetic properties. PMID:27082654

  13. Crystal structures of copper(II) nitrate, copper(II) chloride, and copper(II) perchlorate complexes with 2-formylpyridine semicarbazone

    SciTech Connect

    Chumakov, Yu. M.; Tsapkov, V. I.; Antosyak, B. Ya.; Bairac, N. N.; Simonov, Yu. A.; Bocelli, G.; Pahontu, E.; Gulea, A. P.

    2009-05-15

    Compounds dinitrato(2-formylpyridinesemicarbazone)copper (I), dichloro(2-formylpyridinesemicarbazone) copper hemihydrate (II), and bis(2-formylpyridinesemicarbazone)copper(2+) perchlorate hydrate (III) are synthesized and their crystal structures are determined. In compounds I-III, the neutral 2-formylpyridine semicarbazone molecule (L) is tridentately attached to the copper atom via the N,N,O set of donor atoms. In compounds I and II, the Cu: L ratio is equal to 1: 1, whereas, in III, it is 1: 2. In complex I, the coordination sphere of the copper atom includes two nitrate ions with different structural functions in addition to the L ligand. The structure is built as a one-dimensional polymer in which the NO{sub 3} bidentate group fulfills a bridging function. The coordination polyhedron of the copper(2+) atom can be considered a distorted tetragonal bipyramid (4 + 1 + 1). Compound II has an ionic structure in which the main element is the [CuLCl{sub 2} . Cu(H{sub 2}O)LCl]{sup +} dimer. In the dimer, the copper atoms are linked via one of the {mu}{sub 2}-bridging chlorine atoms. The coordination polyhedra of the central atoms of the Cu(H{sub 2})LCl and CuLCl{sub 2} complex fragments are tetragonal bipyramid and tetragonal pyramid, respectively. In compound III, the copper atom is octahedrally surrounded by two L ligands in the mer configuration.

  14. Crystal structures of copper(II) nitrate, copper(II) chloride, and copper(II) perchlorate complexes with 2-formylpyridine semicarbazone

    NASA Astrophysics Data System (ADS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Antosyak, B. Ya.; Bairac, N. N.; Simonov, Yu. A.; Bocelli, G.; Pahontu, E.; Gulea, A. P.

    2009-05-01

    Compounds dinitrato(2-formylpyridinesemicarbazone)copper ( I), dichloro(2-formylpyridinesemicarbazone) copper hemihydrate ( II), and bis(2-formylpyridinesemicarbazone)copper(2+) perchlorate hydrate ( III) are synthesized and their crystal structures are determined. In compounds I- III, the neutral 2-formylpyridine semicarbazone molecule ( L) is tridentately attached to the copper atom via the N,N,O set of donor atoms. In compounds I and II, the Cu: L ratio is equal to 1: 1, whereas, in III, it is 1: 2. In complex I, the coordination sphere of the copper atom includes two nitrate ions with different structural functions in addition to the L ligand. The structure is built as a one-dimensional polymer in which the NO3 bidentate group fulfills a bridging function. The coordination polyhedron of the copper(2+) atom can be considered a distorted tetragonal bipyramid (4 + 1 + 1). Compound II has an ionic structure in which the main element is the [Cu LCl2 · Cu(H2O) LCl]+ dimer. In the dimer, the copper atoms are linked via one of the μ2-bridging chlorine atoms. The coordination polyhedra of the central atoms of the Cu(H2) LCl and Cu LCl2 complex fragments are tetragonal bipyramid and tetragonal pyramid, respectively. In compound III, the copper atom is octahedrally surrounded by two L ligands in the mer configuration.

  15. New approach towards the synthesis of selenosemicarbazones, useful compounds for Chagas' disease.

    PubMed

    Pizzo, Chiara; Faral-Tello, Paula; Yaluff, Gloria; Serna, Elva; Torres, Susana; Vera, Ninfa; Saiz, Cecilia; Robello, Carlos; Mahler, Graciela

    2016-02-15

    Herein, we describe a new approach towards the synthesis of selenosemicarbazones. The reaction involves an O-Se exchange of semicarbazones using Ishihara reagent. Eleven selenosemicarbazones were prepared using this methodology, with low to moderate yields. Among the prepared compounds the m-bromo phenyl methyl derivative 1b was selected to be evaluated in vivo, in a murine model of acute Chagas' disease. Compound 1b 10 mg/kg bw/day reduced 50% of parasitaemia profile compared with the control group, but was less effective than Benznidazole (50 mg/kg bw/day reduced 90%) and toxic. These studies are important to guide future Chagas drug design. PMID:26774036

  16. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    PubMed

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species.

  17. A 119Sn Mössbauer Study of Tin(IV) Complexes of 2- and 4-Benzoylpyridine Thiosemicarbazone and 4-Benzoylpyridine Semicarbazone

    NASA Astrophysics Data System (ADS)

    Pérez-Rebolledo, Anayive; Ardisson, José D.; de Lima, Geraldo M.; Macedo, Waldemar A. A.; Beraldo, Heloisa

    2005-06-01

    A 119Sn Mössbauer study was carried out of tin(IV) complexes with 2-benzoylpyridine thiosemicarbazone (H2Bz4DH) and its N(4)-methyl (H2Bz4M) and N(4)-phenyl (H2Bz4Ph) derivatives: [Sn(2Bz4DH)Cl3] (1), [Sn(2Bz4DH)PhCl2] (2), [Sn(2Bz4M)Cl3] (3), [H22Bz4M]2[Ph2SnCl4] (4), [Sn(2Bz4Ph)PhCl2] (5), [Sn(2Bz4Ph)Ph2Cl] (6), in which H2Bz4R stands for the neutral ligand and 2Bz4R stands for the anionic thiosemicarbazone. In addition, 119Sn Mössbauer studies of the tin(IV) complexes [Sn(H4Bz4DH)2Cl4H2O] (7), [Sn(H4BzPS)2Cl4H2O] (8) with 4-benzoylpyridine thiosemicarbazone (H4Bz4DH) and the correspondent semicarbazone (H4BzPS) were performed. The isomer shifts decrease upon coordination due to the variation in the percentage of s character as tin changes from approximately sp3 hybridization in the tin salts to sp3d2 in the octahedral or sp3d3 in the heptahedral complexes. The Mössbauer parameters of compound (4) showed the existence of two tin(IV) sites, which have been attributed to the presence of the cis and trans isomers.

  18. Synthesis and in vitro antifungal and cytotoxicity evaluation of substituted 4,5-dihydronaphtho[1,2-d][1,2,3]thia(or selena)diazoles.

    PubMed

    Jalilian, A R; Sattari, S; Bineshmarvasti, M; Daneshtalab, M; Shafiee, Abbas

    2003-01-01

    Unsubstituted 4,5-dihydronaphtho[1,2-d][1,2,3]thia (or selena)diazoles (2a, 2b), prepared from the semicarbazone (1a), were nitrated using fuming nitric acid at 0 degrees C to yield various mono-nitrated dihydronaphthalenes (3a-3e). Related sulfamoyl derivatives (4a, 4b) were prepared using chlorosulfonic acid, followed by the addition of ammonia solution. Synthesis of 6,9-dimethoxy-4,5-dihydronaphtho[1,2-d][1,2,3]thiadiazole derivative (2c) was performed using 5,8-dimethoxy-alpha-tetralone semicarbazone (1b) and thionylchloride at low temperature. At 10 ppm concentration, all compounds showed low toxicity (higher than 80% survival) on brine shrimps, while at 100 ppm concentration compounds 2d, 3d, and 4b exhibited toxicity (less than 60% survival). Compounds 3a, 3e, and especially 4a showed significant antifungal activity against Cryptococcus neoformans. Compound 4a, while being the most active antifungal agent in this series, possessed low toxicity.

  19. Electronic, epr and magnetic studies of Co(II), Ni(II) and Cu(II) complexes with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from pyrole-2-carboxyaldehyde

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-07-01

    Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from pyrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies .The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Co(L 1) 2(NO 3) 2 and Ni(L 1) 2(NO 3) 2 complexes which are 1:2 electrolytes. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except Co(L 1) 2(NO 3) 2 and Ni(L 1) 2(NO 3) 2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.

  20. Design, structural and spectroscopic elucidation of new nitroaromatic carboxylic acids and semicarbazones for the in vitro screening of anti-leishmanial activity

    NASA Astrophysics Data System (ADS)

    Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Rodrigues, B. L.; Donnici, C. L.; Fujiwara, R. T.; Bartholomeu, D. C.; Ferreira, R. A.; Ferreira, S. R.; Mendes, T. A. O.; da Silva, J. G.; Alves, M. R. A.

    2015-01-01

    In this paper we report the synthesis and characterization of four new nitroaromatic compounds, 2-{6-nitrobenzo[1,3]dioxol-5-(methyleneamino)}benzoic acid (1), 2-{[5-(2-nitrophenyl)furan-2-yl]methylene-amino}benzoic acid (2), 2-{(6-nitrobenzo[1,3]dioxol-5-yl)methylene}hydrazinecarboxamide (3) and 2-{[5-(2-nitrophenyl)furan-2-yl]methylene}hydrazinecarboxamide (4). Compounds (1)-(4) have been authenticated by infrared and NMR spectroscopy, and the structure of (1), (2) and (4) have been determined by X-ray diffraction. In addition, the in vitro ability of compounds (1)-(4) to inhibit the growth of Leishmania infantum has been evaluated. Comparisons of the redox potential of the compounds and leishmanicidal activity indicate that the presence of the electroactive nitro group is important for the biological activity. The inhibition activity of compound (3) is comparable to that of the reference drug, SbCl3. Considering the important side effects and the low efficiency of SbCl3 in the case of resistance, compound (3) deserves further attention as a promising anti-leishmanicidal drug for veterinary use.

  1. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines.

    PubMed

    Kapoor, Puja; Fahmi, Nighat; Singh, R V

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, (1)H NMR, (13)C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.

  2. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines

    NASA Astrophysics Data System (ADS)

    Kapoor, Puja; Fahmi, Nighat; Singh, R. V.

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, 1H NMR, 13C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.

  3. Speech Synthesis

    NASA Astrophysics Data System (ADS)

    Dutoit, Thierry; Bozkurt, Baris

    Text-to-speech (TTS) synthesis is the art of designing talking machines. It is often seen by engineers as an easy task, compared to speech recognition.1 It is true, indeed, that it is easier to create a bad, first trial text-to-speech (TTS) system than to design a rudimentary speech recognizer.

  4. GLUTATHIONE SYNTHESIS

    PubMed Central

    Lu, Shelly C.

    2012-01-01

    BACKGROUND Glutathione (GSH) is present in all mammalian tissues as the most abundant non-protein thiol that defends against oxidative stress. GSH is also a key determinant of redox signaling, vital in detoxification of xenobiotics, regulates cell proliferation, apoptosis, immune function, and fibrogenesis. Biosynthesis of GSH occurs in the cytosol in a tightly regulated manner. Key determinants of GSH synthesis are the availability of the sulfur amino acid precursor, cysteine, and the activity of the rate-limiting enzyme, glutamate cysteine ligase (GCL), which is composed of a catalytic (GCLC) and a modifier (GCLM) subunit. The second enzyme of GSH synthesis is GSH synthetase (GS). SCOPE OF REVIEW This review summarizes key functions of GSH and focuses on factors that regulate the biosynthesis of GSH, including pathological conditions where GSH synthesis is dysregulated. MAJOR CONCLUSIONS GCL subunits and GS are regulated at multiple levels and often in a coordinated manner. Key transcription factors that regulate the expression of these genes include NF-E2 related factor 2 (Nrf2) via the antioxidant response element (ARE), AP-1, and nuclear factor kappa B (NFκB). There is increasing evidence that dysregulation of GSH synthesis contributes to the pathogenesis of many pathological conditions. These include diabetes mellitus, pulmonary and liver fibrosis, alcoholic liver disease, cholestatic liver injury, endotoxemia and drug-resistant tumor cells. GENERAL SIGNIFICANCE GSH is a key antioxidant that also modulates diverse cellular processes. A better understanding of how its synthesis is regulated and dysregulated in disease states may lead to improvement in the treatment of these disorders. PMID:22995213

  5. Synthesis and antimicrobial activity of new substituted anilinobenzimidazoles.

    PubMed

    Nofal, Z M; Fahmy, H H; Mohamed, H S

    2002-06-01

    A series of benzimidazole derivatives carrying different heterocycles such as 1,2,3-thiadiazole, 1,3,4-thiadiazole, thiazolidine, 2,3-dihydro-thiazole, 1,3,4-oxadiazole, semicarbazone and substituted thiosemi-carbazones were synthesized. Also a series of 1-methylbenzimidazole carrying hydroxy ethyl-amide, substituted sulfonyl hydrazide and benzoyl hydrazide from aminobenzoyl group at position 2 of 1-methylbenzimidazole were synthesized. The antimicrobial evaluation of some of the new compounds was carried out. PMID:12135093

  6. Phosphatidylcholine Synthesis

    PubMed Central

    Datko, Anne H.; Mudd, S. Harvey

    1988-01-01

    The methylation steps in the biosynthesis of phosphatidylcholine by tissue culture preparations of carrot (Daucus carota L.) and soybean (Glycine max), and by soybean leaf discs, have been studied. Preparations were incubated with tracer concentrations of l-[3H3C]methionine and the kinetics of appearance of radioactivity in phosphomethylethanolamine, phosphodimethylethanolamine, phosphocholine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, methylethanolamine, dimethylethanolamine, and choline followed at short incubation times. With soybean (tissue culture or leaves), an initial methylation utilizes phosphoethanolamine as substrate, forming phosphomethylethanolamine. The latter is converted to phosphatidylmethylethanolamine, which is successively methylated to phosphatidyldimethyethanolamine and to phosphatidylcholine. With carrot, again, an initial methylation is of phosphoethanolamine. Subsequent methylations occur at both the phospho-base and phosphatidyl-base levels. Both of these patterns differ qualitatively from that previously demonstrated in Lemna (SH Mudd, AH Datko 1986 Plant Physiol 82: 126-135) in which all three methylations occur at the phospho-base level. For soybean and carrot, some added contribution from initial methylation of phosphatidylethanolamine has not been excluded. These results, together with those from similar experiments carried out with water-stressed barley leaves (WD Hitz, D Rhodes, AD Hanson 1981 Plant Physiol 68: 814-822) and salinized sugarbeet leaves (AD Hanson, D Rhodes 1983 Plant Physiol 71: 692-700) suggest that in higher plants some, perhaps all, phosphatidylcholine synthesis occurs via a common committing step (conversion of phosphoethanolamine to phosphomethylethanolamine) followed by a methylation pattern which differs from plant to plant. PMID:16666397

  7. Total Synthesis of Isokidamycin

    PubMed Central

    O’Keefe, B. Michael; Mans, Douglas M.; Kaelin, David E.; Martin, Stephen F.

    2010-01-01

    The synthesis of isokidamycin, which represents the first total synthesis of a bis-C-aryl glycoside natural product in the pluramycin family, has been completed. The synthesis features the use of a silicon tether as a disposable regiocontrol element in an intramolecular Diels-Alder reaction between a substituted naphthyne and a glycosyl furan and a subsequent O → C-glycoside rearrangement. PMID:20958036

  8. Total Synthesis of (+)-Acutiphycin

    PubMed Central

    Moslin, Ryan M.; Jamison, Timothy F.

    2011-01-01

    Synthetic studies toward the total synthesis of (+)-acutiphycin (1) resulted in the discovery of additive-free, highly regioselective nickel-catalyzed reductive coupling reactions of aldehydes and 1,6-enynes and the construction of an advanced intermediate in studies directed toward the synthesis of 1. Ultimately, though not employing the nickel-catalyzed reaction, a highly convergent total synthesis of (+)-acutiphycin featuring an intermolecular SmI2-mediated Reformatsky coupling reaction and macrolactonization initiated by a retro-ene reaction of an alkoxyalkyne was achieved. The resulting synthesis was 18 steps in the longest linear sequence from either methyl acetoacetate or isobutyraldehyde. PMID:17985925

  9. Models of speech synthesis.

    PubMed

    Carlson, R

    1995-10-24

    The term "speech synthesis" has been used for diverse technical approaches. In this paper, some of the approaches used to generate synthetic speech in a text-to-speech system are reviewed, and some of the basic motivations for choosing one method over another are discussed. It is important to keep in mind, however, that speech synthesis models are needed not just for speech generation but to help us understand how speech is created, or even how articulation can explain language structure. General issues such as the synthesis of different voices, accents, and multiple languages are discussed as special challenges facing the speech synthesis community. PMID:7479805

  10. Models of speech synthesis.

    PubMed Central

    Carlson, R

    1995-01-01

    The term "speech synthesis" has been used for diverse technical approaches. In this paper, some of the approaches used to generate synthetic speech in a text-to-speech system are reviewed, and some of the basic motivations for choosing one method over another are discussed. It is important to keep in mind, however, that speech synthesis models are needed not just for speech generation but to help us understand how speech is created, or even how articulation can explain language structure. General issues such as the synthesis of different voices, accents, and multiple languages are discussed as special challenges facing the speech synthesis community. PMID:7479805

  11. Total synthesis of (-)-lepistine.

    PubMed

    Kitabayashi, Yusuke; Yokoshima, Satoshi; Fukuyama, Tohru

    2014-06-01

    The first total synthesis of (-)-lepistine has been accomplished in 11 steps from (S)-glycidol. The synthesis features construction of the 10-membered ring via an intramolecular epoxide opening by nosylamide, regioselective dehydration to form an enol ether, and construction of the aminal moiety induced by cleavage of the nosyl groups.

  12. Automatic Program Synthesis Reports.

    ERIC Educational Resources Information Center

    Biermann, A. W.; And Others

    Some of the major results of future goals of an automatic program synthesis project are described in the two papers that comprise this document. The first paper gives a detailed algorithm for synthesizing a computer program from a trace of its behavior. Since the algorithm involves a search, the length of time required to do the synthesis of…

  13. Chemical Process Synthesis.

    ERIC Educational Resources Information Center

    Siirola, J. J.

    1982-01-01

    Process synthesis is the specification of chemical and physical operations and the selection and interconnection of equipment to implement these operations to effect desired chemical processing transformations. Optimization and evolutionary and systematic generation process synthesis approaches are described. (Author/SK)

  14. Programing Structural Synthesis System

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.

    1986-01-01

    Program aids research in analysis and optimization. Programing Structural Synthesis System (PROSSS2) developed to provide structural-synthesis capability by combining access to SPAR with CONMIN program and set of interface procedures. SPAR is large general-purpose finite-element structural-analysis program, and CONMIN is large general-purpose optimization program. PROSSS2 written in FORTRAN IV for batch execution.

  15. Reaction synthesis of intermetallics

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1994-12-31

    Exothermicity associated with the synthesis of aluminides was utilized to obtain nickel, iron, and cobalt aluminides. Combustion synthesis, extrusion, and hot pressing were utilized to obtain intermetallics and their composites. Extrusion conditions, reduction ratios, and hot-pressing conditions of the intermetallics and their composites are discussed.

  16. Formal synthesis of (+)-discodermolide.

    PubMed

    Francavilla, Charles; Chen, Weichun; Kinder, Frederick R

    2003-04-17

    [structure: see text] Herein we report the formal total synthesis of (+)-discodermolide in 21 steps (longest linear sequence) from commercially available Roche ester. This synthesis features the assembly of C(9-18) and C(19-24) fragments via a metal-chelated aldol coupling reaction.

  17. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  18. Synthesis of Chiral Cyclopentenones.

    PubMed

    Simeonov, Svilen P; Nunes, João P M; Guerra, Krassimira; Kurteva, Vanya B; Afonso, Carlos A M

    2016-05-25

    The cyclopentenone unit is a very powerful synthon for the synthesis of a variety of bioactive target molecules. This is due to the broad diversity of chemical modifications available for the enone structural motif. In particular, chiral cyclopentenones are important precursors in the asymmetric synthesis of target chiral molecules. This Review provides an overview of reported methods for enantioselective and asymmetric syntheses of cyclopentenones, including chemical and enzymatic resolution, asymmetric synthesis via Pauson-Khand reaction, Nazarov cyclization and organocatalyzed reactions, asymmetric functionalization of the existing cyclopentenone unit, and functionalization of chiral building blocks. PMID:27101336

  19. Total Synthesis of Teixobactin.

    PubMed

    Giltrap, Andrew M; Dowman, Luke J; Nagalingam, Gayathri; Ochoa, Jessica L; Linington, Roger G; Britton, Warwick J; Payne, Richard J

    2016-06-01

    The first total synthesis of the cyclic depsipeptide natural product teixobactin is described. Synthesis was achieved by solid-phase peptide synthesis, incorporating the unusual l-allo-enduracididine as a suitably protected synthetic cassette and employing a key on-resin esterification and solution-phase macrolactamization. The synthetic natural product was shown to possess potent antibacterial activity against a range of Gram-positive pathogenic bacteria, including a virulent strain of Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus (MRSA). PMID:27191730

  20. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  1. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  2. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  3. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  4. Total synthesis of atropurpuran.

    PubMed

    Gong, Jing; Chen, Huan; Liu, Xiao-Yu; Wang, Zhi-Xiu; Nie, Wei; Qin, Yong

    2016-01-01

    Due to their architectural intricacy and biological significance, the synthesis of polycyclic diterpenes and their biogenetically related alkaloids have been the subject of considerable interest over the last few decades, with progress including the impressive synthesis of several elusive targets. Despite tremendous efforts, conquering the unique structural types of this large natural product family remains a long-term challenge. The arcutane diterpenes and related alkaloids, bearing a congested tetracyclo[5.3.3.0(4,9).0(4,12)]tridecane unit, are included in these unsolved enigmas. Here we report a concise approach to the construction of the core structure of these molecules and the first total synthesis of (±)-atropurpuran. Pivotal features of the synthesis include an oxidative dearomatization/intramolecular Diels-Alder cycloaddition cascade, sequential aldol and ketyl-olefin cyclizations to assemble the highly caged framework, and a chemoselective and stereoselective reduction to install the requisite allylic hydroxyl group in the target molecule. PMID:27387707

  5. Total synthesis of atropurpuran

    PubMed Central

    Gong, Jing; Chen, Huan; Liu, Xiao-Yu; Wang, Zhi-Xiu; Nie, Wei; Qin, Yong

    2016-01-01

    Due to their architectural intricacy and biological significance, the synthesis of polycyclic diterpenes and their biogenetically related alkaloids have been the subject of considerable interest over the last few decades, with progress including the impressive synthesis of several elusive targets. Despite tremendous efforts, conquering the unique structural types of this large natural product family remains a long-term challenge. The arcutane diterpenes and related alkaloids, bearing a congested tetracyclo[5.3.3.04,9.04,12]tridecane unit, are included in these unsolved enigmas. Here we report a concise approach to the construction of the core structure of these molecules and the first total synthesis of (±)-atropurpuran. Pivotal features of the synthesis include an oxidative dearomatization/intramolecular Diels-Alder cycloaddition cascade, sequential aldol and ketyl-olefin cyclizations to assemble the highly caged framework, and a chemoselective and stereoselective reduction to install the requisite allylic hydroxyl group in the target molecule. PMID:27387707

  6. Instrument Modeling and Synthesis

    NASA Astrophysics Data System (ADS)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  7. Synthesis, crystal structure, spectroscopic characterization and theoretical study of (2E)-N-phenyl-2-(pyridin-3-ylmethylidene)hydrazinecarboxamide

    NASA Astrophysics Data System (ADS)

    Soria-Martínez, R.; Mendoza-Meroño, R.; García-Granda, S.

    2016-02-01

    In this work, the experimental and theoretical study of new semicarbazone have been reported. The new semicarbazone was synthesized and characterized by FT-IR, FT-Raman and NMR, and the crystal structure was determined by X-ray single-crystal diffraction. The crystallographic asymmetric unit was optimized using DFT method and compared with the experimental data. The experimental FT-IR and FT-Raman have been compared with calculated vibrational frequencies, using B3LYP/6-311*G(d,p). The stability and charge delocalization were studied by natural bond orbital (NBO) analysis as well as the molecular electrostatic potential (MEP). The 1H and 13C chemical shifts values have been calculated by the GIAO method. Non covalent interactions analysis in real space was done, based on the electron density and its derivates, it provides a rich representation of VdW interactions, hydrogen bonds, and the inter and intramolecular steric repulsions.

  8. The Synthesis of Lepidoptera Pheromones

    NASA Astrophysics Data System (ADS)

    Matveeva, Elena D.; Kurts, A. L.; Bundel', Yurii G.

    1986-07-01

    The review surveys the data in numerous publications of the synthesis of the pheromones of scale-winged insects (Lepidoptera). Attention is concentrated on problems of the sterospecific synthesis of pheromones. The bibliography includes 217 references.

  9. Big6 Turbotools and Synthesis

    ERIC Educational Resources Information Center

    Tooley, Melinda

    2005-01-01

    The different tools that are helpful during the Synthesis stage, their role in boosting students abilities in Synthesis and the way in which it can be customized to meet the needs of each group of students are discussed. Big6 TurboTools offers several tools to help complete the task. In Synthesis stage, these same tools along with Turbo Report and…

  10. Synthesis of organosilicon compounds

    SciTech Connect

    Zhao, G.

    1996-12-31

    Silicon-containing polymers have been a focus of synthesis and study in Dr. Barton`s group because of their chemistry and properties which are not offered by other systems or materials. For example, the polymer -[-SiMe{sub 2}C{triple_bond}C-]{sub n}-can be easily processed to films or fibers from melt or solution, and thermally converted to a SiC-containing ceramic in high yield at high temperature. In recent years, carbosilane dendritic polymers have been of great interests in many research groups. However, no synthesis of carbosilane dendrimers with functionalties both inside and outside the dendrimer has been reported. Functionality is very important in the synthesis of preceramic polymers. This thesis will be devoted to exploring several new organosilicon polymer systems.

  11. Glycals in enantiospecific synthesis

    NASA Astrophysics Data System (ADS)

    Tolstikov, Alexander G.; Tolstikov, Genrikh A.

    1993-06-01

    The reactions of 1,2-unsaturated sugars (glycals) are considered in this review in relation to problems of the enantiospecific synthesis of natural products, their fragments, and their analogues. The reactions occurring both with retention of the heterocycle and those carried out with the aim of obtaining open chain chiral units are discussed. It is shown that the use of glycals as a stock of chiral substances which determine the configuration of the asymmetric centres in the target products of multistage synthesis is promising. Schemes for the synthesis of natural products of different types are considered: O- and C-glycosides, nucleosides, oligosaccharides, pheromones, antibiotics, toxins, glycosphingolipids, etc. The bibliography includes 161 references.

  12. Synthesis and biological activity of some new 5-hydrothiazolo[4,3-b]-1,3,4-oxa(thia)diazoles and 5-hydrothiazolo[3,4-b]-1,2,4-triazoles containing 1,2,3-selena(thia)diazole moiety.

    PubMed

    el-Sayed Bayoumy, B

    1991-01-01

    p-Acetylphenyl thiosemicarbazide (I) was reacted with different aldehydes yielding the corresponding semicarbazones II. Addition condensation of thioglycolic acid with compounds II gave 4-thiazolidinones III. Reaction of compounds III with conc. H2SO4, KI/I2-NaOH and NaOH afforded the cyclized products (IV-VI). Compounds (IV-VI) reacted with semicarbazide to give the corresponding semicarbazones (VII-IX) which either were oxidized with selenium dioxide or thionyl chloride to give 1,2,3-selenadiazoles (X-XII) and 1,2,3-thiadiazoles (XIII-XV) respectively. Some of the prepared compounds were tested against some strains of bacteria.

  13. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  14. Information synthesis: a practical guide.

    PubMed Central

    Goldschmidt, P G

    1986-01-01

    Information synthesis is one of the most valuable contributions a scientist can make. This paper offers guidance in preparing information synthesis and a means of assessing their adequacy. Preparing an information synthesis requires four steps: defining the topic and relevant information about that topic, the purpose of the synthesis, and the target audience; systematically gathering this relevant information; assessing the validity of such information; and presenting validated information in a way useful to the target audience. This paper presents guidelines and criteria for each step, and some helpful hints for authors in preparing an information synthesis. PMID:3733458

  15. Synthesis: Intertwining product and process

    NASA Technical Reports Server (NTRS)

    Weiss, David M.

    1990-01-01

    Synthesis is a proposed systematic process for rapidly creating different members of a program family. Family members are described by variations in their requirements. Requirements variations are mapped to variations on a standard design to generate production quality code and documentation. The approach is made feasible by using principles underlying design for change. Synthesis incorporates ideas from rapid prototyping, application generators, and domain analysis. The goals of Synthesis and the Synthesis process are discussed. The technology needed and the feasibility of the approach are also briefly discussed. The status of current efforts to implement Synthesis methodologies is presented.

  16. Synthesis of Chemiluminescent Esters: A Combinatorial Synthesis Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko

    2004-01-01

    A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.

  17. Sizing up surfactant synthesis.

    PubMed

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  18. The synthesis of gemcitabine.

    PubMed

    Brown, Kylie; Dixey, Michael; Weymouth-Wilson, Alex; Linclau, Bruno

    2014-03-31

    Gemcitabine is a fluorinated nucleoside currently administered against a number of cancers. It consists of a cytosine base and a 2-deoxy-2,2-difluororibose sugar. The synthetic challenges associated with the introduction of the fluorine atoms, as well as with nucleobase introduction of 2,2-difluorinated sugars, combined with the requirement to have an efficient process suitable for large scale synthesis, have spurred significant activity towards the synthesis of gemcitabine exploring a wide variety of synthetic approaches. In addition, many methods have been developed for selective crystallisation of diastereomeric (including anomeric) mixtures. In that regard, the 2-deoxy-2,2-difluororibose sugar is one of the most investigated fluorinated carbohydrates in terms of its synthesis. The versatility of synthetic methods employed is illustrative of the current state of the art of fluorination methodology for the synthesis of CF2-containing carbohydrates, and involves the use of fluorinated building blocks, as well as nucleophilic and electrophilic fluorination of sugar precursors. PMID:24636495

  19. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  20. Total synthesis of (+)-sundiversifolide.

    PubMed

    Yokoe, Hiromasa; Sasaki, Hiroyuki; Yoshimura, Tomoyuki; Shindo, Mitsuru; Yoshida, Masahiro; Shishido, Kozo

    2007-03-15

    The first, enantiocontrolled total synthesis of (+)-sundiversifolide has been accomplished using the sequential ring-closing metathesis, [3,3]-sigmatropic rearrangement, and iodolactonization for the key assembly of the cis-fused oxabicyclo[5.3.0]decene framework of the natural product. [structure: see text

  1. Synthesis of semiconductor nanoparticles.

    PubMed

    Chen, Xianfeng; Dobson, Peter J

    2012-01-01

    Here, we describe typical methods and provide detailed experimental protocols for synthesizing and processing various semiconductor nanoparticles which have potential application in biology and medicine. These include synthesis of binary semiconductor nanoparticles; core@shell nanoparticles and alloyed nanoparticles; size-selective precipitation to obtain monodisperse nanoparticles; and strategies for phase transfer of nanoparticles from organic solution to aqueous media. PMID:22791427

  2. Photochemical Synthesis of Nepetanudone.

    PubMed

    Jayan, Swapna; Jones, Paul B

    2015-06-26

    Nepetanudone and nepetaparnone have been suspected of being the products of a photochemical dimerization of nepetapyrone. Both are natural products found in a variety of Nepeta species. The synthesis of (±)-nepetapyrone and subsequent photochemical experiments are described. (±)-Nepetanudone was produced upon irradiation of (±)-nepetapyrone, while (±)-nepetaparnone, a diastereomer of nepetanudone, was not observed. PMID:25978278

  3. Synthesis of (-)-Hamigeran B

    PubMed Central

    Taber, Douglass F.; Tian, Weiwei

    2009-01-01

    The synthesis of (-)-hamigeran B has been achieved, based on a new approach to cyclopentane construction, the rhodium-mediated intramolecular C-H insertion of α-aryl-α-diazo ketones. The endo isopropyl group was installed by selective hydrogenation of a cyclopropylidene substituent. PMID:18771326

  4. Total Synthesis of Nosiheptide.

    PubMed

    Wojtas, K Philip; Riedrich, Matthias; Lu, Jin-Yong; Winter, Philipp; Winkler, Thomas; Walter, Sophia; Arndt, Hans-Dieter

    2016-08-01

    Total synthesis of the bismacrocyclic thiopeptide antibiotic nosiheptide was achieved through the assembly of a fully functionalized linear precursor followed by consecutive macrocyclizations. Key features are a critical macrothiolactonization and a mild deprotection strategy for the 3-hydroxypyridine core. The natural product was identical to isolated authentic material in terms of spectral data and antibiotic activity. PMID:27345011

  5. Industrial scale gene synthesis.

    PubMed

    Notka, Frank; Liss, Michael; Wagner, Ralf

    2011-01-01

    The most recent developments in the area of deep DNA sequencing and downstream quantitative and functional analysis are rapidly adding a new dimension to understanding biochemical pathways and metabolic interdependencies. These increasing insights pave the way to designing new strategies that address public needs, including environmental applications and therapeutic inventions, or novel cell factories for sustainable and reconcilable energy or chemicals sources. Adding yet another level is building upon nonnaturally occurring networks and pathways. Recent developments in synthetic biology have created economic and reliable options for designing and synthesizing genes, operons, and eventually complete genomes. Meanwhile, high-throughput design and synthesis of extremely comprehensive DNA sequences have evolved into an enabling technology already indispensable in various life science sectors today. Here, we describe the industrial perspective of modern gene synthesis and its relationship with synthetic biology. Gene synthesis contributed significantly to the emergence of synthetic biology by not only providing the genetic material in high quality and quantity but also enabling its assembly, according to engineering design principles, in a standardized format. Synthetic biology on the other hand, added the need for assembling complex circuits and large complexes, thus fostering the development of appropriate methods and expanding the scope of applications. Synthetic biology has also stimulated interdisciplinary collaboration as well as integration of the broader public by addressing socioeconomic, philosophical, ethical, political, and legal opportunities and concerns. The demand-driven technological achievements of gene synthesis and the implemented processes are exemplified by an industrial setting of large-scale gene synthesis, describing production from order to delivery.

  6. Prebiotic synthesis of histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  7. Total synthesis of clostrubin

    PubMed Central

    Yang, Ming; Li, Jian; Li, Ang

    2015-01-01

    Clostrubin is a potent antibiotic against methicillin- and vancomycin-resistant bacteria that was isolated from a strictly anaerobic bacterium Clostridium beijerinckii in 2014. This polyphenol possesses a fully substituted arene moiety on its pentacyclic scaffold, which poses a considerable challenge for chemical synthesis. Here we report the first total synthesis of clostrubin in nine steps (the longest linear sequence). A desymmetrization strategy is exploited based on the inherent structural feature of the natural product. Barton–Kellogg olefination forges the two segments together to form a tetrasubstituted alkene. A photo-induced 6π electrocyclization followed by spontaneous aromatization constructs the hexasubstituted B ring at a late stage. In total, 200 mg of clostrubin are delivered through this approach. PMID:25759087

  8. Continuous organic electrochemical synthesis

    SciTech Connect

    Nobe, K.; Baizer, M.; Pintauro, P.; Park, K.; Gilbert, S.

    1984-07-01

    The electrochemical oxidation of glucose to gluconic acid and reduction of glucose to sorbitol has been successfully paired in an undivided packed bed electrode flow cell. The use of a Raney nickel powder catalytic cathode significantly improved the current efficiency for sorbitol production, as compared to a high hydrogen overpotential Zn(Hg) cathode. The optimum operating conditions for the paired synthesis are: activity W-2 Raney nickel powder cathode, graphite chip anode, a 1.6 M glucose and 0.4 M CaBr/sub 2/ initial solution composition, pH 6-7, 60/sup 0/C solution temperature, a current density of 250 to 500 mA and a solution volumetric flow rate of 100 ml min/sup -1/. Under these conditions the sorbitol current efficiencies are at least 80%, the glucose acid current efficiencies are 100% and the product yields are quantitative. A separation scheme for the paired synthesis has also been devised. It consists of the precipitation of the oxidation product (calcium gluconate) and the ethanol extraction of glucose and CaBr/sub 2/ from sorbitol. Based on a preliminary economic analysis of the cost of raw materials, energy and the electrochemical cell and separation equipment the cost of producing 1 lb calcium gluconate and 0.68 lb sorbitol in a paired synthesis was estimated to be $0.896. The cost of producing the same amount of sorbitol and calcium gluconate in separate electrochemical cells was calculated to be $1.20. Thus, the paired synthesis appears to be an economically viable process.

  9. Total Synthesis of Millingtonine.

    PubMed

    Brown, Patrick D; Lawrence, Andrew L

    2016-07-11

    Millingtonine is a glycosidic alkaloid that exists as a pair of pseudo-enantiomeric diastereomers. Consideration of the likely biosynthetic origins of this unusual natural product has resulted in the development of a seven-step total synthesis. Results from this synthetic work provide evidence in support of a proposed network of biosynthetic pathways that can account for the formation of several phenylethanoid natural products. PMID:27249628

  10. Voice synthesis application

    NASA Astrophysics Data System (ADS)

    Lightstone, P. C.; Davidson, W. M.

    1982-01-01

    Selection of a speech synthesis system as an augmentation for a perimeter security device is described. Criteria used in selection of a system are discussed. The final system is a speech 1000 speech synthesizer board that has a 2000 word speech lexicon, a first time charge for a 32 K EPROM of custom words, and extra features such as an alternate command to adjust desired listening level.

  11. Voice synthesis application

    SciTech Connect

    Lightstone, P.C.; Davidson, W.M.

    1982-01-27

    Selection of a speech synthesis system as an augmentation for a perimeter security device is described. Criteria used in selection of a system are discussed. The final system is a speech 1000 speech synthesizer board that has a 2000 word speech lexicon, a first time charge of $75 for a 32 K EPROM of custom words, and extra features such as an alternate command to adjust desired listening level.

  12. Total synthesis of ochnaflavone.

    PubMed

    Ndoile, Monica M; van Heerden, Fanie R

    2013-01-01

    The first total syntheses of ochnaflavone, an asymmetric biflavone consisting of apigenin and luteolin moieties, and the permethyl ether of 2,3,2'',3''-tetrahydroochnaflavone have been achieved. The key steps in the synthesis of ochnaflavone were the formation of a diaryl ether and ring cyclization of an ether-linked dimeric chalcone to assemble the two flavone nuclei. Optimal experimental conditions for the oxidative cyclization to form ochnaflavone were established.

  13. Total synthesis of ochnaflavone

    PubMed Central

    Ndoile, Monica M

    2013-01-01

    Summary The first total syntheses of ochnaflavone, an asymmetric biflavone consisting of apigenin and luteolin moieties, and the permethyl ether of 2,3,2'',3''-tetrahydroochnaflavone have been achieved. The key steps in the synthesis of ochnaflavone were the formation of a diaryl ether and ring cyclization of an ether-linked dimeric chalcone to assemble the two flavone nuclei. Optimal experimental conditions for the oxidative cyclization to form ochnaflavone were established. PMID:23946830

  14. Hyaluronan Synthesis and Myogenesis

    PubMed Central

    Hunt, Liam C.; Gorman, Chris; Kintakas, Christopher; McCulloch, Daniel R.; Mackie, Eleanor J.; White, Jason D.

    2013-01-01

    Exogenous hyaluronan is known to alter muscle precursor cell proliferation, migration, and differentiation, ultimately inhibiting myogenesis in vitro. The aim of the current study was to investigate the role of endogenous hyaluronan synthesis during myogenesis. In quantitative PCR studies, the genes responsible for synthesizing hyaluronan were found to be differentially regulated during muscle growth, repair, and pathology. Although all Has genes (Has1, Has2, and Has3) were differentially regulated in these models, only Has2 gene expression consistently associated with myogenic differentiation. During myogenic differentiation in vitro, Has2 was the most highly expressed of the synthases and increased after induction of differentiation. To test whether this association between Has2 expression and myogenesis relates to a role for Has2 in myoblast differentiation and fusion, C2C12 myoblasts were depleted of Has2 by siRNA and induced to differentiate. Depletion of Has2 inhibited differentiation and caused a loss of cell-associated hyaluronan and the hyaluronan-dependent pericellular matrix. The inhibition of differentiation caused by loss of hyaluronan was confirmed with the hyaluronan synthesis inhibitor 4-methylumbelliferone. In hyaluronan synthesis-blocked cultures, restoration of the pericellular matrix could be achieved through the addition of exogenous hyaluronan and the proteoglycan versican, but this was not sufficient to restore differentiation to control levels. These data indicate that intrinsic hyaluronan synthesis is necessary for myoblasts to differentiate and form syncytial muscle cells, but the hyaluronan-dependent pericellular matrix is not sufficient to support differentiation alone; additional hyaluronan-dependent cell functions that are yet unknown may be required for myogenic differentiation. PMID:23493399

  15. Total synthesis of teixobactin

    NASA Astrophysics Data System (ADS)

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-08-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product.

  16. Total synthesis of teixobactin.

    PubMed

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-01-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product. PMID:27484680

  17. Total synthesis of teixobactin

    PubMed Central

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-01-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product. PMID:27484680

  18. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  19. Biogenetically Inspired Synthesis of Lingzhiol.

    PubMed

    Sharmah Gautam, Krishna; Birman, Vladimir B

    2016-04-01

    A concise stereo- and enantioselective synthesis of lingzhiol has been achieved featuring a biogenetically inspired Brønsted acid catalyzed semipinacol rearrangement of a glycidyl alcohol intermediate.

  20. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The serious scientific debate about spontaneous generation which raged for centuries reached a climax in the nineteenth century with the work of Spallanzani, Schwann, Tyndall, and Pasteur. These investigators demonstrated that spontaneous generation from dead organic matter does not occur. Although no aspects of these experiments addressed the issue of whether organic compounds could be synthesized abiotically, the impact of the experiments was great enough to cause many investigators to assume that life and its organic compounds were somehow fundamentally different than inorganic compounds. Meanwhile, other nineteenth-century investigators were showing that organic compounds could indeed be synthesized from inorganic compounds. In 1828 Friedrich Wohler synthesized urea in an attempt to form ammonium cyanate by heating a solution containing ammonia and cyanic acid. This experiment is generally recognized to be the first to bridge the artificial gap between organic and inorganic chemistry, but it also showed the usefulness of heat in organic synthesis. Not only does an increase in temperature enhance the rate of urea synthesis, but Walker and Hambly showed that equilibrium between urea and ammonium cyanate was attainable and reversible at 100 C. Wohler's synthesis of urea, and subsequent syntheses of organic compounds from inorganic compounds over the next several decades dealt serious blows to the 'vital force' concept which held that: (1) organic compounds owe their formation to the action of a special force in living organisms; and (2) forces which determine the behavior of inorganic compounds play no part in living systems. Nevertheless, such progress was overshadowed by Pasteur's refutation of spontaneous generation which nearly extinguished experimental investigations into the origins of life for several decades. Vitalism was dealt a deadly blow in the 1950's with Miller's famous spark-discharge experiments which were undertaken in the framework of the Oparin

  1. Lactobacillusassisted synthesis of titanium nanoparticles

    PubMed Central

    2007-01-01

    An eco-friendlylactobacillussp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  2. Synthesis of (+/-)-brazilin using IBX.

    PubMed

    Huang, Yaodong; Zhang, Jinsong; Pettus, Thomas R R

    2005-12-22

    [reaction: see text] A short synthesis of (+/-)-brazilin is reported. This synthesis uses several interesting and underutilized transformations including a regioselective dirhodium-catalyzed aryl C-H insertion, a regioselective IBX phenol --> o-quinone oxidation, a tautomerization of an o-quinone to a p-quinone methide, and an intramolecular aryl cyclization with a p-quinone methide.

  3. Total synthesis of bistramide A.

    PubMed

    Lowe, Jason T; Wrona, Iwona E; Panek, James S

    2007-01-18

    An asymmetric synthesis of the marine metabolite bistramide A is reported. The synthesis relies on the utility of three different organosilane reagents to construct all principle fragments and 8 of the 11 stereogenic centers of the natural product. [structure: see text].

  4. Lung epinephrine synthesis

    SciTech Connect

    Kennedy, B.; Elayan, H.; Ziegler, M.G. )

    1990-04-01

    We studied in vitro and in vivo epinephrine (E) synthesis by rat lung. Nine days after removal of the adrenal medullas, circulating E was reduced to 7% of levels found in sham-operated rats but 30% of lung E remained. Treatment of demedullated rats with 6 hydroxydopamine plus reserpine did not further reduce lung E. In the presence of S-(3H)adenosylmethionine lung homogenates readily N-methylated norepinephrine (NE) to form (3H)E. The rate of E synthesis by lung homogenates was progressively more rapid with increasing NE up to a concentration of 3 mM, above which it declined. The rate of E formation was optimal at an incubation pH of 8 and at temperatures of approximately 55 degrees C. We compared the E-forming enzyme(s) of lung homogenates with those of adrenal and cardiac ventricle. The adrenal contains mainly phenylethanolamine N-methyltransferase (PNMT), which is readily inhibited by SKF 29661 and methylates dopamine (DA) very poorly. Cardiac ventricles contain mainly nonspecific N-methyltransferase (NMT), which is poorly inhibited by SKF 29661 and readily methylates both DA and NE. Lung homogenates were inhibited by SKF 29661 about half as well as adrenal but more than ventricle. We used the rate of E formation from NE as an index of PNMT-like activity and deoxyepinephrine synthesis from DA as an index of NMT-like activity. PNMT and NMT activity in rat lung homogenates were not correlated with each other, displayed different responses to change in temperature, and were affected differently by glucocorticoids.

  5. [New synthesis empathogenic agents].

    PubMed

    Velea, D; Hautefeuille, M; Vazeille, G; Lantran-Davoux, C

    1999-01-01

    The use of synthesis drugs is the object of numerous written articles and TV programs in the last, decade. These synthesis drugs or "designer drugs", are well known for their ability to enhance, reinforce or appease social difficulties and relationships. In the research for empathetic and entactogenic relations one discover an obvious lack of communication and "warmth" in personal or professional relationship. An image of chemical "well being" has become a frequent stereotype of a society with an atrophying of performance and values while supposedly dedicating itself to individual performance. The youths are the first victims of these new drugs, the economical and social environment are the main reinforcing factors of this behaviour. The main characteristic of these drugs, is the non-recognition of their danger, some users go so far as to describe this category of substances as "drugs which are not drugs". As a characteristic, the use of a these synthesis drugs is almost recreative, during the week-end and holiday. The drug addiction is different than that of opiates or cocaine. One can observe some cases of real dependence--corresponding to the DSW IV criterion--when the personality of the users is the main characteristic (narcissic failure, immature personality, family and school problems). Many adverse effects--hypertension, kidney failure, psychoses--were declared. The mass-media has presented many articles concerning Ecstasy (MDMA). This is the most used drug during the rave parties. Its adverse effects are well known and proven. The authors would like to present other more recent synthesis drugs, also known as "analogs". These drugs, a kind of mixture between amphetamine-like (MDMA, MBDB, MDA) and misused medicines (ketamine, gamma OH, atropine) represent a real danger. GHB, 2 CB, HMB, are some of these recent substances. The possibility to procure them on the Web, or to produce them by oneself, add to their danger because of the lack of controls on toxicity

  6. Total Synthesis of (-)-Daphenylline.

    PubMed

    Yamada, Ryosuke; Adachi, Yohei; Yokoshima, Satoshi; Fukuyama, Tohru

    2016-05-10

    Total synthesis of (-)-daphenylline, a hexacyclic Daphniphyllum alkaloid, was achieved. Construction of the tricyclic DEF ring system was initiated by asymmetric Negishi coupling followed by an intramolecular Friedel-Crafts reaction. Installation of a side chain onto the tricyclic core was carried out through Sonogashira coupling, stereocontrolled Claisen rearrangement by taking advantage of the characteristic conformation of the tricyclic DEF core, and the stereoselective alkylation of a lactone. After the introduction of a glycine unit, the ABC ring system was stereoselectively constructed through intramolecular cycloaddition of the cyclic azomethine ylide. PMID:27062676

  7. Total Synthesis of Hyperforin.

    PubMed

    Ting, Chi P; Maimone, Thomas J

    2015-08-26

    A 10-step total synthesis of the polycyclic polyprenylated acylphloroglucinol (PPAP) natural product hyperforin from 2-methylcyclopent-2-en-1-one is reported. This route was enabled by a diketene annulation reaction and an oxidative ring expansion strategy designed to complement the presumed biosynthesis of this complex meroterpene. The described work enables the preparation of a highly substituted bicyclo[3.3.1]nonane-1,3,5-trione motif in only six steps and thus serves as a platform for the construction of easily synthesized, highly diverse PPAPs modifiable at every position. PMID:26252484

  8. Exploring and Implementing Participatory Action Synthesis

    ERIC Educational Resources Information Center

    Wimpenny, Katherine; Savin-Baden, Maggi

    2012-01-01

    This article presents participatory action synthesis as a new approach to qualitative synthesis which may be used to facilitate the promotion and use of qualitative research for policy and practice. The authors begin by outlining different forms of qualitative research synthesis and then present participatory action synthesis, a collaborative…

  9. Synthesis of perfluoroalkylene dianilines

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Harris, D. H.; Beechan, C. M.; Nakaham, J. H.; Kratzer, R. H.

    1981-01-01

    The objective of this contrast was to optimize and scale-up the synthesis of 2,2-bis(4-aminophenyl)-hexafluoropropane and 1,3-bis(4-aminophenyl)hexafluoropropane, as well as to explore avenues to other perfluoroalkyl-bridged dianilines. Routes other than Friedel-Crafts reaction leading to 2,2-bis(4-aminophenyl)hexafluoropropane were investigated. The processes utilizing bisphenol-AF were all unsuccessful; reactions aimed at the production of 4-(hexafluoro-2-halo-isopropyl)aniline from the hydroxyl intermediate failed to yield the desired products. Tailoring the conditions of the Friedel-Crafts reaction of 4-(hexafluoro-2-hydroxyisopropyl)aniline, aniline, and aluminum chloride by using hydrochloride salts and selecting optimum reagent ratios, reaction times, and temperature resulted in approx. 20% yield of pure crystallized 2,2-bis(4-aminophenyl)hexafluoropropane in 0.2 mole reaction batches. Yields up to approx. 40% were realized in small, approx. 0.01 mole, batches. The synthesis of 1,3-bis(4-aminophenyl)hexafluoropropane starting with perfluoroglutarimidine was reinvestigated. The yield of the 4-step reaction sequence giving 1,3-bis(4-acetamidophenyl)hexafluoropropane was raised to 44%. The yield of the subsequent hydrolysis process was improved by a factor of approx. 2. Approaches to prepare other perfluoroalkyl-bridged dianilines were unsuccessful. Reactions reported to proceed readily with trifluoromethyl substituents failed when longer chain perfluoroalkyl groups were employed.

  10. Oxygenates vs. synthesis gas

    SciTech Connect

    Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

    1999-04-01

    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double

  11. Organic Synthesis in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    This talk will review our current understanding of the synthesis of organic molecules in space, with particular emphasis on the synthesis of those compounds that may be of prebiotic interest. The talk will address the possibility that molecules created in the interstellar medium may play a role in the origin and evolution of life on planetary surfaces. The various organic and volatile compounds that are now known or suspected to exist in a variety of space environments (stellar outflows, the diffuse interstellar medium, dense molecular clouds, protostellar nebulae, and planetesimal parent bodies in planetary systems) will be reviewed. This information comes largely from the combined applications of observational infrared and radio spectroscopy, laboratory astrophysical simulations, and theoretical astrochemistry. This will be followed by a discussion of the evidence, largely gathered from the laboratory isotopic study of extraterrestrial materials (meteorites and cosmic dust), that interstellar materials, including organics, can and do survive the transition from the interstellar space into forming stellar systems. Once there, some of this material can be delivered largely unaltered to planetary surfaces where it can play key roles in the origin and subsequent evolution of life.

  12. Water Stress and Protein Synthesis

    PubMed Central

    Dhindsa, R. S.; Cleland, R. E.

    1975-01-01

    Water stress causes a reduction in hydrostatic pressure and can cause an increase in abscisic acid in plant tissues. To assess the possible role of abscisic acid and hydrostatic pressure in water stress effects, we have compared the effects of water stress, abscisic acid, and an imposed hydrostatic pressure on the rate and pattern of protein synthesis in Avena coleoptiles. Water stress reduces the rate and changes the pattern of protein synthesis as judged by a double labeling ratio technique, Abscisic acid reduces the rate but does not alter the pattern of protein synthesis. Gibberellic acid reverses the abscisic acid-induced but not the stress-induced inhibition of protein synthesis. The effect of hydrostatic pressure depends on the gas used. With a 19: 1 N2-air mixture, the rate of protein synthesis is increased in stressed but not in turgid tissues. An imposed hydrostatic pressure alters the pattern of synthesis in stressed tissues, but does not restore the pattern to that found in turgid tissues. Because of the differences in response, we conclude that water stress does not affect protein synthesis via abscisic acid or reduced hydrostatic pressure. PMID:16659167

  13. Chemoenzymatic Synthesis of Spinosyn A

    PubMed Central

    Kim, Hak Joong; Choi, Sei-hyun; Jeon, Byung-sun; Kim, Namho; Pongdee, Rongson; Wu, Qingquan; Liu, Hung-wen

    2014-01-01

    Following the biosynthesis of polyketide backbones by polyketide synthases (PKSs), post-PKS modifications result in a significantly elevated level of structural complexity that renders the chemical synthesis of these natural products challenging. We report herein a total synthesis of the widely used polyketide insecticide spinosyn A by exploiting the prowess of both chemical and enzymatic methods. As more polyketide biosynthetic pathways are characterized, this chemoenzymatic approach is expected to become readily adaptable to streamlining the synthesis of other complex polyketides with more involved post-PKS modifications. PMID:25287333

  14. Total Synthesis of Gombamide A.

    PubMed

    Garcia-Barrantes, Pedro M; Lindsley, Craig W

    2016-08-01

    The first total synthesis of Gombamide A (1), a cytotoxic cyclic thiopeptide from the sponge Clathria gombawuiensis, has been achieved. Highlights of the convergent synthesis feature a disulfide bond forming cascade to close the 17-membered macrocycle and a selenoazidylation procedure to access the unusual para-hydroxystyrlyamide (pHSA) moiety. The synthesis required 18 steps, 11 steps in its longest linear sequence, and proceeded in 9.1% overall yield. This work will facilitate the study of the biological effects of Gombamide A and provide groundwork to explore the structure-activity relationship around this rare natural product. PMID:27442228

  15. Synthesis of Enantiomerically Pure Anthracyclinones

    NASA Astrophysics Data System (ADS)

    Achmatowicz, Osman; Szechner, Barbara

    The anthracycline antibiotics are among the most important clinical drugs used in the treatment of human cancer. The search for new agents with improved therapeutic efficacy and reduced cardiotoxicity stimulated considerable efforts in the synthesis of new analogues. Since the biological activity of anthracyclines depends on their natural absolute configuration, various strategies for the synthesis of enantiomerically pure anthracyclinones (aglycones) have been developed. They comprise: resolution of racemic intermediate, incorporation of a chiral fragment derived from natural and non-natural chiral pools, asymmetric synthesis with the use of a chiral auxiliary or a chiral reagent, and enantioselective catalysis. Synthetic advances towards enantiopure anthracyclinones reported over the last 17 years are reviewed.

  16. Magnetite: from synthesis to applications.

    PubMed

    Unsoy, Gozde; Gunduz, Ufuk; Oprea, Ovidiu; Ficai, Denisa; Sonmez, Maria; Radulescu, Marius; Alexie, Mihaela; Ficai, Anton

    2015-01-01

    In this review the synthesis, functionalization and some applications of magnetite nanoparticles (MNPs) were highlighted. It is our intention to highlight the correlations between the synthesis routes, related synthesis parameters, functionalization strategies and the properties expected for the materials containing MNPs. The uses of MNPs are strongly influenced by the properties of the materials. Therefore this review is trying to discuss the applications of the magnetite and magnetite based nanomaterials by taking into account all the factors that can influence the properties of the final materials and consequently their potential applications. PMID:25877083

  17. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  18. Combustion synthesis of fullerenes

    SciTech Connect

    Mckinnon, J.T.; Bell, W.L. ); Barkley, R.M. )

    1992-01-01

    This paper reports the isolation of C{sub 60} and C{sub 70} from combustion soot that is produced in high-temperature, low-pressure premixed flat flames. A critical parameter for high fullerene yields in combustion appears to be a very high flame temperature. Equilibrium calculations indicate that low pressures are important, but the experimental evidence is not clear at this time. Combustion synthesis yields fullerenes with a C{sub 70}/C{sub 60} ratio of about 40%, as compared with the 12% reported for electric-arc-generated fullerenes. The overall yields from carbon are very low (ca. 0.03%) but the soot studied had been produced in flames that were in no way optimized for fullerene production.

  19. Green chemistry for nanoparticle synthesis.

    PubMed

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods. PMID:25615873

  20. Vanillin Synthesis from 4-Hydroxybenzaldehyde

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Patel, Shweta; Hambleton, Travis M.; Winkel, Emma E.

    2007-01-01

    A regioselective, safe and efficient method for the synthesis of vanillin from 4-hydroxybenzaldehyde is being described. The vanillin derived from the process is cheap and can be used as a flavor or in the paper industry.

  1. Total synthesis of solanoeclepin A

    NASA Astrophysics Data System (ADS)

    Tanino, Keiji; Takahashi, Motomasa; Tomata, Yoshihide; Tokura, Hiroshi; Uehara, Taketo; Narabu, Takashi; Miyashita, Masaaki

    2011-06-01

    Cyst nematodes are troublesome parasites that live on, and destroy, a range of important host vegetable plants. Damage caused by the potato cyst nematode has now been reported in over 50 countries. One approach to eliminating the problem is to stimulate early hatching of the nematodes, but key hatching stimuli are not naturally available in sufficient quantities to do so. Here, we report the first chemical synthesis of solanoeclepin A, the key hatch-stimulating substance for potato cyst nematode. The crucial steps in our synthesis are an intramolecular cyclization reaction for construction of the highly strained tricyclo[5.2.1.01,6]decane skeleton (DEF ring system) and an intramolecular Diels-Alder reaction of a furan derivative for the synthesis of the ABC carbon framework. The present synthesis has the potential to contribute to addressing one of the critical food issues of the twenty-first century.

  2. Green chemistry for nanoparticle synthesis.

    PubMed

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods.

  3. CLEAN CHEMICAL SYNTHESIS IN WATER

    EPA Science Inventory

    Newer green chemistry approach to accomplish chemical synthesis in water is summarized. Recent global developments pertaining to C-C bond forming reactions using metallic reagents and direct use of the renewable materials such as carbohydrates without derivatization are described...

  4. Polyamines in the Synthesis of Bacteriophage Deoxyribonucleic Acid. I. Lack of Dependence of Polyamine Synthesis on Bacteriophage Deoxyribonucleic Acid Synthesis

    PubMed Central

    Dion, Arnold S.; Cohen, Seymour S.

    1972-01-01

    To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis. PMID:4552549

  5. Synthesis of a hydrophilic naphthalimidedioxime.

    PubMed

    Grant, Christopher D; Kang, Sung Ok; Hay, Benjamin P

    2013-08-01

    Imidedioximes are formed in hydroxylamine-treated polyacrylonitrile adsorbents used in the extraction of uranium from seawater. Although known to be a good uranophile, the glutarimidedioxime model compound 1 is rapidly hydrolyzed under acidic conditions used to elute metals from the adsorbent. This work reports the synthesis of a hydrophilic naphthalimidedioxime derivative 14, which is stable under acidic elution conditions. The synthesis starts from simple acenaphthenequinone 7 and converts it to a functional group dense imidedioxime 14 in 7 steps. PMID:23786218

  6. Total synthesis of (-)-caprazamycin A.

    PubMed

    Nakamura, Hugh; Tsukano, Chihiro; Yasui, Motohiro; Yokouchi, Shinsuke; Igarashi, Masayuki; Takemoto, Yoshiji

    2015-03-01

    Caprazamycin A has significant antibacterial activity against Mycobacterium tuberculosis (TB). The first total synthesis is herein reported and features a) the scalable preparation of the syn-β-hydroxy amino acid with a thiourea-catalyzed diastereoselective aldol reaction, b) construction of a diazepanone with an unstable fatty-acid side chain, and c) global deprotection with hydrogenation. This report provides a route for the synthesis of related liponucleoside antibiotics with fatty-acid side chains.

  7. Diamond Synthesis Employing Nanoparticle Seeds

    NASA Technical Reports Server (NTRS)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  8. Diastereoselective Total Synthesis of (-)-Galiellalactone.

    PubMed

    Kim, Taewoo; Han, Young Taek; An, Hongchan; Kim, Kyeojin; Lee, Jeeyeon; Suh, Young-Ger

    2015-12-18

    An enantioselective total synthesis of (-)-galiellalactone has been accomplished. The key features of the synthesis involve the highly stereoselective construction of the cis-trisubstituted cyclopentane intermediate by a Pd(0)-catalyzed cyclization, the stereospecific introduction of an angular hydroxyl group by Riley oxidation, and the efficient construction of the tricyclic system of (-)-galiellalactone via a combination of diastereoselective Hosomi-Sakurai crotylation and ring-closing metathesis (RCM). PMID:26544529

  9. Combustion synthesis of thermoelectric oxides

    NASA Astrophysics Data System (ADS)

    Selig, Jiri

    Thermoelectric materials can be used to convert temperature difference applied across them to a electrical energy. They can be used to recover waste heat and reuse it. Two thermoelectric materials, calcium cobaltate (Ca 1.24Co1.62O3.86) and yttrium cuprate (YCuO 2) were synthesized by two different types of combustion synthesis, Self-propagating High-temperature Synthesis (SHS) and thermal explosion. Combustion synthesis is more time and energy efficient than conventional methods of preparation of thermoelectric oxides. This work shows that combustion synthesis is a viable alternative for synthesis of thermoelectric oxides with comparable characteristics and thermoelectric performance to compounds prepared by traditional syntheses. Thermoelectric properties of calcium cobaltate were evaluated and compared to data published in recent literature. A finite element model of SHS is also developed. It can be used to study the reaction process of the synthesis in detail and can predict results of experiments. The model was validated by comparison with experimental observations.

  10. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  11. Synthesis of nanostructured polyaniline

    NASA Astrophysics Data System (ADS)

    Surwade, Sumedh P.

    The organization of my thesis is as follows: (a) Chapter III describes the synthesis of bulk quantities of polyaniline nanofibers in one step using a simple and versatile high ionic strength aqueous system (HCl/NaCl) that permits the use of pure H2O2 as a mild oxidant without any added metal or enzyme catalyst. Polyaniline nanofibers obtained are highly conducting, sigma˜1--5 S/cm, and spectroscopically similar to conventional polyaniline synthesized using stronger oxidants. The synthesis method is further extended to the synthesis of oligoanilines of controlled molecular weight, e.g., aniline tetramer, octamer, and hexadecamer. Microns long tetramer nanofibers are synthesized using this method. (b) Chapter IV describes the mechanism of nanofiber formation in polyaniline. It is proposed that the surfaces such as the walls of the reaction vessel and/or intentionally added surfaces play a dramatic role in the evolution of nanofibrillar morphology. Nucleation sites on surfaces promote the accumulation of aniline dimer that reacts further to yield aniline tetramer, which (surprisingly) is entirely in form of nanofibers and whose morphology is transcribed to the bulk by a double heterogeneous nucleation mechanism. This unexpected phenomenon could form the basis of nanofiber formation in all classes of precipitation polymerization systems. (c) Chapter V is the mechanistic study on the formation of oligoanilines during the chemical oxidation of aniline in weakly acidic, neutral or basic media using peroxydisulfate oxidant. It is proposed that the reaction proceeds via the intermediacy of benzoquinone monoimine that is formed as a result of a Boyland-Sims rearrangement of aniline. The initial role of peroxydisulfate is to provide a pathway for the formation of benzoquinone monoimine intermediate that is followed by a conjugate Michael-type addition reaction with aniline or sulfated anilines. The products isolated in pH 2.5--10.0 buffers are intermediate species at various

  12. Translesion DNA synthesis

    PubMed Central

    Vaisman, Alexandra; McDonald, John P.; Woodgate, Roger

    2014-01-01

    All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell’s replicase. Under these situations, cells are forced to choose between recombination-mediated “damage avoidance” pathways, or use a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions, but also downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases. PMID:26442823

  13. Arctic freshwater synthesis: Introduction

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  14. Control Augmented Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Lust, Robert V.; Schmit, Lucien A.

    1988-01-01

    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.

  15. The Synthesis of Ribosomes in E. coli

    PubMed Central

    Britten, R. J.; McCarthy, B. J.; Roberts, R. B.

    1962-01-01

    The incorporation of C14 leucine into the protein moiety of ribosomes has been studied as a sequel to the studies of ribosomal RNA synthesis. In contrast to the latter studies, labeled leucine is incorporated directly into 50S and 30S ribosomes without measurable delay by precursor stages. There is, however, evidence of some transfer of radioactivity from the 43S group of particles to the 50S. The inhibition of protein synthesis by chloramphenicol results in the accumulation of material similar to the eosome—the primary precursor in ribosome synthesis. There is also evidence for the synthesis of some neosome. The results of the studies of ribosomal RNA and protein synthesis are combined into a model of ribosome synthesis. Finally, consideration is made of the significance of these studies of ribosome synthesis for general problems of protein synthesis and information transfer. PMID:13873182

  16. Concise Enantiospecific Total Synthesis of Tubingensin A

    PubMed Central

    2015-01-01

    We report the enantiospecific total synthesis of (+)-tubingensin A. Our synthesis features an aryne cyclization to efficiently introduce the vicinal quaternary stereocenters of the natural product and proceeds in only nine steps (longest linear sequence) from known compounds. PMID:24524351

  17. Total synthesis of (+)-blasticidin s.

    PubMed

    Ichikawa, Yoshiyasu; Hirata, Keiko; Ohbayashi, Masayoshi; Isobe, Minoru

    2004-07-01

    The first total synthesis of the peptidyl nucleoside antibiotic, blasticidin S (1), has been achieved by the coupling reaction of cytosinine (3) and blastidic acid (2). A key step in the synthesis of cytosinine (3) is the sigmatropic rearrangement of allyl cyanate 24; this reaction provided efficient and stereoselective access to 2,3-dideoxy-4-amino-D-hex-2-enopyranose (26 a). Further elaboration of 26 a gave methyl hex-2-enopyranouronate 29, and cytosine N-glycosylation of 31 using the Vorbrüggen conditions for the silyl Hilbert-Johnson reaction furnished the differentially protected cytosinine (32) in 11 steps from 2-acetoxy-D-glucal (14) (4.0 % overall yield). Synthesis of the Boc-protected blastidic acid 47 in nine steps starting from chiral carboxylic acid 35 (23 % overall yield) utilized Weinreb's protocol for the preparation of benzyl amide 38 and Fukuyama's protocol for the synthesis of the secondary amine 40. Assembly of the protected cytosinine (32) and blastidic acid (47) by the BOP method in the presence of HOBt, and finally elaboration to 1 by deprotection of the fully protected 54 established the total synthesis of blasticidin S (1).

  18. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  19. Total Synthesis of the Akuammiline Alkaloid Picrinine

    PubMed Central

    2015-01-01

    We report the first total synthesis of the complex akuammiline alkaloid picrinine, which was first isolated nearly five decades ago. Our synthetic approach features a concise assembly of the [3.3.1]-azabicyclic core, a key Fischer indolization reaction to forge the natural product’s carbon framework, and a series of delicate late-stage transformations to complete the synthesis. Our synthesis of picrinine also constitutes a formal synthesis of the related polycyclic alkaloid strictamine. PMID:24597784

  20. Melatonin modifies the rhythm of protein synthesis.

    PubMed

    Brodsky, V Y; Dubovaya, N D; Zvezdina, T K; Fateeva, V I; Mal'chenko, L A

    2010-07-01

    Melatonin (5 nM) added to medium with primary hepatocyte cultures shifted the phase of circahoralian rhythm of protein synthesis and hence, can be a factor synchronizing fluctuations in protein synthesis and rhythm organizer in the hepatocyte population. Blockade of melatonin receptors with luzindole (20 nM) arrested rhythm organization of protein synthesis by melatonin. Prospects of studying biochemical mechanisms of protein synthesis rhythm organization with other drugs (calcium agonists, similarly to melatonin) are discussed.

  1. An Asymmetric Total Synthesis of Brevisamide

    PubMed Central

    Li, Jianfeng

    2009-01-01

    An enantioselective synthesis of marine alkaloid brevisamide was accomplished in a convergent manner. The synthesis utilized an enantioselective hetero-Diels-Alder reaction which sets three chiral centers in compound 11. The synthesis also features a modified Wolff-Kishner reduction, Rubottom oxidation and Suzuki-Miyaura coupling to furnish brevisamide. PMID:19694486

  2. The modern synthesis, Ronald Fisher and creationism.

    PubMed

    Leigh

    1999-12-01

    The 'modern evolutionary synthesis' convinced most biologists that natural selection was the only directive influence on adaptive evolution. Today, however, dissatisfaction with the synthesis is widespread, and creationists and antidarwinians are multiplying. The central problem with the synthesis is its failure to show (or to provide distinct signs) that natural selection of random mutations could account for observed levels of adaptation. PMID:10542462

  3. Concepts in Biochemistry: Chemical Synthesis of DNA.

    ERIC Educational Resources Information Center

    Caruthers, Marvin H.

    1989-01-01

    Outlines the chemistry of the rapid synthesis of relatively large DNA fragments (100-200 monomers each) with yields exceeding 99 percent per coupling. DNA synthesis methodologies are outlined and a polymer-supported synthesis of DNA using deoxynucleoside phosphoramidites is described with structural formulas. (YP)

  4. Collaboration and Productivity in Scientific Synthesis

    ERIC Educational Resources Information Center

    Hampton, Stephanie E.; Parker, John N.

    2011-01-01

    Scientific synthesis has transformed ecological research and presents opportunities for advancements across the sciences; to date, however, little is known about the antecedents of success in synthesis. Building on findings from 10 years of detailed research on social interactions in synthesis groups at the National Center for Ecological Analysis…

  5. Glycothermal synthesis of metal oxides

    NASA Astrophysics Data System (ADS)

    Inoue, Masashi

    2004-04-01

    The author has been exploring the synthesis of inorganic materials in organic solvents at temperatures (200-300 °C) higher than their boiling points (solvothermal reaction), and has developed various reaction methods for the synthesis of ultrafine particles of metal oxides. In this paper, the reactions of aluminium compounds (aluminium hydroxide (Al(OH)3; gibbsite), aluminium alkoxides, and aluminium salts) in various organic solvents (alcohols, glycols, aminoalcohols, and inert organic solvents) are first reviewed, and reaction mechanisms and effects of the starting materials and solvents on the products are discussed. Then, the specificity of the use of glycols, especially 1,4-butanediol (glycothermal reaction), is clarified, and glycothermal synthesis of crystalline mixed oxides such as yttrium aluminium garnet is described. Finally, the use of the solvothermally prepared products as the catalyst materials is described.

  6. CHEMICAL SYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS

    PubMed Central

    Swarts, Benjamin M.; Guo, Zhongwu

    2013-01-01

    Many eukaryotic cell-surface proteins and glycoproteins are anchored to the plasma membrane by glycosylphosphatidylinositols (GPIs), a family of glycolipids that are post-translationally attached to proteins at their C-termini. GPIs and GPI-anchored proteins play important roles in many biological and pathological events, such as cell recognition and adhesion, signal transduction, host defense, and acting as receptors for viruses and toxins. Chemical synthesis of structurally defined GPI anchors and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems and exploring their potential therapeutic applications. In the first part of this comprehensive article on the chemical synthesis of GPIs, classic syntheses of naturally occurring GPI anchors from protozoan parasites, yeast, and mammals are covered. The second part of the article focuses on recent diversity-oriented strategies for the synthesis of GPI anchors containing unsaturated lipids, “click chemistry” tags, and highly branched and modified structures. PMID:22794184

  7. Flavivirus RNA synthesis in vitro.

    PubMed

    Padmanabhan, Radhakrishnan; Takhampunya, Ratree; Teramoto, Tadahisa; Choi, Kyung H

    2015-12-01

    Establishment of in vitro systems to study mechanisms of RNA synthesis for positive strand RNA viruses have been very useful in the past and have shed light on the composition of protein and RNA components, optimum conditions, the nature of the products formed, cis-acting RNA elements and trans-acting protein factors required for efficient synthesis. In this review, we summarize our current understanding regarding the requirements for flavivirus RNA synthesis in vitro. We describe details of reaction conditions, the specificity of template used by either the multi-component membrane-bound viral replicase complex or by purified, recombinant RNA-dependent RNA polymerase. We also discuss future perspectives to extend the boundaries of our knowledge. PMID:26272247

  8. Synthesis of xanthones: an overview.

    PubMed

    Sousa, M E; Pinto, M M M

    2005-01-01

    Among the known synthetic routes to obtain xanthones, the Grover, Shah, and Shah reaction, the cyclodehydration of 2, 2'-dihydroxybenzophenones and electrophilic cycloacylation of 2-aryloxybenzoic acids are the most popular methods. Due to important biological applications of xanthones, some synthetic strategies leading to more complex derivatives have been widely explored in the past years. Thus, the purpose of this review is to report some recent improvements of the classical synthetic methods as well as of some non-classical methods to obtain simple oxygenated xanthones. The strategies for introduction of substituents into the xanthonic nucleus are also summarized. Furthermore, different approaches used to synthesize complex structures, with an emphasis on the total synthesis of bioactive natural products, accomplished in the last twenty years, are also discussed. Besides the synthesis of xanthones, the reactivity of the xanthonic nucleus and its role as a key intermediate for the synthesis of other important classes of compounds are also highlighted.

  9. Maitotoxin: An Inspiration for Synthesis

    PubMed Central

    Aversa, Robert J.

    2011-01-01

    Maitotoxin holds a special place in the annals of natural products chemistry as the largest and most toxic secondary metabolite known to date. Its fascinating, ladder-like, polyether molecular structure and diverse spectrum of biological activities elicited keen interest from chemists and biologists who recognized its uniqueness and potential as a probe and inspiration for research in chemistry and biology. Synthetic studies in the area benefited from methodologies and strategies that were developed as part of chemical synthesis programs directed toward the total synthesis of some of the less complex members of the polyether marine biotoxin class, of which maitotoxin is the flagship. This account focuses on progress made in the authors’ laboratories in the synthesis of large maitotoxin domains with emphasis on methodology development, strategy design, and structural comparisons of the synthesized molecules with the corresponding regions of the natural product. The article concludes with an overview of maitotoxin’s biological profile and future perspectives. PMID:21709816

  10. Total Synthesis of Iejimalide B§

    PubMed Central

    Chen, Qingshou; Schweitzer, Dirk; Kane, John; Jo Davisson, V.; Helquist, Paul

    2011-01-01

    Iejimalide B, a structurally unique 24-membered polyene macrolide having a previously underutilized mode of anticancer activity, was synthesized according to a strategy employing Julia-Kocienski olefinations, a palladium-catalyzed Heck reaction, a palladium-catalyzed Marshall propargylation, a Keck-type esterification, and a palladium-catalyzed macrolide-forming, intramolecular Stille coupling of a highly complex cyclization substrate. The overall synthesis is efficient (19.5% overall yield for 15 linear steps) and allows for more practical scaled-up synthesis than previously reported strategies that differed in the order of assembly of key subunits and in the method of macrocyclization. The present synthesis paves the way for efficient preparation of analogues for drug development efforts. PMID:21488673

  11. Erythropoietin Derived by Chemical Synthesis

    PubMed Central

    Shieh, Jae-Hung; Peguero, Elizabeth; Hendrickson, Ronald; Moore, Malcolm A. S.; Danishefsky, Samuel J.

    2014-01-01

    Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid–containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice. PMID:24337294

  12. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  13. Ascorbate Synthesis Pathway

    PubMed Central

    Gabbay, Kenneth H.; Bohren, Kurt M.; Morello, Roy; Bertin, Terry; Liu, Jeff; Vogel, Peter

    2010-01-01

    Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of d-glucuronate to l-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) mice show that the two enzymes, GR and AR, provide ∼85 and ∼15% of l-gulonate, respectively. GRKO/ARKO double knock-out mice are unable to synthesize ASC (>95% ASC deficit) and develop scurvy. The GRKO mice (∼85% ASC deficit) develop and grow normally when fed regular mouse chow (ASC content = 0) but suffer severe osteopenia and spontaneous fractures with stresses that increase ASC requirements, such as pregnancy or castration. Castration greatly increases osteoclast numbers and activity in GRKO mice and promotes increased bone loss as compared with wild-type controls and additionally induces proliferation of immature dysplastic osteoblasts likely because of an ASC-sensitive block(s) in early differentiation. ASC and the antioxidants pycnogenol and resveratrol block osteoclast proliferation and bone loss, but only ASC feeding restores osteoblast differentiation and prevents their dysplastic proliferation. This is the first in vivo demonstration of two independent roles for ASC as an antioxidant suppressing osteoclast activity and number as well as a cofactor promoting osteoblast differentiation. Although humans have lost the ability to synthesize ASC, our mouse models suggest the mechanisms by which suboptimal ASC availability facilitates the development of osteoporosis, which has important implications for human osteoporosis. PMID:20410296

  14. Sterol Synthesis in Diverse Bacteria

    PubMed Central

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  15. Sterol Synthesis in Diverse Bacteria.

    PubMed

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  16. Sterol Synthesis in Diverse Bacteria.

    PubMed

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  17. Asymmetric Formal Synthesis of Azadirachtin.

    PubMed

    Mori, Naoki; Kitahara, Takeshi; Mori, Kenji; Watanabe, Hidenori

    2015-12-01

    An asymmetric formal synthesis of azadirachtin, a potent insect antifeedant, was accomplished in 30 steps to Ley's synthetic intermediate (longest linear sequence). The synthesis features: 1) rapid access to the optically active right-hand segment starting from the known 5-hydroxymethyl-2-cyclopentenone scaffold; 2) construction of the B and E rings by a key intramolecular tandem radical cyclization; 3) formation of the hemiacetal moiety in the C ring through the α-oxidation of the six-membered lactone followed by methanolysis. PMID:26474211

  18. Quinazoline derivatives: synthesis and bioactivities

    PubMed Central

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reaction, Ultrasound-promoted reaction and Phase-transfer catalysis reaction. The biological activities of the synthesized quinazoline derivatives also are discussed. PMID:23731671

  19. Combustion synthesis method and products

    DOEpatents

    Holt, J. Birch; Kelly, Michael

    1993-01-01

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  20. Combustion synthesis method and products

    DOEpatents

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  1. Optica aperture synthesis

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper

    2006-05-01

    Optical long baseline stellar interferometry is an observational technique in astronomy that already exists for over a century, but is truly blooming during the last decades. The undoubted value of stellar interferometry as a technique to measure stellar parameters beyond the classical resolution limit is more and more spreading to the regime of synthesis imaging. With optical aperture synthesis imaging, the measurement of parameters is extended to the reconstruction of high resolution stellar images. A number of optical telescope arrays for synthesis imaging are operational on Earth, while space-based telescope arrays are being designed. For all imaging arrays, the combination of the light collected by the telescopes in the array can be performed in a number of ways. In this thesis, methods are introduced to model these methods of beam combination and compare their effectiveness in the generation of data to be used to reconstruct the image of a stellar object. One of these methods of beam combination is to be applied in a future space telescope. The European Space Agency is developing a mission that can valuably be extended with an imaging beam combiner. This mission is labeled Darwin, as its main goal is to provide information on the origin of life. The primary objective is the detection of planets around nearby stars - called exoplanets- and more precisely, Earth-like exoplanets. This detection is based on a signal, rather than an image. With an imaging mode, designed as described in this thesis, Darwin can make images of, for example, the planetary system to which the detected exoplanet belongs or, as another example, of the dust disk around a star out of which planets form. Such images will greatly contribute to the understanding of the formation of our own planetary system and of how and when life became possible on Earth. The comparison of beam combination methods for interferometric imaging occupies most of the pages of this thesis. Additional chapters will

  2. Reaction synthesis of heat-resistant materials

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1995-12-31

    Exothermicity associated with the synthesis of aluminides can be utilized to obtain aluminides of transition metals. Combustion synthesis, extrusion, and hot pressing were utilized to obtain dense intermetallics and their composites. Composites were analyzed by X- ray diffraction and microscopy techniques, and tensile properties were measured on button-head and sheet specimens of intermetallics and their composites. Mechanical properties of intermetallics obtained by reaction synthesis and densification compare well with conventionally processed materials. Reaction-synthesis principles were also extended to weld overlays. Possible approaches to obtaining dense products by reaction synthesis and densification are summarized in a schematic illustration. 19 refs., 14 figs., 3 tabs.

  3. Plant mediated green synthesis: modified approaches

    NASA Astrophysics Data System (ADS)

    Das, Ratul Kumar; Brar, Satinder Kaur

    2013-10-01

    Plant mediated green synthesis of different metallic nanoparticles has emerged as one of the options for implementation of green chemistry principles, and successfully made an important contribution towards green nanotechnology. However, beyond the synthesis and application aspects, the science of green synthesis has carried some wrong perceptions in an unforeseen fashion. In this review, some of the key issues related to the green synthesis of metallic nanoparticles employing plants as reducing/capping agents have been addressed. Random selection of plants and its overall impact on the different aspects of green synthesis have been discussed. Emphasis is given to the setting of some standard selection criteria to be adopted for selecting a plant for use in green synthesis. How selection of a plant can positively or negatively influence both procedure and products of a green synthesis process is the prime concern of this article. In addition to selection, the key issue of biocompatibility associated with green synthesized metallic nanoparticles has been considered. Both selection of plant and biocompatibility were reconsidered for their minute details in terms of synthesis, analysis and data interpretation in the green synthesis approach. The key factors capable of fine tuning the core meaning of ``green'' in the synthesis of any metallic nanoparticles were taken into consideration. This article is an effort towards keeping the core meaning of green synthesis.

  4. Plant mediated green synthesis: modified approaches.

    PubMed

    Das, Ratul Kumar; Brar, Satinder Kaur

    2013-11-01

    Plant mediated green synthesis of different metallic nanoparticles has emerged as one of the options for implementation of green chemistry principles, and successfully made an important contribution towards green nanotechnology. However, beyond the synthesis and application aspects, the science of green synthesis has carried some wrong perceptions in an unforeseen fashion. In this review, some of the key issues related to the green synthesis of metallic nanoparticles employing plants as reducing/capping agents have been addressed. Random selection of plants and its overall impact on the different aspects of green synthesis have been discussed. Emphasis is given to the setting of some standard selection criteria to be adopted for selecting a plant for use in green synthesis. How selection of a plant can positively or negatively influence both procedure and products of a green synthesis process is the prime concern of this article. In addition to selection, the key issue of biocompatibility associated with green synthesized metallic nanoparticles has been considered. Both selection of plant and biocompatibility were reconsidered for their minute details in terms of synthesis, analysis and data interpretation in the green synthesis approach. The key factors capable of fine tuning the core meaning of "green" in the synthesis of any metallic nanoparticles were taken into consideration. This article is an effort towards keeping the core meaning of green synthesis. PMID:24056951

  5. [Correlation between the synthesis of extracellular proteases and the synthesis of the red pigment prodigiosin in Serratia marcescens].

    PubMed

    Loriia, Zh K; Briukner, B; Egorov, N S

    1977-01-01

    A correlation has been established between synthesis of exocellular protease and synthesis of a red pigment prodigiosine by Serratia marcescens. Chloramphenicol, an inhibitor of protein synthesis, inhibits also synthesis of the pigment. Leucine, an inductor of synthesis of the exocellular protease by Serratia marcescens VI, induces also synthesis of the pigment. A mixture of 18 natural amino acids, asparagine and ammonium ions represses both synthesis of the enzyme and the pigment.

  6. Green chemistry for chemical synthesis.

    PubMed

    Li, Chao-Jun; Trost, Barry M

    2008-09-01

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign. PMID:18768813

  7. CHEMICAL SYNTHESIS & TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    A historical account of the utility of microwaves in a variety of chemical synthesis applications will be presented, including a solvent-free strategy that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such...

  8. Insolubilized enzymes for food synthesis

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  9. Steganography using reversible texture synthesis.

    PubMed

    Wu, Kuo-Chen; Wang, Chung-Ming

    2015-01-01

    We propose a novel approach for steganography using a reversible texture synthesis. A texture synthesis process resamples a smaller texture image, which synthesizes a new texture image with a similar local appearance and an arbitrary size. We weave the texture synthesis process into steganography to conceal secret messages. In contrast to using an existing cover image to hide messages, our algorithm conceals the source texture image and embeds secret messages through the process of texture synthesis. This allows us to extract the secret messages and source texture from a stego synthetic texture. Our approach offers three distinct advantages. First, our scheme offers the embedding capacity that is proportional to the size of the stego texture image. Second, a steganalytic algorithm is not likely to defeat our steganographic approach. Third, the reversible capability inherited from our scheme provides functionality, which allows recovery of the source texture. Experimental results have verified that our proposed algorithm can provide various numbers of embedding capacities, produce a visually plausible texture images, and recover the source texture.

  10. Synthesis of nanosized sodium titanates

    SciTech Connect

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  11. The Gabriel Synthesis of Benzylamine

    ERIC Educational Resources Information Center

    Nigh, W. G.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the Gabriel Synthesis to demonstrate the acidity of imides and to provide an example of nucleophilic substitution reactions. The experiment also demonstrates the laboratory techniques involved in simple and steam distillation, filtration, extraction, and…

  12. Catalysis and prebiotic RNA synthesis

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  13. Green chemistry for chemical synthesis

    PubMed Central

    Li, Chao-Jun; Trost, Barry M.

    2008-01-01

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign. PMID:18768813

  14. Synthesis : Convection, structure and evolution

    NASA Astrophysics Data System (ADS)

    Schatzman, E.

    1997-12-01

    Lectures and discussions at the SCORe workshop have given a general idea of our present understanding of convection and oscillations and its application to the special case of the Sun. This {\\it SYNTHESIS} is just an attempt to present what seems to me to be the most important results, to draw attention to forgotten physical processes and to approach some important unsolved questions.

  15. Total Synthesis of Kingianin A

    PubMed Central

    Lim, Hee Nam; Parker, Kathlyn A.

    2014-01-01

    A 12-step synthesis of kingianin A, an inhibitor of the antiapoptotic protein Bcl-xL, is based on a radical cation Diels Alder reaction (RCDA). This approach is thought to be biomimetic. The use of a tether in the key RCDA step controls the regiochemistry of the cycloaddition, leading to the desired core structure and a separable diastereomer. PMID:23273168

  16. Total synthesis of (-)-depyranoversicolamide B.

    PubMed

    Qin, Wen-Fang; Xiao, T; Zhang, D; Deng, Lin-Feng; Wang, Y; Qin, Y

    2015-11-18

    Starting from easily prepared (R)-C3-isoprenylated pyrroloindoline, the C3-isoprenylated indolyl diketopiperazine is prepared by an efficient reductive opening of the pyrrolo ring, and undergoes biomimetic Diels-Alder reaction to generate an anti-adduct as a sole stereoisomer. Oxidation of the indoline moiety to oxindole completes the synthesis of (-)-depyranoversicolamide B. PMID:26393932

  17. 3-Ketoesters by Malonic Synthesis.

    ERIC Educational Resources Information Center

    Pollet, Patrick L.

    1983-01-01

    Discusses the acylation version of malonic synthesis of three-ketoesters. Includes advantages of this method over other methodologies including a final selective removal of the "activating" ester function in such mild conditions that most of the organic functions may survive. (JN)

  18. Analysis and synthesis of laughter

    NASA Astrophysics Data System (ADS)

    Sundaram, Shiva; Narayanan, Shrikanth

    2004-10-01

    There is much enthusiasm in the text-to-speech community for synthesis of emotional and natural speech. One idea being proposed is to include emotion dependent paralinguistic cues during synthesis to convey emotions effectively. This requires modeling and synthesis techniques of various cues for different emotions. Motivated by this, a technique to synthesize human laughter is proposed. Laughter is a complex mechanism of expression and has high variability in terms of types and usage in human-human communication. People have their own characteristic way of laughing. Laughter can be seen as a controlled/uncontrolled physiological process of a person resulting from an initial excitation in context. A parametric model based on damped simple harmonic motion to effectively capture these diversities and also maintain the individuals characteristics is developed here. Limited laughter/speech data from actual humans and synthesis ease are the constraints imposed on the accuracy of the model. Analysis techniques are also developed to determine the parameters of the model for a given individual or laughter type. Finally, the effectiveness of the model to capture the individual characteristics and naturalness compared to real human laughter has been analyzed. Through this the factors involved in individual human laughter and their importance can be better understood.

  19. Digital filter synthesis computer program

    NASA Technical Reports Server (NTRS)

    Moyer, R. A.; Munoz, R. M.

    1968-01-01

    Digital filter synthesis computer program expresses any continuous function of a complex variable in approximate form as a computational algorithm or difference equation. Once the difference equation has been developed, digital filtering can be performed by the program on any input data list.

  20. Sulfur monochloride in organic synthesis

    NASA Astrophysics Data System (ADS)

    Konstantinova, L. S.; Rakitin, O. A.

    2014-03-01

    The data on the reactivity of sulfur monochloride published in the past 15 years have been reviewed and systematized. The review focuses on the synthesis of acyclic and heterocyclic compounds with the use of S2Cl2. The bibliography includes 154 references.

  1. Chronology of a Difficult Synthesis

    ERIC Educational Resources Information Center

    Menger, Fredric M.; Sorrells, Jennifer L.

    2009-01-01

    This article describes a short synthesis and many of the difficulties experienced while carrying it out (e.g., low yields, impurities, racemization, nonrepeatable literature preps, etc.). As such, students will be educated in aspects of synthetic organic chemistry that are often down-played, or even not mentioned, in published syntheses. (Contains…

  2. Synthesis of pure phosphorus nanostructures.

    PubMed

    Winchester, Richard A L; Whitby, Max; Shaffer, Milo S P

    2009-01-01

    To Bi or not to Bi? The synthesis of phosphorus nanorods of two differing morphologies is reported, in both the presence and absence of a bismuth catalyst. Not only do these materials represent a new class of elemental nanorods but they also give valuable insight into the complex allotropy of phosphorus. PMID:19180611

  3. Phytochelatin synthesis in tomato cells

    SciTech Connect

    Goldsbrough, P.; Gupta, S.; Huang, B.; Scheller, H.

    1987-04-01

    Tomato cells that are exposed to cadmium and other heavy metals synthesize phytochelatins (PCs), a family of peptides that bind heavy metals and are structurally related to glutathione (GSH). PCs have the structure (..gamma..-glutamyl-cysteinyl) glycine; for PCs, n=2-10; GSH, n=1. GSH levels decline rapidly in tomato cells exposed to Cd/sup 2 +/. Buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, prevents sustained synthesis of PC. However the addition of GSH to the medium of BSO-treated cells restores PC production. In vivo labeling studies indicate that /sup 35/(S)-cysteine is incorporated into PC via GSH, rather than being added directly to GSH or pre-formed PC. Initial synthesis of PCs is not inhibited by cycloheximide. Tomato cell cultures that are tolerant of high levels of Cd/sup 2 +/ contain large amounts of PCs. However, when sensitive and tolerant cells that have been grown in the absence of Cd/sup 2 +/ are exposed to relatively low concentrations of Cd/sup 2 +/, they synthesize PCs at similar rates. These and other results suggest that, although PCs are necessary, increased PC synthesis is not sufficient for expression of the Cd/sup 2 +/ tolerant phenotype.

  4. IN SEARCH OF A SYNTHESIS.

    ERIC Educational Resources Information Center

    HAWLEY, D.C.

    LANGUAGE INSTRUCTION SHOULD BE A SYNTHESIS OF THE BEST OF ALL METHODS. NO METHODOLOGY OR COMBINATION OF METHODOLOGIES WILL CHANGE THE FACT THAT LEARNING ANOTHER LANGUAGE IS THE ACQUISITION OF A COMPLEX AND DIFFICULT SKILL AND CAN BE ACCOMPLISHED ONLY WITH A GREAT DEAL OF TIME AND WORK ON THE PART OF BOTH TEACHER AND STUDENT. HOWEVER, IF, WITH THE…

  5. Synthesis of single phase magnetite, Fe3O4 nanocrystallites using single source precursor

    NASA Astrophysics Data System (ADS)

    Disale, Sujit D.; Garje, Shivram S.

    2010-10-01

    Nanocrystalline Fe3O4 have been prepared using Fe(benzsczH)2Cl2 (where, benzsczH = benzaldehyde semicarbazone) as a single-source precursor. Fe(benzsczH)2Cl2 was characterized by elemental analyses, molar conductivity measearments, magnetic susceptibility studies, cyclic voltammetry and IR spectroscopy. The pyrolysis and solvothermal decomposition in ethylene glycol of this complex resulted in cubic phase Fe3O4 nanocrystals. These nanocrystals were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis by X-rays, IR spectroscopy and hysteresis loop. XRD shows formation of cubic phase Fe3O4 for nanocrystallites obtained by both the methods. The TEM of nanoparticles obtained by pyrolysis show cubic shape plate-like morphology with average grain size of 54 nm and the nanoparticles obtained from solvothermal decomposition route have spherical shape morphology with average grain size of 16 nm.

  6. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    PubMed Central

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  7. Flow "Fine" Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods.

    PubMed

    Kobayashi, Shū

    2016-02-18

    The concept of flow "fine" synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow "fine" synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society.

  8. Physical synthesis of quantum circuits using templates

    NASA Astrophysics Data System (ADS)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-06-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of "physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  9. Physical synthesis of quantum circuits using templates

    NASA Astrophysics Data System (ADS)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-10-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of " physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  10. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  11. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  12. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Sucha, V.; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  13. Bioinspired Iterative Synthesis of Polyketides

    NASA Astrophysics Data System (ADS)

    Hong, Ran; Zheng, Kuan; Xie, Changmin

    2015-05-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development.

  14. Polyurethane synthesis reactions in asphalts

    SciTech Connect

    Bukowski, A.; Gretkiewicz, J.

    1982-04-01

    A series of asphalt-polyurethane composites was prepared by means of polyurethane synthesis in asphalt and carried out in melt. The applied materials were asphalts of differentiated group components content, polyester polyols of chain structure from linear to strongly branched, 2,4-tolylene diisocyanate, 4,4-methylenebis(phenyl isocyanate), and tinorganic catalyst. The asphalt components react with isocyanates to a minimal degree. The influence of the applied substrates, temperature, and polyurethane content in the system on the basic kinetic relations characterizing the process is presented. Polyurethane synthesis in asphalts does not differ in a fundamental way from the obtaining of polyurethanes, especially when their content in the composition is significant, 20 wt% and more.

  15. Total synthesis of maoecrystal V.

    PubMed

    Zhang, Wei-Bin; Lin, Guang; Shao, Wen-Bin; Gong, Jian-Xian; Yang, Zhen

    2015-04-01

    Maoecrystal V (1) is a novel diterpenoid, which was originally isolated from the leaves of the Chinese medicinal herb Isodon eriocalyx in 2004 by Sun et al.1 It has been found to be selectively cytotoxic towards HeLa cells, with an IC50 value of 20 ng mL(-1) . Significant research efforts have been devoted to the synthesis of maoecrystal V because of its intriguing biological properties, rarity in nature, and complex structural features. Herein, we describe our recent investigations, which have culminated in the total synthesis of (±)-maoecrystal V. The current strategy involved three key steps for the successful construction of the key tetrahydrofuran oxa-bridge skeleton, including a Wessely oxidative dearomatization, a novel intramolecular Diels-Alder reaction, and a Rh(II) -catalyzed O - H insertion reaction. PMID:25504983

  16. Cellulose Synthesis and Its Regulation

    PubMed Central

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis. PMID:24465174

  17. Total Synthesis of Glycosylated Proteins

    PubMed Central

    Brailsford, John; Zhang, Qiang; Shieh, Jae-Hung; Moore, Malcolm A.S.

    2016-01-01

    Glycoproteins are an important class of naturally occurring biomolecules which play a pivotal role in many biological processes. They are biosynthesized as complex mixtures of glycoforms through post-translational protein glycosylation. This fact, together with the challenges associated with producing them in homogeneous form, has hampered detailed structure-function studies of glycoproteins as well as their full exploitation as potential therapeutic agents. By contrast, chemical synthesis offers the unique opportunity to gain access to homogeneous glycoprotein samples for rigorous biological evaluation. Herein, we review recent methods for the assembly of complex glycopeptides and glycoproteins and present several examples from our laboratory towards the total chemical synthesis of clinically relevant glycosylated proteins that have enabled synthetic access to full-length homogeneous glycoproteins. PMID:25805144

  18. Bioinspired iterative synthesis of polyketides

    PubMed Central

    Zheng, Kuan; Xie, Changmin; Hong, Ran

    2015-01-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510

  19. Total Synthesis of Fijiolide A.

    PubMed

    Heinz, Christoph; Cramer, Nicolai

    2016-01-01

    Fijiolide A is a secondary metabolite isolated from a marine-derived actinomycete of the genus Nocardiopsis. It was found to significantly reduce the TNF-α induced activity of the transcription factor NFκB, which is considered a promising target for the treatment of cancer and inflammation-related diseases. We disclose an enantioselective synthesis of fijiolide A enabled by a fully intermolecular, yet regioselective cyclotrimerization of three unsymmetrical alkynes to construct its tetra-substituted arene core. An atropselective macroetherification enables the assembly of the strained [2.6]paracyclophane motif. A late-stage glycosylation of the macrocyclic aglycone at its tertiary alcohol position allowed for the first total synthesis of fijiolide A.

  20. Synthesis of Polycyclic Natural Products

    SciTech Connect

    Tuan Hoang Nguyen

    2003-05-31

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents a worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.

  1. Stereoselective Total Synthesis of (-)-Renieramycin T.

    PubMed

    Yokoya, Masashi; Toyoshima, Ryoko; Suzuki, Toshihiro; Le, Vy H; Williams, Robert M; Saito, Naoki

    2016-05-20

    A stereoselective total synthesis of (-)-Renieramycin T (1t) from a key tetrahydroisoquinoline intermediate previously utilized in our formal total synthesis of Ecteinascidin 743 is described. The synthesis features a concise approach for construction of the pentacyclic framework using a Pictet-Spengler cyclization of bromo-substituted carbinolamine 17, which obviates the regioselectivity problem of the Pictet-Spengler cyclization. The results of cytotoxicity studies are also presented. PMID:27019081

  2. Synthesis of perfluoroalkylether triazine elastomers

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Korus, R. A.

    1980-01-01

    A method of perfluoroalkylether triazine elastomer synthesis is described. To form an elastomer, the resultant polymer is heated in a closed oven at slightly reduced pressures for 1-day periods at 100, 130 and 150 C. A high-molecular-weight perfluoroalkylether triazine elastomer is produced that exhibits thermal and oxidative stability. This material is potentially useful in applications such as high-temperature seals, 'O' rings, and wire enamels.

  3. Synthesis of putative uniflorine A.

    PubMed

    Davis, Andrew S; Pyne, Stephen G; Skelton, Brian W; White, Allan H

    2004-04-30

    A diastereoselective synthesis of the putative structure of the natural product uniflorine A has been achieved by using the Petasis borono-Mannich reaction and ring-closing metathesis as key steps. The NMR data of the synthetic material did not match that reported for the natural product. The structure of the final synthetic product was unequivocally determined by single-crystal X-ray study of its pentaacetate derivative. Thus it was concluded that the proposed structure of uniflorine A is incorrect.

  4. High pressure synthesis gas conversion

    SciTech Connect

    Not Available

    1992-01-01

    A high pressure gas phase fermentation system has been constructed for the biological production of ethanol from coal synthesis gas. The reactors in the system consist of a 650 mL continuous stirred tank reactor and a 1 L continuous column reactor. The reactors are designed for individual or dual operation in series or parallel, with continuous gas and liquid feed. The system is housed in a constant temperature, explosion-proof room, equipped with gas leak detectors.

  5. Effective synthesis of photosensitive oligodeoxynucleotides.

    PubMed

    Ogino, Masayuki; Taya, Yuta; Fujimoto, Kenzo

    2008-01-01

    In this paper, the synthesis of various vinyl substituted photosensitive pyrimidine nucleosides and nucleotides is described; starting from 5-Iodo-2'-deoxyuridine (IdU) or oligodeoxynucleotides (ODN) containing IdU, which has been attached using an automated batch stop-flow microwave apparatus. The utility of the Pd(0) cross-coupling to photosensitive pyrimidine is expanded herein to include the reaction of glass-supported ODN containing IdU under Heck and Suzuki conditions.

  6. Rh-Catalyzed Five-Membered Heterocycle Synthesis

    NASA Astrophysics Data System (ADS)

    Kathiravan, Subban; Nicholls, Ian A.

    The following sections are included: * Introduction * Rhodium-catalyzed nitrogen containing five-membered heterocycle synthesis * Rhodium-catalyzed oxygen containing five-membered heterocycle synthesis * Rhodium-catalyzed sulfur containing five-membered heterocycle synthesis * Rhodium-catalyzed phosphorous containing five-membered heterocycle synthesis * Rhodium-catalyzed silicon containing five-membered heterocycle synthesis * Rhodium-catalyzed synthesis of bis-heterocycles * Conclusions and outlook * References

  7. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  8. A Sustainable Multicomponent Pyrimidine Synthesis.

    PubMed

    Deibl, Nicklas; Ament, Kevin; Kempe, Rhett

    2015-10-14

    Since alcohols are accessible from indigestible biomass (lignocellulose), the development of novel preferentially catalytic reactions in which alcohols are converted into important classes of fine chemicals is a central topic of sustainable synthesis. Multicomponent reactions are especially attractive in organic chemistry as they allow the synthesis of large libraries of diversely functionalized products in a short time when run in a combinatorial fashion. Herein, we report a novel, regioselective, iridium-catalyzed multicomponent synthesis of pyrimidines from amidines and up to three (different) alcohols. This reaction proceeds via a sequence of condensation and dehydrogenation steps which give rise to selective C-C and C-N bond formations. While the condensation steps deoxygenate the alcohol components, the dehydrogenations lead to aromatization. Two equiv of hydrogen and water are liberated in the course of the reactions. PN5P-Ir-pincer complexes, recently developed in our laboratory, catalyze this sustainable multicomponent process most efficiently. A total of 38 different pyrimidines were synthesized in isolated yields of up to 93%. Strong points of the new protocol are its regioselectivity and thus the immediate access to pyrimidines that are highly and unsymmetrically decorated with alkyl or aryl substituents. The combination of this novel protocol with established methods for converting alcohols to nitriles now allows to selectively assemble pyrimidines from four alcohol building blocks and 2 equiv of ammonia.

  9. New frontiers in design synthesis

    NASA Technical Reports Server (NTRS)

    Goldin, D. S.; Venneri, S. L.; Noor, A. K.

    1999-01-01

    The Intelligent Synthesis Environment (ISE), which is one of the major strategic technologies under development at NASA centers and the University of Virginia, is described. One of the major objectives of ISE is to significantly enhance the rapid creation of innovative affordable products and missions. ISE uses a synergistic combination of leading-edge technologies, including high performance computing, high capacity communications and networking, human-centered computing, knowledge-based engineering, computational intelligence, virtual product development, and product information management. The environment will link scientists, design teams, manufacturers, suppliers, and consultants who participate in the mission synthesis as well as in the creation and operation of the aerospace system. It will radically advance the process by which complex science missions are synthesized, and high-tech engineering Systems are designed, manufactured and operated. The five major components critical to ISE are human-centered computing, infrastructure for distributed collaboration, rapid synthesis and simulation tools, life cycle integration and validation, and cultural change in both the engineering and science creative process. The five components and their subelements are described. Related U.S. government programs are outlined and the future impact of ISE on engineering research and education is discussed.

  10. A Sustainable Multicomponent Pyrimidine Synthesis.

    PubMed

    Deibl, Nicklas; Ament, Kevin; Kempe, Rhett

    2015-10-14

    Since alcohols are accessible from indigestible biomass (lignocellulose), the development of novel preferentially catalytic reactions in which alcohols are converted into important classes of fine chemicals is a central topic of sustainable synthesis. Multicomponent reactions are especially attractive in organic chemistry as they allow the synthesis of large libraries of diversely functionalized products in a short time when run in a combinatorial fashion. Herein, we report a novel, regioselective, iridium-catalyzed multicomponent synthesis of pyrimidines from amidines and up to three (different) alcohols. This reaction proceeds via a sequence of condensation and dehydrogenation steps which give rise to selective C-C and C-N bond formations. While the condensation steps deoxygenate the alcohol components, the dehydrogenations lead to aromatization. Two equiv of hydrogen and water are liberated in the course of the reactions. PN5P-Ir-pincer complexes, recently developed in our laboratory, catalyze this sustainable multicomponent process most efficiently. A total of 38 different pyrimidines were synthesized in isolated yields of up to 93%. Strong points of the new protocol are its regioselectivity and thus the immediate access to pyrimidines that are highly and unsymmetrically decorated with alkyl or aryl substituents. The combination of this novel protocol with established methods for converting alcohols to nitriles now allows to selectively assemble pyrimidines from four alcohol building blocks and 2 equiv of ammonia. PMID:26414993

  11. Total chemical synthesis of crambin.

    PubMed

    Bang, Duhee; Chopra, Neeraj; Kent, Stephen B H

    2004-02-11

    Crambin is a small (46 amino acids) protein isolated from the seeds of the plant Crambe abyssinica. Crambin has been extensively used as a model protein for the development of advanced crystallography and NMR techniques and for computational folding studies. We set out to establish synthetic access to crambin. Initially, we synthesized the 46 amino acid polypeptide by native chemical ligation of two distinct sets of peptide segments (15 + 31 and 31 + 15 residues). The synthetic polypeptide chain folded in good yield to give native crambin containing three disulfide bonds. The chemically synthesized crambin was characterized by LC-MS and by 2D-NMR. However, the 31-residue peptide segments were difficult to purify, and this caused an overall low yield for the synthesis. To overcome this problem, we synthesized crambin by the native chemical ligation of three segments (15 + 16 + 15 residues). Total synthesis using the ligation of three segments gave more than a 10-fold increase in yield and a protein product of exceptionally high purity. This work demonstrates the efficacy of chemical protein synthesis by the native chemical ligation of three segments and establishes efficient synthetic access to the important model protein crambin for experimental studies of protein folding and stability.

  12. Video-based crowd synthesis.

    PubMed

    Flagg, Matthew; Rehg, James M

    2013-11-01

    As a controllable medium, video-realistic crowds are important for creating the illusion of a populated reality in special effects, games, and architectural visualization. While recent progress in simulation and motion captured-based techniques for crowd synthesis has focused on natural macroscale behavior, this paper addresses the complementary problem of synthesizing crowds with realistic microscale behavior and appearance. Example-based synthesis methods such as video textures are an appealing alternative to conventional model-based methods, but current techniques are unable to represent and satisfy constraints between video sprites and the scene. This paper describes how to synthesize crowds by segmenting pedestrians from input videos of natural crowds and optimally placing them into an output video while satisfying environmental constraints imposed by the scene. We introduce crowd tubes, a representation of video objects designed to compose a crowd of video billboards while avoiding collisions between static and dynamic obstacles. The approach consists of representing crowd tube samples and constraint violations with a conflict graph. The maximal independent set yields a dense constraint-satisfying crowd composition. We present a prototype system for the capture, analysis, synthesis, and control of video-based crowds. Several results demonstrate the system's ability to generate videos of crowds which exhibit a variety of natural behaviors. PMID:24029912

  13. Video-based crowd synthesis.

    PubMed

    Flagg, Matthew; Rehg, James M

    2013-11-01

    As a controllable medium, video-realistic crowds are important for creating the illusion of a populated reality in special effects, games, and architectural visualization. While recent progress in simulation and motion captured-based techniques for crowd synthesis has focused on natural macroscale behavior, this paper addresses the complementary problem of synthesizing crowds with realistic microscale behavior and appearance. Example-based synthesis methods such as video textures are an appealing alternative to conventional model-based methods, but current techniques are unable to represent and satisfy constraints between video sprites and the scene. This paper describes how to synthesize crowds by segmenting pedestrians from input videos of natural crowds and optimally placing them into an output video while satisfying environmental constraints imposed by the scene. We introduce crowd tubes, a representation of video objects designed to compose a crowd of video billboards while avoiding collisions between static and dynamic obstacles. The approach consists of representing crowd tube samples and constraint violations with a conflict graph. The maximal independent set yields a dense constraint-satisfying crowd composition. We present a prototype system for the capture, analysis, synthesis, and control of video-based crowds. Several results demonstrate the system's ability to generate videos of crowds which exhibit a variety of natural behaviors.

  14. Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure.

    PubMed

    Zeeman, Samuel C; Tiessen, Axel; Pilling, Emma; Kato, K Lisa; Donald, Athene M; Smith, Alison M

    2002-06-01

    The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying (14)CO(2) to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that, even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained "growth rings" with a periodicity of 200 to 300 nm. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis

  15. Selective synthesis of [7]- and [8]cycloparaphenylenes.

    PubMed

    Sibbel, Friederike; Matsui, Katsuma; Segawa, Yasutomo; Studer, Armido; Itami, Kenichiro

    2014-01-28

    Cycloparaphenylenes (CPPs) are a remarkable class of hoop-shaped conjugated macrocycles with inimitable properties. Herein we describe a divergent synthesis of [7]CPP and [8]CPP. Furthermore we present the first crystal structure of [7]CPP. Thus, we have now established the size-selective synthesis of [n]CPP (n = 7-16) in a uniformed cyclohexane-based method. PMID:24310620

  16. Synthesis Of B, B', B"-Trichloroborazine

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Chen, Timothy S.; Hsu, Ming-Ta S.

    1988-01-01

    Simplified, relatively safe, and economical synthesis of B, B', B"-trichloroborazine easily practiced in standard organic-chemistry laboratory. Yield is 20 to 30 percent, fairly acceptable value in view of inherent difficulty of synthesizing borazines. New synthesis has potential use in industry.

  17. Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces.

    PubMed

    Wooh, Sanghyuk; Huesmann, Hannah; Tahir, Muhammad Nawaz; Paven, Maxime; Wichmann, Kristina; Vollmer, Doris; Tremel, Wolfgang; Papadopoulos, Periklis; Butt, Hans-Jürgen

    2015-12-01

    A method for mesoporous supraparticle synthesis on superamphiphobic surfaces is designed. Therefore, supraparticles assembled with nanoparticles are synthesized by the evaporation of nanoparticle dispersion drops on the superamphiphobic surface. For synthesis, no further purification is required and no organic solvents are wasted. Moreover, by changing the conditions such as drop size and concentration, supraparticles of different sizes, compositions, and architectures are fabricated.

  18. Web-Mediated Knowledge Synthesis for Educators

    ERIC Educational Resources Information Center

    DeSchryver, Michael

    2015-01-01

    Ubiquitous and instant access to information on the Web is challenging what constitutes 21st century literacies. This article explores the notion of Web-mediated knowledge synthesis, an approach to integrating Web-based learning that may result in generative synthesis of ideas. This article describes the skills and strategies that may support…

  19. Synthesis of a jojoba bean disaccharide.

    PubMed

    Kornienko, A; Marnera, G; d'Alarcao, M

    1998-08-01

    A synthesis of the disaccharide recently isolated from jojoba beans, 2-O-alpha-D-galactopyranosyl-D-chiro-inositol, has been achieved. The suitably protected chiro-inositol unit was prepared by an enantiospecific synthesis from L-xylose utilizing SmI2-mediated pinacol coupling as a key step.

  20. Convergent formal synthesis of (±)-roseophilin.

    PubMed

    Song, Chuanjun; Liu, Hui; Hong, Meiling; Liu, Yuanyuan; Jia, Feifei; Sun, Li; Pan, Zhenliang; Chang, Junbiao

    2012-01-01

    A facile convergent synthesis of the tricyclic core 2 of roseophilin is described, which represents the shortest route so far for the formal synthesis of roseophilin. The key step was a tandem pyrrole acylation-Nazarov cyclization reaction to form the cyclopenta[b]pyrrole moiety 4. PMID:22098172

  1. Lactobacillus assisted synthesis of titanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Jha, Anal K.; Kulkarni, A. R.

    2007-05-01

    An eco-friendly lactobacillus sp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40 60 nm are found.

  2. Accelerate synthesis in ecology and environmental sciences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthesis of diverse knowledge is a central part of all sciences, but especially those such as ecology and environmental sciences which draw information from many disciplines. Research and education in ecology are intrinsically synthetic, and synthesis is increasingly needed to find solutions for en...

  3. Synthesizing Evidence: Synthesis Methods for Evidence Clearinghouses

    ERIC Educational Resources Information Center

    Valentine, Jeff; Lau, Timothy

    2015-01-01

    Following the theme of the first two presentations, this presentation will focus on the choices available for research synthesis when summarizing research evidence. The presenters will describe the current research synthesis practice of the What Works Clearinghouse (WWC) as well as several alternative models, including inverse-variance weighted…

  4. SCMC for SLA: A Research Synthesis

    ERIC Educational Resources Information Center

    Sauro, Shannon

    2011-01-01

    This research synthesis explores the role of synchronous computer-mediated communication (SCMC) for second language acquisition (SLA). Using Hymes' (1971) notion of communicative competence and Canale and Swain's (1980; Canale, 1983) subsequent framework for communicative language teaching, the synthesis examines the research trends, methods, and…

  5. Sustainable Synthesis of Nanomaterials Using Microwave irradiation

    EPA Science Inventory

    The presentation summarizes our recent activity in MW-assisted synthesis of nanomaterials under benign conditions. Shape-controlled aqueous synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using -D-glucose, sucrose, and maltose will be...

  6. Synthesis and bioactivity of Luffarin I.

    PubMed

    Urosa, Aitor; Marcos, Isidro S; Díez, David; Lithgow, Anna; Plata, Gabriela B; Padrón, José M; Basabe, Pilar

    2015-04-01

    The first synthesis of Luffarin I, sesterterpenolide isolated from sponge Luffariella geometrica, has been accomplished from commercially available sclareol. The key strategy involved in this synthesis is the diastereoselective reduction of an intermediate ketone. Luffarin I against human solid tumor cell lines showed antiproliferative activities (GI50) in the range 12-17 μM. PMID:25903281

  7. A concise and stereoselective synthesis of squalamine.

    PubMed

    Zhang, Dong-Hui; Cai, Feng; Zhou, Xiang-Dong; Zhou, Wei-Shan

    2003-09-01

    [reaction: see text] A short and highly stereoselective synthesis of the novel steroid squalamine (1) was accomplished in nine steps from easily available methyl chenodeoxylcholanate 2. Our synthesis featured improved dehydrogenation of 4 followed by conjugate reduction to construct the trans AB-ring system and efficient asymmetric isopropylation of aldehyde 6 to introduce the C-24R-hydroxyl group. PMID:12943401

  8. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  9. Astrobiology - The New Synthesis

    NASA Astrophysics Data System (ADS)

    Sik, A.; Simon, T.

    á vált sötétebb helyekre való költöztetése: mélyen a föld alá helyezik, a forró vulkáni kőzetek hasadékaiba, ahol bőségesen találhatott magának ként, vasat, hidrogént és szenet. A genetikai bizonyítékok alapján a hő- és mélységkedvelők es- 4 nek legközelebb az egyetemes őshöz. [16]. The synthesis Mindezek alapján a földi extremofilek vizsgálata során deríthetjük ki, hogy más égitesteken (egyelőre a Naprendszerben) hol kell keresnünk az életet, és mit kell keresnünk a planetológiai kutatások során egyre jobban megismert szélsőséges környezetekben. Segítségükkel megtudhatjuk, melyek azok az alak- tani, geokémiai, esetleg biokémiai jegyek, amelyek életre utalhatnak; melyek az élet azon alapvető jellemzői, amelyek elég általánosak és biztonsággal kimu- tathatók, milyen műszerekkel kell felszerelnünk a jövő űrszondáit, milyen módszereket kell alkalmaznunk, hogy sikerrel kutathassunk a Földön kívüli élet után. References [1] H. Hargitai et. al., XXXIII. LPSC (2002), Houston, #1261; [2] Origins Roadmap, 2000, JPL; [3] http://www.obspm.fr/encycl/catalog.html [4] http://www.physics.sfsu.edu/~gmarcy/planetsearch/ upsand/upsand.html [5] http://tpf.jpl.nasa.gov/ [6] A. Kereszturi, and A. Sik, XXXI. LPSC (2000), Houston, #1216; [7] S. W. Squyres et. al. (1992) in H. H. Kieffer, et. al.: Mars, University of Arizona Press, Tucson, 523-554; [8] http://www.jpl.nasa.gov/europaorbiter/ [9] www.nineplanets.org [10] http://www.jpl.nasa.gov/cassini/ [11] http://www- curator.jsc.nasa.gov/curator/antmet/ marsmets/alh84001/sample.htm [12] P. Davies: The fifth miracle - The search for the origin of life (1998), Orion; [13] M. T. Madigan and B. L. Marrs: Extremophiles, Scientific American (1997), 276, 82-87; [14] J. A. Lake et al.: Methanococcus Genome, Science (1996), 274, 901-905; [15] N. C. Kyrpides and G. J. Olsen: Archaeal and bacterial hyperthermophiles: Horizontal gene exchange or common ancestry?, Trends in

  10. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  11. Assessment of structural diversity in combinatorial synthesis.

    PubMed

    Fergus, Suzanne; Bender, Andreas; Spring, David R

    2005-06-01

    This article covers the combinatorial synthesis of small molecules with maximal structural diversity to generate a collection of pure compounds that are attractive for lead generation in a phenotypic, high-throughput screening approach. Nature synthesises diverse small molecules, but there are disadvantages with using natural product sources. The efficient chemical synthesis of structural diversity (and complexity) is the aim of diversity-oriented synthesis, and recent progress is reviewed. Specific highlights include a discussion of strategies to obtain structural diversity and an analysis of molecular descriptors used to classify compounds. The assessment of how successful one synthesis is versus another is subjective, therefore we test-drive software to assess structural diversity in combinatorial synthesis, which is freely available via a web interface.

  12. Texture synthesis and transfer from multiple samples

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Zhao, Qinping

    2003-09-01

    Texture Mapping plays a very important role in Computer Graphics. Texture Synthesis is one of the main methods to obtain textures, it makes use of sample textures to generate new textures. Texture Transfer is based on Texture Synthesis, it renders objects with textures taken from different objects. Currently, most of Texture Synthesis and Transfer methods use a single sample texture. A method for Texture Synthesis adn Transfer from multi samples was presented. For texture synthesis, the L-shaped neighborhood seaching approach was used. Users specify the proportion of each sample, the number of seed points, and these seed points are scattered randomly according to their samples in horizontal and vertical direction synchronously to synthesize textures. The synthesized textures are very good. For texture transfer, the luminance of the target image and the sample textures are analyzed. This procedure is from coarse to fine, and can produce a visually pleasing result.

  13. Depth-optimized reversible circuit synthesis

    NASA Astrophysics Data System (ADS)

    Arabzadeh, Mona; Saheb Zamani, Morteza; Sedighi, Mehdi; Saeedi, Mehdi

    2013-04-01

    In this paper, simultaneous reduction of circuit depth and synthesis cost of reversible circuits in quantum technologies with limited interaction is addressed. We developed a cycle-based synthesis algorithm which uses negative controls and limited distance between gate lines. To improve circuit depth, a new parallel structure is introduced in which before synthesis a set of disjoint cycles are extracted from the input specification and distributed into some subsets. The cycles of each subset are synthesized independently on different sets of ancillae. Accordingly, each disjoint set can be synthesized by different synthesis methods. Our analysis shows that the best worst-case synthesis cost of reversible circuits in the linear nearest neighbor architecture is improved by the proposed approach. Our experimental results reveal the effectiveness of the proposed approach to reduce cost and circuit depth for several benchmarks.

  14. REGULATION OF CELLULAR ANTIBODY SYNTHESIS

    PubMed Central

    Möller, Göran

    1968-01-01

    Transfer of spleen cells from mice immunized against sheep red blood cells (SRBC) into irradiated (600 R) nonimmune, syngeneic mice in the presence of antigen resulted in excessive cellular 7S production 7 days later. The number of 7S plaque-forming cells usually exceeded 106 per spleen and the mean proportion varied between 1 and 70%. In occasional animals all spleen cells were producing antibodies to SRBC. Serum antibody synthesis was also excessively increased, the titers in agglutination after 2-ME treatment and in hemolysis varying between 215 and 225. The generation time of the 7S PFC was found to be 9.6 hr in the secondary hosts. It seemed possible that the excessive production of 7S PFC and antibodies in the irradiated nonimmune recipients was caused by the absence of feedback inhibition of the immune response by antibody, a mechanism which would normally function to restrict antibody synthesis. This conclusion was strengthened by the demonstration that transfer of antigen-stimulated immune cells into actively or passively immunized irradiated recipients resulted in a marked suppression of cellular 7S synthesis. Serial transfers of antigen-stimulated immune cell populations in irradiated hosts resulted in an equally high number of 7S PFC during the first four transfer generations. However, after the fifth to seventh transfer generation the number of 7S PFC rapidly declined and disappeared within one to three passages. Serum antibodies and 7S PFC declined in parallel during the last transfer generations. Further passages of antigen-stimulated spleen cells lacking 7S PFC did not lead to reappearance of PFC. Thus, antigen-sensitive cells have a limited lifespan and/or multiplication capacity. From the hypothesis that the 7S PFC developed by division from antigen-sensitive precursors it was calculated that 38–40 divisions occurred, Thus, one antigen-sensitive precursor has the potential to give rise to 1012 7S PFC. PMID:5635380

  15. Synthesis of chemically modified DNA.

    PubMed

    Shivalingam, Arun; Brown, Tom

    2016-06-15

    Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion. PMID:27284032

  16. Total synthesis of the ammosamides.

    PubMed

    Hughes, Chambers C; Fenical, William

    2010-03-01

    The ammosamides A-C are chlorinated pyrrolo[4,3,2-de]quinoline metabolites isolated from the marine-derived Streptomyces strain CNR-698. The natural products, which possess a dense array of heteroatoms, were synthesized in 17-19 steps from 4-chloroisatin. That the five nitrogen atoms were introduced at the appropriate time and in a suitable oxidation state was key to the success of the total synthesis. Compared to synthetic deschloro ammosamide B, natural ammosamide B is much less susceptible to oxidative degradation.

  17. Chitin synthesis and fungal pathogenesis

    PubMed Central

    Lenardon, Megan D; Munro, Carol A; Gow, Neil AR

    2010-01-01

    Chitin is an essential part of the carbohydrate skeleton of the fungal cell wall and is a molecule that is not represented in humans and other vertebrates. Complex regulatory mechanisms enable chitin to be positioned at specific sites throughout the cell cycle to maintain the overall strength of the wall and enable rapid, life-saving modifications to be made under cell wall stress conditions. Chitin has also recently emerged as a significant player in the activation and attenuation of immune responses to fungi and other chitin-containing parasites. This review summarises latest advances in the analysis of chitin synthesis regulation in the context of fungal pathogenesis. PMID:20561815

  18. Machine‐Assisted Organic Synthesis

    PubMed Central

    Fitzpatrick, Daniel E.; Myers, Rebecca M.; Battilocchio, Claudio; Ingham, Richard. J.

    2015-01-01

    Abstract In this Review we describe how the advent of machines is impacting on organic synthesis programs, with particular emphasis on the practical issues associated with the design of chemical reactors. In the rapidly changing, multivariant environment of the research laboratory, equipment needs to be modular to accommodate high and low temperatures and pressures, enzymes, multiphase systems, slurries, gases, and organometallic compounds. Additional technologies have been developed to facilitate more specialized reaction techniques such as electrochemical and photochemical methods. All of these areas create both opportunities and challenges during adoption as enabling technologies. PMID:26193360

  19. Enantioselective Total Synthesis of (+)-Reserpine

    PubMed Central

    Rajapaksa, Naomi S.; McGowan, Meredeth A.; Rienzo, Matthew

    2013-01-01

    A catalytic, enantioselective synthesis of (+)-reserpine is reported. The route features a highly diastereoselective, chiral catalyst-controlled formal aza-Diels–Alder reaction between a 6-methoxytryptamine-derived dihydro-β-carboline and an enantioenriched α-substituted enone to form a key tetracyclic intermediate. This approach addresses the challenge of setting the C3 stereogenic center by using catalyst control. Elaboration of the tetracycle to (+)-reserpine includes an intramolecular aldol cyclization and a highly diastereoselective hydrogenation of a sterically hindered enoate. PMID:23331099

  20. Concise Synthesis of Functionalized Benzocyclobutenones

    PubMed Central

    Chen, Peng-hao; Savage, Nikolas A.; Dong, Guangbin

    2014-01-01

    A concise approach to access functionalized benzocyclobutenones from 3-halophenol derivatives is described. This modified synthesis employs a [2+2] cycloaddition between benzynes generated from dehydrohalogenation of aryl halides using LiTMP and acetaldehyde enolate generated from n-BuLi and THF, followed by oxidation of the benzocyclobutenol intermediates to provide benzocyclobutenones. The [2+2] reaction can be run on a 10-gram scale with an increased yield. A number of functional groups including alkenes and alkynes are tolerated. Coupling of benzynes with ketene silyl acetals to give 8-substituted benzocyclobutenones is also demonstrated. PMID:24926108

  1. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  2. Research on Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Lobeck, William E.

    2002-01-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  3. Research on Intelligent Synthesis Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Loftin, R. Bowen

    2002-12-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  4. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis. PMID:23030150

  5. Catalytic asymmetric synthesis of thiols.

    PubMed

    Monaco, Mattia Riccardo; Prévost, Sébastien; List, Benjamin

    2014-12-10

    The synthesis of enantiopure thiols is of significant interest for industrial and academic applications. However, direct asymmetric approaches to free thiols have previously been unknown. Here we describe a novel organocascade that is catalyzed by a confined chiral phosphoric acid and furnishes O-protected β-hydroxythiols with excellent enantioselectivities. The method relies on an asymmetric thiocarboxylysis of meso-epoxides, followed by an intramolecular trans-esterification reaction. By varying the reaction conditions, the intermediate thioesters can also be obtained chemoselectively and enantioselectively.

  6. Pilot-optimal augmentation synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1978-01-01

    An augmentation synthesis method usable in the absence of quantitative handling qualities specifications, and yet explicitly including design objectives based on pilot-rating concepts, is presented. The algorithm involves the unique approach of simultaneously solving for the stability augmentation system (SAS) gains, pilot equalization and pilot rating prediction via optimal control techniques. Simultaneous solution is required in this case since the pilot model (gains, etc.) depends upon the augmented plant dynamics, and the augmentation is obviously not a priori known. Another special feature is the use of the pilot's objective function (from which the pilot model evolves) to design the SAS.

  7. The Synthesis Paradigm in Genetics

    PubMed Central

    Rice, William R.

    2014-01-01

    Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics—and other fields of biology—are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous “-omics” data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time. PMID:24496401

  8. The synthesis paradigm in genetics.

    PubMed

    Rice, William R

    2014-02-01

    Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics--and other fields of biology--are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous "-omics" data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time.

  9. Synthesis of elusive chloropnictenium ions.

    PubMed

    Hering-Junghans, Christian; Thomas, Max; Villinger, Alexander; Schulz, Axel

    2015-04-27

    This work describes the synthesis and full characterization of elusive chloropnictenium ion salts of the type [(R)Ar*N(SiMe)ECl][A] ((R)Ar* = 2,6-(CHPh2)-4-R-C6H2, R = Me, tBu; E = Sb, Bi; A(-) = GaCl4, Al(OCH(CF3)2)4). In these species the cation is significantly stabilized by weak arene interactions to flanking phenyl groups of the (R)Ar* moiety. In this context the bonding situation has been studied by computational means and the reactivity towards the Lewis base 4-dimethylaminopyridine (dmap) was investigated.

  10. Recent advances in antenna synthesis.

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.

    1973-01-01

    A technique for the synthesis of planar aperture antennas has been developed. It applies equally well to continuous or array type apertures. Patterns with shaped main beams and complex sidelobe structures can be synthesized. The method involves applying corrections iteratively and converging toward the desired pattern. The iteration process terminates when the synthesized pattern approximates the desired pattern to within a specified tolerance. A computer program has been written to perform all calculations. The source distribution which is required to produce the synthesized pattern is provided as output. The method is such that patterns requiring complex source distributions will not be synthesized (such as superdirective patterns).

  11. The total synthesis of (-)-nitidasin.

    PubMed

    Hog, Daniel T; Huber, Florian M E; Mayer, Peter; Trauner, Dirk

    2014-08-01

    Nitidasin is a pentacyclic sesterterpenoid with a rare 5-8-6-5 carbon skeleton that was isolated from the Peruvian folk medicine "Hercampuri". It belongs to a small class of sesterterpenoids that feature an isopropyl trans-hydrindane moiety fused to a variety of other ring systems. As a first installment of our general approach toward these natural products, we report the total synthesis of the title compound. Our stereoselective, convergent route involves the addition of a complex alkenyl lithium compound to a trans-hydrindanone, followed by chemoselective epoxidation, ring-closing olefin metathesis, and redox adjustment.

  12. Total Synthesis of the Hamigerans.

    PubMed

    Li, Xiaojun; Xue, Dongsheng; Wang, Cheng; Gao, Shuanhu

    2016-08-16

    The first total synthesis of hamigerans D, G, L, and N-Q has been accomplished. A convergent approach was used to build the basic tricarbocyclic ring system bearing a 5-6-6 structure. A sequence of oxidative cleavage, homologation, and ring regeneration provided access to the 5-7-6 skeleton of hamigeran G. Based on the biogenetic hypothesis, elegant and highly efficient biomimetic transformations of hamigeran G into hamigerans D, N-Q, and L were achieved. PMID:27390907

  13. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis.

  14. Cellulose Synthesis in Agrobacterium tumefaciens

    SciTech Connect

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  15. fsclean: Faraday Synthesis CLEAN imager

    NASA Astrophysics Data System (ADS)

    Bell, M. R.; Ensslin, T. A.

    2015-06-01

    Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.

  16. Enantioselective synthesis of endohedral metallofullerenes.

    PubMed

    Sawai, Koji; Takano, Yuta; Izquierdo, Marta; Filippone, Salvatore; Martín, Nazario; Slanina, Zdenek; Mizorogi, Naomi; Waelchli, Markus; Tsuchiya, Takahiro; Akasaka, Takeshi; Nagase, Shigeru

    2011-11-01

    Endohedral metallofullerenes are promising materials in biomedical and material sciences. In particular, they are of interest as agents for magnetic resonance imaging (MRI), photovoltaic devices, and semimetallic components. The synthesis of chiral endofullerenes represents one step further in the potential use of these carbon allotropes; however, this step has not been addressed so far. In this regard, enantiopure endofullerenes are expected to open new avenues in fields in which chirality is a key issue. Here, the synthesis and characterization of the first chiral endohedral metallofullerenes, namely, chiral bis-adducts of La@C(72), are reported. Eight optically active isomers were obtained by enantioselective 1,3-dipolar cycloaddition of a N-metalated azomethine ylide onto a non-isolated-pentagon rule metallofullerene derivative, La@C(72)(C(6)H(3)Cl(2)), catalyzed by a copper chiral complex. The chiral bis-adducts of La@C(72), isolated by nonchiral HPLC, showed optical purities as high as 98% as revealed by the remarkable positive or negative Cotton effects observed in the circular dichroic spectra.

  17. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  18. Linguistic aspects of speech synthesis.

    PubMed

    Allen, J

    1995-10-24

    The conversion of text to speech is seen as an analysis of the input text to obtain a common underlying linguistic description, followed by a synthesis of the output speech waveform from this fundamental specification. Hence, the comprehensive linguistic structure serving as the substrate for an utterance must be discovered by analysis from the text. The pronunciation of individual words in unrestricted text is determined by morphological analysis or letter-to-sound conversion, followed by specification of the word-level stress contour. In addition, many text character strings, such as titles, numbers, and acronyms, are abbreviations for normal words, which must be derived. To further refine these pronunciations and to discover the prosodic structure of the utterance, word part of speech must be computed, followed by a phrase-level parsing. From this structure the prosodic structure of the utterance can be determined, which is needed in order to specify the durational framework and fundamental frequency contour of the utterance. In discourse contexts, several factors such as the specification of new and old information, contrast, and pronominal reference can be used to further modify the prosodic specification. When the prosodic correlates have been computed and the segmental sequence is assembled, a complete input suitable for speech synthesis has been determined. Lastly, multilingual systems utilizing rule frameworks are mentioned, and future directions are characterized. PMID:7479807

  19. Understanding Synthesis Across Disciplines to Improve Nursing Education.

    PubMed

    Blondy, Laurie C; Blakeslee, Ann M; Scheffer, Barbara K; Rubenfeld, M Gaie; Cronin, Brenda M; Luster-Turner, Rose

    2016-06-01

    Nursing students must learn higher-order thinking skills of analysis and synthesis to manage complex data for decision making in healthcare. Teaching synthesis, however, is challenging and elusive due to lack of understanding of the concept and an explicit pedagogy for teaching it. A qualitative, multi-phased research project was designed to gain understanding of what synthesis is, how professionals acquire synthesis skills, and how to best teach synthesis. The first phase explored interdisciplinary descriptions of synthesis. Three focus groups were conducted, and interdisciplinary participants responded to several questions. Several themes emerged suggesting that synthesis depends on cognitive skills and competencies, situational and contextual factors, preparation and knowledge acquisition skills, interpersonal and interaction skills, and personal qualities. Participants also supported use of multi-modal teaching strategies to reinforce students' use of synthesis in learning. This project provided a beginning understanding of the synthesis process, revealing striking similarities in synthesis across professional disciplines. PMID:26689219

  20. Understanding Synthesis Across Disciplines to Improve Nursing Education.

    PubMed

    Blondy, Laurie C; Blakeslee, Ann M; Scheffer, Barbara K; Rubenfeld, M Gaie; Cronin, Brenda M; Luster-Turner, Rose

    2016-06-01

    Nursing students must learn higher-order thinking skills of analysis and synthesis to manage complex data for decision making in healthcare. Teaching synthesis, however, is challenging and elusive due to lack of understanding of the concept and an explicit pedagogy for teaching it. A qualitative, multi-phased research project was designed to gain understanding of what synthesis is, how professionals acquire synthesis skills, and how to best teach synthesis. The first phase explored interdisciplinary descriptions of synthesis. Three focus groups were conducted, and interdisciplinary participants responded to several questions. Several themes emerged suggesting that synthesis depends on cognitive skills and competencies, situational and contextual factors, preparation and knowledge acquisition skills, interpersonal and interaction skills, and personal qualities. Participants also supported use of multi-modal teaching strategies to reinforce students' use of synthesis in learning. This project provided a beginning understanding of the synthesis process, revealing striking similarities in synthesis across professional disciplines.

  1. Bioinspired synthesis of magnetic nanoparticles

    SciTech Connect

    David, Anand

    2009-01-01

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall

  2. Abiogenic synthesis on terrestrial orbit

    NASA Astrophysics Data System (ADS)

    Simakov, Michael B.; Kuzicheva, Evgenia; Gontareva, Natalia

    Meteorites probably played a central role in the evolution of life. Due to the structure, they tend to adsorb organic compounds and catalyze a variety of organic reactions critical to scenarios of life’s origins. We have shown experimentally that extraterrestrial minerals can catalyze the formation of peptides and nucleotides. The present study was performed onboard different Russian space stations (BION, COSMOS, and MIR) with various duration, altitude, and radiation conditions. Irradiation of solid samples, free or admixed with certain minerals, was the major task of future space flight experiments, planned for performing onboard Russian space satellite Bion-M. The «simulated space ice conditions» experiments have shown the synthesis of simple biochemical compounds in the form of amino acid’s precursors and pyrimidine bases (uracil, cyrosine and thymine) of the nucleic acids. Our investigation dealt with further reaction of nucleic acid components to nucleotides - main components of RNA and DNA, and single aminoacids to oligopeptides. We investigated two types of reactions: (1) abiogenic synthesis of nucleotides from mixtures of nucleoside + inorganic phosphate; (2) abiogenic synthesis of dipeptides from mixtures of simple amino acids. The reaction mixture in the form of a solid film contains (1) nucleoside and dihydrogen phosphate; (2) two different amino acids. Seven different nucleosides (thymidine, cytidine, uracil, adenosine or deoxyadenosine, guanosine or deoxyguanosine) and four mixtures of aromatic (tyrosine or triptophan) and aliphatic (glycine or alanine) amino acids were investigated. Mixtures were irradiated as solid films with different sources of energy: (1) VUV-light of 145 nm; (2) high energy protons (2-6 MeV); and (3) were installed on the surface of biosputnik in outstanding container when they were exposed to the action of all spectra of the open space energy sources during the entire time of flight. We have shown experimentally that the

  3. T-2 mycotoxin inhibits mitochondrial protein synthesis

    SciTech Connect

    Pace, J.G.; Watts, M.R.; Canterbury, W.J.

    1988-01-01

    The authors investigated the effect of T-2 toxin on rat liver mitochondrial protein synthesis. Isolated rat liver mitochondria were supplemented with an S-100 supernatant from rat liver and an external ATP-generating system. An in-vitro assay employing cycloheximide, and inhibitor of cytoplasmic protein synthesis, and chloramphenicol, and inhibitor of mitochondrial protein synthesis, to distinguish mitochondrial protein synthesis from the cytoplasmic process. Amino acid incorporation into mitochondria was dependent on the concentration of mitochondria and was inhibited by chloramphenicol. The rate of uptake of tritium leucine into mitochondrial protein was unaffected by the addition of T-2 toxin and was not a rate-limiting step in incorporation. However, 0.02 micrograms/ml of T-2 toxin decreased the rate of protein synthesis inhibition correlated with the amount of T-2 toxin taken up by the mitochondria. While T-2 toxin is known to inhibit eukaryotic protein synthesis, this is the first time T-2 was shown to inhibit mitochondrial protein synthesis.

  4. Synthesis of nano anatase for titanosilicate ETS-10 synthesis

    NASA Astrophysics Data System (ADS)

    Shafeque, Shihara

    Functionalized textiles present a vast and growing niche in the global textile market at US $400 billion [1, 2]. Engelhard Titanium Silicate 10 (ETS-10), a photocatalytic zeo-type material if coated on textiles, is expected to impart useful properties similar to TiO2, such as stain-resistant, odor repellant, bactericidal and enhanced UV protection [3, 4]. Typically, small ETS-10 crystals of size ˜300-800 nm are synthesized using solid titania (e.g., anatase or P25) sources [5, 6, 7]. However, smaller ETS-10 crystals are required for a uniform surface coating with highly effective surface area. The dissolution of titania particles (i.e., their size) is hypothesized to be important in small ETS-10 crystal formation [5, 6, 7]. Nano anatase was synthesized by modification of two methods: direct precipitation [7] and sol-gel synthesis [3]. Analysis by XRD confirmed that both methods produced nano anatase of crystallite size ˜4-5 nm. However, FE-SEM analysis showed that product from direct precipitation, existed as intergrown spheroidal particles with size ˜1.0 mum. These particles dispersed poorly in deionized water. Therefore, the best nano anatase samples were from sol-gel synthesis in two forms, dry powder and colloidal anatase. ETS-10 synthesis was investigated using two methods adopted from literature [6, 7]. The method of Yoon and co-workers [7], with nano anatase in a molar composition of 5.5TEOS: TiO2: 8.4NaOH: 1.43KF: 350H2O: 2.2H2SO4 produced unknown phase(s) with some ETS-10 and quartz. Using colloidal anatase with molar composition 5.5TEOS:1.0TiO 2:8.4NaOH:1.43KF:400H2O:2.2H2SO4 also produced unknown phase(s). The method of Anderson and co-workers [6] with nano anatase powder in a molar composition of 5.5SiO2: TiO 2: 5.2Na2O: 0.5K2O: 113H2O produced quartz with ETS-10 impurity. When colloidal anatase was used, with molar composition TiO2:5.5SiO2:5.2Na2O:0.5K2O:332H 2O, unreacted anatase and quartz were formed. It was hypothesized that the very low

  5. Green chemistry oriented organic synthesis in water.

    PubMed

    Simon, Marc-Olivier; Li, Chao-Jun

    2012-02-21

    The use of water as solvent features many benefits such as improving reactivities and selectivities, simplifying the workup procedures, enabling the recycling of the catalyst and allowing mild reaction conditions and protecting-group free synthesis in addition to being benign itself. In addition, exploring organic chemistry in water can lead to uncommon reactivities and selectivities complementing the organic chemists' synthetic toolbox in organic solvents. Studying chemistry in water also allows insight to be gained into Nature's way of chemical synthesis. However, using water as solvent is not always green. This tutorial review briefly discusses organic synthesis in water with a Green Chemistry perspective. PMID:22048162

  6. Stereoselective synthesis of (+)-loline alkaloid skeleton.

    PubMed

    Miller, Kelsey E; Wright, Anthony J; Olesen, Margaret K; Hovey, M Todd; Scheerer, Jonathan R

    2015-02-01

    The loline alkaloids present a compact polycyclic pyrrolizidine skeleton and contain a strained five-membered ethereal bridge, structural features that have proven challenging for synthetic chemists to incorporate since the discovery of this natural product family more than 100 years ago. These alkaloids are produced by mutualistic fungal symbionts (endophytes) living on certain species of pasture grasses and protect the host plant from insect herbivory. The asymmetric total synthesis of loline alkaloids is reported and extends our first-generation (racemic) synthesis of this alkaloid family. Key to the synthesis is a diastereoselective tethered aminohydroxylation of a homoallylic carbamate function and a Petasis Borono-Mannich addition.

  7. Gardimycin, a New Antibiotic Inhibiting Peptidoglycan Synthesis

    PubMed Central

    Somma, Sergio; Merati, Wilma; Parenti, Francesco

    1977-01-01

    Gardimycin, a new antibiotic, at 100 μg/ml, specifically inhibited cell wall synthesis and induced accumulation of uridine 5′-diphosphate-N-acetylmur-amylpentapeptide in whole cells of Bacillus subtilis. The antibiotic was active in a particulate enzyme preparation from Bacillus stearothermophilus: 60 μg/ml caused 50%, and 200μg/ml caused 100%, inhibition of peptidoglycan synthesis. Suppression of peptidoglycan synthesis was accompanied by parallel accumulation of the lipid intermediate. This mechanism of action is discussed in comparison with those of other antibiotics that are known to inhibit bacterial cell wall biosynthesis. PMID:404960

  8. Total Synthesis of (-)-Nakadomarin A.

    PubMed

    Clark, J Stephen; Xu, Chao

    2016-03-18

    A highly efficient 12-step synthesis of the marine alkaloid (-)-nakadomarin A has been accomplished. The key advanced intermediate, a tetracyclic ketone derivative, was constructed in just seven steps using a sequence that includes an asymmetric Pauson-Khand reaction, an Overman rearrangement reaction, a ring-closing metathesis reaction, and an amination reaction. Late introduction of the furan ring during the synthesis of (-)-nakadomarin A means that the key tetracyclic ketone derivative has the potential to serve as an advanced intermediate for the synthesis of related marine alkaloids. PMID:26923079

  9. Synthesis of cyanopyridine based conjugated polymer.

    PubMed

    Hemavathi, B; Ahipa, T N; Pillai, Saju; Pai, Ranjith Krishna

    2016-06-01

    This data file contains the detailed synthetic procedure for the synthesis of two new cyanopyridine based conjugated polymer P1 and P2 along with the synthesis of its monomers. The synthesised polymers can be used for electroluminescence and photovoltaic (PV) application. The physical data of the polymers are provided in this data file along with the morphological data of the polymer thin films. The data provided here are in association with the research article entitled 'Cyanopyridine based conjugated polymer-synthesis and characterisation' (Hemavathi et al., 2015) [3]. PMID:27158642

  10. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  11. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  12. Plasma-Assisted Synthesis of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Lim, San Hua; Luo, Zhiqiang; Shen, Zexiang; Lin, Jianyi

    2010-09-01

    The application of plasma-enhanced chemical vapour deposition (PECVD) in the production and modification of carbon nanotubes (CNTs) will be reviewed. The challenges of PECVD methods to grow CNTs include low temperature synthesis, ion bombardment effects and directional growth of CNT within the plasma sheath. New strategies have been developed for low temperature synthesis of single-walled CNTs based the understanding of plasma chemistry and modelling. The modification of CNT surface properties and synthesis of CNT hybrid materials are possible with the utilization of plasma.

  13. Plasma-Assisted Synthesis of Carbon Nanotubes.

    PubMed

    Lim, San Hua; Luo, Zhiqiang; Shen, Zexiang; Lin, Jianyi

    2010-01-01

    The application of plasma-enhanced chemical vapour deposition (PECVD) in the production and modification of carbon nanotubes (CNTs) will be reviewed. The challenges of PECVD methods to grow CNTs include low temperature synthesis, ion bombardment effects and directional growth of CNT within the plasma sheath. New strategies have been developed for low temperature synthesis of single-walled CNTs based the understanding of plasma chemistry and modelling. The modification of CNT surface properties and synthesis of CNT hybrid materials are possible with the utilization of plasma. PMID:20802785

  14. Green chemistry oriented organic synthesis in water.

    PubMed

    Simon, Marc-Olivier; Li, Chao-Jun

    2012-02-21

    The use of water as solvent features many benefits such as improving reactivities and selectivities, simplifying the workup procedures, enabling the recycling of the catalyst and allowing mild reaction conditions and protecting-group free synthesis in addition to being benign itself. In addition, exploring organic chemistry in water can lead to uncommon reactivities and selectivities complementing the organic chemists' synthetic toolbox in organic solvents. Studying chemistry in water also allows insight to be gained into Nature's way of chemical synthesis. However, using water as solvent is not always green. This tutorial review briefly discusses organic synthesis in water with a Green Chemistry perspective.

  15. Thermodynamics of carbothermic synthesis of actinide mononitrides

    NASA Astrophysics Data System (ADS)

    Ogawa, Toru; Shirasu, Yoshiro; Minato, Kazuo; Serizawa, Hiroyuki

    1997-08-01

    Carbothermic synthesis will be further applied to the fabrication of nitride fuels containing minor actinides (MA) such as neptunium, americium and curium. A thorough understanding of the carbothermic synthesis of UN will be beneficial in the development of the MA-containing fuels. Thermodynamic analysis was carried out for conditions of practical interest in order to better understand the recent fabrication experiences. Two types of solution phases, oxynitride and carbonitride phases, were taken into account. The PuNO ternary isotherm was assessed for the modelling of M(C, N, O). With the understanding of the UN synthesis, the fabrication problems of Am-containing nitrides are discussed.

  16. Enabling N-to-C Ser/Thr Ligation for Convergent Protein Synthesis via Combining Chemical Ligation Approaches.

    PubMed

    Lee, Chi Lung; Liu, Han; Wong, Clarence T T; Chow, Hoi Yee; Li, Xuechen

    2016-08-24

    In this article, Ser/Thr ligation(on/off) has been realized to enable N-to-C successive peptide ligations using a salicylaldehyde semicarbazone (SAL(off)) group by in situ activation with pyruvic acid of the peptide SAL(off) ester into the peptide salicylaldehyde (SAL(on)) ester. In addition, a peptide with a C-terminal thioester and N-terminal Ser or Thr as the middle peptide segment can undergo one-pot Ser/Thr ligation and native chemical ligation in the N-to-C direction. The utility of this combined ligation strategy in the N-to-C direction has been showcased through the convergent assembly of a human cytokine protein sequence, GlcNAcylated interleukin-25. PMID:27479006

  17. Polyhydroxybutyrate synthesis in transgenic flax.

    PubMed

    Wróbel, Magdalena; Zebrowski, Jacek; Szopa, Jan

    2004-01-01

    Flax (Linum usitatissimum L.) is an annual plant species widely cultivated in temperate climates for bast fibres and linseed oil. Apart from traditional textile use, the fibres are fast becoming an integral part of new composite materials utilized in automobile and constructive industry. Especially attractive for environmental safety demands are biodegradable and renewable biocomposities based on polyhydroxybutyrate (PHB) polymer as a matrix and reinforced with the flax fibres. Manufacturing of PHB by bacteria fermentation is however substantially more expansive as compared to technologies producing conventional plastics. We report for the first time generation of transgenic plants which produce both components of flax/PHB composites, i.e. the fibres and the thermoplastic matrix in the same plant organ of a crop. The flax (cv. Nike) plants were transformed using constructs bearing either single cDNA, encoding the beta-ketothiolase enzyme (C plants), or all three of the genes necessary for poly-beta-hydroxybutyrate (PHB) synthesis (M plants). Both constructs contained a plastidial targeting sequence. The amount of PHB produced by the transgenic plants was up to over 70-fold higher than in wild-type plants, when analysed using the gas chromatography/mass spectrometry (GC-MS method). The PHB accumulation in plastids caused change both in their shape and size. The use of a stem-specific promoter for transgene expression protected the transgenic plant from growth retardation and also provided higher PHB synthesis than in the case of constructs governed by the 35S CaMV constitutive promoter. None toxic effects that could lead to stunted growth or the loss of fertility were observed, when 14-3-3 promoter was used as the stem-specific. Significant modifications in stem mechanical properties were accompanied to the PHB accumulation in growing cell of fibres in the transgenic plants. The Young's modulus E, the average measure of stem tissues resistance to tensile loads

  18. Synthesis of the Enantiomers of Tedanalactam and the First Total Synthesis and Configurational Assignment of (+)-Piplaroxide.

    PubMed

    Romero-Ibañez, Julio; Xochicale-Santana, Leonardo; Quintero, Leticia; Fuentes, Lilia; Sartillo-Piscil, Fernando

    2016-04-22

    Highlighting the recently established methodology for the direct synthesis of glycidic amides from tertiary allyl amines, the synthesis of the enantiomers of tedanalactam were completed in two steps from the corresponding chiral dihydropiperidine. Additionally, the (+)- and (-)-enantiomers of piplaroxide were obtained from their respective tedanalactam precursor, and the absolute configuration of the naturally occurring (+)-piplaroxide was determined. The present approach represents not only the shortest synthesis of (-)-tedanalactam but also the first total synthesis of (+)-piplaroxide, a repellent against the leafcutter ant Atta cephalotes.

  19. Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on the Synthesis of Chlorophyll and Anthocyanin.

    PubMed

    Mancinelli, A L; Yang, C P; Lindquist, P; Anderson, O R; Rabino, I

    1975-02-01

    Streptomycin enhances the synthesis of anthocyanins and inhibits the synthesis of chlorophylls and the development of chloroplasts in dark-grown seedlings of cabbage (Brassica oleracea), mustard (Sinapis alba), tomato (Lycopersicon esculentum), and turnip (Brassica rapa) exposed to prolonged periods of irradiation in various spectral regions. These results suggest that the contribution of photosynthesis to light-dependent high irradiance reaction anthocyanin synthesis in seedlings of cabbage, mustard, tomato, and turnip is minimal, if any at all. So far, phytochrome is the only photoreceptor whose action in the control of light-dependent anthocyanin synthesis in seedlings of cabbage, mustard, tomato, and turnip has been satisfactorily demonstrated.

  20. Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on the Synthesis of Chlorophyll and Anthocyanin.

    PubMed

    Mancinelli, A L; Yang, C P; Lindquist, P; Anderson, O R; Rabino, I

    1975-02-01

    Streptomycin enhances the synthesis of anthocyanins and inhibits the synthesis of chlorophylls and the development of chloroplasts in dark-grown seedlings of cabbage (Brassica oleracea), mustard (Sinapis alba), tomato (Lycopersicon esculentum), and turnip (Brassica rapa) exposed to prolonged periods of irradiation in various spectral regions. These results suggest that the contribution of photosynthesis to light-dependent high irradiance reaction anthocyanin synthesis in seedlings of cabbage, mustard, tomato, and turnip is minimal, if any at all. So far, phytochrome is the only photoreceptor whose action in the control of light-dependent anthocyanin synthesis in seedlings of cabbage, mustard, tomato, and turnip has been satisfactorily demonstrated. PMID:16659061

  1. Synthesis

    SciTech Connect

    Schimel, David; Janetos, Anthony C.; Backlund, Peter; Hatfield, Jerry; Ryan, Mike; Archer, Steven; Lettenmaier, D. P.

    2008-05-01

    This section synthesizes information from those sectoral chapters in the book to address a series of questions that were posed by the CCSP agencies in the prospectus for this report and formulate a set of overaching conclusions.

  2. Electrochemical synthesis of multisegmented nanowires

    SciTech Connect

    Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah

    2012-11-27

    Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

  3. Total Synthesis of Bryostatin 1

    PubMed Central

    Keck, Gary E.; Poudel, Yam B.; Cummins, Thomas J.; Rudra, Arnab; Covel, Jonathan A.

    2010-01-01

    Bryostatin 1 is a marine natural product that is a very promising lead compound due to the potent biological activity it displays against a variety of human disease states. We describe herein the first total synthesis of this agent. The synthetic route adopted is a highly convergent one in which preformed and heavily functionalized pyran rings A and C are united by “pyran annulation”: the TMSOTf promoted reaction between a hydroxy allylsilane appended to the A ring fragment and an aldehyde contained in the C ring fragment, with concomitant formation of the B ring. Further elaborations of the resulting very highly functionalized intermediate include macrolactonization and selective cleavage of just one of five ester linkages present. PMID:21175177

  4. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  5. Biochemical synthesis of electroactive polymers

    NASA Astrophysics Data System (ADS)

    Alva, Shridhara; Kumar, Jayant; Marx, Kenneth A.; Tripathy, Sukant K.

    1998-04-01

    Horseradish peroxidase catalyzed oxidative free radical coupling of phenols and anilines has been utilized in the synthesis of soluble polymers with interesting electronic and optical properties. The main chain azopolymers synthesized by this method are soluble in polar solvents and undergo cis-trans isomerization upon exposure to light. The photoinduced conformational changes in the polymers are influenced by the molecular weight of the polymer. Water soluble polyanilines have been synthesized by polymerizing monomers containing polar functional groups. These polymers are reversible redox systems and show interesting optical properties, which are dependent on the solution pH. A polymeric ligand has been synthesized following this reaction, which may be used in the fabrication of metal ion sensors. We further describe the potential of these polymers in sensing and other related applications.

  6. GASP- GENERAL AVIATION SYNTHESIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1994-01-01

    The General Aviation Synthesis Program, GASP, was developed to perform tasks generally associated with the preliminary phase of aircraft design. GASP gives the analyst the capability of performing parametric studies in a rapid manner during preliminary design efforts. During the development of GASP, emphasis was placed on small fixed-wing aircraft employing propulsion systems varying from a single piston engine with a fixed pitch propeller through twin turboprop/turbofan systems as employed in business or transport type aircraft. The program is comprised of modules representing the various technical disciplines of design, integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedures. GASP provides a useful tool for comparing configurations, assessing aircraft performance and economics, and performing tradeoff and sensitivity studies. By utilizing GASP, the impact of various aircraft requirements and design factors may be studied in a systematic manner, with benefits being measured in terms of overall aircraft performance and economics. The GASP program consists of a control module and six "technology" submodules which perform the various independent studies required in the design of general aviation or small transport type aircraft. The six technology modules include geometry, aerodynamics, propulsion, weight and balance, mission analysis, and economics. The geometry module calculates the dimensions of the synthesized aircraft components based on such input parameters as number of passengers, aspect ratio, taper ratio, sweep angles, and thickness of wing and tail surfaces. The aerodynamics module calculates the various lift and drag coefficients of the synthesized aircraft based on inputs concerning configuration geometry, flight conditions, and type of high lift device. The propulsion module determines the engine size and performance for the synthesized aircraft

  7. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  8. Zeolite synthesis: an energetic perspective.

    PubMed

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis.

  9. Energy management and vehicle synthesis

    NASA Technical Reports Server (NTRS)

    Czysz, P.; Murthy, S. N. B.

    1995-01-01

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  10. Fluid Mechanics Optimising Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Leivadarou, Evgenia; Dalziel, Stuart

    2015-11-01

    The Vortex Fluidic Device (VFD) is a new ``green'' approach in the synthesis of organic chemicals with many industrial applications in biodiesel generation, cosmetics, protein folding and pharmaceutical production. The VFD is a rapidly rotating tube that can operate with a jet feeding drops of liquid reactants to the base of the tube. The aim of this project is to explain the fluid mechanics of the VFD that influence the rate of reactions. The reaction rate is intimately related to the intense shearing that promotes collision between reactant molecules. In the VFD, the highest shears are found at the bottom of the tube in the Rayleigh and the Ekman layer and at the walls in the Stewardson layers. As a step towards optimising the performance of the VFD we present experiments conducted in order to establish the minimum drop volume and maximum rotation rate for maximum axisymmetric spreading without fingering instability. PhD candidate, Department of Applied Mathematics and Theoretical Physics.

  11. Zeolite synthesis: an energetic perspective.

    PubMed

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis. PMID:20938518

  12. Energy management and vehicle synthesis

    NASA Astrophysics Data System (ADS)

    Czysz, P.; Murthy, S. N. B.

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  13. Synthesis of 5'-Aldehyde Oligonucleotide.

    PubMed

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  14. Synthesis gas method and apparatus

    SciTech Connect

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie; Kosowski, Lawrence W; Robinson, Charles

    2015-11-06

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  15. Synthesis gas method and apparatus

    SciTech Connect

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2013-01-08

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  16. Enantioselective Synthesis of (+)-Peganumine A.

    PubMed

    Piemontesi, Cyril; Wang, Qian; Zhu, Jieping

    2016-09-01

    A gram-scale enantioselective total synthesis of (+)-peganumine A was accomplished in 7 steps from commercially available 6-methoxytryptamine. Key steps included (a) a Liebeskind-Srogl cross-coupling; (b) a one-pot construction of the tetracyclic skeleton from an ω-isocyano-γ-oxo-aldehyde via a sequence of an unprecedented C-C bond forming lactamization and a transannular condensation; (c) a one-pot organocatalytic process merging two achiral building blocks into an octacyclic structure via a sequence of enantioselective Pictet-Spengler reaction followed by a transannular cyclization. This last reaction created two spirocycles and a 2,7-diazabicyclo[2.2.1]heptan-3-one unit with excellent control of both the absolute and relative stereochemistry of the two newly created quaternary stereocenters. PMID:27558528

  17. Algorithmic synthesis using Python compiler

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Romaniuk, Ryszard; Pozniak, Krzysztof; Linczuk, Maciej

    2015-09-01

    This paper presents a python to VHDL compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and translate it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the programmed circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. This can be achieved by using many computational resources at the same time. Creating parallel programs implemented in FPGAs in pure HDL is difficult and time consuming. Using higher level of abstraction and High-Level Synthesis compiler implementation time can be reduced. The compiler has been implemented using the Python language. This article describes design, implementation and results of created tools.

  18. Biological Synthesis of Circular Polypeptides*

    PubMed Central

    Aboye, Teshome L.; Camarero, Julio A.

    2012-01-01

    Here, we review the use of different biochemical approaches for biological synthesis of circular or backbone-cyclized proteins and peptides. These methods allow the production of circular polypeptides either in vitro or in vivo using standard recombinant DNA expression techniques. Protein circularization can significantly impact protein engineering and research in protein folding. Basic polymer theory predicts that circularization should lead to a net thermodynamic stabilization of a folded protein by reducing the entropy associated with the unfolded state. Protein cyclization also provides a valuable tool for exploring the effects of topology on protein folding kinetics. Furthermore, the biological production of cyclic polypeptides makes possible the production of cyclic polypeptide libraries. The generation of such libraries, which was previously restricted to the domain of synthetic chemists, now offers biologists access to highly diverse and stable molecular libraries for probing protein structure and function. PMID:22707722

  19. Asymmetric total synthesis of halicholactone.

    PubMed

    Baba, Y; Saha, G; Nakao, S; Iwata, C; Tanaka, T; Ibuka, T; Ohishi, H; Takemoto, Y

    2001-01-12

    The asymmetric total synthesis of the marine metabolite, halicholactone 1, is described. The bisallylic triol 6 with three chiral centers at C8, C12, and C15 was constructed by [2,3]-sigmatropic rearrangement of the sulfoxide 18, which was prepared stereoselectively using the chirality of (diene)Fe(CO)3 complexes. Introduction of the trans-substituted cyclopropane subunit into 21 was successfully achieved using the modified regio- and stereoselective Simmons-Smith reaction. The use of RCM (ring-closing metathesis) methodology (4-->35) was pivotal for the formation of a nine-membered unsaturated lactone fragment of halicholactone 1. As this approach is flexible and stereoselective, other oxylipins could be synthesized by the protocol described herein.

  20. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry; Boyle, Timothy J.; Bunge, Scott D.

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  1. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  2. Abscisic Acid Synthesis and Response

    PubMed Central

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  3. Melanin synthesis by Sclerotinia sclerotiorum.

    PubMed

    Butler, Michael J; Gardiner, Richard B; Day, Alan W

    2009-01-01

    We confirmed that the melanin produced by Sclerotinia sclerotiorum is a dihydroxynaphthalene (DHN). The specific DHN melanogenesis inhibitor test that uses tricyclazole at low levels (typically 2-5 ppm) to cause a confirmatory appearance of soluble red-brown inhibition products does not work when analyzing melanin synthesis in the sclerotia of S. sclerotiorum. We demonstrated the presence of scytalone dehydratase, an enzyme specific to DHN melanogenesis, in melanized sclerotia and melanized nonsclerotial mycelia and observed formation of mycelial nonsclerotial melanin when the fungus was grown on the surface of sterilized dialysis membrane or in rich organic media. Nonsclerotial melanized hyphae in wild type and mutant strains showed the typical excretion of pigmented inhibition products of the DHN pathway in the presence of tricyclazole, and one of these products, 2-hydroxyjuglone, was identified by thin layer chromatography and spectroscopy. We report basic conditions for sclerotial melanin degradation by the white rot fungus Phanerochaete chrysosporium. PMID:19537203

  4. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  5. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  6. Bioinspired synthesis of magnetite nanoparticles.

    PubMed

    Mirabello, Giulia; Lenders, Jos J M; Sommerdijk, Nico A J M

    2016-09-21

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows

  7. Bioinspired synthesis of magnetite nanoparticles.

    PubMed

    Mirabello, Giulia; Lenders, Jos J M; Sommerdijk, Nico A J M

    2016-09-21

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows

  8. Local Protein Synthesis in Axonal Growth Cones

    PubMed Central

    Šatkauskas, Saulius

    2007-01-01

    While initially thought to be essentially a developmental characteristic observed in artificial in vitro models, local protein synthesis in growth cones has been described in the adult, and more interestingly, during nerve regeneration. This emerging field is under intense investigation, revealing new functions of localized protein synthesis that include axon guidance, growth cone adaptation and sensitivity modulation at intermediate targets or axon regeneration. Here, we will review these functions and provide a short survey of the current knowledge on mechanisms of mRNA transport and regulation of localized protein synthesis. In addition, we will consider what lessons can be learned from localized protein synthesis in dendrites and what developments can be expected next in the field. This latter question relates to the crucial point of which technical strategy to adopt for an ideal and pertinent analysis of the phenomenon. PMID:19262143

  9. Applications of computer graphics to aircraft synthesis

    NASA Technical Reports Server (NTRS)

    Carmichael, R. L.; Putnam, R.

    1975-01-01

    The history of the development of an aircraft configuration synthesis program using interactive computer graphics was described. A system based on time-sharing was compared to two different concepts based on distributed computing.

  10. Anthrax carbohydrates, synthesis and uses thereof

    DOEpatents

    Carlson, Russell W.; Boons, Geert-Jan; Quinn, Conrad; Vasan, Mahalakshmi; Wolfert, Margreet A.; Choudhury, Biswa; Kannenberg, Elmar; Leoff, Christine; Mehta, Alok; Saile, Elke; Rauvolfova, Jana; Wilkins, Patricia; Harvey, Alex J.

    2013-04-16

    The present invention presents the isolation, characterization and synthesis of oligosaccharides of Bacillus anthracis. Also presented are antibodies that bind to such saccharide moieties and various methods of use for such saccharide moieties and antibodies.

  11. Synthesis and Spectra of Vanadium Complexes.

    ERIC Educational Resources Information Center

    Ophardt, Charles E.; Stupgia, Sean

    1984-01-01

    Describes an experiment which illustrates simple synthetic techniques, redox principles in synthesis reactions, interpretation of visible spectra using Orgel diagrams, and the spectrochemical series. The experiment is suitable for the advanced undergraduate inorganic chemistry laboratory. (JN)

  12. Protein Synthesis--An Interactive Game.

    ERIC Educational Resources Information Center

    Clements, Lee Ann J.; Jackson, Karen E.

    1998-01-01

    Describes an interactive game designed to help students see and understand the dynamic relationship between DNA, RNA, and proteins. Appropriate for either a class or laboratory setting, following a lecture session about protein synthesis. (DDR)

  13. Green Synthesis of Nanocrystals and Nanocomposites

    EPA Science Inventory

    Metal nanomaterials have attracted considerable attention because of their unique magnetic, optical, electrical, and catalytic properties and their potential applications in nanoelectronics as well as in various wet chemical synthesis methods. There is also great interest in synt...

  14. Synthesis of allocolchicinoids: a 50 year journey

    NASA Astrophysics Data System (ADS)

    Sitnikov, N. S.; Fedorov, A. Yu

    2013-05-01

    Published data on the stereo- and enantioselective synthesis of allocolchicinoids, which are of interest as antitumour agents, are summarized. The stereochemistry of these compounds is described. Two key approaches to their preparation are considered, namely, the synthesis from natural colchicine and total synthesis from commercially available reagents. Various total syntheses of N-acetylcolchicinol are performed using biaryl oxidative and reductive coupling, cyclopropanation-ring expansion and Nicholas reaction. The synthetic routes to allocolchicine are based on Diels-Alder cycloaddition, combination of metathesis and Diels-Alder reaction and direct catalytic CH-arylation. Analogues of the colchicine site ligands incorporating heteroaromatic rings are briefly considered; their structural features and methods of synthesis are discussed. The bibliography includes 144 references.

  15. Mathematical programming formulations for satellite synthesis

    NASA Technical Reports Server (NTRS)

    Bhasin, Puneet; Reilly, Charles H.

    1987-01-01

    The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.

  16. Synthesis of oscillating adaptive feedback systems

    NASA Technical Reports Server (NTRS)

    Smay, J. W.

    1973-01-01

    A synthesis theory is developed which allows system design to proceed from practical specifications on system command and/or disturbance response to a design which is very nearly optimal in terms of feedback sensor noise effects. The approach taken is to replace the nonlinear element by a mean square error minimizing approximation (dual-input describing function), and then use linear frequency domain synthesis techniques subject to additional constraints imposed by the limit cycle and the approximator. Synthesis techniques are also developed for a similar system using an externally excited oscillating signal with the above approach. The results remove the design of the systems considered from the realm of simulation and experimentation, permitting true synthesis and the optimization that accompanies it.

  17. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  18. Production Scaleup of Reverse Micelle Synthesis

    SciTech Connect

    Morrison,S.; Cahill, C.; Carpenter, E.; Harris, V.

    2006-01-01

    A wide range of techniques for the successful synthesis of nanosized materials have been developed recently. These procedures are sufficient for normal scientific investigation; however, for these materials to be incorporated into any practical application, the process for making them must be scalable to a larger volume. In this work, we focus on a published recipe for manganese zinc ferrite (MZFO) nanoparticles, which uses the reverse micelle synthesis technique. The normal bench-top synthesis has been scaled by a factor of 40 and successfully adapted to a 30-L pilot plant. The product of this synthesis is similar to the bench-top sample, which is also comparable to a ceramic MZFO standard. Through this work, we have demonstrated that the reverse micelle process is scalable to larger volumes.

  19. BP: synthesis and properties of boron phosphide

    NASA Astrophysics Data System (ADS)

    Woo, Katherine; Lee, Kathleen; Kovnir, Kirill

    2016-07-01

    Cubic boron phosphide, BP, is notorious for its difficult synthesis, thus preventing it from being a widely used material in spite of having numerous favorable technological properties. In the current work, three different methods of synthesis are developed and compared: from the high temperature reaction of elements, Sn flux assisted synthesis, and a solid state metathesis reaction. Structural and optical properties of the products synthesized from the three methods were thoroughly characterized. Solid state metathesis is shown to be the cleanest and most efficient method in terms of reaction temperature and time. Synthesis by Sn flux resulted in a novel Sn-doped BP compound. Undoped BP samples exhibit an optical bandgap of ∼2.2 eV while Sn-doped BP exhibits a significantly smaller bandgap of 1.74 eV. All synthesized samples show high stability in concentrated hydrochloric acid, saturated sodium hydroxide solutions, and fresh aqua regia.

  20. Synthesis and Isolation of Chelidonic Acid

    ERIC Educational Resources Information Center

    Gagan, J. M. F.; Herbert, R. B.

    1976-01-01

    Described is an undergraduate laboratory experiment involving synthesis of chelidonic acid and its identification in plants. The experiment is offered as an ancillary topic for biology or chemistry classes. (SL)

  1. Computer speech synthesis: its status and prospects.

    PubMed Central

    Liberman, M

    1995-01-01

    Computer speech synthesis has reached a high level of performance, with increasingly sophisticated models of linguistic structure, low error rates in text analysis, and high intelligibility in synthesis from phonemic input. Mass market applications are beginning to appear. However, the results are still not good enough for the ubiquitous application that such technology will eventually have. A number of alternative directions of current research aim at the ultimate goal of fully natural synthetic speech. One especially promising trend is the systematic optimization of large synthesis systems with respect to formal criteria of evaluation. Speech recognition has progressed rapidly in the past decade through such approaches, and it seems likely that their application in synthesis will produce similar improvements. PMID:7479804

  2. The nuclear membrane organization of leukotriene synthesis.

    PubMed

    Mandal, Asim K; Jones, Phillip B; Bair, Angela M; Christmas, Peter; Miller, Douglas; Yamin, Ting-ting D; Wisniewski, Douglas; Menke, John; Evans, Jilly F; Hyman, Bradley T; Bacskai, Brian; Chen, Mei; Lee, David M; Nikolic, Boris; Soberman, Roy J

    2008-12-23

    Leukotrienes (LTs) are signaling molecules derived from arachidonic acid that initiate and amplify innate and adaptive immunity. In turn, how their synthesis is organized on the nuclear envelope of myeloid cells in response to extracellular signals is not understood. We define the supramolecular architecture of LT synthesis by identifying the activation-dependent assembly of novel multiprotein complexes on the outer and inner nuclear membranes of mast cells. These complexes are centered on the integral membrane protein 5-Lipoxygenase-Activating Protein, which we identify as a scaffold protein for 5-Lipoxygenase, the initial enzyme of LT synthesis. We also identify these complexes in mouse neutrophils isolated from inflamed joints. Our studies reveal the macromolecular organization of LT synthesis.

  3. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. Alternative Fuels and Chemicals From Synthesis Gas

    SciTech Connect

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. An expedient synthesis of 6-vinylfulvene

    PubMed Central

    Erden, İhsan; Sabol, Jenny; Gubeladze, Ana; Ruiz, Andrea

    2013-01-01

    6-Vinylfulvenes constitute a class of fulvenes that are difficult to access due to the lack of a general method for their synthesis. In particular, the unsubstituted parent system has been very difficult to obtain by existing methods. In this communication we describe a convenient 3-step protocol for the synthesis of the title compound by way of sulfide oxidation and subsequent sulfoxide elimination. PMID:24465152

  7. Total Synthesis of (−)-Calyciphylline N

    PubMed Central

    Shvartsbart, Artem; Smith, Amos B.

    2014-01-01

    The total synthesis of the architecturally complex Daphniphyllum alkaloid (−)-calyciphylline N has been achieved. Highlights of the synthesis include a Et2AlCl promoted, highly stereoselective susbtrate controlled intramolecular Diels-Alder reaction, a transannular enolate alkylation, an effective Stille carbonylation/Nazarov cyclization sequence, and a high risk dia-stereoselective hydrogenation of a fully substituted conjugated diene ester. PMID:24319987

  8. Microchannel systems for fine organic synthesis

    NASA Astrophysics Data System (ADS)

    Makarshin, L. L.; Pai, Z. P.; Parmon, V. N.

    2016-02-01

    Characteristic features of application of microchannel systems in organic synthesis are analyzed. The advantages of such systems over conventional chemical engineering equipment, especially for small-scale processes that require fast implementation in industry to obtain small quantities of the product, are shown. Particular examples of successful use of microchannel reactors for various types of organic synthesis are given, primary attention being devoted to the design features of microchannel reactors. The bibliography includes 118 references.

  9. Enantioselective Total Synthesis of (+)-Psiguadial B.

    PubMed

    Chapman, Lauren M; Beck, Jordan C; Wu, Linglin; Reisman, Sarah E

    2016-08-10

    The first enantioselective total synthesis of the cytotoxic natural product (+)-psiguadial B is reported. Key features of the synthesis include (1) the enantioselective preparation of a key cyclobutane intermediate by a tandem Wolff rearrangement/asymmetric ketene addition, (2) a directed C(sp(3))-H alkenylation reaction to strategically forge the C1-C2 bond, and (3) a ring-closing metathesis to build the bridging bicyclo[4.3.1]decane terpene framework. PMID:27452034

  10. ISSYS: An integrated synergistic Synthesis System

    NASA Technical Reports Server (NTRS)

    Dovi, A. R.

    1980-01-01

    Integrated Synergistic Synthesis System (ISSYS), an integrated system of computer codes in which the sequence of program execution and data flow is controlled by the user, is discussed. The commands available to exert such control, the ISSYS major function and rules, and the computer codes currently available in the system are described. Computational sequences frequently used in the aircraft structural analysis and synthesis are defined. External computer codes utilized by the ISSYS system are documented. A bibliography on the programs is included.

  11. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1999-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. Biopolymer synthesis on polypropylene supports. I. Oligonucleotides.

    PubMed

    Matson, R S; Rampal, J B; Coassin, P J

    1994-03-01

    We have modified polypropylene to serve as a new solid-phase support for oligonucleotide synthesis. The plastic is first surface aminated by exposure to an ammonia plasma generated by radiofrequency plasma discharge. The aminated polypropylene has been found to be useful as a support for the in situ synthesis of oligonucleotides from monomers. Furthermore, oligonucleotides synthesized on the surface of the plastic remain attached following deprotection and can be used directly for hybridization. PMID:8203760

  15. Design and synthesis of analogues of natural products.

    PubMed

    Maier, Martin E

    2015-05-21

    In this article strategies for the design and synthesis of natural product analogues are summarized and illustrated with some selected examples. Proven strategies include diverted total synthesis (DTS), function-oriented synthesis (FOS), biology-oriented synthesis (BIOS), complexity to diversity (CtD), hybrid molecules, and biosynthesis inspired synthesis. The latter includes mutasynthesis, the synthesis of natural products encoded by silent genes, and propionate scanning. Most of the examples from our group fall in the quite general concept of DTS. Thus, in case an efficient strategy to a natural product is at hand, modifications are possible at almost any stage of a synthesis. However, even for compounds of moderate complexity, organic synthesis remains a bottle neck. Unless some method for predicting the biological activity of a designed molecule becomes available, the design and synthesis of natural product analogues will remain what it is now, namely it will largely rely on trial and error. PMID:25829247

  16. Regulated Hyaluronan Synthesis by Vascular Cells

    PubMed Central

    Viola, Manuela; Karousou, Evgenia; D'Angelo, Maria Luisa; Caon, Ilaria; De Luca, Giancarlo; Passi, Alberto; Vigetti, Davide

    2015-01-01

    Cellular microenvironment plays a critical role in several pathologies including atherosclerosis. Hyaluronan (HA) content often reflects the progression of this disease in promoting vessel thickening and cell migration. HA synthesis is regulated by several factors, including the phosphorylation of HA synthase 2 (HAS2) and other covalent modifications including ubiquitination and O-GlcNAcylation. Substrate availability is important in HA synthesis control. Specific drugs reducing the UDP precursors are able to reduce HA synthesis whereas the hexosamine biosynthetic pathway (HBP) increases the concentration of HA precursor UDP-N-acetylglucosamine (UDP-GlcNAc) leading to an increase of HA synthesis. The flux through the HBP in the regulation of HA biosynthesis in human aortic vascular smooth muscle cells (VSMCs) was reported as a critical aspect. In fact, inhibiting O-GlcNAcylation reduced HA production whereas increased O-GlcNAcylation augmented HA secretion. Additionally, O-GlcNAcylation regulates HAS2 gene expression resulting in accumulation of its mRNA after induction of O-GlcNAcylation with glucosamine treatments. The oxidized LDLs, the most common molecules related to atherosclerosis outcome and progression, are also able to induce a strong HA synthesis when they are in contact with vascular cells. In this review, we present recent described mechanisms involved in HA synthesis regulation and their role in atherosclerosis outcome and development. PMID:26448750

  17. Synthesis of the C(18) -norditerpenoid alkaloid neofinaconitine: a lesson in convergent synthesis planning.

    PubMed

    Liu, Xiao-Yu; Chen, David Y-K

    2014-01-20

    Hexacyclic framework: The total synthesis of the complex C18 -norditerpenoid alkaloid neofinaconitine has been achieved by a convergent approach. This remarkable synthesis featured two Diels-Alder cycloadditions and subsequent Mannich-type N-acyliminium and radical cyclizations to establish the unique hexacyclic core structure of the target molecule.

  18. De Novo Synthesis of Furanose Sugars: Catalytic Asymmetric Synthesis of Apiose and Apiose-Containing Oligosaccharides.

    PubMed

    Kim, Mijin; Kang, Soyeong; Rhee, Young Ho

    2016-08-01

    A de novo synthetic method towards apiose, a structurally unusual furanose, is reported. The key feature is sequential metal catalysis consisting of the palladium-catalyzed asymmetric intermolecular hydroalkoxylation of an alkoxyallene and subsequent ring-closing metathesis (RCM). This strategy enabled the efficient synthesis of various apiose-containing disaccharides and a unique convergent synthesis of trisaccharides. PMID:27381592

  19. Synthesis of bridged diketopiperazines by using the persistent radical effect and a formal synthesis of bicyclomycin.

    PubMed

    Amatov, Tynchtyk; Pohl, Radek; Císařová, Ivana; Jahn, Ullrich

    2015-10-01

    A conceptually new and unified approach to diverse bridged diketopiperazines (DKPs) with widely variable ring sizes was developed by taking advantage of the persistent radical effect. This method enables synthesis of the core structures of bridged DKP alkaloids and was applied to a formal synthesis of the antibiotic bicyclomycin.

  20. NACP Data Center for Modeling and Synthesis

    NASA Astrophysics Data System (ADS)

    Cook, R. B.; Post, W. M.; Wilson, B. E.; Thornton, P. E.

    2006-12-01

    The North American Carbon Program (NACP) is designed to quantify the magnitudes and distributions of carbon sources and sinks, explain the processes controlling them, and produce a consistent analysis of North America's carbon budget. To accomplish these ambitious goals, NACP requires an integrated data and information management system that will enable researchers to access, understand, use, and analyze large volumes of diverse data at multiple thematic, temporal, and spatial scales. The Modeling and Synthesis Thematic Data Center (MAST-DC) is an integral component of the NACP data system and will support NACP by providing data products and data management services needed for modeling and synthesis activities. The overall objective of MAST-DC is to provide advanced data management support to NACP investigators and agencies performing modeling and synthesis activities. Based on specific requirements established by NACP, we will provide data products for modeling and synthesis in consistent and uniform grids, projections, and formats. The specific tasks of MAST-DC are (1) coordinate data management activities with NACP modelers and synthesis groups; (2) prepare and distribute model input data; (3) provide data management support for model outputs; (4) provide tools for accessing, subsetting and visualization; (5) provide data packages to evaluate model output; and (6) support synthesis activities, including data support for workshops. MAST-DC will provide data products and services required by NACP in a central location, with common and co-registered spatial projection, in easily converted formats. The MAST-DC will free modelers and those doing the synthesis and integration from having to perform data management functions. Consequently the MAST-DC will enable NACP participants to conduct their work more readily, facilitate the development of new model products needed by models, and assist in gaining new insights into the carbon cycle in North America.

  1. Compliant mechanism synthesis by using elastic similitude

    NASA Astrophysics Data System (ADS)

    Hanke, Uwe; Hampel, Peter; Comsa, Andrei; Modler, Niels; Modler, Karl-Heinz

    2015-07-01

    Compliant mechanisms have several advantages, especially smaller number of elements and therefore less movable joints. The flexural members furthermore allow an integration of special functions like balancing or locking. Especially fiber reinforced materials exhibit a wide range of function integration considering their compliance in passive as well active applications. To take advantage of compliant elements in applications a robust synthesis tool is needed. The synthesis based on topology optimization method or the pseudo rigid body approach leads to complex structures. Considering the use of fiber reinforced material a synthesis approach which leads to less complex structures is more suitable. For building up simple structures, with only one cantilever beam as compliant element(B) a graphical approach using the elastic similitude is the most efficient method. A step-by-step synthesis procedure is presented to synthesize compliant mechanisms with rotatory joints(R) and prismatic joints(P) to develop RRB/PRB- and RPB-linkages. Using the elastic similitude to implement these results into a graphical synthesis algorithm is the innovation part of this paper. It can be shown that this approach leads to a comfortable handling of beam elements during the synthesis, where the two free parameters can be directly coupled to scale and fix the orientation of the beam element. This advantage inherently shortens the development process. In giving an example the focus lies of the experimental approach, which also shows that the simple BERNOULLI beam model is valid and so the synthesis by using the elastic similitude. The method is presented and discussed by using an application for a cup holder mechanism made of fiber reinforced material.

  2. Crystal structure of 1-(4-formyl­benzyl­idene)thio­semicarbazone

    PubMed Central

    Carballo, Rosa; Pino-Cuevas, Arantxa; Vázquez-López, Ezequiel M.

    2014-01-01

    The asymmetric unit of the title compound, C9H9N3OS, contains two approximately planar mol­ecules (r.m.s. deviations for 14 non-H atoms = 0.094 and 0.045 Å), with different conformations. In one of them, the C=O group is syn to the S atom and in the other it is anti. Each mol­ecule features an intra­molecular N—H⋯N hydrogen bond, which generates an S(5) ring. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds, generating discrete networks; the syn mol­ecules form [010] chains and the anti mol­ecules form (100) sheets. PMID:25309285

  3. ''The control of lignin synthesis''

    SciTech Connect

    Carlson, John E.

    2005-04-07

    In this project we tested the hypothesis that regulation of the synthesis of lignin in secondary xylem cells in conifer trees involves the transport of glucosylated lignin monomers to the wall of xylem cells, followed by de-glucosylation in the cell wall by monolignol-specific glucosidase enzymes, which activates the monomers for lignin polymerization. The information we gathered is relevant to the fundamental understanding of how trees make wood, and to the applied goal of more environmentally friendly pulp and paper production. We characterized the complete genomic structure of the Coniferin-specific Beta-glucosidase (CBG) gene family in the conifers loblolly pine (Pinus taeda) and lodgepole pine (Pinus contorta), and partial genomic sequences were obtained in several other tree species. Both pine species contain multiple CBG genes which raises the possibility of differential regulation, perhaps related to the multiple roles of lignin in development and defense. Subsequent projects will need to include detailed gene expression studies of each gene family member during tree growth and development, and testing the role of each monolignol-specific glucosidase gene in controlling lignin content.

  4. Lipid synthesis in chick epidermis.

    PubMed

    Lavker, R M

    1975-07-01

    Lipid synthesis in newborn chick epidermis was studied by electron microscopic autoradiography after injection of tritiated palmitate. The labeled lipid product in the tissue was identified as mostly triglyceride. At the earliest time after injection (6 hr), the radioactive precursor was taken up by all viable cells of the epidermis. Grain density was heaviest over basal cells, moderate over spinous cells, and slight over granular cells; thus lipid incorporation is highest in the basal and spinous regions of the chick epidermis. As time after injection progressed, the increasing amounts of grains over the granular and horny cells and decreasing amounts over the basal and spinous cells reflected the continuous upward displacement of cells from one layer into the next. From the distribution of silver grains within the epidermal cells, it has been concluded that, with the passage of time, triglycerides synthesized by the epidermal cells were mainly located in lipid droplets. The numerous grains associated with the elements of the endoplasmic reticulum indicated that this organelle is involved in aggregating triglyceride molecules into lipid droplets. The fact that grains were seen within the horny cells indicated that part of the horny cell consists of lipid probably derived from the lipid droplets retained by the cells during keratinization. PMID:1151110

  5. Initiation of lymphocyte DNA synthesis.

    PubMed

    Coffman, F D; Fresa, K L; Cohen, S

    1991-01-01

    The initiation of DNA replication in T lymphocytes appears to be regulated by two distinct activities: one associated with proliferation which mediates initiation, and another associated with quiescence which blocks initiation. Activated lymphocytes and proliferating lymphoid cell lines produce an activity, termed ADR, which can initiate DNA replication in isolated, quiescent nuclei. ADR is heat-labile, has protease activity or interacts closely with a protease, and is distinct from the DNA polymerases. ADR activity is absent in quiescent lymphocytes and appears in mitogen-stimulated lymphocytes after IL-2 binding. The generation of active ADR appears to be mediated by phosphorylation of a precursor which is present in resting cells. Nuclei from mitogen-unresponsive lymphocytes fail to initiate DNA replication in response to ADR, of potential importance in the age-related decline of immunity. Quiescent lymphocytes lack ADR and synthesize an ADR-inhibitory activity. The ADR inhibitor is a heat-stable protein which suppresses the initiation of DNA synthesis, but is ineffective at suppressing elongation once DNA strand replication has begun. Nuclei from several neoplastic cell lines fail to respond to the ADR inhibitor, which may play a role in the continuous proliferation of these cells. At least one of these neoplastic cell lines produces both ADR and an inhibitory factor. These findings suggest that the regulation of proliferation is dependent on the balance between activating and inhibitory pathways. PMID:2005180

  6. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. The Chemical Synthesis of Discodermolide

    NASA Astrophysics Data System (ADS)

    Paterson, I.; Florence, G. J.

    The marine sponge-derived polyketide discodermolide is a potent antimitotic agent that represents a promising natural product lead structure in the treatment of cancer. Discodermolide shares the same microtubule-stabilising mechanism of action as Taxol®, inhibits the growth of solid tumours in animal models and shows synergy with Taxol. The pronounced cytotoxicity of discodermolide, which is maintained against cancer cell lines that display resistance to Taxol and other drugs, combined with its scarce availability from its natural source, has fuelled significant academic and industrial interest in devising a practical total synthesis as a means of ensuring a sustainable supply for drug development. This chapter surveys the various total syntheses of discodermolide that have been completed over the period 1993-2007, focusing on the strategies employed for introduction of the multiple stereocentres and achieving control over the alkene geometry, along with the various methods used for realising the pivotal fragment couplings to assemble progressively the full carbon skeleton. This dedicated synthetic effort has triumphed in removing the supply problem for discodermolide, providing sufficient material for extensive biological studies and enabling its early stage clinical development, as well as facilitating SAR studies for lead optimisation.

  11. Synthesis of cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Zerr, Andreas; Miehe, Gerhard; Serghiou, George; Schwarz, Marcus; Kroke, Edwin; Riedel, Ralf; Fueß, Hartmut; Kroll, Peter; Boehler, Reinhard

    1999-07-01

    Silicon nitride (Si3N4) is used in a variety of important technological applications. The high fracture toughness, hardness and wear resistance of Si3N4-based ceramics are exploited in cutting tools and anti-friction bearings; in electronic applications, Si3N4 is used as an insulating, masking and passivating material. Two polymorphs of silicon nitride are known, both of hexagonal structure: α- and β-Si3N4. Here we report the synthesis of a third polymorph of silicon nitride, which has a cubic spinel structure. This new phase, c-Si3N4, is formed at pressures above 15GPa and temperatures exceeding 2,000K, yet persists metastably in air at ambient pressure to at least 700K. First-principles calculations of the properties of this phase suggest that the hardness of c-Si3N4 should be comparable to that of the hardest known oxide (stishovite, a high-pressure phase of SiO2), and significantly greater than the hardness of the two hexagonal polymorphs.

  12. The chemical synthesis of discodermolide.

    PubMed

    Paterson, I; Florence, G J

    2009-01-01

    The marine sponge-derived polyketide discodermolide is a potent antimitotic agent that represents a promising natural product lead structure in the treatment of cancer. Discodermolide shares the same microtubule-stabilising mechanism of action as Taxol(®), inhibits the growth of solid tumours in animal models and shows synergy with Taxol. The pronounced cytotoxicity of discodermolide, which is maintained against cancer cell lines that display resistance to Taxol and other drugs, combined with its scarce availability from its natural source, has fuelled significant academic and industrial interest in devising a practical total synthesis as a means of ensuring a sustainable supply for drug development. This chapter surveys the various total syntheses of discodermolide that have been completed over the period 1993-2007, focusing on the strategies employed for introduction of the multiple stereocentres and achieving control over the alkene geometry, along with the various methods used for realising the pivotal fragment couplings to assemble progressively the full carbon skeleton. This dedicated synthetic effort has triumphed in removing the supply problem for discodermolide, providing sufficient material for extensive biological studies and enabling its early stage clinical development, as well as facilitating SAR studies for lead optimisation.

  13. Dextran Nanoparticle Synthesis and Properties.

    PubMed

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier. PMID:26752182

  14. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  15. Organic synthesis by quench reactions.

    PubMed

    Park, W K; Hochstim, A R

    1975-01-01

    The effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions were investigated for the study of chemical evolution. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface. This discharge served as a source of dissociated, ionized and excited atomic and molecular species. Various organic molecules were formed in the gaseous, aqueous, and solid states by a subsequent quenching of these reactive species on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. The results showed that: (1) the water-surface quench reaction permitted faster rates of formation of an insoluble solid and (2) the quench discharge yielded twice as much amino acids and 17 times more insoluble solids by weight than the other discharge. The highest yield of amino acids with the quench reaction was 9 x 10-7 molecules per erg of input energy. These observations indicate that quench reactions on the oceans, rain, and clouds that would have followed excitation by lightning and shock waves may have played an important role in the prebiotic milieu. Furthermore, the possibility exists that quench reactions can be exploited for the synthesis of organic compounds on a larger scale from simple starting materials.

  16. Asymmetric total synthesis of vindoline.

    PubMed

    Kato, Daisuke; Sasaki, Yoshikazu; Boger, Dale L

    2010-03-24

    A concise asymmetric total synthesis of (-)-vindoline (1) is detailed based on a tandem intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in which the tether linking the initiating dienophile and oxadiazole bears a chiral substituent that controls the facial selectivity of the initiating Diels-Alder reaction and sets absolute stereochemistry of the remaining six stereocenters in the cascade cycloadduct. This key reaction introduces three rings and four C-C bonds central to the pentacyclic ring system setting all six stereocenters and introducing essentially all the functionality found in the natural product in a single step. Implementation of the approach also required the development of a unique ring expansion reaction to provide a six-membered ring suitably functionalized for introduction of the Delta (6, 7)-double bond found in the core structure of vindoline and defined our use of a protected hydroxymethyl group as the substituent used to control the stereochemical course of the cycloaddition cascade.

  17. Asymmetric catalysis in organic synthesis

    SciTech Connect

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  18. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  19. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing.

  20. Velocimetry signal synthesis with fringen.

    SciTech Connect

    Dolan, Daniel H., III

    2011-02-01

    An important part of velocimetry analysis is the recovery of a known velocity history from simulated data signals. The fringen program synthesizes VISAR and PDV signals, given a specified velocity history, using exact formulations for the optical signal. Time-dependent light conditions, non-ideal measurement conditions, and various diagnostic limitations (noise, etc.) may be incorporated into the simulated signals. This report describes the fringen program, which performs forward VISAR (Velocity Interferometer System for Any Reflector) and PDV (Photonic Doppler Velocimetry, also known as heterodyne velocimetry) analysis. Nearly all effects that might occur in VISAR/PDV measurement of a single velocity can be modeled by fringen. The program operates in MATLAB, either within a graphical interface or as a user-callable function. The current stable version of fringen is 0.3, which was released in October 2010. The following sections describe the operation and use of fringen. Section 2 gives a brief overview of VISAR and PDV synthesis. Section 3 illustrates the graphical and console interface of fringen. Section 4 presents several example uses of the program. Section 5 summarizes program capabilities and discusses potential future work.

  1. De novo Synthesis of Monosaccharides

    NASA Astrophysics Data System (ADS)

    Vogel, Pierre; Robina, Inmaculada

    Recent approaches to asymmetric total synthesis of monosaccharides and derivatives are reviewed. They imply biochemical methods or chemical methods, or combinations of both. Aldoses, alditols, deoxysugars, aminodeoxymonosaccharides, and their analogues are considered, including aza- and thiosugars (with nitrogen and sulfur in the pyranose or furanose ring). Most common monosaccharides have three to six carbon-chains, but examples of long-chain and branched-chain carbohydrates will also be described. Organization of the review is based on the synthetic methodology rather than on the types of targeted sugar, starting with aldolase-catalyzed aldol reactions of achiral precursors, and the now popular amino-acid-catalyzed aldol and Mannich reactions. Chain elongations of small aldose derivatives with one, two, three, or four carbons remain very useful approaches as they allow one to reach a large structural and stereochemical diversity. Other methods apply Diels-Alder or hetero-Diels-Alder additions. Enantiomerically pure monosaccharides have been derived from achiral alkene, diene, and triene derivatives. Almost any targeted natural or non-natural sugar and derivative can be obtained in a few synthetic steps from inexpensive starting materials.

  2. Template synthesis of nanophase mesocarbon.

    PubMed

    Yang, Nancy Y; Jian, Kengqing; Külaots, Indrek; Crawford, Gregory P; Hurt, Robert H

    2003-10-01

    Templating techniques are used increasingly to create carbon materials with precisely engineered pore systems. This article presents a new templating technique that achieves simultaneous control of pore structure and molecular (crystal) structure in a single synthesis step. With the use of discotic liquid crystalline precursors, unique carbon structures can be engineered by selecting the size and geometry of the confining spaces and selecting the template material to induce edge-on or face-on orientation of the discotic precursor. Here mesophase pitch is infiltrated by capillary forces into a nanoporous glass followed by slow carbonization and NaOH etching. The resulting porous carbon material exhibits interconnected solid grains about 100 nm in size, a monodisperse pore size of 60 nm, 42% total porosity, and an abundance of edge-plane inner surfaces that reflect the favored edge-on anchoring of the mesophase precursor on glass. This new carbon form is potentially interesting for a number of important applications in which uniform large pores, active-site-rich surfaces, and easy access to interlayer spaces in nanometric grains are advantageous.

  3. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent. PMID:18066762

  4. Sustainable synthesis of monodispersed spinel nano-ferrites

    EPA Science Inventory

    A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...

  5. Coumarin heterocyclic derivatives: chemical synthesis and biological activity.

    PubMed

    Medina, Fernanda G; Marrero, Joaquín G; Macías-Alonso, Mariana; González, Magdalena C; Córdova-Guerrero, Iván; Teissier García, Ariana G; Osegueda-Robles, Soraya

    2015-09-23

    This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity.

  6. Recent Advances in the Synthesis of 2-Pyrones

    PubMed Central

    Lee, Jong Seok

    2015-01-01

    The present review summarizes the recent progresses in the synthesis of 2-pyrones and the application to the synthesis of marine natural products. Especially, much attention was placed on the transition metal catalyzed synthetic methodologies in this review. PMID:25806468

  7. Sustainable Strategies for the Synthesis of Organics and Nanomaterials

    EPA Science Inventory

    The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...

  8. Sustainable Alternatives for the Synthesis of Organics and Nanomaterials

    EPA Science Inventory

    The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...

  9. Proteoglycan synthesis by hematopoietic progenitor cells

    SciTech Connect

    Minguell, J.J.; Tavassoli, M. )

    1989-05-15

    The synthesis of proteoglycans (PG) by hematopoietic stromal cells has been reported. But PG synthesis by hematopoietic progenitor cells has not been explored. We have studied synthesis, cellular distribution, and molecular characteristics of PG by a cloned interleukin-3 (IL-3)-dependent hematopoietic progenitor cell line, FDCP-1, which is cloned from murine long-term marrow cultures. Under appropriate conditions the cell can differentiate into granulocytes and macrophages, and therefore, can be considered CFU-GM equivalent. The pattern of PG synthesis was studied by 35SO4 labeling. FDCP-1 cells actively synthesize PG, which are distributed in the intracellular, membrane-associated (MP), and extracellular pools. After purification of the 35S-labeled material by ion-exchange and gel filtration techniques, a single chondroitin sulfate-PG (CIS-PG) was observed to be present in the three studied pools. By Sepharose CL-4B chromatography, this PG has a Kav of 0.47, which after alkaline treatment is shifted to a Kav of 0.67. This indicates the proteoglycan nature of the 35SO4-labeled material. The MP CIS-PG is not stable. It is released to the culture medium where it is subsequently processed. However, in the presence of hematopoietic stromal cells D2X, the stability of MP proteoglycan of FDCP-1 cells is enhanced, suggesting that the synthesis of PG by progenitor cells and its accumulation in the membrane may have a role in the interaction between progenitor and stromal cells.

  10. Synthesis of crystalline ceramics for actinide immobilisation

    SciTech Connect

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-07-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  11. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J. J.

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  12. A Novel Target Synthesis Laboratory for Students

    NASA Astrophysics Data System (ADS)

    Smales, C. Mark; Harding, David R. K.

    1999-11-01

    A third-year specialist course in drug design and delivery focused on a single laboratory goal for all students. A tetrapeptide, destined as the signal component of a drug delivery system, was chosen for this target synthesis. The practical, real-life aspect of the course, and the target synthesis in particular, was a major component of the appeal to the students. Students were given a synthetic scheme based on standard peptide synthesis protocols, and several lectures provided background for the general approach. They were then encouraged to design each step of the synthesis themselves, with reference to the literature and course work. As long as due diligence was shown in attempts to achieve success at each step, no student was penalized for losses, low yields, or other lack of progress. Reports on all procedures used were prepared in a journal format chosen by the student and were collected at the end of the course. The target-synthesis approach was appreciated by the students and enjoyed by the staff. We believe the students left the course with a greater appreciation for laboratory research. It takes more work to set up and run this type of course than the traditional follow-the-recipe course, but in our experience it was worth the extra effort.

  13. Synthesis of cubane based energetic molecules

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert J.; Bottaro, Jeffrey C.; Penwell, Paul E.

    1993-02-01

    The need to pack more power with less weight into less space in tomorrow's weapons drove this program for the synthesis of super energetic materials. Our original impetus was a program based solely on the energetic properties of cubane. However, in the course of our studies here and in a parallel ONR sponsored program, we discovered and developed an alternative oxidizer to cubyl based systems, the dinitramide salts. We will report on our developments in the synthesis of new oxidizers based on cubane and dinitramide. In this research, we developed new methods for the functionalization of the cubane nucleus and synthesized new energetic cubanes. We developed several new routes for the synthesis of the dinitramino group. Our work on the preparation of the dinitramide group led to the synthesis of the dinitramide ion, and as a consequence ammonium dinitramide. We have in turn used this synthesis to prepare cubane ammonium dinitramide salts. We synthesized cubane-1,4bis-(ammonium dinitramide) and cubane1,2,4,7-tetrakis(ammonium dinitramide) as well as several other dinitramide salts.

  14. Tandem oligonucleotide synthesis using linker phosphoramidites

    PubMed Central

    Pon, Richard T.; Yu, Shuyuan

    2005-01-01

    Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated. PMID:15814811

  15. Toward the ultimate synthesis/recognition system.

    PubMed Central

    Furui, S

    1995-01-01

    This paper predicts speech synthesis, speech recognition, and speaker recognition technology for the year 2001, and it describes the most important research problems to be solved in order to arrive at these ultimate synthesis and recognition systems. The problems for speech synthesis include natural and intelligible voice production, prosody control based on meaning, capability of controlling synthesized voice quality and choosing individual speaking style, multilingual and multidialectal synthesis, choice of application-oriented speaking styles, capability of adding emotion, and synthesis from concepts. The problems for speech recognition include robust recognition against speech variations, adaptation/normalization to variations due to environmental conditions and speakers, automatic knowledge acquisition for acoustic and linguistic modeling, spontaneous speech recognition, naturalness and ease of human-machine interaction, and recognition of emotion. The problems for speaker recognition are similar to those for speech recognition. The research topics related to all these techniques include the use of articulatory and perceptual constraints and evaluation methods for measuring the quality of technology and systems. Images Fig. 3 PMID:7479723

  16. Microwaves and nanoparticles: from synthesis to imaging

    NASA Astrophysics Data System (ADS)

    Meissner, Kenith E.; Majithiaa, Ravish; Brown, R. A.; Wang, Lihong V.; Maffeis, T. G. G.

    2011-03-01

    We investigate the use of energy delivery using microwave radiation for both synthesis of nanoparticles as well as a hybrid imaging technique known as thermoacoustic tomography (TAT). In each instance, the absorption of microwave radiation is converted into heat. In the case of nanoparticle synthesis, water is used as the solvent and heated to induce synthesis of the nanostructures. For this aqueous synthesis technique, we demonstrate the use of both pulsed and continuous wave (CW) microwave systems operating at 2.45 GHz. In this report, we concentrate on ZnO nanostructures including nanorods, nanowire arrays and nanobelts. These are compared with nanowire arrays and nanobelts grown by vapor transport through both electron microscopy and photo-excited luminescence. We also review the use of iron oxide (Fe3O4) nanoparticles as contrast agents in TAT as previously reported. Here, we measured the properties of the colloidal nanoparticles in the microwave regime and compared the absorption with the TAT signal produced by our thermoacoustic imaging system at 3 GHz. The nanoparticles directly absorb the microwave radiation and produce a thermo-acoustic signal. The results from nanoparticles are compared to the signal produced by deionized water. The results demonstrate that microwaves represent an efficient method for the delivery of energy for both synthesis and biomedical imaging.

  17. Automation synthesis from a nonformal specification

    SciTech Connect

    Raikhlin, V.A.

    1995-03-01

    The fundamental possibility of developing universal approaches to the synthesis of finite automata from a nonformal specification requires the introduction of heuristic elements into the synthesis procedure. Various examples of using one of such approaches for the synthesis of asynchronous automata are given elsewhere. The approach on the whole is nondeterministic, which leads to application difficulties. In this paper, we propose a universal technique for the determination of the state set of the automaton being synthesized (synchronous or asynchronous) directly from the initial description. Compared with previous techniques, the heuristic region is smaller and the heuristics is substantively clearer. Further synthesis follows a completely deterministic process. The approach is intended for the design of universal interactive abstract synthesis subsystems. The division of automata into synchronous and asynchronous acquires a special meaning when the initial specification includes an option for choosing a particular type of automaton. If an alternative is available and the reliability requirements are fairly stringent, the asynchronous variant may be preferable. The notion of asynchronous automaton is not linked with the implementation method. The device itself may be synchronous or asynchronous.

  18. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

    PubMed

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J J

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  19. Highly Selective Synthesis of Halomon, Plocamenone, and Isoplocamenone

    PubMed Central

    Bucher, Cyril; Deans, Richard M.; Burns, Noah Z.

    2015-01-01

    Over 160 chiral vicinal bromochlorinated natural products have been identified, however a lack of synthetic methods for the selective incorporation of halogens into organic molecules has hindered their synthesis. Here we disclose the first total synthesis and structural confirmation of isoplocamenone and plocamenone, as well as the first selective and scaleable synthesis of the preclinical anticancer natural product halomon. The synthesis of these interhalogenated compounds has been enabled by our recently developed chemo-, regio-, and enantioselective dihalogenation reaction. PMID:26394844

  20. Inhibition of Toxoplasma gondii protein synthesis by azithromycin.

    PubMed Central

    Blais, J; Garneau, V; Chamberland, S

    1993-01-01

    Azithromycin was shown to specifically inhibit the protein synthesis of Toxoplasma gondii in experimental systems by using free tachyzoites and T. gondii-infected mouse macrophages. RNA synthesis of the parasite was not affected by azithromycin. Inhibition of protein synthesis was also proportional to the relative anti-Toxoplasma activity of three macrolides. PMID:8215287

  1. Diversity: School, Family, & Community Connections. Annual Synthesis 2003

    ERIC Educational Resources Information Center

    Boethel, Martha

    2003-01-01

    This research synthesis is the third in a series of reports to help local school, community, and family leaders obtain useful research-based information about key educational issues. This synthesis addresses diversity as it relates to student achievement and school, family, and community connections. This synthesis focuses specifically on three…

  2. Effect of Instruction on ESL Students' Synthesis Writing

    ERIC Educational Resources Information Center

    Zhang, Cui

    2013-01-01

    Synthesis writing has become the focus of much greater attention in the past 10 years in L2 EAP contexts. However, research on L2 synthesis writing has been limited, especially with respect to treatment studies that relate writing instruction to the development of synthesis writing abilities. To address this research gap, the present study…

  3. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  4. Ethylene synthesis and sensitivity in crop plants

    NASA Technical Reports Server (NTRS)

    Klassen, Stephen P.; Bugbee, Bruce

    2004-01-01

    Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

  5. A 15-step synthesis of (+)-ryanodol.

    PubMed

    Chuang, Kangway V; Xu, Chen; Reisman, Sarah E

    2016-08-26

    (+)-Ryanodine and (+)-ryanodol are complex diterpenoids that modulate intracellular calcium-ion release at ryanodine receptors, ion channels critical for skeletal and cardiac muscle excitation-contraction coupling and synaptic transmission. Chemical derivatization of these diterpenoids has demonstrated that certain peripheral structural modifications can alter binding affinity and selectivity among ryanodine receptor isoforms. Here, we report a short chemical synthesis of (+)-ryanodol that proceeds in only 15 steps from the commercially available terpene (S)-pulegone. The efficiency of the synthesis derives from the use of a Pauson-Khand reaction to rapidly build the carbon framework and a SeO2-mediated oxidation to install three oxygen atoms in a single step. This work highlights how strategic C-O bond constructions can streamline the synthesis of polyhydroxylated terpenes by minimizing protecting group and redox adjustments. PMID:27563092

  6. Synthesis of ent-kaurane diterpene monoglycosides.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Klucik, Josef; Upreti, Mani; Prakash, Indra

    2011-01-01

    Synthesis of two ent-kaurane diterpene glycosides, steviol 19-O-β-D-glucopyranosiduronic acid (steviol glucuronide, 5), and 13-hydroxy ent-kaur-16-en-19-oic acid-β-D-glucopyranosyl ester (7) has been achieved from a common starting material, steviol, using phase transfer catalyst. Also, synthesis of an additional 17-nor-ent-kaurane glycoside, namely 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester (10) was performed using the starting material isosteviol and similar synthetic methodology. Synthesis of all three steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR as well as mass spectral (MS) data. PMID:21968534

  7. Regulation of collagen synthesis by ascorbic acid.

    PubMed Central

    Murad, S; Grove, D; Lindberg, K A; Reynolds, G; Sivarajah, A; Pinnell, S R

    1981-01-01

    After prolonged exposure to ascorbate, collagen synthesis in cultured human skin fibroblasts increased approximately 8-fold with no significant change in synthesis of noncollagen protein. This effect of ascorbate appears to be unrelated to its cofactor function in collagen hydroxylation. The collagenous protein secreted in the absence of added ascorbate was normal in hydroxylysine but was mildly deficient in hydroxyproline. In parallel experiments, lysine hydroxylase (peptidyllysine, 2-oxoglutarate:oxygen 5-oxidoreductase, EC 1.14.11.4) activity increased 3-fold in response to ascorbate administration whereas proline hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate:oxygen oxidoreductase, EC 1.14.11.2) activity decreased considerably. These results suggest that collage polypeptide synthesis, posttranslational hydroxylations, and activities of the two hydroxylases are independently regulated by ascorbate. PMID:6265920

  8. Synthesis and Understanding of Novel Catalysts

    SciTech Connect

    Stair, Peter C.

    2013-07-09

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  9. Quantum chemistry-assisted synthesis route development

    NASA Astrophysics Data System (ADS)

    Hori, Kenji; Sumimoto, Michinori; Murafuji, Toshihiro

    2015-12-01

    We have been investigating "quantum chemistry-assisted synthesis route development" using in silico screenings and applied the method to several targets. Another example was conducted to develop synthesis routes for a urea derivative, namely 1-(4-(trifluoromethyl)-2-oxo-2H-chromen-7-yl)urea. While five synthesis routes were examined, only three routes passed the second in silico screening. Among them, the reaction of 7-amino-4-(trifluoromethyl)-2H-chromen-2-one and O-methyl carbamate with BF3 as an additive was ranked as the first choice for synthetic work. We were able to experimentally obtain the target compound even though its yield was as low as 21 %. The theoretical result was thus consistent with that observed. The summary of transition state data base (TSDB) is also provided. TSDB is the key to reducing time of in silico screenings.

  10. Enzymatic synthesis of cinnamic acid derivatives.

    PubMed

    Lee, Gia-Sheu; Widjaja, Arief; Ju, Yi-Hsu

    2006-04-01

    Using Novozym 435 as catalyst, the syntheses of ethyl ferulate (EF) from ferulic acid (4-hydroxy 3-methoxy cinnamic acid) and ethanol, and octyl methoxycinnamate (OMC) from p-methoxycinnamic acid and 2-ethyl hexanol were successfully carried out in this study. A conversion of 87% was obtained within 2 days at 75 degrees C for the synthesis of EF. For the synthesis of OMC at 80 degrees C, 90% conversion can be obtained within 1 day. The use of solvent and high reaction temperature resulted in better conversion for the synthesis of cinnamic acid derivatives. Some cinnamic acid esters could also be obtained with higher conversion and shorter reaction times in comparison to other methods reported in the literature. The enzyme can be reused several times before significant activity loss was observed.

  11. An efficient synthesis of loline alkaloids

    NASA Astrophysics Data System (ADS)

    Cakmak, Mesut; Mayer, Peter; Trauner, Dirk

    2011-07-01

    Loline (1) is a small alkaloid that, in spite of its simple-looking structure, has posed surprising challenges to synthetic chemists. It has been known for more than a century and has been the subject of extensive biological investigations, but only two total syntheses have been achieved to date. Here, we report an asymmetric total synthesis of loline that, with less then ten steps, is remarkably short. Our synthesis incorporates a Sharpless epoxidation, a Grubbs olefin metathesis and an unprecedented transannular aminobromination, which converts an eight-membered cyclic carbamate into a bromopyrrolizidine. The synthesis is marked by a high degree of chemo- and stereoselectivity and gives access to several members of the loline alkaloid family. It delivers sufficient material to support a programme aimed at studying the complex interactions between plants, fungi, insects and bacteria brokered by loline alkaloids.

  12. Synthesis of p-xylene from ethylene.

    PubMed

    Lyons, Thomas W; Guironnet, Damien; Findlater, Michael; Brookhart, Maurice

    2012-09-26

    As oil supplies dwindle, there is a growing need to develop new routes to chemical intermediates that utilize alternative feedstocks. We report here a synthesis of para-xylene, one of the highest volume chemicals derived from petroleum, using only ethylene as a feedstock. Ethylene is an attractive alternative feedstock, as it can be derived from renewable biomass resources or harnessed from large domestic shale gas deposits. The synthesis relies on the conversion of hexene (from trimerization of ethylene) to 2,4-hexadiene followed by a Diels-Alder reaction with ethylene to form 3,6-dimethylcyclohexene. This monoene is readily dehydrogenated to para-xylene uncontaminated by the ortho and meta isomers. We report here a selective synthesis of para-xylene, uncontaminated by the ortho or meta isomers, using ethylene as the sole feedstock. PMID:22934909

  13. Green Chemistry Techniques for Gold Nanoparticles Synthesis

    NASA Astrophysics Data System (ADS)

    Cannavino, Sarah A.; King, Christy A.; Ferrara, Davon W.

    Gold nanoparticles (AuNPs) are often utilized in many technological and research applications ranging from the detection of tumors, molecular and biological sensors, and as nanoantennas to probe physical processes. As these applications move from the research laboratory to industrial settings, there is a need to develop efficient and sustainable synthesis techniques. Recent research has shown that several food products and beverages containing polyphenols, a common antioxidant, can be used as reducing agents in the synthesis of AuNPs in solution. In this study, we explore a variety of products to determine which allow for the most reproducible solution of nanoparticles based on the size and shapes of particles present. We analyzed the AuNPs solutions using extinction spectroscopy and atomic force microscopy. We also develop a laboratory activity to introduce introductory chemistry and physics students to AuNP synthesis techniques and analysis.

  14. Prodigiosin synthesis in mutants of Serratia marcesens.

    PubMed

    Morrison, D A

    1966-04-01

    Morrison, D. A. (Harvard College, Cambridge, Mass.). Prodigiosin synthesis in mutants of Serratia marcescens. J. Bacteriol. 91:1509-1604. 1966.-Exchange of biosynthetic intermediates through the culture medium was used to characterize several hundred new color mutants of Serratia marcescens. The general scheme of prodigiosin synthesis as a bifurcated pathway, in which monopyrrole and bipyrrole precursors are synthesized separately and then coupled to form pigment, was confirmed and extended. Mutants of one new class excreted a product likely to be a new intermediate in monopyrrole synthesis, those of a second excreted a new product in the bipyrrole pathway, and those of a third were blocked at early steps in both pathways. Two novel classes of mutants were isolated, in each of which a lack of some product present in Serratia and Escherichia cultures resulted in loss of all steps in prodigiosin biosynthesis.

  15. Secretory IgA synthesis in Kwashiorkor.

    PubMed

    Beatty, D W; Napier, B; Sinclair-Smith, C C; McCabe, K; Hughes, E J

    1983-09-01

    The synthesis of intestinal secretory IgA was studied in in vitro cultures of duodenal mucosal biopsies from children with Kwashiorkor. Production of secretory IgA was measured by the incorporation of radioactive label and visualized following PAGE and autoradiography. Results obtained before and after nutritional rehabilitation demonstrate an enhanced synthesis of sIgA in children with acute Kwashiorkor. Histological examination of plasma cells in the biopsy tissue confirms a twofold increase in IgA staining plasma cells in acute Kwashiorkor. Peripheral blood B lymphocytes in acute Kwashiorkor however, showed a reduction in IgA synthesis in the acute stage. These results suggest an effective mucosal sIgA response to the increased intestinal antigen load in Kwashiorkor.

  16. Block Coloplyer Nanoreactors for Inorganic Cluster Synthesis

    NASA Astrophysics Data System (ADS)

    Cohen, Robert E.

    1997-03-01

    We have generalized our work on the spatial confinement of inorganic clusters in block copolymers to a nanoreactor scheme for cluster synthesis. Using this new methodology, a wide range of inorganic clusters can be synthesized from a single block copolymer starting material. Metals are selectively sequestered into domains of the heterogeneous block copolymer morphology, either from aqueous solutions of suitably chosen salts or via vapor permeation of organometallic compounds. Once "loaded", these metal-containing domains serve as localized reaction sites for cluster synthesis. The metal-sequestering sites are rejuvenated, rendering the nanoreactors capable of being reloaded with more of the same metal, or another, for further cluster synthesis. Magnetic and optical properties of free-standing block copolymer films containing various types of nanoclusters will be discussed.

  17. Synthesis of alpha-amino acids

    DOEpatents

    Davis, J.W. Jr.

    1983-01-25

    A method is described for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R[sub 1]R[sub 2]C(OSOCl)CN, R[sub 1]R[sub 2]C(Cl)CN and [R[sub 1]R[sub 2]C(CN)O][sub 2]SO wherein R[sub 1] and R[sub 2] are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art. No Drawings

  18. Alkoxyallenes as building blocks for organic synthesis.

    PubMed

    Zimmer, Reinhold; Reissig, Hans-Ulrich

    2014-05-01

    Alkoxyallenes are unusually versatile C3 building blocks in organic synthesis. Hence this tutorial review summarizes the most important transformations, including subsequent reactions and their applications in the synthesis of relevant compounds, e.g. natural products. The reactivity patterns involved and the synthons derived from alkoxyallenes are presented. Often alkoxyallenes can serve as substitutes of acrolein or acrolein acetals, utilisation of which has already led to interesting products. Most important is the use of lithiated alkoxyallenes which smoothly react with a variety of electrophiles and lead to products with unique substitution patterns. The heterocycles or carbocycles formed are intermediates for the stereoselective synthesis of natural products or for the preparation of other structurally relevant compounds. The different synthons being put into practice by the use of lithiated alkoxyallenes in these variations will be discussed.

  19. Synthesis, properties and transformations of fullerene peroxides

    NASA Astrophysics Data System (ADS)

    Bulgakov, R. G.; Galimov, D. I.; Dzhemilev, U. M.

    2014-08-01

    Methods of synthesis, properties and transformations of fullerene peroxides are considered and systematized for the first time. It is shown that the chemistry of fullerene peroxides is a new approach to functionalization of fullerenes, which has been intensively developing since 2002. Methods of synthesis, mechanisms of formation and reactions of C60 and C70 alkyl peroxides with or without epoxide moieties are discussed. Transformations of fullerene peroxides affording a wide range of fullerene derivatives containing, as addends, halogen or sulfur atoms; epoxide, dioxolane, thiirane, crown ether, aziridine and dioxetane rings, as well as hydroxyl, alkoxyl and carbonyl groups, are considered. Special attention is focused on reactions constituting the basis of a new approach — so-called molecular surgery, which enables the synthesis of open-cage fullerene derivatives. It has been demonstrated that such compounds are good candidates for designing photovoltaic cells and carriers of drugs and radionuclides (for radiopharmaceuticals). The bibliography includes 130 references.

  20. Biochemistry and genetics of starch synthesis.

    PubMed

    Keeling, Peter L; Myers, Alan M

    2010-01-01

    Enormous progress has been made in understanding the genetics and biochemistry of starch synthesis in crop plants. Furthermore, starch remains at the very epicenter of the world's food and feed chains and has even now become one of the world's most important sources of biorenewable energy (biofuel). Yet, despite this remarkable progress and the obvious economic importance, very little has been achieved in terms of adding value to starch or increasing starch yield, particularly in cereal crops. Here, we review the genetics and biochemistry of starch synthesis in crop plants, particularly maize. With all this know-how in place and a chasm of opportunity ahead, the time is right to see science deliver progress into a new frontier. Thus, in our view the stage is set for a new era of changes in starch synthesis, delivering enhancements in functionality and yield.

  1. Quantum chemistry-assisted synthesis route development

    SciTech Connect

    Hori, Kenji; Sumimoto, Michinori; Murafuji, Toshihiro

    2015-12-31

    We have been investigating “quantum chemistry-assisted synthesis route development” using in silico screenings and applied the method to several targets. Another example was conducted to develop synthesis routes for a urea derivative, namely 1-(4-(trifluoromethyl)-2-oxo-2H-chromen-7-yl)urea. While five synthesis routes were examined, only three routes passed the second in silico screening. Among them, the reaction of 7-amino-4-(trifluoromethyl)-2H-chromen-2-one and O-methyl carbamate with BF{sub 3} as an additive was ranked as the first choice for synthetic work. We were able to experimentally obtain the target compound even though its yield was as low as 21 %. The theoretical result was thus consistent with that observed. The summary of transition state data base (TSDB) is also provided. TSDB is the key to reducing time of in silico screenings.

  2. Introduction to special section on Hydrologic Synthesis

    SciTech Connect

    Hubbard, Susan

    2006-01-23

    The Hydrological Synthesis special section presentssynthesis topics that have the potential to revolutionize hydrologicalsciences in a manner needed to meet critical water challenges that we nowface. The special section also highlights topics that are important andexciting enough to compel researchers to engage in collaborativesynthesis activities. This introductory paper provides a brief overviewof nine papers that are included in this special section, which discussthe synthesis of tools, data, concepts, theories, or approaches acrossdisciplines and scales. The wide range of topics that are exploredinclude groundwater quality, river restoration, water management,nitrogen cycling, and Earth surface dynamics. Collectively, the specialsection papers illustrate that the challenge to deal effectively withcomplex water problems is not purely a scientific, technological, orsocioeconomic one; it is instead a complex, 21st century problem thatrequires coordinated synthesis.

  3. Regulation of Flavivirus RNA synthesis and replication.

    PubMed

    Selisko, Barbara; Wang, Chunling; Harris, Eva; Canard, Bruno

    2014-12-01

    RNA synthesis and replication of the members of the Flavivirus genus (including dengue, West Nile and Japanese encephalitis viruses) is regulated by a wide variety of mechanisms and actors. These include the sequestration of the RNA-dependent RNA polymerase (RdRp) for functions other than RNA synthesis, regulatory interactions with other viral and host proteins within the replication complex (RC), and regulatory elements within the RNA genome itself. In this review, we discuss our current knowledge of the multiple levels at which Flavivirus RNA synthesis is controlled. We aim to bring together two active research fields: the structural and functional biology of individual proteins of the RC and the impressive wealth of knowledge acquired regarding the viral genomic RNA. PMID:25462437

  4. Regulation of Flavivirus RNA synthesis and replication

    PubMed Central

    Selisko, Barbara; Wang, Chunling; Harris, Eva; Canard, Bruno

    2014-01-01

    RNA synthesis and replication of the members of the Flavivirus genus (including dengue, West Nile and Japanese encephalitis viruses) is regulated by a wide variety of mechanisms and actors. These include the sequestration of the RNA-dependent RNA polymerase (RdRp) for functions other than RNA synthesis, regulatory interactions with other viral and host proteins within the replication complex (RC), and regulatory elements within the RNA genome itself. In this review, we discuss our current knowledge of the multiple levels at which Flavivirus RNA synthesis is controlled. We aim to bring together two active research fields: the structural and functional biology of individual proteins of the RC and the impressive wealth of knowledge acquired regarding the viral genomic RNA. PMID:25462437

  5. Dimensional synthesis of a leg mechanism

    NASA Astrophysics Data System (ADS)

    Pop, F.; Lovasz, E.-Ch; Pop, C.; Dolga, V.

    2016-08-01

    An eight bar leg mechanism dimensional synthesis is presented. The mathematical model regarding the synthesis is described and the results obtained after computation are verified with help of 2D mechanism simulation in Matlab. This mechanism, inspired from proposed solution of Theo Jansen, is integrated into the structure of a 2 DOF quadruped robot. With help of the kinematic synthesis method described, it is tried to determine new dimensions for the mechanism, based on a set of initial conditions. These are established by taking into account the movement of the end point of the leg mechanism, which enters in contact with the ground, during walking. An optimization process based on the results obtained can be conducted further in order to find a better solution for the leg mechanism.

  6. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  7. A 15-step synthesis of (+)-ryanodol.

    PubMed

    Chuang, Kangway V; Xu, Chen; Reisman, Sarah E

    2016-08-26

    (+)-Ryanodine and (+)-ryanodol are complex diterpenoids that modulate intracellular calcium-ion release at ryanodine receptors, ion channels critical for skeletal and cardiac muscle excitation-contraction coupling and synaptic transmission. Chemical derivatization of these diterpenoids has demonstrated that certain peripheral structural modifications can alter binding affinity and selectivity among ryanodine receptor isoforms. Here, we report a short chemical synthesis of (+)-ryanodol that proceeds in only 15 steps from the commercially available terpene (S)-pulegone. The efficiency of the synthesis derives from the use of a Pauson-Khand reaction to rapidly build the carbon framework and a SeO2-mediated oxidation to install three oxygen atoms in a single step. This work highlights how strategic C-O bond constructions can streamline the synthesis of polyhydroxylated terpenes by minimizing protecting group and redox adjustments.

  8. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    PubMed

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids. PMID:22967461

  9. Unified Synthesis Product (USP) Recommendations

    NASA Astrophysics Data System (ADS)

    Peterson, T. C.

    2009-05-01

    The USP identifies a number of areas in which inadequate information or understanding hampers our ability to estimate likely future climate change and its impacts. For example, our knowledge of changes in tornadoes, hail, and ice storms is quite limited, making it difficult to know if and how such events have changed as climate has warmed, and how they might change in the future. Research on ecological responses to climate change also is limited, as is our understanding of social responses. The Report identifies the five most important gaps in knowledge and offers some thoughts on how to address those gaps: 1. Expand our understanding of climate change impacts. There is a clear need to increase understanding of how ecosystems, social and economic systems, human health, and the built environment will be affected by climate change in the context of other stresses. This includes ecosystems as well as economic systems, human health, and the built environment. 2. Refine ability to project climate change at local scales. One of the main messages to emerge from the past decade of synthesis and assessments is that while climate change is a global issue, it has a great deal of regional variability. There is an indisputable need to improve understanding of climate system effects at these smaller scales, because these are often the scales of decision-making in society. 3. Expand capacity to provide decision makers and the public with relevant information on climate change and its impacts. The United States has tremendous potential to create more comprehensive measurement, archive, and data-access systems that could provide great benefit to society. 4. Improve understanding of and ability to identify thresholds likely to lead to abrupt changes in the climate system. Paleoclimatic data shows that climate can and has changed quite abruptly when certain thresholds are crossed. Similarly, there is evidence that ecological and human systems can undergo abrupt change when tipping

  10. Hydroxamic Acids in Asymmetric Synthesis

    PubMed Central

    Li, Zhi; Yamamoto, Hisashi

    2012-01-01

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst’s center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Due to their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless Asymmetric Epoxidation, which uses titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless Asymmetric Epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  11. Combustion Synthesis of Magnesium Aluminate

    SciTech Connect

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.

    2011-10-20

    In the system MgO-Al{sub 2}O{sub 3}, three compounds MgAl{sub 2}O{sub 4}, MgAl{sub 6}O{sub 10}(also expressed as-Mg{sub 0.4}Al{sub 2.4}O{sub 4}) and MgAl{sub 26}O{sub 40} are well known. Importance of the first two is well established. Magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel is a technologically important material due to its interesting thermal properties. The MgAl{sub 2}O{sub 4} ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl{sub 2}O{sub 4} is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl{sub 6}O{sub 10} has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl{sub 2}O{sub 4} and MgAl{sub 6}O{sub 10} were formed in a single step, while MgAl{sub 26}O{sub 40} was not formed by this procedure. Activation of MgAl{sub 6}O{sub 10} by rare earth ions like Ce{sup 3+}, Eu{sup 3+} and Tb{sup 3+} and ns{sup 2} ion Pb{sup 2+} could be achieved. Excitation bands for MgAl{sub 6}O{sub 10} are at slightly shorter wavelengths compared to those reported for MgAl{sub 2}O{sub 4}.

  12. Antibiotics that target protein synthesis.

    PubMed

    McCoy, Lisa S; Xie, Yun; Tor, Yitzhak

    2011-01-01

    The key role of the bacterial ribosome makes it an important target for antibacterial agents. Indeed, a large number of clinically useful antibiotics target this complex translational ribonucleoprotein machinery. The majority of these compounds, mostly of natural origin, bind to one of the three key ribosomal sites: the decoding (or A-site) on the 30S, the peptidyl transferase center (PTC) on the 50S, and the peptide exit tunnel on the 50S. Antibiotics that bind the A-site, such as the aminoglycosides, interfere with codon recognition and translocation. Peptide bond formation is inhibited when small molecules like oxazolidinones bind at the PTC. Finally, macrolides tend to block the growth of the amino acid chain at the peptide exit tunnel. In this article, the major classes of antibiotics that target the bacterial ribosome are discussed and classified according to their respective target. Notably, most antibiotics solely interact with the RNA components of the bacterial ribosome. The surge seen in the appearance of resistant bacteria has not been met by a parallel development of effective and broad-spectrum new antibiotics, as evident by the introduction of only two novel classes of antibiotics, the oxazolidinones and lipopeptides, in the past decades. Nevertheless, this significant health threat has revitalized the search for new antibacterial agents and novel targets. High resolution structural data of many ribosome-bound antibiotics provide unprecedented insight into their molecular contacts and mode of action and inspire the design and synthesis of new candidate drugs that target this fascinating molecular machine. PMID:21957007

  13. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  14. REPRESSION OF TRYPTOPHANASE SYNTHESIS IN ESCHERICHIA COLI.

    PubMed

    BEGGS, W H; LICHSTEIN, H C

    1965-04-01

    Beggs, William H. (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Repression of tryptophanase synthesis in Escherichia coli. J. Bacteriol. 89:996-1004. 1965.-The nature of the glucose effect on tryptophanase in Escherichia coli (Crookes) was investigated to test the catabolite-repression hypothesis. Under static conditions of growth in the presence of 0.005 m glucose, tryptophanase was repressed and remained so upon continued static incubation subsequent to glucose exhaustion. Aeration following glucose exhaustion under static cultural conditions resulted in rapid enzyme synthesis. In the absence of glucose, certain amino acids repressed tryptophanase synthesis early in the growth cycle under aerated conditions. An inverse relationship was observed between the concentration of acid-hydrolyzed casein and the level of tryptophanase. At 3 hr, enzyme activity in cells grown in media containing 0.05% acid-hydrolyzed casein was at least five times that of cells grown in the presence of 1% casein. Addition of 0.005 m d- or l-serine to a 0.05% acid-hydrolyzed casein medium rendered the medium capable of strongly repressing tryptophanase. Glucose-expended medium was prepared by allowing cells to grow and exhaust glucose in static culture. When this expended medium was recovered and inoculated with fresh cells not previously exposed to glucose, tryptophanase synthesis was repressed for a short period in shake culture, but in static culture enzyme synthesis was only slightly affected. When the expended medium was prepared from shake cultures, fresh cells were not repressed strongly when subsequent incubation was carried out aerobically. The tryptophan pool in glucose-repressed cells grown in shake culture was appreciably less than in cells grown in the absence of glucose or in cells undergoing synthesis of tryptophanase after exhaustion of the sugar.

  15. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  16. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    PubMed Central

    Jheeta, Sohan; Joshi, Prakash C.

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  17. Synthesis of [(14) C]omarigliptin.

    PubMed

    Ren, Sumei; Gauthier, Donald; Marques, Rosemary; Helmy, Roy; Hesk, David

    2016-08-01

    An efficient synthesis for [(14) C]Omarigliptin (MK-3102) is described. The initial synthesis of a key (14) C-pyrazole moiety did not work due to the lack of stability of (14) C-DMF-DMA reagent. Thus, a new radiolabeled synthon, (14) C-biphenylmethylformate, was synthesized from (14) C-sodium formate in one step in 92% yield and successfully used in construction of the key (14) C-pyrazole moiety. Regioselective N-sulfonation of the pyrazole moiety was achieved through a dehydration-sulfonation-isomerization sequence. [(14) C]MK 3102 was synthesized in five steps from (14) C-biphenylmethylformate with 25% overall yield. PMID:27334864

  18. Tactical Synthesis Of Efficient Global Search Algorithms

    NASA Technical Reports Server (NTRS)

    Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.

    2009-01-01

    Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.

  19. Robust control synthesis for uncertain dynamical systems

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  20. Synthesis of benzonorbornadienes: regioselective benzyne formation.

    PubMed

    Caster, K C; Keck, C G; Walls, R D

    2001-05-01

    This report details the synthesis of several benzonorbornadienes by Diels--Alder cycloaddition of cyclopentadiene derivatives with substituted benzyne intermediates, which were generated by low-temperature metal--halogen exchange of halobenzenes. General conditions were developed, allowing synthesis of most benzonorbornadienes described herein at the multigram scale with isolated yields approaching 90% in some cases. Cycloaddition of the benzyne produced by substitution of a chlorodifluorobenzene for a bromodifluorobenzene in the metal--halogen exchange reaction unexpectedly gave a different benzonorbornadiene. The benzyne, which resulted by a deprotonation pathway rather than by metal-halogen exchange, formed in a highly regioselective elimination step.

  1. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal**

    PubMed Central

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.

    2012-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwave-assisted metal catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin to establish the trans homodecalin system found in the natural product. PMID:21671325

  2. Templated Synthesis of Uniform Perovskite Nanowire Arrays.

    PubMed

    Ashley, Michael J; O'Brien, Matthew N; Hedderick, Konrad R; Mason, Jarad A; Ross, Michael B; Mirkin, Chad A

    2016-08-17

    While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates. PMID:27501464

  3. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  4. The synthesis of sterically hindered amides.

    PubMed

    Schäfer, Gabriel; Bode, Jeffrey W

    2014-01-01

    Amide bond formation is one of the most important reactions due to the ubiquity of the amide functional group in pharmaceuticals and biologically active compounds. However, even the best existing methods reach their limits when it comes to the synthesis of sterically hindered amides. In this article we summarize our research in the formation of sterically hindered amides. We show that the direct coupling of Grignard reagents to isocyanates provides a facile and robust solution to this long-standing challenge and hope that this methodology will find widespread application in the synthesis of pharmaceuticals and materials. PMID:24983609

  5. Rational design and synthesis of Janus composites.

    PubMed

    Liang, Fuxin; Zhang, Chengliang; Yang, Zhenzhong

    2014-10-29

    Janus composites with two different components divided on the same object have gained growing interest in many fields, such as solid emulsion stabilizers, sensors, optical probes and self-propellers. Over the past twenty years, various synthesis methods have been developed including Pickering emulsion interfacial modification, block copolymer self-assembly, microfluidics, electro co-jetting, and swelling emulsion polymerization. Anisotropic shape and asymmetric spatial distribution of compositions and functionalities determine their unique performances. Rational design and large scale synthesis of functional Janus materials are crucial for the systematical characterization of performance and exploitation of practical applications.

  6. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the snythesis methods of the prior art.

  7. Camera-enabled techniques for organic synthesis

    PubMed Central

    Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L

    2013-01-01

    Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820

  8. Synthesis aperture femtosecond-pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Zhu, Linwei; Sun, Meiyu; Chen, Jiannong; Yu, Yongjiang; Zhou, Changhe

    2013-09-01

    A new aperture-synthesis approach in femtosecond-pulse digital holography for obtaining a high-resolution and a whole field of view of the reconstructed image is proposed. The subholograms are recorded only by delay scanning holograms that have different delay times between the object and reference beams. In addition, by using image processing techniques, the synthesis aperture digital hologram can be superposed accurately. Analysis and experimental results show that the walk-off in femtosecond off-axis digital holography caused by low coherent can be well eliminated. The resolution and the field of view of the reconstructed image can be improved effectively.

  9. Synthesis of carbon nanofibers on copper particles

    NASA Astrophysics Data System (ADS)

    Kol'tsova, T. S.; Larionova, T. V.; Shusharina, N. N.; Tolochko, O. V.

    2015-08-01

    We analyze the synthesis of carbon nanostructures from the gas phase (mixture of acetylene or ethylene with hydrogen) on the surface of copper particles without using other catalysts. The synthesized structures (multilayer graphene and carbon nanofibers) are analyzed by transmission electron microscopy and Raman scattering. It is shown that the fiber structure is determined by the C: H ratio in the gas phase. The kinetics of synthesis is analyzed in terms of the formal kinetics of conversion in accordance with the Johnson—Mehl—Avrami equation.

  10. Tailored fischer-tropsch synthesis product distribution

    DOEpatents

    Wang, Yong; Cao, Chunshe; Li, Xiaohong Shari; Elliott, Douglas C.

    2012-06-19

    Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.

  11. Synthesis and Structural Revision of Cyslabdan.

    PubMed

    Ohtawa, Masaki; Hishinuma, Yusuke; Takagi, Eiji; Yamada, Takafumi; Ito, Fumihiro; Arima, Shiho; Uchida, Ryuji; Kim, Yong-Pil; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2016-01-01

    Cyslabdan was isolated from the culture broth of Streptomyces sp. K04-0144 as a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus. We accomplished the synthesis of cyslabdan according to a previously reported structure. However, we subsequently found that this structure was incorrect; our analysis of natural cyslabdan showed that it possessed R stereochemistry at the C8 position, not S, as had previously been reported. Thus, we completed the protecting-group-free synthesis of the correct structure of cyslabdan, which is described herein. PMID:27581641

  12. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    PubMed Central

    Yu, Zhiyong; Ely, Robert J.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for chiral enolate alkylation. In addition, this synthesis of discodermolide provides the first examples of diene 1,4-diboration and borylative diene-aldehyde couplings in complex molecule synthesis. PMID:25045037

  13. Synthesis of (+)-discodermolide by catalytic stereoselective borylation reactions.

    PubMed

    Yu, Zhiyong; Ely, Robert J; Morken, James P

    2014-09-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides an inspiration for new reaction development. A new synthesis of discodermolide employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for the alkylation of chiral enolates. Furthermore, this synthesis of discodermolide provides the first examples of the asymmetric 1,4-diboration of dienes and borylative diene-aldehyde couplings in complex-molecule synthesis.

  14. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethines

    NASA Astrophysics Data System (ADS)

    Sharma, Krishna; Singh, Ritu; Fahmi, Nighat; Singh, R. V.

    2010-01-01

    Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C 9H 13N 3OS 2 or L 1H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C 9H 13N 3OS or L 2H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested.

  15. A Microplate-Based Nonradioactive Protein Synthesis Assay: Application to TRAIL Sensitization by Protein Synthesis Inhibitors

    PubMed Central

    Henrich, Curtis J.

    2016-01-01

    Non-radioactive assays based on incorporation of puromycin into newly synthesized proteins and subsequent detection using anti-puromycin antibodies have been previously reported and well-validated. To develop a moderate- to high-throughput assay, an adaptation is here described wherein cells are puromycin-labeled followed by simultaneously probing puromycin-labeled proteins and a reference protein in situ. Detection using a pair of near IR-labeled secondary antibodies (InCell western, ICW format) allows quantitative analysis of protein synthesis in 384-well plates. After optimization, ICW results were compared to western blot analysis using cycloheximide as a model protein synthesis inhibitor and showed comparable results. The method was then applied to several protein synthesis inhibitors and revealed good correlation between potency as protein synthesis inhibitors to their ability to sensitize TRAIL-resistant renal carcinoma cells to TRAIL-induced apoptosis. PMID:27768779

  16. Improved Synthesis of Geodken's Macrocycle through the Synthesis of the Dichloride Salt

    ERIC Educational Resources Information Center

    Niewahner, J. H.; Walters, Keith A.; Wagner, Ashley

    2007-01-01

    The three-step synthesis of Geodken's macrocycle, H[subscript 2]C[subscript 22]H[subscript 22]N[subscript 4], (5,14-dihydro-6,8,15,17-tetramethyldibenzo[b,i]-[1,4,8,11] tetraazacyclotetradecahexane), in an overall yield of 65% is described. By utilizing the synthesis of the macrocycle's dichloride salt, H[subscript 2]C[subscript 22]H[subscript…

  17. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis

    PubMed Central

    2015-01-01

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the “structure elucidation problem”: the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS’s utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 104 molecules/bead and sequencing allowed for elucidation of each compound’s synthetic history. We applied DESPS to the combinatorial synthesis of a 75 645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and

  18. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR

  19. Toward the Total Synthesis of Amphidinolide N: Synthesis of the C8-C29 Fragment.

    PubMed

    Kawashima, Yuki; Toyoshima, Atsushi; Fuwa, Haruhiko; Sasaki, Makoto

    2016-05-01

    A synthesis of the C8-C29 fragment of amphidinolide N, a potent cytotoxic macrolide isolated from the marine dinoflagellate Amphidinium sp., has been achieved. The key features of the synthesis involve a convergent union of the C9-C15 and C16-C29 fragments by Steglich esterification and the construction of a pyran unit through a Tebbe methylenation/ring-closing metathesis sequence. PMID:27116189

  20. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    PubMed Central

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  1. Spiro[2.4]hepta-4,6-dienes: synthesis and application in organic synthesis

    NASA Astrophysics Data System (ADS)

    Menchikov, L. G.; Nefedov, O. M.

    2016-03-01

    This review integrates and describes systematically the data in the field of spiro[2.4]hepta-4,6-dienes published in the past 15 years. The changes in the development of studies that took place during this period are noted. The methods for the synthesis, the reactivity details and key chemical transformations of spiro[2.4]hepta-4,6-dienes are considered, with the emphasis on applications of these compounds in organic synthesis. The bibliography includes 207 references.

  2. One-Pot Synthesis of Hydrophobically Modified Iminosugar C-Alkynylglycosides: Facile Synthesis of Polyhydroxy Tetrahydroindolizines.

    PubMed

    Senthilkumar, Soundararasu; Prasad, Sure Siva; Das, Amrita; Baskaran, Sundarababu

    2015-11-01

    A mild and efficient one-pot method has been developed for the stereoselective synthesis of structurally diverse novel iminosugar C-alkynylglycosides. The generality of this methodology has been demonstrated with a wide variety of amines and copper acetylides. This one-pot method has been exploited in the synthesis of new class of DNA cross-linking agents, polyhydroxy 1-vinyl-tetrahydroindolizine derivatives.

  3. Haematopoietic stem cells require a highly regulated protein synthesis rate.

    PubMed

    Signer, Robert A J; Magee, Jeffrey A; Salic, Adrian; Morrison, Sean J

    2014-05-01

    Many aspects of cellular physiology remain unstudied in somatic stem cells, for example, there are almost no data on protein synthesis in any somatic stem cell. Here we set out to compare protein synthesis in haematopoietic stem cells (HSCs) and restricted haematopoietic progenitors. We found that the amount of protein synthesized per hour in HSCs in vivo was lower than in most other haematopoietic cells, even if we controlled for differences in cell cycle status or forced HSCs to undergo self-renewing divisions. Reduced ribosome function in Rpl24(Bst/+) mice further reduced protein synthesis in HSCs and impaired HSC function. Pten deletion increased protein synthesis in HSCs but also reduced HSC function. Rpl24(Bst/+) cell-autonomously rescued the effects of Pten deletion in HSCs; blocking the increase in protein synthesis, restoring HSC function, and delaying leukaemogenesis. Pten deficiency thus depletes HSCs and promotes leukaemia partly by increasing protein synthesis. Either increased or decreased protein synthesis impairs HSC function.

  4. Defining Life: Synthesis and Conclusions

    NASA Astrophysics Data System (ADS)

    Gayon, Jean

    2010-04-01

    The first part of the paper offers philosophical landmarks on the general issue of defining life. §1 defends that the recognition of “life” has always been and remains primarily an intuitive process, for the scientist as for the layperson. However we should not expect, then, to be able to draw a definition from this original experience, because our cognitive apparatus has not been primarily designed for this. §2 is about definitions in general. Two kinds of definition should be carefully distinguished: lexical definitions (based upon current uses of a word), and stipulative or legislative definitions, which deliberately assign a meaning to a word, for the purpose of clarifying scientific or philosophical arguments. The present volume provides examples of these two kinds of definitions. §3 examines three traditional philosophical definitions of life, all of which have been elaborated prior to the emergence of biology as a specific scientific discipline: life as animation (Aristotle), life as mechanism, and life as organization (Kant). All three concepts constitute a common heritage that structures in depth a good deal of our cultural intuitions and vocabulary any time we try to think about “life”. The present volume offers examples of these three concepts in contemporary scientific discourse. The second part of the paper proposes a synthesis of the major debates developed in this volume. Three major questions have been discussed. A first issue (§4) is whether we should define life or not, and why. Most authors are skeptical about the possibility of defining life in a strong way, although all admit that criteria are useful in contexts such as exobiology, artificial life and the origins of life. §5 examines the possible kinds of definitions of life presented in the volume. Those authors who have explicitly defended that a definition of life is needed, can be classified into two categories. The first category (or standard view) refers to two conditions

  5. Pyrite synthesis via polysulfide compounds

    NASA Astrophysics Data System (ADS)

    Luther, George W., III

    1991-10-01

    formula units similar to ferredoxin complexes. Single crystal pyrite morphology is observed for low temperature syntheses. This is the morphology of pyrite commonly found in salt marsh sediments. The morphology found at the higher temperature is also single crystals, but noticeable weak clustering (framboid like) is observed. The reactions studied do not give any additional information on the low temperature synthesis of pyrite framboids because framboids were not observed. Other mechanisms must be operative for framboid formation in natural sediments.

  6. Biomimetic synthesis of metallic nanowires

    NASA Astrophysics Data System (ADS)

    Carlsen, Autumn

    With the release of its 2007 Executive Summary, the International Technology Roadmap for Semiconductors acknowledged the growing relevance of novel materials by adding an entire chapter devoted to "Emerging Research Materials," in addition to the usual "Emerging Research Devices" chapter.1 This step represents a natural progression for a roadmap striving to reflect the dynamic approach by which the semiconductor industry maintains the trend known as Moore's Law---a prediction that functionality per chip doubles every 18 to 24 months.2 The steady march of miniaturization inevitably leads to consideration of a bottom-up approach. Novel materials---such as macromolecules and one-dimensional assemblies---are gaining ground in the research and development of future technologies. The first chapter of this document presents the limitations of the top-down approach and the resulting need for research into the bottom-up approach to nanowire fabrication. Chapter two delves into the wide range of published biotemplating studies---with candidate materials such as DNA, viruses, bacteria and polypeptides. The structure and challenges associated with each templating candidate are briefly discussed, followed by a summary of examples of successful metallization. The third chapter focuses on synthesis of the genetically engineered polypeptide employed in this investigation. Characterization of the polypeptide is presented in the form of atomic force microscopy (AFM) and transmission electron microscopy (TEM) data. The fourth chapter summarizes efforts to produce a gold nanowire by colloidal decoration. Evidence of decoration is presented in the form of data obtained by ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Chapter five explores an alternate approach---reduction of fibril-bound metal ions. Two different reduction techniques are evaluated. Comparison is made of the

  7. Defining life: synthesis and conclusions.

    PubMed

    Gayon, Jean

    2010-04-01

    The first part of the paper offers philosophical landmarks on the general issue of defining life. Section 1 defends that the recognition of "life" has always been and remains primarily an intuitive process, for the scientist as for the layperson. However we should not expect, then, to be able to draw a definition from this original experience, because our cognitive apparatus has not been primarily designed for this. Section 2 is about definitions in general. Two kinds of definition should be carefully distinguished: lexical definitions (based upon current uses of a word), and stipulative or legislative definitions, which deliberately assign a meaning to a word, for the purpose of clarifying scientific or philosophical arguments. The present volume provides examples of these two kinds of definitions. Section 3 examines three traditional philosophical definitions of life, all of which have been elaborated prior to the emergence of biology as a specific scientific discipline: life as animation (Aristotle), life as mechanism, and life as organization (Kant). All three concepts constitute a common heritage that structures in depth a good deal of our cultural intuitions and vocabulary any time we try to think about "life". The present volume offers examples of these three concepts in contemporary scientific discourse. The second part of the paper proposes a synthesis of the major debates developed in this volume. Three major questions have been discussed. A first issue (Section 4) is whether we should define life or not, and why. Most authors are skeptical about the possibility of defining life in a strong way, although all admit that criteria are useful in contexts such as exobiology, artificial life and the origins of life. Section 5 examines the possible kinds of definitions of life presented in the volume. Those authors who have explicitly defended that a definition of life is needed, can be classified into two categories. The first category (or standard view) refers

  8. Scale study of direct synthesis of dimethyl ether from biomass synthesis gas.

    PubMed

    Lv, Yongxing; Wang, Tiejun; Wu, Chuangzhi; Ma, Longlong; Zhou, Yi

    2009-01-01

    We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m(-3) h(-1) and 203.80 kg m(-3) h(-1) when gas hourly space velocities were 650 h(-1) and 1200 h(-1), respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H(2)/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO(2). PMID:19393311

  9. Formal Synthesis of (±)-Roseophilin

    PubMed Central

    Bitar, Abdallah Y.; Frontier, Alison J.

    2009-01-01

    A formal synthesis of (±)-roseophilin is described. Scandium(III)-catalyzed Nazarov cyclization of 2,5-disubstituted N-tosylpyrrole 19 gives a 5,5’-fused ketopyrrole, and ansa-bridge formation via π-allyl palladium macrocyclization gives 21. PMID:19053717

  10. Trehalose glycolipids--synthesis and biological activities.

    PubMed

    Khan, Ashna A; Stocker, Bridget L; Timmer, Mattie S M

    2012-07-15

    A variety of trehalose glycolipids have been isolated from natural sources, and several of these glycolipids exhibit important biological properties. These molecules also represent challenging synthetic targets due to their highly amphiphilic character, their large number of functional groups and additional chiral centres. This review highlights some of the recent advances made in the synthesis of trehalose glycolipids, and their associated biological activities.

  11. A robust and modular synthesis of ynamides.

    PubMed

    Mansfield, Steven J; Campbell, Craig D; Jones, Michael W; Anderson, Edward A

    2015-02-25

    A flexible, modular ynamide synthesis is reported that uses trichloroethene as an inexpensive two carbon synthon. A wide range of amides and electrophiles can be converted to the corresponding ynamides, importantly including acyclic carbamates, hindered amides, and aryl amides. This method thus overcomes many of the limitations of other approaches to this useful functionality.

  12. Synthesis of the Commercial Antidepressant Moclobemide

    ERIC Educational Resources Information Center

    More, Jesse D.

    2008-01-01

    An experiment for the undergraduate organic chemistry laboratory is described in which students synthesize the commercial antidepressant drug moclobemide, marketed under the trade name Manerix. This one-step synthesis starts from commercially available material and produces moclobemide in high yield. The product is initially isolated as its…

  13. Synthesis of nano-sized hydroxyapatite.

    PubMed

    Tan, S A; Ahmad Fauzi, M N; Luay, B H; Radzali, O

    2004-05-01

    In this work, nanometer HA crystals have been synthesized via wet chemical precipitation and characterized. This research studies how key synthesis parameters affect the size and phase purity of the produced HA. Characterization work was carried out using X-ray powder diffraction method and scanning electron microscopy for phase identification and particle sizing, respectively.

  14. Magnetically retrievable catalysts for organic synthesis

    EPA Science Inventory

    The use of magnetic nanoparticles (MNPs) as a catalyst in organic synthesis has become a subject of intense investigation. The recovery of expensive catalysts after catalytic reaction and reusing it without losing its activity is an important feature in the sustainable process de...

  15. Synthesis and tribological investigation of lipoyl glycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoyl glycerides (LG) were synthesized by enzymatic transesterification of lipoic acid (LA) with high oleic sunflower oil (HOSuO) in 2-methyl-2-butanol solvent. The synthesis gave a crude product mixture (LGc) comprising unreacted LA, free fatty acids (FFA), and various LG structures with varying d...

  16. Benzodiazepine Synthesis and Rapid Toxicity Assay

    ERIC Educational Resources Information Center

    Fletcher, James T.; Boriraj, Grit

    2010-01-01

    A second-year organic chemistry laboratory experiment to introduce students to general concepts of medicinal chemistry is described. Within a single three-hour time window, students experience the synthesis of a biologically active small molecule and the assaying of its biological toxicity. Benzodiazepine rings are commonly found in antidepressant…

  17. The total synthesis of (-)-cryptocaryol A.

    PubMed

    Dias, L C; Kuroishi, P K; de Lucca, E C

    2015-03-28

    A stereoselective total synthesis of (-)-cryptocaryol A (1) is described. Key features of the 17-step route include the use of three boron-mediated aldol reaction-reduction sequences to control all stereocenters and an Ando modification of the Horner-Wadsworth-Emmons olefination that permitted the installation of the Z double bond of the α-pyrone ring. PMID:25695350

  18. Total Synthesis of (±)-Maoecrystal V

    PubMed Central

    Peng, Feng; Danishefsky, Samuel J.

    2012-01-01

    The total synthesis of racemic maoecrystal V has been accomplished. Key steps include an intramolecular Diels-Alder cyclization to rapidly construct the core system from simple starting materials and the creation of the A–C ring trans-fusion through intramolecular delivery of a hydrogen to the hindered β-face of the ring system. PMID:23126440

  19. Green Synthesis of a Fluorescent Natural Product

    ERIC Educational Resources Information Center

    Young, Douglas M.; Welker, Jacob J. C.; Doxsee, Kenneth M.

    2011-01-01

    Synthesis of 4-methylumbelliferone via the acid-catalyzed Pechmann condensation introduces students to several types of organic reactions: transesterification, electrophilic aromatic substitution, and alcohol dehydration. Performed with a recyclable, solid catalyst and under solvent-free conditions, the experiment illustrates many of the…

  20. First Synthesis of the Antiangiogenic Homoisoflavanone, Cremastranone

    PubMed Central

    Lee, Bit; Basavarajappa, Halesha D.; Sulaiman, Rania S.; Fei, Xiang; Seo, Seung-Yong; Corson, Timothy W.

    2014-01-01

    An antiangiogenic homoisoflavanone, cremastranone, was synthesized for the first time. This scalable synthesis, which includes selective demethylation, could be used to develop lead molecules to treat angiogenesis-induced eye diseases. Synthetic cremastranone inhibited the proliferation, migration and tube formation ability of human retinal microvascular endothelial cells, important steps in pathological angiogenesis. PMID:25167470

  1. Chiral hypervalent iodine reagents: synthesis and reactivity.

    PubMed

    Parra, Alejandro; Reboredo, Silvia

    2013-12-16

    Chiral hypervalent iodine chemistry has been steadily increasing in importance in recent years. This review catalogues enantioselective transformations triggered by chiral hypervalent iodine(III/V) reagents, in stoichiometric or catalytic quantities, highlighting the different reactivities in terms of yield and enantioselectivity. Moreover, the synthesis of the most remarkable and successful catalysts has been illustrated in detail.

  2. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  3. Biological conversion of synthesis gas culture development

    SciTech Connect

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Research continues on the conversion of synthesis by shift reactions involving bacteria. Topics discussed here include: biological water gas shift, sulfur gas utilization, experimental screening procedures, water gas shift studies, H{sub 2}S removal studies, COS degradation by selected CO-utilizing bacteria, and indirect COS utilization by Chlorobia. (VC)

  4. An Easy Synthesis of Two Cage Hydrocarbons.

    ERIC Educational Resources Information Center

    Dong, Dao Cong

    1982-01-01

    Describes a simple, three-step synthesis of two cage molecules, birdcage hydrocarbon (VIII) and its homologue, the homobirdcage hydrocarbon IX. Indicates that all products are easily purified and formed in high yields in this activity suitable for advanced undergraduate laboratory courses. (Author/JN)

  5. A synthesis array for lunar submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Mahoney, M. J.

    1990-01-01

    This paper describes a system concept for a synthesis array for lunar submillimeter astronomy (SALSA). It includes a brief discussion of the science objectives and the advantages of a placing such an array on the moon, the system concept, and a top-level discussion of the various subsystems, including the technology drivers associated with each.

  6. Aperture synthesis imaging from the moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1991-01-01

    Four candidate imaging aperture synthesis concepts are described for possible emplacement on the moon beginning in the next decade. These include an optical interferometer with 10 microarcsec resolution, a submillimeter array with 6 milliarcsec resolution, a moon-earth VLBI experiment, and a very low frequency interferometer in lunar orbit.

  7. Vitamins and aging: pathways to NAD+ synthesis.

    PubMed

    Denu, John M

    2007-05-01

    Recent genetic evidence reveals additional salvage pathways for NAD(+) synthesis. In this issue, Belenky et al. (2007) report that nicotinamide riboside, a new NAD(+) precursor, regulates Sir2 deacetylase activity and life span in yeast. The ability of nicotinamide riboside to enhance life span does not depend on calorie restriction. PMID:17482537

  8. Synthesis Road Map Problems in Organic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Jones, T. Nicholas

    2014-01-01

    Road map problems ask students to integrate their knowledge of organic reactions with pattern recognition skills to "fill in the blanks" in the synthesis of an organic compound. Students are asked to identify familiar organic reactions in unfamiliar contexts. A practical context, such as a medicinally useful target compound, helps…

  9. Hypolipidemic drugs are inhibitors of phosphatidylcholine synthesis.

    PubMed Central

    Parthasarathy, S; Kritchevsky, D; Baumann, W J

    1982-01-01

    Clofibric acid (CPIB) and several other systemic hypolipidemic drugs are shown to block phosphatidylcholine synthesis by inhibiting cholinephosphotransferase (ChoPTase; CDPcholine:1,2-diacylglycerol cholinephosphotransferase, EC 2.7.8.2) and particularly lysolecithin acyltransferase (LLAcylTase; acyl-CoA:1-acylglycero-3-phosphocholine O-acyltransferase, EC 2.3.1.23) of rat liver microsomes. Whereas millimolar drug concentrations are required to affect de novo lecithin synthesis catalyzed by ChoPTase, reacylation of lysolecithin by LLAcylTase is inhibited at micromolar levels. Increasing effectiveness in ChoPTase inhibition is observed in the series CPIB, SaH-42-348, tibric acid, S-321328, WY-14643, S-8527, and DH-990, with IC50 ranging from 22 mM (CPIB) to 0.3 mM (DH-990). LLAcylTase inhibition by the hypolipidemic drugs follows the same general pattern, but IC50 concentrations range from 9 mM (CPIB) to 40 microM (DH-990). The agents inhibit ChoPTase (Ki, 25-0.25 mM) and LLAcylTase (Ki, 10-0.025 mM) noncompetitively. The data suggest that inhibition of phosphatidylcholine synthesis, particularly by the LLAcylTase pathway, may be related to a drug's effectiveness in decreasing serum triglyceride and cholesterol levels by blocking lipoprotein synthesis. PMID:6294663

  10. An extended synthesis for evolutionary biology.

    PubMed

    Pigliucci, Massimo

    2009-06-01

    Evolutionary theory is undergoing an intense period of discussion and reevaluation. This, contrary to the misleading claims of creationists and other pseudoscientists, is no harbinger of a crisis but rather the opposite: the field is expanding dramatically in terms of both empirical discoveries and new ideas. In this essay I briefly trace the conceptual history of evolutionary theory from Darwinism to neo-Darwinism, and from the Modern Synthesis to what I refer to as the Extended Synthesis, a more inclusive conceptual framework containing among others evo-devo, an expanded theory of heredity, elements of complexity theory, ideas about evolvability, and a reevaluation of levels of selection. I argue that evolutionary biology has never seen a paradigm shift, in the philosophical sense of the term, except when it moved from natural theology to empirical science in the middle of the 19th century. The Extended Synthesis, accordingly, is an expansion of the Modern Synthesis of the 1930s and 1940s, and one that--like its predecessor--will probably take decades to complete.

  11. Methods of synthesis and properties of hexanitrohexaazaisowurtzitane

    NASA Astrophysics Data System (ADS)

    Sysolyatin, Sergey V.; Lobanova, Antonina A.; Chernikova, Yuliya T.; Sakovich, Gennady V.

    2005-08-01

    Methods of synthesis and properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane (also referred to as CL-20 or HNIW), a highly energetic polycyclic nitramine, are surveyed.

  12. Urothermal Synthesis of Crystalline Porous Materials

    PubMed Central

    Zhang, Jian; Bu, Julia T.; Chen, Shumei; Wu, Tao; Zheng, Shoutian; Chen, Yigang; Nieto, Ruben A.; Feng, Pingyun

    2015-01-01

    Pores from Urea Urea derivatives are shown here to be a highly verstaile solvent system for the synthesis of crystalline solids. In particular, reversible binding of urea derivatives to framework metal sites has been utilized to create a variety of materials integrating both porosity and open-metal sites. PMID:20954225

  13. Enhancing Readers' Analysis-by-Synthesis Abilities.

    ERIC Educational Resources Information Center

    McIntosh, Margaret E.

    A variety of techniques for improving readers' analysis-by-synthesis abilities (rapid, efficient reading typical of highly skilled readers) are presented in this paper. The techniques discussed in the first part emphasize improving reading comprehension and include the following: (1) modifications of the cloze procedure (encouraging readers to use…

  14. Synthesis of RNA oligomers on heterogeneous templates

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1996-01-01

    The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.

  15. Side Reactions in a Grignard Synthesis

    NASA Astrophysics Data System (ADS)

    Weiss, Hilton M.

    1999-01-01

    This experiment describes a standard Grignard synthesis of a secondary alcohol, 3-heptanol. It brings attention to a significant side product, 3-heptanone, and suggests ways of understanding and utilizing the formation of this product. The experiment is intended to stimulate creative thought in the undergraduate organic chemistry course.

  16. A Synthesis-Oriented VHDL Course

    ERIC Educational Resources Information Center

    d'Amore, Roberto

    2010-01-01

    This article proposes a VHDL language course that establishes a strong correlation between the language statements and their use in circuit synthesis. Two course modules are described: a basic module that contains the essential concepts of the language, sufficient for students to describe medium complexity circuits, followed by a second module…

  17. Electrochemical synthesis on single cells as templates.

    PubMed

    Tam, Jasper; Salgado, Shehan; Miltenburg, Mark; Maheshwari, Vivek

    2013-10-01

    The cell surface is made electrochemically active by interfacing with graphene sheets. The electrical and thermal properties of graphene allow the control of cell surface potential for electrochemical synthesis. Using this approach radially projecting ZnO nanorods are templated on the surface of single cells. This reported single cell photosensor has superior performance than similar devices made on planar surfaces.

  18. Catalytic enantioselective synthesis of vicinal dialkyl arrays.

    PubMed

    van Zijl, Anthoni W; Szymanski, Wiktor; López, Ferrnando; Minnaard, Adriaan J; Feringa, Ben L

    2008-09-19

    With a consecutive "asymmetric allylic alkylation (AAA)/cross-metathesis (CM)/conjugate addition (CA)" protocol it is possible to synthesize either stereoisomer of compounds containing a vicinal dialkyl array with excellent stereoselectivity. The versatility of this protocol in natural product synthesis is demonstrated in the preparation of the ant pheromones faranal and lasiol. PMID:18683977

  19. Phylogenomic investigation of phospholipid synthesis in archaea.

    PubMed

    Lombard, Jonathan; López-García, Purificación; Moreira, David

    2012-01-01

    Archaea have idiosyncratic cell membranes usually based on phospholipids containing glycerol-1-phosphate linked by ether bonds to isoprenoid lateral chains. Since these phospholipids strongly differ from those of bacteria and eukaryotes, the origin of the archaeal membranes (and by extension, of all cellular membranes) was enigmatic and called for accurate evolutionary studies. In this paper we review some recent phylogenomic studies that have revealed a modified mevalonate pathway for the synthesis of isoprenoid precursors in archaea and suggested that this domain uses an atypical pathway of synthesis of fatty acids devoid of any acyl carrier protein, which is essential for this activity in bacteria and eukaryotes. In addition, we show new or updated phylogenetic analyses of enzymes likely responsible for the isoprenoid chain synthesis from their precursors and the phospholipid synthesis from glycerol phosphate, isoprenoids, and polar head groups. These results support that most of these enzymes can be traced back to the last archaeal common ancestor and, in many cases, even to the last common ancestor of all living organisms.

  20. Total Synthesis of (±)-Gracilioether F.

    PubMed

    Shen, Xin-Yue; Peng, Xiao-Shui; Wong, Henry N C

    2016-03-01

    Total synthesis of (±)-gracilioether F was achieved via a pivotal reductive cleavage of 1,2-dioxane from allenic ester in 11 steps. The key 1,2-dioxane species, derived from singlet oxygen and a diene, could be used as a common precursor for a stereocontrolled formation of the crucial 1,4-diol through a reductive cleavage. PMID:26878903